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Introduction
Motivation

Credit Default, Credit Score, Bank Risk, Market Risk Management
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o Data: Client profile, Client credit history...
@ Input: Client profile
@ Output: Credit risk
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Motivation

Marketing: advertisement, recommendatio

You looked at You might also consider
=€ Exhibit
| Labels
e |

Thriving in the Knowledge =~ Museum Administration: An Exhibit Labels: An

Age: New... Paperback by  Introduction Paperback by  Interpretive Approach
John H. Falk Hugh H. Genoways Paperback by Beverly Serrell
$29.95 $34.85$28.75 $34.95 $27.85

find simir tems 12 0 ¢ ommendations don't have +o be
about s.kowing You move of Hhe same...

@ Data: User profile, Web site history...
@ Input: User profile, Current web page

@ Output: Advertisement with price, recommendation...
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Motivation

Spam detection (Text classification)

@ Data: email collection
@ Input: email

@ Output : Spam or No Spam



Introduction

Motivation

Face Detection

New Algorithms for Complex Data
New Mexico, USA, 2015

" & , »
@ Data: Annotated database of images

@ Input : Sub window in the image

@ Output : Presence or no of a face...
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Motivation

Number Recognition
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e Data: Annotated database of images (each image is
represented by a vector of 28 x 28 = 784 pixel intensities)

@ Input: Image

@ Output: Corresponding number
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Machine Learning

Input

Training Data H
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A definition by Tom Mitchell (http://www.cs.cmu.edu/~tom/)

A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with
experience E.


http://www.cs.cmu.edu/~tom/

Introduction

Big Data and Machine Learning

Big Data, Data Science and Machine Learning

e Big Data: buzzword to raise money (or data sets too large or
too complex to be handled by the current system)

e Data Science: art (or science) of the generalizable extraction
of knowledge from data.

@ Machine Learning: construction and study of algorithms
that can learn from and make predictions on data.

o Exciting challenges in the industrial and the academic worlds.

Machine Learning

e Fundamental ingredient in data science.

@ Necessity for a Data Scientist to understand the principle of
the simplest methods to grasp the more sophisticated ones.
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© Introduction

© Supervised Learning

© A Statistical Point of View
@ Generative Modeling
@ Logistic Modeling
@ k Nearest-Neighbors

@ An Optimization Point of View
e SVM
@ (Deep) Neural Networks
@ Tree Based Methods

© Model Selection

@ Data Science and Big Data
e Big Data?
@ Data Science
@ Challenges
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Supervised Learning

Supervised Learning

Supervised Learning Framework

@ Input measurement X = (X(l),X(z), .. ,X(d)) ex

e Output measurement Y € ).

e (X,Y) ~ P with P unknown.

@ Training data : D, = {(X1, Y1),...,(Xpn, Yn)} (i.id. ~P)
o Often

o XeR?and Y € {-1,1} (classification)
o or X € RY and Y € R (regression).

e A classifier is a function in F = {f : X — ) measurable}

@ Construct a good classifier f from the training data.

@ Need to specify the meaning of good.
@ Formally, classification and regression are the same problem!



Supervised Learning
Loss and Probabilistic Framework

Loss function
@ Loss function : ¢(f(x),y) measure how well f(x) “predicts"

y.

@ Examples:
o Prediction loss: £(Y, f(X)) = 1y¢(x)

o Quadratic loss: ¢(Y,X) = |Y — f(X)|?
Risk of a generic classifier
@ Risk measured as the average loss for a new couple:

R(f) =E [((Y, F(X)] = Ex [Eyx [((Y, f(X))]]

@ Examples:
e Prediction loss: E [¢(Y,f(X))] =P{Y # f(X)
e Quadratic loss: E [((Y, f(X))] =E [|Y — f(X)/?]

e Beware: As f depends on D,, R(?) is a random variable!



Supervised Learning
Supervised Learning

Experience, Task and Performance measure

@ Training data : D ={(X1, Y1),...,(Xpn, Yn)} (iid. ~P)
@ Predictor: f : X — ) measurable

@ Cost/Loss function : £(f(X), Y) measure how well f(X)
“predicts" Y

o Risk:

R(F) =E (Y, F(X))] = Ex [Eyx [((Y, F(X))]

e Often ((f(X),Y) = [f(X) — Y|? or £(f(X), Y) = 1y_¢(x)

e Learn a rule to construct a classifier f € F from the training

-~

data D, s.t. the risk R(f) is small on average or with high
probability with respect to D,,.



