Optimization of a sequential decision problem in

prenatal ultrasound

E. Le Pennec
R. Besson - S. Allassonniére

ECOLE
POLYTECHNIQUE

Agro - 07/10/2019



O Utl | ne Ultrasound Diagnostic X

@ Prenatal Ultrasound and Rare Disease Diagnostic



Birth and Rare DISGaSGS Ultrasound Diagnostic X

A Few Numbers
@ 780.000 births/year in France, 5 millions births/year in Europe
@ 3 to 4% are affected by at least one congenital abnomalies

@ Rare diseases: 3 millions patients in France, 30 millions in
Europe.
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Prenatal Ultrasound Diagnosis
@ France: three compulsory ultrasound tests during pregnancy.
@ Some classical measures (e.g. Down syndrome).

@ No strict examination protocol.

Necker Hospital Obstetrician

@ Rare disease expertise.

@ Among world largest medical database.

e Will to systematize their knowledge.




Proposed TOOl Ultrasound Diagnostic X

Ultrasound as a Sequential Process

@ Ultrasound exam seen as a sequence of measures.
e Goals:

o Reduce the time required to obtain a diagnosis
e Avoid to miss a rare disease.

Diagnosis Assistance Tool

@ Propose the next measure to make.

@ Show the current most probable diseases.

o Easy to use GUI implemented in R!

\

What'’s inside this tool?
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© Data at Hands and Proposed Framework



Data at Hands
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Data and Framework X

@ Rare diseases: very few cases even in the world largest DB!

Excel Type Dataset

@ Expert database build from OrphaData (E. Spaggiari).

@ 81 diseases, 202 symptoms (signs visible with ultrasound):
o Disease probability: P[D = dj]
e Symptom probability given each disease: P[S; = k | D = dj].

@ Database will be enriched from the future exams.
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feature 1 present?

feature 2 present?

Medical Goals

@ Guide a (non rare disease expert) sonographer to assess as
fast as possible potential diseases.

@ Propose her/him the next symptom to check.

Technical Goals

@ Build a good decision tree (a good policy).
@ Develop a GUI that can be easily used.




Markov Decision Process Data and Framework X

State, Action and Policy

e State: S= {P, A, U}?%? (presence,absence,not yet looked at)
for each symptom.

@ Action: A ={1,...,202} next symptom.
@ Policy: m:s € S+ a € A next symptom given the state.

Probabilistic setting

o Natural Markovian modeling: S;11 depends only on S; and a;!

Markovian Decision Process

@ Any strategy 7 defines a law on (S;) starting from Sp.
@ Let T be the stopping time before a diagnosis can be posed.
@ We need to find 7* such that 7%(Sp) = argmin_ E[T|Sp]!




Problems to be Solved Data and Framework
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Environment Learning with Maximum Entropy Principle
e We have P[S; | D] but we need to know P[S;,, ..., S;. | D].

@ We need to take into account future exams.

@ ldea: add some expert knowledge and maximize uncertainty,
interpolate between the expert model and the data.

@ Yields a simulator rather than the MDP transition proba...

Diagnostic Strategy Optimization by Reinforcement Learning

e Find a policy that allows to detect the disease while
minimizing the average duration.

@ ldea: recast the problem as a planning issue and find the
optimal strategy.




Diagnostic Strategy Optimization Dats snd ramencrc X

Diagnostic Strategy Optimization.

e Find a policy that allows to detect the disease while
minimizing the average duration.

Measure of Performance

@ Number of questions before being able to diagnose a disease.

Alternative Formulations

@ Trade-off: cost of misdiagnosis/cost of medical tests to
perform.

@ Reach the lowest uncertainty under fixed budget constraint
(time, money).

Non Adversarial Game

|

@ The disease and symptoms do not change during the exam.

o Strategy: given what has been seen, what is the next
symptom to look at?

A\




Stochastic Shortest Path Data and Framework X

Stochastic Shortest Path
e T is a stooping time at some final states

@ How to minimize the expectation of T7

e Entropy based criterion: H(D | S) < e

@ Rewards: VS, at, r(St,ar) = —1




Outline

© Reinforcement Learning
@ Markov Decision Processes
@ Dynamic Programing
@ Reinforcement Setting
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Reinforcement
Learning



Reinforcement Learning Reinforcement

Learning

state| |reward action

et o)
Reinforcement Learning Setting

@ Env.: provides a reward and a new state for any action.

