Conditional density estimation by penalized maximum likelihood model selection

E. Le Pennec (SELECT - Inria Saclay / Université Paris Sud) and S. Cohen (IPANEMA - Soleil)

Valparaiso 24/03/2012

Outline

- Hyperspectral image segmentation (preview of CLAPEM talk...)
- Conditional density estimation by a penalized maximum likelihood approach
- 3 Abstract model selection theorem and related tools
- Application to partition based conditional density estimation

A. Stradivari (1644 - 1737)

Provigny (1716)

4 / 8 cm-1 resolution 64 / 128 scans typ. I min/sp, 400sp

very simple process no protein (amide I, amide II) no gums, nor waxes

@SOLEIL: SMIS

J.-P. Echard, L. Bertrand, A. von Bohlen, A.-S. Le Hô, C. Paris, L. Bellot-Gurlet, B. Soulier, A. Lattuati-Derieux, S. Thao, L. Robinet, B. Lavédrine, and S. Vaiedelich. Angew. Chem. Int. Ed., 49(1), 197-201, 2010.

Hyperspectral image segmentation with GMM

- Classical stochastic model of spectrum S:
 - K spectrum classes,
 - with proportion π_k for each class $(\sum_{k=1}^K \pi_k = 1)$,
 - Gaussian law $\mathcal{N}(\mu_k, \Sigma_k)$ within each class (strong assumption!)
- Heuristic: true density s_0 of S close from

$$s(S) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mu_k, \Sigma_k)(S).$$

- Goal: estimate all parameters $(K, \pi_k, \mu_k \text{ and } \Sigma_k)$ from the data.
- Why: yields a classification/segmentation by a maximum likelihood principle

$$\hat{k}(\mathcal{S}) = \operatorname{argmax} \pi_k \mathcal{N}(\mu_k, \Sigma_k)(\mathcal{S})$$

• Typical result in term of density estimation and not classification...

Gaussian Mixture Model

• True density s_0 of S close from

$$s(S) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mu_k, \Sigma_k)(S).$$

- Gaussian Mixture Model $S_m = \{s_m\}$ specified by
 - a number of classes K,
 - a structure for the means μ_k and the covariance matrices $\Sigma_k = L_k D_k A_k D_k'$
- Structure $[\mu L D A]^K$: structural constraints (know, common or free values...) on the means μ_k , the volumes L_k , the diagonalization basis D_k and the rescaled eigenvalues A_k plus compactness and condition number assumptions.
- GMM S_m : parametric model of dimension $(K-1) + \dim([\mu L D A]^K)$.
- Maximum likelihood estimation by EM algorithm of:
 - the mean μ_k and the covariance matrix $\Sigma_k = L_k D_k A_k D_k'$ for each class
 - and the mixing proportions π_k

Model selection

- How to choose the *good* model S_m :
 - the number of classes K,
 - the structure model $[\mu LDA]^K$?
- Penalized model selection principle:
 - Choice of a collection of models $S_m = \{s_m\}$ with $m \in \mathcal{S}$,
 - Maximum likelihood estimation of a density \hat{s}_m for each model S_m ,
 - Selection of a model \widehat{m} by

$$\widehat{m} = \operatorname{argmin} - \ln(\widehat{s}_m) + \operatorname{pen}(m).$$

with $pen(m) = \kappa(ln(n)) \dim(S_m)$ (parametric dimension of S_m),

- Results (Birgé, Massart, Celeux, Maugis, Michel...):
 - Density estimation: for κ large enough,

$$\mathbb{E}\left[d^2(s_0,\widehat{s}_{\widehat{m}})\right] \leq C\inf_{m \in \mathcal{S}}\left(\inf_{s_m \in \mathcal{S}_m} KL(s_0,s_m) + \frac{\mathrm{pen}(m)}{n}\right) + \frac{C'}{n}.$$

- Clustering or unsupervised classification (≠ segmentation): numerical results.
- Consistency of the classification as soon as ln ln(n) in the penalty...

Methodology Estimation Classification Selection

Segmentation and Spatialized GMM

- Initial goal: segmentation \neq clustering.
- Idea of Kolaczyk et al (cf Bigot): take into account the spatial position x of the spectrum in the mixing proportions .
- Conditional density model:

$$s(\mathcal{S}|x) = \sum_{k=1}^{K} \pi_k(x) \, \mathcal{N}(\mu_k, \Sigma_k)(\mathcal{S}).$$

- Estimation from the data:
 - ullet the mean μ_k and the covariance matrix $\Sigma_k = L_k D_k A_k D_k'$ for each class
 - and the mixing proportion functions $\pi_k(x)$.
- Non parametric model $(\pi_k(x))$ function: regularization required!
- Model selection principle...

Spat. GMM and hierarchical partition

- How to choose the *right* model S_m ?:
 - the number of classes K.
 - the structure model $[\mu LDA]^K$,
 - the structure of the mixing proportion functions $\pi_k(x)$.
- Simple structure for $\pi_k(x)$: $\pi_k(x) = \sum_{\mathcal{R} \in \mathcal{P}} \pi_k[\mathcal{R}] \chi_{\{x \in \mathcal{R}\}} = \pi_k[\mathcal{R}(x)]$
 - piecewise constant on a hierarchical partition,
 - efficient optimization algorithm,
 - good approximation properties.

- $\bullet \ \dim(S_m) = |\mathcal{P}|(K-1) + \dim([\mu LDA]^K).$
- Penalty $pen(m) = \kappa \ln(n) \dim(S_m)$ allows
 - a numerical optimization scheme (EM + dynamic programing)
 - ullet a theoretical control: for κ large enough

$$\mathbb{E}\left[d^2(s_0,\widehat{s}_{\widehat{m}})\right] \leq C\inf_{m \in \mathcal{S}}\left(\inf_{s_m \in S_m} KL(s_0,s_m) + \frac{\mathrm{pen}(m)}{n}\right) + \frac{C'}{n}.$$

Conditional density and selection

- General framework: observation of (X_i, Y_i) with X_i independent and Y_i cond. independent of law of density $s_0(y|X_i)$.
- Goal: estimation of s₀(y|x).
 Penalized model selection principle:
- choice of a collection of cond. dens. models $S_m = \{s_m(y|x)\}$ with $m \in \mathcal{S}$, • Maximum likelihood estimation of a cond. density \hat{s}_m for each model S_m :

$$\hat{s}_m = \underset{s_m \in S_m}{\operatorname{argmin}} - \sum_{i=1}^m \ln s_m(Y_i|X_i)$$

• Selection of a model \widehat{m} by $\widehat{m} = \operatorname*{argmin}_{m \in \mathcal{S}} - \sum_{i=1}^n \ln \widehat{s}_m(Y_i|X_i) + \operatorname{pen}(m).$

with pen(m) well chosen.