Supervised Learning

Best Solution

@ The best solution f* (which is independent of D,) is

f*=arg ;rg]r_l R(f) = arg ?’QJQ_]E [L(Y,f(X))] = arg ;gi]r_lEX |:]Eylx [ecy, f(x))]}

Bayes Classifier (explicit solution)

e In binary classification with 0 — 1 loss:

+1 if P{Y=+41X}>P{Y =-1|X}
Fr(X) = SP{Y =+1X} >1/2
—1 otherwise

o In regression with the quadratic loss

f(X) =E[Y[X]

Issue: Explicit solution requires to know [E [Y'|X] for all values of X!



Supervised Learning

Goal

Machine Learning

e Learn a rule to construct a classifier f € F from the training

-~

data D, s.t. the risk R(f) is small on average or with high
probability with respect to D,,.

Canonical example: Empirical Risk Minimizer

@ One restricts f to a subset of functions S = {fy,0 € ©}

@ One replaces the minimization of the average loss by the

minimization of the empirical loss
n

~ 1
f = >~ = argmin — (Y, fo(X;
0 ffeeen;( 2(Xi))

@ Examples:
e Linear regression

e Linear discrimination with
S ={x sign{B"x+ o} /B € R’ B € R}



Supervised Learning

Example: TwoClass Dataset

Synthetic Dataset

e Two features/covariates.

@ Two classes.

o Dataset from Applied Predictive Modeling, M. Kuhn and K.
Johnson, Springer

@ Numerical experiments with R and the caret package.

wwwwww

PredictorB



Supervised Learning

Example: Linear Discrimination

Decision region
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Supervised Learning

Example: More complex model
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Supervised Learning

Bias-Variance Dilemna

@ General setting:
o F = {measurable fonctions X — )V}
o Best solution: f* = argminc » R(f)
e Class S C F of functions
o Ideal target in S: & = argmin,cs R(f)
e Estimate in S: ?5 obtained with some procedure

Approximation error and estimation error (Bias/Variance)

R(fs) — R(f*) = R(f5) — R(F*) + R(Fs) — R(£)

Approximation error Estimation error

@ Approx. error can be large if the model S is not suitable.

@ Estimation error can be large if the model is complex.

Agnostic approach

@ No assumption (so far) on the law of (X, Y).



Supervised Learning

Under-fitting / Over-fitting Issue

Underfit
(High bias)

Generalization
error

Error

Overfit
(High
variance)

Model complexity

o Different behavior for different model complexity

@ Low complexity model are easily learned but the
approximation error (“bias") may be large (Under-fit).

@ High complexity model may contains a good ideal target but
the estimation error (“variance”) can be large (Over-fit)

Bias-variance trade-off <= avoid overfitting and underfitting



Supervised Learning

Statistical and Optimization Point of View Framework

How to find a good function f with a small risk
R(f) =E[e(Y, £(X))] 7
Canonical approach: fg = argminges 2 S0 £(Y;, £(X)))

@ How to choose S?

@ How to compute the minimization?

A Statistical Point of View

Solution: For X, estimate Y|X plug this estimate in the Bayes
classifier: (Generalized) Linear Models, Kernel methods, k-nn,
Naive Bayes, Tree, Bagging...

An Optimization Point of View

Solution: If necessary replace the loss ¢ by an upper bound ¢ and
minimize the empirical loss: SVR, SVM, Neural Network, Tree,
Boosting



A Statistical Point of View
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© A Statistical Point of View
@ Generative Modeling
@ Logistic Modeling
@ k Nearest-Neighbors



A Statistical Point of View

Classification Rule / Algorithm

@ Input: a data set D,
Learn Y|x or equivalently px(x) = P{Y = k|X = x} (using
the data set) and plug this estimate in the Bayes classifier

e Output: a classifier f : RY — {—1,1}

F(x) = {-1-1 if l3+1(?() > p-1(x)
—1 otherwise
@ Three instantiations:
© Generative Modeling (Bayes method)
@ Logistic modeling (parametric method)
© Nearest neighbors (kernel method)



A Statistical Point of View

Outline

© A Statistical Point of View
@ Generative Modeling



A Statistical Point of View

Generative Modeling

 P{X=x|]Y =k}P{Y =k}
N P{X =x}

Pk(x)

Remark: If one knows the law of (X, Y) or equivalently of X
given y and of Y then everything is easy!

@ Binary Bayes classifier (the best solution)

F(x) = +1 if pra(x) > p-1(x)
—1 otherwise

@ Heuristic: Estimate those quantities and plug the estimations.

e By using different models for P {X|Y'}, we get different
classifiers.

@ Remark: You can also use your favorite density estimator...



A Statistical Point of View
Discriminant Analysis

Discriminant Analysis (Gaussian model)

@ The densities are modeled as multivariate normal, i.e.,
P{X|Y = k} ~ N5,

@ Discriminants fonctions:
gk(x) = In(B{X|Y = k}) + In(B (Y = k})

8k(x) = — %(X — i) (% — )
_ g In(27) — % In(|Z4]) + In(P{Y = k})

e QDA (differents X in each class) and LDA (X, = X for all k)

Beware: this model can be false but the methodology remains
valid!



