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Outline

0 Hyperspectral image segmentation (preview of CLAPEM talk...)

e Conditional density estimation by a penalized maximum likelihood
approach

© Abstract model selection theorem and related tools

@ Application to partition based conditional density estimation
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Hyperspectral image
segmentation with GMM

@ C(lassical stochastic model of spectrum S:

@ K spectrum classes,
@ with proportion 7 for each class (Zszl T = 1),
o Gaussian law N (uk, X«) within each class (strong assumption!)

@ Heuristic: true density sp of S close from

K
s(S) =Y m Nk, T )(S).
k=1
@ Goal: estimate all parameters (K, 7k, ux and Xx) from the data.

@ Why: yields a classification/segmentation by a maximum likelihood
principle

~

k(S) = argmax mx N (pk, Lk)(S)

@ Typical result in term of density estimation and not classification...



Gaussian Mixture Model

@ True density sp of S close from

K
S(S) = Z Wk/\/(uk, Zk)(S)
k=1
@ Gaussian Mixture Model S, = {s;,} specified by

@ a number of classes K,
@ a structure for the means p and the covariance matrices

Y« = Lk DAkDj,

@ Structure [ L D A]X: structural constraints (know, common or free
values...) on the means p , the volumes Ly, the diagonalization
basis D) and the rescaled eigenvalues Ay plus compactness and
condition number assumptions.

@ GMM S,,,: parametric model of dimension
(K — 1) +dim([u L D A]K).

@ Maximum likelihood estimation by EM algorithm of:

o the mean i and the covariance matrix X, = LDy AiD;, for each class
@ and the mixing proportions 7y



Model selection

@ How to choose the good model S,;:

@ the number of classes K,
o the structure model [u L D A]X?

@ Penalized model selection principle:

@ Choice of a collection of models S, = {s,,} with m € S,
@ Maximum likelihood estimation of a density S, for each model S,,,,
o Selection of a model m by

m = argmin — In(S,,) 4+ pen(m).

with pen(m) = x(In(n)) dim(S,,) (parametric dimension of Sp,),
@ Results (Birgé, Massart, Celeux, Maugis, Michel...):
@ Density estimation: for k large enough,

~ : . pen(m) c
E [d?(sp,5~)] < Cinf [ inf KL(so,s -—_— —.
[ (O m)] - mES(smESm (0 m)+ n >+ n
o Clustering or unsupervised classification (# segmentation): numerical
results.
o Consistency of the classification as soon as InIn(n) in the penalty...
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Segmentation and Spatialized
GMM

@ Initial goal: segmentation # clustering.

@ Idea of Kolaczyk et al (cf Bigot): take into account the spatial
position x of the spectrum in the mixing proportions .

@ Conditional density model:

K

s(S1x) = D k()N (e, T)(S).

k=1

@ Estimation from the data:

o the mean py and the covariance matrix Xy = LkaAkD,i for each class
o and the mixing proportion functions mx(x).

@ Non parametric model (7, (x) function): regularization required!

@ Model selection principle...



Spat. GMM and hierarchical
partition

@ How to choose the right model S, 7:
o the number of classes K,
o the structure model [u L D A]K,
o the structure of the mixing proportion functions mx(x).
@ Simple structure for mi(x): mk(x) = Z Tk[Rlx{xery = Tk [R(x)]
ReEP

@ piecewise constant -
on a hierarchical partition, s s | = s
o efficient optimization algorithm, [~ T ool [l
@ good approximation properties. N ’ N L
@ dim(S,,) = |P|(K — 1) +dim([u L D A]¥).
@ Penalty pen(m) = xIn(n)dim(S,,) allows
@ a numerical optimization scheme (EM + dynamic programing)
@ a theoretical control: for  large enough

E [d%(50,5:)] < C inf_( inf KL
[d*(50,55)] < C inf. <sm'25 (S0, 5m) + —

Pen(m))f’.

n



Conditional density and selection

@ General framework: observation of (Xj, Y;) with X; independent and
Y; cond. independent of law of density sp(y|Xi).

@ Goal: estimation of sp(y|x).

