
A brief survey
of

patch based method

E. Le Pennec and J. Salmon

SELECT - INRIA Saclay IdF, Université Paris Sud (Orsay)

April 2011 - Santa Fe



Patch based method
Framework
Estimation of an image I from a noisy observation Y

Y = I + σε (ε Gaussian white noise)
Regression, Texture synthesis, Image completion...

Image, pixel and patch
Patch = Neighborhood of a pixel.
Image ⇔ { pixel } → estimation of pixels.
Image ⇔ { patch } → estimation of patches + reprojection.

Three-Step Methods
Step 1: Construct a set of noisy patches.
Step 2: Estimate those patches.
Step 3: Combine those patch estimates at the pixel level.
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Pixels and patches

From pixel value to patch
Patch P I(i): small sub-image P I(i)[δ] = I(i + δ) with δ ∈ VW .
Example: square patches with VW = {−W− ≤ δ1, δ2 ≤W+}.

Patch and images
From I = (I(i)) to P I = ((P I(i)[δ])): lifting of a 1-D image to a
W 2-D image.
From P I to I: easy (naive) inverse using I(i) = P I(i)[0]
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Use in texture synthesis

Quilting
Generate a new texture by quilting patch with similar context than
the original one.
Efros and Leung, Texture Synthesis by Non-parametric Sampling
(1999)
Efros and Freeman, Image Quilting for Texture Synthesis and
Transfer (2001)
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Use in image completion

Inpainting
Structure propagation by exemplar-based texture synthesis.
Criminisi, Pérez and Toyama, Region Filling and Object Removal by
Exemplar-Based Image Inpainting (2004)
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Use in denoising

NL-Means
Average patches that are similar.
Buades, Coll and Morel, A review of image denoising algorithms,
with a new one (2005)

Much more than that!
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Images, noise and estimate

Image N × N
I(i) = I(i1, i2) ∈ R with i = (i1, i2) ∈ [1,N]2.
Loss: L2 norm (quadratic loss)

Noisy observation
Y (i) = I(i) + σε(i) .

ε i.i.d. standard Gaussian noise with known variance σ2.
Other noises possible (bounded,...)

Estimation
Estimate I(i) by Î(i) from whole Y .
Non local behavior possible...
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Kernel methods

Target pixel i : center of the sub-image

Generic kernel methods
Estimate I(i) by an average Î(i) =

∑
k∈[1,N]2

θi ,kY (k)

The weights θi ,k may (and will) depend on i and k as well on Y .
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Some classical filters:
Î(i) = ∑

k θi ,kY (k)

θi,k : Gaussian θi,k : Yaroslavsky θi,k : Bilateral

Classical kernel - Nadaraya (64) , Watson (64)

θi ,k =
Kh(i , k)∑

k′
Kh(i , k ′)

(no dependency on Y )

K : kernel and h: window size / smoothing parameter
Gaussian kernel: Kh(i , j) = e−((i1−k1)2+(i2−k2)2)/2h2
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Some classical filters:
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k θi ,kY (k)

θi,k : Gaussian θi,k : Yaroslavsky

θi,k : Bilateral

Yaroslavsky’s filter - Yaroslavsky (85), Lee (83)

θi ,k =
Lg (Y (i),Y (k))∑

k′∈Ω

Lg (Y (i),Y (k ′))
(dependency on Y )

Use only photometric proximity
L: kernel and g : window size / smoothing parameter



Some classical filters:
Î(i) = ∑

k θi ,kY (k)

θi,k : Gaussian θi,k : Yaroslavsky θi,k : Bilateral

Bilateral filter - Tomasi and Manduchi (98)

θi ,k =
Kh(i , k)Lg (Y (i),Y (k))∑
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Data adaptive kernel

Original Image θi,k : Bilateral θi,k : NL-Means

Examples:
Yaroslavski and bilateral filters.
?-let thresholding (complex dependency of the weights...)
...

