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Ultrasound DiagnosticBirth and Rare Diseases

A Few Numbers
780 000 births/year in France, 5 millions births/year in Europe
3 to 4% are affected by at least one congenital anomalies
Rare diseases: 3 millions patients in France, 30 millions in Europe.

3



Ultrasound DiagnosticMedical Setting

Prenatal Ultrasound Diagnosis
France: three compulsory ultrasound tests during pregnancy.
Some classical measures (e.g. Down syndrome).
No strict examination protocol.

Necker Hospital Obstetrician
Rare disease expertise.
Among world largest medical database.
Will to systematize their knowledge. 4



Ultrasound DiagnosticProposed Tool

Ultrasound as a Sequential Process
Ultrasound exam seen as a sequence of measures.
Goals:

Reduce the time required to obtain a diagnosis
Avoid missing a rare disease.

Diagnosis Assistance Tool
Propose the next measure to make.
Show the current most probable diseases.
Easy to use GUI implemented in R!

What’s inside this tool?

5



Ultrasound DiagnosticCharade
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Ultrasound DiagnosticCharade
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Data and FrameworkData at Hands

Rare diseases: very few cases even in the world’s largest DB!

Excel Type Dataset
Expert database build from OrphaData (E. Spaggiari).
81 diseases, 202 symptoms (signs visible with ultrasound):

Disease probability: P[D = dj ]
Symptom probability given each disease: P[Si = k | D = dj ].

Database will be enriched from the future exams.
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Data and FrameworkOur Goals

Medical Goals
Guide a (not rare-disease expert) sonographer to assess as fast as possible
potential diseases.
Propose her/him the next symptom to check.

Technical Goals
Build a good decision tree (a good policy).
Develop a GUI that can be easily used.
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Data and FrameworkMarkov Decision Process

State, Action and Policy
State: S = {P, A, U}202 (presence, absence, not yet looked at) for each symptom.
Action: A = {1, . . . , 202} next symptom.
Policy: π : s ∈ S 7→ a ∈ A next symptom given the state.

Probabilistic setting
Natural Markovian modeling: St+1 depends only on St and at !

Markovian Decision Process
Any strategy π defines a law on (St) starting from S0.
Let T be the stopping time before a diagnosis can be posed.
We need to find π⋆ such that π⋆(S0) = argminπ E[T |S0]!
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Data and FrameworkProblems to be Solved

Environment Learning with Maximum Entropy Principle
We have P[Si | D], but we need to know P[Si1 , ..., SiK | D].
We need to take into account future exams.
Idea: add some expert knowledge and maximize uncertainty, interpolate between
the expert model and the data.

Yields a simulator rather than the MDP transition proba...
Diagnostic Strategy Optimization by Reinforcement Learning

Find a policy that allows to detect the disease while minimizing the average
duration.
Idea: recast the problem as a planning issue and find the optimal strategy. 12



Data and FrameworkDiagnostic Strategy Optimization

Diagnostic Strategy Optimization.
Find a policy that allows to detect the disease while minimizing the average
duration.

Measure of Performance
Number of questions before being able to diagnose a disease.

Alternative Formulations
Trade-off: cost of misdiagnosis/cost of medical tests to perform.
Reach the lowest uncertainty under fixed budget constraint (time, money).

Non Adversarial Game
The disease and symptoms do not change during the exam.
Strategy: given what has been seen, what is the next symptom to look at?
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Data and FrameworkStochastic Shortest Path

Stochastic Shortest Path
T is a stooping time at some final states
How to minimize the expectation of T?

Final States
Entropy based criterion: H(D | S) ≤ ϵ

MDP
Rewards: ∀St , at , r(St , at) = −1 14
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Reinforcement LearningReinforcement Learning

Reinforcement Learning Setting
Env.: provides a reward and a new state for any action.
Agent policy π: choice of an action At from the state St .
Total reward: (discounted) sum of the rewards.

