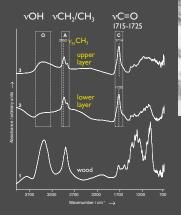
Hyperspectral Image Segmentation by Spatialized Gaussian Mixtures and Model Selection

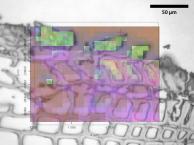
E. Le Pennec (SELECT - Inria Saclay / Université Paris Sud) and S. Cohen (IPANEMA - CNRS / Soleil)

SMAI 2013

A. Stradivari (1644 - 1737)

Provigny (1716)





4 / 8 cm⁻¹ resolution 64 / 128 scans typ. I min/sp, 400sp

very simple process no protein (amide I, amide II) no gums, nor waxes

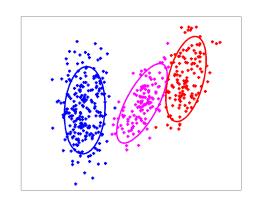
@SOLEIL: SMIS

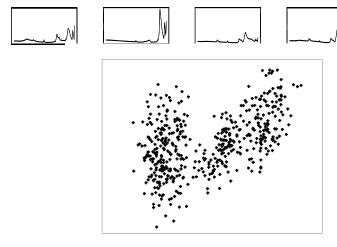
J.-P. Echard, L. Bertrand, A. von Bohlen, A.-S. Le Hô, C. Paris, L. Bellot-Gurlet, B. Soulier, A. Lattuati-Derieux, S. Thao, L. Robinet, B. Lavédrine, and S. Vaiedelich. *Angew. Chem. Int. Ed.*, 49(1), 197-201, 2010.

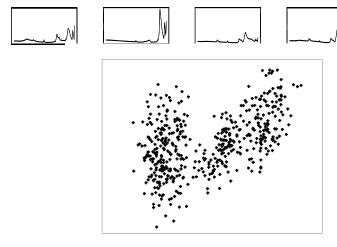
Hyperspectral Image Segmentation

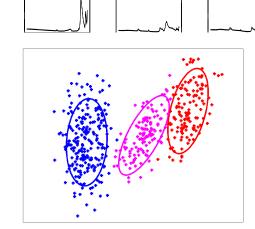
- Data :
 - ullet image of size N between ~ 1000 and ~ 100000 pixels,
 - ullet spectrums ${\cal S}$ of ~ 1024 points,
 - very good spatial resolution,
 - ability to measure a lot of spectrums per minute,
- Immediate goal :
 - automatic image segmentation,
 - without human intervention,
 - help to data analysis.
- Advanced goal :
 - automatic classification,
 - interpretation...

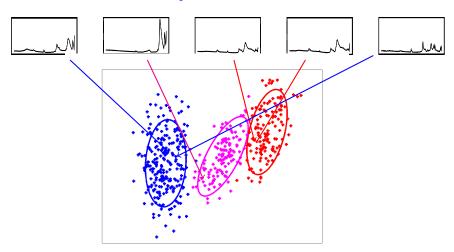




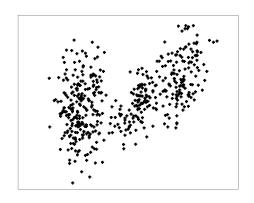


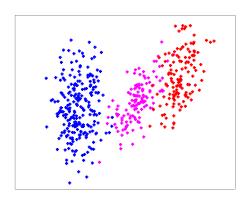


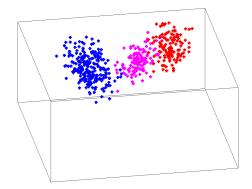


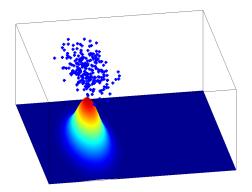


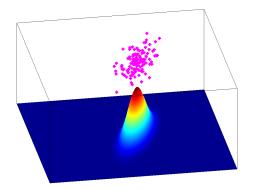
- Representation: mapping between spectrums and points in a large dimension space.
- Spectral method.

