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A NeW COnteXt Data Science X

Data everywhere

@ Huge volume,

@ Huge variety...

Affordable computation units

@ Cloud computing
@ Graphical Processor Units (GPU)...

@ Growing academic and industrial interest!



Data SCIGHCG Data Science X

Major Influences

Four major influences act today:
@ The formal theories of statistics
@ Accelerating developments in computers and display devices

@ The challenge, in many fields, of more and ever larger bodies
of data

@ The emphasis on quantification in an ever wider variety of
disciplines




Data SCIGHCG Data Science X

Major Influences - Tukey (1962)

Four major influences act today:

@ The formal theories of statistics
@ Accelerating developments in computers and display devices

@ The challenge, in many fields, of more and ever larger bodies
of data

The emphasis on quantification in an ever wider variety of
disciplines

He was talking of Data Analysis.
@ Data mining, Machine learning, Big Data...



Big Data Is (Quite) Easy

Data Science

Example of off the shelves solution

amazon

webservices

: Params) {
SparkConf ()
- sethppme(stainoryClass ficstion with params')
SparkContext (conf.

Logger.getRootLogger. setLevel(Level.WARN)
examples

splits = exanples. randonSplit(Array (0.8, 0.2))
training = splits(0).cache()
splits(1)
numTra)mng
nunTest
printin(s"

rair SnumTraining, test: $nuaTest. ")
Exanples. unpersist (btocking

MLUEils. loadLibSVMFile(sc, params.input).cache()

he()
tratning.count()
est.count()

updater = parans. regType 1
L1 = new LiUpdater(

L2 = new Squaredi2Updater()

algorithm | LogistichegressLonkithscd()
algorithm. optin:
Tsethintterations (parass. B sk
.setStepsize(parans. stel
-setUpdater(update
-setRegParan(parans. regPa
model

ram)
jorithn. run(training) . clearThreshold()

prediction = model.predict(test.nap(_. features))
predictionAndlabel = prediction. zip(test.nap(_. label))
metrics inaryClassificationMetrics(predictionAndLabel)
myMetrics MyBinaryClassificationtetrics (predictionAndLabel)
el (i — (L G

est areaUnderPR = ${netrics.areaUnderPR()}.

fest arealinderROC = ${metrics.areaUnderR0C()}.")

println(s"
println(s"
println(s"

sc.stop()
}




Blg Data IS (QUIte) Easy Data Science

Example of off the shelves solution

amazon
Sk>oﬁ€1 webservices

export AWS_ACCESS_KEY_ID=<your-access-keyid>

export AWS_SECRET_ACCESS_KEY=<your-access-key-secret>

cellule/spark/ec2/sparl-ec2 -i cellule.pem -k cellule -s <number of machines> launch <cluster-name>
ssh -i cellule.pem root@<your-cluster-master-dns>

spark-ec2/copy-dir ephemeral-hdfs/conf

ephemeral-hdfs/bin/hadoop distcp s3n://celluledecalcul/dataset/raw/train.csv /data/train.csv

scp -i cellule.pem cellule/challenge/target/scala-2.10/target/scala-2.10/challenges_2.10-0.0.jar

cellule/spark/bin/spark-submit \
--class fr.cc.challenge.Preprocess \
challenges_2.10-0.0.jar \
/data/train.csv \
/data/train2.csv

cellule/spark/bin/spark-submit \
--class fr.cc.sparktest.LogisticRegression \
challenges_2.10-0.0.jar \
/data/train2.csv

= Logistic regression for arbitrary large dataset!



Doing Data Science

Data Science

Exploratory
Data
) Analysis
Raw Data is Datais Clean
Collected Processed Data
* .
Real  “~ Machine
Word Ty N Learning
AN Algorithms.
Ss Statistical
. + v Models
Build Data G
Product Visualizations. Make
Report Decisions
Findings

Figure 2-2. The data science process

@ Doing Data Science: Straight talk from the frontline.

e Rachel Schutt, Cathy O’Neil

o O'Reilly

X



Data Science Is (Quite) Complex! Data Science

Data Science Lifecycle

Business
Understanding
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Data Science
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(Quite) Complex!
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Data Science Is (Quite) Complex!

(©) The Periodic Table of Data Science
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Data Science
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© Some Data Science Challenges

Some Data Science
Challenges



NeW Intel’dlsapllnal’y Cha”enges Some Data Science X

Challenges

@ Applied math AND Computer science

@ Huge importance of domain specific knowledge: physics,
signal processing, biology, health, marketing, environmental
science...

Some joint math/CS/domain challenges

Data acquisition

Unstructured data and their representation

Visualization

°
°
@ Huge dataset and computation
°
@ Software(s)

°

Domain specific issue!




Some Challenges

Some Data Science
Challenges

The UnstructuredData e
Explosion

o How to measure new things?

H h b o @ How to store efficiently the data?
@ How to choose what to measure .
o @ How to describe (model) them to be able to process them?
@ How to deal with distributed sensors?
. . @ How to combine data of different nature?
@ How to look for new sources of informations?

