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Introduction
Motivation

Credit Default, Credit Score, Bank Risk, Market Risk Management

Data: Client profile, Client credit history...
Input: Client profile
Output: Credit risk



Introduction
Motivation

Marketing: advertisement, recommendation...

Data: User profile, Web site history...
Input: User profile, Current web page
Output: Advertisement with price, recommendation...
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Spam detection (Text classification)

Data: email collection
Input: email
Output : Spam or No Spam



Introduction
Motivation

Face Detection

Data: Annotated database of images
Input : Sub window in the image
Output : Presence or no of a face...



Introduction
Motivation

Number Recognition

Data: Annotated database of images (each image is
represented by a vector of 28× 28 = 784 pixel intensities)
Input: Image
Output: Corresponding number



Introduction
Machine Learning

A definition by Tom Mitchell (http://www.cs.cmu.edu/~tom/)
A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with
experience E.

http://www.cs.cmu.edu/~tom/


Introduction
Big Data and Machine Learning

Big Data, Data Science and Machine Learning
Big Data: buzzword to raise money (or data sets too large or
too complex to be handled by the current system)
Data Science: art (or science) of the generalizable extraction
of knowledge from data.
Machine Learning: construction and study of algorithms
that can learn from and make predictions on data.

Exciting challenges in the industrial and the academic worlds.

Machine Learning
Fundamental ingredient in data science.
Necessity for a Data Scientist to understand the principle of
the simplest methods to grasp the more sophisticated ones.
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Supervised Learning
Supervised Learning

Supervised Learning Framework

Input measurement X = (X (1),X (2), . . . ,X (d)) ∈ X
Output measurement Y ∈ Y.
(X,Y ) ∼ P with P unknown.
Training data : Dn = {(X1,Y1), . . . , (Xn,Yn)} (i.i.d. ∼ P)
Often

X ∈ Rd and Y ∈ {−1, 1} (classification)
or X ∈ Rd and Y ∈ R (regression).

A classifier is a function in F = {f : X → Y measurable}

Goal

Construct a good classifier f̂ from the training data.

Need to specify the meaning of good.
Formally, classification and regression are the same problem!



Supervised Learning
Loss and Probabilistic Framework

Loss function
Loss function : `(f (x), y) measure how well f (x) “predicts"
y .
Examples:

Prediction loss: `(Y , f (X)) = 1Y 6=f (X)
Quadratic loss: `(Y ,X) = |Y − f (X)|2

Risk of a generic classifier
Risk measured as the average loss for a new couple:

R(f ) = E [`(Y , f (X))] = EX
[
EY |X [`(Y , f (X))]

]
Examples:

Prediction loss: E [`(Y , f (X))] = P {Y 6= f (X)}
Quadratic loss: E [`(Y , f (X))] = E

[
|Y − f (X)|2

]
Beware: As f̂ depends on Dn, R(f̂ ) is a random variable!



Supervised Learning
Supervised Learning

Experience, Task and Performance measure
Training data : D = {(X1,Y1), . . . , (Xn,Yn)} (i.i.d. ∼ P)
Predictor: f : X → Y measurable
Cost/Loss function : `(f (X),Y ) measure how well f (X)
“predicts" Y
Risk:

R(f ) = E [`(Y , f (X))] = EX
[
EY |X [`(Y , f (X))]

]
Often `(f (X),Y ) = |f (X)− Y |2 or `(f (X),Y ) = 1Y 6=f (X)

Goal

Learn a rule to construct a classifier f̂ ∈ F from the training
data Dn s.t. the risk R(f̂ ) is small on average or with high
probability with respect to Dn.



Supervised Learning
Best Solution

The best solution f ∗ (which is independent of Dn) is

f ∗ = argmin
f ∈F

R(f ) = argmin
f ∈F

E [`(Y , f (X))] = argmin
f ∈F

EX
[
EY |X [`(Y , f (x))]

]
Bayes Classifier (explicit solution)

In binary classification with 0− 1 loss:

f ∗(X) =


+1 if P {Y = +1|X} ≥ P {Y = −1|X}

⇔ P {Y = +1|X} ≥ 1/2
−1 otherwise

In regression with the quadratic loss

f ∗(X) = E [Y |X]

Issue: Explicit solution requires to know E [Y |X] for all values of X!



