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Geometrical Image Representation

• Most signal processing applications requires to build sparse signal
representations: compression, noise removal, restauration, pattern
recognition...

• Need to take advantage of geometrical image regularity to
improve representations.

• Second generation image coding dream : a bridge between Image
processing and Computer Vision.

• Building harmonic analysis representations (wavelets) on
manifolds (geometry).



Edge Detection:
an Ill Posed Problem

• Edges are blured singularities.

• Where are the edges ?

• How can the estimation of geometry become well-posed ?



Overview

1. Sparse representations and wavelets

2. Description and detection of geometry

3. Orthogonal Bandelets adapted to the geometry

4. M-term image approximation theorem with bandelets

5. Application to deconvolution



Sparse Representation in a Basis
• A signal f is decomposed in an orthonormal basis
B = {gm}m∈ N :

f =
+∞∑

m=0

〈f, gm〉 gm ,

and approximated by M vectors chosen adaptively

fM =
∑

m∈IM
〈f, gm〉 gm

to minimize
‖f − fM‖2 =

∑

m∈/IM
|〈f, gm〉|2

• IM should correspond to the M largest inner products :

IM = {m, |〈f, gm〉| > TM} : thresholding

• Problem : How to choose the basis B so that

‖f − fM‖ ≤ CM−α with α large ?



1D Wavelet Basis of L2[0, 1]

• Constructed with 1 mother wavelet ψ(x) which is scaled by 2j and
translated by 2jn

ψj,n(x) =
1√
2j
ψ
(x− 2jn

2j

)
.
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• B =
{
ψj,n

}
j∈ N , 2jn∈[0,1)

is an orthonormal basis of L2[0, 1].



Non-Linear Approximation in a Wavelet Basis
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• ‖f − fM‖2 = O(M−2α) where α is the uniform Lipschitz regularity
between singularities.



2D Wavelet Basis of L2[0, 1]2

• Constructed with 3 wavelets ψk(x1, x2) with k = 1, 2, 3 (Meyer, M.)
which are scaled by 2j and translated by 2j(n1, n2)

ψkj,n(x1, x2) =
1

2j
ψk

(x1 − 2jn1
2j

,
x2 − 2jn1

2j

)
.

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

xy −3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

xy −3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

xy

• B =
{
ψkj,n

}
j∈ N , 2jn∈[0,1)2 , 1≤k≤3

is an orthonormal basis of

L2[0, 1]2.



Successes and Failures of Wavelet Bases
• Representation: images are decomposed in a two-dimensional

wavelet basis and larger coefficients are kept (JPEG-2000).
f Significant coefficients fM

• (Cohen, DeVore, Petrushev, Xue): Optimal for bounded variation
functions: ‖f − fM‖2 ≤ C ‖f‖TV M−1

• But: does not take advantage of any geometric regularity when it
exists.



Taking Advantage of Geometrical Regularity
Most images have level sets that are regular geometrical curves.
Let f = 1Ω, where the boundary ∂Ω is regular: Cα with α ≥ 2.

Ω Ω

• With M wavelets: ‖f − fM‖2 ≤ CM−1.
• Piece-wise linear with M triangles: ‖f − fM‖2 ≤ CM−2.
• With M higher order geometric elements: ‖f − fM‖ ≤ CM−α.

- Curvelet bases (Candes, Donoho): ‖f − fM‖2 ≤ C (logM)M−2.
- Contourlet bases (Minh-Do, Vetterli).
- Edge adapted (Cohen, Matei): ‖f − fM‖2 ≤ CM−2 ?



Blured and Noisy Geometry
Piecewise regular images g(x) are blured and noisy:

f(x) = g ⋆ φs(x) + b(x) with φs(x) =
1

s
φ(
x

s
) .

• φ is unknown but C∞ with a support in [−1, 1].
• s > 0 is unknown and may vary with x.
• b(x) is a “noise”.

Problems:
• Represent and detect the geometry.
• Take advantage of the geometrical regularity.



Anisotropic 2D Wavelet Basis

• 1D wavelet basis of L2[0, 1]:

{ψj,n(x) = 2−j/2ψ(2−j(x− 2jn))}j∈Z,2jn∈[0,1] .

• Anisotropic wavelet basis of L2[0, 1]2:

{ψj1,n1(x1)ψj2,n2(x2)}j1,n1,j2,n2 .

• Let g(x1, x2) be Cα for x1 < a and x1 > a or for x2 < b and
x2 > b.
If f = g or f = g ⋆ φs then its approximation fM from M

anisotropic wavelet satisfies

‖f − fM‖2 ≤ CM−α .



Horizontal and Vertical Geometric Flow
• Over a domain Ω the geometric flow is a parallel vector field
~τ(x1, x2) with

~τ(x1, x2) = ~τ(x2) or ~τ(x1, x2) = ~τ(x1)

which minimizes
∫

Ω

|~∇f(x1, x2).~τ(x1, x2)|2dx1dx2 =

∫

Ω

|∂f(x1, x2)
∂~τ(x1, x2)

|2dx1dx2

~τ(x1, x2) = ~τ(x2) ~τ(x1, x2) = ~τ(x1)



Flow, Integral Curve and Deformation

• Let x1 = c(x2) be an integral curve of flow ~τ(x1, x2) = ~τ(x2).
The image fc(x1, x2) = f(x1 + c(x2), x2) has a vertical flow.

• If ~τ(x1, x2) = ~τ(x1) then for an integral curve x2 = c(x1), the
image fc(x1, x2) = f(x1, x2 + c(x1)) has a horizontal flow.