A Statistical Point of View

Discriminant Analysis

In pratice, we will need to estimate px, i and Py :=P{Y = k}
@ The estimate proportion I@; = Ik — %27:1 | PRV
o Maximum likelihood estimate of fix and T4 (explicit formulas)

o DA classifier

- 1 ifgn >z
{11 120

—1 otherwise

@ Decision boundaries: quadratic = degree 2 polynomials.

@ If one imposes X _; = X1 = X then the decision boundaries is
an linear hyperplan



A Statistical Point of View
Example: LDA

Linear Discrimant Analysis
Decision region

Decision boundary
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A Statistical Point of View
Example: QDA

Quadratic Discrimant Analysis
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A Statistical Point of View

Naive Bayes

@ Classical algorithm using a crude modeling for P {X|Y}:
e Feature independence assumption:

d
_ 0
P {X|Y} ,HP{X ‘Y}

e Simple featurewise model: binomial if binary, multinomial if
finite and Gaussian if continuous

o If all features are continuous, similar to the previous Gaussian
but with a diagonal covariance matrix!

@ Very simple learning even in very high dimension!



A Statistical Point of View

Example: Naive Bayes

Naive Bayes with Gaussian model
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A Statistical Point of View

Example: Naive Bayes

Naive Bayes with kernel density estimates
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@ Logistic Modeling



A Statistical Point of View

Logistic Modeling

@ Direct modeling of Y|x.

The Binary logistic model (Y € {—1,1})

eBre(x)

- 1+ eﬁt@(x)

p+1(x)

where ¢(x) is a transformation of the individual x

@ In this model, one verifies that
p+1(x) > p-1(x) & [lp(x) >0
@ True Y|x may not belong to this model = maximum
likelihood of 5 only finds a good approximation!
@ Binary Logistic classifier:
- {+1 if 3tp(x) >0

fr(x) =
(x) —1 otherwise

where B is estimated by maximum likelihood.



A Statistical Point of View

Logistic Modeling

e Logistic model: approximation of B(p1(x)) by B(h(8%p(x)))
with h(t) = 1%

Opposite of the log-likelihood formula

1 n
- Z (1y,=1 log(h(B*¢(x))) + 1y,—_1 log(1 — h(B¢(x))))
eBe(x) 1
T Z =1log 75y + bi=-1l08 5
=

e Convex function in g!

@ Remark: You can also use your favorite parametric model
instead of the logistic one...



A Statistical Point of View
Example: Logistic

Logistic

Decision region

Decision boundary
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A Statistical Point of View

Example: Quadratic Logistic

Quadratic Logistic

Decision region

Decision boundary
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@ k Nearest-Neighbors



A Statistical Point of View
Example: k Nearest-Neighbors (with k = 3)
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A Statistical Point of View
Example: k Nearest-Neighbors (with k = 4)
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A Statistical Point of View

k Nearest-Neighbors

@ Neighborhood Vy of x: k closest from x learning samples.

k-NN as local conditional density estimate

~ Z i X 1 fi=
pr1(x) = XEVWT’ nal

@ KNN Classifier:
?KNN(X) = {

1 Bra(x) = Poalx)
—1 otherwise

@ Remark: You can also use your favorite kernel estimator...



A Statistical Point of View
Example: KNN

k-NN with k=1
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A Statistical Point of View
Example: KNN

k-NN with k=5
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A Statistical Point of View
Example: KNN

k-NN with k=9
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A Statistical Point of View

Example: KNN

k-NN with k=13
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A Statistical Point of View

Example: KNN

k-NN with k=17
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A Statistical Point of View
Example: KNN

k-NN with k=21
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A Statistical Point of View
Example: KNN

k-NN with k=25
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A Statistical Point of View
Example: KNN

k-NN with k=29
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A Statistical Point of View

Over-fitting Issue

Underfit
(High bias)

Generalization
error

Error

Overfit
(High
variance)

1
1
1
1 Training error
L

Model complexity

Error behaviour

@ Learning/training error (error made on the learning/training
set) decays when the complexity of the model increases.

@ Quite different behavior when the error is computed on new
observations (generalization error).

@ Overfit for complex models: parameters learned are too
specific to the learning set!

e General situation! (Think of polynomial fit...)

@ Need to use an other criterion than the training error!



A Statistical Point of View

Cross Validation

Training Set Test Set

e Very simple idea: use a second learning/verification set to
compute a verification error.

e Sufficient to avoid over-fitting!

Cross Validation

e Use %n observations to train and %n to verify!

e Validation for a learning set of size (1 — &) x n instead of n!

