Bandelettes, estimation géométrique des images et sélection de modèles

E. LE PENNEC,

Ch. Dossal, S. Mallat

LPMA (Université Paris 7) – CMAP (École Polytechnique) – Let It Wave

Restaurée

Estimation par projection et sélection de modèles.

Estimation par projection et sélection de modèles.

Représentation géométrique des images (bandelettes).

- Estimation par projection et sélection de modèles.
- Représentation géométrique des images (bandelettes).
- Algorithmique.

- Modèle de bruit blanc et seuillage dans une base.
- Lien avec l'approximation non linéaire.

- Modèle de bruit blanc et seuillage dans une base.
- Lien avec l'approximation non linéaire.
- Ondelettes 1D et 2D.

- Modèle de bruit blanc et seuillage dans une base.
- Lien avec l'approximation non linéaire.
- Ondelettes 1D et 2D.
- Représentations géométriques des images.

- Modèle de bruit blanc et seuillage dans une base.
- Lien avec l'approximation non linéaire.
- Ondelettes 1D et 2D.
- Représentations géométriques des images.
- Construction des bandelettes.

- Modèle de bruit blanc et seuillage dans une base.
- Lien avec l'approximation non linéaire.
- Ondelettes 1D et 2D.
- Représentations géométriques des images.
- Construction des bandelettes.
- Seuillage et sélection de modèles.

- Modèle de bruit blanc et seuillage dans une base.
- Lien avec l'approximation non linéaire.
- Ondelettes 1D et 2D.
- Représentations géométriques des images.
- Construction des bandelettes.
- Seuillage et sélection de modèles.
- Estimation géométrique des images.

● Modèle classique : $dY = f(t)dt + \epsilon dW(t)$.

- Modèle classique : $dY = f(t)dt + \epsilon dW(t)$.
- $f \in L^2$ fonction (image) à estimer et W processus de Wiener.

- Modèle classique : $dY = f(t)dt + \epsilon dW(t)$.
- $f \in L^2$ fonction (image) à estimer et W processus de Wiener.
- Observation corrompue par un bruit additif gaussien.

- Modèle classique : $dY = f(t)dt + \epsilon dW(t)$.
- $f \in L^2$ fonction (image) à estimer et W processus de Wiener.
- Observation corrompue par un bruit additif gaussien.
- Décomposition de dY dans une base orthonormée donne le modèle de bruit blanc pour les suites :

$$\langle dY, b_n \rangle = \langle f, b_n \rangle + \epsilon \langle dW, b_n \rangle$$

- Modèle classique : $dY = f(t)dt + \epsilon dW(t)$.
- $f \in L^2$ fonction (image) à estimer et W processus de Wiener.
- Observation corrompue par un bruit additif gaussien.
- Décomposition de dY dans une base orthonormée donne le modèle de bruit blanc pour les suites :

$$\langle dY, b_n \rangle = \langle f, b_n \rangle + \epsilon \langle dW, b_n \rangle$$

En pratique, uniquement un nombre fini de composante (projection sur un sous espace de dimension fini).

- Modèle classique : $dY = f(t)dt + \epsilon dW(t)$.
- $f \in L^2$ fonction (image) à estimer et W processus de Wiener.
- Observation corrompue par un bruit additif gaussien.
- Décomposition de dY dans une base orthonormée donne le modèle de bruit blanc pour les suites :

$$\langle dY, b_n \rangle = \langle f, b_n \rangle + \epsilon \langle dW, b_n \rangle$$

- En pratique, uniquement un nombre fini de composante (projection sur un sous espace de dimension fini).
- Lien avec le modèle d'échantillonnage via $\epsilon = \frac{\sigma}{\sqrt{n}}$.

Méthode simple d'estimation de f à partir de dY.

- Méthode simple d'estimation de f à partir de dY.
- Décomposition de dY dans une base orthonormée

$$dY = \sum_{b_n} \langle dY, b_n \rangle b_n(t) dt$$

Méthode simple d'estimation de f à partir de dY.

Décomposition de dY dans une base orthonormée

$$dY = \sum_{b_n} \langle dY, b_n \rangle b_n(t) dt$$

Stimée F de f par seuillage avec un seuil T :

$$F = \sum_{\substack{b_n \\ |\langle dY, b_n \rangle| \geqslant T}} \langle dY, b_n \rangle b_n$$

- Méthode simple d'estimation de f à partir de dY.
- Décomposition de dY dans une base orthonormée

$$dY = \sum_{b_n} \langle dY, b_n \rangle b_n(t) dt$$

 \checkmark Estimée F de f par seuillage avec un seuil T :

$$F = \sum_{\substack{b_n \\ |\langle dY, b_n \rangle| \ge T}} \langle dY, b_n \rangle b_n$$

▶ Performance? : si $f \in \Theta$, convergence, vitesse, optimalité minimax?

● $\{b_n\}_{n \leq N}$ base de dimension N.

- $\{b_n\}_{n \leq N}$ base de dimension N.
- Estimateur par projection : $F_I = \sum_{n \in I} \langle dY, b_n \rangle b_n$.

- $\{b_n\}_{n \leq N}$ base de dimension N.
- Estimateur par projection : $F_I = \sum_{n \in I} \langle dY, b_n \rangle b_n$.
- \checkmark Comment choisir $I \subset 1, ..N$ pour minimiser le risque quadratique

$$E(||F_I - f||^2) = \sum_{n > N} |\langle f, b_n \rangle|^2 + \sum_{n \notin I} |\langle f, b_n \rangle|^2 + \sum_{n \in I} \epsilon^2$$

- $\{b_n\}_{n \leq N}$ base de dimension N.
- Estimateur par projection : $F_I = \sum_{n \in I} \langle dY, b_n \rangle b_n$.
- \checkmark Comment choisir $I \subset 1, ..N$ pour minimiser le risque quadratique

$$E(||F_I - f||^2) = \sum_{n > N} |\langle f, b_n \rangle|^2 + \sum_{n \notin I} |\langle f, b_n \rangle|^2 + \sum_{n \in I} \epsilon^2$$

■ Solution : $I = \{n \in \{1, ..., N\}, |\langle f, b_n \rangle| \ge \epsilon\}$ donne F_O .

- $\{b_n\}_{n \leq N}$ base de dimension N.
- Estimateur par projection : $F_I = \sum_{n \in I} \langle dY, b_n \rangle b_n$.
- \checkmark Comment choisir $I \subset 1, ..N$ pour minimiser le risque quadratique

$$E(||F_I - f||^2) = \sum_{n > N} |\langle f, b_n \rangle|^2 + \sum_{n \notin I} |\langle f, b_n \rangle|^2 + \sum_{n \in I} \epsilon^2$$

- Solution : $I = \{n \in \{1, ..., N\}, |\langle f, b_n \rangle| \ge \epsilon\}$ donne F_O .
- Problème : nécessité d'un oracle (F_O dépend de f).

