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École Polytechnique



'

&

$

%

Geometrical Image Representation

• Most signal processing applications requires to build sparse

signal representations: compression, noise removal,

restauration, pattern recognition...

• Need to take advantage of geometrical image regularity to

improve representations.

• Requires to relate harmonic analysis representations (wavelets),

and geometrical structures.

• A bridge between image processing and computer vision: the

second generation image code dream.
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Successes and Failures of Wavelet Bases

Representation: images are decomposed in a two-dimensional

wavelet basis and larger coefficients are kept (JPEG-2000).

f Significant coefficients fM

• (Cohen, DeVore, Petrushev, Xue): Optimal for bounded

variation functions: ‖f − fM‖2 = O(M−1)

• But: does not take advantage of any geometric regularity when

it exists.
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Taking Advantage of Geometrical Regularity

Most images have level sets that are regular geometrical curves.

Let f = 1Ω, where the boundary ∂Ω is regular: Cs with s ≥ 2.

Ω Ω

• With M wavelets: ‖f − fM‖2 = O(M−1).

• Piece-wise linear approximation with M triangles:

‖f − fM‖2 = O(M−2).

• With M higher order geometric elements: ‖f − fM‖2 = O(M−s).
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Edge Detection:
an Ill Posed Problem

• Edges are not singularities.

• Where are the edges ?

• Problem: find a stable process to extract and represent the

geometry.
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Overview

• Geometric Flow and Bandelets bases

• Image approximations with bandelets.
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Geometric Flow

• A geometric flow is a vector field ~τ(x1, x2) along which the image

f(x1, x2) has regular variations:
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Simplifying the flow

• Geometric flow of f parametrized along x2 and constant along x1.

~τf (x1, x2) =
(
c′(x1, x2) , 1

)
=

(
c′(x2) , 1

)
.

• Integral curve c : points (u1 + c(x2) , u2 + x2) with

c(x) =
∫ x
u2
c′(t) dt.

• The translated image g(x1, x2) = f(x1 + c(x2), x2) has a vertical

flow.
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Hyperbolic Wavelet Basis

• 1D wavelet basis of L2[0, 1]:

{ψj,n(x) = 2−j/2ψ(2−j(x− 2jn))}(j,n)∈Z2 .

• Hyperbolic wavelet basis of L2[0, 1]2:

{ψj1,n1(x1)ψj2,n2(x2)}(j1,j2)∈Z2 (2j1n1,2j2n2)∈[0,1]2 .

(Temlyakov): If f is regular along x1 and/or along x2
∥∥∥∥
∂r1∂r2f(x1, x2)

∂xr11 ∂x
r2
2

∥∥∥∥ < +∞

then the non-linear approximation from M hyperbolic wavelet

satisfies

‖f − fM‖ = O(M−min(r1,r2)) .



'

&

$

%

Bandelet Basis

Decomposing f(x1 + c(x2), x2) in

{ψj1,n1(x1)ψj2,n2(x2)}(j1,j2)∈Z2 (2j1n1,2j2n2)∈[0,1]2

is equivalent to decompose f(x1, x2) in the bandelet basis:

{ψj1,n1(x1 − c(x2))ψj2,n2(x2)}(j1,j2)∈Z2 (2j1n1,2j2n2)∈[0,1]2 .

Examples of bandelets:
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Bandelet over a tube Ω
• Ω is a tube of length l and width d around a curve

c starting at (x1, x2).

• Arbitrary extension of the flow c′ outside Ω and

associated bandelet basis

• Select the set BΩ of (j1, n1, j2, n2) such that the

support of ψj1,n1(x1 − c(x2))ψj2,n2(x2) is included

in Ω.

The resulting family of bandelets

{ψj1,n1(x1 − c(x2))ψj2,n2(x2)}(j1,n1,j2,n2)∈BΩ

is an orthogonal family of smooth functions having a support in Ω.

It defines a basis of a space VΩ.
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Segmentation of the Image Plane

• The image is segmented in tubes Ωi where the geometric flow is

parallel, characterized by an integral curve ci, and zones where

there is no geometical regularity.

