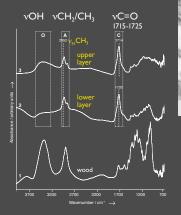
Hyperspectral Image Segmentation by Spatialized Gaussian Mixtures and Model Selection

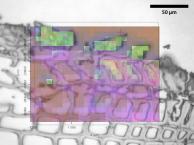
E. Le Pennec (SELECT - Inria Saclay / Université Paris Sud) and S. Cohen (IPANEMA - CNRS / Soleil)

> Marseille 25 November 2011

A. Stradivari (1644 - 1737)

Provigny (1716)





4 / 8 cm⁻¹ resolution 64 / 128 scans typ. I min/sp, 400sp

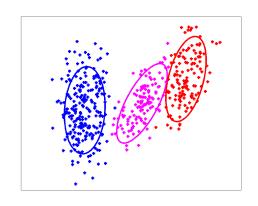
very simple process no protein (amide I, amide II) no gums, nor waxes

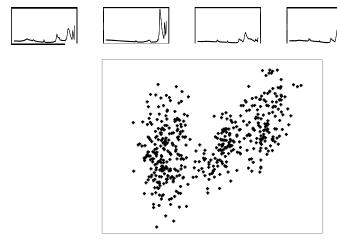
@SOLEIL: SMIS

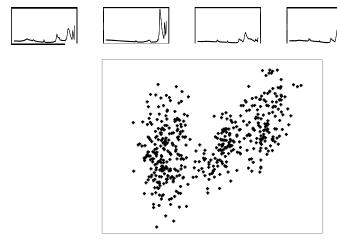
J.-P. Echard, L. Bertrand, A. von Bohlen, A.-S. Le Hô, C. Paris, L. Bellot-Gurlet, B. Soulier, A. Lattuati-Derieux, S. Thao, L. Robinet, B. Lavédrine, and S. Vaiedelich. *Angew. Chem. Int. Ed.*, 49(1), 197-201, 2010.

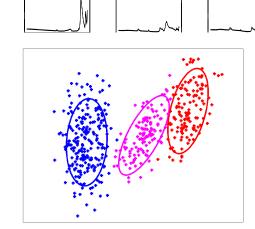
Hyperspectral Image Segmentation

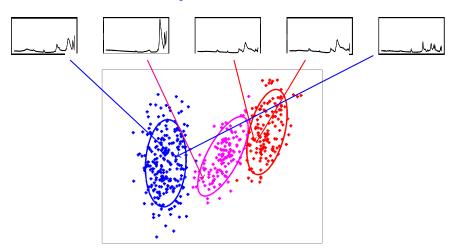
- Data :
 - ullet image of size N between ~ 1000 and ~ 100000 pixels,
 - ullet spectrums ${\cal S}$ of ~ 1024 points,
 - very good spatial resolution,
 - ability to measure a lot of spectrums per minute,
- Immediate goal :
 - automatic image segmentation,
 - without human intervention,
 - help to data analysis.
- Advanced goal :
 - automatic classification,
 - interpretation...



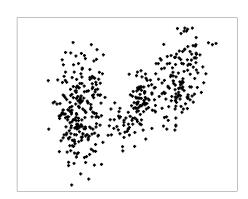


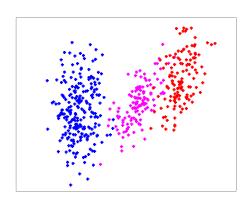


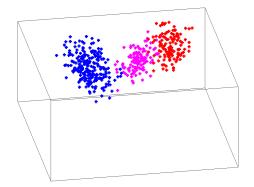


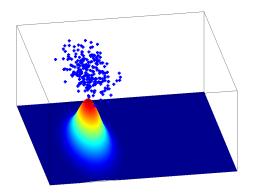


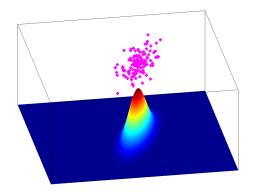
- Representation: mapping between spectrums and points in a large dimension space.
- Spectral method.

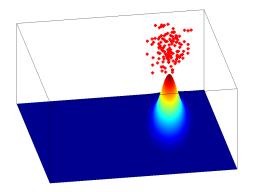


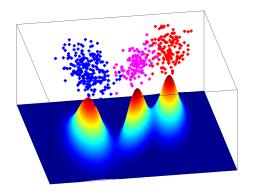


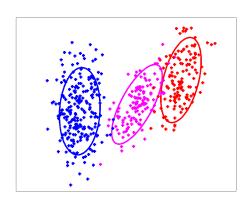


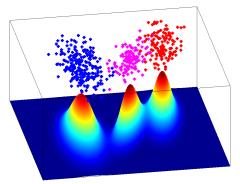






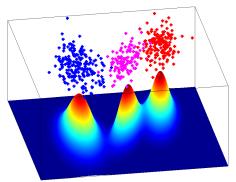






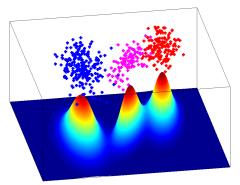
- Model : Gaussian Mixture with K classes.
- Mixture density :

$$s_{K,\pi,\mu,\Sigma}(\mathcal{S}) = \sum_{k=1}^{K} \pi_k \frac{1}{\sqrt{(2\pi)^d |\Sigma_k|}} e^{-\frac{1}{2}(\mathcal{S} - \mu_k)^t \Sigma_k^{-1}(\mathcal{S} - \mu_k)}$$
$$= \sum_{k=1}^{K} \pi_k \mathcal{N}_{\mu_k,\Sigma_k}(\mathcal{S})$$



