Sparse Geometrical Image Representation with Bandelets and Application to Deconvolution

Erwan LE PENNEC and Stéphane MALLAT

CMAP École Polytechnique

Geometrical Image Representation

- Most signal processing applications requires to build sparse signal representations: compression, noise removal, restauration, pattern recognition...
- Need to take advantage of geometrical image regularity to improve representations.
- Second generation image coding dream : a bridge between *Image* processing and Computer Vision.
- Building harmonic analysis representations (wavelets) on manifolds (geometry).

Edge Detection: an Ill Posed Problem

• Edges are blured singularities.

• Where are the edges ?

• How can the estimation of geometry become well-posed ?

Overview

- 1. Sparse representations and wavelets
- 2. Description and detection of geometry
- 3. Orthogonal Bandelets adapted to the geometry
- 4. M-term image approximation theorem with bandelets
- 5. Application to deconvolution

Sparse Representation in a Basis

• A signal f is decomposed in an orthonormal basis $\mathcal{B} = \{g_m\}_{m \in N}$:

$$f = \sum_{m=0}^{+\infty} \left\langle f, g_m \right\rangle g_m \;,$$

and approximated by M vectors chosen adaptively

$$f_M = \sum_{m \in I_M} \left\langle f, g_m \right\rangle g_m$$

to minimize

$$||f - f_M||^2 = \sum_{m \notin I_M} |\langle f, g_m \rangle|^2$$

• I_M should correspond to the *M* largest inner products :

$$I_M = \{m, |\langle f, g_m \rangle| > T_M\}$$
: thresholding

• **Problem :** How to choose the basis \mathcal{B} so that

$$||f - f_M|| \le CM^{-\alpha}$$
 with α large ?

1D Wavelet Basis of $L^2[0,1]$

 \bullet Constructed with 1 mother wavelet $\psi(x)$ which is scaled by 2^j and translated by $2^j n$

$$\psi_{j,n}(x) = \frac{1}{\sqrt{2^j}} \psi\left(\frac{x-2^j n}{2^j}\right) \,.$$

•
$$\mathcal{B} = \left\{\psi_{j,n}\right\}_{j \in N, 2^{j} n \in [0,1)}$$
 is an orthonormal basis of $\mathbf{L}^{2}[0,1]$

Non-Linear Approximation in a Wavelet Basis

• $||f - f_M||^2 = O(M^{-2\alpha})$ where α is the uniform Lipschitz regularity between singularities.

2D Wavelet Basis of $L^2[0,1]^2$

• Constructed with 3 wavelets $\psi^k(x_1, x_2)$ with k = 1, 2, 3 (Meyer, M.) which are scaled by 2^j and translated by $2^j(n_1, n_2)$

$$\psi_{j,n}^k(x_1, x_2) = \frac{1}{2^j} \psi^k \left(\frac{x_1 - 2^j n_1}{2^j}, \frac{x_2 - 2^j n_1}{2^j} \right) \,.$$

•
$$\mathcal{B} = \left\{ \psi_{j,n}^k \right\}_{j \in N, 2^j n \in [0,1)^2, 1 \le k \le 3}$$
 is an orthonormal basis of $\mathbf{L}^2[0,1]^2$.

Successes and Failures of Wavelet Bases

• Representation: images are decomposed in a two-dimensional wavelet basis and larger coefficients are kept (JPEG-2000).

Significant coefficients

f

 f_M

- (Cohen, DeVore, Petrushev, Xue): Optimal for bounded variation functions: $||f - f_M||^2 \le C ||f||_{TV} M^{-1}$
- But: does not take advantage of any geometric regularity when it exists.

Taking Advantage of Geometrical Regularity

Most images have level sets that are regular geometrical curves. Let $f = \mathbf{1}_{\Omega}$, where the boundary $\partial \Omega$ is regular: \mathbf{C}^{α} with $\alpha \geq 2$.

- With M wavelets: $||f f_M||^2 \le C M^{-1}$.
- Piece-wise linear with M triangles: $||f f_M||^2 \le C M^{-2}$.
- With M higher order geometric elements: $||f f_M|| \leq C M^{-\alpha}$.
- Curvelet bases (Candes, Donoho): $||f f_M||^2 \le C (\log M) M^{-2}$.
- Contourlet bases (Minh-Do, Vetterli).
- Edge adapted (*Cohen, Matei*): $||f f_M||^2 \le C M^{-2}$?

Blured and Noisy Geometry

Piecewise regular images g(x) are blured and noisy:

$$f(x) = g \star \phi_s(x) + b(x)$$
 with $\phi_s(x) = \frac{1}{s} \phi(\frac{x}{s})$.

