Sparse Geometrical Image Representations with Bandelets

Erwan Le Pennec and Stéphane Mallat

CMAP École Polytechnique

Geometrical Image Representation

- Most signal processing applications requires to build sparse signal representations: compression, noise removal, restauration, pattern recognition...
- Need to take advantage of geometrical image regularity to improve representations.
- Requires to relate harmonic analysis representations (wavelets), and geometrical structures.
- A bridge between image processing and computer vision: the second generation image code dream.

Successes and Failures of Wavelet Bases

Representation: images are decomposed in a two-dimensional wavelet basis and larger coefficients are kept (JPEG-2000).

fSignificant coefficients f_M Image: state of the state

- (Cohen, DeVore, Petrushev, Xue): Optimal for bounded variation functions: $||f f_M||^2 = O(M^{-1})$
- But: does not take advantage of any geometric regularity when it exists.

Taking Advantage of Geometrical Regularity

Most images have level sets that are regular geometrical curves. Let $f = \mathbf{1}_{\Omega}$, where the boundary $\partial \Omega$ is regular: \mathbf{C}^s with $s \geq 2$.

- With *M* wavelets: $||f f_M||^2 = O(M^{-1})$.
- Piece-wise linear approximation with M triangles: $\|f - f_M\|^2 = O(M^{-2}).$
- With M higher order geometric elements: $||f f_M||^2 = O(M^{-s}).$

Edge Detection: an Ill Posed Problem

• Edges are not singularities.

• Where are the edges ?

• Problem: find a stable process to extract and represent the geometry.

Overview

- Geometric Flow and Bandelets bases
- Image approximations with bandelets.

Geometric Flow

• A geometric flow is a vector field $\vec{\tau}(x_1, x_2)$ along which the image $f(x_1, x_2)$ has regular variations:

Simplifying the flow

• Geometric flow of f parametrized along x_2 and constant along x_1 .

$$\vec{\tau}_f(x_1, x_2) = \left(c'(x_1, x_2), 1\right) = \left(c'(x_2), 1\right).$$

ţ.	ţ	ţ	ţ	ţ	ţ	ţ	ţ	ţ	ŧ	ţ	ţ	ţ	ŧ	ţ	ţ
<i>[t</i> -	Ł	ł	ŧ	t	ţ	ł	ł	t	ł	Ł	ł	ł	ŧ	Ł	1
X.	١.	ł	ł	ł	¥.	ł	ł	1	¥.	١	ł	ł	ł	¥.	1
1	1	1	Y	A.	Y	ł	1	A.	Y	Y	1	Y	V	A.	1
1	4	A.	X	\mathbf{A}	¥	Y	N	\mathbf{A}	¥	Y	A	X	X	1	1
\mathbf{A}	11	1	\mathbf{A}	1	1	\mathbf{A}	7	1	1	\mathbf{A}	7	7	7	X	\mathbf{A}
\mathbf{M}	\mathbf{Y}	Ŋ	1	1	1	\mathbf{A}	1	1	1	\mathbf{A}	1	1	1	\mathbf{A}	\mathbf{Y}
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	N.	1	1	1	1	1	1	1	1	. ``	1
1	~	1	. ``	. >	. >	Ľ,	1.7	. `	. >	. >	. >	. >	. >	. >	. >
1	. >	. >	. >	~ >	. >	1	1	100	1	1	1	1	1	~ >	1
1	1	1	1	~	1	1	~ >	~	1	1.1	1	~ >	~ >	~ `	~ ~
/	~	1		* >	• >	• >	• >	* >		• >		4	* >	* `	• ` •
1	~	~	~	*	*	*	*	~	*	*	*	*		*	* >
1	~	~	1	1	~	1	1	1	~	1	1	1	1	~~	1

Integral curve c: points (u₁ + c(x₂), u₂ + x₂) with c(x) = \$\int_{u_2}^x c'(t) dt\$.
The translated image g(x₁, x₂) = f(x₁ + c(x₂), x₂) has a vertical flow.

Hyperbolic Wavelet Basis

• 1D wavelet basis of $\mathbf{L}^{2}[0, 1]$:
$\{\psi_{j,n}(x) = 2^{-j/2}\psi(2^{-j}(x-2^{j}n))\}_{(j,n)\in\mathbb{Z}^{2}}.$
• Hyperbolic wavelet basis of $\mathbf{L}^{2}[0,1]^{2}$:

Ļ	Ļ	ţ	Ļ	ţ	Ļ	ţ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	ţ	ţ	Ŧ
Ļ	Ļ	ţ	Ļ	Ļ	Ļ	ţ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	ţ	ţ	Ŧ
Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	ţ	ţ	Ŧ
Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	ţ	ţ	Ŧ
Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Į.	Ļ	ţ	ţ	Ŧ
Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Į.	Ļ	÷.	÷.	Ļ	ţ	Ŧ
Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	ŧ.	Ļ	÷.	÷.	Ļ	ţ	Ŧ
Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	÷.	÷.	Ļ	ţ	Ŧ
Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	÷.	ŧ.	÷.	÷.	Ļ	ţ	Ŧ
Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Į.	Į.	÷.	÷.	Ļ	ţ	Ŧ
Ļ	ţ.	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	÷.	÷.	÷.	÷.	ŧ	ţ	Ŧ
Ļ	ţ.	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Į.	÷.	÷.	÷.	÷.	Ļ	ţ	Ŧ
Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	÷.	Į.	÷.	÷.	ţ	ţ	Ŧ
Ļ	Į.	Ļ	Ļ	Ļ	Ļ	ţ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	ţ	ţ	¥
Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	ţ	Ŧ
Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ţ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ

 $\{\psi_{j_1,n_1}(x_1)\psi_{j_2,n_2}(x_2)\}_{(j_1,j_2)\in\mathbb{Z}^2}(2^{j_1}n_1,2^{j_2}n_2)\in[0,1]^2}$.

