Estimation d'Image, Géométries et Bandelettes

E. Le Pennec / LPMA / Université Denis Diderot - Paris VIIS. Mallat, Ch. Dossal et G. Peyré / CMAP /École Polytechnique

31 Août 2006

Bruitée

EstimationSans géométrieAvec géométrieImage: Image: Ima

Bruitée

Estimation dans un modèle de bruit blanc gaussien : Y = f + W

Bruitée

Estimation dans un modèle de bruit blanc gaussien : Y = f + W Estimation de f dans des bases : seuillage et sélection de modèles.

Bruitée

- Estimation dans un modèle de bruit blanc gaussien : Y = f + W .
- \blacksquare Estimation de f dans des bases : seuillage et sélection de modèles.
- Nécessité d'avoir une représentation creuse (approximation).

Bruitée

- Estimation dans un modèle de bruit blanc gaussien : Y = f + W
- \checkmark Estimation de f dans des bases : seuillage et sélection de modèles.
- Nécessité d'avoir une représentation creuse (approximation).
- Efficacité provient d'une forme de régularité.

Bruitée

- Estimation dans un modèle de bruit blanc gaussien : Y = f + W
- \checkmark Estimation de f dans des bases : seuillage et sélection de modèles.
- Nécessité d'avoir une représentation creuse (approximation).
- Efficacité provient d'une forme de régularité.
- Représentation géométrique des images en bandelettes.

- Estimation dans une base et approximation.
- Ondelettes 1D et signaux.

- Estimation dans une base et approximation.
- Ondelettes 1D et signaux.
- Ondelettes 2D et images.

- Estimation dans une base et approximation.
- Ondelettes 1D et signaux.
- Ondelettes 2D et images.
- Représentation des images géométriques.

- Estimation dans une base et approximation.
- Ondelettes 1D et signaux.
- Ondelettes 2D et images.
- Représentation des images géométriques.
- Bandelettes pour les images géométriques.

- Estimation dans une base et approximation.
- Ondelettes 1D et signaux.
- Ondelettes 2D et images.
- Représentation des images géométriques.
- Bandelettes pour les images géométriques.
- Sélection de modèles et optimalité.

- Estimation dans une base et approximation.
- Ondelettes 1D et signaux.
- Ondelettes 2D et images.
- Représentation des images géométriques.
- Bandelettes pour les images géométriques.
- Sélection de modèles et optimalité.
- Extension des bandelettes pour les images naturelles.

Décomposition de Y = f + W dans une base orthonormée

$$Y = \sum_{b_n} \langle Y, b_n \rangle b_n = \sum_{b_n} \left(\langle f, b_n \rangle + \langle W, b_n \rangle \right) b_n$$

Décomposition de Y = f + W dans une base orthonormée

$$Y = \sum_{b_n} \langle Y, b_n \rangle b_n = \sum_{b_n} \left(\langle f, b_n \rangle + \langle W, b_n \rangle \right) b_n$$

Estimateur F par sélection de coordonnées :

$$F = Y_{\Gamma} = \sum_{n \in \Gamma} \langle Y, b_n \rangle b_n$$

Décomposition de Y = f + W dans une base orthonormée

$$Y = \sum_{b_n} \langle Y, b_n \rangle b_n = \sum_{b_n} \left(\langle f, b_n \rangle + \langle W, b_n \rangle \right) b_n$$

Estimateur F par sélection de coordonnées :

$$F = Y_{\Gamma} = \sum_{n \in \Gamma} \langle Y, b_n \rangle b_n$$

Minimisation du risque quadratique :

$$E(\|f - F\|) = \sum_{n \notin \Gamma} |\langle f, b_n \rangle|^2 + \sum_{n \in \Gamma} \epsilon^2$$

Décomposition de Y = f + W dans une base orthonormée

$$Y = \sum_{b_n} \langle Y, b_n \rangle b_n = \sum_{b_n} \left(\langle f, b_n \rangle + \langle W, b_n \rangle \right) b_n$$

Estimateur F par sélection de coordonnées :

$$F = Y_{\Gamma} = \sum_{n \in \Gamma} \langle Y, b_n \rangle b_n$$

Minimisation du risque quadratique :

$$E(\|f - F\|) = \sum_{n \notin \Gamma} |\langle f, b_n \rangle|^2 + \sum_{n \in \Gamma} \epsilon^2$$

Solution : $\Gamma_O = \{n, |\langle f, b_n \rangle| \ge \epsilon\}$ et $F_O = Y_{\Gamma_0}$.

