Hyperspectral image segmentation by Gaussian mixtures and model selection

E. Le Pennec (SELECT - INRIA Saclay / Université Paris Sud) et

S. Cohen (IPANEMA - Soleil Saclay)

(CELECT II

G. Celeux et P. Massart (SELECT - INRIA Saclay / Université Paris Sud) et C. Maugis (INSA Toulouse)

A. Stradivari (1644 - 1737)

Provigny (1716)

4 / 8 cm-1 resolution 64 / 128 scans typ. I min/sp, 400sp

very simple process no protein (amide I, amide II) no gums, nor waxes

@SOLEIL: SMIS

J.-P. Echard, L. Bertrand, A. von Bohlen, A.-S. Le Hô, C. Paris, L. Bellot-Gurlet, B. Soulier, A. Lattuati-Derieux, S. Thao, L. Robinet, B. Lavédrine, and S. Vaiedelich. Angew. Chem. Int. Ed., 49(1), 197-201, 2010.

Hyperspectral image segmentation

- Data :
 - image of size n between ~ 1000 and ~ 100000 pixels,
 - spectrum of \mathcal{S} de \sim 1024 points,
 - resolution $\sim 4/8 \text{ cm}^{-1}$ (10 times better in the visible),
 - possibiliy to measure a lot of spectrums each minute...
- Immediate goals :
 - automatic segmentation,
 - without any human intervention,
 - provide help to analyse those results.
- Further goals :
 - automatic classification,
 - interpretation...

Gaussian mixture modeling

- ullet Stochastic modeling of the spectrum ${\mathcal S}$:
 - existence of K classes of spectrum,
 - proportion π_k for each of these classes $(\sum_{k=1}^K \pi_k = 1)$,
 - Gaussian law $\mathcal{N}(\mu_k, \Sigma_k)$ on each of these classes (strong assumption!)
- Density :

$$\mathcal{S} \sim \sum_{k=1}^{\mathcal{K}} \pi_k \, \mathcal{N}(\mu_k, \Sigma_k)(\mathcal{S}) d\mathcal{S}$$

- Goal : estimate parameters K, π_k , μ_k , Σ_k from the data.
- Why?: possibility to assign afterward a class to each observation by maximum likelihood:

$$\hat{k}(\mathcal{S}) = \operatorname{argmax} \pi_k \mathcal{N}(\mu_k, \Sigma_k)(\mathcal{S})$$

• Theoretical results for density estimation...

Gaussian mixture model

- Densities : $S \sim \sum_{k=1}^{K} \pi_k \mathcal{N}(\mu_k, \Sigma_k)(S) dS$
- \bullet Model S_m :
 - choice of a number of class K,
 - choice of astructure for the means μ_k and the covariances $\Sigma_k = L_k D_k A_k D_k'$
- Models $[\mu L D A]^K$: constraints (known values, common values or free) on the means μ_k , the volumes L_k , the diagonalization bases D_k and the eigenvalues A_k .
- Model S_m : parametric model of dimension $(K-1) + \dim([\mu LDA]^K)$ in a space of dimension p.
- Parameter estimation by maximum likelihood :
 - for each class, the mean μ_k and the covariance matrix $\Sigma_k = L_k D_k A_k D_k'$
 - the mixing proportions π_k .
- Classical technique with efficient algorithm (EM) available.

Model selection

- How to choose the "model" S_m :
 - the number of class K,
 - the model $[\mu LDA]^K$?
- Central theme of the SELECT project.
- Model selection by penalization :
 - choice of a model collection $S_m = \{s_m\}$ with $m \in \mathcal{M}$,
 - estimation by maximum likelihood of a density \hat{s}_m for each model S_m ,
 - selection of a model \widehat{m} by

$$\widehat{m} = \operatorname{argmin} - \ln(\widehat{s}_m) + \operatorname{pen}(m).$$

with $pen(m) = \kappa(ln(n)) \dim(S_m)$ (intrinsic dimension of S_m),

- Results (Birgé, Massart, Celeux, Maugis, Michel...) :
 - theoretical (for mixture estimation) : for κ large enough,

$$\mathbb{E}\left[d^2(s,\widehat{s}_{\widehat{m}})\right] \leq C\inf_{m \in \mathcal{M}}\left(\inf_{s_m \in S_m} \mathsf{KL}(s,s_m) + \frac{\mathrm{pen}(m)}{n}\right) + \frac{C'}{n}.$$

