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Geometrical Image Representation

Most signal processing applications require to build sparse
signal representations: compression, restauration, pattern
recognition...

Need to take advantage of geometrical image regularity to
Improve representations.

Second generation image coding dream: a bridge between
Image Processing and Computer Vision.

Building harmonic analysis representations adapted to complex
geometry.



Edge Detection



Edge Detection

W,

® An ill-posed problem.




Edge Detection

® An ill-posed problem.

® Edges are blurred singularities.




Edge Detection

® An ill-posed problem.

® Edges are blurred singularities.

® Where are the edges ?




9

Edge Detection

An ill-posed problem.

Edges are blurred singularities.

Where are the edges 7

How can the estimation of geometry become well-posed 7
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Sparse representations and wavelets.
Geometric flow and bandelet bases.
Approximations in bandelet bases.

Image compression.
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Sparse Representation in a Basis

Decomposition in an orthonormal basis B = {gm bmen

J = Z<fvgm>gm :

meN
Approximation with M vecteurs chosen adaptatively

mely

To minimize  [[f — furl? = 3 |/, 9m)
select the M largest inner products:

Ing = {m,|{f, gm)| > Ta} : thresholding.

Problem : How to choose the basis B so that
1f— full*> < CM™® with a large ?
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#® The family

» Vi (1) Yjiny (T2)

is an orthonormal basis of L2[0, 1]°.

{qu,m(:m)wj,nz(m) , wj,mm)aﬁj,m(xz)}
(j,n1,n2)EZ3



Separable 2D Wavelet Basis

#® The family

¢j,n1($1)¢j,n2(x2) ; wj,nl(xl) ¢j,n2(x2)
» Wi (T1) Yy, (T2)

is an orthonormal basis of L2/0. 1]2.

Djna (1) Vjns (2) Vjna (1) Do (72) Vina (1) Vi (z2)

X2
K Isotropic
V|-~ Wavelets
| Support
29"712 11
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Successes and Failures of Wavelet Bases

® |mages are decomposed in a two-dimensional wavelet basis
and larger coefficients are kept (JPEG-2000).

M largest coeff.

® (Cohen, DeVore, Petrushev, Xue): Optimal for bounded
variation functions: [|f — fa||* < O || f|lry M1

® But: does not take advantage of any geometric regularity.
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Using the Geometrical Regularity

® Approximations of f which is C% away from “edges” which are
piecewise C% curves (a > 2):

b

s with M wavelets : ||f — full* <C M1, M2
s with M triangles : ||f — furll? < C M2,
s with M curvelets (Candes, Donoho)
|f = farll® < C (log M) M2,
s other approaches: (Cohen, Matei), (Kingsbury),
(Baraniuk), (Dragotti, Vetterli, Do)...

» with M higher order geometric elements : M-
If = fullP <C M@
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Segmented Geometric Flow

® Geometric flow: vector field 7(x1, x2) giving directions in
which the image is locally regular.

® In a region, the flow is parallel horizontally or vertically:

® The image is divided in multip
parallel:
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Warped Wavelet Basis in a Region

® Suppose that the flow is parallel vertically in €:

7(x1,20) = (1, d(x71)) .
Ty

® For x9 fixed, f(x1,22+ c(x1)) is a regular function of x;.

o (flxr,z2+c(x1)), Uz, 22)) = (f(x1,22), U(z1, 22 —c(21))) -
® We thus decompose f in a warped wavelet basis of L%(Q):

Gjmn (1) Vjme (X2 — c(21)) 5 Vi, (21) Gjoms (22 — c(21))
3 %‘,ml (331) wj,m2 (5132 — C(xl)) jma ms |
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#® Basis functions must have vanishing moments along x4
(direction of the flow).

® Bandeletization: replaces {¢;n, (1) }m, by a wavelet family
{¥1.m, (1) }1>7,m, that generates the same space.

® Warped wavelet basis of L?():

Ojomy (11) Yjma (T2 — (1)) 5 Yjma (T1) @jima (T2 — c(21))
; wj,m1 (5131) wj,ma (5132 - C<x1)) j

. . mi,ma2
Isotropic Isotropic



Bandeletization

® Basis functions must have vanishing moments along z;
(direction of the flow).

® Bandeletization: replaces {¢; (1) }m, by a wavelet family
{¥1.m, (1) }1>; m, that generates the same space.

® Resulting Bandelet basis of L2(0):

V1, (1) Voo (T2 — (1)) 5 Vjmi (1) @jme (22 — (1))

) ¢j,m1 (:Cl) wjamQ (ZC2 - C(ﬂjl)) j7l>j7
m1,ma2

Anisotropic Isotropic
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® A vertically parallel flow 7(xz1,z9) = (1, (z1)) in Q is
parameterized by:
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P T  ©0 O AN
n=1 | | | | —
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Computation of a Parameterized Flow

# A vertically parallel flow 7(xz1,z9) = (1, (z1)) in Q is
parameterized by:

\/C/(x)\/

L2t

R OO
n=1 | | | | | >

+—>

9! 2ln

by finding the L 2~! parameters «,, that minimize

2
/ (1, 22) . T(21, 22) | dridzy = /|8f o1, 22) ‘ dridzs .
Q2

or 5131,5132
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Scale
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M-Term Approximation

® A bandelet image approximation fj; is specified by:

» a dyadic square image segmentation, represented by the
My inside nodes of the segmentation quad-tree,

» within each square (); of the segmentation, by:
s M, ; coefficients of the geometric flow.
s M, ; bandelet coefficients above a threshold T

® Total number of parameters:

21

22

20

23

29

30

28

125|126

124|127

MM+Z
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Optimization of Bandelet Approximations

o o

Minimize ||f — fa]|? for a fixed number M of parameters.

Lagrangian approach: find the best segmentation and
geometric flow to minimize

If = full?+T° M .

Fast algorithm (CART): dynamic programming from bottom
to top of the segmentation quad-tree.

Computational complexity: O(N? (log N)?) for N? pixels.
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Approximation Theorem

Theorem: Suppose that f is C* away from “edges’ that
are piecewise C“ non tangent curves.

If f=for f=fxg (smoothing) then

If— fullP <CM™™ .

il i
FEEEFE

Unknown degree of smoothness «.

Optimal decay exponent «.

Improvement over separable wavelets for which
If = full> <C M~

Improvement over curvelets for which
1f — farll? < C(logy M)3 M2,
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Image Compression

Compression closely related to non linear approximation.

A compressed image f is obtained from f by:
» Choosing a segmentation and a quantized flow.

o Quantizing uniformly all bandelet coefficients with step
size A.

» Entropy coding all parameters with a total of R bits.

Optimization of the geometry (segmentation and flow) to
minimize the Lagrangian:

If — fII7 +XA*R  with A=~ 0.107
O(N? (logy N)?) operations.
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Conclusion

Bandelets provide sparse image representations in bases
adapted to the image geometry.

Applications to most image processing:

o Still image coding.

» Denoising and restoration by thresholding.

» Video coding with regions.

» Adapted to pattern recognition.

Mathematical issues:

» Minimax optimality of the penalized estimation.

» Approximation theorems over adapted functional spaces.
» Extension to d-dimensional spaces with d > 2.

Paper: http://www.cmap.polytechnique.fr/“lepennec
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