Décomposition de Y = f + W dans une base orthonormée

$$Y = \sum_{b_n} \langle Y, b_n \rangle b_n = \sum_{b_n} \left(\langle f, b_n \rangle + \langle W, b_n \rangle \right) b_n$$

Estimateur F par sélection de coordonnées :

$$F = Y_{\Gamma} = \sum_{n \in \Gamma} \langle Y, b_n \rangle b_n$$

Minimisation du risque quadratique :

$$E(\|f - F\|) = \sum_{n \notin \Gamma} |\langle f, b_n \rangle|^2 + \sum_{n \in \Gamma} \epsilon^2$$

- Solution : $\Gamma_O = \{n, |\langle f, b_n \rangle| \ge \epsilon\}$ et $F_O = Y_{\Gamma_0}$.
- Problème : demande la connaissance de f ! (Oracle)

 \blacksquare Risque quadratique de l'estimateur oracle F_O :

$$E(\|f - F_O\|^2) = \sum_{n \notin \Gamma_O} |\langle f, b_n \rangle|^2 + \sum_{n \in \Gamma_O} \epsilon^2$$
$$E(\|f - F_O\|^2) = \|f - f_{\Gamma_O}\|^2 + \epsilon^2 |\Gamma_O| \quad .$$

Risque quadratique de l'estimateur oracle F_O :

$$E(\|f - F_O\|^2) = \sum_{n \notin \Gamma_O} |\langle f, b_n \rangle|^2 + \sum_{n \in \Gamma_O} \epsilon^2$$
$$E(\|f - F_O\|^2) = \|f - f_{\Gamma_O}\|^2 + \epsilon^2 |\Gamma_O| \quad .$$

Compromis entre erreur d'approximation et nombre de termes.

Risque quadratique de l'estimateur oracle F_O :

$$E(\|f - F_O\|^2) = \sum_{n \notin \Gamma_O} |\langle f, b_n \rangle|^2 + \sum_{n \in \Gamma_O} \epsilon^2$$
$$E(\|f - F_O\|^2) = \|f - f_{\Gamma_O}\|^2 + \epsilon^2 |\Gamma_O| \quad .$$

Compromis entre erreur d'approximation et nombre de termes.
Théorie de l'approximation :

 $||f - f_M||^2 \le CM^{-\beta} \Leftrightarrow E(||f - F_O||^2) = ||f - f_{\Gamma_0}||^2 + \epsilon^2 |\Gamma_O| \le C\epsilon^{\frac{2\beta}{\beta+1}}$.

Risque quadratique de l'estimateur oracle F_O :

$$E(\|f - F_O\|^2) = \sum_{n \notin \Gamma_O} |\langle f, b_n \rangle|^2 + \sum_{n \in \Gamma_O} \epsilon^2$$
$$E(\|f - F_O\|^2) = \|f - f_{\Gamma_O}\|^2 + \epsilon^2 |\Gamma_O| \quad .$$

Compromis entre erreur d'approximation et nombre de termes.
Théorie de l'approximation :

$$\|f - f_M\|^2 \le CM^{-\beta} \Leftrightarrow E(\|f - F_O\|^2) = \|f - f_{\Gamma_0}\|^2 + \epsilon^2 |\Gamma_O| \le C\epsilon^{\frac{2\beta}{\beta+1}}$$

Optimisation de β pour f dans une classe Θ à travers le choix de la base utilisée.

