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Medical Setting

Prenatal Ultrasound Diagnosis
France: three compulsory ultrasound tests during pregnancy.
Some classical measures (e.g. Down syndrome).
No strict examination protocol.

Necker Hospital Obstetrician
Rare disease expertise.
Among world largest medical database.
Will to systematize their knowledge.



Proposed Tool

Ultrasound as a Sequential Process
Ultrasound exam seen as a sequence of measures.
Goals:

Reduce the time required to obtain a diagnosis
Avoid to miss a rare disease.

Diagnosis Assistance Tool
Propose the next measure to make.
Show the current most probable diseases.
Easy to use GUI implemented in R!

What’s inside this tool?
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Data and FrameworkData at Hands

Rare diseases: very few cases even in the world largest DB!

Excel Type Dataset
Expert database build from literature (E. Spaggiari).
81 diseases, 307 symptoms (signs visible with ultrasound):

Disease probability: P[D = dj ]
Symptom probability given each disease: P[Si = k | D = dj ].

Database will be enriched from the future exams.



Data and FrameworkOur Goals

Medical Goals
Guide a (non rare disease expert) sonographer to assess as fast
as possible potential diseases.
Propose her/him the next symptom to check.

Technical Goals
Build a good decision tree (a good policy).
Develop a GUI that can be easily used.



Data and FrameworkMarkov Decision Process

State, Action and Policy
State: S = {P,A,U}307 (presence,absence,not yet looked at)
for each symptom.
Action: A = {1, . . . , 307} next symptom.
Policy: π : s ∈ S 7→ a ∈ A next symptom given the state.

Probabilistic setting
Natural Markovian modeling: St+1 depends only on St and at !

Markovian Decision Process
Any strategy π defines a law on (St) starting from S0.
Let T be the stopping time before a diagnosis can be posed.
We need to find π? such that π?(S0) = argminπ E[T |S0]!



Data and FrameworkProblems to be Solved

Environment Learning with Maximum Entropy Principle
We have P[Si | D] but we need to know P[Si1 , ...,SiK | D].
Idea: add some expert knowledge and maximize uncertainty.

Diagnostic Strategy Optimization by Reinforcement Learning
Find a policy that allows to detect the disease while
minimizing the average duration.
Idea: recast the problem as a non adversarial game and find
the optimal strategy.
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Diagnostic Strategy
and RL

Diagnostic Strategy Optimization

Diagnostic Strategy Optimization.
Find a policy that allows to detect the disease while
minimizing the average duration.

Measure of Performance
Number of questions before being able to diagnose a disease.

Alternative Formulations
Trade-off: cost of misdiagnosis/cost of medical tests to
perform.
Reach the lowest uncertainty under fixed budget constraint
(time, money).

Non Adversarial Game
The disease and symptoms do not change during the exam.
Strategy: given what has been seen, what is the next symptom
to look at?
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Diagnostic Strategy
and RL

State, Action and Reward

State
State: S = {P,A,U}307 (presence,absence,not yet looked at)
for each symptom.
Final state: state for which the disease entropy is below ε

Action
Action: A = {1, . . . , 307} next symptom.

Rewards
Reward r on each action:

0 if current state is terminal,
−1 otherwise.

Not random!



Diagnostic Strategy
and RL

Policy and Cumulative Reward

Policy
Policy: π : S ∈ S 7→ a ∈ A (Next symptom given the state)
Can be deterministic or stochastic...

Policy Execution
Initial state: S0 = (U, . . . ,U)

At step t,
Select action π(St−1)
Observe reward rt and new state St
Stop if St is terminal.

Cumulative Reward
With T the stopping time

R =
T∑
t=1

rt (= −T )

Here T ≤ 307...



Diagnostic Strategy
and RL

Policy Quality

Policy and Cumulative Reward
Policy: π : s ∈ S 7→ a ∈ A (Next symptom given the state)
Initial state: S0 = (U, . . . ,U)

Policy execution: St → at = π(St)→ rt → St+1.
Cumulative reward:

R =
T∑
t=1

rt (= −T )

Policy Quality
Cumulative reward is random!
Quality measure by expected value given the initial state:

Vπ(S0) = Eπ[R|S0]



Diagnostic Strategy
and RL

Policy Evaluation and Planning

Policy Quality
Quality measured by the policy value:

Vπ(S) = Eπ[R|S]

Two natural problems
Policy evaluation: compute vπ given π.
Planning: determine π? such that Vπ?(S) ≥ Vπ(S) for all S
and π.

