Big Data? Machine Learning

Erwan Le Pennec

CMAP Ecole polytechnique

École polytechnique - 09/06/2015

Credit Default, Credit Score, Bank Risk, Market Risk Management

- Data: Client profile, Client credit history...
- Input: Client profile
- Output: Credit risk

Marketing: advertisement, recommendation...

- Data: User profile, Web site history...
- Input: User profile, Current web page
- Output: Advertisement with price, recommendation...

Spam detection (Text classification)

- Data: email collection
- Input: email
- Output : Spam or No Spam

Face Detection

- Data: Annotated database of images
- Input : Sub window in the image
- Output : Presence or no of a face...

Number Recognition

- Data: Annotated database of images (each image is represented by a vector of $28 \times 28 = 784$ pixel intensities)
- Input: Image
- Output: Corresponding number

Machine Learning

A definition by Tom Mitchell (http://www.cs.cmu.edu/~tom/)

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

With the explosion of "Big Data" problems, machine learning has become a very hot field in many scientific areas.

- It is important to understand the ideas behind the various techniques, in order to know how and when to use them.
- One has to understand the simpler methods first, in order to grasp the more sophisticated ones.
- This is an exciting research area, having important applications in science, industry and finance.
- Machine learning is a fundamental ingredient in the training of a modern data scientist.

Data is the new Oil!

Le Pennec Big Data? Machine Learning

The 5 Vs of Big Data

Lots of Words!

Doing Data Science

Figure 2-2. The data science process

Doing Data Science: Straight talk from the frontline

- Rachel Schutt, Cathy O'Neil O'Reilly
- Art of data driven decision / evaluation.

A new Context

Data everywhere

- Huge volume,
- Huge variety...

Affordable computation units

- Cloud computing
- Graphical Processor Units (GPU)...
- Growing academic and industrial interest!

Big Data is (quite) Easy

Example of off the shelves solution

run(params: Params) { i) conf = new SparkConf() Logger.getRootLogger.setLevel(Level.WARN) examples = MLUtils.loadLibSWFile(sc. params.input).cache() splits = examples.randomSplit(Array(0.8, 0.2)) training = splits(0).cache() test = splits(1).cache() numTraining = training.count() numTest = test.count() println(s"Training: \$numTraining, test: \$numTest.") examples.unpersist(blocking = false) updater = params.regType match { case L1 -> new L1Updater() case L2 -> new SquaredL2Updater() algorithm = new LogisticRegressionWithSGD() algorithm.optimizer .setNumIterations(params.numIterations) .setStepSize(params.stepSize) .setUpdater(updater) .setRegParam(params.regParam) model = algorithm.run(training).clearThreshold() prediction = model.predict(test.map(_.features)) predictionAndLabel = prediction.zip(test.map(.label)) L metrics = new BinaryClassificationMetrics(predictionAndLabel) L myMetrics = new MyBinaryClassificationMetrics(predictionAndLabel) println(s"Empirical CrossEntropy = \${myMetrics.crossEntropy()}.") println(s"Test areaUnderPR = \${metrics.areaUnderPR()}.") println(s"Test areaUnderROC = \${metrics.areaUnderROC()}.") sc.stop()

Le Pennec Big Data? Machine Learning

Big Data is (quite) Easy


```
export AWS_ACCESS_KEY_ID=cyour-access-keyid>
export AWS_SECRET_ACCESS_KEY=<your-access-key-secret>
cellule/spark/ec2/sparl-ec2 -i cellule.pem -k cellule -s <number of machines> launch <cluster-name>
ssh -i cellule.pem root@<your-cluster-master-dns>
spark-ec2/copy-dir ephemeral-hdfs/conf
ephemeral-hdfs/bin/hadoop distcp s3n://celluledecalcul/dataset/raw/train.csv /data/train.csv
scp -i cellule.pem cellule/challenge/target/scala-2.10/target/scala-2.10/challenges_2.10-0.0.jar
```

```
cellule/spark/bin/spark-submit \
    --class fr.cc.challenge.Preprocess \
    challenges_2.10-0.0.jar \
    /data/train.csv \
    /data/train2.csv
```

```
cellule/spark/bin/spark-submit \
    --class fr.cc.sparktest.LogisticRegression \
    challenges_2.10-0.0.jar \
    /data/train2.csv
```

 \Rightarrow Logistic regression for arbitrary large dataset!

A Complex Ecosystem!

A Complex Ecosystem!

Matt Turck (@mattturck) and Shivon Zilis (@shivonz)

New Interdisciplinary Challenges

- Applied math AND Computer science
- Huge importance of domain specific knowledge: physics, signal processing, biology, health, marketing...

Some joint math/computer science challenges

- Data acquisition
- Unstructured data and their representation
- Huge dataset and computation
- High dimensional data and model selection
- Learning with less supervision
- Visualization

Data acquisition

- How to measure new things?
- How to choose what to measure?
- How to deal with distributed sensors?
- How to look for new sources of informations?

Unstructured Data

- How to store efficiently the data?
- How to describe (model) them to be able to process them?
- How to combine data of different nature?
- How to learn dynamics?

Huge Dataset

- How to take into account the locality of the data?
- How to construct distributed architectures?
- How to design adapted algorithms?