Risque oracle :

 $\|f - f_{\Gamma_O}\|^2 + \epsilon^2 |\Gamma_O| \quad .$

Risque oracle :

$$\|f - f_{\Gamma_O}\|^2 + \epsilon^2 |\Gamma_O| \quad .$$

Risque empirique :

$$||Y - Y_{\Gamma}||^2 + T(\epsilon)^2 |\Gamma| \quad .$$

Risque oracle :

$$\|f - f_{\Gamma_O}\|^2 + \epsilon^2 |\Gamma_O| \quad .$$

Risque empirique :

 $||Y - Y_{\Gamma}||^2 + T(\epsilon)^2 |\Gamma| \quad .$

 $\bullet \quad \text{Minimisation} : \Gamma_E = \{n, |\langle Y, b_n \rangle| \ge T(\epsilon)\} \text{ (seuillage) et } F_E = Y_{\Gamma_E}.$

Risque oracle :

$$\|f - f_{\Gamma_O}\|^2 + \epsilon^2 |\Gamma_O| \quad .$$

Risque empirique :

$$||Y - Y_{\Gamma}||^2 + T(\epsilon)^2 |\Gamma| \quad .$$

Minimisation : \(\Gamma_E = \{n, |\langle Y, b_n \rangle| \ge T(\epsilon)\}\) (seuillage) et \(F_E = Y_{\Gamma_E}\).
Théorème : Si \(T(\epsilon) = \langle \sqrt{log N\epsilon}\), alors

$$E(\|f - F_E\|^2) \le C \log NE(\|f - F_O\|^2)$$
$$\le \min_{\gamma} \|f - f_{\Gamma}\| + T(\epsilon)^2 |\Gamma| \quad \text{plus fin}$$

Risque oracle :

$$\|f - f_{\Gamma_O}\|^2 + \epsilon^2 |\Gamma_O| \quad .$$

Risque empirique :

$$||Y - Y_{\Gamma}||^2 + T(\epsilon)^2 |\Gamma| \quad .$$

Minimisation : Γ_E = {n, |⟨Y, b_n⟩| ≥ T(ε)} (seuillage) et F_E = Y_{Γ_E}.
Théorème : Si T(ε) = λ√log Nε, alors

$$E(\|f - F_E\|^2) \le C \log NE(\|f - F_O\|^2)$$

$$\le \min_{\gamma} \|f - f_{\Gamma}\| + T(\epsilon)^2 |\Gamma| \quad \text{plus fin.}$$

Théorème (maxiset) :

$$\min_{\gamma} \|f - f_{\Gamma}\| + T(\epsilon)^2 |\Gamma| \le C \left(T(\epsilon) \right)^{\frac{2\beta}{\beta+1}} \Leftrightarrow E(\|f - F_E\|^2) \le C \left(T(\epsilon) \right)^{\frac{2\beta}{\beta+1}}$$

Risque oracle :

$$\|f - f_{\Gamma_O}\|^2 + \epsilon^2 |\Gamma_O| \quad .$$

Risque empirique :

$$||Y - Y_{\Gamma}||^2 + T(\epsilon)^2 |\Gamma| \quad .$$

Minimisation : \(\Gamma_E = \{n, |\langle Y, b_n \rangle| \ge T(\epsilon)\}\) (seuillage) et \(F_E = Y_{\Gamma_E}\).
Théorème : Si \(T(\epsilon) = \langle \sqrt{log N\epsilon}\), alors

$$E(\|f - F_E\|^2) \le C \log NE(\|f - F_O\|^2)$$

$$\le \min_{\gamma} \|f - f_{\Gamma}\| + T(\epsilon)^2 |\Gamma| \quad \text{plus fin.}$$

Théorème (maxiset) :

 $\min_{\gamma} \|f - f_{\Gamma}\| + T(\epsilon)^2 |\Gamma| \le C \left(T(\epsilon)\right)^{\frac{2\beta}{\beta+1}} \Leftrightarrow E(\|f - F_E\|^2) \le C \left(T(\epsilon)\right)^{\frac{2\beta}{\beta+1}}$

Théorie de l'approximation...

