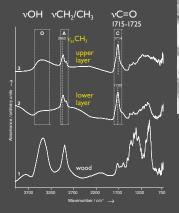
Segmentation non supervisée, mélange de gaussiennes et algorithme E.M.

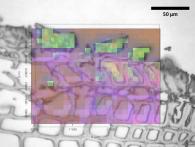
E. Le Pennec (SELECT - INRIA Saclay / Université Paris Sud) et S. Cohen (IPANEMA - Soleil)

> Gdr MOA et MSPC 07 juin 2011

A. Stradivari (1644 - 1737)

Provigny (1716)





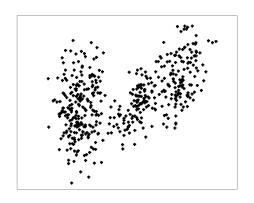
4 / 8 cm⁻¹ resolution 64 / 128 scans typ. I min/sp, 400sp

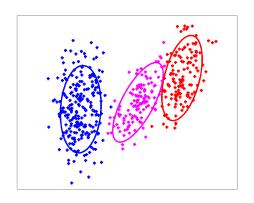
very simple process no protein (amide I, amide II) no gums, nor waxes

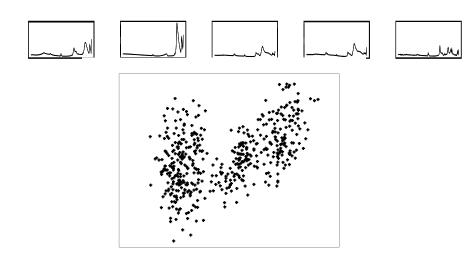
J.-P. Echard, L. Bertrand, A. von Bohlen, A.-S. Le Hô, C. Paris, L. Bellot-Gurlet, B. Soulier, A. Lattuati-Derieux, S. Thao, L. Robinet, B. Lavédrine, and S. Vaiedelich. *Angew. Chem. Int. Ed.*, 49(1), 197-201, 2010.

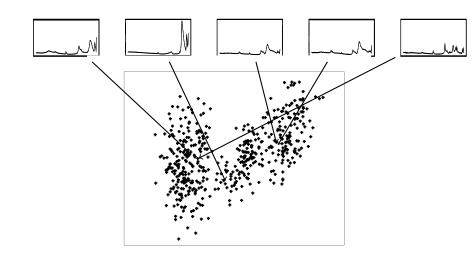
Segmentation d'images hyperspectrales

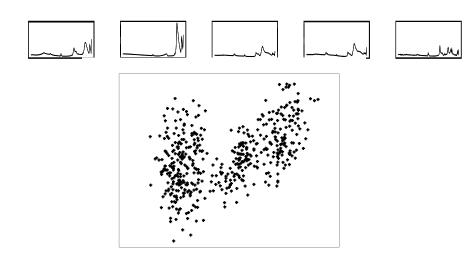
- Données :
 - ullet image de taille N comprise entre ~ 1000 et ~ 100000 pixels,
 - ullet spectres ${\cal S}$ de \sim 1024 points,
 - résolution $\sim 4/8 \text{ cm}^{-1}$ (10 fois meilleure dans le visible),
 - possibilité de mesurer de très nombreux spectres par minute...
- Objectifs immédiats :
 - segmentation automatique de ces images,
 - sans intervention humaine,
 - aide à l'analyse des résultats.
- Objectifs lointains :
 - classification automatique,
 - interprétation...

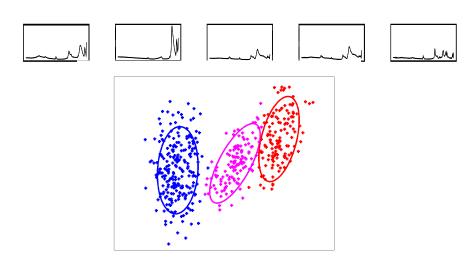


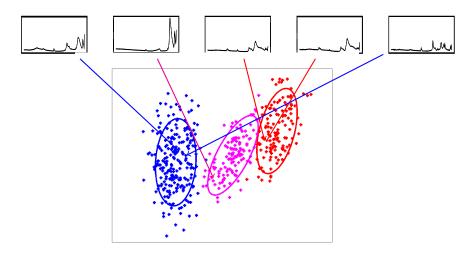




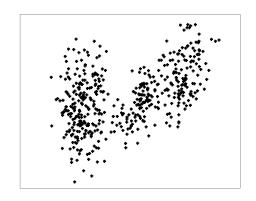


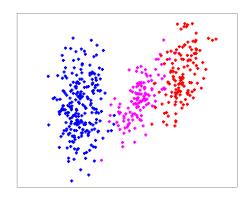


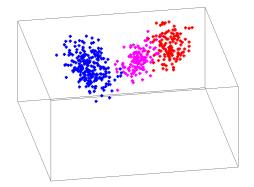


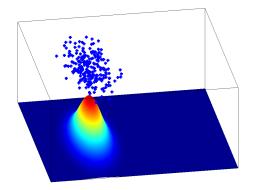


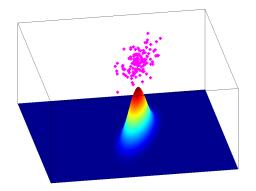
• Représentation : correspondance entre les spectres et des points dans un espace de grande dimension.