Those objects may not exist in general! In our case, they exist.
Can be traced back to the 50’s!
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Diagnostic Strategy
and RL

Policy Evaluation by Bellman Backup

Fixed Point Property
Policy value is the solution of a fixed point problem:

Vπ(S) =
∑
S′

p(S ′ | S, π(S))(Vπ(S ′) + E(r(S, π(S),S ′)))

Bellman operator T π:
V (S) 7→

∑
S′

p(S ′ | S, π(S))(V (S ′) + E(r(S, π(S),S ′)))

Policy Evaluation by Dynamic Programming
Iterative algorithm:
Vn+1(S) =

∑
S′

p(S ′ | S, π(S))(Vn(S ′) + E(r(S, π(S),S ′)))

Convergence can be proved. (Finite time for finite horizon!)



Diagnostic Strategy
and RL

Policy Iteration

Policy Enhancement by Bellman Backup
π is enhanced by replacing it by
π′(S) = argmax

a

∑
S′

p(S ′ | S, a)(Vπ(S ′) + E(r(S, a,S ′)))

Policy Planning by Policy Iteration
Policy iteration: alternate estimation of Vπ and policy
enhancement.
Convergence can be proved. (Finite time for finite states!)

Analysis much more complicated when estimation of Vπ is
only approximate.



Diagnostic Strategy
and RL

Value Iteration

Policy Enhancement by Bellman Backup
π is enhanced by replacing it by
π′(S) = argmax

a

∑
S′

p(S ′ | S, a)(Vπ(S ′) + E(r(S, a,S ′)))

Policy Planning by Dynamic Programming
Direct clever iterative algorithm using Bellman operator T :

Vn+1(S) = max
a

∑
S′

p(S ′ | S, a)(Vn(S) + E(r(S, a,S ′)))

Convergence can be proved. (Finite time for finite states!)
Optimal policy:
π?(S) = argmax

a

∑
S′

p(S ′ | S, a)(V∞(S) + E(r(S, a,S ′)))



Diagnostic Strategy
and RL

Q Value Iteration

Policy Enhancement by Bellman Backup
Q-value function (action-value function):

Qπ(S, a) =
∑
S′

p(S ′ | S, a)(Vπ(S ′) + E(r(S, a,S ′))

Vπ(S) = Qπ(S, π(S))

π is enhanced by replacing it by
π′(S) = argmax

a
Qπ(S, a)

Policy Planning by Dynamic Programming
Direct clever iterative algorithm using Bellman operator T :
Qn+1(S, a) =

∑
S′

p(S ′ | S, a)(max
a′

Qn(S ′, a′) + E(r(S, a,S ′)))

Convergence can be proved. (Finite time for finite states!)
Optimal policy:

π?(S) = argmax
a

Q∞(S, a)



Diagnostic Strategy
and RL

Problem Solved?

Two main issues
Need to modify all states simultaneously.
Need to known explicitly the transition probability (and the
expected reward)

Asynchronous update
Modify V or Q each time one consider a state.
Different strategy to order the states:

fixed order,
Bellman equation error order,
current strategy play.

Convergence results if all the couple states-actions are visited
infinitely often...
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Diagnostic Strategy
and RL

Stochastic Approx. and Robbins-Monro

Lots of fixed point in MDP: h(V ) = T V − V = 0,
h(Q) = T Q − Q...

Sketched Robbins-Monro Theorem
Goal: Solve h(θ) = 0
Assumption:

the minimizer θ? is such that ∀θ, 〈h(θ), θ − θ?〉 < 0
it exists Hn such that E[Hn(θ)] = h(θ)

Algorithm:
θn+1 = θn + αnHn(θn)

Thm: θn converges toward θ?

Example: H(θ) is decreasing.
Assumption can be relaxed (Lyapunov function...)
Coordinatewise update possible if all coordinate are visited
infinitely often.
Can we capitalize on this?