Questions
Policy evaluation: how to evaluate the expected reward of a policy knowing the
environment?
Planning: how to find the best policy knowing the environment?
Reinforcement Learning: how to find the best policy without knowing the
environment?
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Reinforcement LearningThe Agent-Environment Interface

MDP
At time step t ∈ N :

State St ∈ S: representation of the environment
Action At ∈ A(St): action chosen
Reward Rt+1 ∈ R: instantaneous reward
New state St+1

Dynamic entirely defined by
P

(
St = s ′, Rr = r

∣∣St−1 = s, At−1 = a
)

= p(s ′, r |s, a)

Finite MDP: S, A and R are finite.
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Reinforcement LearningReturns and Episodes

Return
(Discounted) Return:

Gt =
T∑

t′=t+1
γt′Rt′

Recursive property
Gt = Rt+1 + γGt+1

Finiteness if |R| ≤ M

|Gt | ≤
{

(T − t −+1)M if T <∞
M 1

1−γ otherwise
Not well defined if T =∞ and γ = 1.
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Reinforcement LearningPolicies and Value Functions

Policy and Value Functions
Policy: π(a|s)
Value function:

vπ(s) = Eπ [Gt |St = s] = Eπ

[ ∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s
]

Action value function:
qπ(s, a) = Eπ [Gt |St = s, At = a]

Two natural problems
Policy evaluation: compute vπ given π.
Planning: find π⋆ such that vπ⋆(s) ≥ vπ(s) for all s and π.

Those objects may not exist in general!
Can be traced back to the 50’s!
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Reinforcement LearningPolicy Evaluation by Bellman Backup

Fixed Point Property
Bellman Equation

vπ(s) =
∑

a
π(a|s)

∑
s′

∑
r

p(s ′, r |s, a)
[
r + γvπ(s ′)

]
= Tπ(vπ)(s)

Linear equation that can be solved.

Policy Evaluation by Dynamic Programming
Fixed point iterative algorithm: vk+1(s) = Tπ(vk)(s)

Converge if T <∞ or γ < 1.
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Reinforcement LearningPlanning by Policy Improvement
Policy Improvement Property

If π′ is such that ∀s, qπ(s, π′(s)) ≥ vπ(s) then vπ′ ≥ vπ.

ϵ-greedy improvement among ϵ-policy: classical improvement degraded by picking
uniformly the action with probability ϵ

Policy Iteration Algorithm
Compute vπk

Greedy update:
πk+1(s) = argmax

a
qπk (s, a)

= argmax
a

∑
s′,r

p(s ′, r |s, a)
(
r + γvπk (s ′)

)
If π′ = π after a greedy update vπk+1 = vπk = v∗.

Convergence in finite time in the finite setting.
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Reinforcement LearningPlanning by Bellman Backup

Fixed Point Property
Bellman Equation

v∗(s) = max
a

∑
s′

∑
r

p(s ′, r |s, a)
[
r + γv∗(s ′)

]
= T∗(v∗)(s)

Linear programming problem that can be solved.

Policy Evaluation by Dynamic Programming
Iterative algorithm: vk+1(s) = T∗(vk)(s)

Converge if T <∞ or γ < 1.
Amount to improve the policy after only one step of policy evaluation.
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Reinforcement LearningPlanning by Bellman Backup
Q-value and enhancement

Q-value:

qπ(s, a) =
∑
s′

∑
r

p(s ′, r |s, a)
[
r + γ

∑
a′

π(a′|s ′)qπ(s ′, a′)
]

Easy policy enhancement: π′(s) = argmax
a

q(s, a)

Fixed Point Property
Bellman Equation

q∗(s, a) =
∑
s′

∑
r

p(s ′, r |s, a)
[
r + γ max

a′
q∗(s ′, a′)

]
= T∗(q∗)(s, a)

Linear programming problem that can be solved.
Policy Evaluation by Dynamic Programming

Iterative algorithm: qk+1(s, a) = T∗(qk)(s, a)
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Reinforcement LearningGeneralized Policy Iteration

Generalized Policy Iteration
Consists of two simultaneous interacting processes:

one making a value function consistent with the current policy (policy evaluation)
one making the policy greedy with respect to the current value function (policy
improvement)

Stabilizes only if one reaches the optimal value/policy pair.
Asynchronous update are possible, provided every state(/action) is visited
infinitely often.
Very efficient but requires the knowledge of the transition probabilities.
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Reinforcement LearningReinforcement Learning

Reinforcement Learning - Sutton (98)
An agent takes actions sequentially, receives rewards from the environment and
tries to maximize its long-term (cumulative) reward.

