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Geometrical Image Representation

Most signal processing applications require to build sparse
signal representations: compression, restauration, pattern
recognition...

Need to take advantage of geometrical image regularity to
improve representations.

Second generation image coding dream: a bridge between
Image Processing and Computer Vision.

Building harmonic analysis representations adapted to complex
geometry.
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Edge Detection

An ill-posed problem.

Edges are blurred singularities.

Where are the edges ?

How can the estimation of geometry become well-posed ?
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Sparse representations and wavelets.

Geometric flow and bandelet bases.

Approximations in bandelet bases.

Image compression.
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Sparse Representation in a Basis

Decomposition in an orthonormal basis B = {gm}m∈N

f =
∑

m∈N

〈f, gm〉 gm .

Approximation with M vecteurs chosen adaptatively

fM =
∑

m∈IM

〈f, gm〉 gm .

To minimize ‖f − fM‖2 =
∑

m6∈IM

|〈f, gm〉|2,

select the M largest inner products:

IM = {m, |〈f, gm〉| > TM} : thresholding.

Problem : How to choose the basis B so that

‖f − fM‖2 6 CM−α with α large ?
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Separable 2D Wavelet Basis

The family

{

φj,n1
(x1)ψj,n2

(x2) , ψj,n1
(x1)φj,n2

(x2)

, ψj,n1
(x1)ψj,n2

(x2)

}

(j,n1,n2)∈Z3

is an orthonormal basis of L2[0, 1]2.
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Successes and Failures of Wavelet Bases

Images are decomposed in a two-dimensional wavelet basis
and larger coefficients are kept (JPEG-2000).

f M largest coeff. fM

(Cohen, DeVore, Petrushev, Xue): Optimal for bounded

variation functions: ‖f − fM‖2 6 C ‖f‖TV M
−1.

But: does not take advantage of any geometric regularity.
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Using the Geometrical Regularity
Approximations of f which is Cα away from“edges”which are
piecewise C

α curves (α > 2):

with M wavelets : ‖f − fM‖2 6 CM−1,

with M triangles : ‖f − fM‖2 6 CM−2,

M−2

M−1with M curvelets (Candes, Donoho) :

‖f − fM‖2 6 C (logM)3M−2,

other approaches: (Cohen, Matei), (Kingsbury),
(Baraniuk), (Dragotti, Vetterli, Do)...

with M higher order geometric elements :
‖f − fM‖2 6 CM−α

M−1

M−α
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Segmented Geometric Flow

Geometric flow: vector field ~τ(x1, x2) giving directions in
which the image is locally regular.

In a region, the flow is parallel horizontally or vertically:

The image is divided in multiple regions where the flow is
parallel:
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Warped Wavelet Basis in a Region

Suppose that the flow is parallel vertically in Ω:
~τ(x1, x2) = (1 , c′(x1)) .

x2

x1

c(x1) =
∫ x1

x1,min

c′(u) du

For x2 fixed, f(x1, x2 + c(x1)) is a regular function of x1.
〈

f(x1, x2+ c(x1)) , Ψ(x1, x2)
〉

=
〈

f(x1, x2) , Ψ(x1, x2 − c(x1))
〉

.

We thus decompose f in a warped wavelet basis of L2(Ω):

{

φj,m1
(x1)ψj,m2

(x2 − c(x1)) , ψj,m1
(x1)φj,m2

(x2 − c(x1))

, ψj,m1
(x1)ψj,m2

(x2 − c(x1))

}

j,m1,m2

.
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Bandeletization

Basis functions must have vanishing moments along x1
(direction of the flow).

Bandeletization: replaces {φj,m1
(x1)}m1

by a wavelet family
{ψl,m1

(x1)}l>j ,m1
that generates the same space.

Warped wavelet basis of L2(Ω):

{

φj,m1
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(x2 − c(x1)) , ψj,m1
(x1)φj,m2

(x2 − c(x1))

, ψj,m1
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(x2 − c(x1))

}

j
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Bandeletization

Basis functions must have vanishing moments along x1
(direction of the flow).

Bandeletization: replaces {φj,m1
(x1)}m1

by a wavelet family
{ψl,m1

(x1)}l>j ,m1
that generates the same space.