- ϕ is unknown but \mathbf{C}^{∞} with a support in [-1, 1].
- s > 0 is unknown and may vary with x.
- b(x) is a "noise".

Problems:

- Represent and detect the geometry.
- Take advantage of the geometrical regularity.

Anisotropic 2D Wavelet Basis

• 1D wavelet basis of $\mathbf{L}^{2}[0, 1]$:

$$\{\psi_{j,n}(x) = 2^{-j/2}\psi(2^{-j}(x-2^{j}n))\}_{j\in\mathbb{Z},2^{j}n\in[0,1]}.$$

• Anisotropic wavelet basis of $\mathbf{L}^{2}[0,1]^{2}$:

$$\{\psi_{j_1,n_1}(x_1)\,\psi_{j_2,n_2}(x_2)\}_{j_1,n_1,j_2,n_2}$$

• Let $g(x_1, x_2)$ be \mathbf{C}^{α} for $x_1 < a$ and $x_1 > a$ or for $x_2 < b$ and $x_2 > b$.

If f = g or $f = g \star \phi_s$ then its approximation f_M from M anisotropic wavelet satisfies

$$\|f - f_M\|^2 \le C M^{-\alpha}$$

Horizontal and Vertical Geometric Flow

• Over a domain Ω the geometric flow is a parallel vector field $\vec{\tau}(x_1, x_2)$ with

$$\vec{\tau}(x_1, x_2) = \vec{\tau}(x_2)$$
 or $\vec{\tau}(x_1, x_2) = \vec{\tau}(x_1)$

which minimizes

$$\int_{\Omega} |\vec{\nabla} f(x_1, x_2) \cdot \vec{\tau}(x_1, x_2)|^2 dx_1 dx_2 = \int_{\Omega} |\frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)}|^2 dx_1 dx_2$$

Flow, Integral Curve and Deformation

- Let $x_1 = c(x_2)$ be an integral curve of flow $\vec{\tau}(x_1, x_2) = \vec{\tau}(x_2)$. The image $f_c(x_1, x_2) = f(x_1 + c(x_2), x_2)$ has a vertical flow.
- If $\vec{\tau}(x_1, x_2) = \vec{\tau}(x_1)$ then for an integral curve $x_2 = c(x_1)$, the image $f_c(x_1, x_2) = f(x_1, x_2 + c(x_1))$ has a horizontal flow.

Bandelet Basis

Decomposing $f(x_1 + c(x_2), x_2)$ in an orthonormal anisotropic wavelet basis

$$\{\psi_{j_1,n_1}(x_1)\,\psi_{j_2,n_2}(x_2)\}_{j_1,j_2,n_1,n_2}$$

is equivalent to decompose $f(x_1, x_2)$ in the orthonormal bandelet basis

 $\{\psi_{j_1,n_1}(x_1-c(x_2))\psi_{j_2,n_2}(x_2)\}_{j_1,j_2,n_1,n_2}$.

Image Geometry

- Image segmented in disjoint regions Ω_i with a geometric flow $\vec{\tau}_i(x)$.
- Complement $C = [0, 1]^2 \bigcup_i \Omega_i$ (no preferential direction).

The image geometry is specified by:

- The boundary $\partial \Omega_i$ of each Ω_i .
- An integral curve $c_i(x)$ of the flow $\vec{\tau}_i(x)$ in each Ω_i .

Bandelet in Segmented Images

Composed of:

- Bandelets \mathcal{B}_{Ω_i} with supports in Ω_i .
- Isotropic wavelets \mathcal{B}_w with supports in $C = [0, 1]^2 \bigcup_i \Omega_i$.
- Border bandelets $\mathcal{B}_{\partial\Omega_i}$ with supports intersecting the border $\partial\Omega_i$.

so that the resulting family

$$\mathcal{B}_b = (\cup_i \mathcal{B}_{\Omega_i}) \cup \mathcal{B}_w \cup (\cup_i \mathcal{B}_{\partial \Omega_i})$$

is a frame or a basis of $\mathbf{L}^2[0.1]^2$.

Bandeletization

• Fast transform (O(N))

• The warping requires an interpolation operator.