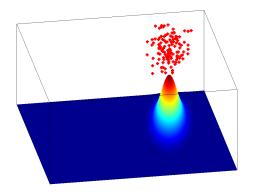


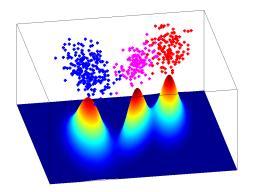


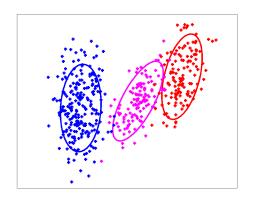


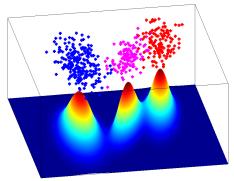






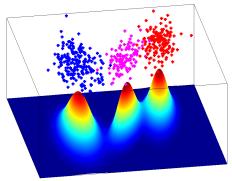






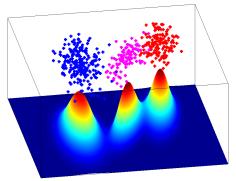
- Model : Gaussian Mixture with K classes.
- Mixture density :

$$s_{K,\pi,\mu,\Sigma}(\mathcal{S}) = \sum_{k=1}^{K} \pi_k \frac{1}{\sqrt{(2\pi)^d |\Sigma_k|}} e^{-\frac{1}{2}(\mathcal{S} - \mu_k)^t \Sigma_k^{-1}(\mathcal{S} - \mu_k)}$$
$$= \sum_{k=1}^{K} \pi_k \mathcal{N}_{\mu_k,\Sigma_k}(\mathcal{S})$$



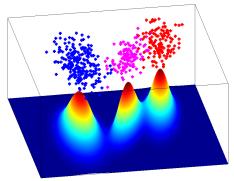
- Model : Gaussian Mixture with K classes.
- Mixture density :

$$s_{K,\pi,\mu,\Sigma}(\mathcal{S}) = \sum_{k=1}^{K} \pi_k \frac{1}{\sqrt{(2\pi)^d |\Sigma_k|}} e^{-\frac{1}{2}(\mathcal{S} - \mu_k)^t \Sigma_k^{-1}(\mathcal{S} - \mu_k)}$$
$$= \sum_{k=1}^{K} \pi_k \mathcal{N}_{\mu_k,\Sigma_k}(\mathcal{S})$$



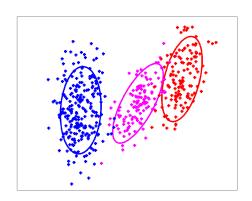
- Model : Gaussian Mixture with K classes.
- Mixture density:

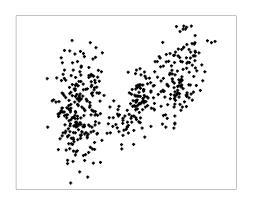
$$s_{K,\pi,\mu,\Sigma}(\mathcal{S}) = \sum_{k=1}^{K} \pi_k \frac{1}{\sqrt{(2\pi)^d |\Sigma_k|}} e^{-\frac{1}{2}(\mathcal{S} - \mu_k)^t \Sigma_k^{-1}(\mathcal{S} - \mu_k)}$$
$$= \sum_{k=1}^{K} \pi_k \mathcal{N}_{\mu_k,\Sigma_k}(\mathcal{S})$$

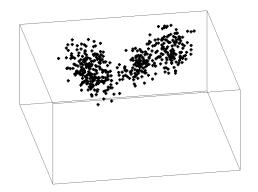


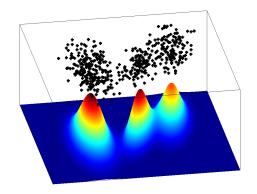
- Model : Gaussian Mixture with K classes.
- Mixture density :

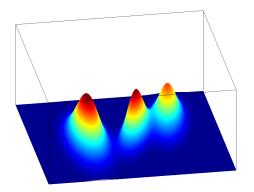
$$s_{K,\pi,\mu,\Sigma}(\mathcal{S}) = \sum_{k=1}^{K} \pi_k \frac{1}{\sqrt{(2\pi)^d |\Sigma_k|}} e^{-\frac{1}{2}(\mathcal{S} - \mu_k)^t \Sigma_k^{-1}(\mathcal{S} - \mu_k)}$$
$$= \sum_{k=1}^{K} \pi_k \mathcal{N}_{\mu_k,\Sigma_k}(\mathcal{S})$$

