Sparse Geometrical Image

Representations
with Bandelets

Erwan Le Pennec and Stéphane Mallat

CMAP
Ecole Polytechnique




-

~

Geometrical Image Representation

Most signal processing applications requires to build sparse
signal representations: compression, noise removal,

restauration, pattern recognition...

Need to take advantage of geometrical image regularity to

improve representations.

Requires to relate harmonic analysis representations (wavelets),

and geometrical structures.

A bridge between image processing and computer vision: the

second generation image code dream.
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/ Successes and Failures of Wavelet Bases\

Representation: images are decomposed in a two-dimensional
wavelet basis and larger coefficients are kept (JPEG-2000).
Significant coefficients
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e (Cohen, DeVore, Petrushev, Xue): Optimal for bounded
variation functions: ||f — fa||* = O(M 1)

e But: does not take advantage of any geometric regularity when

\ it exists. /
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Taking Advantage of Geometrical Regularity

Most images have level sets that are regular geometrical curves.
Let f = 1, where the boundary 02 is regular: C*® with s > 2.

e With M wavelets: ||f — fu]|? = O(M™1).

e Piece-wise linear approximation with M triangles:
|f = full? = O(M2).
e With M higher order geometric elements: ||f — far]|? = O(M~%).
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/ Edge Detection:
an 11l Posed Problem

e Fdges are not singularities.

e Where are the edges 7

F'.F'

e Problem: find a stable process to extract and represent the

Qeometry. /




Overview

e Geometric Flow and Bandelets bases

e Image approximations with bandelets.

.
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Geometric Flow

e A geometric flow is a vector field 7(x1,x2) along which the image

f(x1,22) has regular variations:




/ Simplifying the flow \

e Geometric flow of f parametrized along x5 and constant along x.

Tr(@1, 2) = (C’($1,$2), 1) = (c’(azg), 1) .
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e Integral curve c : points (u; + c(x2), us + x2) with

c(z) = f;; c'(t) dt.

e The translated image g(x1,x2) = f(x1 + c(z2), x2) has a vertical
fl
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e 1D wavelet basis of L?[0, 1]:

{%',n(l‘) — Q_j/2¢(2_j (z — 2jn))}(j,n)€ZQ-
o Hyperbolic wavelet basis of L2[0,1]*:

Hyperbolic Wavelet Basis

{¥51.n1 (1) Yja o (T2) } (51 i) €22 (291 01,292 n0)€[0,1]2 -

(Temlyakov): If f is regular along x; and/or along

8“ 6""2f(:131, 332)

r1 T2
Ox1"' 0z,

< 400

then the non-linear approximation from M hyperbolic wavelet

satisfies

o

If — farl| = O~ min(rirz)y
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/ Bandelet Basis

Decomposing f(x1 + ¢(x32),x2) in

{wjl,nl (5131) wjz,nz (xQ)}(jhjg)EZQ (271n41,272n5)€[0,1]2

is equivalent to decompose f(x1,x2) in the bandelet basis:

{10 (1 — c(2)) Vi na (T2) } (4 ja)ez2 (201my 202n)€0,1]2 -

Examples of bandelets:

o
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Bandelet over a tube ()

e () is a tube of length [ and width d around a curve

c starting at (x1,x2).

e Arbitrary extension of the flow ¢ outside €2 and
associated bandelet basis

e Select the set B of (ji,n1,j2,n2) such that the

support of ¥, n, (1 — c(22)) V), m,(z2) is included
in ).

The resulting family of bandelets

{¢j1,n1 (xl - C(xQ)) ¢j27n2 (xQ)}(j1,n1;j29n2)€ Bq

is an orthogonal family of smooth functions having a support in (2.

It defines a basis of a space V.
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/ Segmentation of the Image Plane

e The image is segmented in tubes {2; where the geometric flow is
parallel, characterized by an integral curve c;, and zones where
there is no geometical regularity.

e A bandelet family is constructed over each tube.

r=f—Pvf

is decomposed in a 2D wavelet basis of L2[0, 1]

k
{ j,n} . : .
\ je N,2ine[0,1)2,1<k<3
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Lena Bandelet Decomposition
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/ Detection of Tubes

e Detection of significant 1D energy points along lines and
columns.

e Chaining by minimizing the variation of the 1D wavelets
coeflicients.

e Rectangular region growing with limited intersection.
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Approximation of Geometry

Each tube €; and its flow ¢ (x) is defined by an integral curve
ci(x). Tt is approximated by ¢; in a wavelet basis:
=Y (¢, Yjn)hjim = &= > (Cis Yjm) Vjim -
jan |<Cia¢j,n>|>Ai
Original flow ¢ = Approximated ﬂow c.

The error ||c; — c}|| must be adjusted to the detection scale 2!.
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Bandelet Representation

Transform Domain

bandelet wavelet
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M-Term Approximation

e M}: number of bandelet coefficients in Q; largerer than A.
o M gi: number of wavelet coeffients of ¢; larger than A;.
o M,,: number of 2D wavelet coefficients of the residue larger than

A.

For a fixed error ||f — fas|| we want to minimize
M =3 (M]+ M) + M, .

e For each tube (2; we find the threshold A; which minimizes
M} + M;.
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Approximation of Piecewise Regular Images

Theorem: Suppose that f is C® in [0,1]* — {¢;}1<i<s where the
¢i(x) are C? curves at a distance larger than d > 0. If f has
discontinuities across the ¢; of amplitude between a,,;, > 0 and

Amax then

If = full> <O(M™®) .

This result improves a homogeneous wavelet approximation scheme
for which

\f = fal* =017 .
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/ Bandelet versus Wavelet Allocation \

° Mg: number of bandelet coefficients above A in ;.

o M gi: number of wavelet coefficients of ¢; above A; in €);.

e M, .: number of homogeneous wavelet coefficients of the residue
r above A in €);.

o M fu p- number of homogeneous wavelet coeflicients of the image f

above a threshold A in ;.

A bandelet representation improves the homogeneous wavelet
representation of f in €); if Mg + M} + Mfu,r < Mfi)’f :
If not, it is replaced by a homogeneous wavelet representation.




/ PSNR = 30.42 PSNR = 28.39 \

7338 Coeflicients

10050 Coefhicients

\ Wavelet Original /
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4425 Coeflicients

4983 Coeflicients

PSNR = 31.06

Wavelet

PSNR = 30.58

Original
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PSNR = 29.0
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PSNR = 18.6

PSNR = 31.6
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PSNR = 22.6
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/ Compression \

Replace M by a bit budget R.

e (Quantize wavelet coeflicients of the integral curves c¢; and

entropy code.

e Quantize bandelet coefficients in each tube {); and entropy
code.

e Quantize the 2D wavelet coefficients of the residue.

\o Optimize the bit allocation by adjusting the quantizations. j
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Conclusion

e Bandelets provide a mathematical and algorithmic foundation
to build sparse geometrical image representations in adapted
bases.

e Applications to most image processing:

— Still image coding: second generation codes.
— Denoising and restoration by thresholding.
— Video coding with regions.

— Adapted to pattern recognition.
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