Conditional density estimation result of type:

$$\mathbb{E}\left[d^2(s_0,\widehat{s}_{\widehat{m}})\right] \leq C\inf_{m \in \mathcal{S}}\left(\inf_{s_m \in \mathcal{S}_m} KL(s_0,s_m) + \frac{\mathrm{pen}(m)}{n}\right) + \frac{C'}{n}.$$

Short biblio: Rosenblatt, Fan et al., de Gooijer and Zerom,
 Efromovitch, Brunel, Comte, Lacour... / Plugin, direct estimation,
 L², minimax, censure...

Theorem

Assumption (H): For every model S_m in the collection \mathcal{S} , there is a non-decreasing function $\phi_m(\delta)$ such that $\delta \mapsto \frac{1}{\delta}\phi_m(\delta)$ is non-increasing on $(0,+\infty)$ and for every $\sigma \in \mathbb{R}^+$ and every $s_m \in S_m$

$$\int_0^\sigma \sqrt{H_{[\cdot],d^{\otimes_n}}(\epsilon,S_m(s_m,\sigma))}\,d\epsilon \leq \phi_m(\sigma).$$

Assumption (K): There is a family $(x_m)_{m \in \mathcal{M}}$ of non-negative number such that

$$\sum_{m\in\mathcal{M}}e^{-x_m}\leq \Sigma<+\infty$$

Theorem

Assume we observe (X_i, Y_i) with unknown conditional s_0 . Let $S = (S_m)_{m \in \mathcal{M}}$ a at most countable collection of conditional density sets. Assume Assumptions (H), (K) and (S) hold.

Let \hat{s}_m be a δ -log-likelihood minimizer in S_m :

$$\sum_{i=1}^{n} -\ln(\widehat{s}_{m}(Y_{i}|X_{i})) \leq \inf_{s_{m} \in S_{m}} \left(\sum_{i=1}^{n} -\ln(s_{m}(Y_{i}|X_{i}))\right) + \delta$$

Then for any $\rho \in (0,1)$ and any $C_1 > 1$, there are two constants κ_0 and C_2 depending only on ρ and C_1 such that,

as soon as for every index $m \in \mathcal{M}$ $\operatorname{pen}(m) \ge \kappa_1(\mathfrak{D}_m + x_m)$ with $\kappa > \kappa_0$

where $\mathfrak{D}_m = n\sigma_m^2$ with σ_m the unique root of $\frac{1}{2}\phi_m(\sigma) = \sqrt{n}\sigma$,

the penalized likelihood estimate $\hat{s}_{\widehat{m}}$ with \widehat{m} defined by

$$\widehat{m} = \underset{m \in \mathcal{M}}{\operatorname{argmin}} \sum_{i=1}^{n} -\ln(\widehat{s}_{m}(Y_{i}|X_{i})) + \operatorname{pen}(m)$$

$$\text{atisfies} \qquad \mathbb{E}\left[J\!K\!L^{\otimes_n}_{\rho}(s_0,\widehat{s}_{\widehat{m}})\right] \leq C_1\inf_{S_m\in\mathcal{S}}\left(\inf_{s_m\in S_m}K\!L^{\otimes_n}(s_0,s_m) + \frac{\mathrm{pen}(m)}{n}\right) + C_2\frac{\Sigma}{n} + \frac{\delta}{n}.$$

Simplified Theorem...

Oracle inequality:

$$\mathbb{E}\left[JKL_{\rho}^{\otimes_n}(s_0,\widehat{s}_{\widehat{m}})\right] \leq C_1\inf_{S_m \in \mathcal{S}}\left(\inf_{s_m \in S_m}KL^{\otimes_n}(s_0,s_m) + \frac{\operatorname{pen}(m)}{n}\right) + C_2\frac{\Sigma}{n} + \frac{\delta}{n}$$

as soon as

$$pen(m) \ge \kappa (\mathfrak{D}_m + x_m)$$
 with $\kappa > \kappa_0$,

where \mathfrak{D}_m measure the complexity of the model S_m (entropy term) and x_m the coding cost within the collection.

- Distances used $KL^{\otimes n}$ and $JKL^{\otimes n}_{\rho}$: tensorized Kullback divergence and Jensen-Kullback divergence.
- \mathfrak{D}_m linked to the *bracketing entropy* of S_m with respect to the tensorized Hellinger distance $d^{2\otimes n}$.
- Often $\mathfrak{D}_m \propto (\log n) \dim(S_m)...$

Kullback, Hellinger and extensions

Model selection oracle inequality of type

$$\mathbb{E}\left[d^2(s_0,\widehat{s}_{\widehat{m}})\right] \leq C\left(\inf_{m \in \mathcal{S}}\inf_{s_m \in S_m} \mathsf{KL}(s_0,s_m) + \frac{\mathrm{pen}(m)}{n}\right) + \frac{C'}{n}.$$

- Density: Hellinger $d^2(s, s')$ (or affinity) (Kolaczyk, Barron, Bigot) on the left...
- Refinement with a bounded convexification of KL: JKL(s, s') = 2KL(s, (s' + s)/2) (Massart, van de Geer)
- Jensen-Kullback-Leibler: generalization to $JKL_{\rho}(s,s')=\frac{1}{\rho}KL(s,\rho s'+(1-\rho)s).$
- **Prop.:** For all probability measures $sd\lambda$ and $td\lambda$ and all $\rho \in (0,1)$

$$C_{\rho} d_{\lambda}^{2}(s,t) \leq JKL_{\rho,\lambda}(s,t) \leq KL_{\lambda}(s,t)$$

with
$$C_{
ho}=rac{1}{
ho}\min(rac{1-
ho}{
ho},1)\left(\ln\left(1+rac{
ho}{1-
ho}
ight)-
ho
ight).$$

• $C_o \simeq 1/5$ if $\rho \simeq 1/2$.

