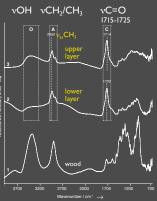
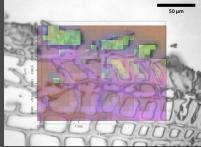
Unsupervised hyperspectral image segmentation, Conditional density estimation and Penalized maximum likelihood model selection

> E. Le Pennec (SELECT - Inria Saclay / Université Paris Sud) and S. Cohen (IPANEMA - Soleil)

> > CLAPEM XII - Viña del Mar 27 Marzo 2012

A. Stradivari (1644 - 1737) Provigny (1716)





4 / 8 cm⁻¹ resolution 64 / 128 scans typ. 1 min/sp, 400sp

very simple process no protein (amide I, amide II) no gums, nor waxes @SOLEIL: SMIS

J.-P. Echard, L. Bertrand, A. von Bohlen, A.-S. Le Hô, C. Paris, L. Bellot-Gurlet, B. Soulier, A. Lattuati-Derieux, S. Thao, L. Robinet, B. Lavédrine, and S. Vaiedelich. *Angew. Chem. Int. Ed.*, 49(1), 197-201, 2010.

Outline

1 Hyperspectral image segmentation and Gaussian Mixture Model

Penalized Maximum Likelihood Model Selection

Spatialized Gaussian Mixture Model and Conditional density estimation

Hyperspectral Image Segmentation

Data:

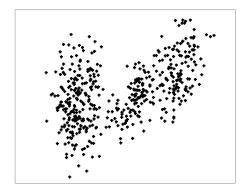
- ullet image of size N between \sim 1000 and \sim 100000 pixels,
- spectrums ${\cal S}$ of \sim 1024 points,
- very good spatial resolution,
- ability to measure a lot of spectrums per minute,

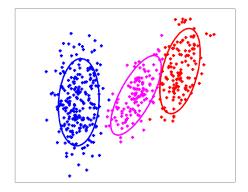
Immediate goal:

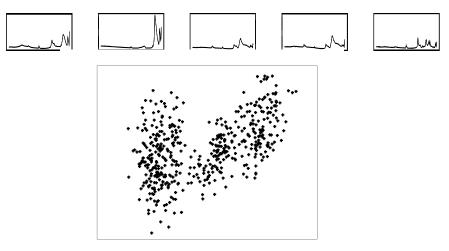
- automatic image segmentation,
- without human intervention,
- help to data analysis.

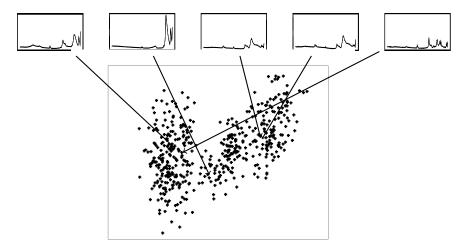
• Advanced goal:

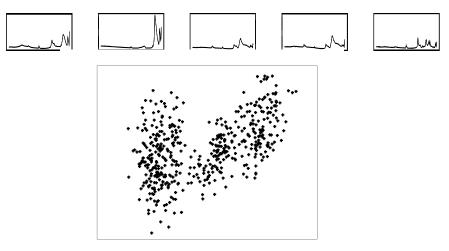
- automatic classification,
- interpretation...

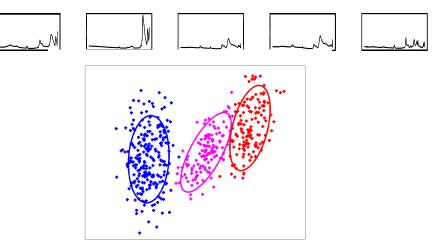


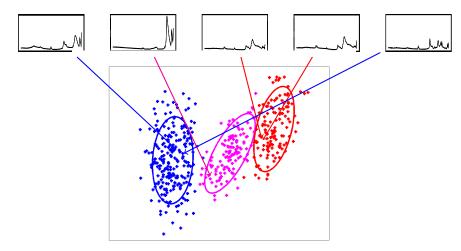




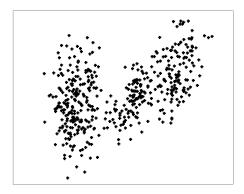


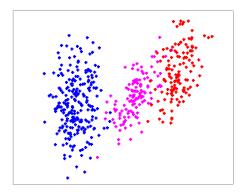


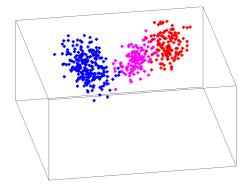


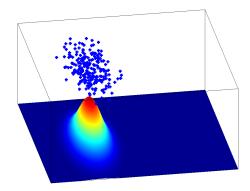


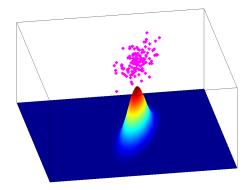
- Representation: mapping between spectrums and points in a large dimension space.
- Spectral method.

