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Geometrical Image Representation

Signal processing requires to build sparse signal representations
for compression, restoration, pattern recognition...

Sparsity is derived from regularity.

Need to take advantage of geometrical image regularity to
improve representations.

Building harmonic analysis representations adapted to complex
geometry.
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Edge Detection

An ill-posed problem.

Edges are blurred transitions:

Scale of geometric regularity:

How can the estimation of the geometry
become well-posed ?
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Overview

Sparse representation and wavelets.

Geometric representations in math, image processing and
physiology.

Multiscale geometry with orthonormal bandelet bases.
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Sparse Representation in a Basis

Decomposition in an orthonormal basis B = {gm}m∈N

f =
∑

m∈N

〈f, gm〉 gm .

Approximation with M vectors chosen adaptively

fM =
∑

m∈IM

〈f, gm〉 gm .

To minimize ‖f − fM‖2 =
∑

m6∈IM

|〈f, gm〉|2,

select the M largest inner products:

IM = {m, |〈f, gm〉| > TM} : thresholding

Problem: Given that f ∈ Θ, how to choose B so that

‖f − fM ‖2
6 CM−β with β large ?
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Successes and Failures of Wavelet Bases

Images are decomposed in a two-dimensional wavelet basis
and larger coefficients are kept (JPEG-2000).

f |〈f, ψk
j,n〉| > TM fM

(Cohen, DeVore, Petrushev, Xue): Optimal for bounded

variation functions: ‖f − fM ‖2 6 CM−1.

But: does not take advantage of any geometric regularity.
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Wavelet Approximation with Edges

Approximations of f which is C
α away from C

α “edge”
curves:

2j∼ T ∼M−1

with M wavelets: ‖f − fM‖2 6 CM−1.



Geometric Finite Elements for Edges



Geometric Finite Elements for Edges
Approximations of f which is C

α away from C
α “edge”

curves:



Geometric Finite Elements for Edges
Approximations of f which is C

α away from C
α “edge”

curves:

Piecewise linear approximation over M adapted triangles:
if α > 2 then ‖f − fM‖2 6 CM−2,

M−1

M−2



Geometric Finite Elements for Edges
Approximations of f which is C

α away from C
α “edge”

curves:

Piecewise linear approximation over M adapted triangles:
if α > 2 then ‖f − fM‖2 6 CM−2,

M−1

M−2

Higher order approximation over M adapted “elements”:
‖f − fM‖2 6 CM−α.

M−1

M−α
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Adaptive Triangulation for Smooth Edges

Approximations of f = f̃ ⋆ hs which:

f is C
α away from C

α “edge” curves (α > 2):

hs is a regularization kernel of size s

With M adaptive triangles: ‖f − fM‖2 6 CM−2.

s1/ 4M1/ 2

s

triangles
s1/ 4M−1/ 2

s3/ 4M−1/ 2

Difficult to find optimal approximations but good greedy
solutions (Dekel,Demaret, Dyn, Iske).
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Curvelet Approximation with Edges

Curvelets define tight frames of L2[0, 1]2 with elongated and
rotated elements (Candes, Donoho): {cj(Rθx− η)}j,θ,η

If f is C
α away from C

α “edges” then with M curvelets:

if α > 2 then ‖f − fM‖2
6 C (logM)3 M−2.

Optimal for α = 2.

Difficulty to build discrete orthogonal/Riesz bases:
(Vetterli & Minh Do).
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Bandelets

Basis adapted to the geometry: bandelets with an anisotropic
support that follows the direction of regularity of the image,
{

1

2(j+l)/2
Ψd

(

x1 − 2lm1

2l
,
x2−c(x1) − 2jm2

2j

)}

d,j,l>j,m1,m2

.

Dyadic segmentation of the geometry: bandelet basis adapted
to an image.

Efficient optimization of this geometry: non linear
approximation theorem.

‖f − fM‖2
6 CM−α

Lack of a multiscale geometry.
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Return to Wavelet Coefficients

2j

2j−1

At each scale, how to approximate the vector of non-zero

wavelet coefficients (chaotic behavior) ?

Use of parameterized models projected over wavelets:

“edgelets” and “edgeprints” by Baraniuk, Romberg, Wakin and

Dragotti, Vetterli : discontinuities along parameterized curves.

Difficult to parameterize smooth edges f = f̃ ⋆ θs.

Modification of the wavelet transform (Cohen).
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Contour Integration in Physiology
Contour integration in V2:

V1

V2

[Lee et Al.]

Feedforward

connexions

The Association Field

[Hess et Al.]