@ Most classical variations:
o Leave One Out,
e V-fold cross validation.

@ Accuracy/Speed tradeoff: V =5 or V = 10!



A Statistical Point of View

Cross Validation

variable
AccuracyCV
AccuracyCVint
AcCUracyCVPAC
Accuracy

value

model



A Statistical Point of View

Example: KNN (E = 25 using cross-validation)
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An Optimization Point of View
Outline

@ An Optimization Point of View
e SVM
@ (Deep) Neural Networks
@ Tree Based Methods



An Optimization Point of View

Statistical and Optimization Point of View Framework

How to find a good function f with a small risk
R(f) =E[e(Y, £(X))] 7
Canonical approach: fg = argminges 2 S0 £(Y;, £(X)))

@ How to choose S?

@ How to compute the minimization?

A Statistical Point of View

Solution: For X, estimate Y|X plug this estimate in the Bayes
classifier: (Generalized) Linear Models, Kernel methods, k-nn,
Naive Bayes, Tree, Bagging...

An Optimization Point of View

Solution: If necessary replace the loss ¢ by an upper bound ¢ and
minimize the empirical loss: SVR, SVM, Neural Network, Tree,
Boosting



An Optimization Point of View

Empirical Risk Minimization

@ The best solution * is the one minimizing

f* = argmin R(f) = argminE [£(Y, f(X))]

Empirical Risk Minimization

@ One restricts f to a subset of functions S = {fy,0 € O}

@ One replaces the minimization of the average loss by the
minimization of the empirical loss

¥

1 n
f~ = argmin — yi, fo(x;
= argmin 310 i)

@ Plus convexification/regularization of the risk...
e Examples: SVM, (Deep) Neural Networks...



An Optimization Point of View

Classification Loss and Convexification

15 — 1(y0)<0)
—exp{y"f)
— log {1ty ) | |

max( 1-y°T0x)

o Classification loss: (%/1(y, f(x)) = 1,.¢(x)
@ Not convex and not smooth!
Classical convexification
o Logistic loss: £(y, f(x)) = log(1 4+ e~ () (Logistic / NN)
@ Hinge loss: ¢(y, f(x)) = (1 — yf(x))+ (SVM)
o Exponential loss: £(y, f(x)) = e %) (Boosting...)




An Optimization Point of View

Logistic Revisited

@ Ideal solution:

~ 17
f=argmin=Y ¢! i, F(x;
gmin . > (%" (5 ()

Logistic regression

e Use f(x) = (B,x) + b.
o Use the logistic loss £(y, f) = log,(1 + e ™), i.e. the
-log-likelihood.

@ Different vision than the statistician but same algorithm!



An Optimization Point of View
Logistic Revisited
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An Optimization Point of View
Outline

@ An Optimization Point of View
e SVM



An Optimization Point of View
Ideal Separable Case

e Linear classifier: sign((f, x) + b)
@ Separable case: 3(S, b), Vi, yi((5, x) + b) > 0!

How to choose (3, b) so that the separation is maximal?

@ Strict separation: 3(3, b), Vi, yi({8,x) + b) > 1

e Maximize the distance between (3, x) + b =1 and
(B,x) +b=—1.
o Equivalent to the minimization of ||3]|2.



An Optimization Point of View
Non Separable Case

@ What about the non separable case?
@ Relax the assumption that Vi, y;((5,x) + b) > 1.
o Naive attempt:

. 1 .
argmin || 3% + C; Z 1y, ((8.x)+b)<1
i=1

@ Non convex minimization.

SVM: better convex relaxation!

argrmin 8] + € > max(1 — (8, ) + b),0)
i=1



An Optimization Point of View

SVM as a Penalized Convex Relaxation

@ Convex relaxation:

argmin |32 + ci;max(l — ({8, %) + b),0)

1 n
= argmin + > " max(1 — yi{(5,x) + b),0) + I3
i=1

o Prop: (°/1(y;,sign((8,x) + b)) < max(1 — y;({8, x) + b),0)

Penalized convex relaxation (Tikhonov!)

1> 0y, sign((6, ) + b))

i=1

< T3 max(1 — y((8,%) + £),0) + 18I
i=1



An Optimization Point of View
SVM

Support Vector Machine

Decision region

Decision boundary
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An Optimization Point of View

The Kernel Trick

2:R? 5 R?
(@1,32) = (21,22, 28) = (2}, V22120, 73)
ZJ

»o

@ Non linear separation: just replace x by a non linear ®(x)...

Kernel trick

e Computing k(x,y) = (P(x), ®(y)) may be easier than
computing ®(x), ®(y) and then the scalar product!

® can be specified through its definite positive kernel k.

