Geometric Image Representation with Bandelets

E. LE PENNEC,

Ch. Dossal, S. Mallat, G. Peyré

CMAP (École Polytechnique) – Let It Wave – LPMA (Université Paris 7)

Signal processing requires to build sparse signal representations for compression, restoration, pattern recognition...

- Signal processing requires to build sparse signal representations for compression, restoration, pattern recognition...
- Sparsity is derived from regularity.

- Signal processing requires to build sparse signal representations for compression, restoration, pattern recognition...
- Sparsity is derived from regularity.
- Need to take advantage of geometrical image regularity to improve representations.

- Signal processing requires to build sparse signal representations for compression, restoration, pattern recognition...
- Sparsity is derived from regularity.
- Need to take advantage of geometrical image regularity to improve representations.
- Building harmonic analysis representations adapted to complex geometry.

An ill-posed problem.

- An ill-posed problem.
- Edges are blurred transitions:

- An ill-posed problem.
- Edges are blurred transitions:

- An ill-posed problem.
- Edges are blurred transitions:

- An ill-posed problem.
- Edges are blurred transitions:

Scale of geometric regularity:

- An ill-posed problem.
- Edges are blurred transitions:

Scale of geometric regularity:

- An ill-posed problem.
- Edges are blurred transitions:

Scale of geometric regularity:

- An ill-posed problem.
- Edges are blurred transitions:

Scale of geometric regularity:

How can the estimation of the geometry become well-posed ?

Sparse representation and wavelets.

- Sparse representation and wavelets.
- Geometric representations.

- Sparse representation and wavelets.
- Geometric representations.
- Bandelets and non linear approximation.

- Sparse representation and wavelets.
- Geometric representations.
- Bandelets and non linear approximation.
- Application to compression and denoising.

• Decomposition in an orthonormal basis $\mathbf{B} = \{g_m\}_{m \in \mathbb{N}}$

$$f = \sum_{m \in \mathbb{N}} \langle f, g_m \rangle g_m \; .$$

• Decomposition in an orthonormal basis $\mathbf{B} = \{g_m\}_{m \in \mathbb{N}}$

$$f = \sum_{m \in \mathbb{N}} \langle f, g_m \rangle g_m \; .$$

 \checkmark Approximation with M vectors chosen adaptively

$$f_M = \sum_{m \in I_M} \langle f, g_m \rangle g_m \,.$$

• Decomposition in an orthonormal basis $\mathbf{B} = \{g_m\}_{m \in \mathbb{N}}$

$$f = \sum_{m \in \mathbb{N}} \langle f, g_m \rangle g_m \; .$$

 \checkmark Approximation with M vectors chosen adaptively

$$f_M = \sum_{m \in I_M} \langle f, g_m
angle g_m$$
.
To minimize $\|f - f_M\|^2 = \sum_{m
ot \in I_M} |\langle f, g_m
angle|^2$,

select the M largest inner products:

 $I_M = \{m, |\langle f, g_m \rangle| > T_M\}$: thresholding

• Decomposition in an orthonormal basis $\mathbf{B} = \{g_m\}_{m \in \mathbb{N}}$

$$f = \sum_{m \in \mathbb{N}} \langle f, g_m \rangle g_m \; .$$

 \checkmark Approximation with M vectors chosen adaptively

$$f_M = \sum_{m \in I_M} \langle f, g_m \rangle g_m \,.$$
In minimize
$$\|f - f_M\|^2 = \sum |\langle f, g_m \rangle|^2,$$

select the M largest inner products:

 $I_M = \{m, |\langle f, g_m \rangle| > T_M\}$: thresholding

• Problem: Given that $f \in \Theta$, how to choose B so that $\|f - f_M\|^2 \leq CM^{-\beta}$ with β large ?

Images are decomposed in a two-dimensional wavelet basis and larger coefficients are kept (JPEG-2000).

Images are decomposed in a two-dimensional wavelet basis and larger coefficients are kept (JPEG-2000).

● (*Cohen, DeVore, Petrushev, Xue*): Optimal for bounded variation functions: $||f - f_M||^2 \leq C M^{-1}$.

Images are decomposed in a two-dimensional wavelet basis and larger coefficients are kept (JPEG-2000).

- (Cohen, DeVore, Petrushev, Xue): Optimal for bounded variation functions: $||f f_M||^2 \leq C M^{-1}$.
- But: does not take advantage of any geometric regularity.

