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Hyperspectral image
segmentation

@ Data:
@ image of size n between ~ 1000 and ~ 100000 pixels,
@ spectrum of S de ~ 1024 points,
o resolution ~ 4/8 cm~! (10 times better in the visible),
@ possibiliy to measure a lot of spectrums each minute...
@ Immediate goals :
@ automatic segmentation,
@ without any human intervention,
@ provide help to analyse those results.
@ Further goals :

@ automatic classification,
@ interpretation...



Gaussian mixture modeling

@ Stochastic modeling of the spectrum S :

o existence of K classes of spectrum,
o proportion 7, for each of these classes (Zszl T = 1),
o Gaussian law A (uk, Xg) on each of these classes (strong assumption!)

@ Density :

K
S~ m Nk, T )(S)dS
k=1

@ Goal : estimate parameters K, m, px, Lx from the data.

@ Why? : possibility to assign afterward a class to each observation by
maximum likelihood :

k(S) = argmax 7, N (11, £ )(S)

@ Theoretical results for density estimation...



Gaussian mixture model

K
@ Densities : S~ Z T N (K, Li)(S)dS
k=1

@ Model S, :
@ choice of a number of class K,
@ choice of astructure for the means py and the covariances
Yy = Ly DyAcD,,

@ Models [;z L D A]X : constraints (known values, common values or
free) on the means py, the volumes Ly, the diagonalization bases Dy
and the eigenvalues A.

@ Model S, : parametric model of dimension
(K — 1) +dim([u L D A]¥) in a space of dimension p.

@ Parameter estimation by maximum likelihood :

o for each class, the mean p and the covariance matrix Xy = LxDyAxD;
o the mixing proportions 7.

@ Classical technique with efficient algorithm (EM) available.



Model selection

@ How to choose the “model” S, :

@ the number of class K,

o the model [ LD AJK?
@ Central theme of the SELECT project.
@ Model selection by penalization :

@ choice of a model collection S, = {s,} with m € M,
@ estimation by maximum likelihood of a density 3, for each model S,
o selection of a model m by

m = argmin — In(5,,) 4+ pen(m).

with pen(m) = x(In(n)) dim(S,,) (intrinsic dimension of S,),
@ Results (Birgé, Massart, Celeux, Maugis, Michel...) :
o theoretical (for mixture estimation) : for x large enough,

/
E [d(s,5:)] < C inf ( inf KL(s, 5m) + pen(m)) ey
m meM \ sn,€Sn n n

o practical : unsupervised classification (# segmentation),
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Segmentation and Gaussian
mixture

@ Initial goal : segmentation # unsupervised classification.

@ Take into account the spatial position x of the spectrum trough the
mixing proportion (Kolaczyk et al.) :

K
5|X ~ Z ﬂk(X)N(Mk, Zk)(S)dS
k=1
@ Model mixing parametric and “non-parametric”

@ Estimation from the data :

o for each class, the mean y and the covariance Xy = LDy AcD;,
o of the mixing function m,(x).

@ 7k (x) function : regularization required.

@ Model selection principle...



Gaussian mixture and hierarchical
partition

@ How to choose the “model” S, 7 :

@ the number of class K,
o the model [u L D AJK,
o the structure of mixing function mx(x).

@ Simple structure for m,(x) :
@ piece-wise constant on a “hierarchical” partition,
o efficient optimization possible,
@ good approximation performance.

@ dim(S,,) = |P|(K — 1) +dim([u L D A]¥).

@ Penalty pen(m) = kIn(n)dim(Sp,) suitable for

@ the numerical optimization (EM + dynamic programming),
@ the theoretical control : for s large enough,

/
E [d°(s,5:)] < C inf ( inf KL(s,sm)+ pcm(m)) + £
m meM \ sm€Sp, n n



Theorem

@ Assumption (H) : there is a non-increasing function ¢ (5, B¢ ) such that § +— ¢ m(8) is non-decreasing on
(0, +00) and for every o € R* and every sy, € Sy

- 1,d®n (€, Sm(sm, o)) de < pm(o).

@ Theorem (up to some technical conditions) : Assume we observe (X;, Y;) with unknown law parametrized by s. Let
(Sm)me M a at most countable model collection.