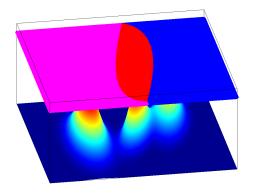


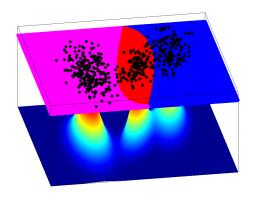


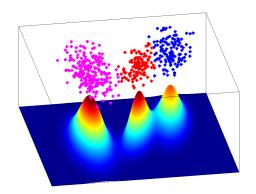


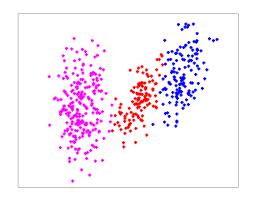


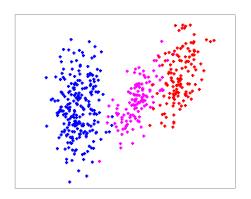


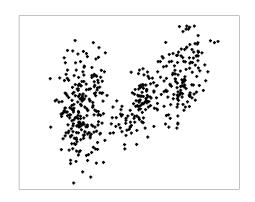




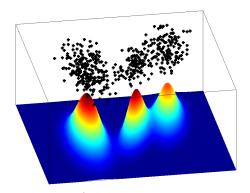








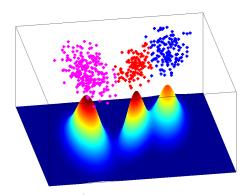
"Statistical" Estimation



ullet Estimation of π_k , $\widehat{\mu_k}$ and $\widehat{\Sigma_k}$ by maximum likelihood :

$$(\widehat{\pi_k}, \widehat{\mu_k}, \widehat{\Sigma_k}) = \operatorname{argmax} \sum_{i=1}^N \log s_{K,(\pi_k,\mu_k,\Sigma_k)}(S_i)$$

"Statistical" Estimation



• Estimation of π_k , $\widehat{\mu_k}$ and $\widehat{\Sigma_k}$ by maximum likelihood :

$$(\widehat{\pi_k}, \widehat{\mu_k}, \widehat{\Sigma_k}) = \operatorname{argmax} \sum_{i=1}^N \log s_{K,(\pi_k,\mu_k,\Sigma_k)}(\mathcal{S}_i)$$

ullet Estimation of $\widehat{k}(\mathcal{S})$ by maximum a posteriori (MAP) :

$$\widehat{k}(\mathcal{S}) = \operatorname{argmax} \widehat{\pi_k} \mathcal{N}_{\widehat{\mu_k},\widehat{\Sigma_k}}(\mathcal{S})$$

Hyperspectral image segmentation with GMM

- ullet Classical stochastic model of spectrum ${\mathcal S}$:
 - K spectrum classes,
 - with proportion π_k for each class $(\sum_{k=1}^K \pi_k = 1)$,
 - Gaussian law $\mathcal{N}_{\mu_k,\Sigma_k}$ within each class (strong assumption!)
- Heuristic : true density s_0 of S close from

$$s(S) = \sum_{k=1}^{K} \pi_k \, \mathcal{N}_{\mu_k, \Sigma_k}(S).$$

- Goal : estimate all parameters $(K, \pi_k, \mu_k \text{ and } \Sigma_k)$ from the data.
- Why: yields a classification/segmentation by a maximum likelihood principle

$$\widehat{k}(\mathcal{S}) = \operatorname{argmax} \widehat{\pi_k} \mathcal{N}_{\widehat{\mu_k},\widehat{\Sigma_k}}(\mathcal{S})$$

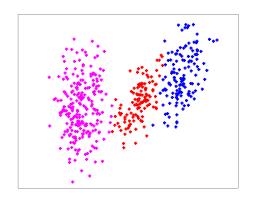
• Typical result in term of density estimation and not classification...