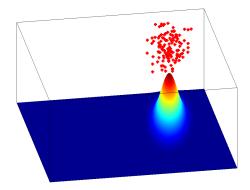


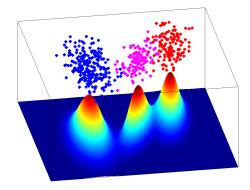


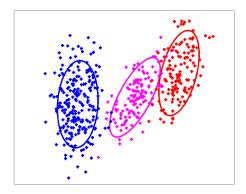


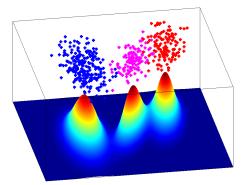






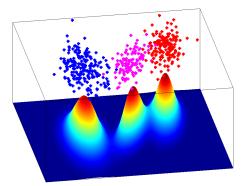






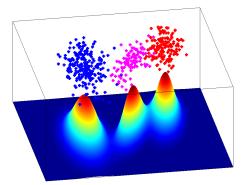
- Model : Gaussian Mixture with K classes.
- Mixture density:

$$s_{\mathcal{K},\pi,\mu,\Sigma}(\mathcal{S}) = \sum_{k=1}^{K} \pi_k \frac{1}{\sqrt{(2\pi)^d |\Sigma_k|}} e^{-\frac{1}{2}(\mathcal{S}-\mu_k)^t \Sigma_k^{-1}(\mathcal{S}-\mu_k)}$$
$$= \sum_{k=1}^{K} \pi_k \mathcal{N}_{\mu_k,\Sigma_k}(\mathcal{S})$$



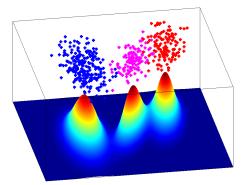
- Model : Gaussian Mixture with K classes.
- Mixture density:

$$s_{\mathcal{K},\pi,\mu,\Sigma}(\mathcal{S}) = \sum_{k=1}^{K} \pi_k \frac{1}{\sqrt{(2\pi)^d |\Sigma_k|}} e^{-\frac{1}{2}(\mathcal{S}-\mu_k)^t \Sigma_k^{-1}(\mathcal{S}-\mu_k)}$$
$$= \sum_{k=1}^{K} \pi_k \mathcal{N}_{\mu_k,\Sigma_k}(\mathcal{S})$$



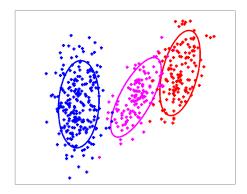
- Model : Gaussian Mixture with K classes.
- Mixture density:

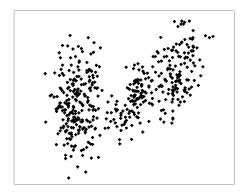
$$\begin{split} s_{\mathcal{K},\pi,\mu,\Sigma}(\mathcal{S}) &= \sum_{k=1}^{K} \pi_k \frac{1}{\sqrt{(2\pi)^d |\Sigma_k|}} e^{-\frac{1}{2}(\mathcal{S}-\mu_k)^t \Sigma_k^{-1}(\mathcal{S}-\mu_k)} \\ &= \sum_{k=1}^{K} \pi_k \mathcal{N}_{\mu_k,\Sigma_k}(\mathcal{S}) \end{split}$$

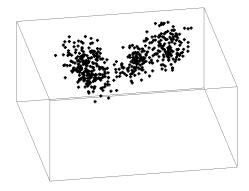


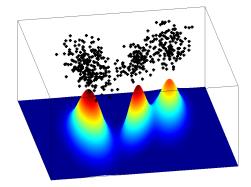
- Model : Gaussian Mixture with K classes.
- Mixture density:

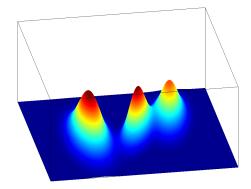
$$s_{\mathcal{K},\pi,\mu,\Sigma}(\mathcal{S}) = \sum_{k=1}^{K} \pi_k \frac{1}{\sqrt{(2\pi)^d |\Sigma_k|}} e^{-\frac{1}{2}(\mathcal{S}-\mu_k)^t \Sigma_k^{-1}(\mathcal{S}-\mu_k)}$$
$$= \sum_{k=1}^{K} \pi_k \mathcal{N}_{\mu_k,\Sigma_k}(\mathcal{S})$$