Wavelet Approximation with Edges

Wavelet Approximation with Edges

• Approximations of f which is \mathbf{C}^{α} away from \mathbf{C}^{α} "edge" curves:

Wavelet Approximation with Edges

• Approximations of f which is \mathbf{C}^{α} away from \mathbf{C}^{α} "edge" curves:

• with M wavelets: $||f - f_M||^2 \leq C M^{-1}$.

• Approximations of f which is \mathbf{C}^{α} away from \mathbf{C}^{α} "edge" curves:

• Approximations of f which is \mathbf{C}^{α} away from \mathbf{C}^{α} "edge" curves:

• Piecewise linear approximation over M adapted triangles: if $\alpha \ge 2$ then $||f - f_M||^2 \le C M^{-2}$,

Approximations of f which is C^α away from C^α "edge" curves:

- Piecewise linear approximation over M adapted triangles: if $\alpha \ge 2$ then $||f - f_M||^2 \le C M^{-2}$,
- Higher order approximation over M adapted "elements": $\|f - f_M\|^2 \leq C M^{-\alpha}$.
- Approximations of $f = \tilde{f} \star h_s$ which:
 - f is \mathbf{C}^{α} away from \mathbf{C}^{α} "edge" curves ($\alpha \ge 2$):
 - h_s is a regularization kernel of size s

- Approximations of $f = \tilde{f} \star h_s$ which:
 - f is \mathbf{C}^{α} away from \mathbf{C}^{α} "edge" curves ($\alpha \ge 2$):
 - h_s is a regularization kernel of size s

- Approximations of $f = \tilde{f} \star h_s$ which:
 - f is \mathbf{C}^{α} away from \mathbf{C}^{α} "edge" curves ($\alpha \ge 2$):
 - h_s is a regularization kernel of size s

• With M adaptive triangles: $||f - f_M||^2 \leq C M^{-2}$.

- Approximations of $f = \tilde{f} \star h_s$ which:
 - f is \mathbf{C}^{α} away from \mathbf{C}^{α} "edge" curves ($\alpha \ge 2$):
 - h_s is a regularization kernel of size s

• With M adaptive triangles: $||f - f_M||^2 \leq C M^{-2}$.

 $s_{1/4}^{1/4}M_{1/2}^{1/2}$

Difficult to find optimal approximations but good greedy solutions (*Dekel, Demaret, Dyn, Iske*).

• Curvelets define tight frames of $L^2[0,1]^2$ with elongated and rotated elements (*Candes, Donoho*): $\{c_j(R_\theta x - \eta)\}_{j,\theta,\eta}$

• Curvelets define tight frames of $L^2[0,1]^2$ with elongated and rotated elements (*Candes, Donoho*): $\{c_j(R_\theta x - \eta)\}_{j,\theta,\eta}$

• If f is \mathbb{C}^{α} away from \mathbb{C}^{α} "edges" then with M curvelets: if $\alpha \ge 2$ then $\|f - f_M\|^2 \le C (\log M)^3 M^{-2}$.

• Curvelets define tight frames of $L^2[0,1]^2$ with elongated and rotated elements (*Candes, Donoho*): $\{c_j(R_\theta x - \eta)\}_{j,\theta,\eta}$

• If f is \mathbb{C}^{α} away from \mathbb{C}^{α} "edges" then with M curvelets: if $\alpha \ge 2$ then $\|f - f_M\|^2 \le C (\log M)^3 M^{-2}$.

• Optimal for $\alpha = 2$.

• Curvelets define tight frames of $L^2[0,1]^2$ with elongated and rotated elements (*Candes, Donoho*): $\{c_j(R_\theta x - \eta)\}_{j,\theta,\eta}$

- If f is \mathbb{C}^{α} away from \mathbb{C}^{α} "edges" then with M curvelets: if $\alpha \ge 2$ then $\|f - f_M\|^2 \le C (\log M)^3 M^{-2}$.
- Optimal for $\alpha = 2$.
- Difficulty to build discrete orthogonal/Riesz bases: (Vetterli & Minh Do).

Return to Wavelet Coefficients

Return to Wavelet Coefficients

At each scale, how to approximate the vector of non-zero wavelet coefficients (chaotic behavior) ?