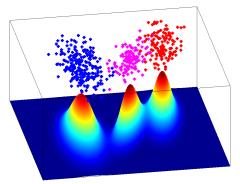
- Model : Gaussian Mixture with K classes.
- Mixture density :

$$\begin{split} s_{\mathcal{K},\pi,\mu,\Sigma}(\mathcal{S}) &= \sum_{k=1}^K \pi_k \frac{1}{\sqrt{(2\pi)^d |\Sigma_k|}} e^{-\frac{1}{2}(\mathcal{S} - \mu_k)^t \Sigma_k^{-1}(\mathcal{S} - \mu_k)} \\ &= \sum_{k=1}^K \pi_k \mathcal{N}_{\mu_k,\Sigma_k}(\mathcal{S}) \end{split}$$



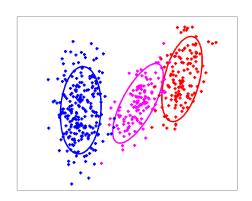
- Model : Gaussian Mixture with K classes.
- Mixture density:

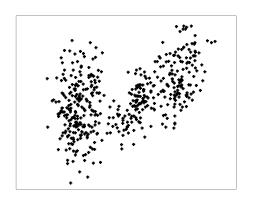
$$\begin{split} s_{\mathcal{K},\pi,\mu,\Sigma}(\mathcal{S}) &= \sum_{k=1}^K \pi_k \frac{1}{\sqrt{(2\pi)^d |\Sigma_k|}} e^{-\frac{1}{2}(\mathcal{S} - \mu_k)^t \Sigma_k^{-1}(\mathcal{S} - \mu_k)} \\ &= \sum_{k=1}^K \pi_k \mathcal{N}_{\mu_k,\Sigma_k}(\mathcal{S}) \end{split}$$

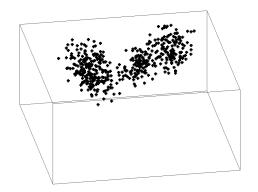


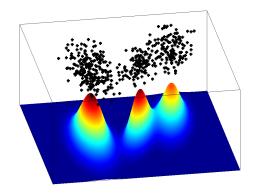
- Model : Gaussian Mixture with K classes.
- Mixture density :

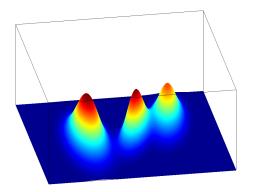
$$s_{K,\pi,\mu,\Sigma}(\mathcal{S}) = \sum_{k=1}^{K} \pi_k \frac{1}{\sqrt{(2\pi)^d |\Sigma_k|}} e^{-\frac{1}{2}(\mathcal{S} - \mu_k)^t \Sigma_k^{-1}(\mathcal{S} - \mu_k)}$$
$$= \sum_{k=1}^{K} \pi_k \mathcal{N}_{\mu_k,\Sigma_k}(\mathcal{S})$$

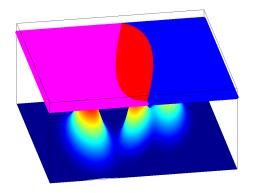


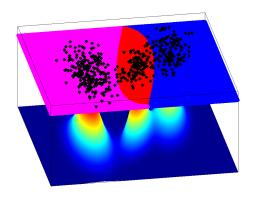


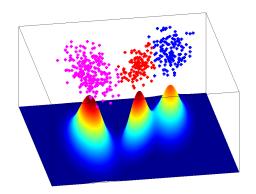


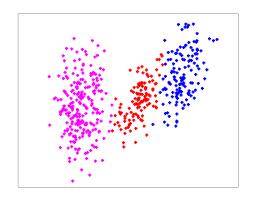


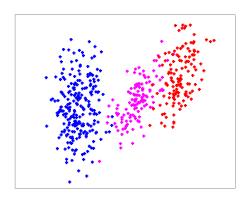


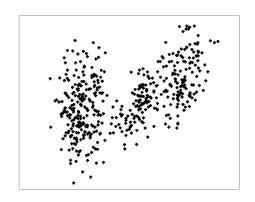




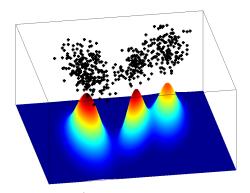








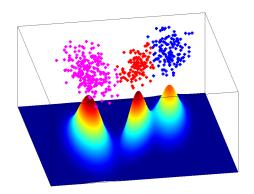
"Statistical" Estimation



ullet Estimation of π_k , $\widehat{\mu_k}$ and $\widehat{\Sigma_k}$ by maximum likelihood :

$$(\widehat{\pi_k}, \widehat{\mu_k}, \widehat{\Sigma_k}) = \operatorname{argmax} \sum_{i=1}^N \log s_{K,(\pi_k,\mu_k,\Sigma_k)}(S_i)$$

"Statistical" Estimation



• Estimation of π_k , $\widehat{\mu_k}$ and $\widehat{\Sigma_k}$ by maximum likelihood :

$$(\widehat{\pi_k}, \widehat{\mu_k}, \widehat{\Sigma_k}) = \operatorname{argmax} \sum_{i=1}^N \log s_{K,(\pi_k,\mu_k,\Sigma_k)}(S_i)$$

ullet Estimation of $\widehat{k}(\mathcal{S})$ by maximum a posteriori (MAP) :

$$\widehat{k}(\mathcal{S}) = \operatorname{argmax} \widehat{\pi_k} \mathcal{N}_{\mu_k, \Sigma_k}(\mathcal{S})$$

Gaussian Mixture Modelization

- ullet Stochastic modelization of the spectrums ${\mathcal S}$:
 - existence of K classes of spectrums,
 - proportion π_k for each class $(\sum_{k=1}^K \pi_k = 1)$,
 - Gaussian law $\mathcal{N}_{\mu_k, \Sigma_k}$ on each class (strong assumption!)
- Density s_0 of S close to

$$s(\mathcal{S}) = \sum_{k=1}^{K} \pi_k \, \mathcal{N}_{\mu_k, \Sigma_k}(\mathcal{S}).$$

- Goal : estimate all parameters K, π_k , μ_k , Σ_k from the data.
- Why?: give possibility to assign a class to each observation by MAP

$$\widehat{k}(\mathcal{S}) = \operatorname{argmax} \pi_k \mathcal{N}_{\mu_k, \Sigma_k}(\mathcal{S})$$

Result in term of density estimation...