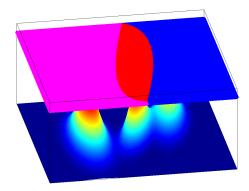


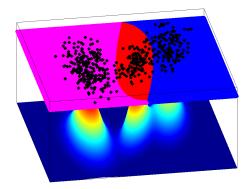


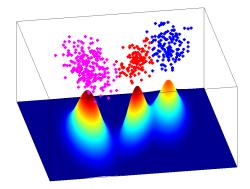


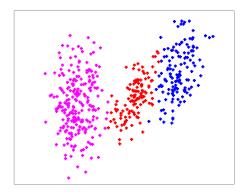


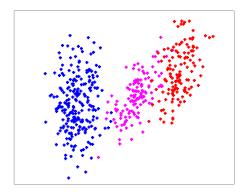




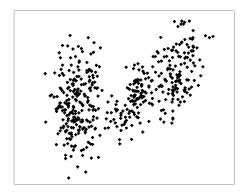




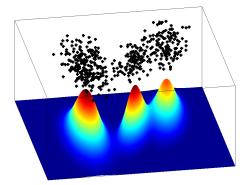




Statistical Estimation

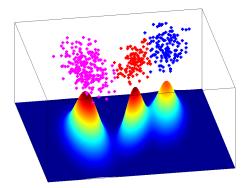


Statistical Estimation



• Estimation of π_k , $\widehat{\mu_k}$ and $\widehat{\Sigma_k}$ by maximum likelihood: $(\widehat{\pi_k}, \widehat{\mu_k}, \widehat{\Sigma_k}) = \operatorname{argmax} \sum_{i=1}^N \log s_{K,(\pi_k,\mu_k,\Sigma_k)}(\mathcal{S}_i)$

Statistical Estimation



• Estimation of π_k , $\widehat{\mu_k}$ and $\widehat{\Sigma_k}$ by maximum likelihood: $(\widehat{\pi_k}, \widehat{\mu_k}, \widehat{\Sigma_k}) = \operatorname{argmax} \sum_{i=1}^N \log s_{\mathcal{K}, (\pi_k, \mu_k, \Sigma_k)}(\mathcal{S}_i)$

• Estimation of $\hat{k}(S)$ by maximum a posteriori (MAP): $\hat{k}(S) = \operatorname{argmax} \widehat{\pi_k} \mathcal{N}_{\mu_k, \Sigma_k}(S)$

Hyperspectral image segmentation with GMM

- Classical stochastic model of spectrum S:
 - K spectrum classes,
 - with proportion π_k for each class $(\sum_{k=1}^{K} \pi_k = 1)$,
 - Gaussian law N(μ_k, Σ_k) within each class (strong assumption!)
- Heuristic: true density s_0 of \mathcal{S} close from

$$s(\mathcal{S}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mu_k, \Sigma_k)(\mathcal{S}).$$

- Goal: estimate all parameters (*K*, π_k , μ_k and Σ_k) from the data.
- Why: yields a classification/segmentation by a maximum likelihood principle

$$\widehat{k}(\mathcal{S}) = \operatorname{argmax} \pi_k \mathcal{N}(\mu_k, \Sigma_k)(\mathcal{S})$$

• Typical result in term of density estimation and not classification...

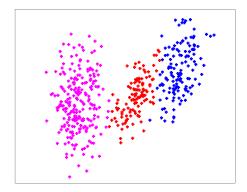
Gaussian Mixture Model

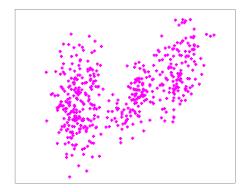
• True density s_0 of \mathcal{S} close from

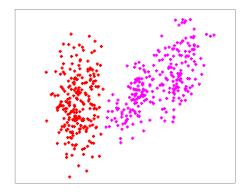
$$s(\mathcal{S}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mu_k, \Sigma_k)(\mathcal{S}).$$

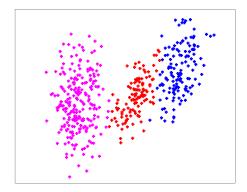
• Gaussian Mixture Model $S_m = \{s_m\}$ specified by

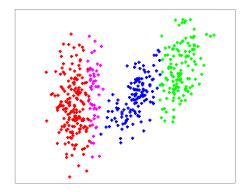
- a number of classes K,
- a structure for the means μ_k and the covariance matrices $\Sigma_k = L_k D_k A_k D'_k$
- Structure [μ L D A]^K: structural constraints (know, common or free values...) on the means μ_k, the volumes L_k, the diagonalization basis D_k and the rescaled eigenvalues A_k plus compactness and condition number assumptions.
- GMM S_m : parametric model of dimension $(K-1) + \dim([\mu L D A]^K)$.
- Maximum likelihood estimation by EM algorithm of:
 - the mean μ_k and the covariance matrix $\Sigma_k = L_k D_k A_k D'_k$ for each class
 - and the mixing proportions π_k

