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O Utl | ne Ultrasound Diagnostic

@ Prenatal Ultrasound and Rare Disease Diagnostic



Bi rth a nd Ra re D ISeaseS Ultrasound Diagnostic

A Few Numbers
@ 780 000 births/year in France, 5 millions births/year in Europe

@ 3 to 4% are affected by at least one congenital anomalies

@ Rare diseases: 3 millions patients in France, 30 millions in Europe.




M ed ica | Settl ng Ultrasound Diagnostic

Prenatal Ultrasound Diagnosis
@ France: three compulsory ultrasound tests during pregnancy.
@ Some classical measures (e.g. Down syndrome).

@ No strict examination protocol.

Necker Hospital Obstetrician

@ Rare disease expertise.
@ Among world largest medical database.

o Will to systematize their knowledge. 4



Proposed TOOl Ultrasound Diagnostic

Ultrasound as a Sequential Process

@ Ultrasound exam seen as a sequence of measures.

o Goals:

o Reduce the time required to obtain a diagnosis
e Avoid missing a rare disease.

Diagnosis Assistance Tool
@ Propose the next measure to make.
@ Show the current most probable diseases.

o Easy to use GUI implemented in R!

What'’s inside this tool?
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O Utl | ne Data and Framework

© Data at Hands and Proposed Framework



Data at HandS Data and Framework

probability
id id g;mplom
disease symptom knowing
the disease
6 29 0.39
16 136 0.67
16 149 0.50
e 176 0.16
16 181 0.50
16 231 0.75

@ Rare diseases: very few cases even in the world's largest DB!

Excel Type Dataset

@ Expert database build from OrphaData (E. Spaggiari).
@ 81 diseases, 202 symptoms (signs visible with ultrasound):
o Disease probability: P[D = dj]
e Symptom probability given each disease: P[S; = k | D = dj].

@ Database will be enriched from the future exams.



O ur Goa |S Data and Framework

feature 1 present?

s
v /,/

N

feature 2 present? o~
Medical Goals

@ Guide a (not rare-disease expert) sonographer to assess as fast as possible
potential diseases.

@ Propose her/him the next symptom to check.

Technical Goals

@ Build a good decision tree (a good policy).
@ Develop a GUI that can be easily used.
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Markov Decision Process

Data and Framework

State, Action and Policy

o State: S = {P, A, U}?°? (presence, absence, not yet looked at) for each symptom.
@ Action: A ={1,...,202} next symptom.

@ Policy: m:s €S~ a€ A next symptom given the state.

Probabilistic setting

@ Natural Markovian modeling: S;11 depends only on S; and a;!

Markovian Decision Process
@ Any strategy 7 defines a law on (S;) starting from Sp.
@ Let T be the stopping time before a diagnosis can be posed.
@ We need to find 7* such that 7*(Sp) = argmin, E[T|So]!
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Problems to be Solved Data and Framework

pMaen

AN A

Environment Learning with Maximum Entropy Principle

e We have P[S; | D], but we need to know P[S;, ..., Si. | DJ.

@ We need to take into account future exams.

o ldea: add some expert knowledge and maximize uncertainty, interpolate between

the expert model and the data.

@ Yields a simulator rather than the MDP transition proba...

Diagnostic Strategy Optimization by Reinforcement Learning

@ Find a policy that allows to detect the disease while minimizing the average
duration.

o ldea: recast the problem as a planning issue and find the optimal strategy. 12



Diagnostic Strategy Optimization Data and Framework

Diagnostic Strategy Optimization.

o Find a policy that allows to detect the disease while minimizing the average
duration.

Measure of Performance

@ Number of questions before being able to diagnose a disease.

Alternative Formulations

@ Trade-off: cost of misdiagnosis/cost of medical tests to perform.

@ Reach the lowest uncertainty under fixed budget constraint (time, money).

Non Adversarial Game

@ The disease and symptoms do not change during the exam.

@ Strategy: given what has been seen, what is the next symptom to look at?

13



Stochastic Shortest Path Data and Framework

Stochastic Shortest Path

@ T is a stooping time at some final states

@ How to minimize the expectation of T7

e Entropy based criterion: H(D | S) <€

@ Rewards: VS, a;, r(St,a:) = —1 14



O Utl | ne Reinforcement Learning

© Reinforcement Learning

15



Relnforcement Learning Reinforcement Learning

state | | rewar d action

R
| <5 Environment fe——

Reinforcement Learning Setting
@ Env.: provides a reward and a new state for any action.
@ Agent policy 7: choice of an action A; from the state S;.

e Total reward: (discounted) sum of the rewards.

