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Motivation

Credit Default, Credit Score, Bank Risk, Market Risk Management

Data: Client profile, Client credit history...

Input: Client profile

Output: Credit risk
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Motivation

Marketing: advertisement, recommendation...

Data: User profile, Web site history...

Input: User profile, Current web page

Output: Advertisement with price, recommendation...
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Motivation

Spam detection (Text classification)

Data: email collection

Input: email

Output : Spam or No Spam
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Motivation

Face Detection

Data: Annotated database of images

Input : Sub window in the image

Output : Presence or no of a face...
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Motivation

Number Recognition

Data: Annotated database of images (each image is
represented by a vector of 28× 28 = 784 pixel intensities)

Input: Image

Output: Corresponding number
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Machine Learning

A definition by Tom Mitchell (http://www.cs.cmu.edu/~tom/)

A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with
experience E.
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Machine Learning

With the explosion of “Big Data” problems, machine learning has
become a very hot field in many scientific areas.

It is important to understand the ideas behind the various
techniques, in order to know how and when to use them.

One has to understand the simpler methods first, in order to
grasp the more sophisticated ones.

This is an exciting research area, having important
applications in science, industry and finance.

Machine learning is a fundamental ingredient in the training of
a modern data scientist.
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Data is the new Oil!
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The 5 Vs of Big Data
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Lots of Words!
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Doing Data Science

Doing Data Science: Straight talk from the frontline

Rachel Schutt, Cathy O’Neil - O’Reilly

Art of data driven decision / evaluation.
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A new Context

Data everywhere

Huge volume,

Huge variety...

Affordable computation units

Cloud computing

Graphical Processor Units (GPU)...

Growing academic and industrial interest!
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Big Data is (quite) Easy

Example of off the shelves solution
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Big Data is (quite) Easy

Example of off the shelves solution

export AWS_ACCESS_KEY_ID=<your-access-keyid>

export AWS_SECRET_ACCESS_KEY=<your-access-key-secret>

cellule/spark/ec2/sparl-ec2 -i cellule.pem -k cellule -s <number of machines> launch <cluster-name>

ssh -i cellule.pem root@<your-cluster-master-dns>

spark-ec2/copy-dir ephemeral-hdfs/conf

ephemeral-hdfs/bin/hadoop distcp s3n://celluledecalcul/dataset/raw/train.csv /data/train.csv

scp -i cellule.pem cellule/challenge/target/scala-2.10/target/scala-2.10/challenges_2.10-0.0.jar

cellule/spark/bin/spark-submit \

--class fr.cc.challenge.Preprocess \

challenges_2.10-0.0.jar \

/data/train.csv \

/data/train2.csv

cellule/spark/bin/spark-submit \

--class fr.cc.sparktest.LogisticRegression \

challenges_2.10-0.0.jar \

/data/train2.csv

⇒ Logistic regression for arbitrary large dataset!
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A Complex Ecosystem!
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A Complex Ecosystem!
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New Interdisciplinary Challenges

Applied math AND Computer science

Huge importance of domain specific knowledge: physics,
signal processing, biology, health, marketing...

Some joint math/computer science challenges

Data acquisition

Unstructured data and their representation

Huge dataset and computation

High dimensional data and model selection

Learning with less supervision

Visualization
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Data acquisition

Some challenges

How to measure new things?

How to choose what to measure?

How to deal with distributed sensors?

How to look for new sources of informations?

Le Pennec Big Data? Machine Learning



Unstructured Data

Some challenges

How to store efficiently the data?

How to describe (model) them to be able to process them?

How to combine data of different nature?

How to learn dynamics?
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Huge Dataset

Some challenges

How to take into account the locality of the data?

How to construct distributed architectures?

How to design adapted algorithms?

Le Pennec Big Data? Machine Learning



High Dimensional Data

Main Paradigmatic Changes in Big Data Analytics Environment

Big Analytics 
>2008 -up to now

(Unconstrained Data Mining)

Data storing
Line & column dimensions fixed
Flat Files, Hierarchical DBs, &
first Relational  DBs

Column dimensions fixed
SQL DBs: MySQL, DB2, ORACLE 
&OLAP Cubes 

No dimensions fixed
NoSQL DBs:Column oriented DBs, 
object oriented DBs etc.