- $\{b_n\}_{n \leq N}$ base de dimension N.
- Estimateur par projection : $F_I = \sum_{n \in I} \langle dY, b_n \rangle b_n$.
- \checkmark Comment choisir $I \subset 1, ..N$ pour minimiser le risque quadratique

$$E(||F_I - f||^2) = \sum_{n > N} |\langle f, b_n \rangle|^2 + \sum_{n \notin I} |\langle f, b_n \rangle|^2 + \sum_{n \in I} \epsilon^2$$

- Solution : $I = \{n \in \{1, ..., N\}, |\langle f, b_n \rangle| \ge \epsilon\}$ donne F_O .
- Problème : nécessité d'un oracle (F_O dépend de f).
- Lien avec le cadre déterministe de l'approximation non linéaire :

$$f_I = \sum_{n \in I} \langle f, b_n \rangle b_n$$

et minimisation à |I| = M fixé de $||f - f_I||^2$ donne f_M .

Oracle et approximation non linéaire

Oracle et approximation non linéaire

Risque :

$$E(||F_I - f||^2) = \sum_{n>N} |\langle f, b_n \rangle|^2 + \sum_{n \notin I} |\langle f, b_n \rangle|^2 + \sum_{n \in I} \epsilon^2$$

$$E(||F_I - f||^2) = ||f - f_{\{1,...,N\}}||^2 + ||f_{\{1,...,N\}} - f_I||^2 + |I|\epsilon^2$$

$$E(||F_I - f||^2) = ||f - f_I||^2 + \epsilon^2 |I|$$
Risque :

$$E(||F_I - f||^2) = \sum_{n>N} |\langle f, b_n \rangle|^2 + \sum_{n \notin I} |\langle f, b_n \rangle|^2 + \sum_{n \in I} \epsilon^2$$

$$E(||F_I - f||^2) = ||f - f_{\{1,...,N\}}||^2 + ||f_{\{1,...,N\}} - f_I||^2 + |I|\epsilon^2$$

$$E(||F_I - f||^2) = ||f - f_I||^2 + \epsilon^2 |I|$$

Solution Formulation lagrangienne du problème d'approximation non linéaire $(f_I = f_M \text{ et } |I| = M).$

Risque :

$$E(||F_I - f||^2) = \sum_{n>N} |\langle f, b_n \rangle|^2 + \sum_{n \notin I} |\langle f, b_n \rangle|^2 + \sum_{n \in I} \epsilon^2$$

$$E(||F_I - f||^2) = ||f - f_{\{1,...,N\}}||^2 + ||f_{\{1,...,N\}} - f_I||^2 + |I|\epsilon^2$$

$$E(||F_I - f||^2) = ||f - f_I||^2 + \epsilon^2 |I|$$

- Formulation lagrangienne du problème d'approximation non linéaire ($f_I = f_M$ et |I| = M).
- Décroissance du risque en fonction de ϵ liée à la classe Θ (régularité) et à la base utilisée.

Risque :

$$E(\|F_I - f\|^2) = \sum_{n>N} |\langle f, b_n \rangle|^2 + \sum_{n \notin I} |\langle f, b_n \rangle|^2 + \sum_{n \in I} \epsilon^2$$

$$E(\|F_I - f\|^2) = \|f - f_{\{1,...,N\}}\|^2 + \|f_{\{1,...,N\}} - f_I\|^2 + |I|\epsilon^2$$

$$E(\|F_I - f\|^2) = \|f - f_I\|^2 + \epsilon^2 |I|$$

- Formulation lagrangienne du problème d'approximation non linéaire $(f_I = f_M \text{ et } |I| = M).$
- Décroissance du risque en fonction de ϵ liée à la classe Θ (régularité) et à la base utilisée.
- Décroissance de l'erreur d'approximation $||f f_M||^2$ en $M^{-\beta}$: convergence du risque quadratique oracle en $\epsilon^{2\beta/(\beta+1)}$.

Risque :

$$E(\|F_I - f\|^2) = \sum_{n>N} |\langle f, b_n \rangle|^2 + \sum_{n \notin I} |\langle f, b_n \rangle|^2 + \sum_{n \in I} \epsilon^2$$

$$E(\|F_I - f\|^2) = \|f - f_{\{1,...,N\}}\|^2 + \|f_{\{1,...,N\}} - f_I\|^2 + |I|\epsilon^2$$

$$E(\|F_I - f\|^2) = \|f - f_I\|^2 + \epsilon^2 |I|$$

- Formulation lagrangienne du problème d'approximation non linéaire $(f_I = f_M \text{ et } |I| = M).$
- Décroissance du risque en fonction de ϵ liée à la classe Θ (régularité) et à la base utilisée.
- Décroissance de l'erreur d'approximation $||f f_M||^2$ en $M^{-\beta}$: convergence du risque quadratique oracle en $\epsilon^{2\beta/(\beta+1)}$.
- Optimisation : choix de la bonne base.

Lien avec le seuillage : Donoho, Johnstone, Kerkyacharian, Picard...

Lien avec le seuillage : Donoho, Johnstone, Kerkyacharian, Picard...
 Estimée F de f par seuillage avec un seuil T :

$$F = \sum_{\substack{b_n, n \leq N \\ |\langle dY, b_n \rangle| \geqslant T}} \langle dY, b_n \rangle b_n$$

Lien avec le seuillage : Donoho, Johnstone, Kerkyacharian, Picard...
 Estimée F de f par seuillage avec un seuil T :

$$F = \sum_{\substack{b_n, n \leq N \\ |\langle dY, b_n \rangle| \geqslant T}} \langle dY, b_n \rangle b_n$$

• Théorème : Pour $T = \lambda \sqrt{\log N} \epsilon$, avec λ suffisament grand,

 $E(||F - f||^2) \leq C \log N(E(||F_O - f||^2) + \epsilon/N)$.

Lien avec le seuillage : Donoho, Johnstone, Kerkyacharian, Picard...
 Estimée F de f par seuillage avec un seuil T :

$$F = \sum_{\substack{b_n, n \leq N \\ |\langle dY, b_n \rangle| \geqslant T}} \langle dY, b_n \rangle b_n$$

• Théorème : Pour $T = \lambda \sqrt{\log N} \epsilon$, avec λ suffisament grand,

$$E(||F - f||^2) \leq C \log N(E(||F_O - f||^2) + \epsilon/N)$$

Estimateur par seuillage aussi efficace que l'estimateur oracle.

Lien avec le seuillage : Donoho, Johnstone, Kerkyacharian, Picard...
 Estimée F de f par seuillage avec un seuil T :

$$F = \sum_{\substack{b_n, n \leq N \\ |\langle dY, b_n \rangle| \ge T}} \langle dY, b_n \rangle b_n$$

• Théorème : Pour $T = \lambda \sqrt{\log N} \epsilon$, avec λ suffisament grand,

$$E(||F - f||^2) \leq C \log N(E(||F_O - f||^2) + \epsilon/N)$$

- Estimateur par seuillage *aussi* efficace que l'estimateur oracle.
- Étude des performances de l'estimateur oracle.

Lien avec le seuillage : Donoho, Johnstone, Kerkyacharian, Picard...
 Estimée F de f par seuillage avec un seuil T :

$$F = \sum_{\substack{b_n, n \leq N \\ |\langle dY, b_n \rangle| \ge T}} \langle dY, b_n \rangle b_n$$

• Théorème : Pour $T = \lambda \sqrt{\log N} \epsilon$, avec λ suffisament grand,

$$E(||F - f||^2) \leq C \log N(E(||F_O - f||^2) + \epsilon/N)$$

- Estimateur par seuillage aussi efficace que l'estimateur oracle.
- Étude des performances de l'estimateur oracle.
- Adaptivité automatique.