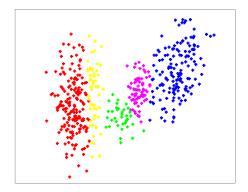


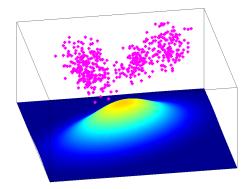


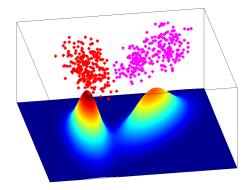


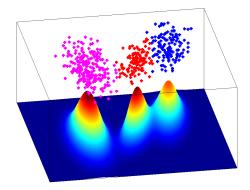


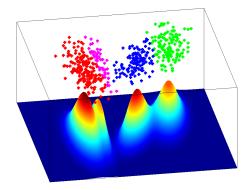


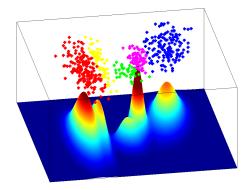


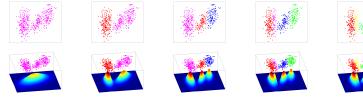










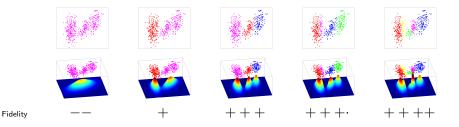


Fidelity

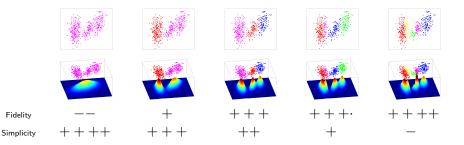
+ + +

 $+ + + \cdot$

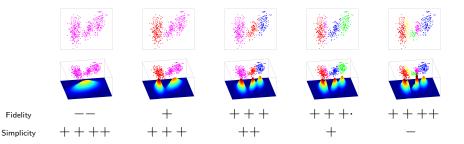
+ + + +



 Tough question for which the likelihood (the fidelity) is not sufficient!



 Tough question for which the likelihood (the fidelity) is not sufficient!



- Tough question for which the likelihood (the fidelity) is not sufficient!
- How to take into account the model complexity?

Ockham's Razor

Ockham's Razor

entities must not be multiplied beyond necessity William of Ockham (\sim 1285 - 1347)

Ockham's Razor

entities must not be multiplied beyond necessity William of Ockham (\sim 1285 - 1347)

- Ockham's Razor (simplicity principle): one should not add hypotheses, if the current ones are already sufficient!
- Balance between observation explanation power and simplicity.

 $+ + + \cdot$

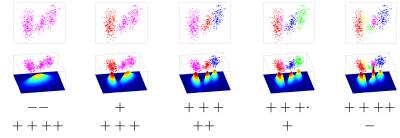
+

Likelihood

Simplicity

+ + + +

+ + +



+ Simplicity = Tradeoff

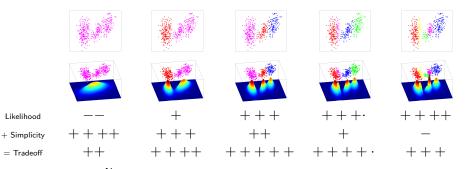
Likelihood

++

+ + + +

++++ ++++

+ + +

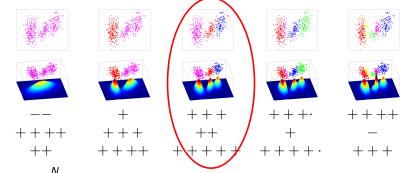


- Likelihood: $\sum \log \hat{s}_{\mathcal{K}}(X_i)$.
- Simplicity: $-\lambda \text{Dim}(S_{\mathcal{K}})$ (a lot of theory behind that).
- Penalized estimator:

Likelihood

= Tradeoff

$$\operatorname{argmin}_{i=1} - \underbrace{\sum_{i=1}^{N} \log \hat{s}_{\mathcal{K}}(X_i)}_{\text{Likelihood}} + \underbrace{\lambda \text{Dim}(S_{\mathcal{K}})}_{\text{Penalty}}$$



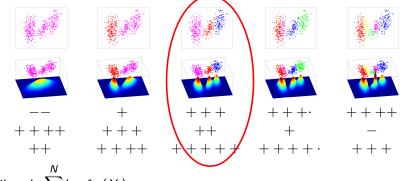
- Likelihood: $\sum_{i=1}^{N} \log \hat{s}_{\mathcal{K}}(X_i).$
- Simplicity: $-\lambda Dim(S_{\kappa})$ (a lot of theory behind that).
- Penalized estimator:

Likelihood

+ Simplicity

= Tradeoff

$$\operatorname{argmin}_{i=1} - \underbrace{\sum_{i=1}^{N} \log \hat{s}_{\mathcal{K}}(X_i)}_{\text{Likelihood}} + \underbrace{\lambda \text{Dim}(S_{\mathcal{K}})}_{\text{Penalty}}$$



• Likelihood: $\sum_{i=1} \log \hat{s}_{\mathcal{K}}(X_i)$. • Simplicity: $-\lambda \operatorname{Dim}(S_{\mathcal{K}})$ (a lot of theory beh)

ć

• Simplicity: $-\lambda \text{Dim}(S_{\mathcal{K}})$ (a lot of theory behind that).