Basic 
Analytical 
Principles

Hypotheses driven mode: 
Power use 
of sampling Techniques

Mix Hypotheses driven &Data 
driven: 
Dimensions Reduction 
& Populations Segmentations

Full Data driven mode:
Power use of learning techniques,
 mainly unsupervised 

Main 
Algorithmic 
approaches 

Regression Analysis, Factorial 
Analysis, Statistical Inference thru 
sampling, Linear general Models, 
Decision Trees.Etc.  

Clustering (K- means, K 
Neighbours), Classification & 
Support Vector Machines Multi 
layers Neural Nets, Scoring 
Techniques, Sequential Patterns, 
etc.

Deep adaptive learning techniques, 
Auto encoded neural Nets
Huge Graph Modularization, & Visual 
Analytics, Full unsupervised linear 
Clustering, etc.

New types 
of Business 
deliverables

Score Cards, 
Decisional Models 
based on sampling

Populations  Profiling:  CRM, 
Churn & Attrition  Analysis, 
Loyalty & Propensity  
Programs,Cross selling

Data types 
Homogeneous Structured 
Data (proprietary)

Homogeneous Structured & 
Homogeneous Unstructured 
Data, separately

Mix of Heterogeneous 
Unstructured & Structured Data
(proprietary + open data) 

Volume
Cost/volume   Exponential volume increase

Statistical Data Analysis
<1985 

(Pure Statistical Inference)

 Business Intelligence 
1985-2008

(Constrained Data Mining)

    Exponential cost decrease

Some challenges

How to describe (model) the data?

How to reduce the data dimensionality?

How to select/mix models?
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Learning and Supervision

Some challenges

How to learn with the less possible interactions?

How to learn simultaneously several related tasks?
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Visualization

Some challenges

How to look at the data?

How to present results?

How to help taking better informed decision?

Le Pennec Big Data? Machine Learning



Supervised Classification
A Statistical Point of View

Statistical Learning in Classification

1 Supervised Classification
Binary Supervised Classification
Models
Statistical and Optimization Points of View

2 A Statistical Point of View
Logistic Modeling
Generative Modeling
k Nearest-Neighbors
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Supervised Classification
A Statistical Point of View

Binary Supervised Classification
Models
Statistical and Optimization Points of View

Outline

1 Supervised Classification
Binary Supervised Classification
Models
Statistical and Optimization Points of View

2 A Statistical Point of View
Logistic Modeling
Generative Modeling
k Nearest-Neighbors
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Supervised Classification
A Statistical Point of View

Binary Supervised Classification
Models
Statistical and Optimization Points of View

Outline

1 Supervised Classification
Binary Supervised Classification
Models
Statistical and Optimization Points of View

2 A Statistical Point of View
Logistic Modeling
Generative Modeling
k Nearest-Neighbors

Le Pennec Big Data? Machine Learning



Supervised Classification
A Statistical Point of View

Binary Supervised Classification
Models
Statistical and Optimization Points of View

Binary Supervised Classification

Supervised Learning Framework

Input measurement X = (X (1),X (2), . . . ,X (d)) ∈ Rd

Output measurement Y ∈ {−1, 1}.
(X,Y ) ∼ P with P unknown.

Training data : Dn = {(X1,Y1), . . . , (Xn,Yn)} (i.i.d. ∼ P)

A classifier is a function in
F = {f : Rd → {−1, 1} measurable}

Goal

Construct a good classifier f̂ from the training data.

Need to specify the meaning of good.
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Supervised Classification
A Statistical Point of View

Binary Supervised Classification
Models
Statistical and Optimization Points of View

Binary Supervised Classification

Loss function and risk of a generic classifier

Loss function : `(f (x), y) measure how well f (x) “predicts” y .

For this talk `(f (x), y) = `0/1(f (x), y) = 1y 6=f (x)

Risk measured as the average loss for a new couple:

R(f ) = E(X ,Y )∼P
[
`0/1(Y , f (X))

]
= P {Y 6= f (X)}

Beware: As f̂ depends on Dn, R(f̂ ) is a random variable!