Tensorized divergences

- Need to adapt to conditional density design:
 - Divergence on the product density conditioned on the design (Kolaczyk, Bigot).
 - Tensorization principle and expectation on the design: design:

$$\mathsf{KL} o \mathsf{KL}^{\otimes_n}(s,s') = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n \mathsf{KL}\left(s(\cdot|X_i),s'(\cdot|X_i)\right)\right],$$
 $\mathsf{JKL}_{\varrho} o \mathsf{JKL}_{\varrho}^{\otimes_n} \quad \text{and} \quad d^2 o d^{2\otimes_n}.$

- Similar approach but difference for Jensen-Kullback-Leibler and Hellinger and possibility to have a result with expectation on the design.
- Oracle inequality of type

$$\mathbb{E}\left[JKL^{\otimes_n}(s_0,\widehat{s}_{\widehat{m}})\right] \leq C\inf_{m \in \mathcal{S}}\left(\inf_{s_m \in \mathcal{S}_m}KL^{\otimes_n}(s_0,s_m) + \frac{\mathrm{pen}(m)}{n}\right) + \frac{C'}{n}.$$

• Classical density estimation theorem if $s(\cdot|X_i) = s(\cdot)$.

Penalty and complexities

Oracle inequality:

$$\mathbb{E}\left[JKL^{\otimes_n}(s_0,\widehat{s}_{\widehat{m}})\right] \leq C\inf_{m \in \mathcal{S}}\left(\inf_{s_m \in \mathcal{S}_m}KL^{\otimes_n}(s_0,s_m) + \frac{\mathrm{pen}(m)}{n}\right) + \frac{C'}{n}$$

- A good pen(m) should be of order $\mathbb{E}\left[|KL^{\otimes_n}(s_0,\widehat{s}_m) \mathbb{E}\left[KL^{\otimes_n}(s_0,\widehat{s}_m)\right]|\right]$ (variance term).
- Control in expectation requires a larger pen(m):
 - with an intrinsic term corresponding to the complexity of the model (upper bound of the variance/deviation bound),
 - and with a term corresponding to the complexity of the collection (simultaneous control on all the collection/union bound)
- Complexity used here:
 - Model (entropy): \mathfrak{D}_m defined from the *bracketing entropy* $H_{[\cdot],d^{\otimes_n}}(\epsilon,S_m)$ of S_m with respect to the tensorized Hellinger distance $d^{2\otimes_n}$.
 - ullet Collection (coding): Kraft type inequality $\sum_{m\in\mathcal{S}}e^{-x_m}\leq \Sigma<+\infty$
- Classical constraint on the penalty

$$pen(m) \ge \kappa (\mathfrak{D}_m + x_m)$$
 with $\kappa > \kappa_0$.

Bracketing entropy and complexity

- Bracketing entropy: $H_{[\cdot],d^{\otimes_n}}(\epsilon,S) = \text{logarithm of the minimum number of brackets} [t_i^-,t_i^+] \text{ such that}$
 - $\forall i, d^{\otimes_n}(t_i^-, t_i^+) \le \epsilon$ $\forall s \in S, \exists i, t_i^- \le s \le t_i^+$
 - where $d^{\otimes_n} = \sqrt{d^{2\otimes_n}} = \sqrt{\mathbb{E}\left[\frac{1}{n}\sum d^2(s(\cdot|X_i),s'(\cdot|X_i))\right]}$ is the tensorized Hellinger distance.
- Model $S_m \Rightarrow$ Local model $S_m(s_m, \sigma) = S_m \cap \{s, d^{\otimes_n}(s_m, s) \leq \sigma\}.$
- Assumption (H): for all model S_m , there is a non decreasing $\phi_m(\delta)$ such that $\delta \mapsto \frac{1}{\delta}\phi_m(\delta)$ is non increasing $(0, +\infty)$ and such that for all $\sigma \in \mathbb{R}^+$ and all $s_m \in S_m$

$$\int_{0}^{\sigma} \sqrt{H_{[\cdot],d^{\otimes n}}(\epsilon,S_{m}(s_{m},\sigma))} d\epsilon \leq \phi_{m}(\sigma),$$

- Complexity \mathfrak{D}_m def. as $n\sigma_m^2$ with σ_m unique root of $\phi_m(\sigma) = \sqrt{n}\sigma^2$.
- Key: Dudley type integral and optimization of a deviation bound.
- Typically, $n\sigma_m^2 \propto (\ln n) \dim(S_m)...$

Sketch of proof

- Close from Theorem 7.11 of Massart's book.
- For all function g(x,y), let $P_n^{\otimes_n}(g)$ be its empirical process

$$P_n^{\otimes_n}(g) = \frac{1}{n} \sum_{i=1}^n g(X_i, Y_i),$$

 $P^{\otimes_n}(g)$ the expectation of this process

$$P^{\otimes_n}(g) = \mathbb{E}\left[P_n^{\otimes_n}(g)\right] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n g(X_i', Y_i')\right]$$

with (X_i', Y_i') a phantom sample of same law than (X_i, Y_i) but independent and $\nu_n^{\otimes n}(g) = P_n^{\otimes n}(g) - P^{\otimes n}(g)$ the recentred process.

By definition,

$$egin{aligned} \mathit{KL}^{\otimes_n}(s_0,t) &= P^{\otimes_n} \left(-\ln\left(rac{t}{s_0}
ight)
ight) \ \mathit{JKL}^{\otimes_n}_{
ho}(s_0,t) &= P^{\otimes_n} \left(-rac{1}{
ho}\ln\left(rac{(1-
ho)s_0 +
ho t}{s_0}
ight)
ight) \end{aligned}$$

Best(s) model(s)

Define

•
$$\widehat{s}_m = \operatorname{argmin}_{s_m \in S_m} P_n^{\otimes_n} (-\ln s_m) = \operatorname{argmin}_{s_m \in S_m} P_n^{\otimes_n} (-\ln \frac{s_m}{s_0})$$

•
$$\bar{s}_m = \operatorname{argmin}_{s_m \in S_m} P^{\otimes_n} \left(-\ln \frac{s_m}{s_0} \right) = \operatorname{argmin}_{s_m \in S_m} \mathit{KL}^{\otimes_n}(s_0, s_m).$$

Let

$$kl(\widehat{s}_m) = -\ln\left(\frac{s_m}{s_0}\right)$$

$$kl(\widehat{s}_m) = -\ln\left(\frac{\widehat{s}_m}{s_0}\right)$$

$$jkl(\widehat{s}_m) = -\frac{1}{\rho}\ln\left(\frac{(1-\rho)s_0 + \rho\widehat{s}_m}{s_0}\right)$$

