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Hyperspectral Image
Segmentation

@ Data :

image of size N between ~ 1000 and ~ 100000 pixels,
spectrums S of ~ 1024 points,

very good spatial resolution,

ability to measure a lot of spectrums per minute,

© 6 6 ¢

@ Immediate goal :

@ automatic image segmentation,
@ without human intervention,
@ help to data analysis.

@ Advanced goal :

@ automatic classification,
@ interpretation...
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A “Toy” Problem
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A “Toy” Problem

@ Representation : mapping between spectrums and points in a large
dimension space.

@ Spectral method.
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“Stochastic” Modeling
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“Stochastic” Modeling
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“Stochastic” Modeling

@ Model : Gaussian Mixture with K classes.
@ Mixture density :

K
1 1 ts—1
SK,m, ,2(8) = Z Tk 76_5(5_“") o (S—m)
E T e

K
= Z ﬂ-kNMk,Zk (S)

k=1
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“Stochastic” Modeling

@ Model : Gaussian Mixture with K classes.
@ Mixture density :

K
1 1 ts—1
SK,m, ,2(8) = Z Tk 76_5(5_“") o (S—m)
E T e

K
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“Statistical” Estimation

@ Estimation of 7y, j1x and ﬁ by maximum likelihood :
- N
(ﬂ7 [k, Zk) = argmax Z log SK,(Trk,uk,Zk)(Si)
i=1



“Statistical” Estimation

@ Estimation of 7y, j1x and ﬁ by maximum likelihood :
N

(ﬂ7 @7 Zk) = argmax Z |Og SK,(Trk,uk,Zk)(Si)
i=1

@ Estimation of k(S) by maximum a posteriori (MAP) :
k(S) = argmax 7k N, 5, (S)



Hyperspectral image
segmentation with GMM

@ C(lassical stochastic model of spectrum S :

@ K spectrum classes,
@ with proportion 7 for each class (Zszl T = 1),
o Gaussian law N (g, Xk) within each class (strong assumption!)

@ Heuristic : true density sp of S close from

K
s(S) =Y m Nk, T )(S).
k=1
@ Goal : estimate all parameters (K, 7k, ux and Xx) from the data.

@ Why : yields a classification/segmentation by a maximum likelihood
principle

~

k(S) = argmax mx N (pk, Lk)(S)

@ Typical result in term of density estimation and not classification...



Gaussian Mixture Model

@ True density sp of S close from

K
S(8) = 3 m N (ks ZR)(S).

k=1

@ Gaussian Mixture Model S, = {sn} specified by
@ a number of classes K,
@ a structure for the means p, and the covariance matrices
Y = Lk DAk Dy, (Volume Ly, basis Dy and rescaled eigenvalues Ay)
@ Structure [ L D A]X for the K-tuples of Gaussian parameters :
@ know, common or free values for each parameter
@ plus compactness and condition number assumptions.

@ GMM S,,, : parametric model of dimension
(K — 1) +dim([u L D A]K).
@ Maximum likelihood estimation by EM algorithm of :

o the mean i and the covariance matrix X = Ly DxAxD;, for each class
@ and the mixing proportions



Maximum Likelihood and MM

@ “Maximum” likelihood for a given K :

N K
(Tky Tk, k) = argminz —In <Z TNy 5, (S ))

i=1
= argmin L(m, p, X)
@ Function L rather complex!
@ lterative algorithm (MM) :

o Current estimate : (7(", u(M ¥(m),
o Construction of a Majorization L(") of L such that

L () () 5 ) — [ () () ()

and L(" easy to minimize.
o Computation of a Minimizer

(D), D) 5 () — argmin L) (i, 1, T)

@ Very generic methodology...
@ Minimization can be replaced by a diminution...