Intuition
Intuition: average pixels close in both distance and value.
Issue: pixel value = too local...
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Patches
Patch
Patch: less local version of pixel value.
Patch PY (i): small image PY (i)[δ] = Y (i + δ) with δ ∈ VW .

Example: square VW = {−W− ≤ δ1, δ2 ≤W+} with
W = W− + W+ + 1.

Patch and images
Operator Y 7→ PY sends the image Y = (Y (i)) to the patch
collection PY = (PY (i)).
Lifting of a 1-D image to a W 2-D image.
Easy (naive) reprojection of a patch collection PY to an image Y ...

Patch and estimation
Estimation problem: estimation of the patch collection P I from the
observed patch collection PY = P I + σPε.
Very different problem than the estimation of P I from P I + σε.
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Patch based methods
Kernel methods and patches
Estimation by patch averaging:

P̂ I(i)[δ] =
∑

k
θi ,kPY (k)[δ].

If the weights are independent of PY , the patch structure is useless...

Intuition
Uses some weights which take into account the patch similarity:

Patches PY
k :

Patch PY
i to denoise,

Similar patches: useful → large weights,
Less similar patches: less useful → smaller weights,
Very different patches: useless → quasi null weights.
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NL-Means
NL-Means (Buadès, Coll and Morel)
Choose a dissimilarity measure between patches.

Use weights θi ,k =
K ′(D(PY (i),PY (k)))∑
k′ K ′(D(PY (i),PY (k ′)))

Choose D(PY (i),PY (k)) = ‖PY (i)− PY (k)‖2 as a dissimilarity
measure, a Gaussian kernel K ′(x) = exp(−x2/β) and a temperature
β = γσ2.

Results
Fast and efficient method.
State of the art method are variations around this principle.

Variations
Automatic adaptation of the search zone. (Kervrann et al.)
Higher order local approximation. (Buadès et al.)
Use of different similarity measure. (Guichard et al.)
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BM3D

State-of-the-art
Patch with adapted shapes, efficient patch denoising and clever
patch reprojection.
Dabov, Foi, Katkovnik and Egiazarian, Image denoising by sparse
3-D transform-domain collaborative filtering (2007) and A non-local
and shape-adaptive transform-domain collaborative filtering (2008)
Still best numerical results available...
Matlab code at http://www.cs.tut.fi/~foi/GCF-BM3D/.

http://www.cs.tut.fi/~foi/GCF-BM3D/


BM3D

State-of-the-art
Patch with adapted shapes, efficient patch denoising and clever
patch reprojection.
Dabov, Foi, Katkovnik and Egiazarian, Image denoising by sparse
3-D transform-domain collaborative filtering (2007) and A non-local
and shape-adaptive transform-domain collaborative filtering (2008)
Still best numerical results available...
Matlab code at http://www.cs.tut.fi/~foi/GCF-BM3D/.

http://www.cs.tut.fi/~foi/GCF-BM3D/


Denoising with patches in three
steps

The 3 steps

Patchization: Y = (Y (i)) 7→ PY = (PY (i)).
Patch estimation: PY = (PY (i)) 7→ P̂ I = (P̂ I(i)).
Patch reprojection: P̂ I = (P̂ I(i)) 7→ Î = (̂I(i)).
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Some choices for the three steps
Patchization
Square patch (NL-Means, BM3D, Mairal...)
Funny (adapted) shape (BM3D, Salmon...)

Patch estimation
Patch averaging (NL-Means, Salmon),
Patch grouping and adapted transform (wavelet, dct,...) (BM3D),
Patch grouping and local dictionaries learning (Mairal, Salmon),
Further aggregation... (BM3D, Salmon)

Patch reprojection
Naive reprojection or uniform averaging (NL-Means, Mairal).
Clever aggregation of available pixel estimates (BM3D, Salmon)

Secret of BM3D
Very good choice (methods and parameters) for each step!
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Initial estimates and aggregation
Model and initial estimates
Y = I + σε of size W ×W .
Collection {Pk} of M initial estimates of I.
Linear combination Pθ =

∑
k θkPk .