Gaussian Mixture Model

- $\bullet \ \, \text{Density s_0 of \mathcal{S} close to $s_m(\mathcal{S})$} = \sum_{k=1}^K \pi_k \, \mathcal{N}_{\mu_k, \Sigma_k}(\mathcal{S}).$
- Model $S_m = \{s_m\}$:
 - choice of a number of K,
 - choice of a structure for the means μ_k and the covariance matrices $\Sigma_k = L_k D_k A_k D_k'$
- Model $[\mu L D A]^K$: constraints (known, common or free values...) on the means μ_k , the volumes L_k , the diagonalization bases D_k and the eigenvalues A_k .
- Model S_m : parametric model of dimension $(K-1) + \dim([\mu L D A]^K)$ in a space of dimension p.
- Estimation by maximum likelihood of the parameters :
 - for each class, the mean μ_k and the covariance matrix $\Sigma_k = L_k D_k A_k D_k'$
 - the mixing proportions π_k .
- Classical technique available : EM Algorithm.

Maximum Likelihood and MM

"Maximum" likelihood for a given K:

$$(\widehat{\pi}_{k}, \widehat{\mu}_{k}, \widehat{\Sigma}_{k}) = \operatorname{argmin} \sum_{i=1}^{N} - \ln \left(\sum_{k=1}^{K} \pi_{k} \, \mathcal{N}_{\mu_{k}, \Sigma_{k}}(\mathcal{S}_{i}) \right)$$
$$= \operatorname{argmin} L(\pi, \mu, \Sigma)$$

- Function L rather complex!
- Iterative algorithm (MM) :
 - Current estimate : $(\pi^{(n)}, \mu^{(n)}, \Sigma^{(n)})$,
 - Construction of a Majorization $L^{(n)}$ of L such that

$$L^{(n)}(\pi^{(n)}, \mu^{(n)}, \Sigma^{(n)}) = L(\pi^{(n)}, \mu^{(n)}, \Sigma^{(n)}).$$

and $L^{(n)}$ easy to minimize.

Computation of a Minimizer

$$(\pi^{(n+1)}, \mu^{(n+1)}, \Sigma^{(n+1)}) = \operatorname{argmin} L^{(n)}(\pi, \mu, \Sigma)$$

- Very generic methodology...
- Minimization can be replaced by a diminution...

Maximum Likelihood and EM

Back to L:

$$L(\pi, \mu, \Sigma) = \sum_{i=1}^{N} -\ln\left(\sum_{k=1}^{K} \pi_{k} \mathcal{N}_{\mu_{k}, \Sigma_{k}}(\mathcal{S}_{i})\right) = \sum_{i=1}^{n} L^{i}(\pi, \mu, \Sigma)$$

- EM : specific case of MM for this type of mixture,
 - (Conditional) Expectancy : at step n, we let

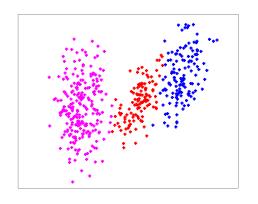
$$P_{k}^{i,(n)} = P\left(k_{i} = k \middle| S_{i}, \pi^{(n)}, \mu^{(n)}, \Sigma^{(n)}\right) = \frac{\pi_{k}^{(n)} \mathcal{N}_{\mu_{k}^{(n)}, \Sigma_{k}^{(n)}}(S_{i})}{\sum_{k'=1}^{K} \pi_{k'}^{(n)} \mathcal{N}_{\mu_{k'}^{(n)}, \Sigma_{k'}^{(n)}}(S_{i})}$$

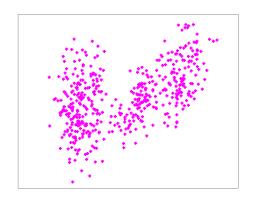
and
$$L^{i,(n)}(\pi,\mu,\Sigma) = -\sum_{i=1}^{n} P_{k}^{i,(n)} \ln (\pi_{k} \mathcal{N}_{\mu_{k},\Sigma_{k}}(\mathcal{S}_{i}))$$

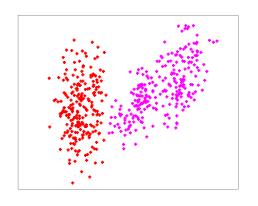
- Kullback : $L^i < L^{i,(n)} + \operatorname{Cst}^{i,(n)}$ with equality at $(\pi^{(n)}, \mu^{(n)}, \Sigma^{(n)})$.
- Bonus :
- Separability of $L^{i,(n)}$ in π and (μ, Σ) :

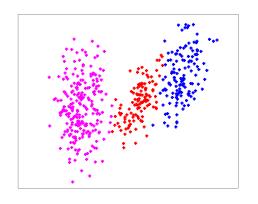
$$L^{i,(n)}(\pi,\mu,\Sigma) = -\sum_{k=1}^K P_k^{i,(n)} \ln \left(\mathcal{N}_{\mu_k,\Sigma_k}(\mathcal{S}_i)\right) - \sum_{k=1}^n P_k^{i,(n)} \ln \left(\pi_k\right)$$

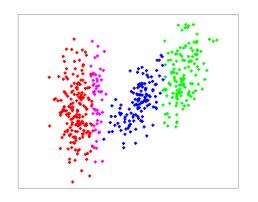
• Close formulas for the Minimization of $L^{(n)}$ in π and (μ, Σ) !