Supervised Learning
Goal

Machine Learning

Learn a rule to construct a classifier f̂ ∈ F from the training
data Dn s.t. the risk R(f̂ ) is small on average or with high
probability with respect to Dn.

Canonical example: Empirical Risk Minimizer
One restricts f to a subset of functions S = {fθ, θ ∈ Θ}
One replaces the minimization of the average loss by the
minimization of the empirical loss

f̂ = f
θ̂

= argmin
fθ,θ∈Θ

1
n

n∑
i=1

`(Yi , fθ(Xi ))

Examples:
Linear regression
Linear discrimination with

S = {x 7→ sign{βT x + β0} /β ∈ Rd , β0 ∈ R}



Supervised Learning
Example: TwoClass Dataset

Synthetic Dataset
Two features/covariates.
Two classes.

Dataset from Applied Predictive Modeling, M. Kuhn and K.
Johnson, Springer
Numerical experiments with R and the caret package.



Supervised Learning
Example: Linear Discrimination



Supervised Learning
Example: More complex model



Supervised Learning
Bias-Variance Dilemna

General setting:
F = {measurable fonctions X → Y}
Best solution: f ∗ = argminf∈F R(f )
Class S ⊂ F of functions
Ideal target in S: f ∗S = argminf∈S R(f )
Estimate in S: f̂S obtained with some procedure

Approximation error and estimation error (Bias/Variance)

R(f̂S)−R(f ∗) = R(f ∗S )−R(f ∗)︸ ︷︷ ︸
Approximation error

+R(f̂S)−R(f ∗S )︸ ︷︷ ︸
Estimation error

Approx. error can be large if the model S is not suitable.
Estimation error can be large if the model is complex.

Agnostic approach
No assumption (so far) on the law of (X,Y ).



Supervised Learning
Under-fitting / Over-fitting Issue

Different behavior for different model complexity
Low complexity model are easily learned but the
approximation error (“bias”) may be large (Under-fit).
High complexity model may contains a good ideal target but
the estimation error (“variance”) can be large (Over-fit)

Bias-variance trade-off ⇐⇒ avoid overfitting and underfitting



Supervised Learning
Statistical and Optimization Point of View Framework

How to find a good function f with a small risk
R(f ) = E [`(Y , f (X ))] ?

Canonical approach: f̂S = argminf ∈S
1
n
∑n

i=1 `(Yi , f (Xi ))

Problems
How to choose S?
How to compute the minimization?

A Statistical Point of View
Solution: For X, estimate Y |X plug this estimate in the Bayes
classifier: (Generalized) Linear Models, Kernel methods, k-nn,
Naive Bayes, Tree, Bagging...

An Optimization Point of View
Solution: If necessary replace the loss ` by an upper bound `′ and
minimize the empirical loss: SVR, SVM, Neural Network,Tree,
Boosting
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A Statistical Point of View
Classification Rule / Algorithm

Input: a data set Dn
Learn Y |x or equivalently pk(x) = P {Y = k|X = x} (using
the data set) and plug this estimate in the Bayes classifier

Output: a classifier f̂ : Rd → {−1, 1}

f̂ (x) =
{

+1 if p̂+1(x) ≥ p̂−1(x)
−1 otherwise

Three instantiations:
1 Generative Modeling (Bayes method)
2 Logistic modeling (parametric method)
3 Nearest neighbors (kernel method)
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A Statistical Point of View
Generative Modeling

Bayes formula

pk(x) = P {X = x|Y = k}P {Y = k}
P {X = x}

Remark: If one knows the law of (X ,Y ) or equivalently of X
given y and of Y then everything is easy!

Binary Bayes classifier (the best solution)

f ∗(x) =
{

+1 if p+1(x) ≥ p−1(x)
−1 otherwise

Heuristic: Estimate those quantities and plug the estimations.
By using different models for P {X|Y }, we get different
classifiers.
Remark: You can also use your favorite density estimator...



A Statistical Point of View
Discriminant Analysis

Discriminant Analysis (Gaussian model)
The densities are modeled as multivariate normal, i.e.,

P{X |Y = k} ∼ Nµk ,Σk

Discriminants fonctions:
gk(x) = ln(P{X |Y = k}) + ln(P {Y = k})

gk(x) =− 1
2(x− µk)tΣ−1

k (x− µk)

− d
2 ln(2π)− 1

2 ln(|Σk |) + ln(P {Y = k})

QDA (differents Σk in each class) and LDA (Σk = Σ for all k)
Beware: this model can be false but the methodology remains
valid!