- At each scale, how to approximate the vector of non-zero wavelet coefficients (chaotic behavior) ?
- Use of parameterized models projected over wavelets: "edgelets" and "edgeprints" by *Baraniuk, Romberg, Wakin* and *Dragotti, Vetterli*: discontinuities along parameterized curves.

- At each scale, how to approximate the vector of non-zero wavelet coefficients (chaotic behavior) ?
- Use of parameterized models projected over wavelets: "edgelets" and "edgeprints" by *Baraniuk, Romberg, Wakin* and *Dragotti, Vetterli*: discontinuities along parameterized curves.
- Difficult to parameterize smooth edges $f = \tilde{f} \star \theta_s$.

- At each scale, how to approximate the vector of non-zero wavelet coefficients (chaotic behavior) ?
- Use of parameterized models projected over wavelets: "edgelets" and "edgeprints" by *Baraniuk, Romberg, Wakin* and *Dragotti, Vetterli*: discontinuities along parameterized curves.
- Difficult to parameterize smooth edges $f = \tilde{f} \star \theta_s$.
- Modification of the wavelet transform (Cohen).

- At each scale, how to approximate the vector of non-zero wavelet coefficients (chaotic behavior) ?
- Use of parameterized models projected over wavelets: "edgelets" and "edgeprints" by *Baraniuk, Romberg, Wakin* and *Dragotti, Vetterli*: discontinuities along parameterized curves.
- Difficult to parameterize smooth edges $f = \tilde{f} \star \theta_s$.
- Modification of the wavelet transform (Cohen).
- Bandelets NG (Peyré) (more information in Zürich).

By parts regular functions with discontinuities along regular curves:

By parts regular functions with discontinuities along regular curves:

True discontinuities:

By parts regular functions with discontinuities along regular curves:

 au_{x_0} $7x_{0}, \perp$ x_0 True discontinuities: Smoothed discontinuities:

• \mathbf{C}^{α} Horizon Model of Donoho revisited.

- \mathbf{C}^{α} Horizon Model of Donoho revisited.
- \mathbf{C}^{α} Geometrically Regular:

•
$$f = \tilde{f}$$
 or $f = \tilde{f} \star h$ with $\tilde{f} \in \mathbf{C}^{\alpha}(\Lambda)$ for $\Lambda = [0, 1]^2 - \{\mathcal{C}_{\gamma}\}_{1 \leqslant \gamma \leqslant G}$,

- the blurring kernel h is \mathbf{C}^{α} , compactly supported in $[-s,s]^2$ and $\|h\|_{\mathbf{C}^{\alpha}} \leqslant s^{-(2+\alpha)}$.
- the edge curves C_{γ} are α differentiable and do not intersect tangentially.

• Geometric flow: vector field $\vec{\tau}(x_1, x_2)$ giving local direction of regularity of the image.

- Geometric flow: vector field $\vec{\tau}(x_1, x_2)$ giving local direction of regularity of the image.
- In a region, the flow is either vertically or horizontally parallel.

- Geometric flow: vector field $\vec{\tau}(x_1, x_2)$ giving local direction of regularity of the image.
- In a region, the flow is either vertically or horizontally parallel.

The image is segmented in such regions:

Warped Wavelet Basis Let the flow be vertically parallel:

 $\vec{\tau}(x_1, x_2) = (1, c'(x_1)).$

$$c(x_1) = \int_{x_{1,\min}}^{x_1} c'(u) \, \mathrm{d}u$$

Let the flow be vertically parallel:

 $\vec{\tau}(x_1, x_2) = (1, c'(x_1)).$

$$c(x_1) = \int_{x_{1,\min}}^{x_1} c'(u) \, \mathrm{d}u$$

• For a given x_2 , $f(x_1, x_2 + c(x_1))$ is a regular function of x_1 .