- $f \in L^2([0,1]).$
- Classe des fonctions régulières (\mathbf{C}^{α} , classe de Hölder d'ordre α).

- $f \in L^2([0,1]).$
- Classe des fonctions régulières (\mathbf{C}^{α} , classe de Hölder d'ordre α).
- Risque minimax $\propto \epsilon^{2\alpha/(\alpha+1/2)}$.

- $f \in L^2([0,1]).$
- Classe des fonctions régulières (\mathbf{C}^{α} , classe de Hölder d'ordre α).
- Risque minimax $\propto \epsilon^{2\alpha/(\alpha+1/2)}$.
- Classe des fonctions régulières par morceaux (\mathbf{C}^{α} par morceaux).

- $f \in L^2([0,1]).$
- Classe des fonctions régulières (\mathbf{C}^{α} , classe de Hölder d'ordre α).
- Sisque minimax $\propto \epsilon^{2\alpha/(\alpha+1/2)}$.
- Classe des fonctions régulières par morceaux (\mathbf{C}^{α} par morceaux).
- Sisque minimax : $\propto \epsilon^{2\alpha/(\alpha+1/2)}$.

- $f \in L^2([0,1]).$
- Classe des fonctions régulières (\mathbf{C}^{α} , classe de Hölder d'ordre α).
- Risque minimax $\propto \epsilon^{2\alpha/(\alpha+1/2)}$.
- Classe des fonctions régulières par morceaux (\mathbf{C}^{α} par morceaux).
- Sisque minimax : $\propto \epsilon^{2\alpha/(\alpha+1/2)}$.
- Peut-on atteindre cette borne?

Base d'ondelettes 1D de $L^2[0,1]$

Base d'ondelettes 1D de $L^2[0,1]$

Construite à partir d'une fonction d'échelle $\phi(x)$ et d'une ondelette mère $\psi(x)$

qui sont dilatées par 2^j et translatées de $2^j n$

$$\phi_{j,n}(x) = \frac{1}{\sqrt{2^{j}}} \phi\left(\frac{x - 2^{j}n}{2^{j}}\right) \quad , \quad \psi_{j,n}(x) = \frac{1}{\sqrt{2^{j}}} \psi\left(\frac{x - 2^{j}n}{2^{j}}\right)$$

Base d'ondelettes 1D de $L^2[0,1]$

Construite à partir d'une fonction d'échelle $\phi(x)$ et d'une ondelette mère $\psi(x)$

qui sont dilatées par 2^j et translatées de $2^j n$

$$\phi_{j,n}(x) = \frac{1}{\sqrt{2^{j}}} \phi\left(\frac{x-2^{j}n}{2^{j}}\right) , \quad \psi_{j,n}(x) = \frac{1}{\sqrt{2^{j}}} \psi\left(\frac{x-2^{j}n}{2^{j}}\right)$$

$$\mathbf{B} = \left\{\psi_{j,n}\right\}_{j \in \mathbb{N}, 2^{j}n \in [0,1]} \text{ est une base orthonormale de } L^{2}[0,1].$$

$$- \frac{\sqrt{\sqrt{2^{j}n}}}{\sqrt{2^{j+1}}}$$

Approximation non linéaire en ondelettes

Approximation non linéaire en ondelettes

Approximation non linéaire en ondelettes

Si f est \mathbf{C}^{α} par morceaux et ψ a $p > \alpha$ moments nuls alors $\|f - f_M\|^2 \leq C M^{-2\alpha}$.

■ Si f est \mathbf{C}^{α} par morceaux, $\|f - f_M\|^2 \leq C M^{-2\alpha}$.

- Si f est \mathbf{C}^{α} par morceaux, $||f f_M||^2 \leq C M^{-2\alpha}$.
- Risque oracle correspondant : $\propto \epsilon^{2\alpha/(\alpha+1/2)}$ (risque minimax).

- Si f est \mathbf{C}^{α} par morceaux, $\|f f_M\|^2 \leq C M^{-2\alpha}$.
- Sisque oracle correspondant : $\propto \epsilon^{2lpha/(lpha+1/2)}$ (risque minimax).
- Risque de l'estimateur par seuillage : $\propto (\log \epsilon) \epsilon^{2\alpha/(\alpha+1/2)}$ si $N \leq \epsilon^{-1}$.

- Si f est \mathbf{C}^{α} par morceaux, $||f f_M||^2 \leq C M^{-2\alpha}$.
- Sisque oracle correspondant : $\propto \epsilon^{2lpha/(lpha+1/2)}$ (risque minimax).
- ▶ Risque de l'estimateur par seuillage : $\propto (\log \epsilon) \epsilon^{2\alpha/(\alpha+1/2)}$ si $N \leq \epsilon^{-1}$.
- Condition non restrictive (théorie de l'approximation linéaire) :

$$||f - f_{1...N}||^2 \leq ||f - f_M||^2$$

- Si f est \mathbf{C}^{α} par morceaux, $\|f f_M\|^2 \leq C M^{-2\alpha}$.
- ${}$ Risque oracle correspondant : $\propto \epsilon^{2lpha/(lpha+1/2)}$ (risque minimax).
- ▶ Risque de l'estimateur par seuillage : $\propto (\log \epsilon) \epsilon^{2\alpha/(\alpha+1/2)}$ si $N \leq \epsilon^{-1}$.
- Condition non restrictive (théorie de l'approximation linéaire) :

$$||f - f_{1...N}||^2 \leq ||f - f_M||^2$$

Quasi optimalité de l'estimateur par seuillage en ondelettes pour les fonctions 1D.

Base d'ondelettes 2D séparables

Base d'ondelettes 2D séparables

$$\begin{cases} \text{ La famille} \\ \begin{cases} \phi_{j,n_1}(x_1) \psi_{j,n_2}(x_2) &, & \psi_{j,n_1}(x_1) \phi_{j,n_2}(x_2) \\ &, & \psi_{j,n_1}(x_1) \psi_{j,n_2}(x_2) \end{cases} \\ \\ \text{est une base orthonormée de } L^2[0,1]^2. \end{cases}$$

Base d'ondelettes 2D séparables

La famille

$$\begin{cases} \phi_{j,n_1}(x_1) \psi_{j,n_2}(x_2) &, \quad \psi_{j,n_1}(x_1) \phi_{j,n_2}(x_2) \\ &, \quad \psi_{j,n_1}(x_1) \psi_{j,n_2}(x_2) \end{cases} \\ \\ \text{est une base orthonormée de } L^2[0,1]^2. \end{cases}$$

Seuillage en ondelettes 2D

Seuillage en ondelettes 2D

Seuillage en ondelettes 2D

● $f \in L^2([0,1]^2).$

● Modèle de bruit blanc : $dY = f(x)dx + \epsilon dW(x)$
- $f \in L^2([0,1]^2).$
- Modèle de bruit blanc : $dY = f(x)dx + \epsilon dW(x)$
- Estimateur : $F = \sum_{\substack{j \ge j_0 \ |\langle dY, \psi_{j,k} \rangle| \ge T}} \langle dY, \psi_{j,k} \rangle \psi_{j,k}$ avec $N = 2^{-j_0}$ et
 - $T = \lambda \sqrt{\log N} \epsilon.$

● $f \in L^2([0,1]^2).$

● Modèle de bruit blanc : $dY = f(x)dx + \epsilon dW(x)$

• Estimateur : $F = \sum_{\substack{j \ge j_0 \ |\langle dY, \psi_{j,k} \rangle| \ge T}} \langle dY, \psi_{j,k} \rangle \psi_{j,k}$ avec $N = 2^{-j_0}$ et

 $T = \lambda \sqrt{\log N} \epsilon.$

Quasi optimal pour les fonctions régulières \mathbf{C}^{α} et autres espaces classiques.