A Statistical Point of View
Discriminant Analysis

Estimation
In pratice, we will need to estimate µk , Σk and Pk := P {Y = k}

The estimate proportion P̂k = nk
n = 1

n
∑n

i=1 1{Yi =k}

Maximum likelihood estimate of µ̂k and Σ̂k (explicit formulas)

DA classifier

f̂G(x) =
{

+1 if ĝ+1 ≥ ĝ−1

−1 otherwise

Decision boundaries: quadratic = degree 2 polynomials.
If one imposes Σ−1 = Σ1 = Σ then the decision boundaries is
an linear hyperplan



A Statistical Point of View
Example: LDA



A Statistical Point of View
Example: QDA



A Statistical Point of View
Naive Bayes

Naive Bayes
Classical algorithm using a crude modeling for P {X |Y }:

Feature independence assumption:

P {X |Y } =
d∏

i=1
P
{
X (i)

∣∣∣Y}
Simple featurewise model: binomial if binary, multinomial if
finite and Gaussian if continuous

If all features are continuous, similar to the previous Gaussian
but with a diagonal covariance matrix!
Very simple learning even in very high dimension!



A Statistical Point of View
Example: Naive Bayes



A Statistical Point of View
Example: Naive Bayes
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A Statistical Point of View
Logistic Modeling

Direct modeling of Y |x .

The Binary logistic model (Y ∈ {−1, 1})

p+1(x) = eβtϕ(x)

1 + eβtϕ(x)

where ϕ(x) is a transformation of the individual x
In this model, one verifies that

p+1(x) ≥ p−1(x) ⇔ βtϕ(x) ≥ 0
True Y |x may not belong to this model ⇒ maximum
likelihood of β only finds a good approximation!
Binary Logistic classifier:

f̂L(x) =
{

+1 if β̂tϕ(x) ≥ 0
−1 otherwise

where β̂ is estimated by maximum likelihood.



A Statistical Point of View
Logistic Modeling

Logistic model: approximation of B(p1(x)) by B(h(βtϕ(x)))
with h(t) = et

1+et .

Opposite of the log-likelihood formula

− 1
n

n∑
i=1

(
1yi =1 log(h(βtϕ(x))) + 1yi =−1 log(1− h(βtϕ(x)))

)
= −1

n

n∑
i=1

(
1yi =1 log

eβtϕ(x)

1 + eβtϕ(x) + 1yi =−1 log
1

1 + eβtϕ(x)

)

= 1
n

n∑
i=1

log
(
1 + e−yi (βtϕ(x))

)
Convex function in β!
Remark: You can also use your favorite parametric model
instead of the logistic one...



A Statistical Point of View
Example: Logistic



A Statistical Point of View
Example: Quadratic Logistic
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A Statistical Point of View
Example: k Nearest-Neighbors (with k = 3)

1 2

3 4



A Statistical Point of View
Example: k Nearest-Neighbors (with k = 4)



A Statistical Point of View
k Nearest-Neighbors

Neighborhood Vx of x: k closest from x learning samples.

k-NN as local conditional density estimate

p̂+1(x) =
∑

xi∈Vx 1{yi =+1}
|Vx|

KNN Classifier:

f̂KNN(x) =
{

+1 if p̂+1(x) ≥ p̂−1(x)
−1 otherwise

Remark: You can also use your favorite kernel estimator...



A Statistical Point of View
Example: KNN



A Statistical Point of View
Example: KNN



A Statistical Point of View
Example: KNN



A Statistical Point of View
Example: KNN



A Statistical Point of View
Example: KNN



A Statistical Point of View
Example: KNN



A Statistical Point of View
Example: KNN



A Statistical Point of View
Example: KNN



A Statistical Point of View
Over-fitting Issue

Error behaviour
Learning/training error (error made on the learning/training
set) decays when the complexity of the model increases.
Quite different behavior when the error is computed on new
observations (generalization error).

Overfit for complex models: parameters learned are too
specific to the learning set!
General situation! (Think of polynomial fit...)
Need to use an other criterion than the training error!



A Statistical Point of View
Cross Validation

Very simple idea: use a second learning/verification set to
compute a verification error.
Sufficient to avoid over-fitting!