@ Agent policy 7: choice of an action A; from the state S;.

e Total reward: (discounted) sum of the rewards.

<

@ Policy evaluation: how to evaluate the expected reward of a
policy knowing the environment?

@ Planning: how to find the best policy knowing the
environment?

@ Reinforcement Learning: how to find the best policy

without knowing the environment?

A
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The Agent-Environment Interface

state| |reward
S, R,

o R
' <Se | Environment

Reinforcement
Learning

action

Figure 3.1: The agent-environment interaction in a Markov decision process.

@ At time step t € NV:

e State S; € S: representation of the environment

o Action A; € A(S:): action chosen

e Reward R;;; € R: instantaneous reward

o New state S; 1

@ Dynamic entirely defined by

P (St =5 R =r|Si-1=5,Acc1 = a) = p(s,rs, a)

@ Finite MDP: S, A and R are finite.



Returns ans Episodes Reinforcement

Learning

o (Discounted) Return:

-
G = Z 7" Ry
t'=t+1
@ Recursive property
Gt = Rev1 + 761
@ Finiteness if |R| < M
T—t—4+1)M ifT <o
Gl < {( 1 .
T otherwise
@ Not well defined if T = oo and v = 1.




Policies and Value Functions Reinforcement X

Learning e
Policy and Value Functions
e Policy: m(als)
St = S]
@ Action value function:
g=(s,a) = E; [G¢|S: = 5, Ar = ]

v
Two natural problems

@ Policy evaluation: compute v, given 7.

@ Value function:

VW(S) = EW [Gt’St = S] = Eﬂ- [Z 'Yth+k+1
k=0

@ Planning: find 7* such that v«(s) > vz (s) for all s and 7.

@ Those objects may not exist in general!
@ Can be traced back to the 50's!
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POllcy Evaluatlon by Be”man Backup Reinforcement

Learning

Fixed Point Property

@ Bellman Equation

v (s)

=2

(als) ZZP s',rls, a) [r + yva(s')] = Ta(va)(s)

@ Linear equation that can be solved.

Policy Evaluation by Dynamic Programming

e Fixed point iterative algorithm: viy1(s) = T=(vk)(s)

@ Converge if T < ocoor~vy<1.



Planning by Policy Improvement Reinforcement

Learning

Policy Improvement Property

o If 7 is such that Vs, g(s,7'(s)) > vx(s) then v > v, .

@ e-greedy improvement among e-policy: classical improvement
degraded by picking uniformly the action with probability €

Policy Iteration Algorithm

o Compute vy,
@ Greedy update:
Tkt1(s) = argmax gr, (s, a)
a

= argmax Y _p(s’, rls, a) (r +yvx,(s'))

a
s'r

o If 7’ = m after a greedy update vy, ,, = vr, = vi.

@ Convergence in finite time in the finite setting.



Plannlng by Be”man Backup Reinforcement X

Learning s

Fixed Point Property

o Bellman Equation

vi(s) = max 3" 37 (s’ rls, a) [+ ywa(s')] = Ta(w)(s)

@ Linear programming problem that can be solved.

Policy Evaluation by Dynamic Programming

o lterative algorithm: vx11(s) = Tx(vk)(s)

@ Converge if T < ocoorvy<1.

@ Amount to improve the policy after only one step of policy
evaluation.



Planning by Bellman Backup Reinforcement
Learning
Q-value and enhancement
e Q-value:

Gr(s,a) = Zzps rls, a) r+’YZ 3'|s")qx (s, a)]

@ Easy policy enhancement. 7'(s) = argmax q(s, a)
a

Fixed Point Property

@ Bellman Equation

:(5,2) = ¥ 5 p(s'rls, ) |+ ymaxau(s, )] = Te(a.)(s.2)

s’ r

v

@ Linear programming problem that can be solved.

Policy Evaluation by Dynamic Programming

e lterative algorithm: qx+1(s, a) = T.(qk)(s, a)




Generalized POllcy Iteratlon Reinforcement X

Learning s

Generalized Policy Iteration

o Consists of two simultaneous interacting processes:

e one making a value function consistent with the current policy
(policy evaluation)

e one making the policy greedy with respect to the current value
function (policy improvement)

@ Stabilizes only if one reaches the optimal value/policy pair.

@ Asynchronous update are possible provided every
state(/action) is visited infinitely often.