Diagnostic Strategy
and RL

Value Function and Bellman

Dynamic Programming
Bellman equation:

Vπ(S) =
∑
S′

p(S ′ | S, π(S))(Vπ(S ′) + E(r(S, π(S),S ′)))

= T πVπ
Vπ is a zero of h(V ) = T πV − V .
Bellman approximation (Temporal Difference):

h(V )(St) = V (St+1) + r(St , π(St),St+1)︸ ︷︷ ︸
Unb. est. of T (V )(St)

−V (St)

Algorithm:
Vn+1(St) = Vn(St) + αn (V (St+1) + r(St , π(St),St+1)− V (St))

No need to know explicitly the transitions. (model free)
Only need to be able to play and observe the environment.
Allow policy evaluation and approximate policy iteration.
Policy should explore all states and all actions infinitely often!



Diagnostic Strategy
and RL

Reinforcement Learning

Reinforcement Learning - Sutton (98)
An agent takes actions in a sequential way, receives rewards
from the environment and tries to maximize his long-term
(cumulative) reward.

Reinforcement Learning
MDP setting with cumulative reward.
Planning problem.
Environment known only through interaction!



Diagnostic Strategy
and RL

Value Function and Monte Carlo

Monte Carlo
Value function

Vπ(S) = E

[
T−1∑

0

r(St+i , π(St+i ),St+i+1)

]
Vπ is a zero of E[

∑T
i=1 rt ]− V

MC approximation (Temporal Difference):

H(V )(St) =
T−1∑

0

r(St+i , π(St+i ),St+i+1)︸ ︷︷ ︸
Gt

−V (St)

Algorithm:
Vn+1(St) = Vn(St) + αn (Gt − Vn(St))

No need to know explicitly the transitions.
Only need to be able to play and observe the environment.
TD(λ): Interpolation between Bellman and MC.



Diagnostic Strategy
and RL

Q Learning

Action-value function Q

Bellman fixed point:
Q(S, a) =

∑
S′

p(S ′ | S, a)(max
a′

Q(S ′, a′) + E(r(S, a,S ′)))

= T (Q)(S, a)

Optimal Q is a zero of T (Q)− Q.
Bellman approximation:
H(Q)(St , at) = max

a′
Q(St+1, a

′) + r(S, at ,St+1)− Q(St , at)

Algorithm:
Qn+1(St , at) = Qn(St , at)

+ αn

(
max
a′

Q(St+1, a
′) + r(S, at ,St+1)− Q(St , at)

)
Reinforcement learning setting.
Explo. policy should explore every state/action infinitely often.
Optimal solution does not have this restriction!



Diagnostic Strategy
and RL

Problem solved?

Almost...

Dimension of the problem
State of dimension: 3307

Much larger than the memory of any computer on earth...
Previous methods intractable in our case!

Dimension reduction
Parameterization of the policy?
Parameterization of the value function?
Parameterization of the action-value function?
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Diagnostic Strategy
and RL

Policy Parameterization

Parameterization
πθ(S) = fθ(Φ(S)) with θ ∈ Rd .
Example: fθ is a logit model depending on s only on P(A|S)
and H(D|S)

Values functions:
Vθ(S) = Eπθ [

∑
rt |S]

Qθ(S, a) = Eπθ [
∑

rt |S, a]

Parametric Optimization
Optimization in θ by stoch. gradient descent?
Issue: neither V or Q are known...



Diagnostic Strategy
and RL

REINFORCE

Parametric Policy Gradient
Value function gradient as an expectation of policy gradient!

∇Vθ(S0) ∝ Eπθ

[∑
a

∇πθ(a|S)Qπ(S, a)

]
Action sampling:

∇Vθ(S0) ∝ Eπθ

[
∇πθ(at |St)
πθ(at |St)

Qπ(St , at)
]

REINFORCE Algorithm
Episodic MC play with

θt+1 = θt + αtGt∇ lnπθ(at |St)
Episodic MC play with baseline

θt+1 = θt + αt (Gt − Vt(St))∇ lnπθ(at |St)
where Vt is any function independent of a...



Diagnostic Strategy
and RL

Value Function Parameterization

Parametric V approximation
V approximated by a function parameterized by w : Vπ ≈ Vw

Quality measured by

J(w) = Eπ
[
(Vπ(S)− Vw (S))2

]
Gradient:

∇J(w) = −Eπ [(Vπ(S)− Vw (S))∇Vw (S)]

Optimal w : ∇J(w) = 0...

MC algorithm playing policy π

Update:
wt+1 = wt + αt (Gt(St)− vw (St))∇Vw (St)

Convergence results for linear approximations.
Similar algorithm for the Q function.