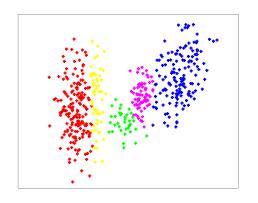


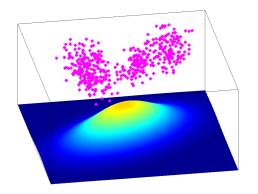


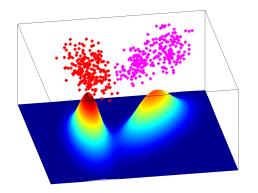


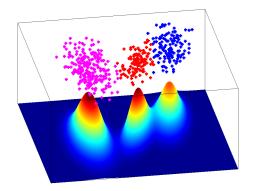


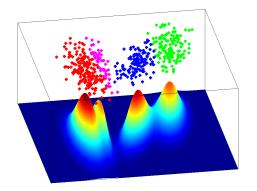


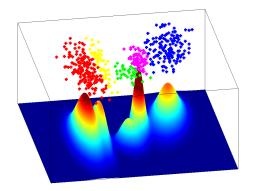


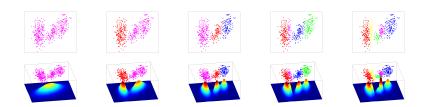


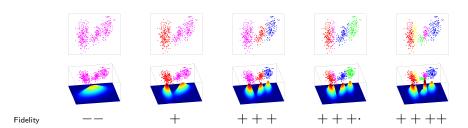


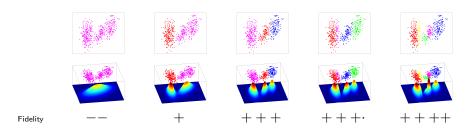




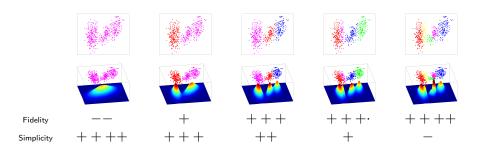




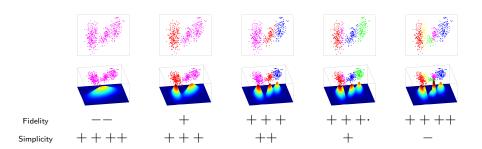




 Tough question for which the likelihood (the fidelity) is not sufficient!



 Tough question for which the likelihood (the fidelity) is not sufficient!



- Tough question for which the likelihood (the fidelity) is not sufficient!
- How to take into account the model complexity?

Ockham's Razor

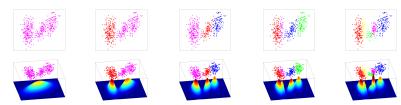
Ockham's Razor

entities must not be multiplied beyond necessity William of Ockham (\sim 1285 - 1347)

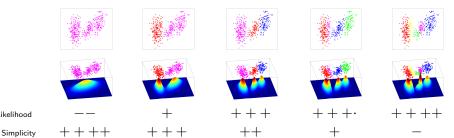
Ockham's Razor

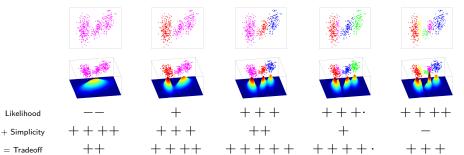
entities must not be multiplied beyond necessity William of Ockham (~ 1285 - 1347)

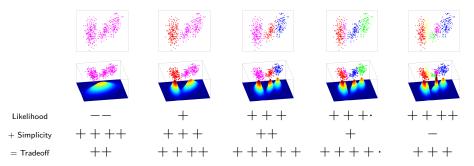
- Ockham's Razor (simplicity principle): one should not add hypotheses, if the current ones are already sufficient!
- Balance between observation explanation power and simplicity.



Likelihood

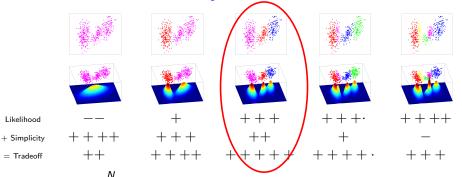






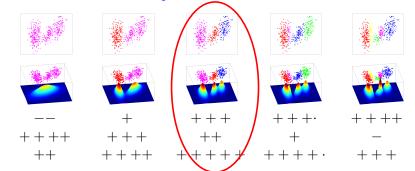
- Likelihood : $\sum_{i=1}^{N} \log \hat{s}_{K}(X_{i})$.
- Simplicity : $-\lambda \mathsf{Dim}(S_K)$ (a lot of theory behind that).
- Penalized estimator :

$$\operatorname{argmin} - \underbrace{\sum_{i=1}^{N} \log \hat{s}_{K}(X_{i})}_{\text{Likelihood}} + \lambda \operatorname{Dim}(S_{K})$$



- Likelihood : $\sum_{i=1}^{N} \log \hat{s}_{K}(X_{i})$.
- Simplicity : $-\lambda \text{Dim}(S_K)$ (a lot of theory behind that).
- Penalized estimator :

$$\operatorname{argmin} - \underbrace{\sum_{i=1}^{N} \log \hat{s}_{K}(X_{i})}_{\text{Likelihood}} + \underbrace{\lambda \text{Dim}(S_{K})}_{\text{Penalty}}$$



- Likelihood : $\sum \log \hat{s}_K(X_i)$.
- Simplicity : $-\lambda \text{Dim}(S_K)$ (a lot of theory behind that).
- Penalized estimator :

 $\begin{array}{l} {\sf Likelihood} \\ + {\sf Simplicity} \\ = {\sf Tradeoff} \end{array}$

$$\operatorname{argmin} - \underbrace{\sum_{i=1}^{N} \log \hat{s}_{K}(X_{i})}_{\text{Likelihood}} + \lambda \mathsf{Dim}(S_{K})$$

ullet Optimization in K by exhaustive exploration!