@ Policy evaluation: how to evaluate the expected reward of a policy knowing the
environment?

@ Planning: how to find the best policy knowing the environment?

@ Reinforcement Learning: how to find the best policy without knowing the
environment?

16



O Utl | ne Reinforcement Learning

© Reinforcement Learning
@ Markov Decision Processes

17



The Agent-Environment Interface

state reward
S, R,

R

S. | Environment [€——

Reinforcement Learning

action
A

Figure 3.1: The agent-environment interaction in a Markov decision process.

@ At time step t € \:

e State 5; € S: representation of the environment
o Action A; € A(S;): action chosen

e Reward R;y; € R: instantaneous reward

o New state S; 1

@ Dynamic entirely defined by

P (St = 5/, Rr = r’St_l = S,At—l — a) — P(5/7 r’57 a)

@ Finite MDP: S, A and R are finite.

18



Retu rns a nd EpISOdeS Reinforcement Learning

o (Discounted) Return:

-
G = Z 7" Ry
t/—t-1
@ Recursive property
Gt = Re1 + 7641
e Finiteness if |[R| < M
T—t—+1)M if T <
[AER .
Mﬁ otherwise
@ Not well defined if T = oo and v = 1.

19



Policies and Value Functions Reinforcement Learning

Policy and Value Functions
e Policy: m(als)
@ Value function:

Vn(S) =E, [Gt’St = 5] =E, [Z ’Yth+k+1
k=0

St = 5‘|
@ Action value function:
qﬂ(s, a) = }Eﬂ [Gt’St =S, At = a]

Two natural problems

@ Policy evaluation: compute v, given 7.

@ Planning: find 7* such that v«(s) > vz(s) for all s and 7.

@ Those objects may not exist in general!
@ Can be traced back to the 50's!

20



O Utl | ne Reinforcement Learning

© Reinforcement Learning

@ Dynamic Programming

21



Policy Evaluation by Bellman Backup Reinforcement Learning K

Fixed Point Property
@ Bellman Equation

ve(s) =Y _m(als) D D p(s', rls, a) [r + yva(s)] = Ta(vz)(s)

a

@ Linear equation that can be solved.

Policy Evaluation by Dynamic Programming

e Fixed point iterative algorithm: vi11(s) = Tx(vk)(s)

@ Convergeif T < ocory <1,

22



Planning by Policy Improvement Reinforcement Learning

Policy Improvement Property

o If 7' is such that Vs, g (s, 7'(s)) > vx(s) then v > v;.

@ e-greedy improvement among e-policy: classical improvement degraded by picking
uniformly the action with probability e

Policy Iteration Algorithm

o Compute vy,
o Greedy update:
Tk+1(s) = argmax g, (s, a)
a
= argmax Y _ p(s’,rls, a) (r + yva,(s))
a s'r

o If 7’ = 7 after a greedy update vy, ,, = v, = vi.

@ Convergence in finite time in the finite setting.

23



Planning by Bellman Backup Reinforcement Learning

Fixed Point Property

@ Bellman Equation
vi(s) = max S (s rls, a) [r+yvi(s)] = Ta(vs)(s)

@ Linear programming problem that can be solved.

Policy Evaluation by Dynamic Programming

@ lterative algorithm: vi11(s) = Ti(vk)(s)

@ Converge if T < oo ory<1.

@ Amount to improve the policy after only one step of policy evaluation.

24



Planning by Bellman Backup Reinforcement Learning

Q-value and enhancement
@ Q-value:
ZZps r|s, a) f+’YZ a'ls")qx (s, a)]

o Easy policy enhancement. 7'(s) = argmax q(s, a)
a

Fixed Point Property

@ Bellman Equation

.(5,0) = ¥ S p(s' rls, ) |+ ymax (o, )] = Te(a)(s.)

s r

@ Linear programming problem that can be solved.

Policy Evaluation by Dynamic Programming

@ lterative algorithm: qxy1(s,a) = T.(qk)(s, a)

25



Genera | |Zed POI |Cy Itel’atIOn Reinforcement Learning

Generalized Policy lteration

@ Consists of two simultaneous interacting processes:

e one making a value function consistent with the current policy (policy evaluation)
e one making the policy greedy with respect to the current value function (policy
improvement)

@ Stabilizes only if one reaches the optimal value/policy pair.

@ Asynchronous update are possible, provided every state(/action) is visited
infinitely often.

