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New Algorithms for Complex Data

Third edition: 2011, 2013 and 2015!
New place (and one new organizer) but same spirit.

Gather domain experts and give them the opportunity to talk to
each other.

Complex Data?
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Data is the new Qil!
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The 5 Vs of Big Data

« Terabytes
+ Records/Arch
+ Transactions

+ Tables, Files

+ Batch
+ Real/near-time
Processes
Streams

S| ed 5 VS Of Statistical
+ Structur . istical
+ Unstructured Blg Data * Events

= Multi-factor

= Correlations
* Probabilistic

Hypothetical

Trustworthiness

Authenticity
Origin, Reputation
Availability
Accountability

.
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Lots of Words!
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Petrified Forest!
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Doing Data Science

Exploratory
Data
' Analysis
Raw Data is > Datais > Clean
._‘ Collected Processed Data
*® X
Real  “« I Machine
World S Leaing
e Statistical
S ~ v 4 I Models
hN Communicate
~J Build Data
Product Visualizations Make
Report Dedisions
Findings

Figure 2-2. The data science process

Doing Data Science: Straight talk from the frontline
@ Rachel Schutt, Cathy O'Neil - O'Reilly
@ Art of data driven decision / evaluation.
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A new Context

Data everywhere

@ Huge volume,

o Huge variety...

Affordable computation units

o Cloud computing
@ Graphical Processor Units (GPU)...

@ Growing academic and industrial interest!
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Big Data is (quite) Easy

Example of off the shelves solution

Spo rK amazon

webservices

run(parans: Parans) {
f =

<
Esatippnelsfaimeyoss Lesonltt Fosrast]
= new SparkContext(conf)

Logger. getRootLogger. setLevel(Level. WARN)
examples = MLUtils. loadLibSWiFile(sc, params.input).cache()
splits = examples. randonSpLit (Ar:
training = splits(0). cact
test = splits(1). cache()
numTraining = training.count()
nunTest = test. cou
println

$nunTraining, test: $nunTest.
exanples. unpersist (blocking

upda!er = paranms. regType 1{
LiUpdater()
SquaredL2Updater()

algorithm = new LogisticRegressionNithsGd()
algorithn. optinizer
-sethunTterations(parans. nunIterations)
.setstepsize(parans. stepSize)
.setUpdater (updater)
- setRegParan(parans. regPa
model = algorithn. run(training) . clearThreshold()

prediction = model.predict (test.map(_. features))
predictionAndLabel = prediction. zip(test.nap(_. label))
metrics BinaryClassificationtetrics(predictionAndLabel)
myMetrics = new MyBinaryClassificationtetrics (predictionAndLabel)

Enpirical CrossEntropy = s{metrics. crussEntropy()).

Test areaUnderPR = ${metrics.areaUnderPR()

‘Test areaUnderROC = ${netrics.arealnderROC()}.")

sc.stop()
b
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Big Data is (quite) Easy

Example of off the shelves solution

Spor‘lA(Z TR

export AWS_ACCESS_KEY_ID=<your-access-keyid>

export AWS_SECRET_ACCESS_KEY=<your-access-key-secret>

cellule/spark/ec2/sparl-ec2 -i cellule.pem -k cellule -s <number of machines> launch <cluster-name>
ssh -i cellule.pem root@<your-cluster-master-dns>

spark-ec2/copy-dir ephemeral-hdfs/conf

ephemeral-hdfs/bin/hadoop distcp s3n://celluledecalcul/dataset/raw/train.csv /data/train.csv

scp -i cellule.pem cellule/challenge/target/scala-2.10/target/scala-2.10/challenges_2.10-0.0.jar

cellule/spark/bin/spark-submit \
--class fr.cc.challenge.Preprocess \
challenges_2.10-0.0.jar \
/data/train.csv \
/data/train2.csv

cellule/spark/bin/spark-submit \
--class fr.cc.sparktest.LogisticRegression \

challenges_2.10-0.0.jar \
/data/train2.csv

= Logistic regression for arbitrary large dataset!
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A Complex Ecosystem!

Industry specific
Predictive

Models Big Data
Solutions
Big Data Machine Learning Engine
(ex_ IBM, SKYTREE)
Applications o Big Daa
Big Data Technology
Software Platform
(ex. Hadoop, Cloudera. Hortonworks)
Big Data

Data Stores

Big Data
[Structured & Unstructured]
{ex. mongoDB, REDIS, Cassandra, Hana)

New Algorithms for Complex Data 19/20 March 20



A Complex Ecosystem!

Big Data Landscape
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New Interdisciplinary Challenges

@ Applied math AND Computer science

@ Huge importance of domain specific knowledge: physics, signal
processing, biology, health, marketing...