→ →



Bandelet Basis

Decomposing f(x1 + c(x2), x2) in an orthonormal anisotropic wavelet
basis

{ψj1,n1(x1)ψj2,n2(x2)}j1,j2,n1,n2

is equivalent to decompose f(x1, x2) in the orthonormal bandelet basis

{ψj1,n1(x1 − c(x2))ψj2,n2(x2)}j1,j2,n1,n2 .



Image Geometry

• Image segmented in disjoint regions Ωi with a geometric flow ~τi(x).
• Complement C = [0, 1]2 − ∪iΩi (no preferential direction).

The image geometry is specified by:
• The boundary ∂Ωi of each Ωi.
• An integral curve ci(x) of the flow ~τi(x) in each Ωi.



Bandelet in Segmented Images
Composed of:

• Bandelets BΩi with supports in Ωi.

• Isotropic wavelets Bw with supports in C = [0, 1]2 − ∪iΩi.

• Border bandelets B∂Ωi with supports intersecting the border ∂Ωi.

so that the resulting family

Bb = (∪iBΩi) ∪ Bw ∪ (∪iB∂Ωi)

is a frame or a basis of L2[0.1]2.



Bandeletization

• Fast transform (O(N))

Image Warping
Isotropic
Wavelet

Transform

1D Wavelet
Transform

• The warping requires an interpolation operator.



Multiscale Estimation of Geometry
• Blured and noisy image in x = (x1, x2):

f(x) = g ⋆ φs(x) + b(x) .

• b(x) : White Noise (N (0, σ2)).

• Dilated kernel h2j (x) = h(2−jx) where h(x) is isotropic and
compactly supported:

~∇(f ⋆ h2j )(x) = ~∇(g ⋆ h2j ⋆ φs)(x) +W ⋆ ~∇h2j (x) .



Approximation of Geometry

• Approximation of the bandelet basis.

• Positions of the begining and ending points of the curve ci.

• Non-linear approximation of ci(x) in a 1D wavelet basis, with an
adapted threshold ∆i:

ci =
∑

j,n

〈ci , ψj,n〉ψj,n ⇒ c̃i =
∑

|〈ci , ψj,n〉|>∆i

〈ci , ψj,n〉ψj,n .

ci and Ωi ⇒ c̃i and Ω̃i



M-Term Approximation
• Two kinds of coefficents : geometry and decomposition.

• Geometry = choice of the bandelet basis B with adjusted
thresholds ∆i:

– 2 extremity points for each ci.

– Mg,i: number of 1D wavelet coefficients of ci larger than ∆i.

ci,Ωi are thus approximated by c̃i, Ω̃i.

• Decomposition = coefficients of f in the chosen bandelet basis B
larger than ∆:

– Mb,i: for bandelets and border bandelets corresponding to Ω̃i.

– Mw,C : for wavelets in the complement.

• Resulting M-term approximation: fM with

M =
∑

i

(
2 +Mg,i +Mb,i

)
+Mw,C ,



Optimization of the Geometry

• Choice of the basis that leads to the most sparse representation.

• Error ‖f − fM‖2 depends mostly on ∆.

• To minimize M =
∑

i

(
2 +Mg,i +Mb,i

)
+Mw,C , for each Ωi find

∆i that minimizes Mb,i +Mg,i.



Approximation of Piecewise Regular Images

Theorem: Suppose that g is Cα in [0, 1]2 − {ei}1≤i≤I
and the ei are Cα curves.
If f = g or f = g ⋆ φs for any s > 0 then

‖f − fM‖2 ≤ CM−α .

• Unknown degree of smoothness α.

• Unknown smoothing kernel φs.

• Optimal over Donoho Star Shape class.

• Improvement over 2D wavelets for which ‖f − fM‖2 ≤ CM−1.

• Improvement over curvelets for which
‖f − fM‖2 ≤ C (logM)M−2.

• Estimation of the geometry.



Noise Removal with Thresholding
(Donoho, Johnstone)

f X = f +W F = X ⋆ h

〈X,ψkj,n〉 Thresh(〈X,ψkj,n〉) F = TBX



A frame of bandelets
• Translatation invariance.

• Dyadic Wavelet Frame + 1D Wavelet Transform along
the flow (warping operator)

Image Dyadic Wavelet Frame Geometry

• Geometry estimation remains the same.



Deconvolution
• The signal observed is

Y = f ⋆ u+W

where u is a known low-pass filter and W a white noise of
variance σ2.

• Direct deconvolution

X = Y ⋆ u−1 = f +W ⋆ u−1

Y X

u−1

−−→

• Problem : The noise is no more white.



A frame of bandelets
adapted to the deconvolution

• Dyadic wavelet frame replaced by an adapted frame.

• The low-pass filter should be almost diagonal in the frame.

• Fast Transform :

Image Adapted
Frame

Geometry



PSNR Blurred Image Reference Image PSNR

25.5 db

28.3 db 28.6 db

Tight Frame Bandelets



PSNR Blurred Image Reference Image PSNR

25.5 db

28.3 db 28.6 db

Tight Frame Bandelets



Futur Improvements

• Design of the frame.

• Interpolation operator of the warping.

• Geometry estimation.

• Artefact removal.



Conclusion
• Bandelets provide sparse image representations in bases adapted

to the image geometry.

• Applications to most image processing :

– Still image coding.

– Denoising and restoration by thresholding.

– Video coding with regions.

– Adapted to pattern recognition

• Mathematical issues :

– Statistical consistency of the geometrical estimation.

– Approximations theorems over adapted functionnal spaces.

– Extension to d-dimensional spaces with d > 2.
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