● $f \in L^2([0,1]^2).$

● Modèle de bruit blanc : $dY = f(x)dx + \epsilon dW(x)$

• Estimateur :
$$F = \sum_{\substack{j \ge j_0 \ |\langle dY, \psi_{j,k} \rangle| \ge T}} \langle dY, \psi_{j,k} \rangle \psi_{j,k}$$
 avec $N = 2^{-j_0}$ et

- Quasi optimal pour les fonctions régulières \mathbf{C}^{α} et autres espaces classiques.
- Pour les images, modèle classique : $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$.

● $f \in L^2([0,1]^2).$

Modèle de bruit blanc : $dY = f(x)dx + \epsilon dW(x)$

• Estimateur :
$$F = \sum_{\substack{j \ge j_0 \ |\langle dY, \psi_{j,k} \rangle| \ge T}} \langle dY, \psi_{j,k} \rangle \psi_{j,k}$$
 avec $N = 2^{-j_0}$ et

- Quasi optimal pour les fonctions régulières \mathbf{C}^{α} et autres espaces classiques.
- Pour les images, modèle classique : $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$.
- Ici, seul modèle possible : $f \in BV$ et $||f f_M||^2 \leq C M^{-1}$.

● $f \in L^2([0,1]^2).$

- Modèle de bruit blanc : $dY = f(x)dx + \epsilon dW(x)$
- Estimateur : $F = \sum_{\substack{j \ge j_0 \ |\langle dY, \psi_{j,k} \rangle| \ge T}} \langle dY, \psi_{j,k} \rangle \psi_{j,k}$ avec $N = 2^{-j_0}$ et

- Quasi optimal pour les fonctions régulières \mathbf{C}^{α} et autres espaces classiques.
- Pour les images, modèle classique : $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$.
- Ici, seul modèle possible : $f \in BV$ et $||f f_M||^2 \leq C M^{-1}$.
- Risque quadratique de l'ordre de ϵ^2 qui est sous optimal si $\alpha \ge 1$.

● $f \in L^2([0,1]^2).$

● Modèle de bruit blanc : $dY = f(x)dx + \epsilon dW(x)$

• Estimateur :
$$F = \sum_{\substack{j \ge j_0 \ |\langle dY, \psi_{j,k} \rangle| \ge T}} \langle dY, \psi_{j,k} \rangle \psi_{j,k}$$
 avec $N = 2^{-j_0}$ et

- Quasi optimal pour les fonctions régulières \mathbf{C}^{α} et autres espaces classiques.
- Pour les images, modèle classique : $\mathbf{C}^{\alpha} \mathbf{C}^{\alpha}$.
- Ici, seul modèle possible : $f \in BV$ et $||f f_M||^2 \leq C M^{-1}$.
- Risque quadratique de l'ordre de ϵ^2 qui est sous optimal si $\alpha \ge 1$.
- Problème d'approximation non linéaire.

Fonctions régulières par morceaux avec des discontinuités le long de courbes régulières.

- Fonctions régulières par morceaux avec des discontinuités le long de courbes régulières.
- Cf modèle horizon ou fonctions étoilées (Tsybakov, Donoho).

- Fonctions régulières par morceaux avec des discontinuités le long de courbes régulières.
- Cf modèle horizon ou fonctions étoilées (Tsybakov, Donoho).
- ${}$ Fonctions de régularité géométrique ${f C}^{lpha}$:

•
$$f= ilde{f}$$
 ou $f= ilde{f}\star h$,

•
$$ilde{f}:\mathbf{C}^lpha(\Lambda)$$
 avec $\Lambda=[0,1]^2-\{\mathcal{C}_\gamma\}_{1\leqslant\gamma\leqslant G}$,

- C_{γ} : \mathbf{C}^{α} + conditions géométriques de non tangence,
- $h: \mathbf{C}^{\alpha}$ à support $\subset [-s,s]^2$ et $\|h\|_{\mathbf{C}^{\alpha}} \leq s^{-(2+\alpha)}$.

- Fonctions régulières par morceaux avec des discontinuités le long de courbes régulières.
- Cf modèle horizon ou fonctions étoilées (Tsybakov, Donoho).
- ${}$ Fonctions de régularité géométrique ${f C}^{lpha}$:

•
$$f = \widetilde{f}$$
 ou $f = \widetilde{f} \star h$,

•
$$ilde{f}$$
 : $\mathbf{C}^lpha(\Lambda)$ avec $\Lambda=[0,1]^2-\{\mathcal{C}_\gamma\}_{1\leqslant\gamma\leqslant G}$,

- C_{γ} : \mathbf{C}^{lpha} + conditions géométriques de non tangence,
- $h: \mathbf{C}^{\alpha}$ à support $\subset [-s,s]^2$ et $\|h\|_{\mathbf{C}^{\alpha}} \leqslant s^{-(2+\alpha)}$.

• Risque minimax : $\propto \epsilon^{2lpha/(lpha+1)}$.

Approximation de f qui est \mathbf{C}^{α} en dehors de contours \mathbf{C}^{α} :

• Approximation de f qui est \mathbf{C}^{lpha} en dehors de contours \mathbf{C}^{lpha} :

● Avec M ondelettes : $||f - f_M||^2 \leq C M^{-1}$.

Approximation de f qui est \mathbf{C}^{lpha} en dehors de contours \mathbf{C}^{lpha} :

- Avec M ondelettes : $||f f_M||^2 \leq C M^{-1}$.
- Pour obtenir le risque minimax, besoin de $||f f_M||^2 \leq C M^{-\alpha}$.

Approximation de f qui est \mathbf{C}^{α} en dehors de contours \mathbf{C}^{α} :

Approximation de f qui est \mathbf{C}^{lpha} en dehors de contours \mathbf{C}^{lpha} :

• Approximation linéaire par morceau sur M triangles adaptés : si $\alpha \ge 2$ alors $||f - f_M||^2 \le C M^{-2}$,

Approximation de f qui est \mathbf{C}^{lpha} en dehors de contours \mathbf{C}^{lpha} :

- Approximation linéaire par morceau sur M triangles adaptés : si $\alpha \ge 2$ alors $||f - f_M||^2 \le C M^{-2}$,
- Approximation d'ordre élevé avec M "éléments" adaptés : $\|f - f_M\|^2 \leq C M^{-\alpha}$.