Goal

Learn a rule to construct a classifier f̂ ∈ F from the training
data Dn s.t. the risk R(f̂ ) is small on average or with high
probability with respect to Dn.
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Supervised Classification
A Statistical Point of View

Binary Supervised Classification
Models
Statistical and Optimization Points of View

Best Solution

The best classifier f ∗ (which is independent of Dn) is

f ∗ = arg min
f ∈F

R(f ) = arg min
f ∈F

E
[
`0/1(Y , f (X))

]
= arg min

f ∈F
EX

[
EY |X

[
`0/1(Y , f (x))

]]
f ∗(x) = arg max

k
P(Y = k|X = x)

Binary Bayes Classifier (explicit solution)

In binary classification with 0− 1 loss:

f ∗(x) =


+1 if P {Y = +1|X = x} ≥ P {Y = −1|X = x}

⇔ P {Y = +1|X = x} ≥ 1/2

−1 otherwise

Issue: Explicit solution requires to know Y |x for all x!
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Supervised Classification
A Statistical Point of View

Binary Supervised Classification
Models
Statistical and Optimization Points of View

Goal

Machine Learning

Learn a rule to construct a classifier f̂ ∈ F from the training
data Dn s.t. the risk R(f̂ ) is small on average or with high
probability with respect to Dn.

Canonical example: Empirical Risk Minimizer

One restricts f to a subset of functions S = {fθ, θ ∈ Θ}
One replaces the minimization of the average loss by the
minimization of the empirical loss

f̂ = f
θ̂

= argmin
fθ,θ∈Θ

1

n

n∑
i=1

`0/1(Yi , fθ(Xi ))

Example: Linear discrimination with
S = {x 7→ sign{βTx + β0} /β ∈ Rd , β0 ∈ R}
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Supervised Classification
A Statistical Point of View

Binary Supervised Classification
Models
Statistical and Optimization Points of View

Example: Linear Discrimination
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Supervised Classification
A Statistical Point of View

Binary Supervised Classification
Models
Statistical and Optimization Points of View

Outline

1 Supervised Classification
Binary Supervised Classification
Models
Statistical and Optimization Points of View

2 A Statistical Point of View
Logistic Modeling
Generative Modeling
k Nearest-Neighbors
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Supervised Classification
A Statistical Point of View

Binary Supervised Classification
Models
Statistical and Optimization Points of View

Bias-Variance Dilemna

General setting:
F = {measurable fonctions Rd → {−1, 1}}
Best solution: f ∗ = argminf∈F R(f )
Class S ⊂ F of functions
Ideal target in S: f ∗S = argminf∈S R(f )

Estimate in S: f̂S obtained with some procedure

Approximation error and estimation error (Bias/Variance)

R(f̂S)−R(f ∗) = R(f ∗S )−R(f ∗)︸ ︷︷ ︸
Approximation error

+R(f̂S)−R(f ∗S )︸ ︷︷ ︸
Estimation error

Approx. error can be large if the model S is not suitable.

Estimation error can be large if the model is complex.

Agnostic approach

No assumption (so far) on the law of (X,Y ).
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Supervised Classification
A Statistical Point of View

Binary Supervised Classification
Models
Statistical and Optimization Points of View

Theoretical Analysis

Statistical Learning Analysis

Error decomposition:

R(f̂S)−R(f ∗) = R(f ∗S )−R(f ∗)︸ ︷︷ ︸
Approximation error

+R(f̂S)−R(f ∗S )︸ ︷︷ ︸
Estimation error

Bound on the approximation term: approximation theory.

Probabilistic bound on the estimation term: probability theory!

Goal: Agnostic bounds, i.e. bounds that do not require
assumptions on P!

Often need mild assumptions on P...

Not our focus today!
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Supervised Classification
A Statistical Point of View

Binary Supervised Classification
Models
Statistical and Optimization Points of View

Under-fitting / Over-fitting Issue

Different behavior for different model complexity

Low complexity model are easily learned but the
approximation error (“bias”) may be large (Under-fit).

High complexity model may contains a good ideal target but
the estimation error (“variance”) can be large (Over-fit)

Bias-variance trade-off ⇐⇒ avoid overfitting and underfitting
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Supervised Classification
A Statistical Point of View

Binary Supervised Classification
Models
Statistical and Optimization Points of View

Outline

1 Supervised Classification
Binary Supervised Classification
Models
Statistical and Optimization Points of View

2 A Statistical Point of View
Logistic Modeling
Generative Modeling
k Nearest-Neighbors

Le Pennec Big Data? Machine Learning



Supervised Classification
A Statistical Point of View

Binary Supervised Classification
Models
Statistical and Optimization Points of View

Statistical and Optimization Points of View
How to find a good function f ∈ H with a small

R(f ) = E
[
`0/1(Y , f (X ))

]
= P {Y 6= f (X )} ?