N e o L1303 e e =

@ How to take into account the locality of the data?
@ How to construct distributed architectures?

@ How to look at the data?

@ How to present results?
o How to design adapted algorithms?

o How to help taking better informed decision?

" @ How to find the real problem at hand?
@ How to construct a consistent ecosystem?

_ o How to incorporate human expertise?
@ How to construct interoperable systems?

o How to measure the performance?




Some Challenges

(a) Model (First guess)

Assimilation
period

Some Data Science
Challenges

(b) Observation

) Assimilation

Data/Model coupling.

Multiscale modeling / Multimodal modeling.

°
@ Long term/short term prediction.
o

Prediction vs understanding.
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© Data Scientists

Data Scientists
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Skills
MODERN DATA SCIENTIST

Dat cintstthesee o of the 2th ey eqies i of uliiscpinay s ging o an

intersection of mathemaics, stal mputer science, communication and business. Finding a data scentist s

Yard. in eole Who aderstand hoa dta s . sl hr. S e e ot e on wha
e modern data scientis reallyis.

MATH PROGRAMMING
& STATISTICS &DATABASE

Maching leaming o ience fundamentals

—es Pyihon
e

and parale query
Lt sl piocessing.

Mgt el MapReduce concepts
Hadoop and Hi
Custo reducers
Exprience with aaS ke

DOMAIN KNOWLEDGE COMMUNICATION
&SOFT SKILLS &VISUALIZATION

Passionate about the business Able o engage vith serior
Curious bout dala '“”‘"“’“’
Influence without authorty

% Haker nindsel

# Problem

* Stategc, proactive, cielie,
innovative and collaboratve

decisons and actior

Makeligistlercon
g sty o s e
R it e e e e Sius

Data Scientist

@ Mix of various skills.

e Hard to be an expert of everything!

Data Scientists




More Than One Type Of Data Scientist!  ou scientiss

Data scientist

Data science

sk 5

Data engineer Applied scientist

machine learning

Tool building
software engineering
clouds/grids.
high-performance
computing
optimization

Software engineer Domain scientist

Data trainer




. L)
Data Science Team Dot Scientsts X

S

Statistician / Analyst Research / Computational Developer / Engineer
Scientist

o Importance of balanced teams.
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on Learning A

@ Mathematical Insights on Learning



Statistician Point of View

on Learning
Languages S TATl ST ICIA N
R, SAS, SPSS, Matlab, Stata, Python, e e
Role

Perl, Hive, Pig, Spark, SQL
Collects, analyzes and inferprets-

qualitative as well as quantitive

Skills & Talents
data with statistical theories and

¥ Statistical theories & methodology

¥ Data niining & machine learning methods
¥ Distributed Computing (Hadoop) o
¥ Database systems (SOL and NGO SQL " Mindset
based) HIRED BY Logical and enthusiastic stats
¥ Cloud tools genius

@ |'m a statistician with a signal processing background...
posing as a data scientist.

@ Not that different in the end...

Mathematical Insights




M L | n Pra Ctlce Mathematical Insights X

on Learning (N
Data Engineering m
Raw
algorithm cheat-sheet e Cross

Validation

classification

Scrubbing

Sampling
Cleaned Prepared Training
S Vectorization | 24! Set Train
Predict
Cleaned Prepared
Scrubbing EERN Vectorization [RNEEES

Labels/
Classes

dimensionality
reduction

O ——

Build models.

Test and compare them.

Use the best one...

No uniformly better methods!
@ Mathematical justification...



Machine Learnlng Mathematical Insights X

on Learning A

scikit-learn

algorithm cheat-sheet

regression

s ]
=]

<100K e
et

dimensionality
reduction

Several methodologies

@ Lots of methods...

@ Only two main principles...




Supervised Learning athematcatnsghis

on Learning

Experience, Task and Performance measure

e Training data : D = {(X1, Y1),...,(Xpn, Ya)} (iid. ~P)
@ Predictor: f : X — ) measurable

@ Cost/Loss function : /(f(X), Y) measure how well f(X)
“predicts” Y
o Risk:
R(F) =E (Y, f(X))] = Ex [Eyx [((Y, F(X))]]

o Often ((f(X), Y) = Ly_px) or £(F(X), Y) = |F(X) — Y|?

Learn a rule to construct a classifier f € F from the training

~

data D, s.t. the risk R(f) is small on average or with high
probability with respect to D,,.




BeSt SOl Uthﬂ Mathematical Insights X

on Learning

@ The best solution f* (which is independent of D) is
= inR(f) = inE[(Y,f(X))] = inEx |E oy, f
arg min R(f) = argmin E [((Y, (X))] = arg min Ex [Eyx [((Y, f(x))]]

Bayes Classifier (explicit solution)

e In binary classification with 0 — 1 loss:
+1 if P(Y =+1X)>P(Y =-1|X)
f*(X) = S P(Y=+1|X)>1/2
—1 otherwise

o In regression with the quadratic loss
F7(X) = E[Y[X]

Issue: Explicit solution requires to know E [Y'|X] for all values of
X!

V.