• By convexity, $jkl(\widehat{s}_m) = -\frac{1}{\rho} \ln \frac{\widehat{\rho s}_m + (1-\rho)s_0}{s_0} \le -\ln \frac{\widehat{s}_m}{s_0} = kl(\widehat{s}_m)$

Log-likelihood majorization

• Let $m \in \mathcal{S}$, for all m' such that

$$P_n^{\otimes_n}(kl(\widehat{s}_{m'})) + \frac{\operatorname{pen}(m')}{n} \leq P_n^{\otimes_n}(kl(\widehat{s}_m)) + \frac{\operatorname{pen}(m)}{n}$$
:

$$\begin{split} P_n^{\otimes_n}(jkl(\widehat{s}_{m'})) + \frac{\operatorname{pen}(m')}{n} &\leq P_n^{\otimes_n}(kl(\widehat{s}_{m'})) + \frac{\operatorname{pen}(m')}{n} \\ &\leq P_n^{\otimes_n}(kl(\widehat{s}_m)) + \frac{\operatorname{pen}(m)}{n} \\ &\leq P_n^{\otimes_n}(kl(\overline{s}_m)) + \frac{\operatorname{pen}(m)}{n} \end{split}$$

This implies

$$\begin{split} P^{\otimes_n}(jkl(\widehat{s}_{m'})) - \nu_n^{\otimes_n}(kl(\overline{s}_m)) \\ &\leq P^{\otimes_n}(kl(\overline{s}_m)) + \frac{\mathrm{pen}(m)}{n} - \nu_n^{\otimes_n}(jkl(\widehat{s}_{m'})) - \frac{\mathrm{pen}(m')}{n} \end{split}$$

Oracle inequality up to deviation

The previous inequality can be rewritten

$$JKL_{\rho}^{\otimes_{n}}(s_{0}, \hat{s}_{m'}) - \nu_{n}^{\otimes_{n}}(kl(\overline{s}_{m}))$$

$$\leq KL^{\otimes_{n}}(s_{0}, \overline{s}_{m}) + \frac{\operatorname{pen}(m)}{n}$$

$$- \nu_{n}^{\otimes_{n}}(jkl(\hat{s}_{m'})) - \frac{\operatorname{pen}(m')}{n}$$

- Appear
 - the integrated loss of the estimate in the model m': $JKL_{\rho}^{\otimes_n}(s_0, \hat{s}_{m'})$
 - a simple and centered process: $-\nu_n^{\otimes_n}(kl(\overline{s}_m))$,
 - the oracle $KL^{\otimes_n}(s_0,\overline{s}_m)+rac{\mathrm{pen}(m)}{n}$
 - a random remainder $-\nu_n^{\otimes_n}(jkl(\widehat{s}_{m'})) \frac{\mathrm{pen}(m')}{n}$
- It turns out that $\mathbb{E}\left[-\nu_n^{\otimes_n}(jkl(\hat{s}_{m'}))\right]$ can be essentially bounded by $\epsilon J K L_{\rho}^{\otimes_n}(s_0,\hat{s}_{m'}) + \frac{\mathrm{pen}(m')}{n}$ as soon as $\mathrm{pen}(m') \geq \kappa (n\sigma_{m'}^2 + x_m)...$

Deviation lemma

• **Lemma:** $\exists \kappa_0' > 4$, κ_1' and κ_2' such that, under assumption (H), for all $m \in \mathcal{M}$, and all x > 0, for every $y_m > \sigma_m$

$$\mathbb{P}\left\{\frac{-\nu_n^{\otimes_n}(jkl(\widehat{s}_m))}{y_m^2+\kappa_0'd^{2\otimes_n}(s_0,\widehat{s}_m)}>\frac{\kappa_1'\sigma_m}{y_m}+\kappa_2'\sqrt{\frac{x_m+x}{ny_{m'}^2}}+\frac{18}{\rho}\frac{x_m+x}{ny_m^2}\right\}\leq 2e^{-x_m-x}$$

• Using $y_{m'} = \kappa_1 \sqrt{n\sigma_{m'}^2 + x_{m'} + x/\sqrt{n}}$, we obtain, thanks to the Kraft inequality, simultaneously on all model with proba $2\Sigma e^{-x}$:

$$\frac{-\nu_n^{\otimes_n}(jkl(\widehat{s}_{m'}))}{\kappa_1(n\sigma_{m'}^2 + x_{m'} + x)/n + \kappa_0'd^{2\otimes_n}(s_0, \widehat{s}_{m'})} \le \kappa_1^{-1}(\kappa_1' + \kappa_2') + \frac{18}{\rho}\kappa_1^{-2} = \kappa_0''$$

• That is with proba $2\Sigma e^{-x}$:

$$\sup_{m'} -\nu_n^{\otimes_n}(jkl(\widehat{s}_{m'})) - \underbrace{\kappa_1^2 \kappa_0'' \frac{n\sigma_{m'}^2 + x_{m'}}{n}}_{\sim \operatorname{pen}(m')/n} - \underbrace{\kappa_0' \kappa_0'' d^{2\otimes_n}(s_0, \widehat{s}_{m'})}_{\sim \epsilon JKL_{\rho}^{\otimes_n}(s_0, \widehat{s}_{m'})} \leq \kappa_1^2 \kappa_0'' \frac{x}{n}$$

• End of the proof: Choice of κ_1 such that $\kappa_0''\kappa'0 = \epsilon C_\rho$ and integration...