Reinforcement Learning
MDP setting with cumulative reward.
Planning problem.
Environment known only through interaction, i.e. some sequences
· · · StAtRt+1St+1At+1 · · · .
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Reinforcement LearningMonte Carlo
MC Methods

Back to vπ(s) = Eπ [Gt |St = s].
Monte Carlo:

Play several episodes using policy π.
Average the returns obtained after any state s.

Good theoretical properties provided every state is visited asymptotically infinitely
often.

Extensions
Extension to off-policy setting (behavior policy b ̸= target policy π) with
importance sampling.
Extension to planning with policy improvement steps

No theoretical results for the last case.
Need to wait until the end of an episode to update anything...
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Reinforcement LearningBootstrap and TD Prediction

Bootstrap and TD
Rely on

vπ(s) = Tπvπ(s)
= E [Rt+1 + γvπ(St+1)|St = s]

Temporal Difference: stochastic approximation scheme
V (St)← V (St) + α (Rt+1 + γV (St+1)− V (St))

Update occurs at each time step.
Can be proved to converge (under some assumption on α)!

Combine the best of Dynamic Programming and MC.
Can be written in terms of Q:

Q(St , At)← Q(St , At) + α (Rt+1 + γQ(St+1, At+1)− Q(St , At))
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Reinforcement LearningSARSA and Q Learning
How to use this principle to obtain the best policy?

SARSA: Planning by Prediction and Improvement (online)
Update Q following the current policy π

Q(St , At)← Q(St , At) + α (Rt+1 + γQ(St+1, At+1)− Q(St , At))
Update π by policy improvement.

May not converge if one use a greedy policy update.

Q Learning: Planning by Bellman Backup (off-line)
Update Q following the behavior policy b

Q(St , At)← Q(St , At) + α
(
Rt+1 + γ max

a
Q(St+1, a)− Q(St , At)

)
No need to use importance sampling correction for depth 1 update.

Proof of convergence in both cases.
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Reinforcement LearningVariations

Depth
Number of steps in the update. x

Width
Number of states/actions considered at each step.
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Reinforcement LearningPlanning and Learning

Planning and Models
Planning can combine a model estimation (DP) and direct learning (RL).

Real Time Planning
Planning can be made online starting from the current state.

Curse of dimensionality: methods are hard to use when the cardinality of the
states and the actions are large!

33



Reinforcement LearningOutline

1 Prenatal Ultrasound and Rare Disease Diagnostic

2 Data at Hands and Proposed Framework

3 Reinforcement Learning
Markov Decision Processes
Dynamic Programming
Reinforcement Setting
Reinforcement and Approximation

4 Back to Prenatal Ultrasound

5 Sonio

6 Next steps

7 References

34



Reinforcement LearningValue Function Approximation

Value Function Approximation
Idea: replace v(s) by a parametric v̂(s, w).
Issues:

Which approximation functions?
How to define the quality of the approximation?
How to estimate w?

Approximation functions
Any parametric (or kernel based) approximation could be used.
Most classical choice:

Linear approximation.
Deep Neural Nets...
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Reinforcement LearningApproximation Quality

How define when v̂(·, w) is close to vπ (or v∗)

Prediction(/Control)
Prediction objective: ∑

s
µ(s)(vπ(s)− v̂(s, w))2

Bellman Residual: ∑
s

µ(s)(Tπ v̂(s, w)− v̂(s, w))2

or its projection...

Issue: Neither vπ or Tπ are known...
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Reinforcement LearningOnline Gradient and Semi-Gradient
Online Prediction

SGD algorithm on w :
w t+1 = w t + α (vπ(St)− v̂(St , w))∇v̂(St , w)

MC approximation (still SGD):
w t+1 = w t + α (Gt − v̂(St , w))∇v̂(St , w)

TD approximation (not SGD anymore):
w t+1 = w t + α (Rt+1 + γv̂(St+1, w t)− v̂(St , w))∇v̂(St , w)

Deeper or wider scheme possible.

Online Control
SARSA-like algorithm:

Prediction step as previously with the current policy
w t+1 = w t + α (Rt+1 + γq̂(St+1, At+1, w)− q̂(St , At , w))∇q̂(St , At , w)

ϵ-greedy update of the current policy
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Reinforcement LearningOffline Control with Approximation

Offline Control
Q-Learning like algorithm:

w t+1 = w t + α
(
Rt+1 + γ max

a
q̂(St+1, a, w)− q̂(St , At , w)

)
×∇q̂(St , At , w)

with an arbitrary policy b.
Deeper formulation using importance sampling possible.