High Dimensional Data

- How to describe (model) the data?
- How to reduce the data dimensionality?
- How to select/mix models?

Learning and Supervision

- How to learn with the less possible interactions?
- How to learn simultaneously several related tasks?

Visualization

- How to look at the data?
- How to present results?
- How to help taking better informed decision?

Statistical Learning in Classification

Supervised Classification

- Binary Supervised Classification
- Models
- Statistical and Optimization Points of View

- Logistic Modeling
- Generative Modeling
- k Nearest-Neighbors

Outline

Supervised Classification

- Binary Supervised Classification
- Models
- Statistical and Optimization Points of View

- Logistic Modeling
- Generative Modeling
- k Nearest-Neighbors

Supervised Classification A Statistical Point of View Binary Supervised Classification Models Statistical and Optimization Points of View

Outline

Supervised Classification

• Binary Supervised Classification

- Models
- Statistical and Optimization Points of View

- Logistic Modeling
- Generative Modeling
- k Nearest-Neighbors

Binary Supervised Classification

Supervised Learning Framework

- Input measurement $\mathbf{X} = (X^{(1)}, X^{(2)}, \dots, X^{(d)}) \in \mathbb{R}^d$
- Output measurement $Y \in \{-1, 1\}$.
- $(\mathbf{X}, Y) \sim \mathbf{P}$ with \mathbf{P} unknown.
- Training data : $\mathcal{D}_n = \{(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)\}$ (i.i.d. $\sim \mathbf{P}$)
- A classifier is a function in $\mathcal{F} = \{f : \mathbb{R}^d \to \{-1, 1\} \text{ measurable}\}$

Goal

- Construct a good classifier \hat{f} from the training data.
- Need to specify the meaning of good.

Binary Supervised Classification

Loss function and risk of a generic classifier

- Loss function : $\ell(f(x), y)$ measure how well f(x) "predicts" y.
- For this talk $\ell(f(x), y) = \ell^{0/1}(f(x), y) = \mathbf{1}_{y \neq f(x)}$
- Risk measured as the average loss for a new couple:

$$\mathcal{R}(f) = \mathbb{E}_{(X,Y) \sim \mathsf{P}}\left[\ell^{0/1}(Y, f(\mathsf{X}))\right] = \mathbb{P}\left\{Y \neq f(\mathsf{X})\right\}$$

• **Beware:** As \hat{f} depends on \mathcal{D}_n , $\mathcal{R}(\hat{f})$ is a random variable!

Goal

• Learn a rule to construct a classifier $\hat{f} \in \mathcal{F}$ from the training data \mathcal{D}_n s.t. the risk $\mathcal{R}(\hat{f})$ is small on average or with high probability with respect to \mathcal{D}_n .

Supervised Classification A Statistical Point of View Statistical and Optimization Points of View

Best Solution

• The best classifier f^* (which is independent of \mathcal{D}_n) is

$$f^* = \arg\min_{f \in \mathcal{F}} R(f) = \arg\min_{f \in \mathcal{F}} \mathbb{E}\left[\ell^{0/1}(Y, f(\mathbf{X}))\right]$$
$$= \arg\min_{f \in \mathcal{F}} \mathbb{E}_{\mathbf{X}}\left[\mathbb{E}_{Y|\mathbf{X}}\left[\ell^{0/1}(Y, f(\mathbf{x}))\right]\right]$$
$$f^*(\mathbf{x}) = \arg\max_{k} \mathbb{P}(Y = k|\mathbf{X} = \mathbf{x})$$

Binary Bayes Classifier (explicit solution)

In binary classification with 0-1 loss:

$$f^*(\mathbf{x}) = \begin{cases} +1 & \text{if } \mathbb{P}\left\{Y = +1 | \mathbf{X} = \mathbf{x}\right\} \ge \mathbb{P}\left\{Y = -1 | \mathbf{X} = \mathbf{x}\right\} \\ & \Leftrightarrow \mathbb{P}\left\{Y = +1 | \mathbf{X} = \mathbf{x}\right\} \ge 1/2 \\ -1 & \text{otherwise} \end{cases}$$

Issue: Explicit solution requires to know $Y|\mathbf{x}$ for all \mathbf{x} !

Goal

Machine Learning

• Learn a rule to construct a classifier $\hat{f} \in \mathcal{F}$ from the training data \mathcal{D}_n s.t. the risk $\mathcal{R}(\hat{f})$ is small on average or with high probability with respect to \mathcal{D}_n .