Base d'ondelettes 1D de $L^2[0,1]$

Base d'ondelettes 1D de $L^2[0,1]$

Construite à partir d'une fonction d'échelle $\phi(x)$ et d'une ondelette mère $\psi(x)$

$$\phi_{j,n}(x) = \frac{1}{\sqrt{2^{j}}} \phi\left(\frac{x - 2^{j}n}{2^{j}}\right) \quad , \quad \psi_{j,n}(x) = \frac{1}{\sqrt{2^{j}}} \psi\left(\frac{x - 2^{j}n}{2^{j}}\right)$$
Base d'ondelettes 1D de $L^2[0,1]$

Construite à partir d'une fonction d'échelle $\phi(x)$ et d'une ondelette mère $\psi(x)$

 $\phi_{j,n}(x) = \frac{1}{\sqrt{2^{j}}} \phi\left(\frac{x - 2^{j}n}{2^{j}}\right) \quad , \quad \psi_{j,n}(x) = \frac{1}{\sqrt{2^{j}}} \psi\left(\frac{x - 2^{j}n}{2^{j}}\right) \quad .$

• $\mathbf{B} = \left\{ \psi_{j,n} \right\}_{j \in \mathbb{N}, 2^{j} n \in [0,1)}$ est une base orthonormale de $L^{2}[0,1]$.

Si f est \mathbf{C}^{α} par morceaux et ψ a $p > \alpha$ moments nuls alors

 $\|f - f_M\|^2 \le C M^{-2\alpha} \quad .$

Si f est \mathbf{C}^{α} par morceaux et ψ a $p > \alpha$ moments nuls alors

$$\|f - f_M\|^2 \le C M^{-2\alpha}$$

Risque de l'estimateur par seuillage : $E(\|f - F_E\|^2) \le (\log N) e^{\frac{2\alpha}{\alpha+1/2}}$ (quasi optimal).

Si f est \mathbf{C}^{α} par morceaux et ψ a $p > \alpha$ moments nuls alors

$$\|f - f_M\|^2 \le C M^{-2\alpha}$$

Risque de l'estimateur par seuillage : $E(\|f - F_E\|^2) \le (\log N) e^{\frac{2\alpha}{\alpha+1/2}}$ (quasi optimal).

• Espace (maxiset) associé à la vitesse $T^{\frac{2\alpha}{\alpha+1}}$: version faible de $B^{\alpha}_{2,\infty}$.

Base d'ondelettes 2D séparables

Base d'ondelettes 2D séparables

• La famille $\begin{cases}
\phi_{j,n_1}(x_1) \psi_{j,n_2}(x_2) &, & \psi_{j,n_1}(x_1) \phi_{j,n_2}(x_2) \\
&, & \psi_{j,n_1}(x_1) \psi_{j,n_2}(x_2)
\end{cases} \\
\text{est une base orthonormée de } L^2[0,1]^2.
\end{cases}$

Base d'ondelettes 2D séparables

La famille $\begin{cases}
\phi_{j,n_1}(x_1) \psi_{j,n_2}(x_2) &, & \psi_{j,n_1}(x_1) \phi_{j,n_2}(x_2) \\
&, & \psi_{j,n_1}(x_1) \psi_{j,n_2}(x_2)
\end{cases} \\
\text{est une base orthonormée de } L^2[0,1]^2.
\end{cases}$

• Espace (maxiset) associé à la vitesse $T^{\frac{2\beta}{\beta+1}}$: version faible de $B_{2,\infty}^{\beta}$.

Espace (maxiset) associé à la vitesse T^{2β}/_{β+1} : version faible de B^β_{2,∞}.
 Pour f C^α en dehors de contours C^α : β = 1 au lieu de β = α !

• Avec M ondelettes : $||f - f_M||^2 \le C M^{-1}$.

• Avec M ondelettes : $||f - f_M||^2 \le C M^{-1}$.

Besoin de $||f - f_M||^2 \le C M^{-\alpha}$ pour le risque théorique optimal (minimax).