Issue: Hard to make it converge in general!
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Reinforcement LearningDeadly Triad

Sutton-Barto’s Deadly Triad
Function Approximation
Bootstrapping
Off-policy training

Stabilization Tricks
(Back to policy iteration),
Memory replay: sample from a set of episodes
Frozen Q: use the previous weights in the max
Clip/normalize rewards...
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Reinforcement LearningActor-Critic
Other approach with a parametric policy.

Actor-Critic
Goal: minimize J(π) = Eπ [v(St)] (J = Eπ [v(S0)] epis.)
Simultaneous parameterization of the policy π by θ (actor) and a value function v
by w (critic)
Update formula based on the policy gradient theorem:

∇θJ(π) = E [(Qπ(St , At)− C(St))∇θ log π(At |St ])]
Approximate formula:

∇θJ(π) ≃ E [(Q(St , At , w)− C(St , w))∇θ log π(At |St ])]
REINFORCE: gradient descent for policy and MC estimate of Q function (with
C(St) the average return so far).
AC: gradient descent for policy and TD estimate of Q (and C = V ).

Online formulation but can be adapted to offline.
40



Back to Prenatal UltrasoundOutline

1 Prenatal Ultrasound and Rare Disease Diagnostic

2 Data at Hands and Proposed Framework

3 Reinforcement Learning
Markov Decision Processes
Dynamic Programming
Reinforcement Setting
Reinforcement and Approximation

4 Back to Prenatal Ultrasound

5 Sonio

6 Next steps

7 References

41



Back to Prenatal UltrasoundNumerical Experiments

Naive approach: Breiman CART
Greedy policy that optimizes the expectation of next step entropy.

Baseline: Actor-critic with REINFORCE
Linearly parametrized policy using next step entropy expectation and other simple
features

Deep Q-Learning
Q-Learning with Neural Networks.

Nothing specific for the first two approaches...
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Back to Prenatal UltrasoundVery High Dimension Case!
Issues

DQN is unstable with TD in our setting (too slow to backpropagate the rewards?)
Much better results using MC!
Still hard to optimize everything from the beginning!

Dimension Reduction Trick
State space partitioning to solve several smaller sub-problems.
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Back to Prenatal UltrasoundState Partition and MC

Partition obtained by solving the problem starting from an anomaly and falling
back to previously computed strategy as soon as one reach a common state.
Similar to an n-step bootstrapping!
Works well with MC as n is not too large.

Task ordering issue has to be solved!
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Back to Prenatal UltrasoundSubtask Dimension
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Back to Prenatal UltrasoundOptimal Decision Tree for a Small Subtask

46



Back to Prenatal UltrasoundOptimal Policy for Small Subsets?
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Back to Prenatal UltrasoundDQN vs REINFORCE vs Breiman

Task Dimension: 10 Task Dimension: 26
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Back to Prenatal UltrasoundDQNs vs REINFORCE vs Breiman

Task Dimension: 70
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Challenge: model the combination of abnormalities 
typical of a rare disease

confidential

 
Diagnostic algorithm: 
input: absence / presence of malformations, contextual 
information 
output: Probability of different diagnoses: isolated 
anomaly (or fortuitous association) vs a basal syndrome
Recommendation algorithm:
input: absence / presence of malformations, contextual 
information
output: interest score for the remaining anomalies to 
be consulted

○ Challenges:
■ Unstructured data
■ No automatic image analysis, 

therefore a need to list all the 
relevant variables and make 
them more reliable or set 
reasonable mathematical 
assumptions

■ Large dimension
■ 300 diseases
■ 600 anomalies
■ 1000 ultrasound signs
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Creation of a database from Orphanet

confidential

Base Orphanet

Age of Onset 
Antenatal, Neonatal, NA

Prevalence >1/1 million

Description 
contains 

“ultrasound” or 
“prenatal”

Cross-referencing with 
Phenotip, Smith and 

Foetus.net

9000 syndroms

700 syndroms

Human filter

300 syndrom

s

> 99% 
prevalence 51



Resumption of thesaurus and phenotypic 
annotation

confidential

● International reference base: HPO 
(Human Phenotype Ontology)