@ Penalized model selection principle:
o choice of a collection of cond. dens. models S, = {sm(y|x)} with m € S,
@ Maximum likelihood estimation of a cond. density §,, for each model S,,:

n
$, = argmin — Z Insm(Yi|X:)

SmESm i—1
o Selection of a model m by n
m = argmin — Z InSm(Y:|X:) + pen(m).
meS :
i=1

with pen(m) well chosen.
@ Conditional density estimation result of type:
E [d2(50,§a)} < C inf ( inf  KL(so, Sm) +

meS \smESm n

!
pen(m)> + €
n
@ Short biblio: Rosenblatt, Fan et al., de Gooijer and Zerom,
Efromovitch, Brunel, Comte, Lacour... / Plugin, direct estimation,
L2, minimax, censure...



Theorem

Assumption (H): For every model Sy, in the collection S, there is a non-decreasing function ¢m,(8) such that
8 — $6m(0) is non-increasing on (0,-00) and for every o € RT and every s, € Spy

| /0 " JHiyaon (€ Sm(sm ) de < 6m(0)-

Assumption (K): There is a family (xm)mea of non-negative number such that

Z e < ¥ < +oo
meM

Theorem

Assume we observe (X, Y;) with unknown conditional so. Let S = (Sm)mem a at most countable collection of
conditional density sets. Assume Assumptions (H), (K) and (S) hold.
Let Sy, be a § -log-likelihood minimizer in Sp,:

S (YiX) < int (z - ln(sm(v,-\x,-))> +0

i=1 i=1

Then for any p € (0,1) and any C; > 1, there are two constants ro and C, depending only on p and Cy such
that,
as soon as for every index m € M pen(m) > Kk (Dm + xm) with k > kg
where D, = no?, with o, the unique root of ~¢m(c) = v/no,
a.
the penalized likelihood estimate S, with m defined by

n
m= argminz — In(Sm(Yi|Xi)) + pen(m)
meM iy

T 5
satisfies B[ KLE(%0,55)] < G Sinefs( inf KL (50, 5m) + %(m)) +Go 4




Simplified Theorem...

@ Oracle inequality:
®n N H H ®n pen(m) E é
E [JKLY" (50, 37)] < G Jnf <sn522m KLE"(s0,5m) + = ) + G+

as soon as
pen(m) > Kk (Dm + xm)  with & > ko,

where D, measure the complexity of the model S, (entropy term)
and x,, the coding cost within the collection.

@ Distances used KL®" and JKLS" : tensorized Kullback divergence
and Jensen-Kullback divergence.

@ ©,, linked to the bracketing entropy of S, with respect to the
tensorized Hellinger distance d?®n.

@ Often ©,,  (log n)dim(Sp,)...



Kullback, Hellinger and
extensions

Model selection oracle inequality of type

E [d%(s0,5;)] < C ( inf inf KL(s0,5m) + :

meS smESm n

pen(m)) N c

Density: Hellinger d?(s, s’) (or affinity) (Kolaczyk, Barron, Bigot)
on the left...

Refinement with a bounded convexification of KL:

JKL(s,s") = 2KL(s,(s' +5)/2) (Massart, van de Geer)
Jensen-Kullback-Leibler: generalization to

JKLy(s,8") = TKL(s, ps' + (1 = p)s).

Prop.: For all probability measures sd\ and td\ and all p € (0,1)

C,d3(s,t) < JKL,A(s,t) < KLy(s, t)

with C, = %min(l;pp, 1) (In (1 + ITpp) - p).

C,~1/5if p~1/2.



Tensorized divergences

@ Need to adapt to conditional density design:
o Divergence on the product density conditioned on the design (Kolaczyk,
Bigot).
@ Tensorization principle and expectation on the design: design:

KL — KL®"(s,s") ZKL "CIXN]

JKL, — JKLE"  and d2 — d*®r.

@ Similar approach but difference for Jensen-Kullback-Leibler and
Hellinger and possibility to have a result with expectation on the
design.

@ Oracle inequality of type

E [JKL®"(s,5)] < C inf < inf  KL®"(s0, 5m) + -

meS \smESm

pen(m)) N c’

@ Classical density estimation theorem if s(:|X;) = s(+).