Maximum Likelihood and EM

@ Backto L:

N N
L(m,pu, X) = Z In (Z T Ny 54 (S ) Z Li(m, 1, X)
i=1

i=1 k=1

@ EM : specific case of MM for this type of mixture,
o (Conditional) Expectancy : at step n, we let

P,-7(,,) —p (k,- — k‘S;,W(”)7/JJ(”)7Z(n>

and  L"M(x,p, X ZP In (7N, 5, (Si))

o Majorization prop. : LI < L") 4 Cst™(" with equality at (x("), u(M, £(7).
@ Bonus :

o Separability of L(" = ZN L") in 7 and (1, X) :
N K ) N K )
Lm0, %) = =SSP () = SN P In (W, 5.(S)
i=1 k=1 i=1 k=1

o Close formulas for the Minimization of L(") in 7 and (u, ¥)!
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How many classes ?

Fidelity

@ Tough question for which the likelihood (the fidelity) is not
sufficient !
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@ Tough question for which the likelihood (the fidelity) is not
sufficient !



How many classes ?

Fidely — + SR Ft4 A+t
sy ++++ 4+ ++ + -

@ Tough question for which the likelihood (the fidelity) is not
sufficient !

@ How to take into account the model complexity ?
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entities must not be multiplied beyond necessity
William of Ockham (~ 1285 - 1347)



Ockham’s Razor

v
B @J.{.n&
7

entities must not be multiplied beyond necessity
William of Ockham (~ 1285 - 1347)

@ Ockham’s Razor (simplicity principle) : one should not add
hypotheses, if the current ones are already sufficient !

@ Balance between observation explanation power and simplicity.
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Selection by Penalization
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Selection by Penalization
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Selection by Penalization

Likelinood +++ ++ + ++++
+simplicty  + 4+ ++ +++ ++ + —
= Tradeot ++ ++++ A+ A A4+

N
@ Likelihood : ) " log 8k (X;).
i=1
@ Simplicity : —ADim(Sk).
@ Penalized estimator :

argmin — Z log 3k (Xi) + ADim(Sk)
i=1

Likelihood Penalty



Selection by Penalization

Likelihood
+Simplicity 4= 4 - +++
= Tradeoff +—‘|— + —|— +—'|—
N
@ Likelihood : ) " log 8k (X;).

A+ +

i=1
@ Simplicity : —ADim(Sk).
@ Penalized estimator :
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Selection by Penalization

Likelihood
+Simplicity 4= 4 - +++
= Tradeoff +—‘|— + —|— +—'|—
N
@ Likelihood : ) " log 8k (X;).

A+ +

i=1
@ Simplicity : —ADim(Sk).
@ Penalized estimator :

argmin — Z log 3k (Xi) + ADim(Sk)
i=1

Likelihood Penalty

@ Optimization in K by exhaustive exploration !
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Model selection

@ How to choose the good model S, :

o the number of classes K,
o the structure model [ L D AJK?

@ Penalized model selection principle :

@ Choice of a collection of models S, = {s,} with m € S,
@ Maximum likelihood estimation of a density §,, for each model S,,,,
o Selection of a model m by

m = argmin — In(5,,) 4+ pen(m).

with pen(m) = x(In(n)) dim(S,,) (parametric dimension of Sp,),
@ Results (Birgé, Massart, Celeux, Maugis, Michel...) :
o Density estimation : for x large enough,

~ . . en(m c’
it = (g M+ 0)

o Clustering or unsupervised classification : numerical results.
o Consistency of the classification as soon as InIn(n) in the penalty...



Back to our violins

Representation F—

vOH VCH,/CH; vC=0
1715-1725

Spatial Info. F——




Segmentation and Spatialized
GMM

@ Initial goal : segmentation # clustering.

@ Idea of Kolaczyk et al (cf Bigot) : take into account the spatial
position x of the spectrum in the mixing proportions.

@ Conditional density model :

K

S(SIx) = D m () N (ko Z6)(S).

k=1

@ Estimation from the data :

o the mean i and the covariance matrix X, = LDy AxD;, for each class
@ and the mixing proportion functions 7 (x).