Aggregation
Estimate I as a linear combination: Î = P

θ̂
.

Aggregation procedure ' way of choosing θ̂ from Y .

Oracle type inequality
Quadratic risk: Rθ = E

(
‖I − Pθ‖2

)
.

Typical result: optimal aggregation on a class Θ,

E
(
‖I − Î‖2

)
≤ C inf

θ∈Θ
Rθ + price(σ2, θ)

C , θ and price depend on the procedure.
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)
≤ C inf

θ∈Θ
Rθ + price(σ2, θ)

C , θ and price depend on the procedure.



Aggregation procedures 1
Fixed strategy
Choose the strategy without even looking at the observation...
The set Θ is a singleton ⇔ trivial oracle inequality!
Classical choices:
Fixed choice Θ = ek0 .
Uniform average Θ = (1/M, . . . , 1/M).
Fixed weighted average...

Variance driven strategy
Requirement: availability of V̂k an estimate of the variance of Pk .
Classical choices:
Choose θ̂ = ek with k = arg min V̂k .
Use an approximate error independent assumption and set
θ̂ ∝

(
V̂−1
1 , . . . , V̂−1

1

)
(Stacked Generalization - Wolpert (92)).

If V̂θ an estimate of the variance of Pθ is available: θ̂ = arg min V̂θ.
Implicit negligible bias assumption.
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Aggregation procedures 2
Unbiased Risk Estimate
Requirement: availability of r̂θ such that Er̂θ = E

(
‖I − Pθ‖2

)
= Rθ.

Selection by empirical risk minimization:
Î = arg min

Pθ
r̂θ

Oracle inequality under strong assumptions...

Penalizations
AIC/BIC: Selection by penalization proportional to the dimension:

Î = arg min
Pθ

r̂θ + λ‖θ‖0.

Oracle inequality when Pk are fixed or obtained by projection.
Complex (NP-hard) numerical optimization.

Lasso: Selection by penalization proportional to the `1 norm:
Î = arg min

Pθ
r̂θ + λ‖θ‖1.

Oracle inequality for fixed Pk : `0 price with strong assumptions,
`1 price without assumptions.

Lepski’s method...
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Random measure aggregation
Random measure ρ
Credo: Mixing is better than selecting...
Define the estimate Î through a mixing measure ρ on Θ ⊂ RM :

Î =

∫
θ∈RM

Pθdρ(θ). (Randomized version possible)

As θ 7→ fθ is linear, θ̂ =

∫
θ∈Θ

θdρ(θ) .

If Θ is not convex, θ̂ may not belongs to Θ!

Example: Exponential weights
Measure ρ supported on the ek with exponential weighting scheme:

ρ ∝
∑

k
e−

1
β

r̂k δek .

Resulting estimate: Î =
1
Z
∑

k
e−

1
β

r̂kPk . . .
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Î =

∫
θ∈RM

Pθdρ(θ). (Randomized version possible)

As θ 7→ fθ is linear, θ̂ =

∫
θ∈Θ

θdρ(θ) .

If Θ is not convex, θ̂ may not belongs to Θ!

Example: Exponential weights
Measure ρ supported on the ek with exponential weighting scheme:

ρ ∝
∑

k
e−

1
β

r̂k δek .

Resulting estimate: Î =
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Generalized exponential weights
Prior
Prior law π on Θ ⊂ RM .
Different role than a Bayesian prior.

Generalized exponential weight aggregation
Specific PAC-Bayesian procedure.
ρ depends on π and on a temperature β:

dρ(θ) =
e−

1
β

r̂θ∫
RM e−

1
β

r̂θ′dπ(θ′)
dπ(θ) .