Naive approach: f̂S = argminf ∈S
1
n

∑n
i=1 `

0/1(Yi , f (Xi ))

Problem: minimization impossible in practice for the 0-1 loss !

A Statistical Point of View

Solution: For x ∈ Rd , estimate P(Y = 1|X = x).
Learn Y |X and plug this estimate in the Bayes classifier: gen.
linear models, generative modeling, kernel methods, trees

An Optimization Point of View

Solution: Replace the loss `0/1 by an upper bound `′ which allows
the minimization: SVM, Neural Network, trees
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Supervised Classification
A Statistical Point of View

Logistic Modeling
Generative Modeling
k Nearest-Neighbors

Outline

1 Supervised Classification
Binary Supervised Classification
Models
Statistical and Optimization Points of View

2 A Statistical Point of View
Logistic Modeling
Generative Modeling
k Nearest-Neighbors
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Supervised Classification
A Statistical Point of View

Logistic Modeling
Generative Modeling
k Nearest-Neighbors

Classification Rule / Algorithm

Input: a data set Dn

Learn Y |x or equivalently pk(x) = P {Y = k|X = x} (using
the data set) and plug this estimate in the Bayes classifier

Output: a classifier f̂ : Rd → {−1, 1}

f̂ (x) =

{
+1 if p̂+1(x) ≥ p̂−1(x)

−1 otherwise

Three instantiations:
1 Logistic modeling (parametric method)
2 Generative modeling (Bayes method)
3 Nearest neighbors (kernel method)
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Supervised Classification
A Statistical Point of View

Logistic Modeling
Generative Modeling
k Nearest-Neighbors

Outline

1 Supervised Classification
Binary Supervised Classification
Models
Statistical and Optimization Points of View

2 A Statistical Point of View
Logistic Modeling
Generative Modeling
k Nearest-Neighbors
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Supervised Classification
A Statistical Point of View

Logistic Modeling
Generative Modeling
k Nearest-Neighbors

Logistic Modeling

The Binary logistic model (Y ∈ {−1, 1})

p+1(x) =
eβ

tφ(x)

1 + eβtφ(x)

where φ(x) is a transformation of the individual x

In this model, one verifies that
p+1(x) ≥ p−1(x) ⇔ βtφ(x) ≥ 0

True Y |x may not belong to this model ⇒ maximum
likelihood of β only finds a good approximation!
Binary Logistic classifier:

f̂L(x) =

{
+1 if β̂tφ(x) ≥ 0

−1 otherwise

where β̂ is estimated by maximum likelihood.
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Supervised Classification
A Statistical Point of View

Logistic Modeling
Generative Modeling
k Nearest-Neighbors

Logistic Modeling

Logistic model: approximation of B(p1(x)) by B(h(βtφ(x)))
with h(t) = et

1+et .

Opposite of the log-likelihood formula

− 1

n

n∑
i=1

(
1yi=1 log(h(βtφ(x))) + 1yi=−1 log(1− h(βtφ(x)))

)
= −1

n

n∑
i=1

(
1yi=1 log

eβ
tφ(x)

1 + eβtφ(x)
+ 1yi=−1 log

1

1 + eβtφ(x)

)

=
1

n

n∑
i=1

log
(

1 + e−yi (β
tφ(x))

)
Convex function in β!

Remark: You can also use your favorite parametric model...
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Supervised Classification
A Statistical Point of View

Logistic Modeling
Generative Modeling
k Nearest-Neighbors

Example: TwoClass Dataset

Synthetic Dataset

Two features/covariates.

Two classes.

