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1 Hyperspectral image segmentation and Gaussian Mixture Model

2 Penalized Maximum Likelihood Model Selection

3 Spatialized Gaussian Mixture Model and Conditional density
estimation

4 Application to Stradivari’s varnish



Hyperspectral Image
Segmentation

Data:
image of size N between ∼ 1000 and ∼ 100000 pixels,
spectrums S of ∼ 1024 points,
very good spatial resolution,
ability to measure a lot of spectrums per minute,

Immediate goal:
automatic image segmentation,
without human intervention,
help to data analysis.

Advanced goal:
automatic classification,
interpretation...



A Toy Problem

Representation: mapping between spectrums and points in a large
dimension space.
Spectral method.
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Stochastic Modelization

Model : Gaussian Mixture with K classes.
Mixture density:

sK ,π,µ,Σ(S) =
K∑

k=1
πk

1√
(2π)d |Σk |

e−
1
2 (S−µk )t Σ−1k (S−µk )

=
K∑

k=1
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Statistical Estimation

Estimation of πk , µ̂k and Σ̂k by maximum likelihood:

(π̂k , µ̂k , Σ̂k) = argmax
N∑

i=1
log sK ,(πk ,µk ,Σk )(Si )

Estimation of k̂(S) by maximum a posteriori (MAP):
k̂(S) = argmax π̂k Nµk ,Σk (S)
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Hyperspectral image
segmentation with GMM

Classical stochastic model of spectrum S:
K spectrum classes,
with proportion πk for each class (

∑K
k=1 πk = 1),

Gaussian law N (µk ,Σk) within each class (strong assumption!)
Heuristic: true density s0 of S close from

s(S) =
K∑

k=1
πk N (µk ,Σk)(S).

Goal: estimate all parameters (K , πk , µk and Σk) from the data.
Why: yields a classification/segmentation by a maximum likelihood
principle

k̂(S) = argmax πk N (µk ,Σk)(S)

Typical result in term of density estimation and not classification...



Gaussian Mixture Model
True density s0 of S close from

s(S) =
K∑

k=1
πk N (µk ,Σk)(S).

Gaussian Mixture Model Sm = {sm} specified by
a number of classes K ,
a structure for the means µk and the covariance matrices
Σk = LkDkAkD′k

Structure [µ LD A]K : structural constraints (know, common or free
values...) on the means µk , the volumes Lk , the diagonalization
basis Dk and the rescaled eigenvalues Ak plus compactness and
condition number assumptions.
GMM Sm: parametric model of dimension
(K − 1) + dim([µ LD A]K ).
Maximum likelihood estimation by EM algorithm of:
the mean µk and the covariance matrix Σk = LkDkAkD′k for each class
and the mixing proportions πk



How many classes?



How many classes?



How many classes?



How many classes?



How many classes?



How many classes?



How many classes?



How many classes?



How many classes?



How many classes?



How many classes?



How many classes?



How many classes?

Fidelity −− + + + + + + +· + + ++
Simplicity + + ++ + + + ++ + −

Tough question for which the likelihood (the fidelity) is not
sufficient!
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hypotheses, if the current ones are already sufficient!
Balance between observation explanation power and simplicity.
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Selection by Penalization

Likelihood −− + + + + + + +· + + ++

+

Simplicity + + ++ + + + ++ + −
= Tradeoff ++ + + ++ + + + + + + + + + · + + +

Likelihood:
N∑

i=1
log ŝK (Xi ).

Simplicity: −λDim(SK ) (a lot of theory behind that).
Penalized estimator:

argmin−
N∑

i=1
log ŝK (Xi )︸ ︷︷ ︸
Likelihood

+λDim(SK )︸ ︷︷ ︸
Penalty

Optimization in K by exhaustive exploration!