Penalty and complexities

@ Oracle inequality:

Ol = _ _ @0 pen(m) c’
E [JKL®"(s0,55)] < Crl;rgs (sn:g];m KL®"(s0, Sm) + . ) +—
@ A good pen(m) should be of order
E[|KL®"(s0,5m) — E[KL®"(s0,35m)]|] (variance term).
@ Control in expectation requires a larger pen(m):
@ with an intrinsic term corresponding to the complexity of the model
(upper bound of the variance/deviation bound),
@ and with a term corresponding to the complexity of the collection
(simultaneous control on all the collection/union bound)
@ Complexity used here:
o Model (entropy): D, defined from the bracketing entropy Hyj 4o (€, Sm)
of Sy, with respect to the tensorized Hellinger distance d?®».
o Collection (coding): Kraft type inequality Z eTm <Y <40
meS
@ Classical constraint on the penalty

pen(m) > Kk (Dm + xm) with £ > Ko.



Bracketing entropy and
complexity

@ Bracketing entropy: Hi) ge.(€,S) = logarithm of the minimum
number of brackets [t; , t;"] such that
o Vi, d®n(t;,t7) <e
o Vse S, 3it7 <s<th

where d® = /28 — \/E (L5 a2(s(1X). 5/ (1X0))] s the
tensorized Hellinger distance.
@ Model S, = Local model S;,(sm,0) = Sm N {s,d®"(sm,s) < o}.
@ Assumption (H): for all model Sp,, there is a non decreasing ¢m(9)

such that 6 — 1¢ () is non increasing (0,400) and such that for
all o € RT and all s, € Sy

/Oa \/H[,Ld@n (E, Sm(Sm7 U)) de < ¢m(0'),

@ Complexity D, def. as no2, with o, unique root of ¢m(c) = v/no>.
@ Key: Dudley type integral and optimization of a deviation bound.
@ Typically, no2, oc (In n) dim(Sp)...




Sketch of proof

@ Close from Theorem 7.11 of Massart's book.
@ For all function g(x, y), let P¥"(g) be its empirical process

Py (g Zg Xi, Yy),
P®n(g) the expectation of this process

P®n( ) E[P®n — [ Zg X/ Y-/l

with (X/, Y/) a phantom sample of same law than (X}, Y;) but
independent and v¥"(g) = P?"(g) — P®(g) the recentred process.
@ By definition,

KL® (sp, t) = P (— In <;>)

IKLE" (50, £) = P (—; In (MW»



Best(s) model(s)

@ Define
~ : . s
® 5y =argmin, .5 PP"(—Insy) = argming s P" (f In 5)

® 5, = argming s P%" (— In S;T) = argming s KL®"(sp, 5m).

@ Let

Ki(5m) = —In (5’”>

S0
Sm
Sy —n(m
kl(5m) n (50)
e ) — 1 (1_9)50+P§m>
JkI(5m) = > In < -

@ By convexity, jkI(5,) = —% In W < —In = kl(sm)



Log-likelihood majorization

@ Let me S, for all m’ such that
/
P (K ) + P < k() + P

P20 (jkl(Sm)) + pen,Sm’) < P& (KI(Gy)) + penlsm’)
< P (ki(5n)) + )

< PEn(ki(s)) + P

@ This implies

P GRI(5m)) — 5" (K(m)
< Po((5m)) + P ki) — R




Oracle inequality up to deviation

@ The previous inequality can be rewritten

JKL?"(S(), Smr) — V,?"(kl(?m))
pen(m)
n

— (5 )) — P

@ Appear

the integrated loss of the estimate in the model m": JKLS"(sp, )
a simple and centered process: —v@(kl(5)),
the oracle KL (sp, ) + 2elm)

n
pen(m’)
n

@ It turns out that E [—v%7(jk/(5,))] can be essentially bounded by
eJKLE (50, 8r) + %(m) as soon as pen(m’) > k(no2, + Xxm)...