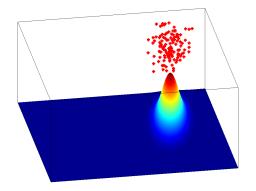


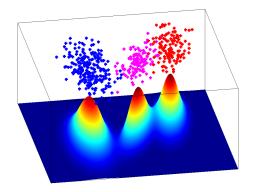


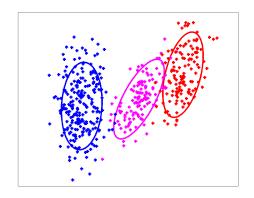


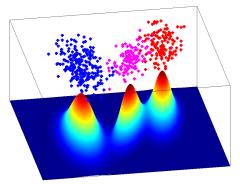






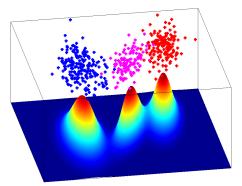






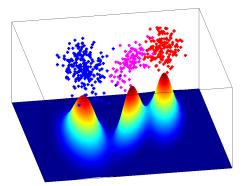
- Modèle : mélange de gaussiennes à K classes.
- Densité du mélange :

$$egin{aligned} s_{K,\pi,\mu,\Sigma}(\mathcal{S}) &= \sum_{k=1}^K \pi_k \, rac{1}{\sqrt{(2\pi)^d |\Sigma_k|}} \mathrm{e}^{-rac{1}{2}(\mathcal{S}-\mu_k)^t \Sigma_k^{-1}(\mathcal{S}-\mu_k)} \ &= \sum_{k=1}^K \pi_k \mathcal{N}_{\mu_k,\Sigma_k}(\mathcal{S}) \end{aligned}$$



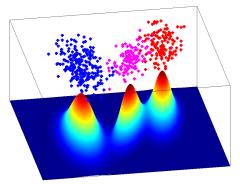
- Modèle : mélange de gaussiennes à K classes.
- Densité du mélange :

$$egin{aligned} s_{K,\pi,\mu,\Sigma}(\mathcal{S}) &= \sum_{k=1}^K \pi_k \, rac{1}{\sqrt{(2\pi)^d |\Sigma_k|}} \mathrm{e}^{-rac{1}{2}(\mathcal{S}-\mu_k)^t \Sigma_k^{-1}(\mathcal{S}-\mu_k)} \ &= \sum_{k=1}^K \pi_k \mathcal{N}_{\mu_k,\Sigma_k}(\mathcal{S}) \end{aligned}$$



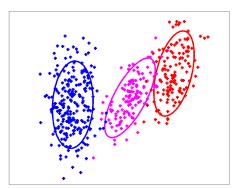
- Modèle : mélange de gaussiennes à K classes.
- Densité du mélange :

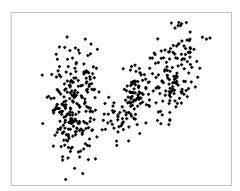
$$egin{aligned} s_{K,\pi,\mu,\Sigma}(\mathcal{S}) &= \sum_{k=1}^K \pi_k \, rac{1}{\sqrt{(2\pi)^d |\Sigma_k|}} \mathrm{e}^{-rac{1}{2}(\mathcal{S}-\mu_k)^t \Sigma_k^{-1}(\mathcal{S}-\mu_k)} \ &= \sum_{k=1}^K \pi_k \mathcal{N}_{\mu_k,\Sigma_k}(\mathcal{S}) \end{aligned}$$

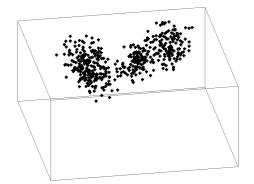


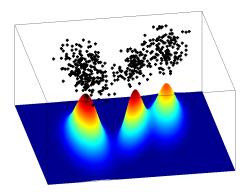
- Modèle : mélange de gaussiennes à K classes.
- Densité du mélange :

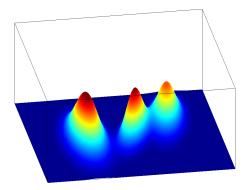
$$egin{aligned} s_{K,\pi,\mu,\Sigma}(\mathcal{S}) &= \sum_{k=1}^K \pi_k \, rac{1}{\sqrt{(2\pi)^d |\Sigma_k|}} \mathrm{e}^{-rac{1}{2}(\mathcal{S}-\mu_k)^t \Sigma_k^{-1}(\mathcal{S}-\mu_k)} \ &= \sum_{k=1}^K \pi_k \mathcal{N}_{\mu_k,\Sigma_k}(\mathcal{S}) \end{aligned}$$