• practical : unsupervised classification (\neq segmentation),

Methodology Estimation Classification Selection

Segmentation and Gaussian mixture

- Initial goal : segmentation \neq unsupervised classification.
- Take into account the spatial position x of the spectrum trough the mixing proportion (Kolaczyk et al.):

$$S|x \sim \sum_{k=1}^{K} \pi_k(x) \mathcal{N}(\mu_k, \Sigma_k)(S) dS.$$

- Model mixing parametric and "non-parametric"
- Estimation from the data :
 - for each class, the mean μ_k and the covariance $\Sigma_k = L_k D_k A_k D_k'$,
 - of the mixing function $\pi_k(x)$.
- $\pi_k(x)$ function : regularization required.
- Model selection principle...

Gaussian mixture and hierarchical partition

- How to choose the "model" S_m ?:
 - \bullet the number of class K.
 - the model $[\mu LDA]^K$,
 - the structure of mixing function $\pi_k(x)$.
- Simple structure for $\pi_k(x)$:
 - piece-wise constant on a "hierarchical" partition,
 - efficient optimization possible,
 - good approximation performance.
- $\bullet \ \dim(S_m) = |\mathcal{P}|(K-1) + \dim([\mu LDA]^K).$
- Penalty $pen(m) = \kappa ln(n) dim(S_m)$ suitable for
 - the numerical optimization (EM + dynamic programming),
 - ullet the theoretical control : for κ large enough,

$$\mathbb{E}\left[d^2(s,\widehat{s}_{\widehat{m}})\right] \leq C\inf_{m \in \mathcal{M}}\left(\inf_{s_m \in S_m} \mathsf{KL}(s,s_m) + \frac{\mathrm{pen}(m)}{n}\right) + \frac{C'}{n}.$$

Theorem

Assumption (H): there is a non-increasing function $\tilde{\phi}_m(\delta, \beta_\phi)$ such that $\delta \mapsto \delta \phi_m(\delta)$ is non-decreasing on $(0, +\infty)$ and for every $\sigma \in \mathbb{R}^+$ and every $s_m \in S_m$

$$\frac{1}{\sigma} \int_0^{\sigma} \sqrt{H_{[\cdot],d\otimes_n}(\epsilon,S_m(s_m,\sigma))} d\epsilon \leq \phi_m(\sigma).$$

Theorem (up to some technical conditions): Assume we observe (X_i, Y_i) with unknown law parametrized by s. Let (S_m)_{m∈ M} a at most countable model collection.

Assume that there is a family $(x_m)_{m\in\mathcal{M}}$ of non-negative number such that $\sum_{m=1}^\infty e^{-x_m} \leq \Sigma < +\infty$ and, under

assumption (H), let σ_m be the unique root of $\tilde{\phi}_m(\sigma)=\sqrt{n}\sigma$. and let \widehat{s}_m be a ρ maximum likelihood minimizer in S_m

$$\sum_{i=1}^{n} -\ln(\widehat{s}_{m}(X_{i}, Y_{i})) \leq \inf_{s_{m} \in S_{m}} \left(\sum_{i=1}^{n} -\ln(s_{m}(X_{i}, Y_{i}))\right) + \rho$$