• Penalized estimator:

Likelihood

+ Simplicity

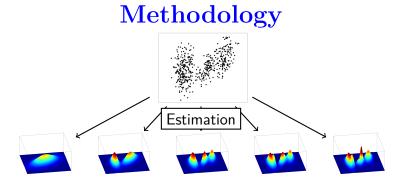
= Tradeoff

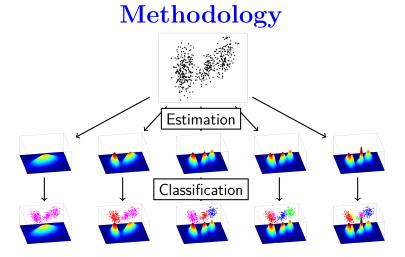
$$\operatorname{argmin}_{\text{Likelihood}} - \underbrace{\sum_{i=1}^{N} \log \hat{s}_{\mathcal{K}}(X_i)}_{\text{Likelihood}} + \underbrace{\lambda \text{Dim}(S_{\mathcal{K}})}_{\text{Penalty}}$$

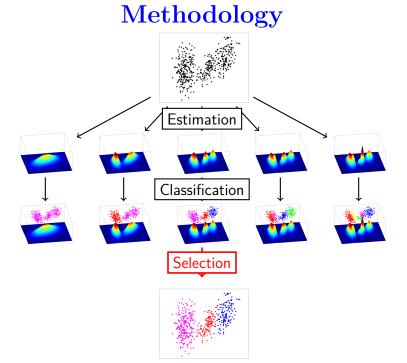
• Optimization in K by exhaustive exploration!

Methodology

Methodology







Model selection

- How to choose the good model S_m :
 - the number of classes K,
 - the structure model [µ L D A]^K?
- Penalized model selection principle:
 - Choice of a collection of models $S_m = \{s_m\}$ with $m \in S$,
 - Maximum likelihood estimation of a density \hat{s}_m for each model S_m ,
 - Selection of a model \widehat{m} by

$$\widehat{m} = \operatorname{argmin} - \ln(\widehat{s}_m) + \operatorname{pen}(m).$$

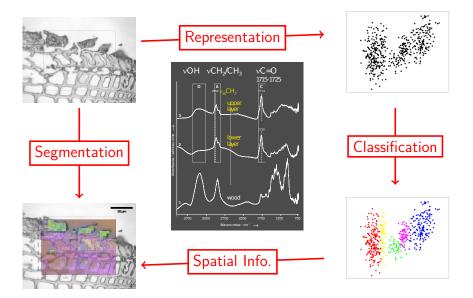
with $pen(m) = \kappa(ln(n)) \dim(S_m)$ (parametric dimension of S_m),

- Results (Birgé, Massart, Celeux, Maugis, Michel...):
 - Density estimation: for κ large enough,

$$\mathbb{E}\left[d^2(s_0,\widehat{s}_{\widehat{m}})\right] \leq C \inf_{m \in \mathcal{S}} \left(\inf_{s_m \in S_m} KL(s_0,s_m) + \frac{\operatorname{pen}(m)}{n} \right) + \frac{C'}{n}.$$

- Clustering or unsupervised classification (≠ segmentation): numerical results.
- Consistency of the classification as soon as $\ln \ln(n)$ in the penalty...

Back to our violins



Segmentation and Spatialized GMM

- Initial goal: segmentation \neq clustering.
- Idea of Kolaczyk et al (cf Bigot): take into account the spatial position x of the spectrum in the mixing proportions .
- Conditional density model:

$$s(\mathcal{S}|x) = \sum_{k=1}^{K} \pi_k(x) \mathcal{N}(\mu_k, \Sigma_k)(\mathcal{S}).$$

- Estimation from the data:
 - the mean μ_k and the covariance matrix $\Sigma_k = L_k D_k A_k D'_k$ for each class
 - and the mixing proportion functions $\pi_k(x)$.
- Non parametric model $(\pi_k(x) \text{ function})$: regularization required!
- Model selection principle...