Let the flow be vertically parallel:

 $\vec{\tau}(x_1, x_2) = (1, c'(x_1)).$

$$c(x_1) = \int_{x_{1,\min}}^{x_1} c'(u) \, \mathrm{d}u$$

• For a given x_2 , $f(x_1, x_2 + c(x_1))$ is a regular function of x_1 . • $\langle f(x_1, x_2 + c(x_1)), \Psi(x_1, x_2) \rangle = \langle f(x_1, x_2), \Psi(x_1, x_2 - c(x_1)) \rangle$

Let the flow be vertically parallel:

 $\vec{\tau}(x_1, x_2) = (1, c'(x_1)).$

 $c(x_1) = \int_{x_{1,\min}}^{x_1} c'(u) \, \mathrm{d}u$

- For a given x_2 , $f(x_1, x_2 + c(x_1))$ is a regular function of x_1 . • $\langle f(x_1, x_2 + c(x_1)), \Psi(x_1, x_2) \rangle = \langle f(x_1, x_2), \Psi(x_1, x_2 - c(x_1)) \rangle$
- Decomposition in a *warped wavelet basis* of $L^2(\Omega)$:

$$\left\{ \begin{array}{ccc} \phi_{j,m_1}(x_1) \,\psi_{j,m_2}(x_2 - c(x_1)) &, \quad \psi_{j,m_1}(x_1) \,\phi_{j,m_2}(x_2 - c(x_1)) \\ &, \quad \psi_{j,m_1}(x_1) \,\psi_{j,m_2}(x_2 - c(x_1)) \end{array} \right\} .$$

Bandeletization

Bandeletization

Basis function should have vanishing moments along x_1 (flow direction).
Bandeletization

Basis function should have vanishing moments along x_1 (flow direction).

Bandeletization

- Basis function should have vanishing moments along x_1 (flow direction).
- Bandeletization: replace $\{\phi_{j,m_1}(x_1)\}_{m_1}$ with a wavelet family $\{\psi_{l,m_1}(x_1)\}_{l>j,m_1}$ that spans the same space.
- Warped wavelet basis of $L^2(\Omega)$:

$$\left. \begin{array}{c} \phi_{j,m_1}(x_1) \,\psi_{j,m_2}(x_2 - c(x_1)) &, \quad \psi_{j,m_1}(x_1) \,\phi_{j,m_2}(x_2 - c(x_1)) \\ &, \quad \psi_{j,m_1}(x_1) \,\psi_{j,m_2}(x_2 - c(x_1)) \end{array} \right\}_{j}$$

Bandeletization

- Basis function should have vanishing moments along x_1 (flow direction).
- Bandeletization: replace $\{\phi_{j,m_1}(x_1)\}_{m_1}$ with a wavelet family $\{\psi_{l,m_1}(x_1)\}_{l>j,m_1}$ that spans the same space.
- Bandelet basis of $L^2(\Omega)$:

$$\left\{\begin{array}{ccc}\psi_{l,m_{1}}(x_{1})\psi_{j,m_{2}}(x_{2}-c(x_{1})) &, &\psi_{j,m_{1}}(x_{1})\phi_{j,m_{2}}(x_{2}-c(x_{1})) \\ &, &\psi_{j,m_{1}}(x_{1})\psi_{j,m_{2}}(x_{2}-c(x_{1}))\end{array}\right\}_{\substack{j,l>j\\m_{1},m_{2}}}$$

Anisotropic

16-1

q

- Image support segmented in regions with either
 - a bandelet basis with a vertically parallel flow,
 - a bandelet basis with a horizontally parallel flow,
 - a wavelet basis (isotropic regularity).

- Image support segmented in regions with either
 - a bandelet basis with a vertically parallel flow,
 - a bandelet basis with a horizontally parallel flow,
 - a wavelet basis (isotropic regularity).

- Fast bandelet transform $(O(N^2))$:
 - resampling, fast warped wavelet transform, bandeletization.

- Image support segmented in regions with either
 - a bandelet basis with a vertically parallel flow,
 - a bandelet basis with a horizontally parallel flow,
 - a wavelet basis (isotropic regularity).

- Fast bandelet transform $(O(N^2))$:
 - resampling, fast warped wavelet transform, bandeletization.
- No blocking effect with an adapted lifting scheme.

Flow Determination

• A vertically parallel flow $\vec{\tau}(x_1, x_2) = (1, c'(x_1))$ in Ω is parameterized by

$$c'(x) = \sum_{n=1}^{L2^{-l}} \alpha_n \,\phi(2^{-l}x - n)$$

and the $L 2^{-l}$ parameters α_n .

• A vertically parallel flow $\vec{\tau}(x_1, x_2) = (1, c'(x_1))$ in Ω is parameterized by

$$c'(x) = \sum_{n=1}^{L2^{-l}} \alpha_n \,\phi(2^{-l}x - n)$$

and the $L 2^{-l}$ parameters α_n .