Examples: Polynomial kernel k(x,y) = (1 + (x,y))¢, Gaussian
kernel k(x,y) = e~lx=I?/2

RKHS setting!

Can be used in (logistic) regression and more...



An Optimization Point of View
SVM

Support Vector Machine with polynomial kernel
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An Optimization Point of View
SVM

Support Vector Machine with Gaussian kernel
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An Optimization Point of View
Outline

@ An Optimization Point of View

@ (Deep) Neural Networks



An Optimization Point of View

Artificial Neuron and Logistic Regression

Activation Neuron Configuration

B1

Activation Fonction

13 /7— ;

s
|d/
Artificial neuron Logistic unit
@ Structure: @ Structure:
e Mix inputs with a e Mix inputs with a
weighted sum, weighted sum,
e Apply a (non linear) @ Apply the logistic function
activation function to this a(t)=e"/(1+¢€"),
sum, e Threshold at 1/2 to make
e Eventually threshold the a decision!

result to make a decision. @ Logistic weights learned by

@ Weights learned by minimizing the
minimizing a loss function. -log-likelihood.



An Optimization Point of View

Neural network

Input Hidden Layer Output

B1 B2
11
I = Input \ H1
H= Hidden 12
O = Output H2 01
B = Bias 13 ="
H3

Neural network structure

@ Cascade of artificial neurons organized in layers

@ Thresholding decision only at the output layer

@ Most classical case use logistic neurons and the -log-likelihood
as the criterion to minimize.

e Classical (stochastic) gradient descent algorithm (Back
propagation)

@ Non convex and thus may be trapped in local minima.



An Optimization Point of View
Neural network

Neural Network
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An Optimization Point of View

Deep Neural Network

Input Hidden Layer Hidden Layer Hidden Layer Output

Deep Neural Network structure

@ Deep cascade of layers!

@ No conceptual novelty but initialization becomes a crucial
issue.

@ Bunch of solutions proposed on a greedy initialization of the
layers starting from the deepest one.

@ Very impressive results!



An Optimization Point of View
Deep Neural Network
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An Optimization Point of View
Deep Learning

Family of Machine Learning algorithm combining:

@ a (deep) multilayered structure,
@ a clever (often unsupervised) initalization,

@ a more classical final fine tuning optimization.

e Examples: Deep Neural Network, Deep (Restricted) Boltzman
Machine, Stacked Encoder...

@ Appears to be very efficient but lack of theoretical fundation!



An Optimization Point of View
Outline

@ An Optimization Point of View

@ Tree Based Methods



An Optimization Point of View

Regression Trees

Tree principle

e Construction of a recursive partition through a tree structured
set of questions (splits around a given value of a variable)

@ For a given partition, statistical approach and optimization
approach yields the same classifier!

@ A simple majority vote in each leaf

Quality of the prediction depends on the tree (the partition).

Issue: Minim. of the (penalized) empirical error is NP hard!

Practical tree construction are all based on two steps:

e a top-down step in which branches are created (branching)
e a bottom-up in which branches are removed (pruning)



An Optimization Point of View

CART

PredictorB >= 0.2

/

PredictorA >=0.13
PredictorA < 0.31 PredictorB >=0.32

PredictorB >=0.29

PredictorA < 0.62 @



An Optimization Point of View
Branching

Greedy top-bottom approach

@ Start from a single region containing all the data

@ Recursively split those regions along a certain variable and a
certain value

@ No regret strategy on the choice of the splits!

@ Heuristic: choose a split so that the two new regions are as
homogeneous possible...



An Optimization Point of View

Branching

Various definition of homogeneous

@ CART: empirical loss based criterion

C(RR)=>_Uyy(R)+ Y _ iy (R))

XER X,‘EE
@ CART: Gini index (classification)
C(R,R) = p(R)(1—p(R) + Y _ p(R)(L - p(R))
X €ER X,ER

C4.5: entropy based criterion (Information Theory)

C(RR) =D HR)+ > H(R

X ER xER

CART with Gini is probably the most used technique...

Other criterion based on x? homogeneity or based on different
local predictors (generalized linear models...)



An Optimization Point of View

Branching

Choice of the split in a given region

@ Compute the criterion for all features and all possible splitting
points (necessarily among the data values in the region)

@ Choose the one minimizing the criterion

@ Variations: split at all categories of a categorical variables
(ID3), split at a fixed position (median/mean)
@ Stopping rules:

e when a leaf/region contains less than a prescribed number of
observations
e when the region is sufficiently homogeneous...

@ May lead to a quite complex tree / Over-fitting possible!



An Optimization Point of View

Pruning

e Model select. within the (rooted) subtrees of previous tree!

@ Number of subtrees can be quite large but the tree structure
allows to find the best model efficiently.