Goal Mathematical Insights X

on Learning

Machine Learning

@ Learn a rule to construct a classifier f € F from the training
data D, s.t. the risk R(f) is small on average or with high
probability with respect to D,,.

Canonical example: Empirical Risk Minimizer

@ Restrict f to a subset of functions S = {fyp, 0 € O}

@ Replace the minimization of the average loss by the
minimization of the empirical Ioss

~

f = f; = argmin — (Y5, fp(X
o fe,geee ”Z )

@ Examples:

e Linear regression
o Linear discrimination with

S={x+> sign{B"x+ Bo} /B €RY, B € R}



P rOba | |ty VS O ptl m |Zat|on ? Mathematical Insights
on Learning

How to find a good function f with a small risk
R(f) =E[(Y,f(X))] 7
Canonical approach: fs = argmingcs 1 577 (Y], £(X;))

Problems

@ How to choose §?

@ How to compute the minimization?

A Probabilistic Point of View

Solution: For X, estimate Y|X plug this estimate in the Bayes
classifier: (Generalized) Linear Models, Kernel methods,
k-nn, Naive Bayes, Tree, Bagging...

An Optimization Point of View

Solution: If necessary replace the loss ¢ by an upper bound ¢ and
minimize the empirical loss: SVR, SVM, Neural Network, Tree,
Boosting




PrOba bIIIStIC ApproaCh Mathematical Insights X

on Learning
e If Y|X is known, one can compute the best solution f*
arg min Ex [Ey x [((Y (x)]]

Bayes Plugin

@ Learning: Estimation of Y|x and pluging of this estimate in
the Bayes classifier

@ Plugin: a classifier F X — )

o (/1 |oss: R +1 if ppa(x) > poa(x)
f(x) = .
—1 otherwise
e Quadratic loss:

N

f(x) =E[YIx]

@ Instantiations:
o Generative Modeling and Bayesian Methods
e Parametric Conditional Models
e Kernel Conditional Density Methods

@ Importance of a corresponding efficient numerical scheme!



Optimization Approach Mathematical Insights X

on Learning A

@ The best solution f* is the one minimizing
f* =argmin R(f) = argminE [((Y, f(X))]

Empirical Risk Minimization

@ Restrict f to a subset of functions S = {fy, 0 € O}

@ Replace the minimization of the average loss by the
minimization of the empirical Ioss

f—A:argmmf yi, fo(xi))
fo,0€0© nz : :

Issue: Minimization may be impossible in practice.

Solution: Replace ¢ by ¢’ a simpler (convex) majorant and
minimize this upper-bound.

Instantiation: Regression, SVM, Neural Networks...

Importance of a corresponding efficient numerical scheme!



PrOba bIIIStIC VS Optlmizathn Mathema]tical Insights X

Probabilistic Approach

Optimization Approéch

@ Principle: estimate the @ Principle: construct a
conditional law Y|X and surrogate decision criterion
use it to take an informed and use it to take an
decision. optimized decision.

o Motto: If you know the @ Motto: You should focus
world, everything is easy! on your goal!

@ Emphasis on Interpretation @ Emphasis on Prediction

o Pro: @ Pro:

o Interpretable models. e Focus on the true goal!

o Lots of flexibility in the e Can use very clever
generative model. optimization algorithm.

o Simultaneous decision e No need to obtain the
optimization. best solution.

o Cons: e Cons:

o Computational issue. o Black box model.
o No need to know the law e Not robust to a change of
to take a decision. decision zone.
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M Od el Va I |d atIO n Mathematical Insights X

on Learning Cevtigis

Data Engineering
- -
Daca Test Set Evaluate
Cross

Validation
Scrubbing

Sampling
Cleaned Prepared Training
PELEE Vectorization |F[PELE! Set Train
Predict

New Cleaned Prepared
Data Scrubbing (PEEB Vectorization [SHECLS

Labels/

Classes

Questions? twest Erlearspande

Competition between methods

@ Compare methods by their performance...
@ on data not used to choose parameters! (Cross Validation)

@ Use the best one in the end.




BIaS—Va rla nce Dllemna Mathematical Insights X

on Learning

o General setting:

F = {measurable fonctions X — Y}
Best solution: f* = argmins.» R(f)
Class S C F of functions

Ideal target in S: f& = argmingc s R(f)

o Estimate in S: fs obtained with a numerical algorithm

Approximation error and estimation error (Bias/Variance)

R(fs) = R(F*) = R(F) — RAF*) + R(Fs) — R(fS)

) . Approximation error Estimation error
o Different behavior for different model complexity

@ Low complexity model are easily learned but the
approximation error (“bias”) may be large (Under-fit).

@ High complexity model may contains a good ideal target
but the estimation error (“variance”) can be large (Over-fit)

v




Conclusion

Statistican / Analyst  Research / Computational  Developer / Engineer
Scientist

Data Science is not a new thing.

dataset.

Mathematical Insights
on Learning

Big Data: easier and easier ability to deal with large

e Environment science: coupling complex modeling and

data is the key!

Practical insights can be learned from theory.

Importance of collaboration (and team) in Data Science.
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