Minimization of

$$\int_{\Omega} \left| \nabla f(x_1, x_2) \cdot \vec{\tau}(x_1, x_2) \right|^2 \mathrm{d}x_1 \mathrm{d}x_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 \mathrm{d}x_1 \mathrm{d}x_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 \mathrm{d}x_1 \mathrm{d}x_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 \mathrm{d}x_1 \mathrm{d}x_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 \mathrm{d}x_1 \mathrm{d}x_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 \mathrm{d}x_1 \mathrm{d}x_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 \mathrm{d}x_1 \mathrm{d}x_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 \mathrm{d}x_1 \mathrm{d}x_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 \mathrm{d}x_1 \mathrm{d}x_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 \mathrm{d}x_1 \mathrm{d}x_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 \mathrm{d}x_1 \mathrm{d}x_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 \mathrm{d}x_1 \mathrm{d}x_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 \mathrm{d}x_1 \mathrm{d}x_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 \mathrm{d}x_1 \mathrm{d}x_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 \mathrm{d}x_1 \mathrm{d}x_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 \mathrm{d}x_1 \mathrm{d}x_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 \mathrm{d}x_1 \mathrm{d}x_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 \mathrm{d}x_1 \mathrm{d}x_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 \mathrm{d}x_1 \mathrm{d}x_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 \mathrm{d}x_1 \mathrm{d}x_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 \mathrm{d}x_1 \mathrm{d}x_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 \mathrm{d}x_1 \mathrm{d}x_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 \mathrm{d}x_1 \mathrm{d}x_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 \mathrm{d}x_1 \mathrm{d}x_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 \mathrm{d}x_1 \mathrm{d}x_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 \mathrm{d}x_1 \mathrm{d}x_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 \mathrm{d}x_1 \mathrm{d}x_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 \mathrm{d}x_1 \mathrm{d}x_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 \mathrm{d}x_1 \mathrm{d}x_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 \mathrm{d}x_1 \mathrm{d}x_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1,$$

 \checkmark Scale 2^l adapted to the regularity of the image along the flow:

• Scale 2^l adapted to the regularity of the image along the flow:

• Scale 2^l adapted to the regularity of the image along the flow:

M Term Approximation

M Term Approximation

- A bandelet approximation is specified by:
 - ${\scriptstyle \bullet }$ a dyadic squares segmentation given by the M_s interior nodes of a quadtree,
 - and inside each square Ω_i of the segmentation by::
 - $M_{g,i}$ coefficients for the geometric flow,
 - $M_{b,i}$ bandelets coefficients above a threshold T.

M Term Approximation

- A bandelet approximation is specified by:
 - a dyadic squares segmentation given by the M_s interior nodes of a quadtree,
 - and inside each square Ω_i of the segmentation by::
 - $M_{g,i}$ coefficients for the geometric flow,
 - $M_{b,i}$ bandelets coefficients above a threshold T.

Total number of parameters:

$$\dot{M} = M_s + \sum_i \left(M_{g,i} + M_{b,i} \right) \,.$$

Optimization

• Minimization of $||f - f_M||^2$ for a given number of parameters M.

- Minimization of $||f f_M||^2$ for a given number of parameters M.
- Lagrangian approach: best geometric segmented flow that minimizes

$$||f - f_M||^2 + T^2 M$$
.

Optimization

- Minimization of $||f f_M||^2$ for a given number of parameters M.
- Lagrangian approach: best geometric segmented flow that minimizes

$$||f - f_M||^2 + T^2 M$$
.

Fast algorithm (CART): Bottom to top dynamic programming on the quadtree segmentation.

Optimization

- Minimization of $||f f_M||^2$ for a given number of parameters M.
- Lagrangian approach: best geometric segmented flow that minimizes

$$||f - f_M||^2 + T^2 M$$
.

- Fast algorithm (CART): Bottom to top dynamic programming on the quadtree segmentation.
- Complexity: $O(N^2 (\log N)^2)$ for N^2 pixels.