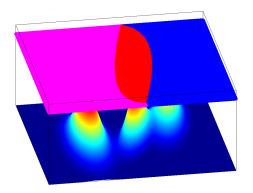


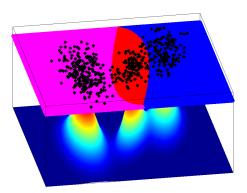


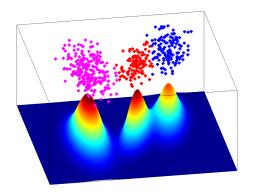


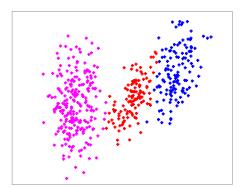


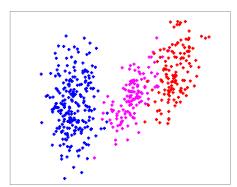


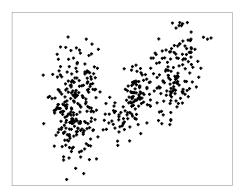




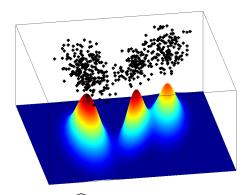








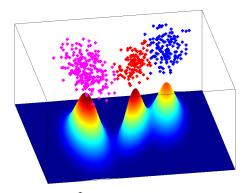
Estimation "statistique"



ullet Estimation des π_k , $\widehat{\mu_k}$ et $\widehat{\Sigma_k}$ par maximum de vraisemblance :

$$(\widehat{\pi_k}, \widehat{\mu_k}, \widehat{\Sigma_k}) = \operatorname{argmax} \sum_{i=1}^N \log s_{K,(\pi_k,\mu_k,\Sigma_k)}(S_i)$$

Estimation "statistique"



• Estimation des π_k , $\widehat{\mu_k}$ et $\widehat{\Sigma_k}$ par maximum de vraisemblance :

$$(\widehat{\pi_k}, \widehat{\mu_k}, \widehat{\Sigma_k}) = \operatorname{argmax} \sum_{i=1}^N \log s_{K,(\pi_k,\mu_k,\Sigma_k)}(S_i)$$

• Estimation de $\widehat{k}(\mathcal{S})$ par maximum à posteriori :

$$\widehat{k}(\mathcal{S}) = \operatorname{argmax} \widehat{\pi_k} \mathcal{N}_{\mu_k, \Sigma_k}(\mathcal{S})$$

Modélisation par un mélange de gaussiennes

- ullet Modélisation stochastique des spectres ${\mathcal S}$:
 - existence de K classes de spectres,
 - proportion π_k pour chacune des classes $(\sum_{k=1}^K \pi_k = 1)$,
 - loi gaussienne $\mathcal{N}_{\mu_k, \Sigma_k}$ sur chacune des classes (restriction forte!)
- Densité s_0 de $\mathcal S$ proche de

$$s(S) = \sum_{k=1}^{K} \pi_k \, \mathcal{N}_{\mu_k, \Sigma_k}(S).$$

- Objectif : estimer les paramètres K, π_k , μ_k , Σ_k à partir des données.
- Pourquoi? : possibilité d'assigner ensuite une classe à une observation par maximum de vraisemblance

$$\widehat{k}(\mathcal{S}) = \operatorname{argmax} \pi_k \mathcal{N}_{\mu_k, \Sigma_k}(\mathcal{S})$$

Modèle de mélange de gaussiennes

- ullet Densité s_0 de ${\mathcal S}$ proche de $s_m({\mathcal S}) = \sum_{k=1}^K \pi_k \, {\mathcal N}_{\mu_k, \Sigma_k}({\mathcal S}).$
- Modèle $S_m = \{s_m\}$:
 - choix d'un nombre de classe K,
 - choix d'une structure pour les moyennes μ_k et les covariances $\Sigma_k = L_k D_k A_k D_k'$
- Modèles [μ L D A]^K: contraintes (valeurs connues, communes ou libres...) sur les moyennes μ_k, les volumes L_k, les bases de diagonalisation D_k et les valeur propres A_k.
- Modèle S_m : modèle paramétrique de dimension $(K-1) + \dim([\mu L D A]^K)$ dans un espace de dimension p.
- Estimation par maximum de vraisemblance des paramètres :
 - pour chaque classe, la moyenne μ_k et la covariance $\Sigma_k = L_k D_k A_k D_k'$
 - les proportions π_k du mélange.
- Technique classique avec algorithme (EM) efficace disponible.

Max. de vraisemblance et MM

• "Maximum" de vraisemblance à K fixé :

$$(\widehat{\pi_k}, \widehat{\mu_k}, \widehat{\Sigma_k}) = \underset{i=1}{\operatorname{argmin}} \sum_{i=1}^{N} - \ln \left(\sum_{k=1}^{K} \pi_k \, \mathcal{N}_{\mu_k, \Sigma_k}(\mathcal{S}_i) \right)$$
$$= \underset{i=1}{\operatorname{argmin}} L(\pi, \mu, \Sigma)$$

- Fonctionnelle L compliquée!
- Algorithme itératif (MM) :
 - Estimée courante : $(\pi^{(n)}, \mu^{(n)}, \Sigma^{(n)})$,
 - Construction d'un Majorant $L^{(n)}$ de L tel que

$$L^{(n)}(\pi^{(n)},\mu^{(n)},\Sigma^{(n)})=L(\pi^{(n)},\mu^{(n)},\Sigma^{(n)}).$$

et $L^{(n)}$ facile à minimiser.

Calcul d'un Minimiseur

$$(\pi^{(n+1)}, \mu^{(n+1)}, \Sigma^{(n+1)}) = \operatorname{argmin} L^{(n)}(\pi, \mu, \Sigma)$$

- Méthode très générique...
- La minimisation peut être remplacée par une simple diminution...

