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NL-Means and aggregation
Setting
Estimate an image I from a noisy observation Y

Y = I + σW (W Gaussian white noise)

State of the art
Classical solution: replace the pixel values by a local average...
“Patch” based approach: use pixel neighborhoods instead of
pixel values.
NL-Means: Gaussian smoothing in a patch space.

An aggregator point of view
Look at the NL-Means approach as a quest for an optimal local
kernel, an optimal patch combination.
Statistical aggregation setting.
New point of view and new results...
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Images, noise and estimate

Image N × N
I(i1, i2) ∈ R with (i1, i2) ∈ [1,N]2.
L2 (quadratic) norm.

Noisy observation
Y (i1, i2) = f (i1, i2) + σW (i1, i2) .

W standard Gaussian i.i.d. noise and σ2 known variance.
Other noise possible...

Estimation
Estimate I(i1, i2) by Î(i1, i2) from Y .
Non local behavior possible...
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Kernel methods
General kernel method
Estimate I(i1, i2) through a local average
Î(i1, i2) =

∑
(k1,k2)∈[1,N]2

λi1,i2,k1,k2Yk1,k2

The weights λi1,i2,k1,k2 may (will) depend on Y .

Classic kernel

λi1,i2,k1,k2 =
K (i1 − k1, i2 − k2)∑

k′1,k′2 K (i1 − k ′1, i2 − k ′2)
(no dependency on Y ).

Example: Gaussian kernel K (i1, i2) = e−(i2
1 +i2

2 )/2h2 .
Adaptation of the local kernel K (dependency on Y ).
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Data dependent methods
Example of data dependent methods
?-let thresholding (complex dependency of the weights).
Bilateral filtering (dependency on pixelwise difference).

Bilateral filtering

λi1,i2,k1,k2 =
K (i1 − k1, i2 − k2)× K ′(Y (i1, i2)− Y (k1, k2))∑

k′1,k′2 K (i1 − k ′1, i2 − k ′2)× K ′(Y (i1, i2)− Y (k ′1, k ′2))

Gaussian version:

λi1,i2,k1,k2 =
e−

(i1−k1)2+(i2−k2)2

2h2 × e−
(Y (i1,i2)−Y (k1,k2))2

2h′2∑
k′1,k′2 e−

(i1−k′1)2+(i2−k′2)2

2h2 × e−
(Y (i1,i2)−Y (k′1,k

′
2))2

2h′2

.

Intuition: average values that are close in
both distance and values.
Issue: pixel value is a too local feature...
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Patch based method
Patch
Patch: less localized version of pixel values.
Centered patch P(I)(i1, i2) of width W :
P(I)(i1, i2)(j1, j2) = I(i1 + j1, i2 + j2) with −W − 1

2 ≤ j1, j2 ≤
W − 1

2
Easy reprojection from patch collection P(I) to an image I...

Intuition
Use weights that take into account the patch similarity:

Patch P(Y )(i1, i2) = P(i1,i2):
Patch P(Y )(i1, i2) to denoise,
Similar patches, useful: large weights,
Less similar patches, less useful: small weights,
Very different patches, useless: no weights.
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NL-Means
NL-Means (Buadès, Coll and Morel)
Choose a dissimilarity measure D between patches.

Use a weight λi1,i2,k1,k2 =
K ′(D(P(i1,i2),P(k1,k2)))∑

k′1,k′2 K ′(D(P(i1,i2),P(k′1,k′2)))

Use D(P(i1,i2),P(k1,k2)) = ‖P(i1,i2) − P(k1,k2)‖ to measure the
dissimilarity, a Gaussian kernel K ′(x) = exp(−x2/β) and a
temperature β = γσ2.

Results
Fast and efficient method.
Performance very close to the best denoising method.

Variations
Adapt automatically the search zone. (Kervrann et al.)
Use a higher order local approximation. (Buades et al.)
Use a different dissimilarity measure. (Guichard et al.)
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NL-Means interpretation
Diffusion / Smoothing on the patch manifold
Intuitive explanation but proof requires some strong assumptions.

Optimized local kernel

NL-Means induces a local kernel
adapted to the local geometry.

A best local kernel?
Can we compare the NL-Means to the best local kernel:

E (‖I − Î‖2) ≤ C arg min
λ

∑
i1,i2

|I(i1, i2)−
∑
k1,k2

λi1−k1,i2−k2 I(k1, k2)|2︸ ︷︷ ︸
bias

+ N2σ2‖λ‖2

︸ ︷︷ ︸
variance

?
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Preliminary estimators and
aggregation

Model and preliminary estimators
Y = I + σW of size N × N.
{Pk} set of M preliminary estimators of I (obtained independently).

Aggregation
Estimate I as a weighted average Î = Pλ =

∑
k λkPk .

Aggregation procedure: way to choose λk from Y .

Oracle type inequalities
Typical results: “Optimal” aggregation amongst a class Λ,

E (‖I − Î‖2) ≤ C inf
λ∈Λ
‖I − Pλ‖2 + σ2pen(λ)

C , Λ and pen depend on the procedure.
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PAC-Bayesian aggregation
PAC-Bayesian aggregation
Specific aggregation procedure based on exponential weights.
Defined from a prior π on λ by Î = Pλπ with

λπ =

∫
RM

e−
1
β
‖Y−Pλ‖2

∫
RM e−

1
β
‖Y−Pλ′‖2

dπ(λ′)
λdπ(λ) .

