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Geometrical Image Representation

Signal processing requires to build sparse signal representations
for compression, restoration, pattern recognition...

Sparsity is derived from regularity.

Need to take advantage of geometrical image regularity to
improve representations.

Building harmonic analysis representations adapted to complex
geometry.
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Edge Detection

An ill-posed problem.

Edges are blurred transitions:

Scale of geometric regularity:

How can the estimation of the geometry
become well-posed ?
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Overview

Sparse representation and wavelets.

Geometric representations.

Bandelets and non linear approximation.

Application to compression and denoising.
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Sparse Representation in a Basis

Decomposition in an orthonormal basis B = {gm}m∈N

f =
∑

m∈N

〈f, gm〉 gm .

Approximation with M vectors chosen adaptively

fM =
∑

m∈IM

〈f, gm〉 gm .

To minimize ‖f − fM‖2 =
∑

m6∈IM

|〈f, gm〉|2,

select the M largest inner products:

IM = {m, |〈f, gm〉| > TM} : thresholding

Problem: Given that f ∈ Θ, how to choose B so that

‖f − fM ‖2
6 CM−β with β large ?
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Successes and Failures of Wavelet Bases

Images are decomposed in a two-dimensional wavelet basis
and larger coefficients are kept (JPEG-2000).

f |〈f, ψk
j,n〉| > TM fM

(Cohen, DeVore, Petrushev, Xue): Optimal for bounded

variation functions: ‖f − fM ‖2 6 CM−1.

But: does not take advantage of any geometric regularity.
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Wavelet Approximation with Edges

Approximations of f which is C
α away from C

α “edge”
curves:

2
j
∼ T ∼M

−1

with M wavelets: ‖f − fM‖2 6 CM−1.
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Geometric Finite Elements for Edges
Approximations of f which is C

α away from C
α “edge”

curves:

Piecewise linear approximation over M adapted triangles:
if α > 2 then ‖f − fM‖2 6 CM−2,

M
−1

M
−2

Higher order approximation over M adapted “elements”:
‖f − fM‖2 6 CM−α.

M
−1

M
−α
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Adaptive Triangulation for Smooth Edges

Approximations of f = f̃ ⋆ hs which:

f is C
α away from C

α “edge” curves (α > 2):

hs is a regularization kernel of size s

With M adaptive triangles: ‖f − fM‖2 6 CM−2.

s
1/ 4

M
1/ 2

s

triangles
s
1/ 4

M
−1/ 2

s
3/ 4

M
−1/ 2

Difficult to find optimal approximations but good greedy
solutions (Dekel,Demaret, Dyn, Iske).
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Curvelet Approximation with Edges

Curvelets define tight frames of L2[0, 1]2 with elongated and
rotated elements (Candes, Donoho): {cj(Rθx− η)}j,θ,η

If f is C
α away from C

α “edges” then with M curvelets:

if α > 2 then ‖f − fM‖2
6 C (logM)3 M−2.

Optimal for α = 2.

Difficulty to build discrete orthogonal/Riesz bases:
(Vetterli & Minh Do).
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Return to Wavelet Coefficients

2
j

2
j−1

At each scale, how to approximate the vector of non-zero

wavelet coefficients (chaotic behavior) ?

Use of parameterized models projected over wavelets:

“edgelets” and “edgeprints” by Baraniuk, Romberg, Wakin and

Dragotti, Vetterli : discontinuities along parameterized curves.

Difficult to parameterize smooth edges f = f̃ ⋆ θs.

Modification of the wavelet transform (Cohen).

Bandelets NG (Peyré) (more information in Zürich).
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Geometric Model 1

By parts regular functions with discontinuities along
regular curves:

True discontinuities:
x0

τx0

τx0,⊥

Smoothed discontinuities:
s

x0

τx0

τx0,⊥

s
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Geometric Model 2

C
α Horizon Model of Donoho revisited.

C
α Geometrically Regular:

f = f̃ or f = f̃ ⋆ h with f̃ ∈ C
α(Λ) for

Λ = [0, 1]2 − {Cγ}16γ6G,

the blurring kernel h is C
α, compactly supported in

[−s, s]2 and ‖h‖Cα 6 s−(2+α).

the edge curves Cγ are α differentiable and do not
intersect tangentially.
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Geometric Flow

Geometric flow: vector field ~τ(x1, x2) giving local direction of
regularity of the image.

In a region, the flow is either vertically or horizontally parallel.

The image is segmented in such regions:
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Warped Wavelet Basis
Let the flow be vertically parallel:

~τ(x1, x2) = (1 , c′(x1)).
x2

x1

c(x1) =
∫ x1

x1,min

c′(u) du

For a given x2, f(x1, x2 + c(x1)) is a regular function of x1.
〈

f(x1, x2 + c(x1)) , Ψ(x1, x2)
〉

=
〈

f(x1, x2) , Ψ(x1, x2 −

c(x1))
〉

Decomposition in a warped wavelet basis of L2(Ω):

{

φj,m1
(x1)ψj,m2

(x2 − c(x1)) , ψj,m1
(x1)φj,m2

(x2 − c(x1))

, ψj,m1
(x1)ψj,m2

(x2 − c(x1))

}

j,m1,m2
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Bandeletization

Basis function should have vanishing moments along x1 (flow
direction).