Approximation de f qui est \mathbf{C}^{lpha} en dehors de contours \mathbf{C}^{lpha} :

Approximation linéaire par morceau sur M triangles adaptés : si $\alpha \ge 2$ alors $||f - f_M||^2 \le C M^{-2}$,

• Approximation d'ordre élevé avec M "éléments" adaptés : $\|f - f_M\|^2 \leq C M^{-\alpha}$.

 M^{-1}

Difficile de trouver une solution optimale mais bonnes solutions "gloutonnes" (*Dekel,Demaret, Dyn, Iske*).

• Les curvelets définissent un "tight frame" de $L^2[0,1]^2$ avec des éléments allongés et orientés (*Candes, Donoho*) : $\{c_j(R_\theta x - \eta)\}_{j,\theta,\eta}$

Les curvelets définissent un "tight frame" de $L^2[0,1]^2$ avec des éléments allongés et orientés (*Candes, Donoho*) : $\{c_j(R_\theta x - \eta)\}_{j,\theta,\eta}$

• Si f est de régularité géométrique \mathbb{C}^{α} alors avec M curvelets : $\|f - f_M\|^2 \leq C (\log M)^3 M^{-2}$ si $\alpha \geq 2$.

Les curvelets définissent un "tight frame" de $L^2[0,1]^2$ avec des éléments allongés et orientés (*Candes, Donoho*) : $\{c_j(R_\theta x - \eta)\}_{j,\theta,\eta}$

- Si f est de régularité géométrique \mathbf{C}^{α} alors avec M curvelets : $\|f - f_M\|^2 \leq C (\log M)^3 M^{-2}$ si $\alpha \ge 2$.

• Les curvelets définissent un "tight frame" de $L^2[0,1]^2$ avec des éléments allongés et orientés (*Candes, Donoho*) : $\{c_j(R_\theta x - \eta)\}_{j,\theta,\eta}$

- Si f est de régularité géométrique \mathbb{C}^{α} alors avec M curvelets : $\|f - f_M\|^2 \leq C (\log M)^3 M^{-2}$ si $\alpha \geq 2$.
- Quasi optimal pour $\alpha = 2$.
- Difficile d'obtenir des bases orthogonales ou des bases de Riesz : (Vetterli & Minh Do).

Famille de base de bandelettes : bases adaptées à la géométrie des images.

- Famille de base de bandelettes : bases adaptées à la géométrie des images.
- Introduites pour un problème de compression (frame) et modifiées pour obtenir des bases orthonormées.

- Famille de base de bandelettes : bases adaptées à la géométrie des images.
- Introduites pour un problème de compression (frame) et modifiées pour obtenir des bases orthonormées.
- 3 ingrédients :
 - segmentation hiérarchique (strucrure d'arbre),
 - déformation géométrique locale,
 - ondelettes hyperboliques.

- Famille de base de bandelettes : bases adaptées à la géométrie des images.
- Introduites pour un problème de compression (frame) et modifiées pour obtenir des bases orthonormées.
- 3 ingrédients :
 - segmentation hiérarchique (strucrure d'arbre),
 - déformation géométrique locale,
 - ondelettes hyperboliques.
- Représentation optimale et algorithme de recherche de la meilleure représentation.

Spécification de la géométrie.

- Spécification de la géométrie.
- Flot géométrique : champ de vecteurs $\vec{\tau}(x_1, x_2)$ donnant des directions dans lesquelles l'image est localement régulière.

- Spécification de la géométrie.
- Flot géométrique : champ de vecteurs $\vec{\tau}(x_1, x_2)$ donnant des directions dans lesquelles l'image est localement régulière.
- Dans une région, le flot est constant horizontalement ou verticalement et induit par un polynôme.

- Spécification de la géométrie.
- Flot géométrique : champ de vecteurs $\vec{\tau}(x_1, x_2)$ donnant des directions dans lesquelles l'image est localement régulière.
- Dans une région, le flot est constant horizontalement ou verticalement et induit par un polynôme.

Nécessité d'une segmentation de l'image.

Base d'ondelettes déformées
• Supposons le flot constant verticalement : $\vec{\tau}(x_1, x_2) = (1, c'(x_1))$.

$$c(x_1) = \int_{x_{1,\min}}^{x_1} c'(u) \, \mathsf{d} u$$

Supposons le flot constant verticalement : $\vec{\tau}(x_1, x_2) = (1, c'(x_1))$.

$$c(x_1) = \int_{x_{1,\min}}^{x_1} c'(u) \, \mathsf{d} u$$

 \checkmark À x_2 fixé, $f(x_1, x_2 + c(x_1))$ est une fonction régulière de x_1 .

Supposons le flot constant verticalement :

 $\vec{\tau}(x_1, x_2) = (1, c'(x_1))$.

$$c(x_1) = \int_{x_{1,\min}}^{x_1} c'(u) \, \mathsf{d}u$$

 \checkmark À x_2 fixé, $f(x_1, x_2 + c(x_1))$ est une fonction régulière de x_1 .

Supposons le flot constant verticalement :

 $\vec{\tau}(x_1, x_2) = (1, c'(x_1))$.

$$c(x_1) = \int_{x_{1,\min}}^{x_1} c'(u) \, \mathsf{d}u$$

A x_2 fixé, $f(x_1, x_2 + c(x_1))$ est une fonction régulière de x_1 .

Image: On décompose donc f dans une base d'ondelettes déformées de $L^2(\Omega)$: $\left\{ \begin{array}{ccc} \phi_{j,m_1}(x_1) \,\psi_{j,m_2}(x_2 - c(x_1)) &, & \psi_{j,m_1}(x_1) \,\phi_{j,m_2}(x_2 - c(x_1)) \\ &, & \psi_{j,m_1}(x_1) \,\psi_{j,m_2}(x_2 - c(x_1)) \end{array} \right\}_{j,m_1,j}$

Les fonctions de la base doivent avoir des moments nuls selon x_1 (direction du flot).

Les fonctions de la base doivent avoir des moments nuls selon x_1 (direction du flot).

Base d'ondelettes déformées de $L^2(\Omega)$:

$$\left\{ \begin{array}{ccc} \phi_{j,m_1}(x_1) \,\psi_{j,m_2}(x_2 - c(x_1)) &, & \psi_{j,m_1}(x_1) \,\phi_{j,m_2}(x_2 - c(x_1)) \\ &, & \psi_{j,m_1}(x_1) \,\psi_{j,m_2}(x_2 - c(x_1)) \end{array} \right\}_{\substack{j \\ m_1,m_2}}$$
Isotrope Isotrope

- Les fonctions de la base doivent avoir des moments nuls selon x_1 (direction du flot).
- Bandelettisation : remplace $\{\phi_{j,m_1}(x_1)\}_{m_1}$ par une famille d'ondelettes $\{\psi_{l,m_1}(x_1)\}_{l>j,m_1}$ qui génère le même espace.
- ${}_{igsir}$ Base d'ondelettes déformées de $L^2(\Omega)$:

$$\left\{ \begin{array}{ccc} \phi_{j,m_1}(x_1) \,\psi_{j,m_2}(x_2 - c(x_1)) &, & \psi_{j,m_1}(x_1) \,\phi_{j,m_2}(x_2 - c(x_1)) \\ &, & \psi_{j,m_1}(x_1) \,\psi_{j,m_2}(x_2 - c(x_1)) \end{array} \right\}_{\substack{j \\ m_1,m_2}}$$
Isotrope Isotrope