For any $C_1 > 1$, there are two absolute constants κ_0 and C_2 such as soon as for every model $m \in \mathcal{M}$

$$pen(m) \ge \kappa \left(n\sigma_m^2 + x_m\right)$$
 with $\kappa > \kappa_0$,

the penalized likelihood estimate $\widehat{s_n}$ with \widehat{m} defined by $\widehat{m} = \underset{m \in \mathcal{M}}{\operatorname{argmin}} \sum_{i=1}^{m} -\ln(\widehat{s_m}(X_i,Y_i)) + \operatorname{pen}(m)$ satisfies

$$\mathbb{E}\left[\mathfrak{d}^{2\otimes n}(s,\widehat{s_m})\right] \leq C_1\inf_{S\in\mathcal{M}}\left(\inf_{s_m\in S_m}KL^{\otimes n}(s,s_m) + \frac{\operatorname{pen}(m)}{n}\right) + C_2\frac{\Sigma}{n} + \frac{\rho}{n}.$$

Kullback, Hellinger and extensions

Oracle inequality in model selection of type :

$$\mathbb{E}\left[d^2(s,\widehat{s}_{\widehat{m}})\right] \leq C\left(\inf_{m \in \mathcal{M}}\inf_{s_m \in S_m} \mathsf{KL}(s,s_m) + \frac{\mathrm{pen}(m)}{n}\right) + \frac{C'}{n}.$$

- Density : Hellinger $d^2(s, s')$ (or affinity) (Kolaczyk, Barron, Bigot).
- Massart : refinement with $\vartheta^2(s,s') = 2KL(s,(s'+s)/2)$.
- Here : observation of (X_i, S_i) with independent X_i and S_i of law $s(X_i, \cdot)$ (conditionning to the position...)
- Estimator $\hat{s}(x, \cdot)$
- Tensorization of Kullback and $\mathfrak{d}^2(s,s')$

$$\mathcal{K}L^{\otimes_n}(s,s') = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n \mathcal{K}L\left(s(X_i,\cdot),s'(X_i,\cdot)\right)\right]$$
 $\mathfrak{d}^{2\otimes_n}(s,s') = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n \mathfrak{d}^2\left(s(X_i,\cdot),s'(X_i,\cdot)\right)\right]$

• Suitable distances for both fixed design and random design...

Oracle inequality and distances

Oracle inequality of type

$$\mathbb{E}\left[\mathfrak{d}^{2\otimes_n}(s,\widehat{s}_{\widehat{m}})\right] \leq C\inf_{m \in \mathcal{M}}\left(\inf_{s_m \in S_m} KL^{\otimes_n}(s,s_m) + \frac{\mathrm{pen}(m)}{n}\right) + \frac{C'}{n}$$

under a condition linking bracketing entropy of the models and penalty.

- Reduce to the classical theorem if $s(X_i, \cdot) = s(\cdot)$.
- Good scaling of $\mathfrak{d}^{2\otimes n}(s,\widehat{s}_{\widehat{m}})$ et $KL^{\otimes n}(s,s_m)$ with n: stay of the same order of magnitude.
- ullet Issue in Bigot et al with Hellinger used with a uniform law for X_i :

$$\frac{1}{n}d^2(s,\widehat{s}_{\widehat{m}}) \leq \frac{2}{n} \quad !$$

• No issue with Bhattacharyya-Renyi of Kolaczyk and Barron...

Penality and complexity

- Penalty linked to the complexity of the model and of the collection.
- Complexity of the model S_m (entropy) :
 - $H_{[\cdot],d^{\otimes_n}}(\epsilon,S_m)$ bracketing entropy with the tensorized Hellinger distance $(d^{\otimes_n} = \sqrt{d^{2\otimes_n}} = \sqrt{\mathbb{E}\left[\frac{1}{n}\sum d^2(s(X_i,\cdot),s'(X_i,\cdot))\right]}).$
 - Assumption (H): for any model S_m , there is a non-increasing function $\tilde{\phi}_m(\delta)$ such that $\delta \mapsto \delta \phi_m(\delta)$ is non-decreasing on $(0,+\infty)$ and such that for any $\sigma \in \mathbb{R}^+$ and any $s_m \in S_m$

$$\frac{1}{\sigma} \int_0^{\sigma} \sqrt{H_{[\cdot],d^{\otimes_n}}(\epsilon, S_m(s_m,\sigma))} d\epsilon \leq \tilde{\phi}_m(\sigma),$$