Approximation de f qui est \mathbf{C}^{α} en dehors de contours \mathbf{C}^{α} :

Approximation de f qui est \mathbf{C}^{lpha} en dehors de contours \mathbf{C}^{lpha} :

Approximation linéaire par morceau sur M triangles adaptés : si $\alpha \ge 2$ alors $||f - f_M||^2 \le C M^{-2}$.

Approximation de f qui est \mathbf{C}^{lpha} en dehors de contours \mathbf{C}^{lpha} :

 M^{-1}

- Approximation linéaire par morceau sur M triangles adaptés : si $\alpha \ge 2$ alors $||f - f_M||^2 \le C M^{-2}$.
- Approximation d'ordre élevé avec M "éléments" adaptés : $\|f - f_M\|^2 \le C M^{-\alpha}$.

Approximation de f qui est \mathbf{C}^{lpha} en dehors de contours \mathbf{C}^{lpha} :

 M^{-1}

- Approximation linéaire par morceau sur M triangles adaptés : si $\alpha \ge 2$ alors $||f - f_M||^2 \le C M^{-2}$.
- Approximation d'ordre élevé avec M "éléments" adaptés : $\|f - f_M\|^2 \le C M^{-\alpha}$.

▶ Les curvelets définissent un "tight frame" de $L^2[0,1]^2$ avec des éléments allongés et orientés (*Candes, Donoho*) : $\{c_j(R_\theta x - \eta)\}_{j,\theta,\eta}$

• Les curvelets définissent un "tight frame" de $L^2[0,1]^2$ avec des éléments allongés et orientés (*Candes, Donoho*) : $\{c_j(R_\theta x - \eta)\}_{j,\theta,\eta}$

• Si f est $\mathbf{C}^{\alpha} - \mathbf{C}^{\alpha}$ alors avec M curvelets :

 $||f - f_M||^2 \le C (\log M)^3 M^{-2}$ si $\alpha \ge 2$.

Les curvelets définissent un "tight frame" de $L^2[0,1]^2$ avec des éléments allongés et orientés (*Candes, Donoho*) : $\{c_j(R_\theta x - \eta)\}_{j,\theta,\eta}$

Si f est $\mathbf{C}^{\alpha} - \mathbf{C}^{\alpha}$ alors avec M curvelets :

$$||f - f_M||^2 \le C (\log M)^3 M^{-2}$$
 si $\alpha \ge 2$.

• Quasi optimal pour $\alpha = 2$.

• Les curvelets définissent un "tight frame" de $L^2[0,1]^2$ avec des éléments allongés et orientés (*Candes, Donoho*) : $\{c_j(R_\theta x - \eta)\}_{j,\theta,\eta}$

• Si f est $\mathbf{C}^{\alpha} - \mathbf{C}^{\alpha}$ alors avec M curvelets :

$$||f - f_M||^2 \le C (\log M)^3 M^{-2}$$
 si $\alpha \ge 2$.

- Quasi optimal pour $\alpha = 2$.
- Discrétisation complexe et difficultés pour obtenir des bases orthogonales ou des bases de Riesz.

Image $C^{\alpha} - C^{\alpha}$ simple par morceaux.

- Image $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$ simple par morceaux.
- \checkmark Déformation locale \implies singularité verticale/horizontale .

- Image $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$ simple par morceaux.
- Bandelettes locales : préimage d'une base adaptée.

- Image $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$ simple par morceaux.
- \checkmark Déformation locale \implies singularité verticale/horizontale .
- Bandelettes locales : préimage d'une base adaptée.
- Base de bandelettes définie par :
 - une segmentation dyadique et
 - une géométrie dans chaque carré.

- Image $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$ simple par morceaux.
- Déformation locale \implies singularité verticale/horizontale .
- Bandelettes locales : préimage d'une base adaptée.
- Base de bandelettes définie par :
 - une segmentation dyadique et
 - une géométrie dans chaque carré.