@ The predictor in a leaf depends only on the values in this leaf.

e Efficient bottom-up (dynamic programming) algorithm if the
criterion used satisfies an additive property

AT)=)_ <L)

LeT

e Example: AIC / CV.

o Limits over-fitting...



An Optimization Point of View
CART
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An Optimization Point of View

Ensemble methods

@ Lack of robustness for single trees.

@ How to combine trees?

Parallel construction

@ Construct several trees from bootstrapped samples and
average the responses (bagging)

@ Add more randomness in the tree construction (random
forests)

Sequential construction

@ Construct a sequence of trees by reweighting sequentially the
samples according to their difficulties (AdaBoost)

@ Reinterpretation as a stagewise additive model (Boosting)



An Optimization Point of View
Ensemble methods
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An Optimization Point of View
Ensemble methods

Random Forest
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An Optimization Point of View
Ensemble methods

AdaBoost
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Model Selection

Outline

© Model Selection



Model Selection

Model and Hyperparameters
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Model Selection

Logistic Regression

@ Ideal solution:

f*(x) = argmax P {Y|x}

@ Model Y|X with a logistic model.
@ Estimate its parameters with a Maximum Likelihood approach.

@ Plug the estimate in the Bayes classifier.

@ Model hyperparameters:

o Features
o Parametric model...



Model Selection

Generative Modeling

@ Ideal solution:

f*(x) = argmax P {Y|x}

Generative Modeling

e Estimate X|Y with a density estimator as well as P{Y}
@ Deduce using the Bayes formula an estimate Y| X.

@ Plug the estimate in the Bayes classifier.

@ Model hyperparameters:

o Features
o Generative model



Model Selection

Kernel Method

@ Ideal solution:

f*(x) = argmax P {Y|x}

Kernel methods

e Estimate Y|X with a kernel conditional density estimator.

@ Plug the estimate in the Bayes classifier.

@ Model hyperparameters:

o Features
o Bandwidth and kernel



Model Selection

Logistic Regression

@ Ideal solution:

f* =argminE [EO/I(Y, f(X))}
fes

@ Replace %/1 by the logistic loss.
e Add a penalty A||f]|p

@ Compute the minimizer.

@ Model hyperparameters:

o Features
e Penalty and regularization parameter.



Model Selection

SVM

@ Ideal solution:

f* = argminE [60/1(\/7 f(X))}

fes
SVM
@ Replace the expectation by its empirical counterpart.
o Replace /%Y (y,f) =1,_¢ by £'(y,f) = (1L — yf)4.
o Add a penalty A||f||%.
o Compute the minimizer.

Model hyperparameters:
e Features
e S RKHS structure: features mapping and metric
e Regularization parameters A



Model Selection

(Deep) Neural Networks

@ Ideal solution:

f*=argminE [50/1(\/, f(X))}
fes

Neuron: x — o((53,x) + b)
Neural Network: Convolution system of neurons.
Replace ¢%/1(y, f) by a smooth/convex loss.

Minimize the empirical loss using the backprop algorithm
(gradient descent)

Model hyperparameters:

Features

Net architecture, activation function

Initialization strategy

Optimization strategy (and regularization strategy)



Model Selection

Tree and Boosting

@ Ideal solution:

f*(x) =argmaxP{Y|x} and f*=argminE {Eo/l(Y, f(X))}
fes

Single tree

@ Greedy Partition construction.
@ Local conditional density estimation / loss minimization.

@ Suboptimal tree optimization through a relaxed criterion

Bagging/Random Forest

@ Averaging of several predictors (statistical point of view)

Boosting

@ Best interpretation as a minimization of the exponential loss
Uy, f) = e ¥ (optimization point of view)



Model Selection

Model Selection

@ How to design models? (Model/feature design)

@ How to chose among several models? (Model/feature
selection)

@ Key to obtain good performance!

Approximation error and estimation error (Bias/Variance)

R(fs) = R(f*) = R(£§) — R(F*) + R(fs) — R(f3)

Approximation error Estimation error

@ Approximation error can be large for not suitable model S!

@ Estimation error can be large if the model is complex!

@ Need to find the good balance automatically!



Model Selection

Model Selection

Error

@ Empirical error biased toward complex models!

e)
) 2 el -
Model complexit
Selection criterion

e Cross validation: Very efficient (and almost always used in
practice!) but slightly biased as it target uses only a fraction
of the data.

@ Penalization approach: use empirical loss criterion but
penalize it by a term increasing with the complexity of S

Rn(%) — Rn(é) + pen(S)

and choose the model with the smallest penalized risk.



Model Selection

Cross Validation

variable

AccuracyCV
0.8 AccuracyCvint
AccuracyCVPAC

- Accuracy

model



Model Selection

Ensemble methods

@ How to combine several predictors (models)?

