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Ultrasound DiagnosticBirth and Rare Diseases

A Few Numbers
780.000 births/year in France, 5 millions births/year in Europe
3 to 4% are affected by at least one congenital abnomalies
Rare diseases: 3 millions patients in France, 30 millions in
Europe.



Ultrasound DiagnosticMedical Setting

Prenatal Ultrasound Diagnosis
France: three compulsory ultrasound tests during pregnancy.
Some classical measures (e.g. Down syndrome).
No strict examination protocol.

Necker Hospital Obstetrician
Rare disease expertise.
Among world largest medical database.
Will to systematize their knowledge.



Ultrasound DiagnosticProposed Tool

Ultrasound as a Sequential Process
Ultrasound exam seen as a sequence of measures.
Goals:

Reduce the time required to obtain a diagnosis
Avoid to miss a rare disease.

Diagnosis Assistance Tool
Propose the next measure to make.
Show the current most probable diseases.
Easy to use GUI implemented in R!

What’s inside this tool?
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Data and FrameworkData at Hands

Rare diseases: very few cases even in the world largest DB!

Excel Type Dataset
Expert database build from OrphaData (E. Spaggiari).
81 diseases, 202 symptoms (signs visible with ultrasound):

Disease probability: P[D = dj ]
Symptom probability given each disease: P[Si = k | D = dj ].

Database will be enriched from the future exams.



Data and FrameworkOur Goals

Medical Goals
Guide a (non rare disease expert) sonographer to assess as
fast as possible potential diseases.
Propose her/him the next symptom to check.

Technical Goals
Build a good decision tree (a good policy).
Develop a GUI that can be easily used.



Data and FrameworkMarkov Decision Process

State, Action and Policy
State: S = {P,A,U}202 (presence,absence,not yet looked at)
for each symptom.
Action: A = {1, . . . , 202} next symptom.
Policy: π : s ∈ S 7→ a ∈ A next symptom given the state.

Probabilistic setting
Natural Markovian modeling: St+1 depends only on St and at !

Markovian Decision Process
Any strategy π defines a law on (St) starting from S0.
Let T be the stopping time before a diagnosis can be posed.
We need to find π? such that π?(S0) = argminπ E[T |S0]!



Data and FrameworkProblems to be Solved

Environment Learning with Maximum Entropy Principle
We have P[Si | D] but we need to know P[Si1 , ...,SiK | D].
We need to take into account future exams.
Idea: add some expert knowledge and maximize uncertainty,
interpolate between the expert model and the data.

Yields a simulator rather than the MDP transition proba...
Diagnostic Strategy Optimization by Reinforcement Learning

Find a policy that allows to detect the disease while
minimizing the average duration.
Idea: recast the problem as a planning issue and find the
optimal strategy.



Data and FrameworkDiagnostic Strategy Optimization
Diagnostic Strategy Optimization.

Find a policy that allows to detect the disease while
minimizing the average duration.

Measure of Performance
Number of questions before being able to diagnose a disease.

Alternative Formulations
Trade-off: cost of misdiagnosis/cost of medical tests to
perform.
Reach the lowest uncertainty under fixed budget constraint
(time, money).

Non Adversarial Game
The disease and symptoms do not change during the exam.
Strategy: given what has been seen, what is the next
symptom to look at?



Data and FrameworkStochastic Shortest Path

Stochastic Shortest Path
T is a stooping time at some final states
How to minimize the expectation of T?

Final States
Entropy based criterion: H(D | S) ≤ ε

MDP
Rewards: ∀St , at , r(St , at) = −1
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Reinforcement
Learning

Reinforcement Learning

Reinforcement Learning Setting
Env.: provides a reward and a new state for any action.
Agent policy π: choice of an action At from the state St .
Total reward: (discounted) sum of the rewards.