• A bandelet family is constructed over each tube.

Let V = ⊕iVΩi
. The residue

r = f − PVf

is decomposed in a 2D wavelet basis of L2[0, 1]2

{
ψkj,n

}
j∈ N , 2jn∈[0,1)2 , 1≤k≤3

.
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Lena Bandelet Decomposition
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Detection of Tubes

• Detection of significant 1D energy points along lines and

columns.

• Chaining by minimizing the variation of the 1D wavelets

coefficients.

• Rectangular region growing with limited intersection.
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Approximation of Geometry

Each tube Ωi and its flow c′i(x) is defined by an integral curve

ci(x). It is approximated by c̃i in a wavelet basis:

ci =
∑

j,n

〈ci , ψj,n〉ψj,n ⇒ c̃i =
∑

|〈ci , ψj,n〉|>∆i

〈ci , ψj,n〉ψj,n .

Original flow c′i ⇒ Approximated flow c̃′i

The error ‖ci − c′i‖ must be adjusted to the detection scale 2l.
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Bandelet Representation

f = g + r

= +

Transform Domain

bandelet wavelet
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M-Term Approximation

• M i
b : number of bandelet coefficients in Ωi largerer than ∆.

• M i
g: number of wavelet coeffients of ci larger than ∆i.

• Mw: number of 2D wavelet coefficients of the residue larger than

∆.

For a fixed error ‖f − fM‖ we want to minimize

M =
∑

i

(
M i
g +M i

b

)
+Mw .

• For each tube Ωi we find the threshold ∆i which minimizes

M i
g +M i

b .
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Approximation of Piecewise Regular Images

Theorem: Suppose that f is Cα in [0, 1]2 − {c̄i}1≤i≤I where the

c̄i(x) are Cs curves at a distance larger than d > 0. If f has

discontinuities across the c̄i of amplitude between amin > 0 and

amax then

‖f − fM‖2 ≤ O(M−s) .

This result improves a homogeneous wavelet approximation scheme

for which

‖f − fM‖2 = O(M−1) .
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Bandelet versus Wavelet Allocation
• M i

b : number of bandelet coefficients above ∆ in Ωi.

• M i
g: number of wavelet coefficients of ci above ∆i in Ωi.

• M i
w,r: number of homogeneous wavelet coefficients of the residue

r above ∆ in Ωi.

• M i
w,f : number of homogeneous wavelet coefficients of the image f

above a threshold ∆ in Ωi.

A bandelet representation improves the homogeneous wavelet

representation of f in Ωi if M
i
g +M i

b +M i
w,r ≤M i

w,f .

If not, it is replaced by a homogeneous wavelet representation.

Bandelet segmentation ⇒ Optimized Representation
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PSNR = 30.42 PSNR = 28.39

7338 Coefficients

Bandelet Wavelet

10050 Coefficients

Wavelet Original
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PSNR = 31.06 PSNR = 30.58

4425 Coefficients

Bandelet Wavelet

4983 Coefficients

Wavelet Original
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Bandelet Original Wavelet



'

&

$

%

Original Noisy Image

PSNR = 18.6

PSNR = 29.0 PSNR = 31.6

Wavelet Bandelet
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Original Noisy Image

PSNR = 20.8

PSNR = 22.6 PSNR = 23.2

Wavelet Bandelet
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Original Noisy Image

PSNR = 20.8

PSNR = 22.6 PSNR = 23.2

Wavelet Bandelet
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Compression

Replace M by a bit budget R.

+ =

• Quantize wavelet coefficients of the integral curves ci and

entropy code.

• Quantize bandelet coefficients in each tube Ωi and entropy

code.

• Quantize the 2D wavelet coefficients of the residue.

• Optimize the bit allocation by adjusting the quantizations.



'

&

$

%

Conclusion

• Bandelets provide a mathematical and algorithmic foundation

to build sparse geometrical image representations in adapted

bases.

• Applications to most image processing:

– Still image coding: second generation codes.

– Denoising and restoration by thresholding.

– Video coding with regions.

– Adapted to pattern recognition.