© 6 o ¢

a random remainder —v®"(jkl(5y)) —



Deviation lemma

@ Lemma: Jk; > 4, &} and &% such that, under assumption (H), for
all me M, and all x > 0, for every yp;, > om

{ — v (jkl(Sm)) - Riom L Xm + X n 18 Xm +X} < Dg—Xm—x

= 2
yE + rpd?®n(s0,5m) ~ Ym ny2,  p ny?

@ Using yny = Kk11/no2, + xa + x/+/n, we obtain, thanks to the

Kraft inequality, simultaneously on all model with proba 2¥e™*:

—y?"(jk/(?m/)) -2 "

18
= < kUK, + RY) + =K% =k
K1 (n02, + Xy +X) /0 + Kyd2®n(s9,5) — (k1 +2) p 1 0

@ That is with proba 2¥Xe™:

no?, + Xpy X
sup " kl(5) — K3 7T (s, Br) < S
m
®n
~pen(m’)/n ~eJKLE ™ (50,8,)

@ End of the proof: Choice of k1 such that kgx'0 = €C, and
integration...



Deviation of —v2(jkI(5,))
@ Control of
v (kIGm)) = — (PR (kI (3mr)) — P (iK1 (5ar)))
with

1 po +(1—
Jl(G) = 210 o (L= P)0
P S0

@ Two main difficulties:
@ Empirical processes,
o Functions s, are random!
@ Strategy and tools:
o —jkI(Sp) = —jkl(Gm) + (—jkI(Sm) + jkI(5m)) with S, non random.
@ Concentration of the first term around its mean using Bernstein
@ Control of a weighted supremum

v (jklGm) +jKIGm)) Ve (K Gar) + K Gar))
€IKLE" (50, 3 ) + BT) 7 5 TS e JKLE™ (50, ) + 2RI

n

by maximal inequality, chaining and pealing.



Chernoff and Bernstein
@ X; independents: study of S = "i_;(Xi — E[Xi]).

- Eiis} _ o~ (—E[9])

o Let Ys(\) = InE [S], $i5(x) = supyers (Ax — ts(1)) and 5 its
generalized inverse, we deduce

@ Chernoff: VA > 0,P{S > x} <

P{S>x} <e 0 o P{s>yi(n)) <e

@ Bernstein: If

zn:IE {X,Z} <V and Vk > 3,2,1:]11‘, |:(Xl)f<|»j| < g\/bkﬂ
i=1 p

VA2 v bx bx
th AN < — Hx)> — |1+ = — /14222
en  Ys(\) < 50— bN)’ Vs(x) = 5 ( +- + V)

and g (t) < V2Vt 4 bt.



Bernstein and JKL

@ Berstein revisited: if
P () <V and Wk >3,P% ((F)) < My
= - 9 —+ — 2

|2V
then P 9 (f) > T+b } e "

S0

pSm + (1 — p)so
@ Lemma of van de Geer: For all positive functions t, u and all

integer k > 2
rzz2p) =S
so+u 2 8

@ Apparition of Jensen-Kullback-Leibler:
o (\1“1 ((1 —P)So+/7f> k) _ K (9d2®"(r, u)) (2>k—2
p \(1—p)so+pu T2\ 8p(1=p) ) \p

@ Bernstein possible for —jk/(Sp,) with V = %(_505’") and b = %'

1
@ Useful with —jk/(5,) = —=1n with S, non random?
p




Controf of the supremum

@ Simple case: sup f with f € F finite and Vf € F,¢¢(X) < x(N).
@ Control by union bound:

P{supf > x} < Z]P’{f > x} < | Fle ¥FX)
fer feF

@ Control by conditioning:
o Prop:

VA EA[Z] = MPZ{’;{}A}] <wv (In (HDSA})) =P{Z>V¥(x)}<e ™

@ Application to recover the union bound:

s ] = n (000 1) < Jin (242 ) < o (D 416
<3 (Ze) <o (n (o))

:>]P’{sup f> % (In|F| +x)} <e ¥
feF

>

® Much more versatile tool...