Cross Validation

Use V−1
V n observations to train and 1

V n to verify!
Validation for a learning set of size (1− 1

V )× n instead of n!

Most classical variations:
Leave One Out,
V -fold cross validation.

Accuracy/Speed tradeoff: V = 5 or V = 10!



A Statistical Point of View
Cross Validation



A Statistical Point of View
Example: KNN (k̂ = 25 using cross-validation)
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An Optimization Point of View
Statistical and Optimization Point of View Framework

How to find a good function f with a small risk
R(f ) = E [`(Y , f (X ))] ?

Canonical approach: f̂S = argminf ∈S
1
n
∑n

i=1 `(Yi , f (Xi ))

Problems
How to choose S?
How to compute the minimization?

A Statistical Point of View
Solution: For X, estimate Y |X plug this estimate in the Bayes
classifier: (Generalized) Linear Models, Kernel methods, k-nn,
Naive Bayes, Tree, Bagging...

An Optimization Point of View
Solution: If necessary replace the loss ` by an upper bound `′ and
minimize the empirical loss: SVR, SVM, Neural Network,Tree,
Boosting



An Optimization Point of View
Empirical Risk Minimization

The best solution f ∗ is the one minimizing

f ∗ = argminR(f ) = argminE [`(Y , f (X ))]

Empirical Risk Minimization
One restricts f to a subset of functions S = {fθ, θ ∈ Θ}
One replaces the minimization of the average loss by the
minimization of the empirical loss

f̂ = f
θ̂

= argmin
fθ,θ∈Θ

1
n

n∑
i=1

`(yi , fθ(xi ))

Plus convexification/regularization of the risk...
Examples: SVM, (Deep) Neural Networks...



An Optimization Point of View
Classification Loss and Convexification

Classification loss: `0/1(y , f (x)) = 1y 6=f (x)
Not convex and not smooth!

Classical convexification

Logistic loss: `(y , f (x)) = log(1 + e−yf (x)) (Logistic / NN)
Hinge loss: `(y , f (x)) = (1− yf (x))+ (SVM)
Exponential loss: `(y , f (x)) = e−yf (x) (Boosting...)



An Optimization Point of View
Logistic Revisited

Ideal solution:

f̂ = argmin
f ∈S

1
n

n∑
i=1

`0/1(yi , f (xi ))

Logistic regression
Use f (x) = 〈β, x〉+ b.
Use the logistic loss `(y , f ) = log2(1 + e−yf ), i.e. the
-log-likelihood.

Different vision than the statistician but same algorithm!



An Optimization Point of View
Logistic Revisited
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An Optimization Point of View
Ideal Separable Case

Linear classifier: sign(〈β, x〉+ b)
Separable case: ∃(β, b), ∀i , yi (〈β, x〉+ b) > 0!

How to choose (β, b) so that the separation is maximal?
Strict separation: ∃(β, b),∀i , yi (〈β, x〉+ b) ≥ 1
Maximize the distance between 〈β, x〉+ b = 1 and
〈β, x〉+ b = −1.
Equivalent to the minimization of ‖β‖2.



An Optimization Point of View
Non Separable Case

What about the non separable case?
Relax the assumption that ∀i , yi (〈β, x〉+ b) ≥ 1.
Naive attempt:

argmin ‖β‖2 + C 1
n

n∑
i=1

1yi (〈β,x〉+b)≤1

Non convex minimization.

SVM: better convex relaxation!

argmin ‖β‖2 + C 1
n

n∑
i=1

max(1− yi (〈β, x〉+ b), 0)



An Optimization Point of View
SVM as a Penalized Convex Relaxation

Convex relaxation:

argmin ‖β‖2 + C 1
n

n∑
i=1

max(1− yi (〈β, x〉+ b), 0)

= argmin 1
n

n∑
i=1

max(1− yi (〈β, x〉+ b), 0) + 1
C ‖β‖

2

Prop: `0/1(yi , sign(〈β, x〉+ b)) ≤ max(1− yi (〈β, x〉+ b), 0)

Penalized convex relaxation (Tikhonov!)
1
n

n∑
i=1
`0/1(yi , sign(〈β, x〉+ b))

≤ 1
n

n∑
i=1

max(1− yi (〈β, x〉+ b), 0) + 1
C ‖β‖

2



An Optimization Point of View
SVM



An Optimization Point of View
The Kernel Trick

Non linear separation: just replace x by a non linear Φ(x)...
Kernel trick

Computing k(x , y) = 〈Φ(x),Φ(y)〉 may be easier than
computing Φ(x), Φ(y) and then the scalar product!
Φ can be specified through its definite positive kernel k.
Examples: Polynomial kernel k(x , y) = (1 + 〈x , y〉)d , Gaussian
kernel k(x , y) = e−‖x−y‖2/2,...
RKHS setting!
Can be used in (logistic) regression and more...