Dataset from Applied Predictive Modeling, M. Kuhn and K.
Johnson, Springer
Numerical experiments with R and the package caret.
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Supervised Classification
A Statistical Point of View

Logistic Modeling
Generative Modeling
k Nearest-Neighbors

Example: Logistic
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Supervised Classification
A Statistical Point of View

Logistic Modeling
Generative Modeling
k Nearest-Neighbors

Example: Quadratic Logistic
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Supervised Classification
A Statistical Point of View

Logistic Modeling
Generative Modeling
k Nearest-Neighbors

Outline

1 Supervised Classification
Binary Supervised Classification
Models
Statistical and Optimization Points of View

2 A Statistical Point of View
Logistic Modeling
Generative Modeling
k Nearest-Neighbors
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Supervised Classification
A Statistical Point of View

Logistic Modeling
Generative Modeling
k Nearest-Neighbors

Generative Modeling

Bayes formula

pk(x) =
P {X = x|Y = k}P {Y = k}

P {X = x}

Remark: If one knows the law of X given y and the law of Y then
everything is easy!

Binary Bayes classifier (the best solution)

f ∗(x) =

{
+1 if p+1(x) ≥ p−1(x)

−1 otherwise

Heuristic: Estimate those quantities and plug the estimations.
By using different models for P {X|Y }, we get different
classifiers.
Remark: You can also use your favorite density estimator...
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Supervised Classification
A Statistical Point of View

Logistic Modeling
Generative Modeling
k Nearest-Neighbors

Example: LDA
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Supervised Classification
A Statistical Point of View

Logistic Modeling
Generative Modeling
k Nearest-Neighbors

Example: QDA
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Supervised Classification
A Statistical Point of View

Logistic Modeling
Generative Modeling
k Nearest-Neighbors

Example: Naive Bayes
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Supervised Classification
A Statistical Point of View

Logistic Modeling
Generative Modeling
k Nearest-Neighbors

Example: Naive Bayes
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Supervised Classification
A Statistical Point of View

Logistic Modeling
Generative Modeling
k Nearest-Neighbors

Outline

1 Supervised Classification
Binary Supervised Classification
Models
Statistical and Optimization Points of View

2 A Statistical Point of View
Logistic Modeling
Generative Modeling
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Supervised Classification
A Statistical Point of View

Logistic Modeling
Generative Modeling
k Nearest-Neighbors

Example: k Nearest-Neighbors (with k = 3)

1 2

3 4
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Supervised Classification
A Statistical Point of View

Logistic Modeling
Generative Modeling
k Nearest-Neighbors

Example: k Nearest-Neighbors (with k = 4)
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Supervised Classification
A Statistical Point of View

Logistic Modeling
Generative Modeling
k Nearest-Neighbors

k Nearest-Neighbors

Neighborhood Vx of x: k closest from x learning samples.

k-NN as local conditional density estimate

p̂+1(x) =

∑
xi∈Vx 1{yi=+1}
|Vx|

KNN Classifier:

f̂KNN(x) =

{
+1 if p̂+1(x) ≥ p̂−1(x)

−1 otherwise

Remark: You can also use your favorite kernel estimator...
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Supervised Classification
A Statistical Point of View

Logistic Modeling
Generative Modeling
k Nearest-Neighbors

Example: KNN
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Supervised Classification
A Statistical Point of View

Logistic Modeling
Generative Modeling
k Nearest-Neighbors

Example: KNN
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Supervised Classification
A Statistical Point of View

Logistic Modeling
Generative Modeling
k Nearest-Neighbors

Example: KNN
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Supervised Classification
A Statistical Point of View

Logistic Modeling
Generative Modeling
k Nearest-Neighbors

Example: KNN
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Supervised Classification
A Statistical Point of View

Logistic Modeling
Generative Modeling
k Nearest-Neighbors

Example: KNN

0.2

0.4

0.6

0.2 0.4 0.6
PredictorA

P
re

di
ct

or
B classes

Class1

Class2

Decision region

0.2

0.4

0.6

0.2 0.4 0.6
PredictorA

P
re

di
ct

or
B classes

Class1

Class2

Decision boundary

k−NN with k=17

Le Pennec Big Data? Machine Learning



Supervised Classification
A Statistical Point of View

Logistic Modeling
Generative Modeling
k Nearest-Neighbors

Example: KNN
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Logistic Modeling
Generative Modeling
k Nearest-Neighbors

Over-fitting Issue

Error behaviour

Learning/training error (error made on the learning/training
set) decays when the complexity of the model increases.

Quite different behavior when the error is computed on new
observations (generalization error).