Questions
Policy evaluation: how to evaluate the expected reward of a
policy knowing the environment?
Planning: how to find the best policy knowing the
environment?
Reinforcement Learning: how to find the best policy
without knowing the environment?
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Reinforcement
Learning

The Agent-Environment Interface

MDP
At time step t ∈ N :

State St ∈ S: representation of the environment
Action At ∈ A(St): action chosen
Reward Rt+1 ∈ R: instantaneous reward
New state St+1

Dynamic entirely defined by
P
(
St = s ′,Rr = r

∣∣St−1 = s,At−1 = a
)

= p(s ′, r |s, a)

Finite MDP: S, A and R are finite.



Reinforcement
Learning

Returns ans Episodes

Return
(Discounted) Return:

Gt =
T∑

t′=t+1
γt′Rt′

Recursive property
Gt = Rt+1 + γGt+1

Finiteness if |R| ≤ M

|Gt | ≤
{

(T − t −+1)M if T <∞
M 1

1−γ otherwise
Not well defined if T =∞ and γ = 1.



Reinforcement
Learning

Policies and Value Functions

Policy and Value Functions
Policy: π(a|s)
Value function:

vπ(s) = Eπ [Gt |St = s] = Eπ

[ ∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s
]

Action value function:
qπ(s, a) = Eπ [Gt |St = s,At = a]

Two natural problems
Policy evaluation: compute vπ given π.
Planning: find π? such that vπ?(s) ≥ vπ(s) for all s and π.

Those objects may not exist in general!
Can be traced back to the 50’s!
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Reinforcement
Learning

Policy Evaluation by Bellman Backup

Fixed Point Property
Bellman Equation

vπ(s) =
∑

a
π(a|s)

∑
s′

∑
r
p(s ′, r |s, a)

[
r + γvπ(s ′)

]
= Tπ(vπ)(s)

Linear equation that can be solved.

Policy Evaluation by Dynamic Programming
Fixed point iterative algorithm: vk+1(s) = Tπ(vk)(s)

Converge if T <∞ or γ < 1.



Reinforcement
Learning

Planning by Policy Improvement

Policy Improvement Property
If π′ is such that ∀s, qπ(s, π′(s)) ≥ vπ(s) then vπ′ ≥ vπ.

ε-greedy improvement among ε-policy: classical improvement
degraded by picking uniformly the action with probability ε

Policy Iteration Algorithm
Compute vπk

Greedy update:
πk+1(s) = argmax

a
qπk (s, a)

= argmax
a

∑
s′,r

p(s ′, r |s, a)
(
r + γvπk (s ′)

)
If π′ = π after a greedy update vπk+1 = vπk = v∗.

Convergence in finite time in the finite setting.



Reinforcement
Learning

Planning by Bellman Backup

Fixed Point Property
Bellman Equation
v∗(s) = max

a

∑
s′

∑
r
p(s ′, r |s, a)

[
r + γv∗(s ′)

]
= T∗(v∗)(s)

Linear programming problem that can be solved.

Policy Evaluation by Dynamic Programming
Iterative algorithm: vk+1(s) = T∗(vk)(s)

Converge if T <∞ or γ < 1.
Amount to improve the policy after only one step of policy
evaluation.



Reinforcement
Learning

Planning by Bellman Backup

Q-value and enhancement
Q-value:

qπ(s, a) =
∑
s′

∑
r
p(s ′, r |s, a)

[
r + γ

∑
a′

π(a′|s ′)qπ(s ′, a′)
]

Easy policy enhancement: π′(s) = argmax
a

q(s, a)

Fixed Point Property
Bellman Equation

q∗(s, a) =
∑
s′

∑
r
p(s ′, r |s, a)

[
r + γmax

a′
q∗(s ′, a′)

]
= T∗(q∗)(s, a)

Linear programming problem that can be solved.

