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NO vs air/ethanol mix
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@ Regression Mixture
@ Mixtures of Gaussian regressions with logistic weights
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@ Regression Mixture
@ Mixtures of Gaussian regressions with logistic weights
@ Model selection



Statistical modeling

@ Data: (X, Yi)i<n € [0;1]9 x RP
[+ X,‘ 1 )<.I
o Yil(Xi)k L Yjl(Xi)«
@ Y|X has a density sp w.r.t. Lebesgue measure
@ Regression = specific modeling of the conditional density sp(.|x)

@ Gaussian regression mixture with logistic weights:

SK,u,X,w (ylx) = Zﬂwk )Zk(x)( ),

) ewk(x)
with o Tw k(x) = —————, logistic weights

Sy e (x)
0 &, ()5, (x) density of N (vi(x), Xk(x))

@ Parameters:

@ K: number of components
@ v and X: K regression functions and covariance matrices functions
o w: K weights functions defining the mixture proportions



Models

@ Gaussian regression mixture with logistic weights:

SK,’U,Z,W(y’X Z Tw k(X (%), 2k ( x)( )

. e
with o 7, 4 (x) = K o) logistic weights

Zk’ eWk’ X
0 D05 (x) den5|ty of M (vk(x), Zk(x))

@ Parameters: 6 = (K, v, X, w)
@ K: number of components
o v and X: K regression functions and covariance matrices functions
o w: K weights functions defining the mixture proportions
@ Model S, = {59,9 S @m} with ©,, = {K} R Tk ® Vg @ W,i:
@ K: number of components.
o Tk and Vk: sets for the K-tuple of regressions functions and covariance
matrices functions.
o Wi: sets for for the K-tuple of weights functions.
@ Typical choice:
o Tk and Wk: tensorial product of polynomial sets of low degree.
@ Wy: constant covariance structures independent of X.



Maximum likelihood and
penalization

@ Model S, = {sp,0 € Oy} with ©,, = {K} ® Tk ® Vkx @ Wk:
@ K: number of components.
@ Tk and Vk: sets for the K-tuple of regressions functions and covariance
matrices functions.
o Wy: sets for for the K-tuple of weights functions.

@ Maximum likelihood estimation within each model:

n
Sm = argmax — Z In sp(Yi]Xi)
0€0m i1
@ Model selection by a penalization proportional to the dimension:
K

m = argmin Z —In5n(YilXi) + kdim©p,
meM k=1

@ Usual complexity/fidelity tradeoff.



Contributions

Characterization of the theoretical performances
@ Penalty choice: pen(m) = x(C + In n) dim(Sp,).
@ Oracle inequality:

D [JKL,(?H(SO,%?,)} < (G inf ( |nf KL®n(S 0, m) + pen(m)) + 9
n

meM \smESm n
v

Numerical implementation of the penalized maximum likelihood
@ EM type minimization scheme with a focus on initialization issues.

@ Practical scheme for the penalty calibration with the slope
heuristic approach.




Conditional density and selection

@ General framework: observation of (X, Y;) with X; independent
and Y; cond. independent of law of density sp(y|X;).

@ Goal: estimation of sp(y|x).

@ Penalized model selection principle:
o choice of a collection of cond. dens. models S, = {sm(y|x)} with m € S,
@ Maximum likelihood estimation of a cond. density §,, for each model S,,:

n
Sm = argmin — Y _ In s, (Vi X))

SmESm i—1
o Selection of a model m by n
m = argmin — Z InSm(Y:|X:) + pen(m).
meS :
i=1

with pen(m) well chosen.
@ Typical oracle inequality result:
E [dZ(SO,’s\a)} < C inf ( inf  KL(so,Sm) +

meS \smESm n

!
pen(m)> + €
n
@ Short bib.: Rosenblatt, Fan et al., de Gooijer and Zerom,
Efromovitch, Brunel, Comte, Lacour... / Plugin, direct estimation,
L2, minimax, censure...