Bandeletization: replace {φj,m1
(x1)}m1

with a wavelet family
{ψl,m1

(x1)}l>j , m1
that spans the same space.

Bandelet basis of L2(Ω):

{

ψl,m1
(x1)ψj,m2

(x2 − c(x1)) , ψj,m1
(x1)φj,m2

(x2 − c(x1))

, ψj,m1
(x1)ψj,m2

(x2 − c(x1))

}

j,l>j
m1,m2

.

Anisotropic



d

16-1
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Segmented Bandelet Basis
Image support segmented in regions with either

a bandelet basis with a vertically parallel flow,

a bandelet basis with a horizontally parallel flow,

a wavelet basis (isotropic regularity).

Fast bandelet transform (O(N2)):

resampling, fast warped wavelet transform,
bandeletization.

No blocking effect with an adapted lifting scheme.
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Flow Determination
A vertically parallel flow ~τ(x1, x2) = (1, c′(x1)) in Ω is
parameterized by

c′(x) =
L2−l

∑

n=1

αn φ(2−lx− n)

2l 2ln

c
′(x)

and the L 2−l parameters αn.

Minimization of
∫

Ω

∣

∣

∣∇f(x1, x2) . ~τ(x1, x2)
∣

∣

∣

2

dx1dx2 =

∫

Ω

∣

∣

∣

∂f(x1, x2)

∂~τ(x1, x2)

∣

∣

∣

2

dx1dx2 .
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M Term Approximation

A bandelet approximation is specified by:

a dyadic squares segmentation given by the Ms interior
nodes of a quadtree,

and inside each square Ωi of the segmentation by::
Mg,i coefficients for the geometric flow,
Mb,i bandelets coefficients above a threshold T .

Total number of parameters:

M = Ms +
∑

i

(

Mg,i +Mb,i

)

.
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Optimization
Minimization of ‖f − fM‖2 for a given number of
parameters M .

Lagrangian approach: best geometric segmented flow that
minimizes

‖f − fM‖2 + T 2M .

Fast algorithm (CART): Bottom to top dynamic programming
on the quadtree segmentation.

Complexity: O(N2 (logN)2) for N2 pixels.
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Results

M=2650 PSNR = 45,97 dB PSNR = 40,17 dB

Bandelets Wavelets
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Theorem

Theorem: If f is C
α geometrically regular (f = f̃ or

f = f̃ ⋆ h with f̃ C
α outside a set of curves, that are by

parts C
α, with some non tangency conditions) then

‖f − fM‖2
6 CM−α .

Unknown degree of smoothness α.

Optimal decay exponent α.

Improvement over isotropic wavelets for which

‖f − fM‖2
6 CM−1 .

Improvement over curvelets for which

‖f − fM ‖2
6 C (logM)3 M−2 .
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Image Compression

A compressed image f̃ is calculated from f by:

Quantizing uniformly all bandelet coefficients with step
size ∆.

Entropy coding all parameters with a total of R bits.

Optimizing the geometric flow to minimize the Lagrangian:

‖f − f̃‖2 + λ∆2R with λ ≈ 0.107

O(N2(log2N)2) operations.
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Denoising

Estimate an image f from the noisy data

X = f +W where W is Gaussian white of variance σ2.

Thresholding estimator in a basis B = {gm}16m6N2:

F =
∑

|〈X,gm〉|>T

〈X, gm〉 gm = PM(X) .

Model: subspace M of a bandelet frame associated to a
geometry.

The oracle model minimizes the risk E
(

‖F − f‖2
)

.

Design of a penalized estimator.
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MDL Approach

MDL = Bayesian.

Prior on the functions: P (f) ∝ 2−R where R is the number of
bits required to code the function.

Estimator selects the model that minimizes

‖X − F‖2 + λσ2R

Allows to reuse the compression algorithm almost directly.

No theoretical results but a practical algorithm with a flow
estimation.
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Penalized Model Selection

How to obtain a theoretical result of convergence for a
bandelet estimator (Ch. Dossal)?

Control on the total number ν of bandelets in all the different
tested models.

Minimizing of

−‖F‖2 + λσ2 (log ν)M

gives an almost optimal result on the estimator risk.
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Theoretical Result
Estimate F obtained from Y = f +W , where W is a white
noise of variance σ2, by minimizing
−‖F‖2 + λσ2 (log ν)M .
Theorem: If f is C

α geometrically regular ( f = f̃ or

f = f̃ ⋆ h with f̃ C
α outside a set of curves, that are by

parts C
α with some non tangency conditions) then the

estimate F satisfies

‖f − F‖2
6 C(log ν)α/(α+1)(log log ν)1/(α+1)σ2α/(α+1)

with a probability greater than 1 − 2ν−1/4.

Unknown degree of smoothness α.

Near optimal decay exponent α.

Sampling case: Y (xi) = f(xi) + ǫ(xi) with ǫ a white noise of
variance σ2:

‖f − F‖2
6 C

(

logN

N2

)α/(α+1)

(log logN)1/(α+1)
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Conclusion

Bandelets provide sparse image representations in bases
adapted to the image geometry.

Applications to image processing:

Still image coding,

Denoising by thresholding.

Theoretical support:

Non linear approximation theorem,

Quasi optimality of denoising process.

Still work in progress: deconvolution (Ch. Dossal), bandelets
NG (G. Peyré).

More details on the true bandelets construction next

week.
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