Canonical example: Empirical Risk Minimizer

- One restricts f to a subset of functions $\mathcal{S} = \{f_{\theta}, \theta \in \Theta\}$
- One replaces the minimization of the average loss by the minimization of the empirical loss

$$\widehat{f} = f_{\widehat{\theta}} = \operatorname*{argmin}_{f_{\theta}, \theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \ell^{0/1}(Y_i, f_{\theta}(\mathbf{X}_i))$$

• Example: Linear discrimination with $\mathcal{S} = \{\mathbf{x} \mapsto \operatorname{sign}\{\beta^T \mathbf{x} + \beta_0\} \ / \beta \in \mathbb{R}^d, \beta_0 \in \mathbb{R}\}$ Supervised Classification A Statistical Point of View Binary Supervised Classification Models Statistical and Optimization Points of View

Example: Linear Discrimination

Supervised Classification A Statistical Point of View Binary Supervised Classification Models Statistical and Optimization Points of View

Outline

Supervised Classification

- Binary Supervised Classification
- Models
- Statistical and Optimization Points of View

- Logistic Modeling
- Generative Modeling
- k Nearest-Neighbors

Bias-Variance Dilemna

 General setting: • $\mathcal{F} = \{ \text{measurable fonctions } \mathbb{R}^d \to \{-1, 1\} \}$ f^* • Best solution: $f^* = \operatorname{argmin}_{f \in \mathcal{F}} \mathcal{R}(f)$ • Class $\mathcal{S} \subset \mathcal{F}$ of functions Ĵs • Ideal target in \mathcal{S} : $f_{\mathcal{S}}^* = \operatorname{argmin}_{f \in \mathcal{S}} \mathcal{R}(f)$ • Estimate in S: \hat{f}_{S} obtained with some procedure Approximation error and estimation error (Bias/Variance) $\mathcal{R}(\widehat{f}_{\mathcal{S}}) - \mathcal{R}(f^*) = \underbrace{\mathcal{R}(f_{\mathcal{S}}^*) - \mathcal{R}(f^*)}_{\mathcal{S}} + \underbrace{\mathcal{R}(\widehat{f}_{\mathcal{S}}) - \mathcal{R}(f_{\mathcal{S}}^*)}_{\mathcal{S}}$ Estimation error Approximation error Approx. error can be large if the model S is not suitable. Estimation error can be large if the model is complex.

Agnostic approach

• No assumption (so far) on the law of (**X**, *Y*).

Theoretical Analysis

Statistical Learning Analysis

• Error decomposition:

$$\mathcal{R}(\widehat{f}_{\mathcal{S}}) - \mathcal{R}(f^*) = \underbrace{\mathcal{R}(f_{\mathcal{S}}^*) - \mathcal{R}(f^*)}_{\mathsf{Approximation \ error}} + \underbrace{\mathcal{R}(\widehat{f}_{\mathcal{S}}) - \mathcal{R}(f_{\mathcal{S}}^*)}_{\mathsf{Estimation \ error}}$$

- Bound on the approximation term: approximation theory.
- Probabilistic bound on the estimation term: probability theory!
- **Goal:** Agnostic bounds, i.e. bounds that do not require assumptions on **P**!
- Often need mild assumptions on $\ensuremath{\textbf{P}}...$
- Not our focus today!

Supervised Classification A Statistical Point of View Binary Supervised Classification Models Statistical and Optimization Points of View

Under-fitting / Over-fitting Issue

Model complexity

- Different behavior for different model complexity
- Low complexity model are easily learned but the approximation error ("bias") may be large (Under-fit).
- High complexity model may contains a good ideal target but the estimation error ("variance") can be large (Over-fit)

Bias-variance trade-off \iff avoid overfitting and underfitting
Binary Supervised Classification Models Statistical and Optimization Points of View

Outline

Supervised Classification

- Binary Supervised Classification
- Models

• Statistical and Optimization Points of View

2 A Statistical Point of View

- Logistic Modeling
- Generative Modeling
- k Nearest-Neighbors

Statistical and Optimization Points of View

How to find a good function $f \in \mathcal{H}$ with a *small*

$$R(f) = \mathbb{E}\left[\ell^{0/1}(Y, f(X))\right] = \mathbb{P}\left\{Y \neq f(X)\right\} \quad \mathbb{P}\left\{Y \neq f(X)\right\}$$

Naive approach: $\hat{f}_{\mathcal{S}} = \operatorname{argmin}_{f \in \mathcal{S}} \frac{1}{n} \sum_{i=1}^{n} \ell^{0/1}(Y_i, f(\mathbf{X}_i))$

Problem: minimization impossible in practice for the 0-1 loss !

A Statistical Point of View

Solution: For $\mathbf{x} \in \mathbb{R}^d$, estimate $\mathbb{P}(Y = 1 | \mathbf{X} = \mathbf{x})$.

Learn Y|X and plug this estimate in the Bayes classifier: gen. linear models, generative modeling, kernel methods, trees

An Optimization Point of View

Solution: Replace the loss $\ell^{0/1}$ by an upper bound ℓ' which allows the minimization: SVM, Neural Network, trees

Logistic Modeling Generative Modeling < Nearest-Neighbors

Outline

Supervised Classification

- Binary Supervised Classification
- Models
- Statistical and Optimization Points of View

2 A Statistical Point of View

- Logistic Modeling
- Generative Modeling
- k Nearest-Neighbors

Logistic Modeling Generative Modeling k Nearest-Neighbors

Classification Rule / Algorithm

• Input: a data set \mathcal{D}_n

Learn Y|x or equivalently $p_k(\mathbf{x}) = \mathbb{P} \{ Y = k | \mathbf{X} = \mathbf{x} \}$ (using the data set) and plug this estimate in the Bayes classifier

• Output: a classifier
$$\widehat{f} : \mathbb{R}^d \to \{-1, 1\}$$

$$\widehat{f}(\mathbf{x}) = egin{cases} +1 & ext{if } \widehat{p}_{+1}(\mathbf{x}) \geq \widehat{p}_{-1}(\mathbf{x}) \ -1 & ext{otherwise} \end{cases}$$