Multiscale Estimation of Geometry

• Blured and noisy image in $x = (x_1, x_2)$:

$$f(x) = g \star \phi_s(x) + b(x) \; .$$

- b(x): White Noise $(\mathcal{N}(0, \sigma^2))$.
- Dilated kernel $h_{2^j}(x) = h(2^{-j}x)$ where h(x) is isotropic and compactly supported:

$$\vec{\nabla}(f \star h_{2j})(x) = \vec{\nabla}(g \star h_{2j} \star \phi_s)(x) + W \star \vec{\nabla}h_{2j}(x) .$$

Approximation of Geometry

- Approximation of the bandelet basis.
- Positions of the beginnig and ending points of the curve c_i .
- Non-linear approximation of $c_i(x)$ in a 1D wavelet basis, with an adapted threshold Δ_i :

$$c_i = \sum_{j,n} \langle c_i , \psi_{j,n} \rangle \psi_{j,n} \quad \Rightarrow \quad \tilde{c}_i = \sum_{|\langle c_i , \psi_{j,n} \rangle| > \Delta_i} \langle c_i , \psi_{j,n} \rangle \psi_{j,n} \ .$$

M-Term Approximation

- Two kinds of coefficients : geometry and decomposition.
- Geometry = choice of the bandelet basis \mathcal{B} with adjusted thresholds Δ_i :
 - -2 extremity points for each c_i .
 - $M_{g,i}$: number of 1D wavelet coefficients of c_i larger than Δ_i . c_i, Ω_i are thus approximated by $\tilde{c}_i, \tilde{\Omega}_i$.
- Decomposition = coefficients of f in the chosen bandelet basis \mathcal{B} larger than Δ :
 - $M_{b,i}$: for bandelets and border bandelets corresponding to $\tilde{\Omega}_i$.
 - $M_{w,C}$: for wavelets in the complement.
- Resulting M-term approximation: f_M with

$$M = \sum_{i} \left(2 + M_{g,i} + M_{b,i} \right) + M_{w,C} ,$$

Optimization of the Geometry

- Choice of the basis that leads to the most sparse representation.
- Error $||f f_M||^2$ depends mostly on Δ .
- To minimize $M = \sum_{i} \left(2 + M_{g,i} + M_{b,i} \right) + M_{w,C}$, for each Ω_i find Δ_i that minimizes $M_{b,i} + M_{g,i}$.

Approximation of Piecewise Regular Images

Theorem: Suppose that
$$g$$
 is \mathbb{C}^{α} in $[0,1]^2 - \{e_i\}_{1 \le i \le I}$
and the e_i are \mathbb{C}^{α} curves.
If $f = g$ or $f = g \star \phi_s$ for any $s > 0$ then
 $\|f - f_M\|^2 \le C M^{-\alpha}$.

- Unknown degree of smoothness α .
- Unknown smoothing kernel ϕ_s .
- Optimal over Donoho Star Shape class.
- Improvement over 2D wavelets for which $||f f_M||^2 \leq C M^{-1}$.
- Improvement over curvelets for which $\|f - f_M\|^2 \le C (\log M) M^{-2}.$
- Estimation of the geometry.

Noise Removal with Thresholding

(Donoho, Johnstone)

X = f + W

 $F = X \star h$

 $\langle X, \psi_{j,n}^k \rangle$

 $F = T_{\mathcal{B}} X$

A frame of bandelets

- Translatation invariance.
- Dyadic Wavelet Frame + 1D Wavelet Transform along the flow (warping operator)

• Geometry estimation remains the same.

Deconvolution

• The signal observed is

$$Y = f \star u + W$$

where u is a known low-pass filter and W a white noise of variance σ^2 .

• Direct deconvolution

$$X = Y \star u^{-1} = f + W \star u^{-1}$$

$$Y \qquad X$$

$$i = 1$$

$$i = 1$$

$$i = 1$$

• Problem : The noise is no more white.

A frame of bandelets adapted to the deconvolution

- Dyadic wavelet frame replaced by an adapted frame.
- The low-pass filter should be almost diagonal in the frame.

• Fast Transform :

PSNR

Blurred Image

 $25.5\,db$

PSNR

Tight Frame

Bandelets

 $28.6\,db$

 $28.3\,db$

PSNR

Blurred Image

Reference Image

 $25.5\,db$

Tight Frame

Bandelets

PSNR

 $28.6\,db$

 $28.3\,db$

Futur Improvements

- Design of the frame.
- Interpolation operator of the warping.
- Geometry estimation.
- Artefact removal.

Conclusion

- Bandelets provide sparse image representations in bases adapted to the image geometry.
- Applications to most image processing :
 - Still image coding.
 - Denoising and restoration by thresholding.
 - Video coding with regions.
 - Adapted to pattern recognition
- Mathematical issues :
 - Statistical consistency of the geometrical estimation.
 - Approximations theorems over adapted functionnal spaces.
 - Extension to d-dimensional spaces with d > 2.

Acknowledgment

- Jérôme Kalifa
- CNES
- Alcatel Space