Methodology

Methodology

Methodology

Methodology Estimation Classification

Methodology Estimation Classification Selection

Model Selection

- How to select the model S_m :
 - the number of classes K,
 - the model $[\mu L D A]^K$?
- Penalized selection principle :
 - choice of model collection $S_m = \{s_m\}$ with $m \in S$,
 - ullet estimation by maximum likelihood of a density s_m for each model S_m ,
 - selection of a model \widehat{m} by

$$\widehat{m} = \operatorname{argmin} - \ln(\widehat{s}_m) + \operatorname{pen}(m).$$

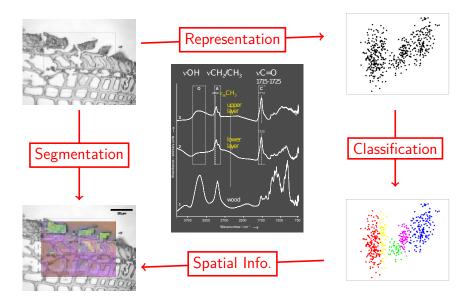
with $pen(m) = \kappa(ln(n)) \dim(S_m)$ (intrinsic dimension of S_m),

- Results (Birgé, Massart, Celeux, Maugis, Michel...) :
 - ullet theoretical for the density estimation : for κ large enough,

$$\mathbb{E}\left[d^2(s_0,\widehat{s}_{\widehat{m}})\right] \leq C\inf_{m \in \mathcal{S}}\left(\inf_{s_m \in S_m} \mathsf{KL}(s_0,s_m) + \frac{\mathrm{pen}(m)}{n}\right) + \frac{C'}{n}.$$

- numerical for unsupervised classification (\neq segmentation),
- classification consistency if $\ln \ln(n)$ in the penalties...

Back to our violins



Segmentation and Gaussian Mixture

- Initial goal : unsupervised segmentation ≠ unsupervised classification.
- Take into account the spatial position x of the spectrums through the mixing proportions (Kolaczyk et al): conditional density model

$$s(\mathcal{S}|x) = \sum_{k=1}^{K} \pi_k(x) \mathcal{N}_{\mu_k, \Sigma_k}(\mathcal{S}).$$

- Model mixing parametric and non-parametric setting...
- Estimation from the data :
 - ullet for each class, the mean μ_k and the covariance matrix $\Sigma_k = L_k D_k A_k D_k'$,
 - the mixing proportions $\pi_k(x)$.
- $\pi_k(x)$ function : regularization required.
- Model selection principle...

Gaussian Mixture and Hierarchical Partition

- How to select the model S_m ?:
 - the number of classes K,
 - the model $[\mu LDA]^K$,
 - the mixing proportions structure of $\pi_k(x)$.
- Simple structure : $\pi_k(x) = \sum_{\mathcal{R} \in \mathcal{P}} \pi_k[\mathcal{R}] \chi_{\{x \in \mathcal{R}\}} = \pi_k[\mathcal{R}(x)]$
 - piecewise constant on a hierarchical partition,
 - efficient optimization possible,
 - decent approximation property.

- $\bullet \ \dim(S_m) = |\mathcal{P}|(K-1) + \dim([\mu L D A]^K).$
- Penalty pen $(m) = \kappa \ln(n) \dim(S_m)$ sufficient for
 - a theoretical control in term of conditional density estimation,
 - numerical optimization (EM + dynamic programming).

Conditional Densities

- More general framework : observation of (X_i, Y_i) with X_i independent and Y_i independents with law of density $s_0(y|X_i)$.
- Goal : estimation of $s_0(y|x)$.
- Penalized model selection principle :
 - choice of a model collection $S_m = \{s_m(y|x)\}$ with $m \in S$,
 - ullet estimation by max. likelihood of a cond. dens. \hat{s}_m for each model S_m :

$$\hat{s}_m = \underset{s_m \in S_m}{\operatorname{argmin}} - \sum_{i=1}^N \ln s_m(Y_i|X_i)$$

• With pen(m) suitably design, selection of a model \widehat{m} by

$$\widehat{m} = \underset{m \in \mathcal{S}}{\operatorname{argmin}} - \sum_{i=1}^{N} \ln \widehat{\mathfrak{s}}_{m}(Y_{i}|X_{i}) + \operatorname{pen}(m).$$

Conditional density estimation type result :

$$\mathbb{E}\left[d^2(s_0,\widehat{s}_{\widehat{m}})\right] \leq C\inf_{m \in \mathcal{S}}\left(\inf_{s_m \in S_m} KL(s_0,s_m) + \frac{\mathrm{pen}(m)}{n}\right) + \frac{C'}{n}.$$