Deviation of $-\nu_n^{\otimes_n}(jkl(\hat{s}_{m'}))$

Control of

$$-\nu_n^{\otimes_n}(jkl(\widehat{s}_{m'})) = -\left(P_n^{\otimes_n}(jkl(\widehat{s}_{m'})) - P^{\otimes_n}(jkl(\widehat{s}_{m'}))\right)$$

with

$$jkl(\widehat{s}_{m'}) = \frac{1}{\rho} \ln \frac{\rho \widehat{s}_{m'} + (1-\rho)s_0}{s_0}$$

- Two main difficulties:
 - Empirical processes,
 - Functions $\hat{s}_{m'}$ are random!
- Strategy and tools:
 - $-jkl(\widehat{s}_{m'}) = -jkl(\widetilde{s}_{m'}) + (-jkl(\widehat{s}_{m'}) + jkl(\widetilde{s}_{m'}))$ with $\widetilde{s}_{m'}$ non random.
 - Concentration of the first term around its mean using Bernstein
 - Control of a weighted supremum

$$\frac{\nu_n^{\otimes_n}(-jkl(\widehat{s}_{m'})+jkl(\widetilde{s}_{m'}))}{\epsilon JKL_\rho^{\otimes_n}(s_0,\widehat{s}_{m'})+\frac{\mathrm{pen}(m')}{n}} \leq \sup_{s_{m'} \in S_{m'}} \frac{\nu_n^{\otimes_n}(-jkl(\widehat{s}_{m'})+jkl(\widetilde{s}_{m'}))}{\epsilon JKL_\rho^{\otimes_n}(s_0,s_{m'})+\frac{\mathrm{pen}(m')}{n}}$$

by maximal inequality, chaining and pealing.

Chernoff and Bernstein

- X_i independents: study of $S = \sum_{i=1}^{n} (X_i \mathbb{E}[X_i])$.
- $\bullet \ \, \textbf{Chernoff} \colon \, \forall \lambda \geq 0, \mathbb{P}\{S > x\} \leq \frac{\mathbb{E}\left[e^{\lambda S}\right]}{e^{\lambda x}} = e^{-\left(\lambda x \mathbb{E}\left[e^{\lambda S}\right]\right)}$
- Let $\psi_S(\lambda) = \ln \mathbb{E}\left[e^{\lambda S}\right]$, $\psi_S^*(x) = \sup_{\lambda \in \mathbb{R}^+} (\lambda x \psi_S(\lambda))$ and ψ_S^{*-} its generalized inverse, we deduce

$$\mathbb{P}\left\{S > x\right\} \le e^{-\psi_{S}^{*}(x)} \Leftrightarrow \mathbb{P}\left\{S > \psi_{S}^{*-}(t)\right\} \le e^{-t}$$

Bernstein: If

$$\sum_{i=1}^n \mathbb{E}\left[X_i^2\right] \le V \quad \text{and} \quad \forall k \ge 3, \sum_{i=1}^n \mathbb{E}\left[(X_i)_+^k\right] \le \frac{k!}{2} V b^{k-2}$$
 then
$$\psi_S(\lambda) \le \frac{V \lambda^2}{2(1-b\lambda)}, \quad \psi_S^*(x) \ge \frac{v}{b^2} \left(1 + \frac{bx}{v} - \sqrt{1 + 2\frac{bx}{v}}\right)$$
 and
$$\psi_S^{*-}(t) \le \sqrt{2Vt} + bt.$$

Bernstein and JKL

Berstein revisited: if

$$P^{\otimes_n}\left(f^2
ight) \leq V \quad ext{and} \quad orall k \geq 3, P^{\otimes_n}\left((f)_+^k
ight) \leq rac{k!}{2}Vb^{k-2}$$
 then $\mathbb{P}\left\{
u_n^{\otimes_n}(f) \geq \sqrt{rac{2V}{n}} + brac{t}{n}
ight\} \leq e^{-t}.$

- Useful with $-jkl(\widetilde{s}_m) = -\frac{1}{\rho} \ln \frac{s_0}{\rho \widetilde{s}_m + (1-\rho)s_0}$ with \widetilde{s}_m non random?
- Lemma of van de Geer: For all positive functions t, u and all integer k > 2

$$P\left(\left|\ln\left(\frac{s_0+t}{s_0+u}\right)\right|^k\right) \le \frac{k!}{2} \left(\frac{9\|\sqrt{t}-\sqrt{u}\|_{\lambda,2}^2}{8}\right) 2^{k-2}.$$

Apparition of Jensen-Kullback-Leibler:

$$P^{\otimes_n}\left(\left|\frac{1}{\rho}\ln\left(\frac{(1-\rho)s_0+\rho t}{(1-\rho)s_0+\rho u}\right)\right|^k\right)\leq \frac{k!}{2}\left(\frac{9d^{2\otimes_n}(t,u)}{8\rho(1-\rho)}\right)\left(\frac{2}{\rho}\right)^{k-2}$$

• Bernstein possible for $-jkl(\widetilde{s}_m)$ with $V=\frac{9d^{2\otimes_n}(s_0,\widetilde{s}_m)}{8\rho(1-\rho)}$ and $b=\frac{2}{\rho}!$

Controf of the supremum

- Simple case: sup f with $f \in \mathcal{F}$ finite and $\forall f \in \mathcal{F}, \psi_f(\lambda) \leq \psi_{\mathcal{F}}(\lambda)$.
- Control by union bound:

$$\mathbb{P}\left\{\sup_{f\in\mathcal{F}}f>x\right\}\leq\sum_{f\in\mathcal{F}}\mathbb{P}\left\{f>x\right\}\leq|\mathcal{F}|e^{-\psi_{\mathcal{F}}^{*}(x)}$$

- Control by conditioning:
- Prop:

$$orall A, \mathbb{E}^A[Z] = rac{\mathbb{E}\left[Z\chi_{\{A\}}
ight]}{\mathbb{P}\{A\}} \leq \Psi\left(\ln\left(rac{1}{\mathbb{P}\{A\}}
ight)
ight) \Rightarrow \mathbb{P}\{Z>\Psi(x)\} \leq e^{-x}$$

• Application to recover the union bound:

• Application to recover the union bound:
$$\mathbb{E}^{A}\left[\sup_{f\in\mathcal{F}}f\right] = \frac{1}{\lambda}\ln\left(e^{\lambda\mathbb{E}^{A}\left[\sup_{f\in\mathcal{F}}f\right]}\right) \leq \frac{1}{\lambda}\ln\left(E^{A}\left[e^{\lambda\sup_{f\in\mathcal{F}}f}\right]\right) \leq \frac{1}{\lambda}\ln\left(\sum_{f\in\mathcal{F}}E^{A}\left[e^{\lambda f}\right]\right)$$
$$\leq \frac{1}{\lambda}\ln\left(\frac{|\mathcal{F}|\psi_{\mathcal{F}}(\lambda)}{\mathbb{P}\{A\}}\right) \leq \psi_{\mathcal{F}}^{\star-}\left(\ln\left(\frac{|\mathcal{F}|}{\mathbb{P}\{A\}}\right)\right)$$

$$\Rightarrow \mathbb{P}\left\{\sup_{f\in\mathcal{F}}f>\psi_{\mathcal{F}}^{\star-}\left(\ln|\mathcal{F}|+x\right)\right\}\leq e^{-x}$$

Much more versatile tool...