Spat. GMM and hierarchical partition

- How to choose the *right* model S_m ?:
 - the number of classes K.
 - the structure model $[\mu L D A]^K$,
 - the structure of the mixing proportion functions $\pi_k(x)$.
- Simple structure for $\pi_k(x)$: $\pi_k(x) = \sum \pi_k[\mathcal{R}]\chi_{\{x \in \mathcal{R}\}} = \pi_k[\mathcal{R}(x)]$ $\mathcal{R}\in\mathcal{P}$
 - piecewise constant on a *hierarchical* partition,
 - efficient optimization algorithm,
 - good approximation properties.
- $\dim(S_m) = |\mathcal{P}|(K-1) + \dim([\mu L D A]^K).$
- Penalty $pen(m) = \kappa \ln(n) \dim(S_m)$ allows
 - a numerical optimization scheme (EM + dynamic programing)
 - a theoretical control: for κ large enough

$$\mathbb{E}\left[d^2(s_0,\widehat{s}_{\widehat{m}})\right] \leq C \inf_{m \in S} \left(\inf_{s_m \in S_m} \mathsf{KL}(s_0,s_m) + \frac{\operatorname{pen}(m)}{n} \right) + \frac{C'}{n}$$

S13 S14

 S_3

Conditional density and selection

- General framework: observation of (X_i, Y_i) with X_i independent and Y_i cond. independent of law of density s₀(y|X_i).
- Goal: estimation of $s_0(y|x)$.
- Penalized model selection principle:
 - choice of a collection of cond. dens. models $S_m = \{s_m(y|x)\}$ with $m \in S$,
 - Maximum likelihood estimation of a cond. density \hat{s}_m for each model S_m :

$$\hat{s}_m = \operatorname*{argmin}_{s_m \in S_m} - \sum_{i=1}^n \ln s_m(Y_i|X_i)$$

• Selection of a model
$$\widehat{m}$$
 by

$$\widehat{m} = \operatorname*{argmin}_{m \in S} - \sum_{i=1}^{n} \ln \widehat{s}_{m}(Y_{i}|X_{i}) + \operatorname{pen}(m).$$

with pen(m) well chosen.

• Conditional density estimation result of type:

$$\mathbb{E}\left[d^2(s_0,\widehat{s}_{\widehat{m}})\right] \leq C \inf_{m \in S} \left(\inf_{s_m \in S_m} \mathsf{KL}(s_0,s_m) + \frac{\mathrm{pen}(m)}{n}\right) + \frac{C'}{n}$$

 Short biblio: Rosenblatt, Fan et al., de Gooijer and Zerom, Efromovitch, Brunel, Comte, Lacour... / Plugin, direct estimation, L², minimax, censure...

Theorem

Assumption (H): For every model S_m in the collection S, there is a non-decreasing function $\phi_m(\delta)$ such that $\delta \mapsto \frac{1}{\delta}\phi_m(\delta)$ is non-increasing on $(0, +\infty)$ and for every $\sigma \in \mathbb{R}^+$ and every $s_m \in S_m$

$$\int_0^{\sigma} \sqrt{H_{[\cdot],d^{\otimes n}}\left(\epsilon, S_m(s_m,\sigma)\right)} \, d\epsilon \leq \phi_m(\sigma).$$

Assumption (K): There is a family $(x_m)_{m \in M}$ of non-negative number such that

$$\sum_{m\in\mathcal{M}}e^{-x_m}\leq \Sigma<+\infty$$

Theorem

Assume we observe (X_i, Y_i) with unknown conditional s_0 . Let $S = (S_m)_{m \in \mathcal{M}}$ a at most countable collection of conditional density sets. Assume Assumptions (H), (K) and (S) hold. Let \hat{s}_m be a δ -log-likelihood minimizer in S_m :

$$\sum_{i=1}^{n} - \ln(\widehat{s}_m(Y_i|X_i)) \leq \inf_{s_m \in S_m} \left(\sum_{i=1}^{n} - \ln(s_m(Y_i|X_i)) \right) + \delta$$

Then for any $\rho \in (0,1)$ and any $C_1 > 1$, there are two constants κ_0 and C_2 depending only on ρ and C_1 such that,

as soon as for every index $m \in \mathcal{M} \operatorname{pen}(m) \ge \kappa (\mathfrak{D}_m + x_m)$ with $\kappa > \kappa_0$ where $\mathfrak{D}_m = n\sigma_m^2$ with σ_m the unique root of $\frac{1}{\sigma}\phi_m(\sigma) = \sqrt{n}\sigma$, the penalized likelihood estimate $\hat{s}_{\widehat{m}}$ with \widehat{m} defined by

$$\begin{split} \widehat{m} &= \operatorname*{argmin}_{m \in \mathcal{M}} \sum_{i=1}^{n} -\ln(\widehat{s}_{m}(Y_{i}|X_{i})) + \operatorname{pen}(m) \\ \text{satisfies} \qquad \mathbb{E}\left[JKL_{\rho}^{\otimes n}(s_{0}, \widehat{s}_{\widehat{m}})\right] \leq C_{1} \inf_{S_{m} \in \mathcal{S}} \left(\inf_{s_{m} \in S_{m}} KL^{\otimes n}(s_{0}, s_{m}) + \frac{\operatorname{pen}(m)}{n}\right) + C_{2} \frac{\Sigma}{n} + C_{2}$$

Simplified Theorem...