@ Very efficient but requires the knowledge of the transition probabilities.

26



O Utl | ne Reinforcement Learning

© Reinforcement Learning

@ Reinforcement Setting

27



Relnforcement Learning Reinforcement Learning

| Agent ||
state reward action
5 i a,

L i i
' s | Environment [e——

Reinforcement Learning - Sutton (98)

@ An agent takes actions sequentially, receives rewards from the environment and
tries to maximize its long-term (cumulative) reward.

Reinforcement Learning
@ MDP setting with cumulative reward.
@ Planning problem.

@ Environment known only through interaction, i.e. some sequences
o 5t AtRe415e41A 41 -+ -

28



Monte Cal’lo Reinforcement Learning

@ Back to v(s) = E; [G¢|S: = s].
@ Monte Carlo:

e Play several episodes using policy .
o Average the returns obtained after any state s.

@ Good theoretical properties provided every state is visited asymptotically infinitely
often.

@ Extension to off-policy setting (behavior policy b # target policy ) with
importance sampling.

@ Extension to planning with policy improvement steps

@ No theoretical results for the last case.
@ Need to wait until the end of an episode to update anything...

29



BOOtSt ra p a nd TD Pred ICtIOﬂ Reinforcement Learning 4 X

Bootstrap and TD

@ Rely on
Vr(s) = Trvx(s)
= E [Re1 + yva(St41)|St = 5]
@ Temporal Difference: stochastic approximation scheme

V(St) = V(St) + a(Res1 + 7V (Se41) — V(St))

Update occurs at each time step.

Can be proved to converge (under some assumption on «)!

Combine the best of Dynamic Programming and MC.

@ Can be written in terms of Q:
Q(St, Ar) < Q(St, Ar) + a(Rey1 +7Q(Sev1, Arv1) — Q(St, Ar))

30



SARSA and Q Learning Reinforcement Learning

@ How to use this principle to obtain the best policy?

SARSA: Planning by Prediction and Improvement (online)

e Update Q following the current policy 7
Q(St, At) < Q(St, At) + o (Reg1 + vQ(St41, Art1) — Q(St, At))
@ Update 7 by policy improvement.

@ May not converge if one use a greedy policy update.

Q Learning: Planning by Bellman Backup (off-line)

e Update Q following the behavior policy b
Q(St, Ar) < Q(S¢t,Ar) + (Rt+1 + vy max Q(St41,a) — Q(St, At))

@ No need to use importance sampling correction for depth 1 update.

@ Proof of convergence in both cases.

31



Variations

Reinforcement Learning

ol wte Dynamic
Temporal- ? )
difference t A programming
learning &y 3 bd b

|
o

A, Exhaustive
LA,

A 2 search
Carlo (P o D’}\D
i
: dad s
!
a

Figure 8.11: A slice throt
two of the most important dim
the updates.

@ Number of steps in the update. x

of reinforcement learning methods, highlighting the
explored in Part I of this book: the depth and width of

@ Number of states/actions considered at each step.
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Plannlng and Leal’nlng Reinforcement Learning
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Planning and Models

@ Planning can combine a model estimation (DP) and direct learning (RL).

Real Time Planning
@ Planning can be made online starting from the current state.

@ Curse of dimensionality: methods are hard to use when the cardinality of the
states and the actions are large!
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O Utl | ne Reinforcement Learning

© Reinforcement Learning

@ Reinforcement and Approximation
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Value Function Approximation Reinforcement Learning

Value Function Approximation

@ ldea: replace v(s) by a parametric ¥(s, w).

@ Issues:

e Which approximation functions?
e How to define the quality of the approximation?
e How to estimate w?

Approximation functions

@ Any parametric (or kernel based) approximation could be used.
@ Most classical choice:

e Linear approximation.
e Deep Neural Nets...

35



ApprOXImatlon Quallty Reinforcement Learning

e How define when ¥(-, w) is close to v, (or vy)

Prediction(/Control)

@ Prediction objective:

> u(s)(va(s) = (s, w))?

@ Bellman Residual:

> u(s)(Tv(s, w) — (s, w))?

S)
or its projection...

36



Onllne Gl’adlent and SemI—Gl’adlent Reinforcement Learning

Online Prediction

@ SGD algorithm on w:
Wip1 = we + o (vr(Se) — U(Se, w)) VI(Se, w)
e MC approximation (still SGD):
Wi = we + o (G — U(Se, w)) VI(Se, w)
@ TD approximation (not SGD anymore):
Wit = Wr + o (Rer1 +70(Sev1, we) — U(Se, w)) VI(St, w)

@ Deeper or wider scheme possible.