(Temlyakov): If f is regular along x_1 and/or along x_2

$$\left\|\frac{\partial^{r_1}\partial^{r_2}f(x_1,x_2)}{\partial x_1^{r_1}\partial x_2^{r_2}}\right\| < +\infty$$

then the non-linear approximation from ${\cal M}$ hyperbolic wavelet satisfies

$$||f - f_M|| = O(M^{-\min(r_1, r_2)})$$

Bandelet Basis

Decomposing $f(x_1 + c(x_2), x_2)$ in

 $\{\psi_{j_1,n_1}(x_1)\,\psi_{j_2,n_2}(x_2)\}_{(j_1,j_2)\in\mathbb{Z}^2\,(2^{j_1}n_1,2^{j_2}n_2)\in[0,1]^2}$

is equivalent to decompose $f(x_1, x_2)$ in the bandelet basis:

 $\{\psi_{j_1,n_1}(x_1-c(x_2))\psi_{j_2,n_2}(x_2)\}_{(j_1,j_2)\in\mathbb{Z}^2}(2^{j_1}n_1,2^{j_2}n_2)\in[0,1]^2}$.

Bandelet over a tube Ω

• Ω is a tube of length l and width d around a curve c starting at (x_1, x_2) .

• Arbitrary extension of the flow c' outside Ω and associated bandelet basis

• Select the set B_{Ω} of (j_1, n_1, j_2, n_2) such that the support of $\psi_{j_1,n_1}(x_1 - c(x_2)) \psi_{j_2,n_2}(x_2)$ is included in Ω .

The resulting family of bandelets

$$\{\psi_{j_1,n_1}(x_1 - c(x_2))\,\psi_{j_2,n_2}(x_2)\}_{(j_1,n_1,j_2,n_2)\in B_\Omega}$$

is an orthogonal family of smooth functions having a support in Ω . It defines a basis of a space \mathbf{V}_{Ω} .

Segmentation of the Image Plane

• The image is segmented in tubes Ω_i where the geometric flow is parallel, characterized by an integral curve c_i , and zones where there is no geometrical regularity.

• A bandelet family is constructed over each tube.

Let $\mathbf{V} = \bigoplus_i \mathbf{V}_{\Omega_i}$. The residue

$$r = f - P_{\mathbf{V}}f$$

is decomposed in a 2D wavelet basis of $\mathbf{L}^2[0,1]^2$

$$\left\{\psi_{j,n}^{k}\right\}_{j\in N, 2^{j}n\in[0,1)^{2}, 1\leq k\leq 3}$$

Detection of Tubes

- Detection of significant 1D energy points along lines and columns.
- Chaining by minimizing the variation of the 1D wavelets coefficients.
- Rectangular region growing with limited intersection.

Approximation of Geometry

Each tube Ω_i and its flow $c'_i(x)$ is defined by an integral curve $c_i(x)$. It is approximated by \tilde{c}_i in a wavelet basis:

The error $||c_i - c'_i||$ must be adjusted to the detection scale 2^l .

M-Term Approximation

- M_b^i : number of bandelet coefficients in Ω_i largerer than Δ .
- M_q^i : number of wavelet coefficients of c_i larger than Δ_i .
- M_w : number of 2D wavelet coefficients of the residue larger than Δ .

For a fixed error $||f - f_M||$ we want to minimize

$$M = \sum_{i} \left(M_g^i + M_b^i \right) + M_w \; .$$

• For each tube Ω_i we find the threshold Δ_i which minimizes $M_g^i + M_b^i$.

Approximation of Piecewise Regular Images

Theorem: Suppose that f is \mathbf{C}^{α} in $[0,1]^2 - \{\bar{c}_i\}_{1 \leq i \leq I}$ where the $\bar{c}_i(x)$ are \mathbf{C}^s curves at a distance larger than d > 0. If f has discontinuities across the \bar{c}_i of amplitude between $a_{\min} > 0$ and a_{\max} then

$$||f - f_M||^2 \le O(M^{-s})$$
.

This result improves a homogeneous wavelet approximation scheme for which

$$||f - f_M||^2 = O(M^{-1})$$

Bandelet versus Wavelet Allocation

- M_b^i : number of bandelet coefficients above Δ in Ω_i .
- M_g^i : number of wavelet coefficients of c_i above Δ_i in Ω_i .
- $M_{w,r}^i$: number of homogeneous wavelet coefficients of the residue r above Δ in Ω_i .
- $M_{w,f}^i$: number of homogeneous wavelet coefficients of the image f above a threshold Δ in Ω_i .

A bandelet representation improves the homogeneous wavelet representation of f in Ω_i if $M_g^i + M_b^i + M_{w,r}^i \leq M_{w,f}^i$. If not, it is replaced by a homogeneous wavelet representation.

Bandelet segmentation \Rightarrow Optimized Representation

Compression

Replace M by a bit budget R.

- Quantize wavelet coefficients of the integral curves c_i and entropy code.
- Quantize band elet coefficients in each tube Ω_i and entropy code.
- Quantize the 2D wavelet coefficients of the residue.
- Optimize the bit allocation by adjusting the quantizations.

Conclusion

- Bandelets provide a mathematical and algorithmic foundation to build sparse geometrical image representations in adapted bases.
- Applications to most image processing:
 - Still image coding: second generation codes.
 - Denoising and restoration by thresholding.
 - Video coding with regions.
 - Adapted to pattern recognition.