Policy Evaluation by Dynamic Programming
Iterative algorithm: qk+1(s, a) = T∗(qk)(s, a)



Reinforcement
Learning

Generalized Policy Iteration

Generalized Policy Iteration
Consists of two simultaneous interacting processes:

one making a value function consistent with the current policy
(policy evaluation)
one making the policy greedy with respect to the current value
function (policy improvement)

Stabilizes only if one reaches the optimal value/policy pair.
Asynchronous update are possible provided every
state(/action) is visited infinitely often.
Very efficient but requires the knowledge of the transition
probabilities.
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Reinforcement
Learning

Reinforcement Learning

Reinforcement Learning - Sutton (98)
An agent takes actions in a sequential way, receives rewards
from the environment and tries to maximize his long-term
(cumulative) reward.

Reinforcement Learning
MDP setting with cumulative reward.
Planning problem.
Environment known only through interaction, i.e. some
sequences · · · StAtRt+1St+1At+1 · · · .



Reinforcement
Learning

Monte Carlo

MC Methods
Back to vπ(s) = Eπ [Gt |St = s].
Monte Carlo:

Play several episodes using policy π.
Average the returns obtained after any state s.

Good theoretical properties provided every states are visited
asymptoticaly infinitely often.

Extensions
Extension to off-policy setting (behavior policy b 6= target
policy π) with importance sampling.
Extension to planning with policy improvement steps

No theoretical results for the last case.
Need to wait until the end of an episode to update anything...



Reinforcement
Learning

Bootstrap and TD Prediction

Bootstrap and TD
Rely on

vπ(s) = Tπvπ(s)
= E [Rt+1 + γvπ(St+1)|St = s]

Temporal Difference: stochastic approximation scheme
V (St)← V (St) + α (Rt+1 + γV (St+1)− V (St))

Update occurs at each time step.
Can be proved to converge (under some assumption on α)!

Combine the best of Dynamic Programing and MC.
Can be written in term of Q:
Q(St ,At)← Q(St ,At) + α (Rt+1 + γQ(St+1,At+1)− Q(St ,At))



Reinforcement
Learning

SARSA and Q Learning

How to use this principle to obtain the best policy?

SARSA: Planning by Prediction and Improvement (online)
Update Q following the current policy π

Q(St ,At)← Q(St ,At) + α (Rt+1 + γQ(St+1,At+1)− Q(St ,At))
Update π by policy improvement.

May not converge if one use a greedy policy update

Q Learning: Planning by Bellman Backup (off-line)
Update Q following the behavior policy b

Q(St ,At)← Q(St ,At) + α
(
Rt+1 + γmax

a
Q(St+1, a)− Q(St ,At)

)
No need to use importance sampling correction for depth 1
update.

Proof of convergence in both cases.



Reinforcement
Learning

Variations

Depth
Number of steps in the update. x

Width
Number of states/actions considered at each step.



Reinforcement
Learning

Planning and Learning

Planning and Models
Planning can combine a model estimation (DP) and direct
learning (RL).

Real Time Planning
Planning can be made online starting from the current state.

Curse of dimensionality: methods are hard to use when the
cardinality of the states and the actions are large!
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Reinforcement
Learning

Value Function Approximation

Value Function Approximation
Idea: replace v(s) by a parametric v̂(s,w).
Issues:

Which approximation functions?
How to define the quality of the approximation?
How to estimate w?

Approximation functions
Any parametric (or kernel based) approximation could be used.
Most classical choice:

Linear approximation.
Deep Neural Nets...



Reinforcement
Learning

Approximation Quality

How define when v̂(·,w) is close to vπ (or v∗)

Prediction(/Control)
Prediction objective:∑

s
µ(s)(vπ(s)− v̂(s,w))2

Bellman Residual:∑
s
µ(s)(Tπ v̂(s,w)− v̂(s,w))2

or its projection...

Issue: Neither vπ or Tπ are known...