Overfit for complex models: parameters learned are too
specific to the learning set!
General situation! (Think of polynomial fit...)
Need to use an other criterion than the training error!
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Supervised Classification
A Statistical Point of View

Logistic Modeling
Generative Modeling
k Nearest-Neighbors

Cross Validation

Very simple idea: use a second learning/verification set to
compute a verification error.
Sufficient to avoid over-fitting!

Cross Validation

Use V−1
V n observations to train and 1

V n to verify!

Validation for a learning set of size (1− 1
V )× n instead of n!

Most classical variations:
Leave One Out,
V -fold cross validation.

Accuracy/Speed tradeoff: V = 5 or V = 10!
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Example: Cross Validation for KNN
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Logistic Modeling
Generative Modeling
k Nearest-Neighbors

Example: KNN (k̂ = 17 using cross-validation)
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An Optimizer Point of View
Model and Variable Selection

Statistical and Optimization Points of View
How to find a good function f ∈ H that makes small

R(f ) = E
[
`0/1(Y , f (X ))

]
= P {Y 6= f (X )} ?

Naive approach: f̂S = argminf ∈S
1
n

∑n
i=1 `

0/1(Yi , f (Xi ))

Problem: minimization impossible in practice for the 0-1 loss !

A Statistical Point of View

Solution: For x ∈ Rd , estimate P(Y = 1|X = x).
Learn Y |X and plug this estimate in the Bayes classifier: gen.
linear models, generative modeling, kernel methods, trees

An Optimization Point of View

Solution: Replace the loss `0/1 by an upper bound `′ which allows
the minimization: SVM, Neural Network, trees
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Empirical Risk Minimization

The best solution f ∗ is the one minimizing

f ∗ = arg min R(f ) = arg minE [`(Y , f (X ))]

Empirical Risk Minimization

One restricts f to a subset of functions S = {fθ, θ ∈ Θ}
One replaces the minimization of the average loss by the
minimization of the empirical loss

f̂ = f
θ̂

= argmin
fθ,θ∈Θ

1

n

n∑
i=1

`(yi , fθ(xi ))

Unusable for the `0/1 loss!

Solution: convexification/regularization of the risk...

Examples: SVM, (Deep) Neural Networks, Trees
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Logistic Revisited

Ideal solution:

f̂ = argmin
f ∈S

1

n

n∑
i=1

`0/1(yi , f (xi ))

Logistic regression

Use f (x) = 〈β, x〉+ b.

Use the logistic loss `′(y , f ) = log2(1 + e−yf ), i.e. the
-log-likelihood.

Different vision than the statistician but same algorithm!
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Logistic Revisited
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Ideal Separable Case

Linear classifier: sign(〈β, x〉+ b)

Separable case: ∃(β, b), ∀i , yi (〈β, x〉+ b) > 0!

How to choose (β, b) so that the separation is maximal?

Strict separation: ∃(β, b),∀i , yi (〈β, x〉+ b) ≥ 1

Maximize the distance between 〈β, x〉+ b = 1 and
〈β, x〉+ b = −1.

Equivalent to the minimization of ‖β‖2.
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Non Separable Case

What about the non separable case?

Relax the assumption that ∀i , yi (〈β, x〉+ b) ≥ 1.

Naive attempt:

argmin ‖β‖2 + C
1

n

n∑
i=1

1yi (〈β,x〉+b)≤1

Non convex minimization.

SVM: better convex relaxation!

argmin ‖β‖2 + C
1

n

n∑
i=1

max(1− yi (〈β, x〉+ b), 0)
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SVM as a Penalized Convex Relaxation

Convex relaxation:

argmin ‖β‖2 + C
1

n

n∑
i=1

max(1− yi (〈β, x〉+ b), 0)

= argmin
1

n

n∑
i=1

max(1− yi (〈β, x〉+ b), 0) +
1

C
‖β‖2

Prop: `0/1(yi , sign(〈β, x〉+ b)) ≤ max(1− yi (〈β, x〉+ b), 0)

Penalized convex relaxation (Tikhonov!)

1

n

n∑
i=1

`0/1(yi , sign(〈β, x〉+ b))

≤ 1

n

n∑
i=1

max(1− yi (〈β, x〉+ b), 0) +
1

C
‖β‖2
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SVM
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The Kernel Trick

Non linear separation: just replace x by a non linear Φ(x)...