@ Segmentation by MAP principle :

k(8]x) = arg max T ()N (fik, T)(S)



Segmentation and Spatialized
GMM
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Spat. GMM and hierarchical
partition

@ How to choose the right model S,,7 :
o the number of classes K,
o the structure model [u L D A]K,
o the structure of the mixing proportion functions mx(x).
@ Simple structure for mi(x) : mk(x) = Z Tk[RIX{xery = mk[R(x)]
ReP

@ piecewise constant -
on a hierarchical partition, s s | = s
o efficient optimization algorithm, [~ T ool [l
@ good approximation properties. N ’ N L
@ dim(S,,) = |P|(K — 1) +dim([u L D A]¥).
@ Penalty pen(m) = xIn(n)dim(S,,) allows
@ a numerical optimization scheme (EM + dynamic programing)
@ a theoretical control : for x large enough

E [d%(50,5:)] < C inf_( inf KL
[d*(50,5;)] < € inf. <sm'25 (S0, 5m) + —

Pen(m))f’.

n



Numerical optimization

@ Penalized Model Selection :

argmin — Zln (Z T R(x) Ny 5 (S ))

Kv[/‘LDA]K,/J‘,z,'Pﬂ' i=1
+ Xon|PI(K — 1) + Ay dim([u L D A]F)

@ Optimization on the number of classes K and the mean and
covariance structure by exhaustive exploration.

@ Model selection for a given number of classes K and a given
structure [ L D A]X

argmin — Zln <Z T R(X)I N 5 (S )) + Xo,n|PI(K — 1)

w2, P, i=1

@ Two tricks :

o EM Algorithm
o CART (dynamic programming)



EM Algorithm
@ E Step : with P = P(k; = k|x;, S;, P, 7(M) (0 5

N
~>_In (Zm[mmzk( )>+)\0n\73\( 1)

i=1 k=1

N K
< =35 PP in (i [R(3)]) + AowlPI(K — 1)

i=1 k=1

N K
( >3 A In (N5 (S ))) + Cstl”)
i=1 k=1
with equality at (P 7(" (0 ¥ ()
@ M Step : Split optimization in (P, n) and (i, X) possible,

o Optimization in (i, X) : close formulas (classical...).
o Optimization in (P, 7) more interesting !



M Step and CART

@ Optimization in (P, 7) of

N K
- Z Z P;(’(”) In (7 [R(xi)]) + Ao,n|P|(K — 1)
i=1 k=1

K .
--> ( S S P 0 (kRG] + Aow(K — 1))

ReP \ilxieR k=1

@ Two key properties :
o For each R, simple (classical) optimization of mx[R].
o Additivity in R of the cost structure.

@ = Fast optimization algorithm of CART type (Dynamic
programming on tree structure).



CART Optimization

Aim : compute efficiently argmin Z C[R] where P belongs to the

ReP
set of recursive dyadic partitions (associated to quadtree) of limited

depth.

Key observation : the optimal partition 73[7€] of a dyadic square is
o either this square, P[R] = {R}

o or the union of the opt. part. of its children, 73[72] = Unzech“d[R)ﬁ[R’]
with a decision based on

CRI< > Y. Cr

R’/e€Child(R) R”G’i)\[R’]

Algorithm : Precomputation of all C[R] then recursive determination

of P[R] and C[R] = > znep C[R"] (either C[R] or the sum of the
C of its children) with stopping as soon as the square has no child.

Non recursive version possible.



Conditional density and selection

@ General framework : observation of (Xj, Y;) with X; independent and
Y; cond. independent of law of density so(y|X;).

@ Goal : estimation of sp(y]|x).