Reinforcement
Learning

Online Gradient and Semi-Gradient

Online Prediction
SGD algorithm on w :

wt+1 = wt + α (vπ(St)− v̂(St ,w))∇v̂(St ,w)
MC approximation (still SGD):

wt+1 = wt + α (Gt − v̂(St ,w))∇v̂(St ,w)
TD approximation (not SGD anymore):
wt+1 = wt + α (Rt+1 + γv̂(St+1,wt)− v̂(St ,w))∇v̂(St ,w)

Deeper or wider scheme possible.

Online Control
SARSA-like algorithm:

Prediction step as previously with the current policy
wt+1 = wt + α (Rt+1 + γq̂(St+1,At+1,w)− q̂(St ,At ,w))∇q̂(St ,At ,w)

ε-greedy update of the current policy



Reinforcement
Learning

Offline Control with Approximation

Offline Control
Q-Learning like algorithm:

wt+1 = wt + α
(
Rt+1 + γmax

a
q̂(St+1, a,w)− q̂(St ,At ,w)

)
×∇q̂(St ,At ,w)

with an arbitrary policy b.
Deeper formulation using importance sampling possible.

Issue: Hard to make it converge in general!



Reinforcement
Learning

Deadly Triad

Sutton-Barto’s Deadly Triad
Function Approximation
Bootstrapping
Off-policy training

Stabilization Tricks
(Back to policy iteration),
Memory replay: sample from a set of episodes
Frozen Q: use the previous weights in the max
Clip/normalize rewards...



Reinforcement
Learning

Actor-Critic

Other approach with a parametric policy.

Actor-Critic
Simultaneous parameterization of

the policy π by θ,
the value function s by w

Simultaneous update:
δt = Rt + γv̂(St+1,w)− v̂(St ,w)

θt+1 = θt+1 + αδt
∇π(a|St ,θ)
π(a|St ,θ)

wt+1 = wt+1 + αδt∇v̂(St ,w)

Online approach
Can be adapted to continuous actions.
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Back to Prenatal
Ultrasound

Numerical Experiments

Naive approach: Breiman CART
Greedy policy that optimize the expectation of next step
entropy.

Baseline: Actor-critic with REINFORCE
Linearly parametrized policy using next step entropy
expectation and other simple features

Deep Q-Learning
Q-Learning with Neural Networks.

Nothing specific for the first two approaches...



Back to Prenatal
Ultrasound

Very High Dimension Case!

Issues
DQN is unstable with TD in our setting (too slow to
backpropagate the rewards?)
Much better results using MC!
Still hard to optimize everything from the beginning!

Dimension Reduction Trick
State space partitioning to solve several smaller sub-problems.



Back to Prenatal
Ultrasound

State Partition and MC

Partition obtained by solving the problem starting from an
abnomalies and falling back to previously computed strategy
as soon as one reach a common state.
Similar to a n-step bootstrapping!
Works well with MC as n is not too large.

Task ordering issue has to be solved!
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Subtask Dimension
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Ultrasound

Optimal Decision Tree for a Small
Subtask
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Ultrasound

Optimal Policy for Small Subsets?
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Ultrasound

DQN vs REINFORCE vs Breiman

Task Dimension: 10 Task Dimension: 26



Back to Prenatal
Ultrasound

DQNs vs REINFORCE vs Breiman

Task Dimension: 70



Back to Prenatal
Ultrasound

DQNs vs REINFORCE vs Breiman

Task Dimension: 29 Task Dimension: 104



Back to Prenatal
Ultrasound

Take Away Message
Medical Goals

Help obstetricians by improving/systematizing ultrasonic
diagnostic (MDP modeling)
Guide a (non rare disease expert) sonographer to assess as fast
as possible potential diseases (first prototype at Necker)

Technical Goals
Build an optimized decision tree:

Need to learn the environment (MaxEnt and data assim.)
Reinforcement learning (Param. policy and MC vs Deep Q)

Not yet (theoretical) guarantees.

Take Away Message
Reinforcement learning (or MDP) is an interesting tool.
Formalization requires a true dialog between the
mathematicans and the practicians.
First prototype already tested by Necker.
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The Team
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