Countable family and bracketing entropy

- Using chaining technique, extension possible to countable family (much more technical...)
- **Theorem:** Let \mathcal{F} be a countable family of functions. Assume it exists V and b such that for all $f \in \mathcal{F}$ and all integer $k \ge 2$

$$P^{\otimes_n}(|f|^k) \leq \frac{k!}{2} Vb^{k-2}$$

and for all $\delta>0$, it exists a bracket covering of ${\cal F}$ with brackets $[g^-,g^+]$ such that for all integer $k\geq 2$

$$P^{\otimes_n}(|g^+ - g^-|^k) \leq \frac{k!}{2}\delta^2 b^{k-2}$$

and let $e^{H(\delta)}$ be the cardinality of this covering. It exists an absolute constant $\kappa \leq 27$ such that for $\epsilon \in (0,1]$ and all measurable set A with $\mathbb{P}\{A\} > 0$,

$$\mathbb{E}^{A}\left[\sup_{f\in\mathcal{F}}\nu_{n}^{\otimes_{n}}(f)\right] \leq E + \frac{(1+6\epsilon)\sqrt{V}}{\sqrt{n}}\sqrt{2\ln\left(\frac{1}{\mathbb{P}\{A\}}\right) + \frac{2b}{n}\ln\left(\frac{1}{\mathbb{P}\{A\}}\right)}$$
 with
$$E = \frac{\kappa}{\epsilon}\frac{1}{\sqrt{n}}\int_{0}^{\epsilon\sqrt{V}}\sqrt{H(u)\wedge n}\mathrm{d}u + \frac{2(b+\sigma)}{n}H(\sqrt{V}).$$

Jensen-KL and bracketing entropy

- Control of $\mathbb{E}^A[\sup \nu_n^{\otimes_n}(f)]$ for $f \in \mathcal{F}$ under two assumptions
 - Berstein type assumption: $\exists V$ and b such that for all $f \in \mathcal{F}$ and all integer $k \geq 2$, $P^{\otimes_n}(|f|^k) \leq \frac{k!}{2} V b^{k-2}$.
 - Bracketing entropy assumption on \mathcal{F} : For all $\delta > 0$, it exists a bracketing covering of cardinality $H(\delta)$ such that for all bracket $[g^-, g^+]$ and all integer $k \geq 2$, $P^{\otimes_n}(|g^+ g^-|^k) \leq \frac{k!}{2}\sigma^2b^{k-2}$.
- Lemma of van de Geer: (importance of JKL)

$$P^{\otimes_n}\left(\left|-jkl(s_{m'})+jkl(\widetilde{s}_{m'})\right|^k\right) \leq \frac{k!}{2}\left(\frac{9d^{2\otimes_n}(s_{m'},\widetilde{s}_{m'})}{8\rho(1-\rho)}\right)\left(\frac{2}{\rho}\right)^{k-2}$$

• Natural choice for \mathcal{F} :

$$\{-jkl(s_{m'})+jkl(\widetilde{s}_{m'})|s_{m'}\in S_{m'}(\widetilde{s}_{m'},\sigma)=S_{m'}\cap\{s,d^{\otimes_n}(s,\widetilde{s}_{m'})\leq\sigma\}\}.$$

• Bracketing entropy assumptions on $\mathcal{F} \Rightarrow$ Bracketing entropy assumptions on $S_{m'}(\widetilde{s}_{m'}, \sigma)$ with respect to d^{\otimes_n} .

Assumption (H) and $\sigma_{m'}$

• Let $W_{m'}(\sigma) = \sup_{s_{m'} \in S_{m'}(\widetilde{s}_{m'}, \sigma)} (-jkl(s_{m'}) + jkl(\widetilde{s}_{m'}))$

• Theorem yields with
$$\epsilon = 2\sqrt{2\rho(1-\rho)/3}$$
:

$$\mathbb{E}^A\left[W_{m'}(\sigma)\right] \leq E + \frac{(1+6\epsilon_\rho)3\sigma}{2\sqrt{2\rho(1-\rho)}\sqrt{n}}\sqrt{\ln\left(\frac{1}{\mathbb{P}\{A\}}\right) + \frac{4}{\rho n}\ln\left(\frac{1}{\mathbb{P}\{A\}}\right)}$$

with

with
$$E = \frac{\kappa}{\epsilon_{\rho}} \frac{1}{\sqrt{n}} \int_{0}^{\sigma} \sqrt{H_{[\cdot],d\otimes_{n}}\left(u, S_{m'}(\widetilde{s}_{m'}, \sigma)\right) \wedge n} du + \frac{2\left(\frac{2}{\rho} + \frac{3\sigma}{2\sqrt{2\rho(1-\rho)}}\right)}{n} H_{[\cdot],d\otimes_{n}}\left(\sigma, S_{m'}(\widetilde{s}_{m'}, \sigma)\right)}$$

• Assumption $(H) \Rightarrow \int_{0}^{\sigma} \sqrt{H_{[\cdot],d^{\otimes_n}}(\epsilon,S_m(\widetilde{s}_{m'},\sigma))} d\epsilon \leq \phi_{m'}(\sigma)$

• Implication: $E \leq \left(\frac{\kappa}{\epsilon} + 2\left(\frac{2}{\rho} + \frac{3}{2\sqrt{\rho(1-\rho)}}\right)\frac{\phi_{m'}(\sigma)}{\sqrt{n}\sigma^2}\right)\frac{\phi_{m'}(\sigma)}{\sqrt{n}}$

$$\begin{split} \bullet \text{ Def. of } \sigma_{m'} \text{ and monotony prop. of } \phi_{m'} \colon \frac{\varphi_{m'}(\sigma_{m'})}{\sqrt{n}\sigma_{m'}^2} &= 1 \text{ and } \forall \sigma \geq \sigma_{m'} \\ \mathbb{E}^A \left[W_{m'}(\sigma) \right] \leq \kappa_1'' \frac{\phi_{m'}(\sigma)}{\sqrt{n}} + \frac{\kappa_2''\sigma}{\sqrt{n}} \sqrt{\ln\left(\frac{1}{\mathbb{P}\{A\}}\right)} + \frac{4}{\rho n} \ln\left(\frac{1}{\mathbb{P}\{A\}}\right) \\ \leq \Psi_{m'} \left(\sigma, \ln\left(\frac{1}{\mathbb{P}\{A\}}\right)\right) \end{aligned}$$