- Complexity measured by $\tilde{\phi}^2(\sigma_m)$ with σ_m the unique root of $\tilde{\phi}_m(\sigma) = \sqrt{n}\sigma$
- Complexity of the collection (coding) :
 - ullet complexity given by x_m satisfying Kraft $\sum_{n=1}^\infty e^{-x_m} \leq \Sigma < +\infty$
- (Classical) Constraint on the penalty :

$$pen(m) \ge \kappa \left(\tilde{\phi}^2(\sigma_m) + x_m \right) \quad \text{avec } \kappa > \kappa_0.$$

Back to spatial mixture

- Bound on $H_{[\cdot],d^{\otimes n}}(\epsilon,S_m(s_m,\sigma))$ for the spatial mixture models (cf Maugis et Michel) :
 - bound on a majoration of the entropy : $H_{[\cdot],d^{\sup}}(\epsilon, S_m)$ où $d^{\sup} = \sqrt{d^{2\sup}} = \sqrt{\sup_x d^2(s(x,\cdot),s'(x,\cdot))}$,
 - results for every mixture models ($[\mu LDA]^K$) and every parttions :

$$H_{[\cdot],d^{\sup}}(\epsilon,S_m) \leq \dim(S_m)(C+\ln\frac{1}{\epsilon})$$

with C almost explicit (rely on a lemma of Szarek on the entropy SO(n) without an explicit constant...)

- Implies : $\tilde{\phi}_m^2(\sigma_m) \leq \kappa' \ln(n) \dim(S_m)$.
- Collection coded with $x_m \le \kappa'' |\mathcal{P}| \le \frac{\kappa''}{K-1} \dim(S_m)$.
- Constraint on the penalty :

$$pen(m) \ge \left(\kappa' \ln(n) + \frac{\kappa''}{K-1}\right) \dim(S_m).$$

Stradivarius secret

- Two fine varnish layers :
 - a first layer of simple oil, similar to the one used by painters, going slightly into the wood, légèrement le bois,
 - a second one with a mixture of oil, pine resin and pigments giving the characteristic red color.
- Classical technique for this period.
- Stradivarius secret is not in the varnish!

Bibliography

- My starting point describing a full solution :
 - A. Antoniadis, J. Bigot and R. von Sachs (2008) A multiscale approach for statistical characterization of functional images, Journal of Computational and Graphical Statistics, 18(1), pp. 216-237
 - Corresponding discussion paper.
- Segmentation and model selection :
 - E.D. Kolaczyk, J. Ju and S. Gopal (2005). Multiscale, multigranular statistical image segmentation. Journal of the American Statistical Association, 100, 1358-1369.
 - E.D. Kolaczyk and R.D. Nowak (2004). Multiscale likelihood analysis and complexity penalized estimation. Annals of Statistics, 32, 500-527
- MDL based model selection :
 - A.R. Barron, C. Huang, J. Q. Li and Xi Luo (2008). MDL Principle, Penalized Likelihood, and Statistical Risk. In Feschrift for Jorma Rissanen. Presented to Rissanen Nov. 2007.
- Model selection and (bracketing) entropy :
 - P. Massart (2003). Concentration inequalities and model selection : Ecole d'Eté de Probabilités de Saint-Flour XXXIII.
 - C. Maugis and B. Michel. (2009). A non asymptotic penalized criterion for Gaussian mixture model selection. ESAIM: P&S (plus erratum...)
 - S. Cohen and E. Le Pennec (201?)
- SO(n) entropy:
 - J. Szarek (1998). Metric entropy of homogeneous spaces. Banach Center Pub., 43, 395–410