Numerical optimization

Penalized Model Selection :

$$\begin{aligned} \underset{K,[\mu LDA]^K,\mu,\Sigma,\mathcal{P},\pi}{\operatorname{argmin}} - \sum_{i=1}^{N} \ln \left(\sum_{k=1}^{K} \pi_{k} [\mathcal{R}(x_{i})] \, \mathcal{N}_{\mu_{k},\Sigma_{k}}(\mathcal{S}_{i}) \right) \\ + \lambda_{0,N} |\mathcal{P}|(K-1) + \lambda_{1,N} \, \text{dim}([\mu LDA]^{K}) \end{aligned}$$

- Optimization on the number of classes *K* and the mean and covariance structure by exhaustive exploration.
- Model selection for a given number of classes K and a given structure $[\mu L D A]^K$:

$$\underset{\mu, \Sigma, \mathcal{P}, \pi}{\operatorname{argmin}} - \sum_{i=1}^{N} \ln \left(\sum_{k=1}^{K} \pi_{k} [\mathcal{R}(\mathsf{x}_{i})] \mathcal{N}_{\mu_{k}, \Sigma_{k}}(\mathcal{S}_{i}) \right) + \lambda_{0, n} |\mathcal{P}| (K-1)$$

- Two tricks :
 - EM Algorithm
 - CART (dynamic programming)

EM Algorithm

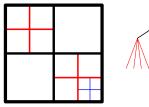
• E Step: with $P_k^{i,(n)} = P(k_i = k | x_i, S_i, \mathcal{P}^{(n)}, \pi^{(n)}, \mu^{(n)}, \Sigma^{(n)})$

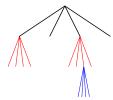
$$\begin{split} &-\sum_{i=1}^{N}\ln\left(\sum_{k=1}^{K}\pi_{k}[\mathcal{R}(x_{i})]\,\mathcal{N}_{\mu_{k},\Sigma_{k}}(\mathcal{S}_{i})\right) + \lambda_{0,n}|\mathcal{P}|(\mathcal{K}-1)\\ &\leq -\sum_{i=1}^{N}\sum_{k=1}^{K}P_{k}^{i,(n)}\ln\left(\pi_{k}[\mathcal{R}(x_{i})]\right) + \lambda_{0,N}|\mathcal{P}|(\mathcal{K}-1)\\ &+\left(-\sum_{i=1}^{N}\sum_{k=1}^{K}P_{k}^{i,(n)}\ln\left(\mathcal{N}_{\mu_{k},\Sigma_{k}}(\mathcal{S}_{i})\right)\right) + \mathsf{Cst}^{(n)} \end{split}$$

with equality at $(\mathcal{P}^{(n)}, \pi^{(n)}, \mu^{(n)}, \Sigma^{(n)})$.

- ullet M Step : Split optimization in (\mathcal{P},π) and (μ,Σ) possible,
 - Optimization in (μ, Σ) : close formulas (classical...).
 - Optimization in (\mathcal{P},π) more interesting!

M Step and CART





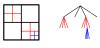
• Optimization in (\mathcal{P}, π) of

$$-\sum_{i=1}^{N}\sum_{k=1}^{K}P_{k}^{i,(n)}\ln\left(\pi_{k}[\mathcal{R}(x_{i})]\right)+\lambda_{0,n}|\mathcal{P}|(K-1)$$

$$=-\sum_{\mathcal{R}\in\mathcal{P}}\left(\sum_{i|x_i\in\mathcal{R}}\sum_{k=1}^K P_k^{i,(n)}\ln\left(\pi_k[\mathcal{R}(x_i)]
ight)+\lambda_{0,N}(K-1)
ight)$$

- Two key properties :
 - For each \mathcal{R} , simple (classical) optimization of $\pi_k[\mathcal{R}]$.
 - ullet Additivity in ${\mathcal R}$ of the cost structure.
- Fast optimization algorithm of CART type (Dynamic programming on tree structure).

CART Optimization



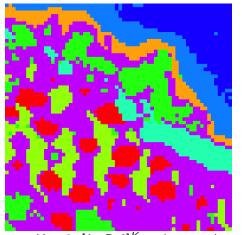
- Aim : compute efficiently $\operatorname*{argmin}_{\mathcal{P}}\sum_{\mathcal{R}\in\mathcal{P}}C[\mathcal{R}]$ where \mathcal{P} belongs to the set of recursive dyadic partitions (associated to quadtree) of limited depth.
- Key observation : the optimal partition $\widehat{\mathcal{P}}[\mathcal{R}]$ of a dyadic square is either this square, $\widehat{\mathcal{P}}[\mathcal{R}] = {\mathcal{R}}$
 - or the union of the opt. part. of its children, $\widehat{\mathcal{P}}[\mathcal{R}] = \cup_{\mathcal{R}' \in \mathsf{Child}[\mathcal{R})} \widehat{\mathcal{P}}[\mathcal{R}']$ with a decision based on

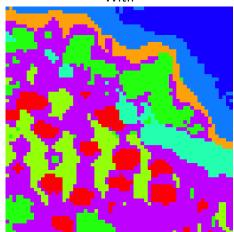
$$C[\mathcal{R}] \leq \sum_{\mathcal{R}' \in \mathsf{Child}(\mathcal{R})} \sum_{\mathcal{R}'' \in \widehat{\mathcal{P}}[\mathcal{R}']} C[\mathcal{R}'']$$

- Algorithm : Precomputation of all $C[\mathcal{R}]$ then recursive determination of $\widehat{\mathcal{P}}[\mathcal{R}]$ and $\widehat{C}[\mathcal{R}] = \sum_{\mathcal{R}'' \in \widehat{\mathcal{P}}} C[\mathcal{R}'']$ (either $C[\mathcal{R}]$ or the sum of the \widehat{C} of its children) with stopping as soon as the square has no child.
- Non recursive version possible.