Ideal oracle inequality

@ Oracle inequality:

G A(m)
E [KL®"(s0,55)] < f £ OKL®n
[KLE"(s0,55)] < G inf | inf KL®"(so,5m)+ =
N——
Bias term Variance term

as soon as pen(m) is large enough
@ Divergence adapted to the conditional density setting:
o Divergence on the product density conditioned on the design (Kolaczyk,
Bigot).
@ Tensorization principle and expectation on the design: design:

KL — KL®"(s,s") Z KL (s(-|X),s'(-|X:))

@ Much more information using the second approach because losses
used are larger.

@ Ability to handle independent but non i.i.d. case and integrated
loss.

@ Classical density estimation theorem if s(:|X;) = s(-).



Notations
@ Let for any function g(x, y),

1 n
o P%n(g): its empirical process PS"(g) = - Zg(X,-, Yi).
i=1

o P®(g): its expectation P®"(g) = E [PP"(g)] =E l” Zg(X,-, Yi)

o v¥(g) = PP (g) — P®(g): its recentered process.
@ Maximum likelihood estimate:

n
Sm = argminz —Insm(Y;|X;) = argmin P¥"(— In s,)

SmESm i=1 SmESm
. S,
= argmin P2"(—In =7)
SmESm S0

@ Best projection:
~ . . S
$m = argmin KL®"(sp, 5pp) = argmin P®"(—In =7)
SmESm SmESm S0

= argmin P®"(—Ins;,)
SmESm




Ideal penalty

@ By definition:

KL (50, 3m) = P (— In 5"’) g (— In 5’”’)

50 50
pen;q(m)/n
@ With the ideal penalty pen; (m):
KL®"(sp,35) = P (_ ) pen;g(M)
< inf P& (— Sm ) Peialm) o6 k1% (sy, 5)
m m

< inf (KL®"(s0, sm) (KL®"(so,sm) — KL®"(s0,3m))

@ ldeal penalty oracle inequality:

E [KL®(s0,55)] < Sinfs KL®"(s0,35m) + E [KL®"(s0,3m) — KL®" (50, 3m)]
€

Bias term Variance term




Non ideal penalization

@ By construction

~

KL®" (sp,3) = P2" <— In 537) — <— In 537)

S0 S0
= m
S0 n
e () - 2
n S0 n

< min (P?” (— In Sm> + pen(m)>
SmEeS ) n
_®n (_ In s;,) _ pen(m)




Non ideal penalization

@ Using $p, = argmin,_cs KL®"(sp, sm):

KL®(s,3:) < min (Pf?" (—lng’"> + pen(m))

SmeS So n
—®n (—Ingﬁ’> _M
n
S0 n
KL®"(s0,5,,) < min (P,?" (_ In 5’") + pen(m))
SmeS So n

_y§n<_|nsa)_pen(m)

So n



Non ideal penalization

@ Summary:

KL®”(507§E) S min (P?n (_ In SI‘") + pen(m)>

SmEeS So n
a5 _ pen(m)
n
S0 n

@ Oracle inequality up to something:

E [KL@H(SmEE)] < min (KL®"(50,§m) + pen(m))

SmEeS n
S m
LE [y <_|nm) _Pen(m)]
S0 n
. S pen(m) : ,
@ IfE|—v" [ —In-2 | — ————=| <0 then exact oracle inequality!
S0 n
G m
o IfE |~ (— In m) _ pen(m) _ eKL®”(50,§nAq)} < 0 then
50 n

inexact oracle inequality.



Kullback-Leibler and extension

@ lIssue in the previous approach: control of

hard due to the unboundedness of —In =
@ Trick: replace this quantlty by the bounded one
1 ~+(1—
P

In
P S0

@ By convexity,
77| PS5+ (1 —p)so <_ SH
p S0 S0
@ Jensen-Kullback-Leibler divergence:

. 1. ps=+(1—p)s 1 .
IKLE"(50,5m) = P (—plnp"’ (SO p)o)=pKL®"(507ﬂSm+(1—ﬂ)So)