Countable family and bracketing
entropy

@ Using chaining technique, extension possible to countable family

(much more technical...)
@ Theorem: Let F be a countable family of functions. Assume it exists V' and b
such that for all f € F and all integer kK > 2

|
Por(If¥) < 'S Vb2

and for all § > 0, it exists a bracket covering of F with brackets [g~, g"] such
that for all integer kK > 2

|
P®"(‘g+ _g—‘k) S %62bk—2

and let ") be the cardinality of this covering. It exists an absolute constant
k < 27 such that for € € (0, 1] and all measurable set A with P{A} > 0,

(14 66e)VV 1 2b 1

with E*Si‘/6 v/ H(u) A ndu + b+0) H(WVV).

n




Jensen-KL and bracketing entropy

@ Control of EA[sup v$7(f)] for f € F under two assumptions

o Berstein type assumption: 3V and b such that for all f € F and all
k!
integer k >2, P®(|f]F) < EVbH.
o Bracketing entropy assumption on F: For all § > 0, it exists a bracketing
covering of cardinality H(§) such that for all bracket [g~, g™] and all

k!
integer k > 2, P (|gT —g7|¥) < EUZbk_z'

@ Lemma of van de Geer: (importance of JKL)

Sl o kb (9% (s, Sr) | (272
P (1=l (swr) + JKIGar) ) < 5 <80(1—p)> (p)

@ Natural choice for F:
{—jk/(sm/) +_jk/(§m/)’5m/ S Sm/(gm/,O') =S5, N {S, d®"(5,§m/) < O'}} .

@ Bracketing entropy assumptions on F = Bracketing entropy
assumptions on S,y (5., o) with respect to d®n.



Assumption (H) and o,
@ Let Wm/(U) = supsm/ESm/(svm/,a) (—jk/(Sm/) +jk/(§m/))
@ Theorem yields with € = 2,/2p(1 — p)/3:

A (14 6¢,)30 R 4 n 1
o < - G i (G0 )+ o ()

with

= H ®n u Sm/(s ’ O’) Andy 4+ —mM———
pr/ \/[]d )

@ Assumption (H) = / \/H[_]’d®,, (€, S, 7)) de < e (0)
0
@ Implication: E < ( +2 <2 + 3 ) Gy (0 2)) G (0)

30
25+ 57

H[ 1,d®n (cr, S (;m/, o‘))

2/pd—p)) Vao? ) /n

@ Def. of o,y and monotony prop. of ¢,y : ¢\[n(52 #) — 1 and Vo > Oy

B War(o)] < 2200 4 S22 i (D) + 2 ()




Pealing

@ S(S,0): Yo > o4y

EA [ sup (V2 (—jkI(spy) + jkI(Sar)))

1
oo ()
SmIESm(gm/,U) ]P){A}
@ Choice of $,: Sy = argmingcs, d?®"(sp, sm).

@ As o +— VWV, (0,-) /o is decreasing, the pealing lemma applies and
implies

Do (— k(s + jKI(Z Vo (Yors In (57
Wy > o, EA| sup Lt (Z®)f1 Sm)) | < 4 ( : (star))
sm/GSm/ ym/ + d "(Sm/’ Sm/) ym/

) In(-L- 161n _1
< /i/107m + a4k (P{A}) + =2 (P{A})

Ym' nyny p nyny
@ For the deviations: Vy,y > oy,

Qn(_ ikl , ikl(s,,/ / 16
ol qup DT ) G ) om0 16 x |
Syt €Syt ym/+d®"(5m’,5m’) Ym' Ny py P NYpy




Bound summary

© vy (jkI(Sm)) = — — v (jKI(Bar)) + vy " (= ikl (S ) + jkI (S ))
@ For the first term, —v&n(jkl(5p)):
9d%8n (55,5, _
8p(1(iop) ) and b= %

o~ 9d?®n(s9,5m) [x  2x B
P @ (jkl(Gm)) > | 20w ) X X
{ GHiGm) > || 20 .

o Bernstein with V =

o Renormalization by y2, + k{d?>®"(sg, S ) > 2Ym\/ Ko/ d?®n (S0, Sm)