Max. de vraisemblance et EM

• Retour vers L:

$$L(\pi, \mu, \Sigma) = \sum_{i=1}^{N} -\ln\left(\sum_{k=1}^{K} \pi_{k} \mathcal{N}_{\mu_{k}, \Sigma_{k}}(\mathcal{S}_{i})\right) = \sum_{i=1}^{n} L^{i}(\pi, \mu, \Sigma)$$

- EM : cas particulier de MM pour ce type de mélange,
 - Espérance (conditionnelle) : à l'étape n, on pose

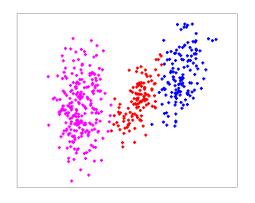
$$P_{k}^{i,(n)} = P\left(k_{i} = k \middle| \mathcal{S}_{i}, \pi^{(n)}, \mu^{(n)}, \Sigma^{(n)}\right) = \frac{\pi_{k}^{(n)} \mathcal{N}_{\mu_{k}^{(n)}, \Sigma_{k}^{(n)}}(\mathcal{S}_{i})}{\sum_{k'=1}^{K} \pi_{k'}^{(n)} \mathcal{N}_{\mu_{k'}^{(n)}, \Sigma_{k'}^{(n)}}(\mathcal{S}_{i})}$$

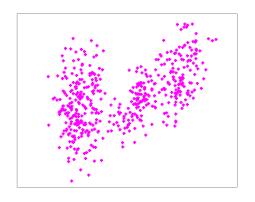
$$\text{et} \quad L^{i,(n)}(\pi,\mu,\Sigma) = -\sum_{k=1}^n P_k^{i,(n)} \ln \left(\pi_k \, \mathcal{N}_{\mu_k,\Sigma_k}(\mathcal{S}_i) \right)$$

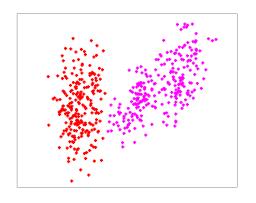
- Kullback : $L^i < L^{i,(n)} + \operatorname{Cst}^{i,(n)}$ avec égalité en $(\pi^{(n)}, \mu^{(n)}, \Sigma^{(n)})$.
- Bonus :
- Séparabilité de $L^{i,(n)}$ en π et (μ, Σ) :

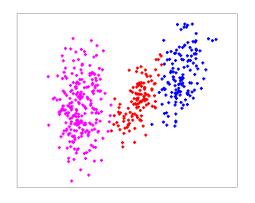
$$L^{i,(n)}(\pi,\mu,\Sigma) = -\sum_{k=1}^K P_k^{i,(n)} \ln \left(\mathcal{N}_{\mu_k,\Sigma_k}(\mathcal{S}_i) \right) - \sum_{k=1}^n P_k^{i,(n)} \ln \left(\pi_k \right)$$

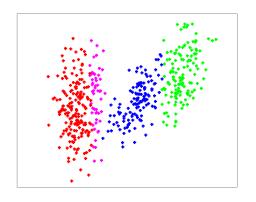
Formules closes pour la Minimisation de $L^{(n)}$ en π et (μ,Σ) !

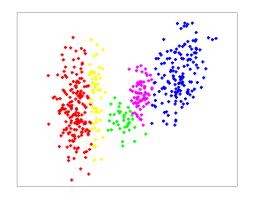


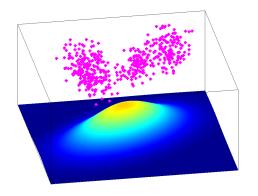


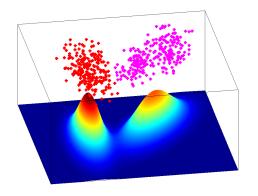


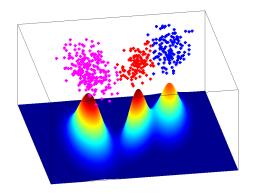


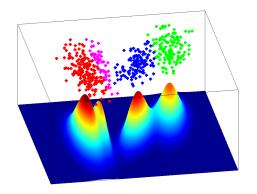


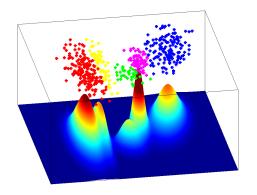


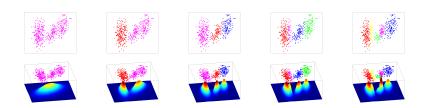


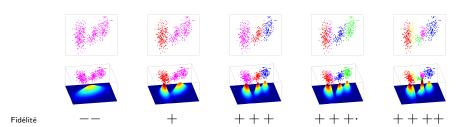


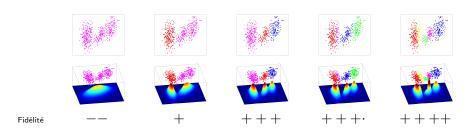




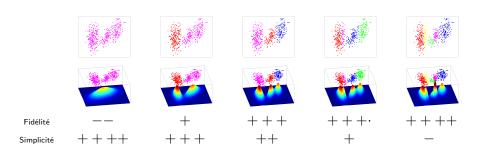




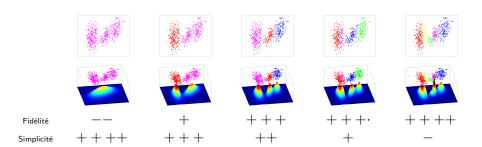




• Question difficile où la vraisemblance (la fidélité) ne suffit pas!