@ Very efficient but requires the knowledge of the transition
probabilities.
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Reinforcement Learning Reinforcement
Learning
= —
state reward action

5 4] d;
o i+l .
' s | Environment [

Reinforcement Learning - Sutton (98)

@ An agent takes actions in a sequential way, receives rewards
from the environment and tries to maximize his long-term
(cumulative) reward.

Reinforcement Learning

@ MDP setting with cumulative reward.

@ Planning problem.

@ Environment known only through interaction, i.e. some
sequences - -+ St ArRer1S41A 41 - .




Monte Carlo Reinforcement

Learning

@ Back to v,(s) = E; [G:|S: = s].
@ Monte Carlo:

e Play several episodes using policy .
o Average the returns obtained after any state s.

@ Good theoretical properties provided every states are visited
asymptoticaly infinitely often.

Extension to off-policy setting (behavior policy b # target
policy ) with importance sampling.

@ Extension to planning with policy improvement steps

@ No theoretical results for the last case.

@ Need to wait until the end of an episode to update anything...



BOOtStrap and TD PredICtlon Reinforcement X

Learning s

Bootstrap and TD

@ Rely on
Vr(s) = TV (s)
=E [Rer1 + 7V (St41)|St = 5]
@ Temporal Difference: stochastic approximation scheme

V(Se) « V(5t) + a(Rer + 7V (Se1) — V(St))
Update occurs at each time step.

Can be proved to converge (under some assumption on «)!

v

Combine the best of Dynamic Programing and MC.

@ Can be written in term of Q:
Q(St, At) + Q(St, Ar) + a(Rey1 +7Q(St41, Arr1) — Q(St, Ar))



SARSA and Q Learning Reinforcement

Learning

@ How to use this principle to obtain the best policy?

SARSA: Planning by Prediction and Improvement (online)

o Update Q following the current policy
Q(St; At) = Q(St, Ar) + (R + 7Q(St+1, A1) — Q(St, Ar))
@ Update 7 by policy improvement.

@ May not converge if one use a greedy policy update

Q Learning: Planning by Bellman Backup (off-line)

e Update Q following the behavior policy b
Q(St,At) — Q(St,At) + « (Rt+1 + 7y mE?X Q(St+17 3) - Q(StyAt))

@ No need to use importance sampling correction for depth 1
update.

@ Proof of convergence in both cases.



Va I’IatIOI’IS Reinforcement

Learning

Temporal- ¢ Dynamic
difference A Programming

learning O 00 O
Exhaustive

A M search
g /0\::
LR}
oad b

@ Number of steps in the update. x

@ Number of states/actions considered at each step.




Plannlng and Learnlng Reinforcement

Learning

Selection ——— Expansi

value/policy ¥ & /,d Q\

\
acting
planing e /
AL

model experlence

mndel
learning

Planning and Models

@ Planning can combine a model estimation (DP) and direct
learning (RL).

Real Time Planning

@ Planning can be made online starting from the current state.

@ Curse of dimensionality: methods are hard to use when the
cardinality of the states and the actions are large!
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Value Function Approximation Reinforcement

Learning

Value Function Approximation

o ldea: replace v(s) by a parametric (s, w).
@ Issues:

e Which approximation functions?
e How to define the quality of the approximation?
e How to estimate w?

Approximation functions

@ Any parametric (or kernel based) approximation could be used.
@ Most classical choice:

e Linear approximation.
o Deep Neural Nets...




AppI’OXImatIOI"I Quallty Reinforcement X
Learning s

e How define when ¥(-, w) is close to v, (or vy)

Prediction(/Control)

@ Prediction objective:

> u(s)(va(s) = 0(s, w))?

@ Bellman Residual:
> () (T=0(s, w) — 0(s, w))?

or its projection...

@ lIssue: Neither v, or T, are known...



Online Gradient and Semi-Gradient Reinforcement

Learning

Online Prediction

@ SGD algorithm on w:
Wir1 = We + a (v (St) — U(Se, w)) V(S w)
e MC approximation (still SGD):
w1 = wy + a(Gr — U(Se, w)) VI(St, w)
@ TD approximation (not SGD anymore):
wer1 = we + & (Repr + 70 (Set1, we) — 0(Se, w)) VI(Se, w)

v

@ Deeper or wider scheme possible.