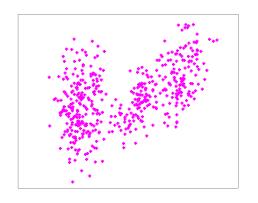
Gaussian Mixture Model

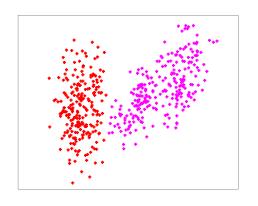
• True density s_0 of S close from

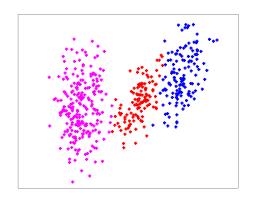
$$s(S) = \sum_{k=1}^{K} \pi_k \mathcal{N}_{\mu_k, \Sigma_k}(S).$$

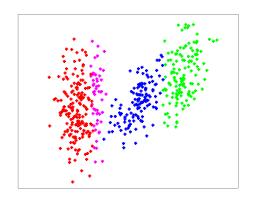
- Gaussian Mixture Model $S_m = \{s_m\}$ specified by
 - a number of classes K,
 - a structure for the means μ_k and the covariance matrices $\Sigma_k = L_k D_k A_k D_k'$ (Volume L_k , basis D_k and rescaled eigenvalues A_k)
- Structure $[\mu LDA]^K$ for the K-tuples of Gaussian parameters :
 - know, common or free values for each parameter
 - plus compactness and condition number assumptions.
- GMM S_m : parametric model of dimension $(K-1) + \dim([\mu LDA]^K)$.
- Maximum likelihood estimation by EM algorithm of :
 - the mean μ_k and the covariance matrix $\Sigma_k = L_k D_k A_k D_k'$ for each class
 - and the mixing proportions π_k

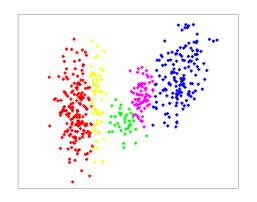


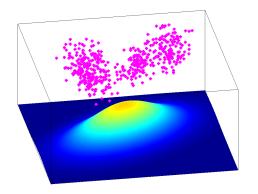


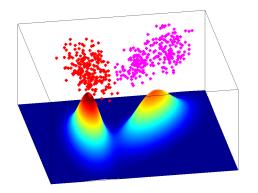


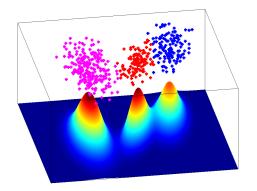


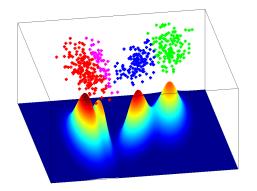


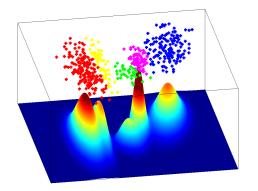


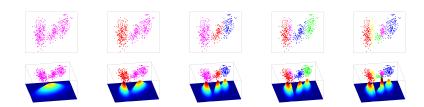


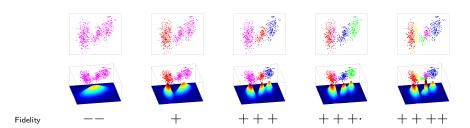


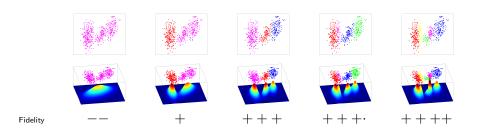




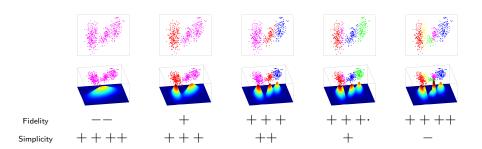








 Tough question for which the likelihood (the fidelity) is not sufficient!



- Tough question for which the likelihood (the fidelity) is not sufficient!
- How to take into account the model complexity?

Ockham's Razor

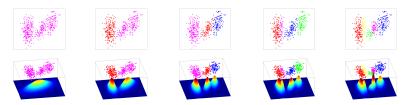
Ockham's Razor

entities must not be multiplied beyond necessity William of Ockham (\sim 1285 - 1347)

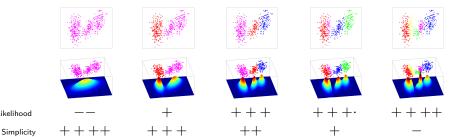
Ockham's Razor

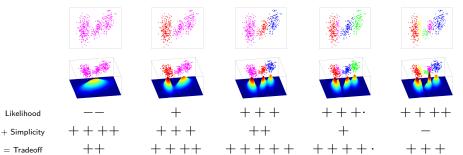
entities must not be multiplied beyond necessity William of Ockham (~ 1285 - 1347)

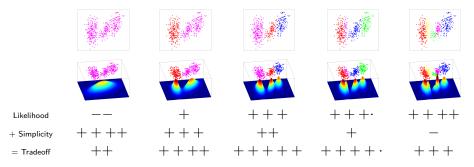
- Ockham's Razor (simplicity principle): one should not add hypotheses, if the current ones are already sufficient!
- Balance between observation explanation power and simplicity.