@ Two strategies: mixture or sequential

@ Model averaging

e Data dependent model averaging (learn mixture weights)

@ Modify learning procedure according to current results.

@ Boosting, Cascade...



Data Science and Big Data
Outline

@ Data Science and Big Data
e Big Data?
@ Data Science
@ Challenges



Data Science and Big Data
Outline

@ Data Science and Big Data
e Big Data?



Data Science and Big Data
Data is the new Qil!




Data Science and Big Data

The 5 Vs of Big Data

* Terabytes
* Records/Arch
« Transactions
« Tables, Files

+ Batch
+ Real/inear-time
+ Processes
+ Streams

5 Vs of
+ Structured . + Statistical
+ Unstructured Blg Data = Events
+ Multi-factor + Correlations
+ Probabilistic '

Hypothetical

+ Trustworthiness
= Authenticity

« Origin, Reputation
= Availability

« Accountability




Data Science and Big Data

Lots of Words!
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Data Science and Big Data
Don’t Believe the Hype

internet of Thing:
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Data Science and Big Data
Wikipedia

e Big data is an all-encompassing term for any collection of
data sets so large and complex that it becomes difficult to
process using traditional data processing applications.

e Data science is the study of the generalizable extraction of
knowledge from data, yet the key word is science.

@ Statistics is the study of the collection, analysis,
interpretation, presentation and organization of data.

@ Machine Learning explores the construction and the study of
algorithms that can learn from and make predictions on data.



Data Science and Big Data
Outline

@ Data Science and Big Data

@ Data Science



Data Science and Big Data

Doing Data Science

Exploratory
Data
Analysis
Raw Data is p| Datais Clean
Collected Processed Data I
M "
Real "% Ma(h!ne
World ~. Learing
T~ Algorithms
AN Statistical
s . L 4 v I Models
*~J BuildData Cﬂmrr[unl_cate
Product Visualizations Make
Report Decisions
findings

Figure 2-2. The data science process

Doing Data Science: Straight talk from the frontline

@ Rachel Schutt, Cathy O'Neil - O'Reilly

@ Art of data driven decision / evaluation.



Data Science and Big Data

A new Context

Data everywhere

@ Huge volume,

@ Huge variety...

Affordable computation units

@ Cloud computing
@ Graphical Processor Units (GPU)...

@ Growing academic and industrial interest!



Data Science and Big Data
Big Data is (quite) Easy

Example of off the shelves solution

SpQr’( amazon

webservices

run(parans: Parans) {
conf SparkConf ()
. setAppNane(s"BinaryClassification with $parans”)
sc = new SparkContext(conf)

Logger. getRootLogger. setLevel(Level.WARN)

examples = MLUtils. loadLibSWMFile(sc, parans. input).cache()
splns examples. randomSplit(Array(0.8, 0.2))

splits(0).cache()
splits(1).cache()
numTraxnlng = training. count()

nt()

T e BB, (i s
examples. unpcrslstlh\ockmg false)

upda(er = parans. regType {

=> new Lipdater()

B0 1 o )

algorithn = new LogisticRegressionithsGD()
algorithm. optimizer

-sethunIterations (parans. nunlterations)
-setStepSize(parans. stepSize)
-setUpdater(updater]
e e e

model = algorith. run(training) . clearThreshold()
prediction = model.predict (test.map(_.features))
predictionAndLabel = prediction.zip(test.map(_.label))

inaryClassificationtetrics(predictionAndLabel)
myMetrics MyBinaryClassificationtetrics (predictionAndLabel)

mpirical CrossEntropy = ${myMetrics.crossEntropy()}.
fest arealnderPR = ${metrics.areaUnderPR()}.")
fest arealnderROC = ${metrics.areaUnderROC()}.")

println(s"
println(s"
println(s"

sc.stop()
}




Data Science and Big Data

Big Data is (quite) Easy

Example of off the shelves solutio

amazon

sp Q rK webservices

export AWS_ACCESS_KEY_ID=<your-access-keyid>

export AWS_SECRET_ACCESS_KEY=<your-access-key-secret>

cellule/spark/ec2/sparl-ec2 -i cellule.pem -k cellule -s <number of machines> launch <cluster-name>
ssh -i cellule.pem root@<your-cluster-master-dns>

spark-ec2/copy-dir ephemeral-hdfs/conf

ephemeral-hdfs/bin/hadoop distcp s3n://celluledecalcul/dataset/raw/train.csv /data/train.csv

scp -i cellule.pem cellule/challenge/target/scala-2.10/target/scala-2.10/challenges_2.10-0.0.jar

cellule/spark/bin/spark-submit \
--class fr.cc.challenge.Preprocess \
challenges_2.10-0.0.jar \
/data/train.csv \
/data/train2.csv

cellule/spark/bin/spark-submit \
--class fr.cc.sparktest.LogisticRegression \
challenges_2.10-0.0.jar \
/data/train2.csv

= Logistic regression for arbitrary large dataset!