• Question difficile où la vraisemblance (la fidélité) ne suffit pas!



- Question difficile où la vraisemblance (la fidélité) ne suffit pas!
- Prise en compte de la complexité du modèle?

Le rasoir d'Ockham

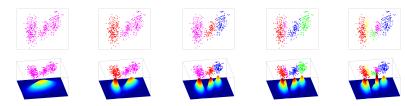
Le rasoir d'Ockham

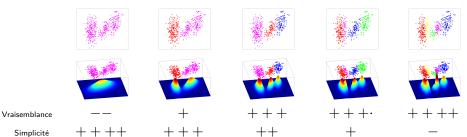
Les multiples ne doivent pas être utilisés sans nécessité. Guillaume d'Ockham (~ 1285 - 1347)

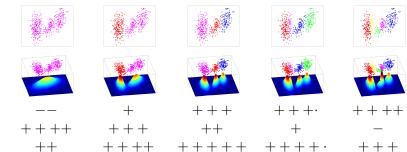
Le rasoir d'Ockham

Les multiples ne doivent pas être utilisés sans nécessité. Guillaume d'Ockham (~ 1285 - 1347)

- Rasoir d'Ockham (principe de simplicité) : il ne faut pas ajouter des hypothèses, si celles utilisées suffisent déjà!
- Compromis entre pouvoir d'explication et simplicité.



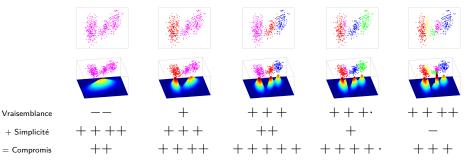




Vraisemblance + Simplicité

- Simplicite

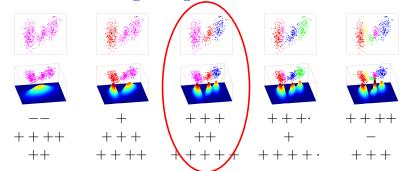
 $= {\sf Compromis}$



- Vraisemblance : $\sum \log \hat{s}_K(X_i)$.
- Simplicité : $-\lambda \text{Dim}(S_K)$ (beaucoup de théorie derrière).
- Estimateur pénalisé :

+ Simplicité = Compromis

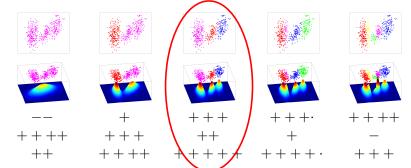
$$\underset{\text{Vraisemblance}}{\operatorname{argmax}} \underbrace{\sum_{i=1}^{N} \log \hat{s}_{K}(X_{i})} - \lambda \mathsf{Dim}(S_{K})$$



- Vraisemblance : $\sum_{i=1}^{N} \log \hat{s}_{K}(X_{i})$.
- Simplicité : $-\lambda \text{Dim}(S_K)$ (beaucoup de théorie derrière).
- Estimateur pénalisé :

Vraisemblance + Simplicité = Compromis

$$\underset{\text{Vraisemblance}}{\operatorname{argmax}} \underbrace{\sum_{i=1}^{N} \log \hat{s}_{K}(X_{i})} - \lambda \mathsf{Dim}(S_{K})$$



- Vraisemblance : $\sum_{i=1}^{N} \log \hat{s}_{K}(X_{i})$.
- Simplicité : $-\lambda \text{Dim}(S_K)$ (beaucoup de théorie derrière).
- Estimateur pénalisé :

Vraisemblance + Simplicité = Compromis

$$\underset{\text{Vraisemblance}}{\operatorname{argmax}} \underbrace{\sum_{i=1}^{N} \log \hat{s}_{K}(X_{i})} - \lambda \mathsf{Dim}(S_{K})$$

Optimisation en K par exploration exhaustive!

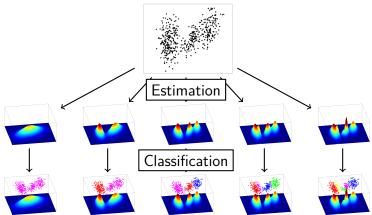
Méthodologie

Méthodologie

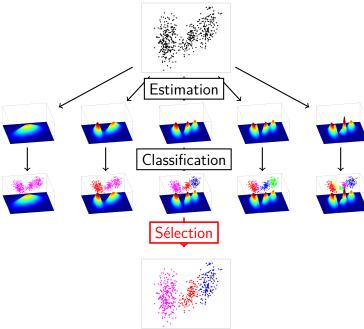
Méthodologie



Méthodologie



Méthodologie



Sélection de modèles

- Comment choisir le "modèle" S_m :
 - le nombre de classe K,
 - le modèle $[\mu LDA]^K$?
- Principe de sélection de modèles par pénalisation :
 - choix d'une collection de modèles $S_m = \{s_m\}$ avec $m \in S$,
 - estimation par maximum de vraisemblance d'une densité \hat{s}_m pour chaque modèle S_m ,
 - sélection d'un modèle \widehat{m} par

$$\widehat{m} = \operatorname{argmin} - \ln(\widehat{s}_m) + \operatorname{pen}(m).$$