● Removal of non-diagnosable prenatal 
abnormalities

● Merging of terms that are too close 
(example: Retrognathia vs 
Micrognathia)

● Addition of clean ultrasound signs

Thesaurus Expert literature review

● Lack of precision sometimes in 
Orphanet

● Search for ad hoc articles and review 
of phenotypes and probabilities
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An extract from the database

confidential53



Ontology of anomalies

confidential54



Similarity and ontologies

confidential

Clinical Diagnostics in Human Genetics 
with Semantic Similarity Searches in 
Ontologies, S. Khöler and al, AJHG 
2009. 
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Contextual information

Temporality of 
variables Risk factorsBaby's gender

confidential56



Causal links between malformations

confidential57
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Securing prenatal diagnosis
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A multidisciplinary and complementary team to 
make Sonio a standard of care in fetal diagnosis

Cécile Brosset
CEO

Rémi Besson
CSO

Deepak Prakash
CTO

Dagmar Nuber
Business developer

David Amouyal
Product Manager

Marketing / Business
1 Chief Marketing Officer

2 interns

Medical strategy
1 Chief Medical Officer
1 medical consultant

1 intern

Product / Tech
1 data scientist

1 fullstack developer 
1 UX designer

General & Adm.
4 freelancers

Regulatory / QMS
2 freelancers

Founding Partners & Scientific Committee

Yves Ville (KOL prenatal diagnostic)
Julien Stirnemann (Clinical validation)

Emmanuel Spaggiari (Database annotation)
Stéphanie Allassonnière (Health AI / image)

Erwan Le Pennec (Datascience)
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The first product is the symptom checker 

Two patented algorithms
Tailored Decision Tree Optimised next step

Bayesian Network Real-time diagnosis

Curated expert database
HPO, Orphanet, Human expertise

User-friendly interface

Compliant web-architecture

Cloud-based

Standalone

Multi-data

Expert
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Sonio’s symptom checker guides the practitioner in 
real time during fetal ultrasound

Product description

Sonio shows real time probabilities
of isolated abnormalities or rare diseases

(S)he types in the first anomaly 
(s)he sees (search for 600+ 

ultrasound visible signs)

Sonio automatically suggests most 
probable associated signs for the 

practitioner to check their presence or 
absence

1) In each anatomical 
area, the practitioner 
is provided with an 
exhaustive check-list 
of items according to 
guidelines

5) Live questions on 
risk factors or patient 
history are triggered 
based on the answers 
given during the 
exam

4) Given the previous 
inputs, Sonio might 
suggest to check other 
anatomical areas (white 
dot)  

2) If there is an 
anomaly, the 
practitioner can click 
on the corresponding 
item

3) The practitioner 
selects the anomaly 
he/she has spotted and 
Sonio suggests other 
anomalies to check 
within the same 
anatomical area
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Sonio fits to the hardware 
ecosystem of the practitioner

or

Samsung

GE Canon

All you need is a wi-fi or 4G connection

Access Sonio on 
any browser 

Lease a specific ergonomic 
equipment composed of a 

tablet and an adjustable arm 
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Next stepsNext steps
Medical Wandering

New PhD student (P. Clavier)
Goal: reduce the time to reach a diagnosis for rare disease. . .
but with a much smaller state space.

Actor-Critic Advances
TRPO: Replace the global goal by a simple local goal

Jπold(π) = Eπold

[
π(At |St)

πold(At |St)
Qπold(ST , At)

]
PPO: further simplification by clipping.

Distributional RL
Bellman operator for a given policy is a contraction for a return distribution
estimate.
Allow taking into account risk (or more) into the goal. . . 65



Next stepsTake Away Message
Medical Goals

Help obstetricians by improving/systematizing ultrasonic diagnostic (MDP
modeling)
Guide a (non rare-disease expert) sonographer to assess as fast as possible
potential diseases (first product at Sonio)

Technical Goals
Build an optimized decision tree:

Need to learn the environment (MaxEnt and data assim.)
Reinforcement learning (Param. policy and MC vs Deep Q)

Not yet (theoretical) guarantees.

Take Away Message
Reinforcement learning (or MDP) is an interesting tool.
Formalization requires a true dialog between the mathematicians and the
practicians.
Product available at Sonio.
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