Diagnostic Strategy
and RL

Approximate Bellman Backup

Parametric Value Function
V function approx. by a function parameterized by some w :

Vπ(S) ≈ Vw (S)

Quality measured by

J(w) = Eπ
[
(Vπ(S)− Vw (S))2

]
Gradient:

∇J(w) = −Eπ [(Vπ(S)− Vw (S))∇Vw (S)]

Optimal w : ∇J(w) = 0...

Approximate Bellman Backup
Iterate

wt+1 = wt + αt (rt(St) + Vw (St+1)− vw (St))∇Vw (St)
Biased estimate of Vπ(S)...
Some convergence results...



Diagnostic Strategy
and RL

Approximate Q Learning

Parametric Action-Value
Q function approx. by a function parameterized by some w :

Q(s, a) ≈ Qw (s, a)

Almost zero characterization of the optimal: T Qw − Qw ' 0
More precisely: minimizer of

L(w) = E
[
(T Qw (s, a)− Qw (s, a))2]

Approximate Q Learning Algorithm
Iterate

wt+1 = wt + αt

(
rt(St) + max

a′
Qw (St+1, a

′))− Qw (St , at)
)

×∇Qw (St , at)
Not stable!
Is the derivation correct?



Diagnostic Strategy
and RL

Deadly Triad

Sutton-Barto’s Deadly Triad
Function Approximation
Bootstrapping
Off-policy training

Stabilization Tricks
(Back to policy iteration),
Memory replay: sample from a set of games
Frozen Q: use the previous weights in the max
Clip/normalize rewards...



Diagnostic Strategy
and RL

Actor/Critic

Learn simultaneously the optimal policy and its value function!

Actor/Critic
Actor: policy

Action sampling with baseline:

∇Vθ(S0) ∝ Eπθ

[
∇πθ(at |St)
πθ(at |St)

(Qπ(St , at)− Vt(St))

]
Critic: estimate of the quality

Vt = Vw a good parametric estimate of Vπθ
.

Bellman backup: Vwt (St) ' rt + Vwt (St+1)

Algorithm
Simultaneous update:
wt+1 = wt + αt (rt(St) + Vwt (St+1)− Vwt (St))∇Vw (St)
θt+1 = θt + αt (rt(St) + Vwt (St+1)− Vwt (St))∇ lnπθ(at |St)

Can also param. Q(S, a) and use rt + Qwt (St+1, πθt (St+1))...
And tricks...
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Diagnostic Strategy
and RL

Parameterization

Linear
V , Q or log(π) are linear with respect to some feature.
Examples:

Tabular setting,
Logit model for the policy,
kernel decomposition...

Some theoretical guarantees.

(Deep) Neural Network
Much more freedom in the functions.
Quite easy to try when one has a GPU.
Almost no theoretical results!
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Perceptron

Perceptron (Rosenblatt 1957)
Inspired from biology.
Very simple (linear) model!
Physical implementation and proof of concept.
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Artificial Neuron and Logistic Regression

Artificial neuron
Structure:

Mix inputs with a
weighted sum,
Apply a (non linear)
activation function to this
sum,
Eventually threshold the
result to make a decision.

Weights learned by
minimizing a loss function.

Logistic unit
Structure:

Mix inputs with a
weighted sum,
Apply the logistic function
σ(t) = et/(1 + et),
Threshold at 1/2 to make
a decision!

Logistic weights learned by
minimizing the
-log-likelihood.

Equivalent to linear regression when using a linear activation
function!



Diagnostic Strategy
and RL

Multilayer Perceptron

MLP (Rumelhart, McClelland, Hinton - 1986)
Multilayer Perceptron: cascade of layers of artificial neuron
units.
Optimization through a gradient descent algorithm with a
clever implementation (Backprop)

Construction of a function by composing simple units.
MLP corresponds to a specific direct acyclic graph structure.
Non convex optimization problem!



Diagnostic Strategy
and RL

Universal Approximation Theorem

Universal Approximation Theorem (Hornik, 1991)
A single hidden layer neural network with a linear output unit
can approximate any continuous function arbitrarily well, given
enough hidden units

Valid for most activation functions.
A single hidden layer is sufficient but more may be more
efficient.
No bounds on the number of required units... (Asymptotic
flavor)



Diagnostic Strategy
and RL

Deep Neural Network

Deep Neural Network structure
Deep cascade of layers!

No conceptual novelty...
But a lot of details that enabled to obtain a good solution:
clever initialization, better activation function, weight
regularization, accelerated stochastic gradient descent, early
stopping...
Use of GPU...
Very impressive results!