Online Control
@ SARSA-like algorithm:
e Prediction step as previously with the current policy
Wi = Wi+ a (Repr +74(Ser1, At w) — G(St, Ae, w)) Va(Se, A, w)
e c-greedy update of the current policy

37



Offline Control with Approximation Reinforcement Learning

Watkins's Q(\)

O S ! [
O U SRS O
Sl ] ! [
Lo s
Sl
(1=2A% I
£ e

cither with the end of th

Offline Control

@ Q-Learning like algorithm:
Wipl = Wi+« (Rt+1 + ymax 4(St+1,a,w) — 4(St, Ae, W))
X VCA](St, At, W)
with an arbitrary policy b.

@ Deeper formulation using importance sampling possible.
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Dea d Iy TI’I ad Reinforcement Learning

Sutton-Barto's Deadly Triad

@ Function Approximation

o Bootstrapping
e Off-policy training

Stabilization Tricks
(Back to policy iteration),

@ Memory replay: sample from a set of episodes
@ Frozen Q: use the previous weights in the max
°

Clip/normalize rewards...

39



ACtOF— C rItIC Reinforcement Learning 4 X

@ Other approach with a parametric policy.

e Goal: minimize J(7) = E; [v(S5:)] (J = Ex [v(So)] epis.)
@ Simultaneous parameterization of the policy 7 by 8 (actor) and a value function v
by w (critic)
@ Update formula based on the policy gradient theorem:
VoJ(m) = E[(Q7(5t, Ac) — C(St)) Vi log m(At|S:])]
@ Approximate formula:
VoJ(m) ~ E[(Q(St, At, w) — C(St, w)) Vg log m(A¢|St])]
e REINFORCE: gradient descent for policy and MC estimate of @ function (with
C(S;) the average return so far).

@ AC: gradient descent for policy and TD estimate of Q (and C = V).

@ Online formulation but can be adapted to offline.

40



O Utl Ine Back to Prenatal Ultrasound 4

@ Back to Prenatal Ultrasound

41



Numel’lcal EXperlmentS Back to Prenatal Ultrasound 4 »

Naive approach: Breiman CART
@ Greedy policy that optimizes the expectation of next step entropy.

Baseline: Actor-critic with REINFORCE

@ Linearly parametrized policy using next step entropy expectation and other simple
features

Deep Q-Learning

@ Q-Learning with Neural Networks.

@ Nothing specific for the first two approaches...

42



Vel’y ngh DlmenSIOn Casel Back to Prenatal Ultrasound /"“

@ DQN is unstable with TD in our setting (too slow to backpropagate the rewards?)
@ Much better results using MC!
o Still hard to optimize everything from the beginning!

Dimension Reduction Trick
@ State space partitioning to solve several smaller sub-problems.

43



State Partltlon and MC Back to Prenatal Ultrasound 4 %

Bootstrap

Bootstrap

@—e Sous-tache déja résolue

@——@ Sous-tache a résoudre

@ Partition obtained by solving the problem starting from an anomaly and falling
back to previously computed strategy as soon as one reach a common state.

@ Similar to an n-step bootstrapping!

@ Works well with MC as n is not too large.

44




SUbtaSk DlmenSIOn Back to Prenatal Ultrasound Z

60

40

| ‘I I

Frequency

0

0 30 60 90

Sub-Task Dimension
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2

Optimal DeCiSion Tree fOI’ a Sma” SUbtaSk Back to Prenatal Ultrasound /'i
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Optimal Policy for Small Subsets?

Average number of questions to ask.

Back to Prenatal Ultrasound 4

354 Algorithm
—& Breiman policy
3279 - Energy-based policy learned with REINFORCE
—& Optimal Policy
28 1
24
2] {3
16 4 } 3 }
124 . s @ . Py
2 ¢ LS
s 3 3 3 %
= l L ]
4- ° *
5 10

Subtask Identifier.
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DQ N vs REIN FO RCE vs Breiman Back to Prenatal Ultrasound

Breiman

baseline: 1.8

Average number of guestions to ask
Average number of guestions to ask

lteration. lteration.

Task Dimension: 10 Task Dimension: 26
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DQNs vs REINFORCE vs Breiman SRR Y.