Selection by Penalization

Likelihood −− + + + + + + +· + + ++

+

Simplicity + + ++ + + + ++ + −
= Tradeoff ++ + + ++ + + + + + + + + + · + + +

Likelihood:
N∑

i=1
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log ŝK (Xi )︸ ︷︷ ︸
Likelihood

+λDim(SK )︸ ︷︷ ︸
Penalty

Optimization in K by exhaustive exploration!



Selection by Penalization

Likelihood −− + + + + + + +· + + ++

+

Simplicity + + ++ + + + ++ + −

= Tradeoff ++ + + ++ + + + + + + + + + · + + +

Likelihood:
N∑

i=1
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Model selection
How to choose the good model Sm:
the number of classes K ,
the structure model [µ LD A]K?

Penalized model selection principle:
Choice of a collection of models Sm = {sm} with m ∈ S,
Maximum likelihood estimation of a density ŝm for each model Sm,
Selection of a model m̂ by

m̂ = argmin− ln(ŝm) + pen(m).

with pen(m) = κ(ln(n)) dim(Sm) (parametric dimension of Sm),
Results (Birgé, Massart, Celeux, Maugis, Michel...):
Density estimation: for κ large enough,

E
[
d2(s0, ŝm̂)

]
≤ C inf

m∈S

(
inf

sm∈Sm
KL(s0, sm) +

pen(m)

n

)
+

C ′
n .

Clustering or unsupervised classification ( 6= segmentation): numerical
results.
Consistency of the classification as soon as ln ln(n) in the penalty...



Back to our violins

Segmentation

Representation

Classification

Spatial Info.



Segmentation and Spatialized
GMM

Initial goal: segmentation 6= clustering.
Idea of Kolaczyk et al (cf Bigot): take into account the spatial
position x of the spectrum in the mixing proportions .
Conditional density model:

s(S|x) =
K∑

k=1
πk(x)N (µk ,Σk)(S).

Estimation from the data:
the mean µk and the covariance matrix Σk = LkDkAkD′k for each class
and the mixing proportion functions πk(x).

Non parametric model (πk(x) function): regularization required!
Model selection principle...



Spat. GMM and hierarchical
partition

S0

S1

S2 S3

S4
S2

S3
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S11 S12 S13 S14 S41
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S3 S4

    

How to choose the right model Sm ?:
the number of classes K ,
the structure model [µ LD A]K ,
the structure of the mixing proportion functions πk(x).

Simple structure for πk(x): πk(x) =
∑
R∈P

πk [R]χ{x∈R} = πk [R(x)]

piecewise constant
on a hierarchical partition,
efficient optimization algorithm,
good approximation properties.

dim(Sm) = |P|(K − 1) + dim([µ LD A]K ).
Penalty pen(m) = κ ln(n) dim(Sm) allows
a numerical optimization scheme (EM + dynamic programing)
a theoretical control: for κ large enough

E
[
d2(s0, ŝm̂)

]
≤ C inf

m∈S

(
inf

sm∈Sm
KL(s0, sm) +

pen(m)

n

)
+

C ′
n .



Conditional density and selection
General framework: observation of (Xi ,Yi ) with Xi independent and
Yi cond. independent of law of density s0(y |Xi ).
Goal: estimation of s0(y |x).
Penalized model selection principle:
choice of a collection of cond. dens. models Sm = {sm(y |x)} with m ∈ S,
Maximum likelihood estimation of a cond. density ŝm for each model Sm:

ŝm = argmin
sm∈Sm

−
n∑

i=1
ln sm(Yi |Xi )

Selection of a model m̂ by
m̂ = argmin

m∈S
−

n∑
i=1

ln ŝm(Yi |Xi ) + pen(m).

with pen(m) well chosen.
Conditional density estimation result of type:

E
[
d2(s0, ŝm̂)

]
≤ C inf

m∈S

(
inf

sm∈Sm
KL(s0, sm) +

pen(m)

n

)
+

C ′
n .

Short biblio: Rosenblatt, Fan et al., de Gooijer and Zerom,
Efromovitch, Brunel, Comte, Lacour... / Plugin, direct estimation,
L2, minimax, censure...