@ Penalized model selection principle :
o choice of a collection of cond. dens. models S, = {s,(y|x)} with m € S,
@ Maximum likelihood estimation of a cond. density 5, for each model S, :

n
$,, = argmin — Z Insm(Yi|X:)

SmESm i—1
o Selection of a model m by n
m = argmin — Z InSm(Y:|X:) + pen(m).
meS :
i=1

with pen(m) well chosen.
@ Conditional density estimation result of type :
E [d2(50,§a)} < C inf ( inf  KL(so, Sm) +

meS \smESm n

!
pen(m)> + €
n
@ Short biblio : Rosenblatt, Fan et al., de Gooijer and Zerom,
Efromovitch, Brunel, Comte, Lacour... / Plugin, direct estimation,
L2, minimax, censure...



Theorem

Assumption (H) : For every model Sy, in the collection S, there is a non-decreasing function ¢, (8) such that
8 — $6m(0) is non-increasing on (0,-00) and for every o € RT and every s, € Spy

o
/0 Hipdon (€ Sm(5ms @) de < 6m().
Assumption (K) : There is a family (xm)meam of non-negative number such that

Z e M < ¥ < +oo
meM
Theorem
Assume we observe (X, Y;) with unknown conditional sy. Let S = (Sm)mem a at most countable collection of
conditional density sets. Assume Assumptions (H), (K) and (S) hold.
Let Sy, be a d -log-likelihood minimizer in Sy, :

S m(E(YiX) < _int (z - ln(sm(v,-\x,-))> +0

i=1 i=1
Then for any p € (0,1) and any C; > 1, there is a constant ko depending only on p and Cy such that,
as soon as for every index m € M pen(m) > k(D + xm) with k > Ko
where D, = nofn with o, the unique root of —¢m(c) = v/no,
a

the penalized likelihood estimate 55 with m defined by

= argmin »_ —In(3y(Y;|X;)) + pen(m)
meM =

satisfies E [JKL%"(SQ,?;])] <G (sinfs( im; KL®"(s0, 5m) +
S \sme

m

penn(m)) n KoX + 5) '

S n




Simplified Theorem...

@ Oracle inequality :

“n(s9,5)| < i i ®n pen m) Ko +5>
’ [JKLP (SO’S'")} =G <s'mnefs <s,,:21;m KL (s sm) 7= ) =

as soon as
pen(m) > kK (Dm + xm) with kK > ko,

where ©, measure the complexity of the model S, (entropy term)
and x,, the coding cost within the collection.

@ Distances used KL®" and JKL;‘?" . tensorized Kullback divergence
and Jensen-Kullback divergence.

@ D, linked to the bracketing entropy of S, with respect to the
tensorized Hellinger distance d?®n.

@ Often D,  (log n)dim(Sp)...



Kullback, Hellinger and
extensions

Model selection oracle inequality of type

E [d2(507§ﬁ)} <C < inf inf KL(so,Sm) + p

meS smESm n

pen(m)> N c

Density : Hellinger d?(s, s') (or affinity) (Kolaczyk, Barron, Bigot)
on the left...

Refinement with a bounded version of KL :
JKL(s,s") = 2KL(s,(s' + 5)/2) (Massart, van de Geer)

Jensen-Kullback-Leibler : generalization to
JKLy(s,5') = LKL(s, ps' + (1 = p)s).
Prop. : For all p € (0,1), there is a C, > 0 such that

C,d?(s, t) < JKL,(s,t) < KL(s, t).

For p~1/2, C, ~1/5.



Tensorized divergences

@ Need to adapt to conditional density design :
o Divergence on the product density conditioned on the design (Kolaczyk,
Bigot).
@ Tensorization principle and expectation on the design : design :

KL — KL®"(s,s") ZKL "CIXN]

JKL, — JKLS"  and d2 d>®n.

@ Much more information using the second approach because losses
used are larger.

@ Ability to handle independent but non i.i.d. case and integrated loss.
@ Oracle inequality of type

/
E [JKL®"(s0,5,)] < C inf < inf  KL®"(sg, 5m) + penn(m)) i <

meS \smESm n

@ Classical density estimation theorem if s(:|X;) = s(+).