Solution Théorème : Si f est $\mathbf{C}^{\alpha} - \mathbf{C}^{\alpha}$, alors, dans la meilleure base, $\|f - f_M\|^2 \le C(\log M)M^{-\alpha}$.

- Image $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$ simple par morceaux.
- Déformation locale \implies singularité verticale/horizontale .
- Bandelettes locales : préimage d'une base adaptée.
- Base de bandelettes définie par :
 - une segmentation dyadique et
 - une géométrie dans chaque carré.
- Théorème : Si f est $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$, alors, dans la meilleure base, $\|f - f_M\|^2 \le C(\log M)M^{-\alpha}$.
- Famille de bases avec un algorithme de recherche de meilleure base.

Seuillage et sélection de modèles

Seuillage et sélection de modèles

Seuillage : minimisation de $||Y - Y_{\Gamma}||^2 + T(\epsilon)^2 |\Gamma|$.

Seuillage et sélection de modèles

Seuillage : minimisation de ||Y - Y_Γ||² + T(ε)²|Γ|.
 Sélection de modèles : minimisation de ||Y - P_MY||² + T(ε)²dim(M) avec M qui parcours un ensemble de sous espaces engendrés par une famille finie de vecteurs.
Seuillage et sélection de modèles

- Seuillage : minimisation de ||Y Y_Γ||² + T(ε)²|Γ|.
 Sélection de modèles : minimisation de ||Y P_MY||² + T(ε)²dim(M) avec M qui parcours un ensemble de sous espaces engendrés par une famille finie de vecteurs.
- **P** Théorème : Si la taille de la famille de vecteurs est au plus polynomiale en N et si $T(\epsilon) = \lambda \sqrt{\log N} \epsilon$, alors

 $E(||f - F_E||^2) \le C \log NE(||f - F_O||^2)$.

Seuillage et sélection de modèles

- Seuillage : minimisation de ||Y Y_Γ||² + T(ε)²|Γ|.
 Sélection de modèles : minimisation de ||Y P_MY||² + T(ε)²dim(M) avec M qui parcours un ensemble de sous espaces engendrés par une famille finie de vecteurs.
- Théorème : Si la taille de la famille de vecteurs est au plus polynomiale en N et si $T(\epsilon) = \lambda \sqrt{\log N} \epsilon$, alors

$$E(||f - F_E||^2) \le C \log NE(||f - F_O||^2)$$

Théorème (maxiset) :

$$\min_{\mathcal{M}} \|Y - P_{\mathcal{M}}Y\|^2 + T(\epsilon)^2 \dim(\mathcal{M}) \le C\left(T(\epsilon)\right)^{\frac{2\beta}{\beta+1}}$$
$$\Leftrightarrow E(\|f - F_E\|^2) \le C\left(T(\epsilon)\right)^{\frac{2\beta}{\beta+1}}.$$

Seuillage et sélection de modèles

- Seuillage : minimisation de ||Y Y_Γ||² + T(ε)²|Γ|.
 Sélection de modèles : minimisation de ||Y P_MY||² + T(ε)²dim(M) avec M qui parcours un ensemble de sous espaces engendrés par une famille finie de vecteurs.
- Théorème : Si la taille de la famille de vecteurs est au plus polynomiale en N et si $T(\epsilon) = \lambda \sqrt{\log N} \epsilon$, alors

$$E(||f - F_E||^2) \le C \log NE(||f - F_O||^2)$$

Théorème (maxiset) :

$$\min_{\mathcal{M}} \|Y - P_{\mathcal{M}}Y\|^2 + T(\epsilon)^2 \dim(\mathcal{M}) \le C\left(T(\epsilon)\right)^{\frac{2\beta}{\beta+1}}$$
$$\Leftrightarrow E(\|f - F_E\|^2) \le C\left(T(\epsilon)\right)^{\frac{2\beta}{\beta+1}}.$$

Même cadre que pour le seuillage !