Kernel trick

Computing k(x , y) = 〈Φ(x),Φ(y)〉 may be easier than
computing Φ(x), Φ(y) and then the scalar product!

Φ can be specified through its definite positive kernel k.

Examples: Polynomial kernel k(x , y) = (1 + 〈x , y〉)d , Gaussian

kernel k(x , y) = e−‖x−y‖
2/2,...

RKHS setting!
Can be used in (logistic) regression and more...
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SVM
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Artificial Neuron and Logistic Regression

Artificial neuron

Structure:

Mix inputs with a
weighted sum,
Apply a (non linear)
transfer function to this
sum,
Eventually threshold the
result to make a decision.

Weights learned by
minimizing a loss function.

Logistic unit

Structure:

Mix inputs with a
weighted sum,
Apply the logistic function
σ(t) = et/(1 + et),
Threshold at 1/2 to make
a decision!

Logistic weights learned by
minimizing the -log-likelihood.
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Neural network

Neural network structure

Cascade of artificial neurons organized in layers

Thresholding decision only at the output layer

Most classical case use logistic neurons and the -log-likelihood
as the criterion to minimize.

Classical (stochastic) gradient descent algorithm (Back
propagation)

Non convex and thus may be trapped in local minima.
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Neural network
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Deep Neural Network

Deep Neural Network structure

Deep cascade of layers!

No conceptual novelty!

Bet on (clever?) randomized initialization and stochastic
optimization scheme... and huge computational power!

Very impressive results!
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Deep Neural Network
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Deep Learning

Family of Machine Learning algorithm combining:

a (deep) multilayered structure,

a (clever?) randomized initialization,

a stochastic tuning optimization.

Examples: Deep Neural Network, Deep (Restricted) Boltzman
Machine, Stacked Encoder...
Appears to be very efficient but lack of theoretical foundation!
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Regression Trees
PredictorB >= 0.2

PredictorA >= 0.13

PredictorA < 0.31

PredictorB >= 0.29

PredictorA < 0.62

PredictorB >= 0.32

Class1

Class1 Class2

Class2

Class1 Class2

Class2

yes no

Tree principle

Construction of a recursive partition through a tree structured
set of questions (splits around a given value of a variable)

For a given partition, statistical approach and optimization
approach yields the same classifier!

A simple majority vote in each leaf

Quality of the prediction depends on the tree (the partition).

Issue: Minim. of the (penalized) empirical error is NP hard!
Practical tree construction are all based on two steps:

a top-down step in which branches are created (branching)
a bottom-up in which branches are removed (pruning)
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CART
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Branching

Greedy top-bottom approach

Start from a single region containing all the data

Recursively split those regions along a certain variable and a
certain value

No regret strategy on the choice of the splits!

Heuristic: choose a split so that the two new regions are as
homogeneous possible...
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Branching

Various definition of homogeneous

CART: empirical loss based criterion

C (R,R) =
∑
xi∈R

`(yi , y(R)) +
∑
xi∈R

`(yi , y(R))

CART: Gini index (classification)

C (R,R) =
∑
xi∈R

p(R)(1− p(R)) +
∑
xi∈R

p(R)(1− p(R))

C4.5: entropy based criterion (Information Theory)

C (R,R) =
∑
xi∈R

H(R) +
∑
xi∈R

H(R)

CART with Gini is probably the most used technique...

Other criterion based on χ2 homogeneity or based on different
local predictors (generalized linear models...)
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Branching

Choice of the split in a given region

Compute the criterion for all features and all possible splitting
points (necessarily among the data values in the region)

Choose the one minimizing the criterion

Variations: split at all categories of a categorical variables
(ID3), split at a fixed position (median/mean)

Stopping rules:

when a leaf/region contains less than a prescribed number of
observations
when the region is sufficiently homogeneous...

May lead to a quite complex tree / Over-fitting possible!
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Pruning

Model select. within the (rooted) subtrees of previous tree!

Number of subtrees can be quite large but the tree structure
allows to find the best model efficiently.

Key idea

The predictor in a leaf depends only on the values in this leaf.

Efficient bottom-up (dynamic programming) algorithm if the
criterion used satisfies an additive property

C (T ) =
∑
L∈T

c(L)

Example: AIC / CV.