An Optimization Point of View
SVM



An Optimization Point of View
SVM
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An Optimization Point of View
Artificial Neuron and Logistic Regression

Artificial neuron
Structure:

Mix inputs with a
weighted sum,
Apply a (non linear)
activation function to this
sum,
Eventually threshold the
result to make a decision.

Weights learned by
minimizing a loss function.

Logistic unit
Structure:

Mix inputs with a
weighted sum,
Apply the logistic function
σ(t) = et/(1 + et),
Threshold at 1/2 to make
a decision!

Logistic weights learned by
minimizing the
-log-likelihood.



An Optimization Point of View
Neural network

Neural network structure
Cascade of artificial neurons organized in layers
Thresholding decision only at the output layer

Most classical case use logistic neurons and the -log-likelihood
as the criterion to minimize.
Classical (stochastic) gradient descent algorithm (Back
propagation)
Non convex and thus may be trapped in local minima.



An Optimization Point of View
Neural network



An Optimization Point of View
Deep Neural Network

Deep Neural Network structure
Deep cascade of layers!

No conceptual novelty but initialization becomes a crucial
issue.
Bunch of solutions proposed on a greedy initialization of the
layers starting from the deepest one.
Very impressive results!



An Optimization Point of View
Deep Neural Network



An Optimization Point of View
Deep Learning

Family of Machine Learning algorithm combining:
a (deep) multilayered structure,
a clever (often unsupervised) initalization,
a more classical final fine tuning optimization.

Examples: Deep Neural Network, Deep (Restricted) Boltzman
Machine, Stacked Encoder...
Appears to be very efficient but lack of theoretical fundation!
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An Optimization Point of View
Regression Trees

Tree principle
Construction of a recursive partition through a tree structured
set of questions (splits around a given value of a variable)
For a given partition, statistical approach and optimization
approach yields the same classifier!
A simple majority vote in each leaf

Quality of the prediction depends on the tree (the partition).
Issue: Minim. of the (penalized) empirical error is NP hard!
Practical tree construction are all based on two steps:

a top-down step in which branches are created (branching)
a bottom-up in which branches are removed (pruning)



An Optimization Point of View
CART



An Optimization Point of View
Branching

Greedy top-bottom approach
Start from a single region containing all the data
Recursively split those regions along a certain variable and a
certain value

No regret strategy on the choice of the splits!
Heuristic: choose a split so that the two new regions are as
homogeneous possible...



An Optimization Point of View
Branching

Various definition of homogeneous

CART: empirical loss based criterion
C(R,R) =

∑
xi∈R

`(yi , y(R)) +
∑
xi∈R

`(yi , y(R))

CART: Gini index (classification)
C(R,R) =

∑
xi∈R

p(R)(1− p(R)) +
∑
xi∈R

p(R)(1− p(R))

C4.5: entropy based criterion (Information Theory)
C(R,R) =

∑
xi∈R

H(R) +
∑
xi∈R

H(R)

CART with Gini is probably the most used technique...
Other criterion based on χ2 homogeneity or based on different
local predictors (generalized linear models...)



An Optimization Point of View
Branching

Choice of the split in a given region
Compute the criterion for all features and all possible splitting
points (necessarily among the data values in the region)
Choose the one minimizing the criterion

Variations: split at all categories of a categorical variables
(ID3), split at a fixed position (median/mean)
Stopping rules:

when a leaf/region contains less than a prescribed number of
observations
when the region is sufficiently homogeneous...

May lead to a quite complex tree / Over-fitting possible!



An Optimization Point of View
Pruning

Model select. within the (rooted) subtrees of previous tree!
Number of subtrees can be quite large but the tree structure
allows to find the best model efficiently.