Estimate: Î =

∫
RM

e−
1
β

r̂θ∫
RM e−

1
β

r̂θ′dπ(θ′)
Pθdπ(θ)

If π =
∑

k πkδek : Î =
∑

k

e−
1
β

r̂θπk∑
k′ e
− 1
β

r̂k′πk′
Pk .
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Theoretical results
Assumptions on Pk

No general results...
Pk obtained by projection and Gaussian noise (Barron, Leung).
Pk independents of Y and various noise assumption (Dalalyan,
Tsybakov).

Oracle inequality
Sharp oracle inequality: if β ≥ 4σ2,

E
(
‖I − Î‖2

)
≤ infp

∫
θ∈RM

E
(
‖I − Pθ‖2

)
dp(θ) + βK(p,π)

where K(p,π) is the Kullback-Leibler divergence

K(p,π) =

Ep
(
log
(

dp
dπ

))
if p � π

+∞ otherwise
.
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)
≤ infp

∫
θ∈RM

E
(
‖I − Pθ‖2

)
dp(θ) + βK(p,π)

where K(p,π) is the Kullback-Leibler divergence

K(p,π) =

Ep
(
log
(

dp
dπ

))
if p � π

+∞ otherwise
.



Prior choice
Error bound and prior

E
(
‖I − Î‖2

)
≤ infp

∫
θ∈RM

E
(
‖I − Pθ‖2

)
dp(θ) + βK(p,π)

Trade-off between a p concentrated around the θ of best Pθ and a p
close to π.
Choice of π so that this quantity is always small...

Discrete prior
π =

∑
k πkδek : E

(
‖I − Î‖2

)
≤ inf

k
E
(
‖I − Pk‖2

)
+ β| logπk | .

Better than the best initial estimate up to a penalty: model
selection.

Sparse prior
π: i.i.d. Student or Gaussian mixture (Dalalyan et al.).
Bound: E(‖I − Î‖2) ≤ inf

θ
E(‖I − Pθ‖2) + Cβ‖θ‖0 logM .

Better than the best sparse aggregation...
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General PAC-Bayesian result
Loss and arbitrary random measure
Previous results limited to fixed design loss and exponential weights.
Generalization possible to random design and data depend estimate!

A general result (Catoni)
Let θ? = arg minRθ, if
∀θ,E

[
e

1
β

[(Rθ−Rθ? )−(̃rθ−r̂θ? )]
]
≤ e

(
1− 1

C(β)

)
(Rθ−Rθ? )

then for any prior π, with proba. ≥ 1− ε, for any ρ∫
RM

Rθdρ(θ)− Rθ?

≤ C(β)

(∫
RM

r̃θdρ(θ)− r̂θ? + β
(
K(ρ,π) + log(ε−1)

))
.

r̃θ can be a slight over estimation of r̂θ.
Similar result in expectation.

How to use it?
Optimize the right side in ρ... → exponential weights!
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1 A brief survey of patch based method

2 A survey of patch based estimation

3 Statistical aggregation

4 Patches and Aggregation
Framework and theory?
Patchwise aggregation
Pixelwise aggregation



Patch aggregation
Patches, aggregated estimate, SURE and prior
Use patch PY (i) as observation and M patches PY (k) as initial
estimates.
Aggregated estimates: Pθ(i) =

∑
k
θi ,kPY (k)

Unbiased estimate of the risk r̂θ(i) (SURE)
(E (r̂θ(i)) = E

(
‖P I(i)− Pθ(i)‖2

)
) :

r̂θ(i) = ‖PY (i)− Pθ‖2 −W 2(1− 2θi ,i )σ
2.

Choice of a prior π and a temperature β.

Patch based exponential weight aggregation

P̂ I(i) =

∫
RM

e−
1
β

r̂θ(i)∫
RM e−

1
β

r̂θ′ (i)dπ(θ′)
Pθ(i)dπ(θ) .
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Theoretical results
Theorem

???

