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Setting

@ Estimate an image / from a noisy observation Y
Y=I+cW (W Gaussian white noise)

State of the art
@ Classical solution: replace the pixel values by a local average...

@ “Patch” based approach: use pixel neighborhoods instead of
pixel values.

@ NL-Means: Gaussian smoothing in a patch space.

An aggregator point of view

@ Look at the NL-Means approach as a quest for an optimal local
kernel, an optimal patch combination.

@ Statistical aggregation setting.
@ New point of view and new results...
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o Kernel methods and NL-Means
@ Image, noise and kernel methods
@ Patches and NL-Means
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Images, noise and estimate

Image N x N

@ I(i1, in) € R with (i1, i) € [1, N]2.
@ L (quadratic) norm.

Noisy observation
o Y(il, i2) = f(il, iz) + O'W(il, i2)
@ W standard Gaussian i.i.d. noise and o2 known variance.

@ Other noise possible...

Estimation

@ Estimate /(i1, i) by I(i1, i2) from Y.

@ Non local behavior possible...
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General kernel method

@ Estimate /(/1, i2) through a local average
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@ The weights \j , k, .k, may (will) depend on Y.




Kernel methods

General kernel method

@ Estimate /(/1, i2) through a local average

/(ilv i2) = Z )\ilai27k17k2 Yk1,k2
(kl,lQ)E[l,N]2

@ The weights \j , k, .k, may (will) depend on Y.

Classic kernel

K(in — ki, i2 — ko)
O A g kyke = S K- K h—K) (no dependency on Y).

. PR _(i2442 2
@ Example: Gaussian kernel K(iy, i) = e~ (ith)/2h",

@ Adaptation of the local kernel K (dependency on Y).
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Data dependent methods

Example of data dependent methods
@ x-let thresholding (complex dependency of the weights).

@ Bilateral filtering (dependency on pixelwise difference).

Bilateral filtering
K(il — kl, b — k2) X K,(Y(il, i2) — Y(kl, kz))

@\ = - - ——
vl T K (i — K i = k) x K/(Y (in, i) — Y (K, k)

@ Gaussian version:

 (i1—k1) (i —k)? (Vi) = Y (kg 1kp))?
e 2h2 X e 242
Ay e = (11— K22 —K))2 (Y (i)~ Y (K KD)2
e 2h2 X e 2h'2
2K K

@ Intuition: average values that are close in
both distance and values.

@ Issue: pixel value is a too local feature...
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Patch based method

Patch

@ Patch: less localized version of pixel values.
@ Centered patch P(/)(i1, iz) of width W:

P(N (i, i2)(1,J2) = I(i1 + j1, i2 + j2) with —

@ Easy reprojection from patch collection P(/) to an image /...

<Ji2 <

w-1

2




Patch based method

Patch

@ Patch: less localized version of pixel values.
@ Centered patch P(/)(i1, ir) of width W:

P(N) (i1, i2)(j1, J2) = I(ix + j1, 2+ j2) with —

@ Easy reprojection from patch collection P(/) to an image /...

Ww-—-1 L w -1
< 1,2 <

Intuition
@ Use weights that take into account the patch similarity:

Patch P( Y)(il, iz) = P(,-17,-2):
@ Patch P(Y)(i, i) to denoise,
@ Similar patches, useful: large weights,
@ Less similar patches, less useful: small weights,

@ Very different patches, useless: no weights.
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NL-Means

NL-Means (Buades, Coll and Morel)
@ Choose a dissimilarity measure D between patches.
K'(D(Piy )5 Pk ke)))
@ Use a weight \j, i, 4y ko = 12 L2
PR S kg KI(D(Piy iy P i)

@ Use D(P(i, ir)s Pki,ko)) = IIP(ir,in) — Py ko)l to measure the
dissimilarity, a Gaussian kernel K’(x) = exp(—x2/f3) and a
temperature = y02.
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NL-Means (Buades, Coll and Morel)
@ Choose a dissimilarity measure D between patches.
K/(D(P(i1,i2)7 P(k17k2)))
> K'(D(Piy i) Pig k3)))
@ Use D(P(i, ir)s Pki,ko)) = IIP(ir,in) — Py ko)l to measure the
dissimilarity, a Gaussian kernel K’(x) = exp(—x2/f3) and a
temperature = y02.