Results

M=2650

$\mathsf{PSNR} = 45,97\,\mathsf{dB}$

Bandelets

$\mathsf{PSNR} = 40,\!17\,\mathsf{dB}$

Wavelets

Theorem: If f is \mathbf{C}^{α} geometrically regular ($f = \tilde{f}$ or $f = \tilde{f} \star h$ with $\tilde{f} \mathbf{C}^{\alpha}$ outside a set of curves, that are by parts \mathbf{C}^{α} , with some non tangency conditions) then

$$\|f - f_M\|^2 \leqslant C M^{-\alpha}$$

Theorem: If f is \mathbf{C}^{α} geometrically regular ($f = \tilde{f}$ or $f = \tilde{f} \star h$ with $\tilde{f} \mathbf{C}^{\alpha}$ outside a set of curves, that are by parts \mathbf{C}^{α} , with some non tangency conditions) then

$$\|f - f_M\|^2 \leqslant C M^{-\alpha}$$

• Unknown degree of smoothness α .

Theorem: If f is \mathbf{C}^{α} geometrically regular ($f = \tilde{f}$ or $f = \tilde{f} \star h$ with $\tilde{f} \mathbf{C}^{\alpha}$ outside a set of curves, that are by parts \mathbf{C}^{α} , with some non tangency conditions) then

$$\|f - f_M\|^2 \leqslant C M^{-\alpha}$$

- Unknown degree of smoothness α .
- Optimal decay exponent α .

Theorem: If f is \mathbf{C}^{α} geometrically regular ($f = \tilde{f}$ or $f = \tilde{f} \star h$ with $\tilde{f} \mathbf{C}^{\alpha}$ outside a set of curves, that are by parts \mathbf{C}^{α} , with some non tangency conditions) then

$$\|f - f_M\|^2 \leqslant C M^{-\alpha}$$

- Unknown degree of smoothness α .
- Optimal decay exponent α .
- Improvement over isotropic wavelets for which

$$\|f - f_M\|^2 \leqslant C M^{-1}$$

Theorem: If f is \mathbf{C}^{α} geometrically regular ($f = \tilde{f}$ or $f = \tilde{f} \star h$ with $\tilde{f} \mathbf{C}^{\alpha}$ outside a set of curves, that are by parts \mathbf{C}^{α} , with some non tangency conditions) then

$$\|f - f_M\|^2 \leqslant C M^{-\alpha}$$

- Unknown degree of smoothness α .
- Optimal decay exponent α .
- Improvement over isotropic wavelets for which

$$\|f - f_M\|^2 \leqslant C M^{-1}$$

Improvement over curvelets for which

$$||f - f_M||^2 \leq C (\log M)^3 M^{-2}$$

• A compressed image \tilde{f} is calculated from f by:

- A compressed image \tilde{f} is calculated from f by:
 - Quantizing uniformly all bandelet coefficients with step size $\Delta.$

- A compressed image \tilde{f} is calculated from f by:
 - Quantizing uniformly all bandelet coefficients with step size $\Delta.$
 - Entropy coding all parameters with a total of R bits.

- A compressed image \tilde{f} is calculated from f by:
 - Quantizing uniformly all bandelet coefficients with step size $\Delta.$
 - Entropy coding all parameters with a total of R bits.
 - Optimizing the geometric flow to minimize the Lagrangian:

$$\|f - \tilde{f}\|^2 + \lambda \Delta^2 R$$
 with $\lambda \approx 0.107$
Image Compression

- A compressed image \tilde{f} is calculated from f by:
 - Quantizing uniformly all bandelet coefficients with step size $\Delta.$
 - Entropy coding all parameters with a total of R bits.
 - Optimizing the geometric flow to minimize the Lagrangian:

$$\|f - \tilde{f}\|^2 + \lambda \Delta^2 R$$
 with $\lambda \approx 0.107$

• $O(N^2(\log_2 N)^2)$ operations.

Original

Bandelets

Wavelets

Distortion-Rate

 $R/N^2=0.40~{
m bpp}$

Original

Bandelets

Wavelets

• Estimate an image f from the noisy data

X = f + W where W is Gaussian white of variance σ^2 .

• Estimate an image f from the noisy data

X = f + W where W is Gaussian white of variance σ^2 .

• Thresholding estimator in a basis $\mathbf{B} = \{g_m\}_{1 \leq m \leq N^2}$:

$$F = \sum_{|\langle X, g_m \rangle| > T} \langle X, g_m \rangle g_m = P_{\mathcal{M}}(X) \; .$$

• Estimate an image f from the noisy data

X = f + W where W is Gaussian white of variance σ^2 .