Likelihood

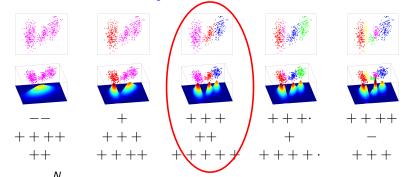






- Likelihood : $\sum_{i=1}^{N} \log \hat{s}_{K}(X_{i})$.
- Simplicity : $-\lambda \text{Dim}(S_K)$.
- Penalized estimator :

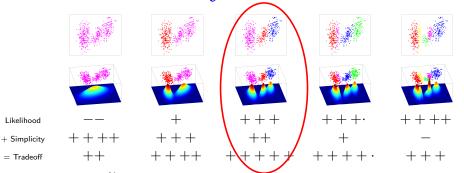
$$\operatorname{argmin} - \underbrace{\sum_{i=1}^{N} \log \hat{s}_{K}(X_{i})}_{\text{Likelihood}} + \underbrace{\lambda \mathsf{Dim}(S_{K})}_{\text{Penalty}}$$



- Likelihood : $\sum_{i=1}^{m} \log \hat{s}_{\mathcal{K}}(X_i)$.
- Simplicity : $-\lambda \text{Dim}(S_K)$.
- Penalized estimator :

Likelihood
+ Simplicity
= Tradeoff

$$\operatorname{argmin} - \underbrace{\sum_{i=1}^{N} \log \hat{s}_{K}(X_{i})}_{\text{Likelihood}} + \underbrace{\lambda \text{Dim}(S_{K})}_{\text{Penalty}}$$



- Likelihood : $\sum \log \hat{s}_K(X_i)$.
- Simplicity : $-\lambda \text{Dim}(S_K)$.
- Penalized estimator:

Likelihood

= Tradeoff

$$\operatorname{argmin} - \underbrace{\sum_{i=1}^{N} \log \hat{s}_{K}(X_{i})}_{\text{Likelihood}} + \underbrace{\lambda \mathsf{Dim}(S_{K})}_{\text{Penalty}}$$

Optimization in K by exhaustive exploration!

Methodology

Methodology

Methodology

Methodology Estimation Classification

Methodology Estimation Classification Selection

Model selection

- How to choose the *good* model S_m :
 - the number of classes K,
 - the structure model $[\mu LDA]^K$?
- Penalized model selection principle :
 - Choice of a collection of models $S_m = \{s_m\}$ with $m \in \mathcal{S}$,
 - Maximum likelihood estimation of a density \hat{s}_m for each model S_m ,
 - Selection of a model \widehat{m} by

$$\widehat{m} = \operatorname{argmin} - \ln(\widehat{s}_m) + \operatorname{pen}(m).$$

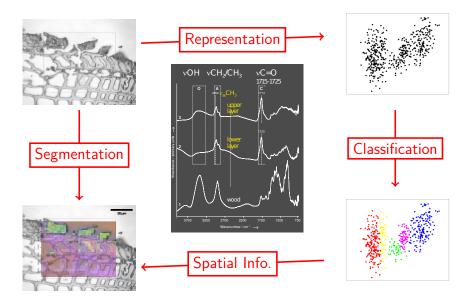
with $pen(m) = \kappa(ln(n)) \dim(S_m)$ (parametric dimension of S_m),

- Results (Birgé, Massart, Celeux, Maugis, Michel...) :
 - Density estimation : for κ large enough,

$$\mathbb{E}\left[d^2(s_0,\widehat{s}_{\widehat{m}})\right] \leq C\inf_{m \in \mathcal{S}}\left(\inf_{s_m \in \mathcal{S}_m} \mathsf{KL}(s_0,s_m) + \frac{\mathrm{pen}(m)}{n}\right) + \frac{C'}{n}.$$

- Clustering or unsupervised classification : numerical results.
- Consistency of the classification as soon as ln ln(n) in the penalty...