Estimation géométrique

Sélection de bandelettes : minimisation de $\|Y - P_{\mathcal{M}}Y\|^2 + T(\epsilon)^2 \dim(\mathcal{M}) \text{ avec } \mathcal{M} \text{ qui parcours les sous-espaces}$ d'une famille de bases de bandelettes.

- Sélection de bandelettes : minimisation de $\|Y - P_{\mathcal{M}}Y\|^2 + T(\epsilon)^2 \dim(\mathcal{M})$ avec \mathcal{M} qui parcours les sous-espaces d'une famille de bases de bandelettes.
- Minimisation à 2 étages :
 - à base fixée, seuillage à $T(\epsilon)$ (facile),
 - recherche de meilleure base (difficile).

Sélection de bandelettes : minimisation de $\|Y - P_{\mathcal{M}}Y\|^2 + T(\epsilon)^2 \dim(\mathcal{M})$ avec \mathcal{M} qui parcours les sous-espaces d'une famille de bases de bandelettes.

- Minimisation à 2 étages :
 - à base fixée, seuillage à $T(\epsilon)$ (facile),
 - recherche de meilleure base (difficile).
- Structure hiérarchique de la partition et additivité de la fonction à minimiser : utilisation l'algorithme de meilleure base de Wickerhauser (CART).

Sélection de bandelettes : minimisation de $\|Y - P_{\mathcal{M}}Y\|^2 + T(\epsilon)^2 \dim(\mathcal{M})$ avec \mathcal{M} qui parcours les sous-espaces d'une famille de bases de bandelettes.

- Minimisation à 2 étages :
 - à base fixée, seuillage à $T(\epsilon)$ (facile),
 - recherche de meilleure base (difficile).
- Structure hiérarchique de la partition et additivité de la fonction à minimiser : utilisation l'algorithme de meilleure base de Wickerhauser (CART).
- Exploration exhaustive des géométries dans chaque carré.

Sélection de bandelettes : minimisation de $\|Y - P_{\mathcal{M}}Y\|^2 + T(\epsilon)^2 \dim(\mathcal{M})$ avec \mathcal{M} qui parcours les sous-espaces d'une famille de bases de bandelettes.

- Minimisation à 2 étages :
 - à base fixée, seuillage à $T(\epsilon)$ (facile),
 - recherche de meilleure base (difficile).
- Structure hiérarchique de la partition et additivité de la fonction à minimiser : utilisation l'algorithme de meilleure base de Wickerhauser (CART).
- Exploration exhaustive des géométries dans chaque carré.
- Algorithme polynomial permettant d'atteindre le risque quasi optimal :

 $E(\|f - F_E\|) \le CT(\epsilon)^{\frac{2\alpha}{\alpha+1}}$

Bruitée (20,19 dB)

Bandelettes $(30,29 \, dB)$

Ondelettes $(28, 21 \, dB)$

Bruitée (20,19 dB)

Bandelettes $(30, 29 \, \mathrm{dB})$

Ondelettes $(28, 21 \, dB)$

Bruitée

Bandelettes

Ondelettes

Bruitée (20,19 dB)

Bandelettes $(27,\!68\,\mathrm{dB})$

Ondelettes $(25,79 \, dB)$

Bruitée

Bandelettes

Ondelettes

• Modèle $\mathbf{C}^{\alpha} - \mathbf{C}^{\alpha}$ simpliste.

- Modèle $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$ simpliste.
- Les contours sont flous :

- Modèle $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$ simpliste.
- Les contours sont flous :

- Modèle $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$ simpliste.
- Les contours sont flous :

- Modèle $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$ simpliste.
- Les contours sont flous :

Pas un problème pour les bandelettes.

- Modèle $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$ simpliste.
- Les contours sont flous :

Pas un problème pour les bandelettes.
 La géométrie vie à plusieurs échelles :

- Modèle $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$ simpliste.
- Les contours sont flous :

Pas un problème pour les bandelettes.La géométrie vie à plusieurs échelles :

- Modèle $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$ simpliste.
- Les contours sont flous :

Pas un problème pour les bandelettes.
 La géométrie vie à plusieurs échelles :

- Modèle $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$ simpliste.
- Les contours sont flous :

Pas un problème pour les bandelettes.
 La géométrie vie à plusieurs échelles :

Comment incorporer une géométrie multiéchelle?