Limits over-fitting...
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Ensemble methods

Lack of robustness for single trees.

How to combine trees?

Parallel construction

Construct several trees from bootstrapped samples and
average the responses (bagging)

Add more randomness in the tree construction (random
forests)

Sequential construction

Construct a sequence of trees by reweighting sequentially the
samples according to their difficulties (AdaBoost)

Reinterpretation as a stagewise additive model (Boosting)
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Ensemble methods
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Ensemble methods
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Ensemble methods
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Logistic Regression

Ideal solution:

f ∗(x) = argmaxP {Y |x}

Logistic

Model Y |X with a logistic model.

Estimate its parameters with a Maximum Likelihood approach.

Plug the estimate in the Bayes classifier.

Model hyperparameters:

Features
Parametric model...
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Generative Modeling

Ideal solution:

f ∗(x) = argmaxP {Y |x}

Generative Modeling

Estimate X |Y with a density estimator as well as P {Y }
Deduce using the Bayes formula an estimate Y |X .

Plug the estimate in the Bayes classifier.

Model hyperparameters:

Features
Generative model
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Kernel Method

Ideal solution:

f ∗(x) = argmaxP {Y |x}

Kernel methods

Estimate Y |X with a kernel conditional density estimator.

Plug the estimate in the Bayes classifier.

Model hyperparameters:

Features
Bandwidth and kernel
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Logistic Regression

Ideal solution:

f ∗ = argmin
f ∈S

E
[
`0/1(Y , f (X ))

]

Logistic

Replace `0/1 by the logistic loss.

Add a penalty λ‖f ‖p
Compute the minimizer.

Model hyperparameters:

Features
Penalty and regularization parameter.
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SVM

Ideal solution:

f ∗ = argmin
f ∈S

E
[
`0/1(Y , f (X ))

]

SVM

Replace the expectation by its empirical counterpart.

Replace `0/1(y , f ) = 1y=f by `′(y , f ) = (1− yf )+.

Add a penalty λ‖f ‖2
S .

Compute the minimizer.

Model hyperparameters:
Features
S RKHS structure: features mapping and metric
Regularization parameters λ
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(Deep) Neural Networks

Ideal solution:

f ∗ = argmin
f ∈S

E
[
`0/1(Y , f (X ))

]
NN

Neuron: x 7→ σ(〈β, x〉+ b)

Neural Network: Convolution system of neurons.

Replace `0/1(y , f ) by a smooth/convex loss.

Minimize the empirical loss using the backprop algorithm
(gradient descent)

Model hyperparameters:
Features
Net architecture, activation function
Initialization strategy
Optimization strategy (and regularization strategy)
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Tree and Boosting

Ideal solution:

f ∗(x) = argmaxP {Y |x} and f ∗ = argmin
f ∈S

E
[
`0/1(Y , f (X ))

]
Single tree

Greedy Partition construction.

Local conditional density estimation / loss minimization.

Suboptimal tree optimization through a relaxed criterion

Bagging/Random Forest

Averaging of several predictors (statistical point of view)

Boosting

Best interpretation as a minimization of the exponential loss
`(y , f ) = e−yf (optimization point of view)
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Model Selection

Models

How to design models? (Model/feature design)

How to chose among several models? (Model/feature
selection)

Key to obtain good performance!

Approximation error and estimation error (Bias/Variance)

R(f̂S)−R(f ∗) = R(f ∗S )−R(f ∗)︸ ︷︷ ︸
Approximation error

+R(f̂S)−R(f ∗S )︸ ︷︷ ︸
Estimation error

Approximation error can be large for not suitable model S!

Estimation error can be large if the model is complex!

Need to find the good balance automatically!
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Model Selection

Empirical error biased toward complex models!

Selection criterion

Cross validation: Very efficient (and almost always used in
practice!) but slightly biased as it target uses only a fraction
of the data.

Penalization approach: use empirical loss criterion but
penalize it by a term increasing with the complexity of S

Rn(f̂S)→ Rn(f̂S) + pen(S)

and choose the model with the smallest penalized risk.
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Cross Validation
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Ensemble methods

How to combine several predictors (models)?

Two strategies: mixture or sequential

Mixture

Model averaging

Data dependent model averaging (learn mixture weights)

Stagewise

Modify learning procedure according to current results.

Boosting, Cascade...
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