Assume that there is a family (Xm)me A4 Of non-negative number such that E e ™ < ¥ < 4ooand, under

meM

- ~
assumption (H), let o, be the unique root of ¢m(c) = v/no. and let sp, be a p maximum likelihood minimizer in S,

n n
E —In(sm(X;, Yi)) < inf E —In(sm(Xi, Y1) | +p
SmESm
i=1 i=1

For any C; > 1, there are two absolute constants kg and C, such as soon as for every model m € M
pen(m) > k (nai7 + x,,,) with k > Ko,

n

the penalized likelihood estimate s~ with m defined by m = argmin E — In(sm(Xj, Yi)) + pen(m) satisfies
m meM
i=1

~ en r
E [02®”(s,5«\)} <G inf inf KL®n(s, sm) + pen(my X2
m SeM \smESm n n n



Kullback, Hellinger and
extensions

Oracle inequality in model selection of type :
C/

n .

E [dZ(s,gﬁq)} < C( inf inf KL(s,Sm) + pen(’")> 4

meM spESm n
Density : Hellinger d?(s,s’) (or affinity) (Kolaczyk, Barron, Bigot).
Massart : refinement with 92(s, s’) = 2KL(s, (s’ + s)/2).
Here : observation of (Xj, S;) with independent X; and S; of law
s(Xi,-) (conditionning to the position...)
Estimator 5(x, -)
Tensorization of Kullback and 92(s, s')

KL% (s,s") [ ZKL ' (XI7'))]

02®”(S,Sl) = [ 202 XI7 ) s' XI7 ))]

Suitable distances for both fixed design and random design...



Oracle inequality and distances

Oracle inequality of type

C/
E[02%(s,53)] < € inf <si21; KL®" (s, 5m) + penrfm)> + =

under a condition linking bracketing entropy of the models and
penalty.

Reduce to the classical theorem if s(X;, ) = s(-).

Good scaling of 92®7(s,5-) et KL®"(s, s,) with n : stay of the same
order of magnitude.

Issue in Bigot et al with Hellinger used with a uniform law for X; :

1 2
Zd%(s.3 )< 2
n (s,55) < n

No issue with Bhattacharyya-Renyi of Kolaczyk and Barron...



Penality and complexity

@ Penalty linked to the complexity of the model and of the collection.
@ Complexity of the model S, (entropy) :
© Hpj.qen(€, Sm) bracketing entropy with the tensorized Hellinger distance
(4% =V = [E [ 32 d(s(X,. )./ (X, ).
@ Assumption (H) : for any model S,,, there is a non-increasing function

dm(8) such that § — 8¢, (8) is non-decreasing on (0, +0c) and such that
for any o € RT and any s, € S,

1 g ~
o [V Haes € Snlm o)) de < o),

o Complexity measured by ¢?(o,,) with o, the unique root of ¢p(c) = v/no
@ Complexity of the collection (coding) :
@ complexity given by x,, satisfying Kraft Z e <Y < 40
meM
@ (Classical) Constraint on the penalty :

pen(m) > k ((2,2(0”1) + Xm> avec K > Ko.



Back to spatial mixture

@ Bound on Hpj gen (€, Sm(sm,)) for the spatial mixture models (cf
Maugis et Michel) :
@ bound on a majoration of the entropy : H gsw (€, Sm) ol
d*P = v/d?swp = | /sup, d?(s(x,),s'(x, -)),
o results for every mixture models ([ L D A]X) and every parttions :

H[.],dsup (67 Sm) S dlm(Sm)(C —+ |n %)

with C almost explicit (rely on a lemma of Szarek on the entropy SO(n)
without an explicit constant...)

o Implies : ¢2,(0m) < &’ In(n) dim(Sp).
@ Collection coded with x, < &"|P| < = d|m(5 )-
@ Constraint on the penalty :

"

pen(m) > (ﬁ'ln(n)+ o 1) dim(Sm).




Stradivarius secret

@ Two fine varnish layers :

o a first layer of simple oil, similar to the one used by painters, going slightly
into the wood, légérement le bois,

@ a second one with a mixture of oil, pine resin and pigments giving the
characteristic red color.

@ Classical technique for this period.
@ Stradivarius secret is not in the varnish !
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