- Three instantiations:
 - Logistic modeling (parametric method)
 - Generative modeling (Bayes method)
 - Investigation (Nearest neighbors (kernel method)

Logistic Modeling Generative Modeling k Nearest-Neighbors

Outline

Supervised Classification

- Binary Supervised Classification
- Models
- Statistical and Optimization Points of View

2 A Statistical Point of View

- Logistic Modeling
- Generative Modeling
- k Nearest-Neighbors

Logistic Modeling Generative Modeling k Nearest-Neighbors

Logistic Modeling

The Binary logistic model $(Y \in \{-1, 1\})$

$$p_{+1}(\mathsf{x}) = rac{e^{eta^t \phi(\mathsf{x})}}{1+e^{eta^t \phi(\mathsf{x})}}$$

where $\phi(x)$ is a transformation of the individual **x**

- In this model, one verifies that $p_{+1}(\mathbf{x}) \geq p_{-1}(\mathbf{x}) \quad \Leftrightarrow \quad \beta^t \phi(\mathbf{x}) \geq 0$
- True Y|x may not belong to this model \Rightarrow maximum likelihood of β only finds a good approximation!
- Binary Logistic classifier:

$$\widehat{f}_{L}(\mathbf{x}) = egin{cases} +1 & ext{if } \widehat{eta}^{t}\phi(\mathbf{x}) \geq 0 \ -1 & ext{otherwise} \end{cases}$$

where $\widehat{\beta}$ is estimated by maximum likelihood.

Logistic Modeling Generative Modeling k Nearest-Neighbors

Logistic Modeling

• Logistic model: approximation of $\mathcal{B}(p_1(\mathbf{x}))$ by $\mathcal{B}(h(\beta^t \phi(\mathbf{x})))$ with $h(t) = \frac{e^t}{1+e^t}$.

Opposite of the log-likelihood formula

$$\begin{aligned} &-\frac{1}{n}\sum_{i=1}^{n}\left(\mathbf{1}_{y_{i}=1}\log(h(\beta^{t}\phi(\mathbf{x})))+\mathbf{1}_{y_{i}=-1}\log(1-h(\beta^{t}\phi(\mathbf{x})))\right)\\ &=-\frac{1}{n}\sum_{i=1}^{n}\left(\mathbf{1}_{y_{i}=1}\log\frac{e^{\beta^{t}\phi(\mathbf{x})}}{1+e^{\beta^{t}\phi(\mathbf{x})}}+\mathbf{1}_{y_{i}=-1}\log\frac{1}{1+e^{\beta^{t}\phi(\mathbf{x})}}\right)\\ &=\frac{1}{n}\sum_{i=1}^{n}\log\left(1+e^{-y_{i}(\beta^{t}\phi(\mathbf{x}))}\right)\end{aligned}$$

- Convex function in β !
- Remark: You can also use your favorite parametric model...

Logistic Modeling Generative Modeling k Nearest-Neighbors

Example: TwoClass Dataset

Synthetic Dataset

- Two features/covariates.
- Two classes.
- Dataset from *Applied Predictive Modeling*, M. Kuhn and K. Johnson, Springer
- Numerical experiments with R and the package caret.

Logistic Modeling Generative Modeling k Nearest-Neighbors

Example: Logistic

Logistic

Logistic Modeling Generative Modeling k Nearest-Neighbors

Example: Quadratic Logistic

Quadratic Logistic

Logistic Modeling Generative Modeling k Nearest-Neighbors

Outline

Supervised Classification

- Binary Supervised Classification
- Models
- Statistical and Optimization Points of View

2 A Statistical Point of View

- Logistic Modeling
- Generative Modeling
- k Nearest-Neighbors

Logistic Modeling Generative Modeling k Nearest-Neighbors

Generative Modeling

Bayes formula

$$p_k(\mathbf{x}) = rac{\mathbb{P}\left\{\mathbf{X} = \mathbf{x} | Y = k
ight\} \mathbb{P}\left\{Y = k
ight\}}{\mathbb{P}\left\{\mathbf{X} = \mathbf{x}
ight\}}$$

Remark: If one knows the law of X given y and the law of Y then everything is easy!

• Binary Bayes classifier (the best solution)

$$f^*(\mathbf{x}) = egin{cases} +1 & ext{if } p_{+1}(\mathbf{x}) \geq p_{-1}(\mathbf{x}) \ -1 & ext{otherwise} \end{cases}$$

- Heuristic: Estimate those quantities and plug the estimations.
- By using different models for $\mathbb{P} \{ \mathbf{X} | Y \}$, we get different classifiers.
- Remark: You can also use your favorite density estimator...