- Les fonctions de la base doivent avoir des moments nuls selon x_1 (direction du flot).
- Bandelettisation : remplace $\{\phi_{j,m_1}(x_1)\}_{m_1}$ par une famille d'ondelettes $\{\psi_{l,m_1}(x_1)\}_{l>j,m_1}$ qui génère le même espace.
- Obtention d'une base de bandelettes de $L^2(\Omega)$:

$$\begin{cases} \psi_{l,m_{1}}(x_{1}) \psi_{j,m_{2}}(x_{2} - c(x_{1})) &, \quad \psi_{j,m_{1}}(x_{1}) \phi_{j,m_{2}}(x_{2} - c(x_{1})) \\, \quad \psi_{j,m_{1}}(x_{1}) \psi_{j,m_{2}}(x_{2} - c(x_{1})) \end{cases} \begin{cases} j, l > j \\ m_{1}, m_{2} \end{cases}$$
Anisotrope
Isotrope
Isotrope
Isotrope

- Le support de l'image est segmenté en régions munies soit
 - d'une base de bandelettes à flot constant verticalement,
 - d'une base de bandelettes à flot constant horizontalement,
 - d'une base d'ondelettes sans flot (régularité isotrope).

- Le support de l'image est segmenté en régions munies soit
 - d'une base de bandelettes à flot constant verticalement,
 - d'une base de bandelettes à flot constant horizontalement,
 - d'une base d'ondelettes sans flot (régularité isotrope).

Transformée rapide en bandelettes $(O(N^2))$:

 rééchantillonnage, transformée en ondelettes déformées, bandelettisation.

- Le support de l'image est segmenté en régions munies soit
 - d'une base de bandelettes à flot constant verticalement,
 - d'une base de bandelettes à flot constant horizontalement,
 - d'une base d'ondelettes sans flot (régularité isotrope).

- Transformée rapide en bandelettes $(O(N^2))$:
 - rééchantillonnage, transformée en ondelettes déformées, bandelettisation.

Pas de discontinuités aux frontières grâce à un schéma de lifting adapté.

Approximation M termes

Approximation M termes

- Une approximation en bandelettes est donnée par :
 - une segmentation en rectangle, représentée par les M_s nœuds intérieurs de l'arbre de la segmentation,
 - à l'intérieur de chaque carré Ω_i de la segmentation par :
 - $M_{g,i}$ coefficients du flot géométrique,
 - $M_{b,i}$ coefficients de bandelettes au dessus d'un seuil T.

Approximation M termes

Une approximation en bandelettes est donnée par :

- une segmentation en rectangle, représentée par les M_s nœuds intérieurs de l'arbre de la segmentation,
- à l'intérieur de chaque carré Ω_i de la segmentation par :
 - $M_{g,i}$ coefficients du flot géométrique,
 - $M_{b,i}$ coefficients de bandelettes au dessus d'un seuil T.
- Nombre total de paramètres :

$$M = M_s + \sum_{i} \left(M_{g,i} + M_{b,i} \right) = \sum_{i} \left(M_{s,i} + M_{g,i} + M_{b,i} \right)$$

Minimiser $||f - f_M||^2$ pour un nombre fixé M de paramètres.

- Minimiser $||f f_M||^2$ pour un nombre fixé M de paramètres.
- Approche lagrangienne : trouver le meilleur flot géométrique segmenté qui minimise

$$||f - f_M||^2 + T^2 M$$
.

- Minimiser $||f f_M||^2$ pour un nombre fixé M de paramètres.
- Approche lagrangienne : trouver le meilleur flot géométrique segmenté qui minimise

$$||f - f_M||^2 + T^2 M$$
.

Additivité du Lagrangien :

$$||f - f_M||^2 + T^2 M = \sum_i ||f - f_M||_{\Omega_i}^2 + T^2 M_i$$

- Minimiser $||f f_M||^2$ pour un nombre fixé M de paramètres.
- Approche lagrangienne : trouver le meilleur flot géométrique segmenté qui minimise

$$||f - f_M||^2 + T^2 M$$
.

Additivité du Lagrangien :

$$||f - f_M||^2 + T^2 M = \sum_i ||f - f_M||_{\Omega_i}^2 + T^2 M_i$$

Algorithme rapide (CART) : programmation dynamique de bas en haut sur la segmentation en arbre.

- Minimiser $||f f_M||^2$ pour un nombre fixé M de paramètres.
- Approche lagrangienne : trouver le meilleur flot géométrique segmenté qui minimise

$$||f - f_M||^2 + T^2 M$$
.

Additivité du Lagrangien :

$$||f - f_M||^2 + T^2 M = \sum_i ||f - f_M||_{\Omega_i}^2 + T^2 M_i$$

- Algorithme rapide (CART) : programmation dynamique de bas en haut sur la segmentation en arbre.
- Complexité polynomiale : nombre total de vecteurs de base et non pas le nombre total de bases

Fonction régulière par morceaux

Fonction régulière par morceaux

 $\mathsf{PSNR} = 45,97\,\mathsf{dB}$

Bandelettes

 $\mathsf{PSNR} = 40,\!17\,\mathsf{dB}$

Ondelettes

Théorème : Si f est de régularité géométrique \mathbf{C}^{α} ($f = \tilde{f}$ ou $f = \tilde{f} \star h$ avec $\tilde{f} \mathbf{C}^{\alpha}$ en dehors de courbes \mathbf{C}^{α} par morceaux avec des conditions de non tangence) alors

$$\|f - f_M\|^2 \leqslant C \, (\log M)^{\alpha + 1} M^{-\alpha}$$

Théorème : Si f est de régularité géométrique \mathbf{C}^{α} ($f = \tilde{f}$ ou $f = \tilde{f} \star h$ avec $\tilde{f} \mathbf{C}^{\alpha}$ en dehors de courbes \mathbf{C}^{α} par morceaux avec des conditions de non tangence) alors

$$\|f - f_M\|^2 \leqslant C (\log M)^{\alpha + 1} M^{-\alpha}$$

Adaptivité : degré de régularité α inconnu.

Théorème : Si f est de régularité géométrique \mathbf{C}^{α} ($f = \tilde{f}$ ou $f = \tilde{f} \star h$ avec $\tilde{f} \mathbf{C}^{\alpha}$ en dehors de courbes \mathbf{C}^{α} par morceaux avec des conditions de non tangence) alors

$$\|f - f_M\|^2 \leqslant C (\log M)^{\alpha + 1} M^{-\alpha}$$

- Adaptivité : degré de régularité α inconnu.
- Optimalité : exposant de décroissance α .

Théorème : Si f est de régularité géométrique \mathbf{C}^{α} ($f = \tilde{f}$ ou $f = \tilde{f} \star h$ avec $\tilde{f} \mathbf{C}^{\alpha}$ en dehors de courbes \mathbf{C}^{α} par morceaux avec des conditions de non tangence) alors

$$\|f - f_M\|^2 \leqslant C (\log M)^{\alpha + 1} M^{-\alpha}$$

- Adaptivité : degré de régularité α inconnu.
- Optimalité : exposant de décroissance α .
- Comparaison :
 - Ondelettes isotropes : $||f f_M||^2 \leq C M^{-1}$
 - Curvelets : $||f f_M||^2 \leq C (\log M)^3 M^{-2}$

• Approximation non linéaire : minimisation de $||f - f_M||^2 + T^2 M$.