—1/®n ,
p v (jkl(Spm) <.
V2 + K, d?@n(sg, Sy ) 16p( 1 — ny2, p ny2,

@ For the second term, v&"(—jkl(Sy) + jkI(5m)):
o For the deviations: Yy, > o,,

@n(—jkl(spy ikl(Spy 16
P<{ sup Yn (2J (2';)jj (m))>f£1 = kY —X2 +— X2 <e*
m/ES/ ym/ +d "(Sm/vsm’) Ym' n.ym/ p n.ym/




Recombination

@ Previous bounds:
o For the first term, —v@n(jkI(3,))

P —v@(jkl(5m)) —x
<e X
y2 4 K4d?*®n(s0, 5y) 16p( 1 — ny2, p ny2,

o For the second term, v@"(—jkl(Sy ) + jkI(Sm)): VYm = O,

b { qup V8" Kl om) +3KIGw)) Ly Ow gy X 16 X }
s /€S _/

= 1 Ko —_—
Yy + A2 (Spr, S ) Y NYa P MY

<e™*

@ Vs, € S,y, d2®"(50,§m/) < d2®"(5075m/) and for I€6 > 4,
d2®”(§m/, Sm/) < K6d2®"(50, Sm/) .
@ Simple union bounds yields

—1®n(; ’ ’
IP’{ sup Vg (Jk/(sm)) >ﬁ/0'm + K X 18 x }§26_X

2 / 1 2 2 T2
5w €S,y Vi 1 K0d%En (0, Smr) Yo nyz, P Nyny

@ Bound valid for —v®n(jk/(s,,)) i.e. the announced lemma...



Back to the spatialized GMM

@ Computation of an upper bound of H} gon (€, Sm(sm, 0)) for the
spatialized GMM (cf Maugis and Michel):
@ Bound on an upper bound of the entropy: Hpj g (€, Sm) where
= = /@7 =\ fsup, B ((1). 5 (1)
o Result valid for every structure ([ L D A]X) and every partition:

Hp,q500 (€, Sm) < dim(S,)(C +In %)

with an (almost) explicit common C (use of a lemma from Szarek for the
entropy of SO(n) without explicit constant) and
dim(Sn) = |PI(K — 1) + dim([u L D A]¥).

o Consequence: D, < x’ (C/ +1 ( (C’dlm( )>) > dim(S,,).

@ Collection coding with x, < £”|P| < #5 d|m(5 ).
@ Condition on the penalty:

pen(m) > ( <C’ E <In (C’dwﬁ(S)))_) + Kﬂjl> dim(Sp).




Conditional density estimators

@ Much work for only one example of model collection: Spatialized
GMM!

@ Generality of Theorem (luckily) allows more cases!

@ Conditional density estimators already analyzed:

o Covariate Partition based (piecewise constant with respect to X)
estimators with density conditioned to X modeled by

o a GMM (spat. GMM),
o a piecewise polynomial density.

@ Extension to non constant cases:
o piecewise logistic weights GMM (L. Montuelle),
@ piecewise polynomial on both X and Y.

@ For all cases, pen(m) o (In n)dim(Sy).

@ Non partition based approach possible theoretically but numerical
issues.



Conclusion

@ Framework:

@ Unsupervised segmentation problem and Spatialized GMM.
@ Penalized maximum likelihood conditional density estimation.
@ Partition based conditional density estimator.

@ Results:

@ Theoretical guaranty for the conditional density estimation problem.
o Applicable to Spatialized GMM (and unsupervised segmentation...)
o Efficient minimization algorithm.

@ Proof tools:

@ Convexification of KL which allows Bernstein type bound,
@ Supremum of empirical processes and pealing.
@ Perspectives:

o Formal link between conditional density estimation and unsupervised
segmentation.

@ Penalty calibration by slope heuristic.

@ Dimension reduction adapted to unsupervised
segmentation /classification.

o Enh. Spatialized GMM with piecewise logistic weights (L. Montuelle).



(Estan perdidos?

o Pueden:
o Pregunctarme en Valparaiso,
o Ir a Vina y ver la misma historia pero con mas aplicaciones y
menos detalles matematicos,
o Ir a Quintay...
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