Logistic Modeling Generative Modeling k Nearest-Neighbors

Example: LDA

Linear Discrimant Analysis

Logistic Modeling Generative Modeling k Nearest-Neighbors

Example: QDA

Quadratic Discrimant Analysis

Logistic Modeling Generative Modeling k Nearest-Neighbors

Example: Naive Bayes

Naive Bayes with Gaussian model

Logistic Modeling Generative Modeling k Nearest-Neighbors

Example: Naive Bayes

Naive Bayes with kernel density estimates

Logistic Modeling Generative Modeling k Nearest-Neighbors

Outline

Supervised Classification

- Binary Supervised Classification
- Models
- Statistical and Optimization Points of View

2 A Statistical Point of View

- Logistic Modeling
- Generative Modeling
- k Nearest-Neighbors

Logistic Modeling Generative Modeling k Nearest-Neighbors

Example: k Nearest-Neighbors (with k = 3)

Logistic Modeling Generative Modeling k Nearest-Neighbors

Example: k Nearest-Neighbors (with k = 4)

Logistic Modeling Generative Modeling k Nearest-Neighbors

k Nearest-Neighbors

• Neighborhood $\mathcal{V}_{\mathbf{x}}$ of \mathbf{x} : k closest from \mathbf{x} learning samples.

k-NN as local conditional density estimate

$$\widehat{p}_{+1}(\mathbf{x}) = rac{\sum_{\mathbf{x}_i \in \mathcal{V}_{\mathbf{x}}} \mathbf{1}_{\{y_i = +1\}}}{|\mathcal{V}_{\mathbf{x}}|}$$

• KNN Classifier:

$$\widehat{f}_{\mathcal{K}NN}(\mathbf{x}) = egin{cases} +1 & ext{if } \widehat{p}_{+1}(\mathbf{x}) \geq \widehat{p}_{-1}(\mathbf{x}) \ -1 & ext{otherwise} \end{cases}$$

• Remark: You can also use your favorite kernel estimator...

Logistic Modeling Generative Modeling k Nearest-Neighbors

Example: KNN

Logistic Modeling Generative Modeling k Nearest-Neighbors

Example: KNN

Logistic Modeling Generative Modeling k Nearest-Neighbors

Example: KNN

k-NN with k=9

Logistic Modeling Generative Modeling k Nearest-Neighbors

Example: KNN

Logistic Modeling Generative Modeling k Nearest-Neighbors

Example: KNN

Logistic Modeling Generative Modeling k Nearest-Neighbors

Example: KNN

Logistic Modeling Generative Modeling k Nearest-Neighbors

Over-fitting Issue

Error behaviour

- Learning/training error (error made on the learning/training set) decays when the complexity of the model increases.
- Quite different behavior when the error is computed on new observations (generalization error).
- Overfit for complex models: parameters learned are too specific to the learning set!
- General situation! (Think of polynomial fit...)
- Need to use an other criterion than the training error!

Logistic Modeling Generative Modeling k Nearest-Neighbors

Cross Validation

- Very simple idea: use a second learning/verification set to compute a verification error.
- Sufficient to avoid over-fitting!

Cross Validation

- Use $\frac{V-1}{V}n$ observations to train and $\frac{1}{V}n$ to verify!
- Validation for a learning set of size $(1 \frac{1}{V}) \times n$ instead of n!
- Most classical variations:
 - Leave One Out,
 - V-fold cross validation.
- Accuracy/Speed tradeoff: V = 5 or V = 10!

Logistic Modeling Generative Modeling k Nearest-Neighbors

Example: Cross Validation for KNN

Logistic Modeling Generative Modeling k Nearest-Neighbors

Example: KNN ($\hat{k} = 17$ using cross-validation)

An Optimization Point of View

3 An Optimizer Point of View

- SVM
- (Deep) Neural Networks
- Tree Based Methods

Model Selection

Statistical and Optimization Points of View

How to find a good function $f \in \mathcal{H}$ that makes small

$$R(f) = \mathbb{E}\left[\ell^{0/1}(Y, f(X))
ight] = \mathbb{P}\left\{Y \neq f(X)
ight\}$$
?

Naive approach: $\hat{f}_{\mathcal{S}} = \operatorname{argmin}_{f \in \mathcal{S}} \frac{1}{n} \sum_{i=1}^{n} \ell^{0/1}(Y_i, f(\mathbf{X}_i))$

Problem: minimization impossible in practice for the 0-1 loss !

A Statistical Point of View

Solution: For $\mathbf{x} \in \mathbb{R}^d$, estimate $\mathbb{P}(Y = 1 | \mathbf{X} = \mathbf{x})$.

Learn Y|X and plug this estimate in the Bayes classifier: gen. linear models, generative modeling, kernel methods, trees

An Optimization Point of View

Solution: Replace the loss $\ell^{0/1}$ by an upper bound ℓ' which allows the minimization: SVM, Neural Network, trees

Outline

3 An Optimizer Point of View

- SVM
- (Deep) Neural Networks
- Tree Based Methods

Model Selection

SVM (Deep) Neural Networks Tree Based Methods

Outline

- SVM
- (Deep) Neural Networks
- Tree Based Methods

Model and Variable Selection
 Models
 Models

Model Selection

SVM (Deep) Neural Networks Tree Based Methods

Empirical Risk Minimization

• The best solution f^* is the one minimizing

$$f^* = \arg \min R(f) = \arg \min \mathbb{E} \left[\ell(Y, f(X)) \right]$$

Empirical Risk Minimization

- One restricts f to a subset of functions $\mathcal{S} = \{f_{\theta}, \theta \in \Theta\}$
- One replaces the minimization of the average loss by the minimization of the empirical loss

$$\widehat{f} = f_{\widehat{\theta}} = \operatorname*{argmin}_{f_{\theta}, \theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f_{\theta}(x_i))$$