107 DQN
-®- NC With Bootstrap
-®- NC Without Bootstrap

! 1
0 250 500 750 1000
lteration

Task Dimension: 70
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Challenge: model the combination of abnormalities

typical of a rare disease

Diagnostic algorithm:

input: absence / presence of malformations, contextual
information

output: Probability of different diagnoses: isolated
anomaly (or fortuitous association) vs a basal syndrome
Recommendation algorithm:

input: absence / presence of malformations, contextual
information

output: interest score for the remaining anomalies to
be consulted

o  Challenges:

Unstructured data

No automatic image analysis,
therefore a need to list all the
relevant variables and make
them more reliable or set
reasonable mathematical
assumptions

Large dimension

300 diseases

600 anomalies

1000 ultrasound signs

%9 sonio confider,.
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Creation of a database from Orphanet

9000 syndroms

Base Orphanet

Age of Onset
Antenatal, Neonatal, NA

Prevalence >1/1 million

Description
contains
“ultrasound” or
“prenatal”
Cross-referencing with

Phenotip, Smith and 700 syndroms

Foetus.net

Human filter

) sonio 300 syndrom

[3

_Number of diseases
8 & 3

8

of rare

15 2 2
Estimated prevalence(/100 000)
‘Generates ve 77032015

<9 sonio confider..51



Resumption of thesaurus and phenotypic

annotation

Thesaurus

e International reference base: HPO
(Human Phenotype Ontology)

e Removal of non-diagnosable prenatal
abnormalities

e Merging of terms that are too close
(example: Retrognathia vs
Micrognathia)

e Addition of clean ultrasound signs

Expert literature review

e Lack of precision sometimes in

Orphanet

e Search for ad hoc articles and review

of phenotypes and probabilities

<9 sonio v:onfideu52



670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685

An extract from the database

Kabuki syndrome

Kabuki syndrome

Kabuki syndrome

Kabuki syndrome

Kabuki syndrome

Kabuki syndrome

Kabuki syndrome

Kabuki syndrome
Silver-Russell syndrome
Silver-Russell syndrome
Silver-Russell syndrome
Silver-Russell syndrome
Silver-Russell syndrome
Femur-fibula-ulna complex
Femur-fibula-ulna complex
Femur-fibula-ulna complex

2322
2322
2322
2322
2322
2322
2322
2322
813
813
813
813
813
2019
2019
2019

Depressed nasal bridge
Abnormal facial shape
Prominent nasal bridge
Macrotia

Atrial septal defect
Ventricular septal defect
Clinodactyly of the 5th finger
Cleft palate

Trigonocephaly

Downturned corners of mouth
Rocker bottom foot
Abnormality of male external genitalia
Toe syndactyly
Aplasia/Hypoplasia of the ulna
Humeroradial synostosis
Abnormality of the humerus

5280
1999
426
400
1631
1629
4209
175
243
2714
1838
32
1770
6495
3041
3063

Trés Fréquent (99-80%)
Fréquent (79-30%)
Occasionnel (29-5%)
Fréquent (79-30%)
Occasionnel (29-5%)
Occasionnel (29-5%)
Fréquent (79-30%)
Fréquent (79-30%)
Tres Fréquent (99-80%)
Fréquent (79-30%)
Fréquent (79-30%)
Fréquent (79-30%)
Fréquent (79-30%)
Fréquent (79-30%)
Fréquent (79-30%)
Occasionnel (29-5%)

80 %
NP

21%
70 %
21%
21%
60 %
60 %
94 %
50 %
45%
40 %
30%
35%
35%
15%

T2/T3
T2/T3
T2/T3
T2/T3
T2/T3
T2/T3
T2/T3
T2/T3
T2/T3
T2/T3
T2/T3
T2/T3
T2/T3
T2/T3
T2/T3
T1/T2/T3

%9 sonio confider,.
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Ontology of anomalies

Kidney

NEDRRE o RN e ey Angm‘:y“;;poma

,7,7,//\\@

Renal Y N Localization Of Duplicated . Axial i .. Hyperechogenic
Hypoplasia/aplasia HduRlinys Frtectiadsys Kidney Collecting System Of The Kidney RegeliZuplicaon Kidneys

/ \ N

Multicystic Multiple Renal Polycystic Kidney ~Cystic Renal
idney Dysplasia Cysts Dysplasia Dysplasia

Renal Dysplasia ~ Renal Cyst Fetal Pyel

tenal Hypoplasia Renal Agenesis Horseshoe Kidney Ectopic Kidney Ki

/\ /\

Unilateral Renal  Bilateral Renal Crossed Fused

Agenesis Agenesis Renal Ectopia " c1vic Kidney

P sonlo confider,.
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Similarity and ontologies

Noonan Syndrome

Clinical Diagnostics in Human Genetics
with Semantic Similarity Searches in
Ontologies, S. Khéler and al, AJHG
2009.