~

< p&n <— In Sﬁ?) = KL"(s0, 3m)
50



JKL® and non ideal penalization

@ By construction

1, ps+(1—
IKLE(50,3) = PE" (—In P+ ( ”)5")
P

S0
1 S 1-—
—I/,(?" <_|n psm+( p)SO)
P S0
< P (-0 %) g (L Bt Um0l
S0 P S0
< por (— In 5‘37> . ben(m)
S0 n
@n ( 1 ps;+(1- p)So) pen(m)
—vy" | —=1In —
50 n

< min (P,(?" < In Sm) + pen(m)>
Sm€ES So n

®n (_1 i Pt (1 p)So) _ pen(m)
n p S0 n




JKL® and non ideal penalization

@ Using Sp, = argmin,_cs KL®"(sp, sm):

JKL?n(sO,EE) < min (Pg@n (_ In 5m> " pen(m)

SmEeS
1 5~ 1—

JKL?n(sO,EE) < min <P§n (_ n 5m> " pen(m)

SmeS
1 S~ 1—
— V" (_|n Pom + (1= p)so
P So




JKL®" and non ideal penalization

@ Summary:

JKLE" (50,57) < min <P§?n (_ In 5’”) n Pen(’”))

SmeS ) n
_ @ (_1 i Pt (1 p)So) _ pen(m)
n p S0 n

@ Oracle inequality up to something:

050 30 < i, (2 50+ 20)

SmeS
(Lt e et
n S0 n

+E

@ Under some assumptions on the model collection, it exists a
penalty such that
= pen(m) N
e v (- ) P e o] <o
S0 n
@ For such a penalty, one has an inexact oracle inequality.



Theorem

Assumption (H): For every model Sy, in the collection S, there is a non-decreasing function ¢,(8) such that
8 — $6m(0) is non-increasing on (0,-00) and for every o € RT and every s, € Spy

o
/0 Hipon (€ Sm(5ms @) de < 6m().
Assumption (K): There is a family (xm)meat of non-negative number such that

Z e < ¥ < +oo
meM
Theorem
Assume we observe (X, Y;) with unknown conditional so. Let S = (Sm)mem a at most countable collection of
conditional density sets. Assume Assumptions (H), (K) and (S) hold.
Let S, be a d -log-likelihood minimizer in Sp,:

S m(E(YiX) < _int (z - ln(sm(v,-\x,-))> +0

i=1 i=1
Then for any p € (0,1) and any C; > 1, there is a constant ko depending only on p and Cy such that,
as soon as for every index m € M pen(m) > k(D + xm) with k > Ko
where D, = nofn with o, the unique root of —¢m(o) = v/no,
a

the penalized likelihood estimate 55 with m defined by

= argmin »_ —In(3y(Y;|X;)) + pen(m)
meM =

satisfies E [JKL%"(SQ,?;])] <G (sinfs( im; KL®"(s0, 5m) +
S \sme

m

penn(m)) n KoX + 5) '

S n




Simplified Theorem...

@ Oracle inequality:

E [JKLY" (50, 37)] < G < inf ( inf  KL®"(s0, 5m) +

pen m> n Kox + 5>
Sm€ES \Sm€ESm n

n

as soon as
pen(m) > kK (Dm + xm) with kK > ko,

where ©, measure the complexity of the model S, (entropy
term) and xp, the coding cost within the collection.

@ D, linked to the bracketing entropy of S, with respect to the
tensorized Hellinger distance d?®n.

@ Often ©,,  (log n)dim(Sp,)...



Penalty and complexities

@ Control required on

S~ en(m N
—yn (— In 5’5’) - pn() — eJKLE" (%0, 55)
through a supremum!
@ Control in expectation requires a pen(m) taking into account
@ the intrinsic complexity of the model,
o the complexity of the collection.
@ Here:

o Model complexity: entropy complexity ®,, defined from the bracketing
entropy Hjj qen (€, Sm) of Sm with respect to the tensorized Hellinger
distance d?®r.

o Collection (coding): Kraft type inequality Z e <Y <4

meS
@ Classical constraint on the penalty

pen(m) > &k (DOm + xm) with K > Ko.

@ Often ©,, o (In(n)) dim(Sp,) and thus classical penalization by
dimension setting...