- Approximation non linéaire : minimisation de $||f f_M||^2 + T^2 M$.
- Pour une base, équivalence avec du seuillage.

- Approximation non linéaire : minimisation de $||f f_M||^2 + T^2 M$.
- Pour une base, équivalence avec du seuillage.
- Algorithme de pénalisation pour la sélection de modèle :

$$F = \underset{\tilde{f}=P_{\mathcal{M}}Y}{\operatorname{argmin}} \|Y - \tilde{f}\|^2 + T^2 \dim(\mathcal{M})$$

où \mathcal{M} parcourt les espace engendrés par des sous familles de bases orthonormées d'un sous espace de dimension N.

- Approximation non linéaire : minimisation de $||f f_M||^2 + T^2 M$.
- Pour une base, équivalence avec du seuillage.
- Algorithme de pénalisation pour la sélection de modèle :

$$F = \underset{\tilde{f}=P_{\mathcal{M}}Y}{\operatorname{argmin}} \|Y - \tilde{f}\|^2 + T^2 \dim(\mathcal{M})$$

où \mathcal{M} parcourt les espace engendrés par des sous familles de bases orthonormées d'un sous espace de dimension N.

Provide State 1 Théorème (Donoho, Birge, Massart, Nowak,...) :
Si le nombre total de vecteurs dans les différentes bases est au plus polynomial en N alors, pour \u03c6 suffisamment grand et T = \u03c6 \u03c6 log N \u03c6,

$$E(||F - f||^2) \leq C \log N(E(||F_O - f||^2) + \epsilon/N)$$

- Approximation non linéaire : minimisation de $||f f_M||^2 + T^2 M$.
- Pour une base, équivalence avec du seuillage.
- Algorithme de pénalisation pour la sélection de modèle :

$$F = \underset{\tilde{f}=P_{\mathcal{M}}Y}{\operatorname{argmin}} \|Y - \tilde{f}\|^2 + T^2 \dim(\mathcal{M})$$

où \mathcal{M} parcourt les espace engendrés par des sous familles de bases orthonormées d'un sous espace de dimension N.

Théorème (Donoho, Birge, Massart, Nowak,...):
Si le nombre total de vecteurs dans les différentes bases est au plus polynomial en N alors, pour \u03c6 suffisamment grand et T = \u03c6 \u03c6 log N \u03c6,

$$E(||F - f||^2) \leq C \log N(E(||F_O - f||^2) + \epsilon/N)$$

Quasi optimalité de la méthode.

- Approximation non linéaire : minimisation de $||f f_M||^2 + T^2 M$.
- Pour une base, équivalence avec du seuillage.
- Algorithme de pénalisation pour la sélection de modèle :

$$F = \underset{\tilde{f}=P_{\mathcal{M}}Y}{\operatorname{argmin}} \|Y - \tilde{f}\|^2 + T^2 \dim(\mathcal{M})$$

où \mathcal{M} parcourt les espace engendrés par des sous familles de bases orthonormées d'un sous espace de dimension N.

• Théorème (Donoho, Birge, Massart, Nowak,...) : Si le nombre total de vecteurs dans les différentes bases est au plus polynomial en N alors, pour λ suffisamment grand et $T = \lambda \sqrt{\log N} \epsilon$,

$$E(||F - f||^2) \leq C \log N(E(||F_O - f||^2) + \epsilon/N)$$

- Quasi optimalité de la méthode.
- Possibilité pratique de faire la minimisation ?
Preuve d'une inégalité similaire en Probabilité.

- Preuve d'une inégalité similaire en Probabilité.
- Inégalité de concentration pour les processus gaussiens (Borell, Cirel'son, Ibragimov, Sudakov).

- Preuve d'une inégalité similaire en Probabilité.
- Inégalité de concentration pour les processus gaussiens (Borell, Cirel'son, Ibragimov, Sudakov).
- Tableau...

Contrôle polynomial sur le nombre d'éléments.

- Contrôle polynomial sur le nombre d'éléments.
- Possibilité d'effectuer la minimisation par l'algorithme de programmation dynamique.

- Contrôle polynomial sur le nombre d'éléments.
- Possibilité d'effectuer la minimisation par l'algorithme de programmation dynamique.
- Quasi optimalité de la représentation pour l'approximation non linéaire.

- Contrôle polynomial sur le nombre d'éléments.
- Possibilité d'effectuer la minimisation par l'algorithme de programmation dynamique.
- Quasi optimalité de la représentation pour l'approximation non linéaire.
- **•** Théorème : Pour $N \simeq \epsilon^{-1}$ et $T = \lambda \sqrt{\log N} \epsilon$,

 $E(||F - f||^2) \leqslant C |\log \epsilon|^{\alpha + 2} \epsilon^{2\alpha/(\alpha + 1)}$

- Contrôle polynomial sur le nombre d'éléments.
- Possibilité d'effectuer la minimisation par l'algorithme de programmation dynamique.
- Quasi optimalité de la représentation pour l'approximation non linéaire.
- **•** Théorème : Pour $N \simeq \epsilon^{-1}$ et $T = \lambda \sqrt{\log N} \epsilon$,

$$E(||F - f||^2) \leqslant C |\log \epsilon|^{\alpha + 2} \epsilon^{2\alpha/(\alpha + 1)}$$

Adaptivité automatique.

Bruité (20,19 dB)

Bandelettes $(30, 29 \, dB)$

Ondelettes $(28,21 \, dB)$

Bruité $(20, 19 \, \text{dB})$

Bandelettes $(30,29 \, dB)$

Ondelettes $(28,21\,\text{dB})$

Bruité

Bandelettes

Ondelettes

Bruité ($20,19\,dB$)

Bandelettes $(27, 68 \, dB)$

Ondelettes $(25,79\,\text{dB})$

Bruité

Bandelettes

Ondelettes

- Estimation à l'aide de la théorie de la sélection de modèle.
- Construction d'une représentation adaptée à la nature géométrique des images (bandelettes).

- Estimation à l'aide de la théorie de la sélection de modèle.
- Construction d'une représentation adaptée à la nature géométrique des images (bandelettes).
- Bonnes classes de fonctions ?

- Estimation à l'aide de la théorie de la sélection de modèle.
- Construction d'une représentation adaptée à la nature géométrique des images (bandelettes).
- Bonnes classes de fonctions ?
- Exemple de traitement d'image.

- Estimation à l'aide de la théorie de la sélection de modèle.
- Construction d'une représentation adaptée à la nature géométrique des images (bandelettes).
- Bonnes classes de fonctions ?
- Exemple de traitement d'image.
- Théorie de l'approximation et le principe de concision ont de nombreuses autres applications : compression, apprentissage,...

• $F = \operatorname{argmin} \|Y - \tilde{f}\|^2 + \lambda^2 \log \nu \sigma^2 M$ avec M_F coefficients.