@ Use a weight A\ i, k.0 =

Results
@ Fast and efficient method.

@ Performance very close to the best denoising method.

Variations
@ Adapt automatically the search zone. (Kervrann et al.)
@ Use a higher order local approximation. (Buades et al.)

@ Use a different dissimilarity measure. (Guichard et al.)
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NL-Means interpretation

Diffusion / Smoothing on the patch manifold

@ Intuitive explanation but proof requires some strong assumptions.

v

@ NL-Means induces a local kernel
adapted to the local geometry.

A best local kernel?
@ Can we compare the NL-Means to the best local kernel:

E(H/ _7”2) < Carg;ninz |I(i17 i2) - Z )‘ilfkhfz*kz/(kla k2)|2 + N2U2||)\H2 ?
i, k1,kz

——

bias variance
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Preliminary estimators and
aggregation

Model and preliminary estimators
@ Y =/+0W of sizeg N x N.
@ {Py} set of M preliminary estimators of / (obtained independently)

4

Aggregation
@ Estimate / as a weighted average 1= Py =>4 McP.

@ Aggregation procedure: way to choose Ay from Y.

Oracle type inequalities

@ Typical results: “Optimal” aggregation amongst a class A,
E(I1 =T12) < C inf |11 = PA|12 + o2pen(3)
€

@ C, A and pen depend on the procedure.
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PAC-Bayesian aggregation
@ Specific aggregation procedure based on exponential weights.

@ Defined from a prior 7 on A by | = Py, with

. / cHYRE 0
™= 71'
RM f]R’V’ e_%HY_P”'PdTr()\’)
o= SIY =Pl

@ For the prior m = >, 0x: 722 5 P
o S e 5 IY=Pul?
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PAC-Bayesian aggregation
@ Specific aggregation procedure based on exponential weights.

@ Defined from a prior 7 on A by | = Py, with

. / cHYRE 0
™= 71'
RM f]R’V’ e_%HY_P”'PdTr()\’)
o= SIY =Pl

@ For the prior m = >, 0x: 722 5 P
o S e 5 IY=Pul?

Oracle inequality

@ Sharp oracle inequality: If 3 > 402,
EQ) ~T1%) <inf [ 1= Pall*dp -+ 5K(p, )
P JXerM

with IC(p, 7) the Kullback-Leibler divergence.
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Error bound and prior
o E(I =1 <inf [ I~ Pxl*dp-+ BK(p,)
P JXERM

@ Trade-off between a localization of p close to the best “oracle”
aggregation Py and a proximity with the prior 7.
@ Prior 7 should be chosen so that this quantity is small “uniformly”...
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Prior choice

Error bound and prior

o E(I =1 <inf [ I~ Pxl*dp-+ BK(p,)
P JxeRrM
@ Trade-off between a localization of p close to the best “oracle”
aggregation Py and a proximity with the prior 7.

@ Prior 7 should be chosen so that this quantity is small “uniformly”...

v

Discrete prior
@ Prior m = 3, 8, E(||1 1)) < inf |/ — Pil|? + Blog M

@ As good as the best preliminary estimator...

Sparsifying prior
@ Prior 7: i.i.d. Student or Gaussian mixture (Dalalyan et al.).
@ Bound: E(||/ = T|]*) < inf ||/ — Py|I? + CB||A||o log M

@ As good as the best “sparse” aggregation...
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© Patch based aggregation
@ Patch based aggregation and theoretical results
@ How to compute the PAC-Bayesian estimate?
@ Numerical results
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Patch based aggregation
Localization to patches

@ Consider patch P(Y)(i1, i2) as observation and patches P(Y)(k1, k2)
as preliminary estimators.

@ Only issue: non independency with the observation P(Y)(i1, i2).

Theorem?
@ Same flavor than for regular aggregation:

E(IP() (i ) = P()(i. 2)II°)
<inf [ (IPU)i.i2) = P2+ W20?|AJE) dp -+ 5 (p. )

@ Proof require either some splitting or some more homework...