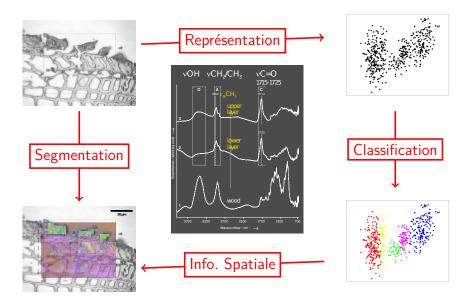
avec pen $(m) = \kappa(\ln(n)) \dim(S_m)$ (dimension intrinsèque de S_m),

- Résultats (Birgé, Massart, Celeux, Maugis, Michel...) :
 - théorique d'estimation du mélange : pour κ assez grand,

$$\mathbb{E}\left[d^2(s_0,\widehat{s}_{\widehat{m}})\right] \leq C\inf_{m \in \mathcal{S}}\left(\inf_{s_m \in \mathcal{S}_m} KL(s_0,s_m) + \frac{\mathrm{pen}(m)}{n}\right) + \frac{C'}{n}.$$

- pratique de classification non supervisée (≠ segmentation),
- consistance de la classification si $\ln \ln(n)$ dans la pénalité...

Retour à nos violons



Segmentation et mélange de gaussiennes

- Objectif initial : segmentation \neq classification non supervisée.
- Prise en compte de la position spatiale x du spectre à travers les proportions du mélange (Kolaczyk et al) : modèle de densités conditionnelles

$$s(\mathcal{S}|x) = \sum_{k=1}^{K} \pi_k(x) \mathcal{N}_{\mu_k, \Sigma_k}(\mathcal{S}).$$

- Modèle mélangeant paramétrique et "non-paramétrique"...
- Estimation à partir des données :
 - pour chaque classe, la moyenne μ_k et la covariance $\Sigma_k = L_k D_k A_k D_k'$,
 - de la fonction de mélange $\pi_k(x)$.
- $\pi_k(x)$ fonction : régularisation nécessaire.
- Principe de sélection de modèles...

Mélange de gaussiennes et partition hiérarchique

- Comment choisir le "modèle" S_m ?:
 - le nombre de classe K,
 - le modèle $[\mu LDA]^K$,
 - la structure des paramètres de mélange $\pi_k(x)$.

• Structure simple :
$$\pi_k(x) = \sum_{\mathcal{R} \in \mathcal{P}} \pi_k[\mathcal{R}] \chi_{\{x \in \mathcal{R}\}} = \pi_k[\mathcal{R}(x)]$$

- constant par morceau sur une partition "hiérarchique",
- optimisation efficace possible,
- performance d'approximation raisonnable.

- $\bullet \ \dim(S_m) = |\mathcal{P}|(K-1) + \dim([\mu L D A]^K).$
- Pénalité $pen(m) = \kappa \ln(n) \dim(S_m)$ suffisante pour
 - le contrôle théorique en terme d'estimation de densité,
 - l'optimisation numérique (EM + programmation dynamique).

Densités conditionnelles

- Cadre plus général : observation de (X_i, Y_i) avec X_i indépendants et Y_i indépendants de loi de densité $s_0(y|X_i)$.
- Objectif : estimation de $s_0(y|x)$.
- Principe de sélection de modèles par pénalisation :
 - choix d'une collection de modèles $S_m = \{s_m(y|x)\}$ avec $m \in S$,
 - estim. par max. de vraisemblance d'une dens. \hat{s}_m pour chaque modèle S_m :

$$\hat{s}_m = \underset{s_m \in S_m}{\operatorname{argmin}} - \sum_{i=1}^N \ln s_m(Y_i|X_i)$$

• avec pen(m) à bien choisir, sélection d'un modèle \widehat{m} par

$$\widehat{m} = \underset{m \in \mathcal{S}}{\operatorname{argmin}} - \sum_{i=1}^{N} \ln \widehat{s}_{m}(Y_{i}|X_{i}) + \operatorname{pen}(m).$$

Résultat d'estimation de densité du type

$$\mathbb{E}\left[d^2(s_0,\widehat{s}_{\widehat{m}})\right] \leq C\inf_{m \in \mathcal{S}}\left(\inf_{s_m \in S_m} KL(s_0,s_m) + \frac{\mathrm{pen}(m)}{n}\right) + \frac{C'}{n}.$$

Theorem

Assumption (H): For every model S_m in the collection \mathcal{S} , there is a non-decreasing function $\phi_m(\delta)$ such that $\delta \mapsto \frac{1}{\delta}\phi_m(\delta)$ is non-increasing on $(0,+\infty)$ and for every $\sigma \in \mathbb{R}^+$ and every $s_m \in S_m$

$$\int_0^\sigma \sqrt{H_{[\cdot],d^{\otimes_n}}(\epsilon,S_m(s_m,\sigma))} d\epsilon \leq \phi_m(\sigma).$$

Assumption (K): There is a family $(x_m)_{m \in \mathcal{M}}$ of non-negative number such that

$$\sum_{m\in\mathcal{M}}e^{-x_m}\leq \Sigma<+\infty$$

Theorem

Assume we observe (X_i,Y_i) with unknown conditional s_0 . Let $\mathcal{S}=(S_m)_{m\in\mathcal{M}}$ a at most countable model collection. Assume Assumptions (H), (K) and (S) hold.