Pealing

• $S_{m'}(\widetilde{S}_{m'}, \sigma)$: $\forall \sigma > \sigma_{m'}$

implies

- $\left\|\mathbb{E}^{A}\left[\sup_{s_{-i}\in S_{m}(\widetilde{s}_{-i},\sigma)}\left(\nu_{n}^{\otimes_{n}}(-jkl(s_{m'})+jkl(\widetilde{s}_{m'}))\right)\right]\right\|\leq \Psi_{m'}\left(\sigma,\ln\left(\frac{1}{\mathbb{P}\{A\}}\right)\right)$

• For the deviations: $\forall y_{m'} \geq \sigma_{m'}$,

• Choice of \widetilde{s}_m : $\widetilde{s}_m = \operatorname{argmin}_{s \in S_m} d^{2 \otimes_n}(s_0, s_m)$.

• As $\sigma \mapsto \Psi_{m'}(\sigma,\cdot)/\sigma$ is decreasing, the *pealing lemma* applies and

 $\forall y_{m'} \geq \sigma_{m'}, \ \mathbb{E}^{A} \left[\sup_{s_{m'} \in S_{m'}} \frac{\nu_{n}^{\otimes n}(-jkl(s_{m'}) + jkl(\widetilde{s}_{m'}))}{y_{m'}^{2} + d^{2\otimes n}(\widetilde{s}_{m'}, s_{m'})} \right] \leq 4 \frac{\Psi_{m'}\left(y_{m'}, \ln\left(\frac{1}{\mathbb{P}\{A\}}\right)\right)}{v^{2}}.$

 $\mathbb{P}\left\{\sup_{s_{m'} \in S_{m'}} \frac{\nu_n^{\otimes n}(-jkl(s_{m'}) + jkl(\widetilde{s}_{m'}))}{y_{m'}^2 + d^{2\otimes n}(\widetilde{s}_{m'}, s_{m'})} > \kappa_1' \frac{\sigma_{m'}}{y_{m'}} + 4\kappa_2'' \sqrt{\frac{x}{ny_{m'}^2}} + \frac{16}{\rho} \frac{x}{ny_{m'}^2}\right\} \leq e^{-x}$

 $\leq \kappa_1' \frac{\sigma_{m'}}{y_{m'}} + 4\kappa_2'' \sqrt{\frac{\ln\left(\frac{1}{\mathbb{P}\{A\}}\right)}{nv_{--'}} + \frac{16}{2} \frac{\ln\left(\frac{1}{\mathbb{P}\{A\}}\right)}{nv_{--'}}}$

Bound summary

- $\bullet -\nu_n^{\otimes_n}(jkl(\widehat{s}_{m'})) = --\nu_n^{\otimes_n}(jkl(\widetilde{s}_{m'})) + \nu_n^{\otimes_n}(-jkl(\widehat{s}_{m'}) + jkl(\widetilde{s}_{m'}))$
- For the first term, $-\nu_n^{\otimes_n}(jkl(\widetilde{s}_{m'}))$:
 - Bernstein with $V=rac{9d^{2\otimes_n}(s_0,s_{m'})}{8
 ho(1ho)}$ and $b=rac{2}{
 ho}$

$$\mathbb{P}\left\{-\nu_n^{\otimes_n}(jkl(\widetilde{s}_{m'})) > \sqrt{\frac{9d^{2\otimes_n}(s_0,\widetilde{s}_{m'})}{4\rho(1-\rho)}}\sqrt{\frac{x}{n}} + \frac{2}{\rho}\frac{x}{n}\right\} \leq e^{-x}$$

• Renormalization by $y_{m'}^2 + \kappa_0' d^{2 \otimes_n}(s_0, \widetilde{s}_{m'}) \ge 2 y_{m'} \sqrt{\kappa_0'} \sqrt{d^{2 \otimes_n}(s_0, \widetilde{s}_m)}$:

$$\mathbb{P}\left\{\frac{-\nu_n^{\otimes_n}(jkl(\widetilde{s}_{m'}))}{\nu_m^2 + \kappa_0'd^{2\otimes_n}(s_0,\widetilde{s}_{m'})} > \sqrt{\frac{9}{16\rho(1-\rho)\kappa_0'}}\sqrt{\frac{x}{ny_{m'}^2}} + \frac{2}{\rho}\frac{x}{ny_{m'}^2}\right\} \leq e^{-x}.$$

- For the second term, $\nu_n^{\otimes_n}(-jkl(\widehat{s}_{m'})+jkl(\widetilde{s}_{m'}))$:
 - For the deviations: $\forall y_{m'} \geq \sigma_{m'}$,

$$\mathbb{P}\left\{\sup_{s_{m'} \in S_{m'}} \frac{\nu_{n}^{\otimes_{n}}(-jkl(s_{m'}) + jkl(\widetilde{s}_{m'}))}{y_{m'}^{2} + d^{2\otimes_{n}}(\widetilde{s}_{m'}, s_{m'})} > \kappa_{1}' \frac{\sigma_{m'}}{y_{m'}} + 4\kappa_{2}'' \sqrt{\frac{x}{ny_{m'}^{2}}} + \frac{16}{\rho} \frac{x}{ny_{m'}^{2}}\right\} \leq e^{-x}$$

Recombination

- Previous bounds:
 - For the first term, $-\nu_n^{\otimes_n}(jkl(\widetilde{s}_{m'}))$:

$$\mathbb{P}\left\{\frac{-\nu_n^{\otimes_n}(jkl(\widetilde{s}_{m'}))}{y_m^2+\kappa_0'd^{2\otimes_n}(s_0,\widetilde{s}_{m'})}>\sqrt{\frac{9}{16\rho(1-\rho)\kappa_0'}}\sqrt{\frac{x}{ny_{m'}^2}}+\frac{2}{\rho}\frac{x}{ny_{m'}^2}\right\}\leq e^{-x}.$$