Some joint math/computer science challenges

Data acquisition

Unstructured data and their representation
Huge dataset and computation
High dimensional data and model selection

Learning with less supervision

Visualization
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Data acquisition

HOW INGESTIBLE SENSORS WORK

saocts
Ptk 2l

Some challenges

@ How to measure new things?
@ How to deal with distributed sensors?

@ How to look for new sources of informations?
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Unstructured Data

The Unstructured Data
Explosion < . i
- Growing 100X every 10 years 5
- Requires a new approach i
P
X .
Traditional g
o Wy e :
seer0322 218 oo ke s pere 5
e3z3056 # s
20019235 e
Text

Numbers: 500 k8 . Sy .

Some challenges

@ How to store efficiently the data?
@ How to describe (model) them to be able to process them?
@ How to combine data of different nature?

@ How to learn dynamics?
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Huge Dataset

Faster, more expensive
Generally non persistent

0.S. Virtual & physical
Memory map/range

Higher capacity
Lower cost
Persistent 2
Distance

Some challenges

(aka computers)

NAND/Flash

Networked, local, remots

Locality of reference

Servers

Processor core(s) L1/L2/L3 cache
Processors memory map

DRA
vaw\ Direct address range

e.g. 16/32/64 bit

External memory (storage)
Beyond memory map
Utilize file system

Block, file
Objects

Source: StoagelOblog.com

Spark:Transformations & Actions

Transformations

@ How to take into account the locality of the data?

@ How to construct distributed architectures?

@ How to design adapted algorithms?

New Algorithms for Complex Data

19/20 March 2015

16 / 22



High Dimensional Data

Big Analytics
>2008 -up to now.
(Unconstrained Data Mining)

‘Mix of Heterogeneous.
Unstructured & Structured Data
(proprietary + open data)

Populations Profiing: GRM.

Chom & Atrton Anaiyss,

Loyalty & Propensity man

Programs Cross selling P s purposes
Sutomatod maintanancs rograms

THALES

Some challenges

@ How to describe (model) the data?
@ How to reduce the data dimensionality?

@ How to select/mix models?
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Learning and Supervision

METHOD TRAINING DATA

Superaged Labeled ™ Training
learming data & process

Labeled

Sem-supervisad
learning

Traning
process

+ INTERACTIVITY

Unsuspenased Unlabeled ™ Traning
learring delz 7 process

Some challenges

@ How to learn with the less possible interactions?

@ How to learn simultaneously several related tasks?
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Visualization

Some challenges
@ How to look at the data?

@ How to present results?

@ How to help taking better informed decision?
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Thursday March 19th

o 08h30-09h30. Breakfast (rooms Puma B-C)
o 09h45-12h00. Big Data ? (room Eagle B)
o E. Le Pennec, Polytechnique, Introduction
o M. Warren, LANL, Big Data, or Astronomical Data
o S. Skillman, KIPAC / Stanford / SLAC, Big Open Data: Hardware vs
Software

12h00-13h30. Lunch
13h30-15h00. Computational Statistics Challenges
o J. Bruer, CALTEC, Designing Statistical Estimators that Balance
Sample Size, Risk, and Computational Cost
e F. Pourkamali-Anaraki, Univ. Colorado, Efficient Algorithms for
Analyzing large high-dimensional datasets via randomized sketching
15h00-15h30. Coffee Break (in front of Eagle B)
15h30-17h00. Health Applications
e M. Cuggia, Univ. Rennes, Health BigData : context, use cases and
challenges
o C. Lambert, Univ. New Mexico, The local control method for
treatment comparisons in large scale EHR/claims data

@ 18h30-... Welcome Drinks and Dinner
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Friday March 20th

o 07h30-08h30. Breakfast
o 08h30-10n00. Implementation
e M. Turk, Univ. of lllinoy, Data Services: A Disrupted Industry
o N. Halko, SpotRight, Near Real Time Analysis of Web Scale Social
Data

10h00-10h30. Coffee Break
10h30-12h30. Sparse signal

o J. Bruna, Berkeley, Signal recovery from scattering representations

o S. Sardy, Genéve Univ. Switzerland, Quantile universal threshold for
efficient high-dimensional model selection

e D. Moody, LANL, Adaptative sparse signal for discrimination of
atellite-based radiofrequency recordings of lightning events

12h30-14h00. Lunch
14h00-15h30. Algorithms
e M. Challacombe, LANL, Opportunities for generalized N-Body solvers
in the materials genomics problem
o B. Kegl, X and CNRS Paris, Learning to discover: signal/background
separation and the Higgs boson challenge

o 15h30-16h30. Coffee break and discussions
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Looking for interns for next spring?

ECOLE
POLYTECHNIQUE

UNIVERSITE PARIS-SACLAY

@ Polytechnique: french grande école (selective engineer school /
university)
o Data Science initiative:
o Research: joint applied math and computer science team (already 10
permanent researchers)
e Teaching: master program, continuous training
@ Lots of very good students with a strong mathematical background
looking for internships!
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