Brackets and complexity

@ Bracketing entropy: H[j 4@ (€, S) = logarithm of the minimum
number of brackets [t;, t;"] such that
o Vi, d®(t; ,tt) <e

it

o Vse S5, 3it7 <s<th
where d®n = /d2®n = \/E [% Zdz(s(-\Xi),s’(~|X;))} is the
tensorized Hellinger distance.

@ Assumption (H): for all model Sp,, there is a non decreasing ¢pm(J)

such that § — %gf)m(&) is non increasing (0, +00) and such that for
all 0 € RT and all s, € Sy

|V Hien (6.Sm) de < (o)

@ Complexity ©,, def. as no2, with o, unique root of
Pm(0) = Vno?.
@ Key: Dudley type integral and optimization of a deviation bound.
@ Typically, Hpj gon (€, Sm)) ~ dim Sp(C + log 1/€) which implies
Dm x (Inn)dim(Sy)...




Gaussian regression mixtures
@ Model S, = {sp,0 € ©,} with ©,, = {K} @ T, ® Vx @ W:

@ Tk and Vk: sets for the K-tuple of regressions functions and covariance
matrices functions.
o Wy: sets for for the K-tuple of weights functions.
@ Structural assumptions:
@ V is a set of covariance matrices independent of the covariate,
o Tk and Wy are such that

; 1
Hinaxt sup, 1)1 (9 Wie) = dim(Wic) (Cw +1n 5>

1
Haxt sup, 1411 (8 T) < dim(T) <CT +1n 5)

@ Satisfied for instance if Tk and Wy are K-tuples of polynomials
with bounded coefficients and x is bounded.
@ Th: Under this assumption, if pen(m) = x(C + In n) dim(S;,) then

pen(m) ) N G

n

E [JKLE?”(SO,%)} <G inf (snlgfsm KL®"(s0, 5m) +

n
@ Key: upper bound of the bracketing entropy Hpj 4en (€, Sm)-



Bracketing entropy decomposition
@ Model:
m_{zﬂ-wk Zk(x)( ) (vaaza W) E@m}

with O, = {K} ® Tk ® Vk @ W
Weight and regression models:

W= ok € ]

K
Rk = {((ka(X),Zk(x)(}/)) k1’ (U, Z) € Tk x VK}

Splitting properties:

J

0
H[.],d®"(67 Sm) < H[.],supx maxy d (5,RK> + H[.],supxd <57WK>



Bracketing entropy decomposition

@ Gaussian K-tuple bracketing entropy:

)
H1 sup, max d (57RK) < Hinaxk_ sup, [14(0)l2(€10, Tk) + Ha(€20, V)
< (dim(T ) + dim(Vk)) <CR +in ;)
@ Logistic weight K-tuple bracketing entropy:
1) €30 . 1
H[.],supxd (57WK) < Hmaxksupx k]l (\/3?7 WK) < d|m(WK) (CW +In 5)
@ Bracketing entropy bound if K < K :
4] 0
H[.],d®"(6v Sm) < H[.],supX maxy d (5,RK> + H[.],supxd <57WK>
1
< (dim(Tx) + dim(Vic) + dim(Wi)) <c +in 5)

< dim(Sn) <c+ |n(15)



Numerical experiments
12} 590 ¢ (Sm)mEM

©0 0o

0 0.2 0.4 0.6 0.8 1

Well specified Misspecified

2 000 points

@ Models S, used:
o Affine models for the weights and the regressions:

Tk =Wk = {(akx + bk)szl, (a, b) S RKX2}

o Free variance: Vi = RK
@ Only choice is the number of components K



KL risk
2 000 points
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KL risk
10 000 points
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Histograms of the selected K
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Numerical optimization

@ Model S, = {sp,0 € O} with ©,, = {K} ® Tk @ Vk @ W:
@ K: number of components.
o Tk and Vk: sets for the K-tuple of regressions functions and covariance
matrices functions.
o Wy: sets for the K-tuple of weights functions.

@ Maximum likelihood estimation:

N
Sm = argmin — Z In sp(Yi|Xi)
€O i=1

@ Penalized model selection:
N
m = argmin — Z InSm(Yi|Xi) + kdim©,,
m i=1

@ Model selection computed by exhaustive exploration.