Theorem
Assumption (H): For every model Sm in the collection S, there is a non-decreasing function φm(δ) such that
δ 7→ 1

δφm(δ) is non-increasing on (0,+∞) and for every σ ∈ R+ and every sm ∈ Sm∫ σ

0

√
H[·],d⊗n (ε, Sm(sm, σ)) dε ≤ φm(σ).

Assumption (K): There is a family (xm)m∈M of non-negative number such that∑
m∈M

e−xm ≤ Σ < +∞

Theorem
Assume we observe (Xi ,Yi ) with unknown conditional s0. Let S = (Sm)m∈M a at most countable collection of
conditional density sets. Assume Assumptions (H), (K) and (S) hold.
Let ŝm be a δ -log-likelihood minimizer in Sm:

n∑
i=1
− ln(ŝm(Yi |Xi )) ≤ inf

sm∈Sm

( n∑
i=1
− ln(sm(Yi |Xi ))

)
+ δ

Then for any ρ ∈ (0, 1) and any C1 > 1, there are two constants κ0 and C2 depending only on ρ and C1 such
that,
as soon as for every index m ∈M pen(m) ≥ κ (Dm + xm) with κ > κ0

where Dm = nσ2m with σm the unique root of 1
σ
φm(σ) =

√
nσ,

the penalized likelihood estimate ŝm̂ with m̂ defined by

m̂ = argmin
m∈M

n∑
i=1
− ln(ŝm(Yi |Xi )) + pen(m)

satisfies E
[
JKL⊗n

ρ (s0, ŝm̂)
]
≤ C1 inf

Sm∈S

(
inf

sm∈Sm
KL⊗n (s0, sm) +

pen(m)

n

)
+ C2

Σ

n +
δ

n .



Simplified Theorem...

Oracle inequality:

E
[
JKL⊗n

ρ (s0, ŝm̂)
]
≤ C1 inf

Sm∈S

(
inf

sm∈Sm
KL⊗n (s0, sm) +

pen(m)

n

)
+ C2

Σ

n +
δ

n
as soon as

pen(m) ≥ κ (Dm + xm) with κ > κ0,

where Dm measure the complexity of the model Sm (entropy term)
and xm the coding cost within the collection.
Distances used KL⊗n and JKL⊗n

ρ : tensorized Kullback divergence
and Jensen-Kullback divergence.
Dm linked to the bracketing entropy of Sm with respect to the
tensorized Hellinger distance d2⊗n .
Often Dm ∝ (log n) dim(Sm)...



Kullback, Hellinger and
extensions

Model selection oracle inequality of type

E
[
d2(s0, ŝm̂)

]
≤ C

(
inf

m∈S
inf

sm∈Sm
KL(s0, sm) +

pen(m)

n

)
+

C ′
n .

Density: Hellinger d2(s, s ′) (or affinity) (Kolaczyk, Barron, Bigot)
on the left...
Refinement with a bounded convexification of KL:
JKL(s, s ′) = 2KL(s, (s ′ + s)/2) (Massart, van de Geer)
Jensen-Kullback-Leibler: generalization to
JKLρ(s, s ′) = 1

ρKL(s, ρs ′ + (1− ρ)s).
Prop.: For all probability measures sdλ and tdλ and all ρ ∈ (0, 1)

Cρ d2λ(s, t) ≤ JKLρ,λ(s, t) ≤ KLλ(s, t)

with Cρ = 1
ρ min(1−ρρ , 1)

(
ln
(
1 + ρ

1−ρ

)
− ρ

)
.

Cρ ' 1/5 if ρ ' 1/2.



Tensorized divergences
Need to adapt to conditional density design:
Divergence on the product density conditioned on the design (Kolaczyk,
Bigot).
Tensorization principle and expectation on the design: design:

KL→ KL⊗n (s, s ′) = E

[
1
n

n∑
i=1

KL (s(·|Xi ), s ′(·|Xi ))

]
,

JKLρ → JKL⊗n
ρ and d2 → d2⊗n .