Unsupervised Segmentation

Numerical result taking into account the spatial modeling :
 Without

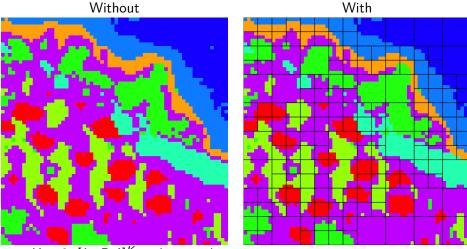




- K = 8, $[L_k D A]^K$ and optimal partition.
- Penalty calibration by slope heuristic.
- Dimension reduction by (not so naive) PCA...

Unsupervised Segmentation

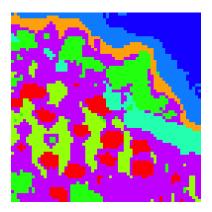
Numerical result taking into account the spatial modeling :



- K = 8, $[L_k D A]^K$ and optimal partition.
- Penalty calibration by slope heuristic.
- Dimension reduction by (not so naive) PCA...

Segmentations

Stradivari's Secret



- Two fine layers of varnish :
 - a first simple oil layer, similar to the painter's one, penetrating mildly the wood,
 - a second layer made from a mixture of oil, pine resin and red pigments.
- Classical technique up to the specific color choice.
- Stradivari's secret was not his varnish!

Conclusion

Framework:

- Unsupervised segmentation problem.
- Spatialized Gaussian Mixture Model
- Penalized maximum likelihood conditional density estimation.

Results

- Theoretical guaranty for the conditional density estimation problem.
- Direct application to the unsupervised segmentation problem.
- Efficient minimization algorithm.
- Unsupervised segmentation algorithm in between spectral methods and spatial ones.

Perspectives

- Formal link between conditional density estimation and unsupervised segmentation.
- Penalty calibration by slope heuristic
- Dimension reduction adapted to unsupervised segmentation/classification.
- Enhanced Spatialized Gaussian Mixture Model with piecewise logistic weights (L. Montuelle).

Conclusion

Framework :

- Unsupervised segmentation problem.
- Spatialized Gaussian Mixture Model
- Penalized maximum likelihood conditional density estimation.

Results :

- Theoretical guaranty for the conditional density estimation problem.
- Direct application to the unsupervised segmentation problem.
- Efficient minimization algorithm.
- Unsupervised segmentation algorithm in between spectral methods and spatial ones.

Perspectives :

- Formal link between conditional density estimation and unsupervised segmentation.
- Penalty calibration by slope heuristic.
- Dimension reduction adapted to unsupervised segmentation/classification.
- Enhanced Spatialized Gaussian Mixture Model with piecewise logistic weights (L. Montuelle).

Theorem

Assumption (H): For every model S_m in the collection \mathcal{S} , there is a non-decreasing function $\phi_m(\delta)$ such that $\delta \mapsto \frac{1}{\delta}\phi_m(\delta)$ is non-increasing on $(0,+\infty)$ and for every $\sigma \in \mathbb{R}^+$ and every $s_m \in S_m$

$$\int_0^\sigma \sqrt{H_{[\cdot],d^{\otimes_n}}(\epsilon,S_m(s_m,\sigma))} d\epsilon \leq \phi_m(\sigma).$$

Assumption (K): There is a family $(x_m)_{m \in \mathcal{M}}$ of non-negative number such that

$$\sum_{m\in\mathcal{M}}e^{-x_m}\leq \Sigma<+\infty$$

Theorem

Assume we observe (X_i, Y_i) with unknown conditional s_0 . Let $\mathcal{S} = (S_m)_{m \in \mathcal{M}}$ a at most countable model collection. Assume Assumptions (H), (K) and (S) hold.

Let \hat{s}_m be a δ -log-likelihood minimizer in S_m :

$$\sum_{i=1}^{N} - \ln(\widehat{s}_m(Y_i|X_i)) \le \inf_{s_m \in S_m} \left(\sum_{i=1}^{N} - \ln(s_m(Y_i|X_i)) \right) + \delta$$

Then for any $\rho \in (0,1)$ and any $C_1 > 1$, there are two constants κ_0 and C_2 depending only on ρ and C_1 such that.

as soon as for every index $m \in \mathcal{M}$ $\operatorname{pen}(m) \ge \kappa \left(n\sigma_m^2 + x_m \right)$ with $\kappa > \kappa_0$

where σ_m is the unique root of $\frac{1}{-}\phi_m(\sigma) = \sqrt{n}\sigma$,

the penalized likelihood estimate $\widehat{s}_{\widehat{m}}$ with \widehat{m} defined by

$$\widehat{m} = \underset{m \in \mathcal{M}}{\operatorname{argmin}} \sum_{i=1}^{N} - \ln(\widehat{s}_m(Y_i|X_i)) + \operatorname{pen}(m)$$

$$\textit{satisfies} \qquad \mathbb{E}\left[\textit{JKL}_{\rho}^{\otimes_n}(s_0, \widehat{s}_{\widehat{m}})\right] \leq C_1 \inf_{S_m \in \mathcal{S}_m} \left(\inf_{s_m \in \mathcal{S}_m} \textit{KL}^{\otimes_n}(s_0, s_m) + \frac{\mathrm{pen}(m)}{n}\right) + C_2 \frac{\Sigma}{N} + \frac{\delta}{N}.$$

Theorem

Oracle type inequality

$$\mathbb{E}\left[JKL_{\rho}^{\otimes_n}(s_0,\widehat{s}_{\widehat{m}})\right] \leq C_1 \inf_{S_m \in \mathcal{S}} \left(\inf_{s_m \in S_m} KL^{\otimes_n}(s_0,s_m) + \frac{\mathrm{pen}(m)}{N}\right) + C_2 \frac{\Sigma}{N} + \frac{\delta}{N}$$

as soon as

$$pen(m) \ge \kappa \left(N\sigma_m^2 + x_m\right)$$
 with $\kappa > \kappa_0$,

where $N\sigma_m^2$ measures the complexity of S_m (entropy) and x_m a coding cost within the collection (Kraft).