Key idea
The predictor in a leaf depends only on the values in this leaf.
Efficient bottom-up (dynamic programming) algorithm if the
criterion used satisfies an additive property

C(T ) =
∑
L∈T

c(L)

Example: AIC / CV.

Limits over-fitting...



An Optimization Point of View
CART



An Optimization Point of View
Ensemble methods

Lack of robustness for single trees.
How to combine trees?

Parallel construction
Construct several trees from bootstrapped samples and
average the responses (bagging)
Add more randomness in the tree construction (random
forests)

Sequential construction
Construct a sequence of trees by reweighting sequentially the
samples according to their difficulties (AdaBoost)
Reinterpretation as a stagewise additive model (Boosting)



An Optimization Point of View
Ensemble methods



An Optimization Point of View
Ensemble methods



An Optimization Point of View
Ensemble methods
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Model Selection
Model and Hyperparameters



Model Selection
Logistic Regression

Ideal solution:

f ∗(x) = argmax P {Y |x}

Logistic
Model Y |X with a logistic model.
Estimate its parameters with a Maximum Likelihood approach.
Plug the estimate in the Bayes classifier.

Model hyperparameters:
Features
Parametric model...



Model Selection
Generative Modeling

Ideal solution:

f ∗(x) = argmax P {Y |x}

Generative Modeling
Estimate X |Y with a density estimator as well as P {Y }
Deduce using the Bayes formula an estimate Y |X .
Plug the estimate in the Bayes classifier.

Model hyperparameters:
Features
Generative model



Model Selection
Kernel Method

Ideal solution:

f ∗(x) = argmax P {Y |x}

Kernel methods
Estimate Y |X with a kernel conditional density estimator.
Plug the estimate in the Bayes classifier.

Model hyperparameters:
Features
Bandwidth and kernel



Model Selection
Logistic Regression

Ideal solution:

f ∗ = argmin
f ∈S

E
[
`0/1(Y , f (X ))

]

Logistic

Replace `0/1 by the logistic loss.
Add a penalty λ‖f ‖p
Compute the minimizer.

Model hyperparameters:
Features
Penalty and regularization parameter.



Model Selection
SVM

Ideal solution:

f ∗ = argmin
f ∈S

E
[
`0/1(Y , f (X ))

]

SVM
Replace the expectation by its empirical counterpart.
Replace `0/1(y , f ) = 1y=f by `′(y , f ) = (1− yf )+.
Add a penalty λ‖f ‖2S .
Compute the minimizer.

Model hyperparameters:
Features
S RKHS structure: features mapping and metric
Regularization parameters λ



Model Selection
(Deep) Neural Networks

Ideal solution:

f ∗ = argmin
f ∈S

E
[
`0/1(Y , f (X ))

]
NN

Neuron: x 7→ σ(〈β, x〉+ b)
Neural Network: Convolution system of neurons.
Replace `0/1(y , f ) by a smooth/convex loss.
Minimize the empirical loss using the backprop algorithm
(gradient descent)

Model hyperparameters:
Features
Net architecture, activation function
Initialization strategy
Optimization strategy (and regularization strategy)



Model Selection
Tree and Boosting

Ideal solution:

f ∗(x) = argmax P {Y |x} and f ∗ = argmin
f ∈S

E
[
`0/1(Y , f (X ))

]
Single tree

Greedy Partition construction.
Local conditional density estimation / loss minimization.
Suboptimal tree optimization through a relaxed criterion

Bagging/Random Forest
Averaging of several predictors (statistical point of view)

Boosting
Best interpretation as a minimization of the exponential loss
`(y , f ) = e−yf (optimization point of view)



Model Selection
Model Selection

Models
How to design models? (Model/feature design)
How to chose among several models? (Model/feature
selection)

Key to obtain good performance!
Approximation error and estimation error (Bias/Variance)

R(f̂S)−R(f ∗) = R(f ∗S )−R(f ∗)︸ ︷︷ ︸
Approximation error

+R(f̂S)−R(f ∗S )︸ ︷︷ ︸
Estimation error

Approximation error can be large for not suitable model S!
Estimation error can be large if the model is complex!

Need to find the good balance automatically!



Model Selection
Model Selection

Empirical error biased toward complex models!