@ Focus on maximum likelihood estimation!



Maximum likelihood estimation

@ Model S, = {sp,0 € ©,} with ©,, = {K} @ T, ® Vx @ W:
@ K: number of components.
@ Tk and Vk: sets for the K-tuple of regressions functions and covariance
matrices functions.
o Wy: sets for the K-tuple of weights functions.

@ Maximum likelihood estimation:

Sm = argmln—Zln (Z 7TWk vk X),Zk(X,-)(Yi)>

0cOn, i=1

L(0)

@ Non convex minimization problem!

@ Majorization/Minimization approach



MM approach

e(;?+1) g(")

@ lterative approach to minimize L(6) by minimizing a sequence of
(convex) proxies of L.
@ Majorization/Minimization:
o Current estimate of the minimizer: (")
o Construction of a Majorization L(" of L such that L((9(") = L(4(")
with L(") easy to minimize (convex for example).
o Computation of a Minimizer

001 = argmin L("(6)
@ By construction, L(A("T1)) < L(6(M)!I

@ Very generic methodology...
@ Minimization can be replaced by a diminution...



Maximum Likelihood and EM

@ Back to our maximum IikeIihood'

L(0) = L(K,v, T, w) Zln (Z T k(X Uk(x,-),zk(x,-)(m>
i=1

@ EM: specific case of MM for this type of mixture.
@ (Conditional) Expectation: at step n, we let

P,i’(n) —p (k- = k|X:, Yi, K, 0" £ W(”))

and  LO(K, 0, T, w) ZZP 20 (70 k(X0 O, 00),2,00) (1)) -
i=1 k=1

@ Maj. prop.: L < L(M 4 Cst(" with equ. at
6= (K, oMy () W(n))
@ Separability in (v(" (") and W(”)'

LK, 0, T, w) ( Z P,'(’ "n q)vk(X,)Zk(X,)(Y))
i=1 k=

+ ( PL’ D n o (X )\



Minimization of L")
@ Separability in (v(", (") and w(");

N K
LK, v, T, w) < SN P by, x s (Y ))

i=1 k=1

@ For the regression parameters (v("), ¥("):
o K weighted linear regressions: — i P " n Do),z x) (Vi)
o Explicit formulas! =
@ For the weight parameters w("):
o Single K modality logistic regression: — ZN: XK: P " n T,k (X5)

i=1 k=1
o lterative minimization scheme (Newton = lterative Reweighted Least

Square)



Initialization

@ Very important issuel
@ For the weights: initialization to uniform weights seems sufficient.

@ For the means:
o Comparison between several strategies

o Naive purely random initialization

o Small-EM: Random initialization followed by a few minimization steps and
selection

o Advanced Small-EM: Initialization based on a first 2D clustering followed by
a few minimization steps and selection

o Advanced Small-EM 2 : Initialization based on a random drawing of lines
between points clustering followed by a few minimization steps and selection

o Criterion: lowest likelihood for a given amount of time!
@ Similar results in term on expectation but different behaviors in term
of dispersion:
o Too simple strategies fail sometimes to provide a satisfactory answer while
too complex ones may not explore sufficient local maxima.
o Winner: Advanced Small-EM 2 with 3 minimizations steps and 50
candidates.



Newton-EM Algorithm

@ Initialization with Advanced Small-EM 2:

o Initialization based on a random drawing of lines between points
clustering

@ 3 minimizations steps

o selection among 50 candidates

@ lterate until convergence:

o Newton steps over weights w(" if the likelihood increases (up to 5
times)

o K linear regressions to update mean and variance (v("), £(") in each
class

@ Note: Initialization issues in high dimension with this scheme!



Numerical results
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Penalization strategy

@ Penalized model selection:

—argmlnz InSm(Yi|Xi) + pen(m)
meM k=1

@ Theoretical analysis:
pen(m) = k(C +Inn)dim©p,

@ « and C are only loosely upper bounded!