Penalty and complexities

@ Model selection : m = argmin KL®"(sp,5p) + %(m).
@ Ideally : pen(m) should be n(E [KL®"(sp,5m)] — KL®"(s0,5m))
@ More reastically : pen(m) should be

E [n(E [KL®"(s0,5m)] — KL®"(s0,3m))] (variance term).

@ Control in expectation requires a larger pen(m) with two terms :

@ an intrinsic one related to the complexity of the model,

@ another one related to the complexity of the collection.

@ Here :

@ Model complexity : entropic dimension ®, defined from the bracketing
entropy Hpj gen (€, Sm) of Sm with respect to the tensorized Hellinger
distance d?®n.

o Collection (coding) : Kraft type inequality Z e <Y <+

meS
@ Classical constraint on the penalty

pen(m) > k(Dm + xm)  with kK > Ko.

@ Often ©,, o (In(n)) dim(Sy,) and thus classical penalization by
dimension setting...



Spatialized Gaussian Mixture
Case

@ Computation of an upper bound of the bracketing entropy possible
(cf Maugis et Michel) implying :

DOm <K (C' E (In (C’dlrlr\1l( m)>) )dim(Sm).

@ Collection coding with xm < K"|P| < £ d|m(5 )-
@ Constraint on the penalty :

pen(m) > ( (C’ 1( (C’dlr/r\1/( m)>) >+ Ejl>dim(5m)

> Xon|PI(K — 1) + Ay dim([u L D A]F)



Y (um)

Unsupervised Segmentation

@ Numerical result taking into account the spatial modeling :

Without

300

o
[Te)
N
—
£
o =1
8 =
¢ >
o
n
—
o
o
—

100 150 200 250 300 350
X (um)

64 scan / 30min acquisition —simple EM-

With

200 250 300

150

100

100 150 200 250 300 350
X (um)

64 scan / 30min acquisition —spatial EM—

@ Automatic choice of K, [Lx D A]X and partition.

@ Penalty calibration by slope heuristic.

@ Dimension reduction by random projection.



Y (um)
200

Unsupervised Segmentation

@ Numerical result taking into account the spatial modeling :
Without With

300

250

150
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8 scan / 5min acquisition —simple EM— 8 scan / 5min acquisition —spatial EM—
@ Automatic choice of K, [Lx D A]X and partition.
@ Penalty calibration by slope heuristic.

@ Dimension reduction by random projection.
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Unsupervised Segmentation

@ Numerical result taking into account the spatial modeling :
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1 scan / 2min acquisition —simple EM-
@ Automatic choice of K, [Lx D A]X and partition.
@ Penalty calibration by slope heuristic.
@ Dimension reduction by random projection.
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1 scan / 2min acquisition —spatial EM—



Stradivari’s Secret
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@ Two fine layers of varnish :

@ a first simple oil layer, similar to the painter’s one, penetrating mildly the
wood,
@ a second layer made from a mixture of oil, pine resin and red pigments.

@ Classical technique up to the specific color choice (and a very good
varnishing skill).

@ Stradivari's secret was not his varnish !
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Conclusion

@ Framework :

o
*]
o

Unsupervised segmentation problem.
Spatialized Gaussian Mixture Model
Penalized maximum likelihood conditional density estimation.

@ Results :

© 6 6 ¢

Theoretical guaranty for the conditional density estimation problem.
Direct application to the unsupervised segmentation problem.

Efficient minimization algorithm.

Unsupervised segmentation algorithm in between spectral methods and
spatial ones.

@ Perspectives :

(*]

Formal link between conditional density estimation and unsupervised
segmentation.

Penalty calibration by slope heuristic.

Dimension reduction adapted to unsupervised

segmentation /classification.

Enhanced Spatialized Gaussian Mixture Model with piecewise logistic
weights (L. Montuelle).