- Unusable for the $\ell^{0/1}$ loss!
- Solution: convexification/regularization of the risk...
- Examples: SVM, (Deep) Neural Networks, Trees

SVM (Deep) Neural Networks Tree Based Methods

Logistic Revisited

Ideal solution:

$$\widehat{f} = \operatorname*{argmin}_{f \in \mathcal{S}} \frac{1}{n} \sum_{i=1}^{n} \ell^{0/1}(y_i, f(x_i))$$

Logistic regression

- Use $f(x) = \langle \beta, x \rangle + b$.
- Use the logistic loss $\ell'(y, f) = \log_2(1 + e^{-yf})$, i.e. the -log-likelihood.
- Different vision than the statistician but same algorithm!
SVM (Deep) Neural Networks Tree Based Methods

Logistic Revisited

Logistic

SVM (Deep) Neural Networks Tree Based Methods

Outline

- (Deep) Neural Networks
- Tree Based Methods
- Model and Variable Selection
 Models
 - Model Selection

SVM (Deep) Neural Networks Tree Based Methods

Ideal Separable Case

- Linear classifier: sign $(\langle \beta, x \rangle + b)$
- Separable case: $\exists (\beta, b), \forall i, y_i(\langle \beta, x \rangle + b) > 0!$

How to choose (β, b) so that the separation is maximal?

- Strict separation: $\exists (\beta, b), \forall i, y_i(\langle \beta, x \rangle + b) \geq 1$
- Maximize the distance between $\langle \beta, x \rangle + b = 1$ and $\langle \beta, x \rangle + b = -1$.
- Equivalent to the minimization of $\|\beta\|^2$.

SVM (Deep) Neural Networks Tree Based Methods

Non Separable Case

- What about the non separable case?
- Relax the assumption that $\forall i, y_i(\langle \beta, x \rangle + b) \geq 1$.
- Naive attempt:

$$\operatorname{argmin} \|\beta\|^2 + C \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{y_i(\langle \beta, x \rangle + b) \le 1}$$

• Non convex minimization.

SVM: better convex relaxation!

$$\operatorname{argmin} \|\beta\|^2 + C \frac{1}{n} \sum_{i=1}^n \max(1 - y_i(\langle \beta, x \rangle + b), 0)$$

SVM (Deep) Neural Networks Tree Based Methods

SVM as a Penalized Convex Relaxation

• Convex relaxation:

$$\begin{aligned} &\operatorname{argmin} \|\beta\|^2 + C \frac{1}{n} \sum_{i=1}^n \max(1 - y_i(\langle \beta, x \rangle + b), 0) \\ &= \operatorname{argmin} \frac{1}{n} \sum_{i=1}^n \max(1 - y_i(\langle \beta, x \rangle + b), 0) + \frac{1}{C} \|\beta\|^2 \end{aligned}$$

• **Prop:**
$$\ell^{0/1}(y_i, \operatorname{sign}(\langle \beta, x \rangle + b)) \leq \max(1 - y_i(\langle \beta, x \rangle + b), 0)$$

Penalized convex relaxation (Tikhonov!)

$$\begin{split} &\frac{1}{n}\sum_{i=1}^{n}\ell^{0/1}(y_i,\operatorname{sign}(\langle\beta,x\rangle+b))\\ &\leq \frac{1}{n}\sum_{i=1}^{n}\max(1-y_i(\langle\beta,x\rangle+b),0)+\frac{1}{C}\|\beta\|^2 \end{split}$$

SVM

SVM (Deep) Neural Networks Tree Based Methods

Support Vector Machine

SVM (Deep) Neural Networks Tree Based Methods

The Kernel Trick

• Non linear separation: just replace x by a non linear $\Phi(x)$...

Kernel trick

- Computing k(x, y) = ⟨Φ(x), Φ(y)⟩ may be easier than computing Φ(x), Φ(y) and then the scalar product!
- Φ can be specified through its definite positive kernel k.
- Examples: Polynomial kernel k(x, y) = (1 + ⟨x, y⟩)^d, Gaussian kernel k(x, y) = e^{-||x-y||²/2},...
- RKHS setting!
- Can be used in (logistic) regression and more...

SVM

SVM (Deep) Neural Networks Tree Based Methods

Support Vector Machine with polynomial kernel

Le Pennec Big Data? Machine Learning

SVM

SVM (Deep) Neural Networks Tree Based Methods

Support Vector Machine with Gaussian kernel

SVM (Deep) Neural Networks Tree Based Methods

Outline

- SVM
- (Deep) Neural Networks
- Tree Based Methods
- Model and Variable Selection
 Models
 - Model Selection

Artificial Neuron and Logistic Regression

Artificial neuron

- Structure:
 - Mix inputs with a weighted sum,
 - Apply a (non linear) transfer function to this sum,
 - Eventually threshold the result to make a decision.
- Weights learned by minimizing a loss function.

Logistic unit

- Structure:
 - Mix inputs with a weighted sum,
 - Apply the logistic function $\sigma(t) = e^t/(1 + e^t)$,
 - Threshold at 1/2 to make a decision!
- Logistic weights learned by minimizing the -log-likelihood.