- « Distances » used KL^{\otimes_n} and $JKL_{\rho}^{\otimes_n}$: « tensorized » Kullback divergence and Jensen-Kullback divergence.
- $N\sigma_m^2$ linked to the bracketing entropy of S_m measured with respect to the tensorized Hellinger distance $d^{2\otimes n}$.

Kullback, Hellinger and extensions

Typical model selection oracle inequality :

$$\mathbb{E}\left[d^2(s_0,\widehat{s}_{\widehat{m}})\right] \leq C\left(\inf_{m \in \mathcal{S}} \inf_{s_m \in S_m} KL(s_0,s_m) + \frac{\mathrm{pen}(m)}{N}\right) + \frac{C'}{N}.$$

- Density: Hellinger $d^2(s, s')$ (or affinity) (Kolaczyk, Barron, Bigot).
- Better result with JKL(s, s') = 2KL(s, (s' + s)/2) (Massart, van de Geer).
- Jensen-Kullback-Leibler : generalization to $JKL_{\rho}(s,s')=\frac{1}{\rho}KL(s,\rho s'+(1-\rho)s).$
- **Prop.**: For all probability measure $sd\lambda$ and $td\lambda$ and all $\rho \in (0,1)$

$$C_{
ho} d_{\lambda}^2(s,t) \leq \mathit{JKL}_{
ho,\lambda}(s,t) \leq \mathit{KL}_{\lambda}(s,t)$$

• $C_{\rho} \simeq 1/5$ if $\rho \simeq 1/2$.

Conditional densities

- Previous divergences should be adapted to the conditional density framework:
 - Divergence on the product density conditioned by the design (Kolaczyk, Bigot).
 - Tensorization principle and expectancy on a similar phantom design :

$$egin{aligned} \mathit{KL} &
ightarrow \mathit{KL}^{\otimes_n}(s,s') = \mathbb{E}\left[rac{1}{N}\sum_{i=1}^N \mathit{KL}\left(s(\cdot|X_i'),s'(\cdot|X_i')
ight)
ight], \ \ \mathit{JKL}_{
ho} &
ightarrow \mathit{JKL}_{
ho}^{\otimes_n} \quad ext{and} \quad d^2
ightarrow d^{2\otimes_n}. \end{aligned}$$

- Similar approaches but for Hellinger and JKL + Possibility to have result with expectancy on the design.
- Oracle inequality :

$$\mathbb{E}\left[JKL^{\otimes_n}(s_0,\widehat{s}_{\widehat{m}})\right] \leq C\inf_{m \in S} \left(\inf_{s_m \in S_m} KL^{\otimes_n}(s_0,s_m) + \frac{\mathrm{pen}(m)}{N}\right) + \frac{C'}{N}.$$

• Yield the classical density estimation theorem if $s(\cdot|X_i) = s(\cdot)$.

Penalization and complexity

- Penalty linked to the complexity of the model and of the collection.
- Complexity of the model S_m (entropy) :
 - $H_{[\cdot],d^{\otimes_n}}(\epsilon,S_m)$ bracketing entropy with respect to the tensorized Hellinger distance $(d^{\otimes_n}=\sqrt{d^{2\otimes_n}}=\sqrt{\mathbb{E}\left[\frac{1}{N}\sum d^2(s(\cdot|X_i),s'(\cdot|X_i))\right]})$.
 - Assumption (H): for every model S_m , there is a non decreasing function $\phi_m(\delta)$ such that $\delta \mapsto \frac{1}{\delta}\phi_m(\delta)$ is non increasing on $(0,+\infty)$ and such that for all $\sigma \in \mathbb{R}^+$ and all $s_m \in S_m$

$$\int_0^\sigma \sqrt{H_{[\cdot],d^{\otimes n}}\left(\epsilon,S_m(s_m,\sigma)\right)}\,d\epsilon \leq \phi_m(\sigma),$$

- Complexity measured by $N\sigma_m^2$ where σ_m is the unique root of $\frac{1}{\sigma}\phi_m(\sigma)=\sqrt{N}\sigma$.
- Often $N\sigma_m^2 \propto \dim(S_m)$
- Complexity of the collection (coding) :
 - ullet measured by x_m satisfying a Kraft inequality $\sum e^{-x_m} \leq \Sigma < +\infty$
- Classical constraint on the penalty

$$pen(m) \ge \kappa \left(N\sigma_m^2 + x_m\right)$$
 with $\kappa > \kappa_0$.

Spatialized Gaussian Mixture Case

 Computation of an upper bound of the bracketing entropy possible (cf Maugis et Michel) implying:

$$N\sigma_m^2 \le \kappa' \left(C' + \frac{1}{2} \left(\ln \left(\frac{N}{C' \dim(S_m)} \right) \right)_+ \right) \dim(S_m).$$

- Collection coding with $x_m \le \kappa'' |\mathcal{P}| \le \frac{\kappa''}{K-1} \dim(S_m)$.
- Constraint on the penalty :

$$pen(m) \ge \left(\kappa'\left(C' + \frac{1}{2}\left(\ln\left(\frac{N}{C'\dim(S_m)}\right)\right)_+\right) + \frac{\kappa''}{K-1}\right)\dim(S_m)$$
$$\ge \lambda_{0,N}|\mathcal{P}|(K-1) + \lambda_{1,N}\dim([\mu LDA]^K)$$