Online Control

@ SARSA-like algorithm:
e Prediction step as previously with the current policy

Wep1 = We + a (Repr +74(Sti1, Arrr, w) — G(Se, Ar, w)) VG(Se, A, w)
e c-greedy update of the current policy




Offline Control with Approximation Relnforcement X

Learning s

Watkins’s Q(\)

Offline Control

@ Q-Learning like algorithm:
Wiil = W + @ (Rt+1 + ¥y max 4(Se+1, 3, w) — 4(St, At, W))

X VCAI(Sty At7 W)
with an arbitrary policy b.

@ Deeper formulation using importance sampling possible.

@ lIssue: Hard to make it converge in general!



Dead Iy Trlad Reinforcement X

Learning e

Sutton-Barto's Deadly Triad

@ Function Approximation
e Bootstrapping
o Off-policy training

4

Stabilization Tricks

(Back to policy iteration),

@ Memory replay: sample from a set of episodes
@ Frozen Q: use the previous weights in the max
°

Clip/normalize rewards...




ACtOI’— C rlt | C Reinforcement

Learning

@ Other approach with a parametric policy.

Actor-Critic

@ Simultaneous parameterization of

e the policy 7 by 6,

e the value function s by w
@ Simultaneous update:

Ot = Re + YU(St41, w) — U(S¢, w)
Vr(alSt, 0)
m(alSt, @)

Wit1 = Wep1 + ade V(S w)

Ory1=0:11+ ad;

@ Online approach

@ Can be adapted to continuous actions.
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Numerical Experiments Back to Prenatal

Ultrasound

Naive approach: Breiman CART

@ Greedy policy that optimize the expectation of next step
entropy.

v

Baseline: Actor-critic with REINFORCE

@ Linearly parametrized policy using next step entropy
expectation and other simple features

Deep Q-Learning

@ Q-Learning with Neural Networks.

@ Nothing specific for the first two approaches...



Very ngh DlmenSIOn Case' Back to Prenatal X

Ultrasound

@ DQN is unstable with TD in our setting (too slow to
backpropagate the rewards?)

@ Much better results using MC!
o Still hard to optimize everything from the beginning!

Dimension Reduction Trick

@ State space partitioning to solve several smaller sub-problems.




State Partition and MC

Bootstrap

Bootstrap

@—e Sous-tache déja résolue

@——@ Sous-tache a résoudre

2
Back to Prenatal X
Ultrasound "

@ Partition obtained by solving the problem starting from an
abnomalies and falling back to previously computed strategy

as soon as one reach a common state.
@ Similar to a n-step bootstrapping!

@ Works well with MC as n is not too large.
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Optimal Decision Tree for a Small Back to Prenata

Ultrasound
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Optlmal POllcy fOI’ Sma” SUbSCtS? Back to Prenatal X

Ultrasound
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Average number of questions to ask

DQN vs REINFORCE vs Breiman Back to Prenatal

Ultrasound

15 . Breiman: 14.3

Optimal policy: 4.€

Average number of questions to ask
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DQNs vs REINFORCE vs Breiman

Back to Prenatal X
Ultrasound )
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DQNs

vs REINFORCE vs Breiman Back to Prenatal

Ultrasound

100~ Algorithm
DQN-MC with Bootstrap learning rate=0.001
DQN-IC without Bootstrap learning rale=0.001

3 3 a -+~ DGN-TD with infial learing rate=0 00001
§25- H A
2 2 £ -+~ DQN-TD with nital learing rate=0.0001
320~ . 3 &
5 | Brgiman 183 5
H S 2 -
2 Baseline: 17.3 2
215 Algorithm 2
s DQN-HG with iniial leaming rate=0.001 °
< DQNHIC vith iniial learning rate=0.01 < » Yy a8 "
10 DQN-TD with nitallearning rate=0.0001 25~ Baseing 243
DON-TD with initial leaming rate=0.001 A e
0 250 500 750 1000 0 250 500 750 1000
Iteration Iteration

Task Dimension: 29 Task Dimension: 104



Take Away Message o prets X

Ultrasound

Medical Goals

@ Help obstetricians by improving/systematizing ultrasonic
diagnostic (MDP modeling)

@ Guide a (non rare disease expert) sonographer to assess as fast
as possible potential diseases (first prototype at Necker)

Technical Goals

@ Build an optimized decision tree:

e Need to learn the environment (MaxEnt and data assim.)
e Reinforcement learning (Param. policy and MC vs Deep Q)

\

o Not yet (theoretical) guarantees.

4

Take Away Message

@ Reinforcement learning (or MDP) is an interesting tool.

@ Formalization requires a true dialog between the
mathematicans and the practicians.

@ First prototype already tested by Necker.

\
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