SVM (Deep) Neural Networks Tree Based Methods

Neural network

Neural network structure

- Cascade of artificial neurons organized in layers
- Thresholding decision only at the output layer
- Most classical case use logistic neurons and the -log-likelihood as the criterion to minimize.
- Classical (stochastic) gradient descent algorithm (Back propagation)
- Non convex and thus may be trapped in local minima.

Neural network

SVM (Deep) Neural Networks Tree Based Methods

Deep Neural Network

Deep Neural Network structure

- Deep cascade of layers!
- No conceptual novelty!
- Bet on (clever?) randomized initialization and stochastic optimization scheme... and huge computational power!
- Very impressive results!

SVM (Deep) Neural Networks Tree Based Methods

Deep Neural Network

H2O NN

SVM (Deep) Neural Networks Tree Based Methods

Deep Learning

Family of Machine Learning algorithm combining:

- a (deep) multilayered structure,
- a (clever?) randomized initialization,
- a stochastic tuning optimization.
- Examples: Deep Neural Network, Deep (Restricted) Boltzman Machine, Stacked Encoder...
- Appears to be very efficient but lack of theoretical foundation!

SVM (Deep) Neural Networks Tree Based Methods

Outline

3 An Optimizer Point of View

- SVM
- (Deep) Neural Networks
- Tree Based Methods

Model and Variable Selection
 Models
 Model Selection

Regression Trees

Tree principle

- Construction of a recursive partition through a tree structured set of questions (splits around a given value of a variable)
- For a given partition, statistical approach **and** optimization approach yields the same classifier!
- A simple majority vote in each leaf
- Quality of the prediction depends on the tree (the partition).
- Issue: Minim. of the (penalized) empirical error is NP hard!
- Practical tree construction are all based on two steps:
 - a top-down step in which branches are created (branching)
 - a bottom-up in which branches are removed (pruning)

SVM (Deep) Neural Networks Tree Based Methods

CART

SVM (Deep) Neural Networks Tree Based Methods

Branching

Greedy top-bottom approach

- Start from a single region containing all the data
- Recursively split those regions along a certain variable and a certain value
- No regret strategy on the choice of the splits!
- Heuristic: choose a split so that the two new regions are as *homogeneous* possible...

Branching

Various definition of *homogeneous*

• CART: empirical loss based criterion

$$C(R,\overline{R}) = \sum_{x_i \in R} \ell(y_i, y(R)) + \sum_{x_i \in \overline{R}} \ell(y_i, y(\overline{R}))$$
• CART: Gini index (classification)

$$C(R,\overline{R}) = \sum_{x_i \in R} p(R)(1 - p(R)) + \sum_{x_i \in \overline{R}} p(\overline{R})(1 - p(\overline{R}))$$
• C4.5: entropy based criterion (Information Theory)

$$C(R,\overline{R}) = \sum_{x_i \in R} H(R) + \sum_{x_i \in \overline{R}} H(\overline{R})$$

- CART with Gini is probably the most used technique...
- Other criterion based on χ^2 homogeneity or based on different local predictors (generalized linear models...)

Branching

Choice of the split in a given region

- Compute the criterion for all features and all possible splitting points (necessarily among the data values in the region)
- Choose the one minimizing the criterion
- Variations: split at all categories of a categorical variables (ID3), split at a fixed position (median/mean)
- Stopping rules:
 - when a leaf/region contains less than a prescribed number of observations
 - when the region is sufficiently homogeneous...
- May lead to a quite complex tree / Over-fitting possible!

Pruning

- Model select. within the (rooted) subtrees of previous tree!
- Number of subtrees can be quite large but the tree structure allows to find the best model efficiently.

Key idea

- The predictor in a leaf depends only on the values in this leaf.
- Efficient bottom-up (dynamic programming) algorithm if the criterion used satisfies an additive property

$$C(\mathcal{T}) = \sum_{\mathcal{L}\in\mathcal{T}} c(\mathcal{L})$$

• Example: AIC / CV.

Limits over-fitting...

SVM (Deep) Neural Networks Tree Based Methods

CART

CART

Ensemble methods

- Lack of robustness for single trees.
- How to combine trees?

Parallel construction

- Construct several trees from bootstrapped samples and average the responses (bagging)
- Add more randomness in the tree construction (random forests)

Sequential construction

- Construct a sequence of trees by reweighting sequentially the samples according to their difficulties (AdaBoost)
- Reinterpretation as a stagewise additive model (Boosting)

SVM (Deep) Neural Networks Tree Based Methods

Ensemble methods

Bagging

SVM (Deep) Neural Networks Tree Based Methods

Ensemble methods

SVM (Deep) Neural Networks Tree Based Methods

Ensemble methods

AdaBoost

Le Pennec Big Data? Machine Learning

Outline

3 An Optimizer Point of View

- SVM
- (Deep) Neural Networks
- Tree Based Methods

Model and Variable Selection Models

Model Selection

Outline

3 An Optimizer Point of View

- SVM
- (Deep) Neural Networks
- Tree Based Methods

Model and Variable Selection Models

Model Selection

Logistic Regression

• Ideal solution:

$$f^*(x) = \operatorname{argmax} \mathbb{P}\left\{Y|x\right\}$$

Logistic

- Model Y|X with a logistic model.
- Estimate its parameters with a Maximum Likelihood approach.
- Plug the estimate in the Bayes classifier.
- Model hyperparameters:
 - Features
 - Parametric model...