- $F = \operatorname{argmin} \|Y \tilde{f}\|^2 + \lambda^2 \log \nu \sigma^2 M$ avec M_F coefficients.
- $f_{\lambda} = \operatorname{argmin} \|f \tilde{f}\|^2 + \lambda^2 \log \nu \sigma^2 M$ avec M_{λ} coefficients.

F = argmin ||Y - f̃||² + λ² log νσ²M avec M_F coefficients.
f_λ = argmin ||f - f̃||² + λ² log νσ²M avec M_λ coefficients.
||Y - g||² = ||Y - f||² + 2(Y - f, f - g) + ||f - g||².

on obtient

$$||f - F||^2 + \lambda^2 \log \nu \sigma^2 M_F \leq ||f - f_\lambda||^2 + \lambda^2 \log \nu \sigma^2 M_\lambda + 2\langle Y - f, f_\lambda - F \rangle .$$

on obtient

$$||f - F||^2 + \lambda^2 \log \nu \sigma^2 M_F \leq ||f - f_\lambda||^2 + \lambda^2 \log \nu \sigma^2 M_\lambda + 2\langle Y - f, f_\lambda - F \rangle .$$

On conclut en prouvant qu'avec grande probabilité,

$$|\langle Y - f, f_{\lambda} - F \rangle| \leq (C/\lambda)(||f - F||^2 + \lambda^2 \log \nu \sigma^2 M_F)$$
qui implique $C/\lambda < 1$.

$|\langle Y - f, f_{\lambda} - F \rangle| \leq ||P_{\mathcal{M}_{\lambda} \cup \mathcal{M}_{F}}W|| ||f_{\lambda} - F|| .$

|⟨Y - f, f_λ - F⟩| ≤ ||P_{M_λ∪M_F}W|| ||f_λ - F|| . ||f_λ - F|| ≤ ||f_λ - f|| + ||f - F|| ||f_λ - F|| ≤ 2(||f - F||² + λ² log νσ²M_F)^{1/2} .

- $|\langle Y f, f_{\lambda} F \rangle| \leq ||P_{\mathcal{M}_{\lambda} \cup \mathcal{M}_{F}}W|| ||f_{\lambda} F|| .$ $||f_{\lambda} - F|| \leq ||f_{\lambda} - f|| + ||f - F||$ $||f_{\lambda} - F|| \leq 2(||f - F||^{2} + \lambda^{2} \log \nu \sigma^{2} M_{F})^{1/2} .$
- Inégalité de concentration :

$$P\left(\forall \mathcal{M}, \|P_{\mathcal{M}}W\| \leqslant \sqrt{12\log\nu\sigma^2 \dim(\mathcal{M})}\right) \ge 1 - e/\nu$$

$$|\langle Y - f, f_{\lambda} - F \rangle| \leq ||P_{\mathcal{M}_{\lambda} \cup \mathcal{M}_{F}}W|| ||f_{\lambda} - F||$$

$$||f_{\lambda} - F|| \leq ||f_{\lambda} - f|| + ||f - F||$$

$$||f_{\lambda} - F|| \leq 2(||f - F||^{2} + \lambda^{2} \log \nu \sigma^{2} M_{F})^{1/2}$$

Inégalité de concentration :

$$P\left(\forall \mathcal{M}, \quad \|P_{\mathcal{M}}W\| \leqslant \sqrt{12\log\nu\sigma^2 \mathsf{dim}(\mathcal{M})}\right) \geqslant 1 - e/\nu \quad .$$
 Avec $P \geqslant 1 - e/\nu$,

•

•

$$\|P_{\mathcal{M}_{\lambda}\cup\mathcal{M}_{F}}W\| \leqslant \sqrt{12\log\nu\sigma^{2}(M_{\lambda}+M_{F})}$$
$$\|P_{\mathcal{M}_{\lambda}\cup\mathcal{M}_{F}}W\| \leqslant \sqrt{12/\lambda^{2}}(\|f-F\|^{2}+\lambda^{2}\log\nu\sigma^{2}M_{F})^{1/2}$$

$$|\langle Y - f, f_{\lambda} - F \rangle| \leq ||P_{\mathcal{M}_{\lambda} \cup \mathcal{M}_{F}}W|| ||f_{\lambda} - F|| .$$

$$||f_{\lambda} - F|| \leq ||f_{\lambda} - f|| + ||f - F||$$

$$||f_{\lambda} - F|| \leq 2(||f - F||^{2} + \lambda^{2} \log \nu \sigma^{2} M_{F})^{1/2} .$$

$$||f_{\lambda} - F|| \leq 2(||f - F||^{2} + \lambda^{2} \log \nu \sigma^{2} M_{F})^{1/2} .$$

$$||f_{\lambda} - F|| \leq 2(||f - F||^{2} + \lambda^{2} \log \nu \sigma^{2} M_{F})^{1/2} .$$

$$P\left(\forall \mathcal{M}, \quad \|P_{\mathcal{M}}W\| \leqslant \sqrt{12\log\nu\sigma^2 \dim(\mathcal{M})}\right) \geqslant 1 - e/\nu \quad .$$

$$\bullet \quad \text{Avec } P \geqslant 1 - e/\nu,$$

٠

Preuve – 3

■ Pour chaque sous-espace $\mathcal{M} = \operatorname{vect}\{b_{\gamma_n}\}$,

 $P\left(\|P_{\mathcal{M}}W\| \ge E\|P_{\mathcal{M}}W\| + t\right) \le e^{-t^2/(2\sigma^2)}$

Preuve – 3

Pour chaque sous-espace
$$\mathcal{M}$$
 = vect{b_{γ_n}},

 $P\left(\|P_{\mathcal{M}}W\| \ge E\|P_{\mathcal{M}}W\| + t\right) \leqslant e^{-t^2/(2\sigma^2)}$
Preuve – 3

Pour chaque sous-espace
$$\mathcal{M} = \operatorname{vect}\{b_{\gamma_n}\}$$
,

 $P\left(\|P_{\mathcal{M}}W\| \ge E\|P_{\mathcal{M}}W\| + t\right) \le e^{-t^2/(2\sigma^2)}$

Preuve – 3

Pour chaque sous-espace
$$\mathcal{M} = \operatorname{vect}\{b_{\gamma_n}\}$$
,

$$P\left(\|P_{\mathcal{M}}W\| \ge E\|P_{\mathcal{M}}W\| + t\right) \le e^{-t^2/(2\sigma^2)}$$

- $E \| P_{\mathcal{M}} W \| \leq (E(\| P_{\mathcal{M}} W \|^2))^{1/2} \leq \sqrt{M\sigma^2} \text{ avec } M = \dim(\mathcal{M}).$

Contrôle sur le nombre de sous-espaces possibles :

$$\begin{split} P\Big(\forall \mathcal{M}, \quad \|P_{\mathcal{M}}W\| \geqslant \sqrt{6\log\nu\sigma^2 M}\Big) \\ &\leqslant \sum_{M} \sum_{\mathcal{M}, \dim \mathcal{M} = M} P\left(\|P_{\mathcal{M}}W\| \geqslant \sqrt{12\log\nu\sigma^2 M}\right) \\ &\leqslant \sum_{M} \binom{\nu}{M} \nu^{-3M} \leqslant \sum_{M} 1/(M!)\nu^{-2M} \leqslant e\nu^{-1} \end{split}$$