• Thresholding estimator in a basis $\mathbf{B} = \{g_m\}_{1 \leq m \leq N^2}$:

$$F = \sum_{|\langle X, g_m \rangle| > T} \langle X, g_m \rangle g_m = P_{\mathcal{M}}(X) \; .$$

Model: subspace \mathcal{M} of a bandelet frame associated to a geometry.

• Estimate an image f from the noisy data

X = f + W where W is Gaussian white of variance σ^2 .

• Thresholding estimator in a basis $\mathbf{B} = \{g_m\}_{1 \leq m \leq N^2}$:

$$F = \sum_{|\langle X, g_m \rangle| > T} \langle X, g_m \rangle g_m = P_{\mathcal{M}}(X) \; .$$

- Model: subspace \mathcal{M} of a bandelet frame associated to a geometry.
- The oracle model minimizes the risk $\mathsf{E}(||F f||^2)$.

• Estimate an image f from the noisy data

X = f + W where W is Gaussian white of variance σ^2 .

• Thresholding estimator in a basis $\mathbf{B} = \{g_m\}_{1 \leq m \leq N^2}$:

$$F = \sum_{|\langle X, g_m \rangle| > T} \langle X, g_m \rangle g_m = P_{\mathcal{M}}(X) \; .$$

- Model: subspace *M* of a bandelet frame associated to a geometry.
- The oracle model minimizes the risk $\mathsf{E}(||F f||^2)$.
- Design of a penalized estimator.

• MDL = Bayesian.

- MDL = Bayesian.
- Prior on the functions: $P(f) \propto 2^{-R}$ where R is the number of bits required to code the function.

- MDL = Bayesian.
- Prior on the functions: $P(f) \propto 2^{-R}$ where R is the number of bits required to code the function.
- Estimator selects the model that minimizes

$$\|X - F\|^2 + \lambda \,\sigma^2 \,R$$

- MDL = Bayesian.
- Prior on the functions: $P(f) \propto 2^{-R}$ where R is the number of bits required to code the function.
- Estimator selects the model that minimizes

$$\|X - F\|^2 + \lambda \,\sigma^2 \,R$$

Allows to reuse the compression algorithm almost directly.

- MDL = Bayesian.
- Prior on the functions: $P(f) \propto 2^{-R}$ where R is the number of bits required to code the function.
- Estimator selects the model that minimizes

$$\|X - F\|^2 + \lambda \,\sigma^2 \,R$$

- Allows to reuse the compression algorithm almost directly.
- No theoretical results but a practical algorithm with a flow estimation.

Noisy $(20.19 \, \mathrm{dB})$

Bandelets $(30.29 \, dB)$

Noisy $(20.19 \,\mathrm{dB})$

Bandelets $(30.29 \, dB)$

Noisy

Bandelets

Wavelets

Noisy $(20.19 \,\mathrm{dB})$

Bandelets $(27.68 \, dB)$

Wavelets $(25.79 \, dB)$

Noisy

Bandelets

Wavelets

How to obtain a theoretical result of convergence for a bandelet estimator (Ch. DOSSAL)?

- How to obtain a theoretical result of convergence for a bandelet estimator (Ch. DOSSAL)?
- Control on the total number ν of bandelets in all the different tested models.

- How to obtain a theoretical result of convergence for a bandelet estimator (Ch. DOSSAL)?
- Control on the total number ν of bandelets in all the different tested models.
- Minimizing of

$$-\|F\|^2 + \lambda \,\sigma^2 \left(\log \nu\right) M$$

gives an almost optimal result on the estimator risk.

• Estimate F obtained from Y = f + W, where W is a white noise of variance σ^2 , by minimizing $-\|F\|^2 + \lambda \sigma^2 (\log \nu) M$.

Estimate F obtained from Y = f + W, where W is a white noise of variance σ^2 , by minimizing $-\|F\|^2 + \lambda \sigma^2 (\log \nu) M$

Theorem: If f is \mathbf{C}^{α} geometrically regular ($f = \tilde{f}$ or $f = \tilde{f} \star h$ with $\tilde{f} \mathbf{C}^{\alpha}$ outside a set of curves, that are by parts \mathbf{C}^{α} with some non tangency conditions) then the estimate F satisfies

$$||f - F||^2 \leqslant C(\log \nu)^{\alpha/(\alpha+1)} (\log \log \nu)^{1/(\alpha+1)} \sigma^{2\alpha/(\alpha+1)}$$

with a probability greater than $1 - 2\nu^{-1/4}$.