Generative Modeling

• Ideal solution:

$$f^*(x) = \operatorname{argmax} \mathbb{P}\left\{Y|x\right\}$$

Generative Modeling

- Estimate X|Y with a density estimator as well as $\mathbb{P} \{Y\}$
- Deduce using the Bayes formula an estimate Y|X.
- Plug the estimate in the Bayes classifier.
- Model hyperparameters:
 - Features
 - Generative model

Kernel Method

• Ideal solution:

$$f^*(x) = \operatorname{argmax} \mathbb{P}\left\{Y|x\right\}$$

Kernel methods

- Estimate Y|X with a kernel conditional density estimator.
- Plug the estimate in the Bayes classifier.
- Model hyperparameters:
 - Features
 - Bandwidth and kernel

Logistic Regression

• Ideal solution:

$$f^* = \operatorname*{argmin}_{f \in \mathcal{S}} \mathbb{E} \left[\ell^{0/1}(Y, f(X))
ight]$$

Logistic

- Replace $\ell^{0/1}$ by the logistic loss.
- Add a penalty $\lambda \|f\|_p$
- Compute the minimizer.
- Model hyperparameters:
 - Features
 - Penalty and regularization parameter.

SVM

• Ideal solution:

$$f^* = \operatorname*{argmin}_{f \in \mathcal{S}} \mathbb{E} \left[\ell^{0/1}(Y, f(X))
ight]$$

SVM

- Replace the expectation by its empirical counterpart.
- Replace $\ell^{0/1}(y, f) = \mathbf{1}_{y=f}$ by $\ell'(y, f) = (1 yf)_+$.
- Add a penalty $\lambda \|f\|_{\mathcal{S}}^2$.
- Compute the minimizer.
- Model hyperparameters:
 - Features
 - $\bullet~\mathcal{S}$ RKHS structure: features mapping and metric
 - Regularization parameters λ

Models Model Selection

(Deep) Neural Networks

• Ideal solution:

$$f^* = \operatorname*{argmin}_{f \in \mathcal{S}} \mathbb{E} \left[\ell^{0/1}(Y, f(X))
ight]$$

ΝN

- Neuron: $x \mapsto \sigma(\langle \beta, x \rangle + b)$
- Neural Network: Convolution system of neurons.
- Replace $\ell^{0/1}(y, f)$ by a smooth/convex loss.
- Minimize the empirical loss using the backprop algorithm (gradient descent)
- Model hyperparameters:
 - Features
 - Net architecture, activation function
 - Initialization strategy
 - Optimization strategy (and regularization strategy)
Tree and Boosting

• Ideal solution:

$$f^*(x) = \operatorname{argmax} \mathbb{P}\left\{Y|x\right\}$$
 and $f^* = \operatorname{argmin}_{f \in S} \mathbb{E}\left[\ell^{0/1}(Y, f(X))\right]$

Single tree

- Greedy Partition construction.
- Local conditional density estimation / loss minimization.
- Suboptimal tree optimization through a relaxed criterion

Bagging/Random Forest

• Averaging of several predictors (statistical point of view)

Boosting

• Best interpretation as a minimization of the exponential loss $\ell(y, f) = e^{-yf}$ (optimization point of view)

Outline

3 An Optimizer Point of View

- SVM
- (Deep) Neural Networks
- Tree Based Methods

Model Selection

Model Selection

Models

- How to design models? (Model/feature design)
- How to chose among several models? (Model/feature selection)
- Key to obtain good performance!

Approximation error and estimation error (Bias/Variance)

$$\mathcal{R}(\widehat{f}_{\mathcal{S}}) - \mathcal{R}(f^*) = \underbrace{\mathcal{R}(f^*_{\mathcal{S}}) - \mathcal{R}(f^*)}_{\mathcal{S}} + \underbrace{\mathcal{R}(\widehat{f}_{\mathcal{S}}) - \mathcal{R}(f^*_{\mathcal{S}})}_{\mathcal{S}}$$

Approximation error

Estimation error

- Approximation error can be large for not suitable model S!
- Estimation error can be large if the model is complex!
- Need to find the good balance automatically!

Models Model Selection

Model Selection

• Empirical error biased toward complex models!

Model complexi

Selection criterion

- **Cross validation:** Very efficient (and almost always used in practice!) but slightly biased as it target uses only a fraction of the data.
- **Penalization approach:** use empirical loss criterion but penalize it by a term increasing with the complexity of S

$$R_n(\widehat{f_S}) \to R_n(\widehat{f_S}) + \operatorname{pen}(S)$$

and choose the model with the smallest penalized risk.

Models Model Selection

Cross Validation

Ensemble methods

- How to combine several predictors (models)?
- Two strategies: mixture or sequential

Mixture

- Model averaging
- Data dependent model averaging (learn mixture weights)

Stagewise

- Modify learning procedure according to current results.
- Boosting, Cascade...

Bibliography