@ In practice, use pen(m) = kdim ©,, with x chosen appropriately.
@ Classical choice:

o BIC: kK =logn/2

o AlIC: k=1

@ Here: Jump/slope heuristic = data driven choice of x



Ideal penalty

@ By definition:

KL (50, 3m) = P (— In 5"’) g (— In 5’”’)

50 50
pen;q(m)/n
@ With the ideal penalty pen; (m):
KL®"(sp,35) = P (_ ) pen;g(M)
< inf P& (— Sm ) Peialm) o6 k1% (sy, 5)
m m

< inf (KL®"(s0, sm) (KL®"(so,sm) — KL®"(s0,3m))

@ ldeal penalty oracle inequality:

E [KL®(s0,55)] < Sinfs KL®"(s0,35m) + E [KL®"(s0,3m) — KL®" (50, 3m)]
€

Bias term Variance term




Jump/Slope heuristic

@ ldeal penalty decomposition:
en:y(m 5
p 1d( ) — _Z/SKJ,, (_ In m)

———

independent of m

@ Jump/Slope heuristic:

o Concentration: v%" (—In5,) < v¥" ( In~
o Symmetry: P& (—In(5,/5m)) ~ P® (— In(sm/sm))
@ Resulting approximation:

en;j\m S,
petig(m) )~2P§9n (—In ’") —P%"(—log so) -
n Sm/) ———

independent of m

@ P&n (— In %"’) has still to be estimated!



Minimal penalty

@ If pen(m) = KP%" (— In E—m) then

P2r(—1In3sy,) + pen(m) = (1 — k)PE"(—In3,) + kPP (—In3,,)
@ No tradeoff is x < 1!
@ Minimal penalty: pen,;,(m) = P2 (—In(5,/5m))
@ Jump/Slope heuristic strongest assumption: parametric
approximation of pen,;,

pen,,;,(m) = pen(k, m)

where pen shape is given by the theoretical study!

@ Simplest case: pen(k, m) = kdim S,



Jump heuristic

8

7

Number of mixture components of the selected model
o

0 0,703 1,282 1,737 2,261 2,522 3
®

@ Minimal penalty for which there is a tradeoff:
pen,,;,(m) = pen(x, m)

@ Compute the models selected for several x and detect a jump in
the model dimensions.

@ Not always a clear single jump...



Slope heuristic

Observation:

pen,y(m) = P®n —Ini—'77 = P% (InS,) + P®" (—Ins,
id n n n

Sm
If the model are more and more complex, one may expect that the
projection bias converges to a constant: PY" (—1In3,) ~ C
This implies pen;q(m) ~ P27 (In5p,) + C
If pen;q(indm) = pen(rk, m) then k can be estimated by a
regression as
pen(k, m) — C ~ P27 (Ins,,)

—_——
data driven

If pen(r, m) = kdim S, £ measures the slope of P27 (In's,,) with
respect to dim S,,.



Slope heuristic

180 8
—— Log-likelihood 3
160} — — — Asymptotic slope e g

- g7
140 -7 3
K]

120 Ls
3 s
2 100 2

K] 2s
T 80 g
b4 E
2 g
®

60 54
40 s
5

g 3
20 £
5
2

0 5 10 15 20 25 30 35 40 0 0,703 1,282 1,737 2,261 2,522
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Model dimension

@ Slope heuristic with pen(x, m) = kdimSp: K~ 1
@ Resulting penalties:

o Slope heuristic: pen(m) = 2dim(S,,)

o BIC: pen(m) = 223dim(S,,)

o AIC: pen(m) = 2dim(S,,)
@ Selected number of clusters:

o Slope heuristic: 4
o BIC: 4
o AIC: 7!



Numerical results
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Validation?
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Conclusion

@ Framework:

@ Mixture of regressions.

@ Proposed tool: Mixture of Gaussian regressions with logistic mixing
weights.

o Penalized maximum likelihood conditional density estimation.

@ Contributions:

@ Theoretical guarantee for the conditional density estimation problem.
o Efficient minimization algorithm.
@ Numerical penalty calibration.

@ Perspectives:

@ Proof for penalty calibration by slope heuristic.
o Enhanced Spatialized Gaussian Mixture Model with piecewise logistic
weights (S. Cohen).