Similar approach but difference for Jensen-Kullback-Leibler and
Hellinger and possibility to have a result with expectation on the
design.
Oracle inequality of type

E
[
JKL⊗n (s0, ŝm̂)

]
≤ C inf

m∈S

(
inf

sm∈Sm
KL⊗n (s0, sm) +

pen(m)

n

)
+

C ′
n .

Classical density estimation theorem if s(·|Xi ) = s(·).



Penalty and complexities
Oracle inequality:

E
[
JKL⊗n (s0, ŝm̂)

]
≤ C inf

m∈S

(
inf

sm∈Sm
KL⊗n (s0, sm) +

pen(m)

n

)
+

C ′
n

A good pen(m) should be of order
E [|KL⊗n (s0, ŝm)− E [KL⊗n (s0, ŝm)]|] (variance term).
Control in expectation requires a larger pen(m):
with an intrinsic term corresponding to the complexity of the model
(upper bound of the variance/deviation bound),
and with a term corresponding to the complexity of the collection
(simultaneous control on all the collection/union bound)

Complexity used here:
Model (entropy): Dm defined from the bracketing entropy H[·],d⊗n (ε,Sm)
of Sm with respect to the tensorized Hellinger distance d2⊗n . (Dudley
integral and optimization of deviation bounds in the proof...)
Collection (coding): Kraft type inequality

∑
m∈S

e−xm ≤ Σ < +∞

Classical constraint on the penalty
pen(m) ≥ κ (Dm + xm) with κ > κ0.



Back to the spatialized GMM
Computation of an upper bound of H[·],d⊗n (ε, Sm) for the spatialized
GMM (cf Maugis and Michel):
Bound on an upper bound of the entropy: H[·],d sup (ε,Sm) where
d sup =

√
d2 sup =

√
supx d2(s(·|x), s ′(·|x)),

Result valid for every structure ([µ LD A]K ) and every partition:

H[·],d sup (ε,Sm) ≤ dim(Sm)(C + ln 1
ε

)

with an (almost) explicit common C and
dim(Sm) = |P|(K − 1) + dim([µ LD A]K ).

Consequence: Dm ≤ κ′
(
C ′ + 1

2

(
ln
(

n
C ′ dim(Sm)

))
+

)
dim(Sm).

Collection coding with xm ≤ κ′′|P| ≤ κ′′

K−1 dim(Sm).
Condition on the penalty:

pen(m) ≥
(
κ′
(
C ′ + 1

2

(
ln
( n
C ′ dim(Sm)

))
+

)
+

κ′′

K − 1

)
dim(Sm).



Unsupervised Segmentation
Numerical result taking into account the spatial modeling:

Without With

K = 8, [Lk D A]K and optimal partition.
Penalty calibration by slope heuristic.
Dimension reduction by (not so naive) PCA...
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Segmentations



Stradivari’s Secret

Two fine layers of varnish:
a first simple oil layer, similar to the painter’s one, penetrating mildly the
wood,
a second layer made from a mixture of oil, pine resin and red pigments.

Classical technique up to the specific color choice.
Stradivari’s secret was not his varnish!



Conclusion
Framework:
Unsupervised segmentation problem.
Spatialized Gaussian Mixture Model
Penalized maximum likelihood conditional density estimation.

Results:
Theoretical guaranty for the conditional density estimation problem.
Direct application to the unsupervised segmentation problem.
Efficient minimization algorithm.
Unsupervised segmentation algorithm in between spectral methods and
spatial ones.
Other (partition based) conditional density estimators...

Perspectives:
Formal link between conditional density estimation and unsupervised
segmentation.
Penalty calibration by slope heuristic.
Dimension reduction adapted to unsupervised
segmentation/classification.
Enh. Spatialized GMM with piecewise logistic weights (L. Montuelle).
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