Data Science and Big Data

Web and Marketing

Google | motrdorechrcn

Moteur de recherche - Mozbot France - La recherche facile
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Moteur de recherche — Wikipédia
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Data Science and Big Data

Industry and Society

The Body as a Source

Smarter Cities: Turning Big Data Into Insight




Data Science and Big Data
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Data Science and Big Data
Outline

@ Data Science and Big Data

@ Challenges



Data Science and Big Data

A Complex Ecosystem!

Business Industry specific
Predictive Predictive
Models Models Big Data
Solutions
Big Data Machine Learning Engine
(ex. IBM, SKYTREE)
N Big Data
Application .
s o Big Data Technology
thick client)
Software Platform
(ex. Hadoop, Cloudera, Hartonworks)
Big Data

Data Stores

Big Data
[Structured & Unstructured]

(ex. mangoDB, REDIS, Cassandra, Hana)
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A Complex Ecosystem!
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Data Science and Big Data

New Interdisciplinary Challenges

@ Applied math AND Computer science

@ Huge importance of domain specific knowledge: physics,
signal processing, biology, health, marketing...

Some joint math/computer science challenges

@ Data acquisition

@ Unstructured data and their representation
@ Huge dataset and computation

High dimensional data and model selection
Learning with less supervision
Visualization

Software(s)...



Data Science and Big Data

Data acquisition

HOW INGESTIBLE SENSORS WORK

Some challenges

@ How to measure new things?

@ How to choose what to measure?

@ How to deal with distributed sensors?
°

How to look for new sources of informations?



Data Science and Big Data

Unstructured Data

New 5 : . ™
The Unstructured Data Data [FRQ s ~ °
Explosion . 3

- Growing 100X every 10 years
- Requires a new approach

Traditional
Data

ssera322
ety

20419328
9547083

Some challenges

@ How to store efficiently the data?

@ How to describe (model) them to be able to process them?
@ How to combine data of different nature?
o

How to learn dynamics?



Data Science and Big Data

Huge Dataset

Servers
(aka computers) Spark:Transformations & Actions

Faster, more expensive '\ Processor core(s) L1/L2/L3 cache

Generally non persistent \ Processers memaria
DRANN, v nep

\ Direct address range
ﬁ 0.S. Virtual & physical ~ NVRAM\, 2o Teriaieh on

Transformations Actions

Memory map/range - NAND/Flash ™,

"\, External memory (storage)
. Beyond memory map

N, Utilize file system

DAS, SAN, NAS
Block, file
Objects

Higher capacity
Lower cost
Persistent
Distance

Locality of reference ~ Source: StoageIOblog.com

Some challenges

@ How to take into account the locality of the data?
@ How to construct distributed architectures?

@ How to design adapted algorithms?



Data Science and Big Data
High Dimensional Data

Some challenges

@ How to describe (model) the data?

@ How to reduce the data dimensionality?

@ How to select/mix models?
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Learning and Supervision

METHOD TRAIMING DATA
[
Supervised | abeled o Training
learning data process
E
i Labeled >
= Sem-suoervised Training
|'-|'. learning process
[N
[
+
Unsupemised Unlabeled ™, Training
learning dala process

Some challenges

@ How to learn with the less possible interactions?

@ How to learn simultaneously several related tasks?



Data Science and Big Data
Visualization

Some challenges

@ How to look at the data?
@ How to present results?

@ How to help taking better informed decision?
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Software(s)

Big Data
Solutions
Big Data r:::‘::.; m..., Engine.
Big Data
Applications -
2 Big Data Technology

Software Platform

(ex Hadaop,Clouders Hortonvorle)

Big Data
Data Stores

g Data
[S(ructured & Unstructured]
(o morgsD8 RIS ot o)

Some challenges

@ How to construct a consistent ecosystem?

@ How to construct interoperable systems?



Data Science and Big Data

Data Scientists!

L:y Data scientist
Scientific “ o —
ooz Method q“ ()
Creativity ‘(/-
& Strategic Math @/; b Data science
Thinking e Data engineer e Applied scientist
information etrieval
signal proces:
Business DATA Statistics
Expertise \ SCIENCE ! Tool building Data domains
Software engineering | cneray and physica scence:
clouds/orids heaithand ife sciences
high-performance
Hacking A Seriilie Software engineer Domain scientist
Dot Skills

Engineering

Computer Science

Data trainer

@ No one masters all the skills!
@ Importance of teams.

@ Training...
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