Selection criterion
Cross validation: Very efficient (and almost always used in
practice!) but slightly biased as it target uses only a fraction
of the data.
Penalization approach: use empirical loss criterion but
penalize it by a term increasing with the complexity of S

Rn(f̂S)→ Rn(f̂S) + pen(S)
and choose the model with the smallest penalized risk.



Model Selection
Cross Validation



Model Selection
Ensemble methods

How to combine several predictors (models)?
Two strategies: mixture or sequential

Mixture
Model averaging
Data dependent model averaging (learn mixture weights)

Stagewise
Modify learning procedure according to current results.
Boosting, Cascade...
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Data Science and Big Data
Data is the new Oil!



Data Science and Big Data
The 5 Vs of Big Data



Data Science and Big Data
Lots of Words!



Data Science and Big Data
Don’t Believe the Hype?

Data Science and Big Data: Much more than a hype!



Data Science and Big Data
Wikipedia

Big data is an all-encompassing term for any collection of
data sets so large and complex that it becomes difficult to
process using traditional data processing applications.
Data science is the study of the generalizable extraction of
knowledge from data, yet the key word is science.
Statistics is the study of the collection, analysis,
interpretation, presentation and organization of data.
Machine Learning explores the construction and the study of
algorithms that can learn from and make predictions on data.
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Data Science and Big Data
Doing Data Science

Doing Data Science: Straight talk from the frontline
Rachel Schutt, Cathy O’Neil - O’Reilly
Art of data driven decision / evaluation.



Data Science and Big Data
A new Context

Data everywhere
Huge volume,
Huge variety...

Affordable computation units
Cloud computing
Graphical Processor Units (GPU)...

Growing academic and industrial interest!
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Data Science and Big Data
Big Data is (quite) Easy

Example of off the shelves solution

export AWS_ACCESS_KEY_ID=<your-access-keyid>
export AWS_SECRET_ACCESS_KEY=<your-access-key-secret>
cellule/spark/ec2/sparl-ec2 -i cellule.pem -k cellule -s <number of machines> launch <cluster-name>
ssh -i cellule.pem root@<your-cluster-master-dns>
spark-ec2/copy-dir ephemeral-hdfs/conf
ephemeral-hdfs/bin/hadoop distcp s3n://celluledecalcul/dataset/raw/train.csv /data/train.csv
scp -i cellule.pem cellule/challenge/target/scala-2.10/target/scala-2.10/challenges_2.10-0.0.jar

cellule/spark/bin/spark-submit \
--class fr.cc.challenge.Preprocess \
challenges_2.10-0.0.jar \
/data/train.csv \
/data/train2.csv

cellule/spark/bin/spark-submit \
--class fr.cc.sparktest.LogisticRegression \
challenges_2.10-0.0.jar \
/data/train2.csv

⇒ Logistic regression for arbitrary large dataset!
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Web and Marketing



Data Science and Big Data
Industry and Society
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Science
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A Complex Ecosystem!



Data Science and Big Data
New Interdisciplinary Challenges

Applied math AND Computer science
Huge importance of domain specific knowledge: physics,
signal processing, biology, health, marketing...

Some joint math/computer science challenges
Data acquisition
Unstructured data and their representation
Huge dataset and computation
High dimensional data and model selection
Learning with less supervision
Visualization
Software(s)...



Data Science and Big Data
Data acquisition

Some challenges
How to measure new things?
How to choose what to measure?
How to deal with distributed sensors?
How to look for new sources of informations?



Data Science and Big Data
Unstructured Data

Some challenges
How to store efficiently the data?
How to describe (model) them to be able to process them?
How to combine data of different nature?
How to learn dynamics?



Data Science and Big Data
Huge Dataset

Some challenges
How to take into account the locality of the data?
How to construct distributed architectures?
How to design adapted algorithms?



Data Science and Big Data
High Dimensional Data

Some challenges
How to describe (model) the data?
How to reduce the data dimensionality?
How to select/mix models?



Data Science and Big Data
Learning and Supervision

Some challenges
How to learn with the less possible interactions?
How to learn simultaneously several related tasks?



Data Science and Big Data
Visualization

Some challenges
How to look at the data?
How to present results?
How to help taking better informed decision?



Data Science and Big Data
Software(s)

Some challenges
How to construct a consistent ecosystem?
How to construct interoperable systems?



Data Science and Big Data
Data Scientists!

Challenges
No one masters all the skills!
Importance of teams.
Training...



Data Science and Big Data
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