Diagnostic Strategy
and RL

Deep Learning

Family of Machine Learning algorithm combining:
a (deep) multilayered structure,
a clever optimization including initialization and regularization.

Examples: Deep Neural Network, Deep (Restricted) Boltzman
Machine, Stacked Encoder, Recursive Neural Network...
Transfer learning: use as initialization a pretrained deep
structure.
Appears to be very efficient but lack of theoretical foundation!



Diagnostic Strategy
and RL

Convolutional Network

1989: 6 Hidden layer architecture (Yann LeCun)
Drastic reduction of the number of parameters through a
translation invariance principle (convolution)
Requires 3 days of training for 60 000 examples!
Tremendous improvement.
Representation learned through the task.



Diagnostic Strategy
and RL

Deep Convolutional Networks

2012: Alexnet (A. Krizhevsky, I. Sutskever, G. Hinton)
Bigger layers and thus more parameters.
Clever intialization scheme, RELU, renormalization and use of
GPU.
6 days of training for 1.2 millions images.



Diagnostic Strategy
and RL

Deep Convolutional Networks

Deeper and deeper networks! (GoogLeNet / Residual Neural
Network)
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Diagnostic Strategy
and RL

High-dimensional issues.

Issue
DQN algorithm is not tractable for the main task: to find the
best path starting from s0 = (2, ..., 2).

Dimension reduction
Idea: Create subproblems of lower dimension.

Learn a strategy starting from each s
(i)
0 = (2, ..., 2, 1, 2, ..., 2).

Assumption: this first observed symptom is relevant (we can
focus on the diseases for which this initial symptom is typical
→ reduce dimension).

Transfer Learning
Learn the strategy for the global task from what have been
learned on subtasks: transfer learning.
Ongoing research: promising results.



Diagnostic Strategy
and RL

Some Results

Comparison between optimal policy, REINFORCE policy and
Breiman policy.



Diagnostic Strategy
and RL

Some Results

Task dimension: 10. Task dimension: 26.

Evolution of the performance of the neural network during the
training phase with DQN-MC.



Diagnostic Strategy
and RL

Some Results

Average number of questions to ask.

Subtask identifier Meta-network Specialized smaller network.

1 5.8 4.7
2 7.4 7
3 13.8 13.7
4 7.05 6.9
5 13.9 12.1

Meta-Network initialized with tasks 1-4 and then trained with
all tasks.
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Env. Learn and
MaxEnt

Uncertainty and Entropy

Environment Learning
We have P[Si | D] but we need to know P[Si1 , ...,SiK | D].
Idea: add some expert knowledge and maximize uncertainty.

Expert knowledge
Some symptoms can not occur simultaneously...
Need at least a certain number of symptoms to talk about a
syndrome.

Uncertainty
General idea: choose a solution that maximize the uncertainty
while respecting the constraints (probability/impossibility).
Uncertainty measured by entropy.



Env. Learn and
MaxEnt

MaxEnt Principle

Environment Learning
We have P[Si | D] but we need to know P[Si1 , ...,SiK | D].

Naive idea: P[Si1 , ...,SiK | D] = P[Si1 | D]× ...× P[SiK | D]
(Conditional independence)

Data and Expert Knowledge
Conditional probabilities: P[Si | D]

Medical constraints: P[Sik , Sik′ | D] = 0...
Mathematical constraints: P should be a probability...

MaxEnt Principle
Maximize the entropy of the distribution P[Si1 , ...,Sik | D]
under mathematical and medical constraints.

Numerical scheme available.
WIP on the interp. between maxent and maximum likelihood.



Env. Learn and
MaxEnt

MaxEnt Estimate and Naive One

Medical Modeling Effect
Difference not that large but important from the medical point
of view.



Take Away Message

Medical Goals
Help obstetricians by improving/systematizing ultrasonic
diagnostic (MDP modeling)
Guide a (non rare disease expert) sonographer to assess as fast
as possible potential diseases (first prototype at Necker)

Technical Goals
Build an optimized decision tree:

Need to learn the environment (MaxEnt and data assim.)
Reinforcement learning (Param. policy and MC vs Deep Q)

Not yet (theoretical) guarantees.

Take Away Message
Reinforcement learning (or MDP) is an interesting tool.
Formalization requires a true dialog between the
mathematicans and the practicians.
First prototype already tested by Necker.
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