• For the second term, $\nu_n^{\otimes_n}(-jkl(\widehat{s}_{m'})+jkl(\widetilde{s}_{m'}))$: $\forall y_{m'} \geq \sigma_{m'}$,

$$\mathbb{P}\left\{\sup_{s_{m'}\in S_{m'}}\frac{\nu_n^{\otimes_n}(-jkl(s_{m'})+jkl(\widetilde{s}_{m'}))}{y_{m'}^2+d^{2\otimes_n}(\widetilde{s}_{m'},s_{m'})}>\kappa_1'\frac{\sigma_{m'}}{y_{m'}}+4\kappa_2''\sqrt{\frac{x}{ny_{m'}^2}}+\frac{16}{\rho}\frac{x}{ny_{m'}^2}\right\}\leq e^{-x}$$

- $\forall s_{m'} \in S_{m'}$, $d^{2\otimes_n}(s_0, \widetilde{s}_{m'}) \leq d^{2\otimes_n}(s_0, s_{m'})$ and for $\kappa'_0 > 4$, $d^{2\otimes_n}(\widetilde{s}_{m'}, s_{m'}) < \kappa'_0 d^{2\otimes_n}(s_0, s_{m'})$.
- Simple union bounds yields

$$\mathbb{P}\left\{\sup_{s_{m'} \in S_{m'}} \frac{-\nu_n^{\otimes_n}(jkl(s_{m'}))}{y_{m'}^2 + \kappa_0' d^{2\otimes_n}(s_0, s_{m'})} > \kappa_1' \frac{\sigma_{m'}}{y_{m'}} + \kappa_2' \sqrt{\frac{x}{ny_{m'}^2}} + \frac{18}{\rho} \frac{x}{ny_{m'}^2}\right\} \le 2e^{-x}$$

• Bound valid for $-\nu_n^{\otimes_n}(jkl(\hat{s}_{m'}))$ i.e. the announced lemma...

Back to the spatialized GMM

- Computation of an upper bound of $H_{[\cdot],d^{\otimes_n}}(\epsilon, S_m(s_m, \sigma))$ for the spatialized GMM (cf Maugis and Michel):
 - Bound on an upper bound of the entropy: $H_{[\cdot],d^{\text{sup}}}(\epsilon, S_m)$ where $d^{\text{sup}} = \sqrt{d^2 \sup_{s} d^2(s(\cdot|x), s'(\cdot|x))}$,
 - Result valid for every structure ($[\mu L D A]^{K}$) and every partition:

$$H_{[\cdot],d^{\sup}}(\epsilon,S_m) \leq \dim(S_m)(C+\ln\frac{1}{\epsilon})$$

with an (almost) explicit common C (use of a lemma from Szarek for the entropy of SO(n) without explicit constant) and $\dim(S_m) = |\mathcal{P}|(K-1) + \dim([\mu L D A]^K)$.

- Consequence: $\mathfrak{D}_m \leq \kappa' \left(C' + \frac{1}{2} \left(\ln \left(\frac{n}{C' \dim(S_m)} \right) \right)_+ \right) \dim(S_m)$.
- Collection coding with $x_m \le \kappa'' |\mathcal{P}| \le \frac{\kappa''}{\kappa 1} \dim(S_m)$.
- Condition on the penalty:

$$\operatorname{pen}(m) \geq \left(\kappa' \left(C' + \frac{1}{2} \left(\ln \left(\frac{n}{C' \operatorname{\mathsf{dim}}(S_m)} \right) \right)_+ \right) + \frac{\kappa''}{K - 1} \right) \operatorname{\mathsf{dim}}(S_m).$$

Conditional density estimators

- Much work for only one example of model collection: Spatialized GMM!
- Generality of Theorem (luckily) allows more cases!
- Conditional density estimators already analyzed:
 - Covariate Partition based (piecewise constant with respect to X) estimators with density conditioned to X modeled by
 - a GMM (spat. GMM),
 - a piecewise polynomial density.
- Extension to non constant cases:
 - piecewise logistic weights GMM (L. Montuelle),
 - piecewise polynomial on both X and Y.
- For all cases, $pen(m) \propto (\ln n) \dim(S_m)$.
- Non partition based approach possible theoretically but numerical issues.

Conclusion

- Framework:
 - Unsupervised segmentation problem and Spatialized GMM.
 - Penalized maximum likelihood conditional density estimation.
 - Partition based conditional density estimator.

Results:

- Theoretical guaranty for the conditional density estimation problem.
- Applicable to Spatialized GMM (and unsupervised segmentation...)
- Efficient minimization algorithm.

Proof tools:

- Convexification of KL which allows Bernstein type bound,
- Supremum of empirical processes and pealing.

Perspectives:

- Formal link between conditional density estimation and unsupervised segmentation.
- Penalty calibration by slope heuristic.
- Dimension reduction adapted to unsupervised segmentation/classification.
- Enh. Spatialized GMM with piecewise logistic weights (L. Montuelle).

¿Estan perdidos?

• Pueden:

- Pregunctarme en Valparaiso,
- Ir a Viña y ver la misma historia pero con mas aplicaciones y menos detalles matemáticos,
- Ir a Quintay...

Bibliography

- Model selection and (bracketing) entropy:
 - P. Massart (2003). Concentration inequalities and model selection: Ecole d'Eté de Probabilités de Saint-Flour XXXIII.
 - C. Maugis and B. Michel. (2009). A non asymptotic penalized criterion for Gaussian mixture model selection. ESAIM: P&S (2010) (and erratum)
 - S. Cohen and E. Le Pennec (2011)
- Segmentation by penalization:
 - A. Antoniadis, J. Bigot and R. von Sachs (2008). A multiscale approach for statistical characterization of functional images. Journal of Computational and Graphical Statistics, 18(1), 216–237
- Segmentation and model selection:
 - E.D. Kolaczyk, J. Ju and S. Gopal (2005). Multiscale, multigranular statistical image segmentation. Journal of the American Statistical Association, 100, 1358–1369.
 - E.D. Kolaczyk and R.D. Nowak (2004). Multiscale likelihood analysis and complexity penalized estimation. Annals of Statistics, 32, 500–527
- MDL based model selection:
 - A.R. Barron, C. Huang, J. Q. Li and Xi Luo (2008). MDL Principle, Penalized Likelihood, and Statistical Risk. In Feschrift for Jorma Rissanen. Presented to Rissanen Nov. 2007.
- Entropy of SO(n):
 - J. Szarek (1998). Metric entropy of homogeneous spaces. Banach Center Pub., 43, 395-410
- Model selection and conditional density:
 - E. Brunel, C. Lacour and F. Comte (2007). Adaptive estimation of the conditional density in presence of censoring. Sankhya, 69(4), 734–763