For the prior π =
∑

k δk : Î =
∑

k

e−
1
β
‖Y−Pk‖2

∑
k′ e
− 1
β
‖Y−Pk′‖2 Pk .

Oracle inequality
Sharp oracle inequality: If β ≥ 4σ2,

E (‖I − Î‖2) ≤ inf
p

∫
λ∈RM

‖I − Pλ‖2dp + βK(p, π)

with K(p, π) the Kullback-Leibler divergence.
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Prior choice
Error bound and prior

E (‖I − Î‖2) ≤ inf
p

∫
λ∈RM

‖I − Pλ‖2dp + βK(p, π)

Trade-off between a localization of p close to the best “oracle”
aggregation Pλ and a proximity with the prior π.
Prior π should be chosen so that this quantity is small “uniformly”...

Discrete prior
Prior π =

∑
k δk : E (‖I − Î‖2) ≤ inf

k
‖I − Pk‖2 + β logM .

As good as the best preliminary estimator...

Sparsifying prior
Prior π: i.i.d. Student or Gaussian mixture (Dalalyan et al.).
Bound: E (‖I − Î‖2) ≤ inf

λ
‖I − Pλ‖2 + Cβ‖λ‖0 logM .

As good as the best “sparse” aggregation...
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Patch based aggregation
Localization to patches
Consider patch P(Y )(i1, i2) as observation and patches P(Y )(k1, k2)
as preliminary estimators.
Only issue: non independency with the observation P(Y )(i1, i2).

Theorem

?

Same flavor than for regular aggregation:
E (‖P(I)(i1, i2)− P̂(I)(i1, i2)‖2)

≤ inf
p

∫
λ∈RM

(
‖P(I)(i1, i2)− Pλ‖2 + W 2σ2‖λ‖2

)
dp + βK(p, π)

Proof require either some splitting or some more homework...

Patch based priors

Discrete (NL-Means): selection...
Sparsifying (Student, Gaussian mixture): sparse kernel
optimization!



Patch based aggregation
Localization to patches
Consider patch P(Y )(i1, i2) as observation and patches P(Y )(k1, k2)
as preliminary estimators.
Only issue: non independency with the observation P(Y )(i1, i2).

Theorem

?

Same flavor than for regular aggregation:
E (‖P(I)(i1, i2)− P̂(I)(i1, i2)‖2)

≤ inf
p

∫
λ∈RM

(
‖P(I)(i1, i2)− Pλ‖2 + W 2σ2‖λ‖2

)
dp + βK(p, π)

Proof require either some splitting or some more homework...

Patch based priors

Discrete (NL-Means): selection...
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SURE and its role
Stein Unbiased Risk Estimate

r̂λ = ‖Y − Pλ‖2 − N2σ2 is an unbiased estimate of ‖I − Pλ‖2.
In the classical aggregation proof, use of exp(− 1

β r̂λ) instead of
exp(− 1

β‖Y − Pλ‖2) + PAC-Bayesian machinery.
No modification of the resulting estimate as the bias of ‖Y − Pλ‖2
does not depend on λ
Key to generalization to non independent preliminary estimators
(Barron and Leung).

Consequence for the patch based aggregation
r̂λ = ‖P(Y )(i1, i2)− Pλ‖2 −W 2(1− 2λ0)σ2 should be used instead
of ‖P(Y )(i1, i2)− Pλ‖2.
NL-Means: use a weight ∝ exp(− 1

βW 2σ2) for the central patch
(numerical improvement)
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PAC-Bayesian estimate and
Monte Carlo method

The PAC-Bayesian estimate
Explicit form: with r̂λ = ‖P(Y )(i1, i2)− Pλ‖2 −W 2(1− 2λ0)σ2,

λπ =

∫
RM

e−
1
β

r̂λ∫
RM e−

1
β

r̂λ′dπ(λ′)
λdπ(λ) .

High dimensional integral similar to some integrals appearing in the
Bayesian framework...

Computing the PAC-Bayesian estimate
Important issue!
Monte Carlo method based on a Langevin diffusion equation.
Approximate values only... but sufficient precision.
Some convergence issues still under investigation.
Patch preselection seems to help...
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Numerical results

Original Noisy (22.06 dB)

NL Means (29.69 dB) PAC-Bayesian (29.69 dB)

Experimental setting
Comparison with classic NL-Means with γ = 12.
PAC-Bayesian aggregation with Student prior.

Results
Results similar to those obtained with NL-Means...
with less hyperparameter dependency and room for improvement.
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Conclusion
Statistical aggregation: a novel point of view on the NL-Means
A new look on the exponential weights and the L2 patch
dissimilarity measure.
A new procedure which performs as well as the NL-Means but
with (some) theoretical control.
A heuristic for the weight of the central patch in the classical
NL-Means.

Work in progress...
Extend the theorem to the fully dependent case,
How to accelerate the Monte Carlo chain convergence?,
Best choice for the prior,
Use of sparse representation for the kernel,
...
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