<9 sonio confider.‘55



Contextual information

Temporality of

variables Baby's gender Risk factors

<9 sonio confider.‘56



Causal links between malformations

Petit diamétre belleux
o |
K

DOPPLER montrant I'élévation torcular au dessus de I'arc transpalatin
[ o]
.
-

Cerebetiar vermis hypoplasia

premier trimestre (4-iine view)

Elargissement de fa grande citeme

Clé de légende

Lien
Constant

Vermis roté et ascensionné

Lien
Inconstant

Lien
Complication

<9 sonio confider..s7



OUtllne Sonio

© Sonio
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9 sonio

Securing prenatal diagnosis
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A and team to
make Sonio a standard of care in fetal diagnosis

@ 2 2 6

Cécile Brosset Rémi Besson Deepak Prakash Dagmar Nuber David Amouyal

CEO CsoO . CcTO Business developer Product Manager
HEC RANO b R e YEEON Tiice = creol. [ ]
Marketing / Business Medical strategy Product / Tech
) 9/ ) 1 Chief Medical Officer 1 data scientist General & Adm. Regulatory / QMS
1 Chief Marketing Officer N
N 1 medical consultant 1fullstack developer 4 freelancers 2 freelancers
2 interns K .
Tintern 1UX designer
J Founding Partners & Scientific Committee
AR
Necker Yves Ville (KOL prenatal diagnostic)

Jors HOPKINS

Julien Stirnemann (Clinical validation)
o Emmanuel Spaggiari (Database annotation)
Kisu Og s Stéphanie Allassonniére (Health Al / image)
Erwan Le Pennec (Datascience)

PRIAIIRIE
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The first product is the

Cloud-based
Standalone
[ ]
SONIo

Multi-data

Expert

Two patented algorithms
Tailored Decision Tree Optimised next step
Bayesian Network Real-time diagnosis

Curated expert database
HPO, Orphanet, Human expertise

User-friendly interface

Compliant web-architecture

61



Sonio’s symptom checker guides the practitioner in
real time during fetal ultrasound

1) In each anatomical
area, the practitioner
is provided with an
exhaustive check-list
of items according to
guidelines

5) Live questions on
risk factors or patient
history are triggered
based on the answers
given during the
exam

La patiente a-t-elle été infectée par le virus du cytomégalovirus ? oui Pass 1
_ _ J

62



Sonio fits to the hardware
ecosystem of the practitioner

Access Sonio on
any browser

or

Lease a specific ergonomic
equipment composed of a

tablet and an adjustable arm

All you need is a wi-fi or 4G connection




OUtllne Next steps

@ Next steps
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N eXt Ste pS Next steps

Medical Wandering

@ New PhD student (P. Clavier)

@ Goal: reduce the time to reach a diagnosis for rare disease. ..

@ but with a much smaller state space.

Actor-Critic Advances
@ TRPO: Replace the global goal by a simple local goal

m(At|St) }
I =Eryq Told 5T,A
° (W) |:7To|d(At|5t)Q ( 4 t)

e PPO: further simplification by clipping.

Distributional RL

@ Bellman operator for a given policy is a contraction for a return distribution
estimate.

@ Allow taking into account risk (or more) into the goal. .. 65



Take Away Message Next steps

Medical Goals
@ Help obstetricians by improving/systematizing ultrasonic diagnostic (MDP
modeling)

@ Guide a (non rare-disease expert) sonographer to assess as fast as possible
potential diseases (first product at Sonio)

Technical Goals

@ Build an optimized decision tree:
o Need to learn the environment (MaxEnt and data assim.)
e Reinforcement learning (Param. policy and MC vs Deep Q)

o Not yet (theoretical) guarantees.

Take Away Message
@ Reinforcement learning (or MDP) is an interesting tool.

@ Formalization requires a true dialog between the mathematicians and the
practicians.

@ Product available at Sonio.
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Creative Commons Attribution-ShareAlike (CC BY-SA 4.0)

@ You are free to:
@ Share: copy and redistribute the material in any medium or format
@ Adapt: remix, transform, and build upon the material for any purpose, even commercially.
@ Under the following terms:
@ Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in
any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
@ ShareAlike: If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the
original.
@ No additional restrictions: You may not apply legal terms or technological measures that legally restrict others from doing anything

the license permits.
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