$$\sum_{s_m \in S_m}^{N} - \ln(\widehat{s}_m(Y_i|X_i)) \le \inf_{s_m \in S_m} \left(\sum_{s_m \in S_m}^{N} - \ln(s_m(Y_i|X_i)) \right) + \delta$$

Then for any $\rho \in (0,1)$ and any $C_1 > 1$, there are two constants κ_0 and C_2 depending only on ρ and C_1 such that.

as soon as for every index $m \in \mathcal{M}$ $\operatorname{pen}(m) \ge \kappa \left(n\sigma_m^2 + x_m \right)$ with $\kappa > \kappa_0$

where σ_m is the unique root of $\frac{1}{-}\phi_m(\sigma) = \sqrt{n}\sigma$,

Let \hat{s}_m be a δ -log-likelihood minimizer in S_m :

the penalized likelihood estimate $\widehat{s}_{\widehat{m}}$ with \widehat{m} defined by

$$\widehat{m} = \underset{m \in \mathcal{M}}{\operatorname{argmin}} \sum_{i=1}^{N} - \ln(\widehat{s}_m(Y_i|X_i)) + \operatorname{pen}(m)$$

satisfies
$$\mathbb{E}\left[JKL_{\rho}^{\otimes n}(s_0,\widehat{s}_{\widehat{m}})\right] \leq C_1\inf_{S_m \in \mathcal{S}}\left(\inf_{s_m \in S_m}KL^{\otimes n}(s_0,s_m) + \frac{\mathrm{pen}(m)}{n}\right) + C_2\frac{\Sigma}{n} + \frac{\delta}{n}.$$

Théorème

Inégalité oracle

$$\mathbb{E}\left[JKL_{\rho}^{\otimes_n}(s_0,\widehat{s}_{\widehat{m}})\right] \leq C_1 \inf_{S_m \in S} \left(\inf_{s_m \in S_m} KL^{\otimes_n}(s_0,s_m) + \frac{\operatorname{pen}(m)}{n}\right) + C_2 \frac{\Sigma}{n} + \frac{\delta}{n}$$

dès que

$$pen(m) \ge \kappa \left(n\sigma_m^2 + x_m\right)$$
 with $\kappa > \kappa_0$,

où $n\sigma_m^2$ mesure la complexité du modèle S_m (entropie) et x_m le coût de codage dans la collection (Kraft).

- « Distances » utilisées $KL^{\otimes n}$ et $JKL^{\otimes n}_{\rho}$: divergence de Kullback et divergence de Jensen-Kullback « tensorisées ».
- $n\sigma_m^2$ lié à l'entropie à crochet de S_m mesurée par rapport à la distance de Hellinger tensorisée $d^{2\otimes_n}$.

Le cas des modèles de mélanges spatiaux

 Calcul d'un majorant des entropies à crochet possible (cf Maugis et Michel) impliquant :

$$n\sigma_m^2 \leq \kappa' \left(C' + \frac{1}{2} \left(\ln \left(\frac{n}{C' \dim(S_m)} \right) \right)_+ \right) \dim(S_m).$$

- Codage de la collection avec $x_m \le \kappa'' |\mathcal{P}| \le \frac{\kappa''}{K-1} \dim(S_m)$.
- Condition sur la pénalité :

$$\operatorname{pen}(m) \ge \left(\kappa' \left(C' + \frac{1}{2} \left(\ln\left(\frac{n}{C'\dim(S_m)}\right)\right)_+\right) + \frac{\kappa''}{K-1}\right) \dim(S_m)$$
$$\ge \lambda_{0,n} |\mathcal{P}|(K-1) + \lambda_{1,n} \dim([\mu L D A]^K)$$

Optimisation numérique

• Sélection de modèle par pénalisation :

$$\underset{K,[\mu LDA]^K,\mu,\Sigma,\mathcal{P},\pi}{\operatorname{argmin}} - \sum_{i=1}^{N} \ln \left(\sum_{k=1}^{K} \pi_{k} [\mathcal{R}(x_{i})] \mathcal{N}_{\mu_{k},\Sigma_{k}}(\mathcal{S}_{i}) \right) + \lambda_{0,n} |\mathcal{P}|(K-1) + \lambda_{1,n} \operatorname{dim}([\mu LDA]^{K})$$

- Optimisation du nombre de classe K et de la structure des moyennes et des covariances $[\mu L D A]^K$ par exploration exhaustive.
- Sélection de modèle à nombre de classes K et structure $[\mu LDA]^K$ fixés :

$$\underset{\mu, \Sigma, \mathcal{P}, \pi}{\operatorname{argmin}} - \sum_{i=1}^{N} \ln \left(\sum_{k=1}^{K} \pi_{k} [\mathcal{R}(x_{i})] \mathcal{N}_{\mu_{k}, \Sigma_{k}}(\mathcal{S}_{i}) \right) + \lambda_{0, n} |\mathcal{P}| (K-1)$$

- Deux astuces :
 - Algorithme EM
 - CART (programmation dynamique)