Back to our violins



Segmentation and Spatialized GMM

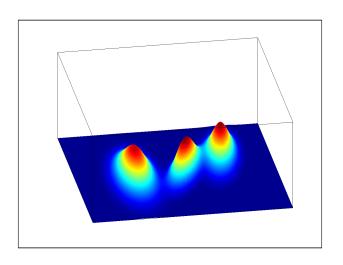
- Initial goal : segmentation \neq clustering.
- Idea of Kolaczyk et al (cf Bigot) : take into account the spatial position x of the spectrum in the mixing proportions.
- Conditional density model :

$$s(\mathcal{S}|x) = \sum_{k=1}^{K} \pi_k(x) \mathcal{N}_{\mu_k, \Sigma_k}(\mathcal{S}).$$

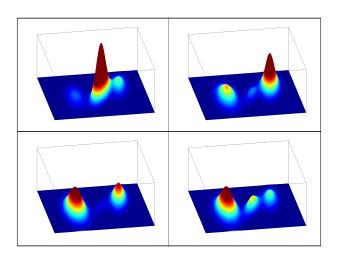
- Estimation from the data :
 - the mean μ_k and the covariance matrix $\Sigma_k = L_k D_k A_k D_k'$ for each class
 - and the mixing proportion functions $\pi_k(x)$.
- Segmentation by MAP principle :

$$\widehat{k}(\mathcal{S}|x) = \arg\max_{k} \widehat{\pi_k}(x) \mathcal{N}_{\widehat{\mu_k},\widehat{\Sigma_k}}(\mathcal{S})$$

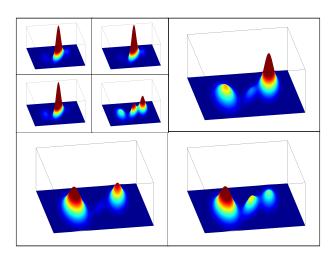
$\begin{array}{c} \textbf{Segmentation and Spatialized} \\ \textbf{GMM} \end{array}$



$\begin{array}{c} \textbf{Segmentation and Spatialized} \\ \textbf{GMM} \end{array}$



$\begin{array}{c} \textbf{Segmentation and Spatialized} \\ \textbf{GMM} \end{array}$



Spat. GMM and hierarchical partition

- How to choose the *right* model S_m ?:
 - the number of classes K.
 - the structure model $[\mu LDA]^K$,
 - the structure of the mixing proportion functions $\pi_k(x)$.
- Simple structure for $\pi_k(x)$: $\pi_k(x) = \sum_{\mathcal{R} \in \mathcal{P}} \pi_k[\mathcal{R}] \chi_{\{x \in \mathcal{R}\}} = \pi_k[\mathcal{R}(x)]$
 - piecewise constant on a hierarchical partition,
 - efficient optimization algorithm,
 - good approximation properties.

- $\bullet \ \dim(S_m) = |\mathcal{P}|(K-1) + \dim([\mu LDA]^K).$
- Penalty $pen(m) = \kappa \ln(n) \dim(S_m)$ allows
 - a numerical optimization scheme (EM + dynamic programing)
 - ullet a theoretical control : for κ large enough

$$\mathbb{E}\left[d^2(s_0,\widehat{s}_{\widehat{m}})\right] \leq C\inf_{m \in \mathcal{S}}\left(\inf_{s_m \in S_m} \mathsf{KL}(s_0,s_m) + \frac{\mathrm{pen}(m)}{n}\right) + \frac{C'}{n}.$$

Conditional density and selection

- General framework : observation of (X_i, Y_i) with X_i independent and Y_i cond. independent of law of density $s_0(y|X_i)$.
- Goal : estimation of s₀(y|x).
 Penalized model selection principle :
- choice of a collection of cond. dens. models $S_m = \{s_m(y|x)\}$ with $m \in \mathcal{S}$,
 - Maximum likelihood estimation of a cond. density \hat{s}_m for each model S_m :

$$\hat{s}_m = \underset{s_m \in S_m}{\operatorname{argmin}} - \sum_{i=1}^{\infty} \ln s_m(Y_i|X_i)$$

- Selection of a model \widehat{m} by $\widehat{m} = \operatorname*{argmin}_{m \in \mathcal{S}} \sum_{i=1}^n \ln \widehat{s}_m(Y_i|X_i) + \operatorname{pen}(m).$
 - with pen(m) well chosen.
- Conditional density estimation result of type :

$$\mathbb{E}\left[d^2(s_0,\widehat{s}_{\widehat{m}})\right] \leq C\inf_{m \in \mathcal{S}}\left(\inf_{s_m \in \mathcal{S}_m} \mathsf{KL}(s_0,s_m) + \frac{\mathrm{pen}(m)}{n}\right) + \frac{C'}{n}.$$

 Short biblio: Rosenblatt, Fan et al., de Gooijer and Zerom, Efromovitch, Brunel, Comte, Lacour... / Plugin, direct estimation, L², minimax, censure...