Receptive

field

Compatible

overlapping RF

RF preferred

orientation

Uncompatible

overlapping RF

[Ben-Shahar et Al.]
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Warping the Wavelet Space
Gabriel Peyré

Wavelet coefficients are samples of a regularized function:

〈f , ψk
j,n〉 = f ⋆ ψk

j (2jn) with ψk
j (x) = 2−j ψk(−2−jx) .

f ∗ ψk
j (x)

0 L
x1

x2

xj n
K2j

f ∗ ψk
j (wj(x))

wj(x)

K
2 j
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Bandeletization
K2j

0 L
x1

x2

xj n fj(x) = f ⋆ ψk
j (wj(x))

∣

∣

∣

∣

∂a+bfj(x1, x2)

∂ax1 ∂bx2

∣

∣

∣

∣

6 C 2−bj 2−aj/α .

Approximation from M wavelets of an anisotropic wavelet
basis {ψj1,n1

(x1)ψj2,n2
(x2)}j1,n1,j2,n2

:

2j1

2j2

‖fj − fj,M‖2
6 CM−α .
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Irregularly Sampled Alpert Multiwavelets
Alpert discontinuous polynomial multiresolution
approximation:
Vj =

{

f : f is a polynomial of degree p on [m2j, (m+ 1)2j)
}

m2j

(m+1)2j

f [k]

ψj,m[k]

On each interval of size 2j there are (p+ 1) wavelets having
(p+ 1) vanishing moments.

Alpert fast wavelet transform is O(N) for N irregularly spaced
samples.
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2D Discrete Alpert Multiwavelets

2p  points
2

2p  points
2

(xk, yk)

2ℓ

x

y
(p + 1)2

points

(p + 1)2

points

On each slice take basis vectors (xi
ky

j

k) for i, j = 0 . . . p.

On each slice same 1D fast O(n) algorithm.

Stable with respect to sampling location.

Scaling function Wavelet function

X X

YY
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Bandeletization with 2D Alpert Wavelets

K2j

0 L
x1

x2

xj n f̄j[n] = fj(xj,n) ∈ RNj

Approximation of f̄j[n] in a 2D anisotropic Alpert wavelet
basis {aj,m[n]}06n<Nj

:

f̄j,M [n] =
∑

|〈f̄j ,am〉|>TM

〈f̄j, aj,m〉 aj,m[n] .

Requires O(Nj) operations and

‖f̄j − f̄j,M‖2
6 CM−α .

Similar to V2 neurons.
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Second Generation Bandelets

bk
j,m(x) =

Nj
∑

n=1

aj,m[n]ψk
j,n(x) .

Bandelet orthonormal basis:
{

ψk
j,n

}

k,j,n
∪
{

bk
j,m

}

k,j,m
.

ff ∗ ψk
j (x)
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Multiscale Geometry

wj (x)

xj n
′



f̃ ∗ θs

W

W
- wavelet coefficients are in a band 

  of width 

-          is parameterized with 

  a normal subdivision  
  [Daubechies, Runborg, Sweldens]

cj−1

cj−1

= max(2j K,s)−1

- detection threshold  Dj−1
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Dyadic Segmentation

Total number of bandelet, wavelet and geometric coefficients:

M =
∑

j

Mj =
∑

j

(

MBj
+MWj

+MGj

)

Best basis (geometry) computed by minimizing
‖f − fM‖2 + T 2M :

‖f−fM‖2+T 2M =
∑

j





∑

|bj,m|<T

|bj,m|2 +
∑

|wj,m|<T

|wj,m|2 + T 2Mj





Computed with O(N log2N) operations with a CART
algorithm.
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Bandelet Representation

Neighbor square regions
are unified if it decreases
‖f − fM‖2 + T 2M .

A bandelet representation includes:

Beginning and ending points of bands at each scale.

Geometric wavelet coefficients that specify each band.

Bandelet coefficients in each band.

Wavelet coefficients outside all bands.
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Bandelet Approximation Theorem

Gabriel Peyré

Theorem: Suppose that f̃ is C
α away from

“edges” that are piecewise C
α.

If f = f̃ or f = f̃ ⋆ θs then a bandelet
approximation fM , with M = MB + MW +
MG, satisfies

‖f − fM‖2
6 CM−α .

Optimal (unknown) decay exponent α.
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Numerical Experiments

Reconstruction with M/N2=0.45% of coefficients|〈f, ψjn〉| > T

Wavelets Bandelets

BandeletsWavelets
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Conclusion

Geometric image approximations requires a geometric
extension of harmonic analysis tools.

A multiscale approach to geometry is needed for complex
surfaces.

What are the “natural” functional spaces ?

Applications to most image processing:

Still image coding.

Denoising and restoration by thresholding.

Video coding.

Adapted to pattern recognition.

Admissible for physiology of vision ?
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ID Photo: easy way of authentification.

But easy to forge.

Secured solution: digital picture plus cryptology and digital
signature.

But limited capacity of storage.

2D Barcode (500-800 bytes), Contactless card (up to 32
kbytes), Smartcard (up to 512 kbytes).

Let It Wave: image compression codec adapted to the
geometry of faces.
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Complete system: from the camera to the compressed image
through a reframing.

Detection of the face and its geometry.

Reframing.

Compression (750 bytes).
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