Algorithme EM

• Étape E : avec $P_k^{i,(n)} = P(k_i = k | x_i, S_i, \mathcal{P}^{(n)}, \pi^{(n)}, \mu^{(n)}, \Sigma^{(n)})$

$$\begin{split} &-\sum_{i=1}^{N}\ln\left(\sum_{k=1}^{K}\pi_{k}[\mathcal{R}(x_{i})]\,\mathcal{N}_{\mu_{k},\Sigma_{k}}(\mathcal{S}_{i})\right) + \lambda_{0,n}|\mathcal{P}|(K-1)\\ &\leq -\sum_{i=1}^{N}\sum_{k=1}^{K}P_{k}^{i,(n)}\ln\left(\pi_{k}[\mathcal{R}(x_{i})]\right) + \lambda_{0,n}|\mathcal{P}|(K-1)\\ &+\left(-\sum_{i=1}^{N}\sum_{k=1}^{K}P_{k}^{i,(n)}\ln\left(\mathcal{N}_{\mu_{k},\Sigma_{k}}(\mathcal{S}_{i})\right)\right) + \mathsf{Cst}^{(n)} \end{split}$$

avec égalité en $(\mathcal{P}^{(n)}, \pi^{(n)}, \mu^{(n)}, \Sigma^{(n)})$.

- Étape M : optimisation séparée en (\mathcal{P},π) et (μ,Σ) possible,
 - Optimisation en (μ, Σ) : formule close (et classique..).
 - Optimisation en (\mathcal{P},π) plus intéressante!

Étape M et CART

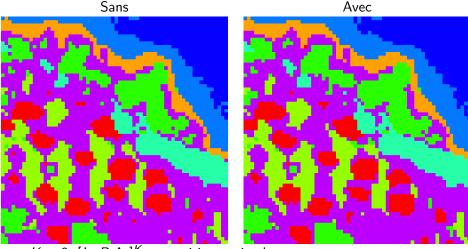
• Optimisation en (\mathcal{P}, π) de

$$egin{aligned} &-\sum_{i=1}^{N}\sum_{k=1}^{K}P_k^{i,(n)}\ln\left(\pi_k[\mathcal{R}(\mathbf{x}_i)]
ight) + \lambda_{0,n}|\mathcal{P}|(\mathcal{K}-1) \ &= -\sum_{\mathcal{R}\in\mathcal{P}}\left(\sum_{i|\mathbf{x}_i\in\mathcal{R}}\sum_{k=1}^{K}P_k^{i,(n)}\ln\left(\pi_k[\mathcal{R}(\mathbf{x}_i)]
ight) + \lambda_{0,n}(\mathcal{K}-1)
ight) \end{aligned}$$

- Deux propriétés clés :
 - Pour chaque \mathcal{R} , optimisation simple de $\pi_k[\mathcal{R}]$.
 - Structure de coût additive en \mathcal{R} ...
- → Algorithme d'optimisation rapide de type CART (Programmation dynamique sur la structure d'arbre).

Segmentation automatique

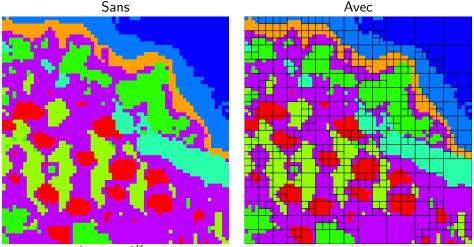
• Résultat numérique selon la prise en compte du caractère spatial :



- K = 8, $[L_k D A_k]^K$ et partition optimale.
- Calibration de la pénalité par heuristique de pente.
- Réduction de dimension par (simple) ACP...

Segmentation automatique

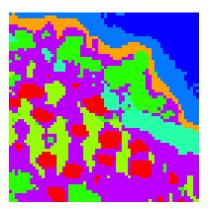
Résultat numérique selon la prise en compte du caractère spatial :



- K = 8, $[L_k D A_k]^K$ et partition optimale.
- Calibration de la pénalité par heuristique de pente.
- Réduction de dimension par (simple) ACP...

Segmentation et classification

Le secret de Stradivarius



- Deux couches fines de vernis :
 - une première couche d'huile simple, similaire à celle des peintres, pénétrant légèrement le bois,
 - une seconde d'un mélange huile, résine de pin, pigments donnant cette couleur rouge caractéristique.
- Technique classique pour l'époque.
- Le secret de Stradivarius n'est pas dans le vernis!

Conclusion

Cadre :

- Problème de segmentation non supervisée
- Estimateur de densités conditionnelles par maximum de vraisemblance et pénalisation.

Résultats

- Garantie théorique pour l'estimation de densités avec des distances tensorisées.
- Applicable au problème de segmentation
- Algorithme efficace de minimisation.
- Algorithme de segmentation intermédiaire ente les méthodes spectrales et les méthodes spatiales.

Perspectives

- Lien entre l'estimation de densités conditionnelles et les performances de segmentation.
- Calibration par heuristique de pente des deux problèmes
- Réduction de dimension adaptée à la classification non supervisée...

Conclusion

Cadre :

- Problème de segmentation non supervisée.
- Estimateur de densités conditionnelles par maximum de vraisemblance et pénalisation.

Résultats :

- Garantie théorique pour l'estimation de densités avec des distances tensorisées.
- Applicable au problème de segmentation.
- Algorithme efficace de minimisation.
- Algorithme de segmentation intermédiaire ente les méthodes spectrales et les méthodes spatiales.

Perspectives :

- Lien entre l'estimation de densités conditionnelles et les performances de segmentation.
- Calibration par heuristique de pente des deux problèmes.
- Réduction de dimension adaptée à la classification non supervisée...