Theorem

Assumption (H): For every model S_m in the collection \mathcal{S} , there is a non-decreasing function $\phi_m(\delta)$ such that $\delta \mapsto \frac{1}{\delta}\phi_m(\delta)$ is non-increasing on $(0,+\infty)$ and for every $\sigma \in \mathbb{R}^+$ and every $s_m \in S_m$

$$\int_0^\sigma \sqrt{H_{[\cdot],d^{\otimes_n}}(\epsilon,S_m(s_m,\sigma))}\,d\epsilon \leq \phi_m(\sigma).$$

Assumption (K): There is a family $(x_m)_{m\in\mathcal{M}}$ of non-negative number such that

$$\sum_{m\in\mathcal{M}}e^{-x_m}\leq \Sigma<+\infty$$

Theorem

Assume we observe (X_i, Y_i) with unknown conditional s_0 . Let $S = (S_m)_{m \in \mathcal{M}}$ a at most countable collection of conditional density sets. Assume Assumptions (H), (K) and (S) hold.

Let \hat{s}_m be a δ -log-likelihood minimizer in S_m :

$$\sum_{i=1}^{n} - \ln(\widehat{s}_m(Y_i|X_i)) \le \inf_{s_m \in S_m} \left(\sum_{i=1}^{n} - \ln(s_m(Y_i|X_i)) \right) + \delta$$

Then for any $\rho \in (0,1)$ and any $C_1 > 1$, there is a constant κ_0 depending only on ρ and C_1 such that, as soon as for every index $m \in \mathcal{M}$ point $m \in \mathcal{M}$ point

as soon as for every index $m \in \mathcal{M}$ $\operatorname{pen}(m) \ge \kappa(\mathfrak{D}_m + x_m)$ with $\kappa > \kappa_0$ where $\mathfrak{D}_m = n\sigma_m^2$ with σ_m the unique root of $\frac{1}{\sigma}\phi_m(\sigma) = \sqrt{n}\sigma$,

the penalized likelihood estimate $\widehat{s}_{\widehat{m}}$ with \widehat{m} defined by

$$\widehat{m} = \underset{m \in \mathcal{M}}{\operatorname{argmin}} \sum_{i=1}^{n} - \ln(\widehat{s}_{m}(Y_{i}|X_{i})) + \operatorname{pen}(m)$$

$$\textit{satisfies} \qquad \mathbb{E}\left[\textit{JKL}_{\rho}^{\otimes_n}(s_0,\widehat{s_m})\right] \leq C_1\left(\inf_{S_m \in S}\left(\inf_{s_m \in S_m}\textit{KL}^{\otimes_n}(s_0,s_m) + \frac{\mathrm{pen}(m)}{n}\right) + \frac{\kappa_0\Sigma + \delta}{n}\right).$$

Simplified Theorem...

Oracle inequality :

$$\mathbb{E}\left[\textit{JKL}_{\rho}^{\otimes_n}(s_0,\widehat{s}_{\widehat{m}})\right] \leq C_1\left(\inf_{S_m \in \mathcal{S}_m} \mathsf{KL}^{\otimes_n}(s_0,s_m) + \frac{\mathrm{pen}\,m}{n}\right) + \frac{\kappa_0\Sigma + \delta}{n}\right)$$

as soon as

$$pen(m) \ge \kappa (\mathfrak{D}_m + x_m)$$
 with $\kappa > \kappa_0$,

where \mathfrak{D}_m measure the complexity of the model S_m (entropy term) and x_m the coding cost within the collection.