For β ≥ 4σ2,

E
(
‖P I(i)− P̂ I(i)‖2

)
≤ C(β)

(
infp

∫
θ

(
‖P I(i)− Pθ(i)‖2 + W 2σ2‖θ‖2

)
dp + βK(p,π)

)

Still work in progress
Pθ(i) are neither projection based nor frozen ⇒ big difficulties...
Result valid with C(β) = 1 for a two independent observations
model or with a pixel splitting strategy.
Very specific form of the Pθ(i) and concentration of χ2 ⇒
exponential bound required by Catoni should hold.
Loss in the constant (Catoni et al.) (and overestimation of r̂θ
(Barron and Leung)?).
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Some numerical results

Original Noisy (22.06 dB)

NL-Means (29.69 dB) PAC-Bayesian (29.69 dB)

Methodology
Comparison with NL-Means with a good temperature β.
Patches PAC-Bayesian aggregation with Student prior.

Results
Similar to those obtained with NL-Means...
+ parameter stability and room for improvement...
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Original Noisy (22.28 dB)

NL-Means (31.59 dB) PAC-Bayesian (30.78 dB)



Original Noisy (22.21 dB)

NL-Means (24.23dB) PAC-Bayesian (26.96 dB)



Patchwise aggregation
Classical NL-Means and other patch estimates
Patch estimation by aggregation of observed patches!
Use of unbiased estimate of the risk in the weights (important for
central patch weight).
Other patch estimates are possible:
Oriented filtering,
Representation based approach (DCT, PCA, dictionary...)
IBR!!!

For each patch P I(i), we can obtain a family of estimates (P̂ I k(i))
(different parameter choices, different methods,...).

How to combine them at a patch scale?
Patchwise aggregation:
Minimum Variance Principle,
Unbiased Risk Minimizer / Penalized Risk Minimizer
Linear Combination and Risk Minimizer
PAC-Bayesian Aggregation...
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Pixelwise aggregation

Patches and pixel
A given pixel belongs to several patches!
Several pixel values are available for each pixel...

Pixelwise aggregation
How to combine those estimates?
Naive solution: use only the central value of the patch centered on
the pixel...
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Some centering are better than
the others...

Centered patches Non centered patches I Non centered patches II

Few similar patches
Large variance

Few similar patches
Large variance

More similar patches
Small variance
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Variance based approach

Flat kernel
Gaussian kernel can be replaced by a flat kernel.
Similar numerical performance...
For each centering, Var = Nb of similar patches−1

Pixelwise aggregation
2 variance based strategies compared:
Selection of the patch with the largest number of similar patches.
Average with weight ∝ Var−1 = Nb of similar patches

Extension possible to Gaussian kernel.
Similar patches ' small bias ⇒ Variance only approach makes sense.
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SURE

Stein Unbiased Risk Estimate
Gaussian noise: pixelwise unbiased risk r̂k(i) estimate available
through Stein’s formula.
Extension possible for other noises...
Explicit computation for NL-Means type estimates.

Exponential Weight Aggregation
Combine estimates with weights ∝ exp

(
− 1
β r̂k(i)

)
.

Issue: pixelwise SURE estimates have large variances...
Decision made on a regularized risk estimate (e.g. average on a
small neighborhood)!
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Your Three-Step Denoising
Program

The 3 steps

Step 1 (Patchization): Construct a covering set of noisy patches
with your favorite techniques.
Step 2 (Patch estimation): Produce estimates for each patches with
your favorite techniques.
Step 3 (Patch reprojection): Aggregate those estimates pixelwise
with your favorite techniques.
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Step 1: Split data in overlapping sets.
Step 2: Use your favorite methods on these sets.
Step 3: Aggregate the results on an individual basis.

Do you believe in this program?
Patches? Processing? Aggregation?
Efficiency? Complexity? Performance?
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