Patch based priors

@ Discrete (NL-Means): selection...
@ Sparsifying (Student, Gaussian mixture): sparse kerne

optimization!

v
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Stein Unbiased Risk Estimate

@ 7, = ||Y — Py||?> — N252 is an unbiased estimate of ||/ — Py||2.

@ In the classical aggregation proof, use of exp(—%ﬂ) instead of
exp(—%HY — P,||?) + PAC-Bayesian machinery.

@ No modification of the resulting estimate as the bias of ||Y — Py||?
does not depend on A

@ Key to generalization to non independent preliminary estimators
(Barron and Leung).
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Stein Unbiased Risk Estimate

@ 7, = ||Y — Py||?> — N252 is an unbiased estimate of ||/ — Py||2.

@ In the classical aggregation proof, use of exp(—%ﬂ) instead of
exp(—%HY — P,||?) + PAC-Bayesian machinery.

@ No modification of the resulting estimate as the bias of ||Y — Py||?
does not depend on A

@ Key to generalization to non independent preliminary estimators
(Barron and Leung).

Consequence for the patch based aggregation
@ 7 = ||P(Y)(i1, i) — Py||> — W2(1 — 2Xg)c? should be used instead
of [[P(Y)(i1, i2) — Pxl1*.
@ NL-Means: use a weight exp(—%WzaZ) for the central patch
(numerical improvement)
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The PAC-Bayesian estimate
@ Explicit form: with 7, = ||[P(Y)(i1, i) — Px|[? — W2(1 — 2Xg)0?,
i~

e B™
Ar = / _ Adr(\)
B o e P dr(X)

@ High dimensional integral similar to some integrals appearing in the
Bayesian framework...




PAC-Bayesian estimate and
Monte Carlo method

The PAC-Bayesian estimate
@ Explicit form: with 7, = ||[P(Y)(i1, i) — Px|[? — W2(1 — 2Xg)0?,
i~

e B™
Ar = / _ Adr(\)
B o e P dr(X)

@ High dimensional integral similar to some integrals appearing in the
Bayesian framework...

Computing the PAC-Bayesian estimate
@ Important issue!
@ Monte Carlo method based on a Langevin diffusion equation.
@ Approximate values only... but sufficient precision.
@ Some convergence issues still under investigation.

@ Patch preselection seems to help...




Numerical results



Numerical results

Original Noisy (22.06 dB)

NL Means (29.69 dB) PAC-Bayesian (29.69 dB)



Numerical results

Original Noisy (22.06 dB)

NL Means (29.69 dB) PAC-Bayesian (29.69 dB)

Experimental setting
@ Comparison with classic NL-Means with v = 12.
@ PAC-Bayesian aggregation with Student prior.




Numerical results

Original Noisy (22.06 dB)

NL Means (29.69 dB) PAC-Bayesian (29.69 dB)

Experimental setting
@ Comparison with classic NL-Means with v = 12.
@ PAC-Bayesian aggregation with Student prior.

Results
@ Results similar to those obtained with NL-Means...

@ with less hyperparameter dependency and room for improvement.
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|, -
L=

Original Noisy (22.28 dB)

NL Means (31.59 dB) PAC-Bayesian (30.78 dB)



Original

NL Means (24.23dB) PAC-Bayesian (26.96 dB)
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@ A new look on the exponential weights and the L, patch
dissimilarity measure.

@ A new procedure which performs as well as the NL-Means but
with (some) theoretical control.

@ A heuristic for the weight of the central patch in the classical
NL-Means.




Conclusion

Statistical aggregation: a novel point of view on the NL-Means

@ A new look on the exponential weights and the L, patch
dissimilarity measure.

@ A new procedure which performs as well as the NL-Means but
with (some) theoretical control.

@ A heuristic for the weight of the central patch in the classical
NL-Means.

Work in progress...
Extend the theorem to the fully dependent case,
How to accelerate the Monte Carlo chain convergence?,

°
°

@ Best choice for the prior,

@ Use of sparse representation for the kernel,
°
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