- Distances used KL^{\otimes_n} and $JKL^{\otimes_n}_{\rho}$: tensorized Kullback divergence and Jensen-Kullback divergence.
- \mathfrak{D}_m linked to the *bracketing entropy* of S_m with respect to the tensorized Hellinger distance $d^{2\otimes n}$.
- Often $\mathfrak{D}_m \propto (\log n) \dim(S_m)...$

Spatialized Gaussian Mixture Case

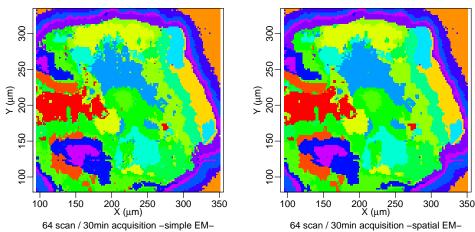
 Computation of an upper bound of the bracketing entropy possible (cf Maugis et Michel) implying:

$$\mathfrak{D}_m \leq \kappa' \left(C' + \frac{1}{2} \left(\ln \left(\frac{\mathcal{N}}{C' \dim(S_m)} \right) \right)_+ \right) \dim(S_m).$$

- Collection coding with $x_m \le \kappa'' |\mathcal{P}| \le \frac{\kappa''}{K-1} \dim(S_m)$.
- Constraint on the penalty :

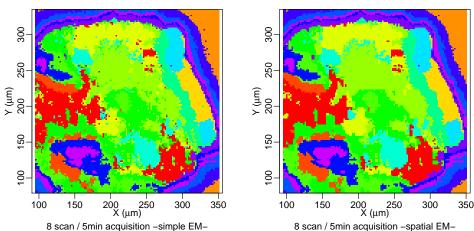
$$pen(m) \ge \left(\kappa' \left(C' + \frac{1}{2} \left(\ln \left(\frac{N}{C' \dim(S_m)} \right) \right)_+ \right) + \frac{\kappa''}{K - 1} \right) \dim(S_m)$$
$$\ge \lambda_{0,N} |\mathcal{P}|(K - 1) + \lambda_{1,N} \dim([\mu L D A]^K)$$

Numerical result taking into account the spatial modeling :
 Without



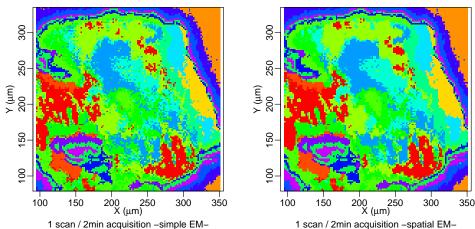
• Automatic choice of K, $[L_k D A]^K$ and partition.

Numerical result taking into account the spatial modeling :
 Without



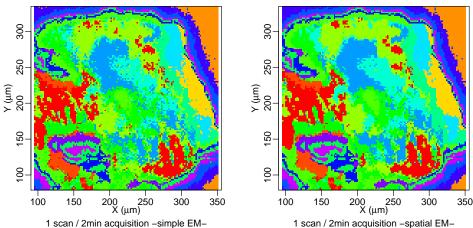
• Automatic choice of K, $[L_k D A]^K$ and partition.

Numerical result taking into account the spatial modeling :
 Without



• Automatic choice of K, $[L_k D A]^K$ and partition.

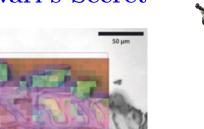
• Numerical result taking into account the spatial modeling : Without With



1 scan / 2min acquisition -spatial EM-

- Automatic choice of K, $[L_k D A]^K$ and partition.
- Penalty calibration by slope heuristic.
- Dimension reduction by random projection.

Stradivari's Secret



- Two fine layers of varnish :
 - a first simple oil layer, similar to the painter's one, penetrating mildly the wood,
 - a second layer made from a mixture of oil, pine resin and red pigments.
- Classical technique up to the specific color choice (and a very good varnishing skill).
- Stradivari's secret was not his varnish!

Conclusion

• Framework:

- Unsupervised segmentation problem.
- Proposed tool : Spatialized Gaussian Mixture Model
- Penalized maximum likelihood conditional density estimation.

Results :

- Theoretical guaranty for the conditional density estimation problem.
- Direct application to the unsupervised segmentation problem.
- Efficient minimization algorithm.
- Unsupervised segmentation algorithm in between spectral methods and spatial ones.

Perspectives :

- Formal link between conditional density estimation and unsupervised segmentation.
- Penalty calibration by slope heuristic.
- Dimension reduction adapted to unsupervised segmentation/classification.
- Enhanced Spatialized Gaussian Mixture Model with piecewise logistic weights (L. Montuelle).