• Oracle inequality:

$$\mathbb{E}\left[JKL_{\rho}^{\otimes_n}(s_0,\widehat{s}_{\widehat{m}})\right] \leq C_1 \inf_{S_m \in \mathcal{S}} \left(\inf_{s_m \in S_m} KL^{\otimes_n}(s_0,s_m) + \frac{\operatorname{pen}(m)}{n}\right) + C_2 \frac{\Sigma}{n} + \frac{\delta}{n}$$

as soon as

$$pen(m) \ge \kappa (\mathfrak{D}_m + x_m) \quad \text{with } \kappa > \kappa_0,$$

where \mathfrak{D}_m measure the complexity of the model S_m (entropy term) and x_m the coding cost within the collection.

- Distances used KL^{\otimes_n} and $JKL^{\otimes_n}_{\rho}$: tensorized Kullback divergence and Jensen-Kullback divergence.
- \mathfrak{D}_m linked to the *bracketing entropy* of S_m with respect to the tensorized Hellinger distance $d^{2\otimes n}$.
- Often $\mathfrak{D}_m \propto (\log n) \dim(S_m)...$

Kullback, Hellinger and extensions

Model selection oracle inequality of type

$$\mathbb{E}\left[d^2(s_0,\widehat{s}_{\widehat{m}})\right] \leq C\left(\inf_{m\in\mathcal{S}}\inf_{s_m\in\mathcal{S}_m}\mathsf{KL}(s_0,s_m) + \frac{\mathrm{pen}(m)}{n}\right) + \frac{C'}{n}.$$

- Density: Hellinger d²(s, s') (or affinity) (Kolaczyk, Barron, Bigot) on the left...
- Refinement with a bounded convexification of KL: JKL(s, s') = 2KL(s, (s' + s)/2) (Massart, van de Geer)
- Jensen-Kullback-Leibler: generalization to $JKL_{\rho}(s,s') = \frac{1}{\rho}KL(s,\rho s' + (1-\rho)s).$
- **Prop.:** For all probability measures $sd\lambda$ and $td\lambda$ and all $\rho \in (0,1)$

$$C_
ho \, d_\lambda^2(s,t) \leq J\!\! igstarrow\! L_{
ho,\lambda}(s,t) \leq K\!\! L_\lambda(s,t)$$

with
$$C_{\rho} = \frac{1}{\rho} \min(\frac{1-\rho}{\rho}, 1) \left(\ln \left(1 + \frac{\rho}{1-\rho} \right) - \rho \right).$$

• $C_{\rho} \simeq 1/5$ if $\rho \simeq 1/2$.

Tensorized divergences

- Need to adapt to conditional density design:
 - Divergence on the product density conditioned on the design (Kolaczyk, Bigot).
 - *Tensorization* principle and expectation on the design: design:

$$egin{aligned} \mathcal{K}L &
ightarrow \mathcal{K}L^{\otimes_n}(s,s') = \mathbb{E}\left[rac{1}{n}\sum_{i=1}^n \mathcal{K}L\left(s(\cdot|X_i),s'(\cdot|X_i)
ight)
ight], \ \mathcal{J}\mathcal{K}L_
ho &
ightarrow \mathcal{J}\mathcal{K}L_
ho^{\otimes_n} \quad ext{and} \quad d^2
ightarrow d^{2\otimes_n}. \end{aligned}$$

- Similar approach but difference for Jensen-Kullback-Leibler and Hellinger and possibility to have a result with expectation on the design.
- Oracle inequality of type

$$\mathbb{E}\left[\mathsf{JKL}^{\otimes_n}(\mathsf{s}_0,\widehat{\mathsf{s}}_{\widehat{m}})\right] \leq C \inf_{m \in \mathcal{S}} \left(\inf_{\mathsf{s}_m \in \mathcal{S}_m} \mathsf{KL}^{\otimes_n}(\mathsf{s}_0,\mathsf{s}_m) + \frac{\mathrm{pen}(m)}{n} \right) + \frac{C'}{n}.$$

• Classical density estimation theorem if $s(\cdot|X_i) = s(\cdot)$.

Penalty and complexities

• Oracle inequality:

$$\mathbb{E}\left[JKL^{\otimes_n}(s_0,\widehat{s}_{\widehat{m}})\right] \leq C \inf_{m \in \mathcal{S}} \left(\inf_{s_m \in S_m} KL^{\otimes_n}(s_0,s_m) + \frac{\operatorname{pen}(m)}{n}\right) + \frac{C'}{n}$$