Retour vers les ondelettes.

- Retour vers les ondelettes.
- Bandelettes sur les coefficients d'ondelettes :

- Retour vers les ondelettes.
- Bandelettes sur les coefficients d'ondelettes :
 - Segmentation de la décomposition en ondelettes,

- Retour vers les ondelettes.
- Bandelettes sur les coefficients d'ondelettes :
 - Segmentation de la décomposition en ondelettes,
 - Changement de base adaptée à la géométrie locale.

- Retour vers les ondelettes.
- Bandelettes sur les coefficients d'ondelettes :
 - Segmentation de la décomposition en ondelettes,
 - Changement de base adaptée à la géométrie locale.
- Base orthogonale avec une géométrie multiéchelle : bandelettes de seconde génération.

Phéorème : Si f est $\mathbf{C}^{\alpha} - \mathbf{C}^{\alpha}$, alors, dans la meilleure base, $\|f - f_M\|^2 \le CM^{-\alpha}$.

- **Phéorème :** Si f est $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$, alors, dans la meilleure base, $\|f f_M\|^2 \leq CM^{-\alpha}$.
- Algorithmique quasi inchangée.

- **P** Théorème : Si f est $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$, alors, dans la meilleure base, $\|f f_M\|^2 \le CM^{-\alpha}$.
- Algorithmique quasi inchangée.
- Estimateur par sélection de modèle atteint le risque quasi optimal :

 $E(\|f - F_E\|) \le CT(\epsilon)^{\frac{2\alpha}{\alpha+1}} \quad .$

- **P** Théorème : Si f est $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$, alors, dans la meilleure base, $\|f f_M\|^2 \le CM^{-\alpha}$.
- Algorithmique quasi inchangée.
- Estimateur par sélection de modèle atteint le risque quasi optimal :

$$E(\|f - F_E\|) \le CT(\epsilon)^{\frac{2\alpha}{\alpha+1}}$$

Ensemble des fonctions bien estimées (maxiset) plus large?

- Théorème : Si f est $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$, alors, dans la meilleure base, $\|f f_M\|^2 \le CM^{-\alpha}$.
- Algorithmique quasi inchangée.
- Estimateur par sélection de modèle atteint le risque quasi optimal :

$$E(\|f - F_E\|) \le CT(\epsilon)^{\frac{2\alpha}{\alpha+1}}$$

- Ensemble des fonctions bien estimées (maxiset) plus large?
- Expérimentation numérique en cours...
Représentation dans des bases permet une estimation efficace (plus généralement un bon traitement du signal).

- Représentation dans des bases permet une estimation efficace (plus généralement un bon traitement du signal).
- Caractère central de l'approximation non linéaire.

- Représentation dans des bases permet une estimation efficace (plus généralement un bon traitement du signal).
- Caractère central de l'approximation non linéaire.
- Nécessité d'avoir une représentation adaptée au signal.

- Représentation dans des bases permet une estimation efficace (plus généralement un bon traitement du signal).
- Caractère central de l'approximation non linéaire.
- Nécessité d'avoir une représentation adaptée au signal.
- Pour les images, la régularité la plus importante est géométrique.

- Représentation dans des bases permet une estimation efficace (plus généralement un bon traitement du signal).
- Caractère central de l'approximation non linéaire.
- Nécessité d'avoir une représentation adaptée au signal.
- Pour les images, la régularité la plus importante est géométrique.
- Bandelettes : une représentation adaptée à la géométrie.

- Représentation dans des bases permet une estimation efficace (plus généralement un bon traitement du signal).
- Caractère central de l'approximation non linéaire.
- Nécessité d'avoir une représentation adaptée au signal.
- Pour les images, la régularité la plus importante est géométrique.
- Bandelettes : une représentation adaptée à la géométrie.
- Quelle représentation pour quel problème?