Resulting Bandelet basis of L2(Ω):

{

ψl,m1
(x1)ψj,m2

(x2 − c(x1)) , ψj,m1
(x1)φj,m2

(x2 − c(x1))

, ψj,m1
(x1)ψj,m2

(x2 − c(x1))

}

j,l>j,
m1,m2

.

Anisotropic Isotropic
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Segmented Bandelet Basis
Image support segmented in regions which have either:

a vertically parallel flow: bandelet basis,

a horizontally parallel flow: bandelet basis,

an isotropic regularity and hence no flow: wavelet basis.

Fast bandelet transform (O(N2)) :

resampling, warped wavelet transform, bandeletization.

No discontinuities at boundaries with an adapted lifting scheme.
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Computation of a Parameterized Flow

A vertically parallel flow ~τ(x1, x2) = (1, c′(x1)) in Ω is
parameterized by:

c′(x) =
L2−l

∑

n=1

αn φ(2
−lx− n)

2l 2ln

c′(x)

by finding the L 2−l parameters αn that minimize
∫

Ω

∣

∣

∣

~∇f(x1, x2) . ~τ (x1, x2)
∣

∣

∣

2
dx1dx2 =

∫

Ω

∣

∣

∣

∂f(x1, x2)

∂~τ(x1, x2)

∣

∣

∣

2
dx1dx2 .
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Adapting the scale 2l to the signal regularity along the flow:

Scale

Regularity
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a dyadic square image segmentation, represented by the
Ms inside nodes of the segmentation quad-tree,

within each square Ωi of the segmentation, by:
Mg,i coefficients of the geometric flow.
Mb,i bandelet coefficients above a threshold T .



M-Term Approximation

A bandelet image approximation fM is specified by:

a dyadic square image segmentation, represented by the
Ms inside nodes of the segmentation quad-tree,

within each square Ωi of the segmentation, by:
Mg,i coefficients of the geometric flow.
Mb,i bandelet coefficients above a threshold T .

Total number of parameters:
M =Ms +

∑

i

(

Mg,i +Mb,i

)

.
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Optimization of Bandelet Approximations

Minimize ‖f − fM‖2 for a fixed number M of parameters.

Lagrangian approach: find the best segmentation and
geometric flow to minimize

‖f − fM‖2 + T 2M .

Fast algorithm (CART): dynamic programming from bottom
to top of the segmentation quad-tree.

Computational complexity: O(N2 (logN)2) for N2 pixels.
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Approximation Theorem

Theorem: Suppose that f̃ is Cα away from“edges”that
are piecewise C

α non tangent curves.

If f = f̃ or f = f̃ ⋆ g (smoothing) then

‖f − fM‖2 6 CM−α .

Unknown degree of smoothness α.

Optimal decay exponent α.

Improvement over separable wavelets for which
‖f − fM‖2 6 CM−1.

Improvement over curvelets for which
‖f − fM‖2 6 C (log2M)3M−2.
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Piece-wise Regular Approximation

M=2650 PSNR = 45.97 dB PSNR = 40.17 dB

Bandelets Wavelets
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Image Compression

Compression closely related to non linear approximation.

A compressed image f̃ is obtained from f by:

Choosing a segmentation and a quantized flow.

Quantizing uniformly all bandelet coefficients with step
size ∆.

Entropy coding all parameters with a total of R bits.

Optimization of the geometry (segmentation and flow) to
minimize the Lagrangian:

‖f − f̃‖2 + λ∆2R with λ ≈ 0.107

O(N2 (log2N)2) operations.
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Conclusion

Bandelets provide sparse image representations in bases
adapted to the image geometry.

Applications to most image processing:

Still image coding.

Denoising and restoration by thresholding.

Video coding with regions.

Adapted to pattern recognition.

Mathematical issues:

Minimax optimality of the penalized estimation.

Approximation theorems over adapted functional spaces.

Extension to d-dimensional spaces with d > 2.

Paper: http://www.cmap.polytechnique.fr/~lepennec

http://www.cmap.polytechnique.fr/~lepennec
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