- Estimate F obtained from Y = f + W, where W is a white noise of variance σ^2 , by minimizing $-\|F\|^2 + \lambda \sigma^2 (\log \nu) M$
 - **Theorem:** If f is \mathbf{C}^{α} geometrically regular ($f = \tilde{f}$ or $f = \tilde{f} \star h$ with $\tilde{f} \mathbf{C}^{\alpha}$ outside a set of curves, that are by parts \mathbf{C}^{α} with some non tangency conditions) then the estimate F satisfies

$$\|f - F\|^2 \leqslant C(\log \nu)^{\alpha/(\alpha+1)} (\log \log \nu)^{1/(\alpha+1)} \sigma^{2\alpha/(\alpha+1)}$$

with a probability greater than $1-2\nu^{-1/4}$.

• Unknown degree of smoothness α .

- Estimate F obtained from Y = f + W, where W is a white noise of variance σ^2 , by minimizing $-\|F\|^2 + \lambda \sigma^2 (\log \nu) M$
 - **Theorem:** If f is \mathbf{C}^{α} geometrically regular ($f = \tilde{f}$ or $f = \tilde{f} \star h$ with $\tilde{f} \mathbf{C}^{\alpha}$ outside a set of curves, that are by parts \mathbf{C}^{α} with some non tangency conditions) then the estimate F satisfies

$$\|f - F\|^2 \leqslant C(\log \nu)^{\alpha/(\alpha+1)} (\log \log \nu)^{1/(\alpha+1)} \sigma^{2\alpha/(\alpha+1)}$$

with a probability greater than $1 - 2\nu^{-1/4}$.

- Unknown degree of smoothness α .
- Near optimal decay exponent α .

- Estimate F obtained from Y = f + W, where W is a white noise of variance σ^2 , by minimizing $-\|F\|^2 + \lambda \sigma^2 (\log \nu) M$.
 - **Theorem:** If f is \mathbf{C}^{α} geometrically regular ($f = \tilde{f}$ or $f = \tilde{f} \star h$ with $\tilde{f} \mathbf{C}^{\alpha}$ outside a set of curves, that are by parts \mathbf{C}^{α} with some non tangency conditions) then the estimate F satisfies

$$\|f - F\|^2 \leqslant C(\log \nu)^{\alpha/(\alpha+1)} (\log \log \nu)^{1/(\alpha+1)} \sigma^{2\alpha/(\alpha+1)}$$

with a probability greater than $1 - 2\nu^{-1/4}$.

- Unknown degree of smoothness α .
- Near optimal decay exponent α .
- Sampling case: $Y(x_i) = f(x_i) + \epsilon(x_i)$ with ϵ a white noise of variance σ^2 : $\|f - F\|^2 \leq C \left(\frac{\log N}{N^2}\right)^{\alpha/(\alpha+1)} (\log \log N)^{1/(\alpha+1)}$

Bandelets provide sparse image representations in bases adapted to the image geometry.

- Bandelets provide sparse image representations in bases adapted to the image geometry.
- Applications to image processing:
 - Still image coding,
 - Denoising by thresholding.

- Bandelets provide sparse image representations in bases adapted to the image geometry.
- Applications to image processing:
 - Still image coding,
 - Denoising by thresholding.
- Theoretical support:
 - Non linear approximation theorem,
 - Quasi optimality of denoising process.
Conclusion

- Bandelets provide sparse image representations in bases adapted to the image geometry.
- Applications to image processing:
 - Still image coding,
 - Denoising by thresholding.
- Theoretical support:
 - Non linear approximation theorem,
 - Quasi optimality of denoising process.
- Still work in progress: deconvolution (*Ch. Dossal*), bandelets NG (*G. Peyré*).

Conclusion

- Bandelets provide sparse image representations in bases adapted to the image geometry.
- Applications to image processing:
 - Still image coding,
 - Denoising by thresholding.
- Theoretical support:
 - Non linear approximation theorem,
 - Quasi optimality of denoising process.
- Still work in progress: deconvolution (*Ch. Dossal*), bandelets NG (*G. Peyré*).
- More details on the true bandelets construction next week.