- A good pen(*m*) should be of order $\mathbb{E}\left[|KL^{\otimes_n}(s_0, \hat{s}_m) - \mathbb{E}\left[KL^{\otimes_n}(s_0, \hat{s}_m)\right]|\right]$ (variance term).
- Control in expectation requires a larger pen(m):
 - with an intrinsic term corresponding to the complexity of the model (upper bound of the variance/deviation bound),
 - and with a term corresponding to the complexity of the collection (simultaneous control on all the collection/union bound)
- Complexity used here:
 - Model (entropy): D_m defined from the *bracketing entropy* H_{[·],d^{⊗n}} (ε, S_m) of S_m with respect to the tensorized Hellinger distance d^{2⊗n}. (Dudley integral and optimization of deviation bounds in the proof...)
 - Collection (coding): Kraft type inequality $\sum e^{-x_m} \leq \Sigma < +\infty$
- Classical constraint on the penalty

 $\operatorname{pen}(m) \ge \kappa \left(\mathfrak{D}_m + x_m\right) \quad \text{with } \kappa > \kappa_0.$

 $m \in S$

Back to the spatialized GMM

- Computation of an upper bound of H_{[·],d⊗n} (ε, S_m) for the spatialized GMM (cf Maugis and Michel):
 - Bound on an upper bound of the entropy: $H_{[\cdot],d^{\sup}}(\epsilon, S_m)$ where $d^{\sup} = \sqrt{d^{2\sup}} = \sqrt{\sup_x d^2(s(\cdot|x), s'(\cdot|x))}$,
 - Result valid for every structure $([\mu L D A]^K)$ and every partition:

$$H_{[\cdot],d^{\sup}}(\epsilon,S_m) \leq \dim(S_m)(C+\ln\frac{1}{\epsilon})$$

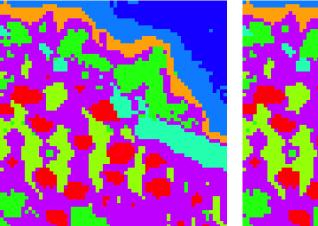
with an (almost) explicit common C and $\dim(S_m) = |\mathcal{P}|(K-1) + \dim([\mu L D A]^K).$

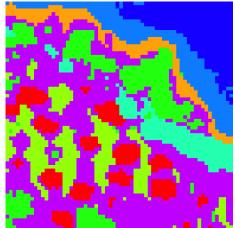
- Consequence: $\mathfrak{D}_m \leq \kappa' \left(C' + \frac{1}{2} \left(\ln \left(\frac{n}{C' \dim(S_m)} \right) \right)_+ \right) \dim(S_m).$
- Collection coding with $x_m \leq \kappa'' |\mathcal{P}| \leq \frac{\kappa''}{K-1} \dim(S_m)$.
- Condition on the penalty:

$$\operatorname{pen}(m) \geq \left(\kappa'\left(C' + \frac{1}{2}\left(\ln\left(\frac{n}{C'\dim(S_m)}\right)\right)_+\right) + \frac{\kappa''}{K-1}\right)\dim(S_m).$$

Unsupervised Segmentation

 Numerical result taking into account the spatial modeling: Without
 With

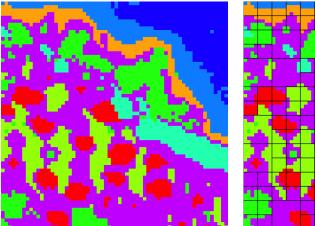


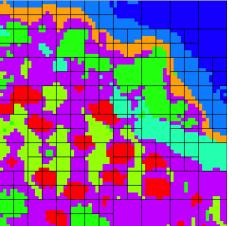


- K = 8, $[L_k D A]^K$ and optimal partition.
- Penalty calibration by slope heuristic.
- Dimension reduction by (not so naive) PCA...

Unsupervised Segmentation

 Numerical result taking into account the spatial modeling: Without
 With

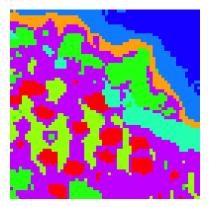




- K = 8, $[L_k D A]^K$ and optimal partition.
- Penalty calibration by slope heuristic.
- Dimension reduction by (not so naive) PCA...

Segmentations

Stradivari's Secret



- Two fine layers of varnish:
 - a first simple oil layer, similar to the painter's one, penetrating mildly the wood,
 - a second layer made from a mixture of oil, pine resin and red pigments.
- Classical technique up to the specific color choice.
- Stradivari's secret was not his varnish!

Conclusion

- Framework:
 - Unsupervised segmentation problem.
 - Spatialized Gaussian Mixture Model
 - Penalized maximum likelihood conditional density estimation.
- Results:
 - Theoretical guaranty for the conditional density estimation problem.
 - Direct application to the unsupervised segmentation problem.
 - Efficient minimization algorithm.
 - Unsupervised segmentation algorithm in between *spectral* methods and *spatial* ones.
 - Other (partition based) conditional density estimators...
- Perspectives:
 - Formal link between conditional density estimation and unsupervised segmentation.
 - Penalty calibration by slope heuristic.
 - Dimension reduction adapted to unsupervised segmentation/classification.
 - Enh. Spatialized GMM with piecewise logistic weights (L. Montuelle).