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Abstract: Inefficient interaction such as long and/or repet-
itive questionnaires can be detrimental to user experience,
which leads us to investigate the computation of an in-
telligent questionnaire for a prediction task. Given time
andbudget constraints (maximumq questions asked), this
questionnairewill select adaptively the question sequence
based on answers already given. Several use-caseswith in-
creased user and customer experience are given.

The problem is framed as a Markov Decision Process
and solved numerically with approximate dynamic pro-
gramming, exploiting the hierarchical and episodic struc-
ture of the problem. The approach, evaluated on toy mod-
els and classic supervised learning datasets, outperforms
two baselines: a decision tree with budget constraint and
amodel with q best features systematically asked. The on-
line problem, quite critical for deployment seems to pose
no particular issue, under the right exploration strategy.

This setting is quite flexible and can incorporate easily
initial available data and grouped questions.

Keywords: Planning, Questionnaire design, Approximate
dynamic programming

CCS Concepts: Computing methodologies→ Planning un-
der uncertainty, Computing methodologies → Approxi-
mate dynamic programming methods

1 Introduction

In user interaction, less is often more. When asking ques-
tions, it is desirable to ask as few questions as possible
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or given a budget of questions asking the most interest-
ing ones. We study the case of intelligent questionnaires
in which the questions asked may depend on the previous
answers. More precisely, we consider a set of p questions
in a prediction context. Given a budget of q questions, we
design an algorithm choosing sequentially the next ques-
tion to be asked so that the predictive power is maximized
after having q answers. We assume that we have observed
thewhole set of answers on a first dataset and that no prior
knowledge is available.

This setting is quite general and comprises for exam-
ple:
– Patient follow-up. Consider a patient who is hospital-

ized at home andfills in a daily checkup questionnaire
asking for leg pain, a hurting chest or physical discom-
fort. The aim of the questionnaire being to check the
status of the patient,wewould like to ask themost per-
tinent questions as soon as possible and personalize
the questions to their status.

– Prospective calls e. g. telemarketing. Insteadof bluntly
unrolling the same list of questions, we could adapt
our series of questions in order to know as fast as pos-
sible if the person called would be interested or not in
our product.

– Cold start issue with new customers. When subscrib-
ing to a new service, it is not uncommon to get asked
some questions in order to personalize the service e. g.
Netflix, web service provider. Assuming we already
have a customer clustering at hand, we would like to
find the new customer’s cluster with as seamlessly as
possible. Oneway to do so is to ask very few questions.

– Balancing acquisition costwith available information.
Assuming the data is paid for, e. g. personal data sold,
we would choose which information to pay for each
people.

– Storing less data to make as good predictions. Con-
sidering that data storage has non-negligible cost,
whether it be financial, facility-wise or environmental,
wewish to only keep datawhich is essential to the pre-
diction. One way to do so is to store a sparse matrix.

Adaptive questionnaires have been investigated through
knowledge-based approaches in several fields amongst
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which we find e-learning [14] and healthcare [9]. In [13]
the authors investigated an approach relying on associa-
tion rules for the prediction and question selection tasks
and experimented their algorithm on Myers-Briggs tests.

Such a sequence of questions depending on the pre-
vious answers has a tree-like structure. A classical CART
algorithm [6] with a tree of depth q provides a solution but
is optimized in a top-down manner whereas we propose
a bottom-up optimization. Furthermore, we allow much
more flexibility than a single coordinate thresholding to
choose the next question, or than association rules.

We formulate this problem as a sequential decision-
making problem and represent it by a Markov Decision
Process [16] where the state is the information currently
available, actions are the questions we ask and as final re-
wards the prediction performance based on the final par-
tial information. Take a look at Figure 1 to have an idea
of the expected result. Such a modeling has been used
for instance in [7] to tackle the game of 20 questions rely-
ing on a smart matrix factorization. This setting has also
been used in active learning [15] and more recently in a
health diagnosis problem using a reinforcement learning
approach [5].

In our setting, we assume we have the full set of an-
swers in a first dataset, hence we do not have an explo-
ration issue and can thus focus on a planning approach
[11]. We show how to use approximate dynamic program-
ming [3, 4] to propose this adaptive sequence of questions
so that it outperforms a fixed subset of q questions or a
depth q CARTdecision tree. Several toymodels andbench-
mark datasets will be used as means to validate our ap-
proach.

We start by presenting the methodology in section 2,
followed by experimental results on toy models and
benchmark datasets in section 3. In section 4 we investi-
gate the possibility of bringing this methodology online,
by testing it on one of the toy models. A general conclu-
sion as well as ideas for improvements are presented in
section 5.

2 Methodology

2.1 Setting

Consider Y ∈ Y, dim(Y) ≥ 1, our variable of interest and
X ∈ X , dim(X ) = p, the variable vector which can be used
to predict Y and can be collected via survey element-by-
element. Since we collect X in order to predict Y we would

like to build an intelligent questionnaire which would col-
lect elements ofX which are themost useful for the predic-
tion task.As such, this questionnairewill take into account
the realizations of the elements of X that were already re-
quested and check which new feature could be the most
useful for our task. This process is repeated q times, q < p,
akin to a questionnaire with budget constraint. We write
̃X the space of partially-known feature vector X̃, where to

each dimension is added the element “unknown”, encod-
ing the fact that an element has not yet been queried.

We aimat designing an IntelligentQuestionnaire algo-
rithm π∗, which to any element of ̃X assigns the best next
question to ask, formally defined as follows:

∀x̃ ∈ ̃X π∗(x̃) = arg max
π∈Π
Eπ,(X,Y)[score(X̃q,Y)|X̃ = x̃]

(1)
where the function scoremeasures how accurately we can
predict Y based on X̃q, which is the partially-known fea-
ture vector obtained when the algorithm is stopped. Π
stands for the set of functions mapping ̃X to {1, . . . , p}
i. e. the set of algorithms recommending a question to ask
based on partial information on X.

We propose the following score function:

∀(x̃, y) ∈ ̃X × Y score(x̃, y) = −R(m̂(x̃), y) (2)

where m̂ is a prediction function of the target based on par-
tial information and R is an individual risk measure, such
as the squared error in regression or the log-loss in classifi-
cation. Themethodology that follows is reliant on function
score and therefore the quality of predictor m̂.

2.2 Markov Decision Process

The questionnaire process can be modeled by a Markov
Decision Process (MDP, [16]) M = ( ̃X ,A,T ,R) where ̃X is
the state space, where the partially-known feature vector
X̃ lives and A = {1, . . . , p} is the action space, the indexes
of feature elements we can collect. T is the transition func-
tion such that for any initial feature vector x̃, any action j
and any other feature vector x̃�, T(x̃, j, x̃�) denotes the prob-
ability of observing feature vector x̃� when asking for ele-
ment j and starting from feature vector x̃.

Finally,R is the reward function defined for any x̃ such
that the algorithm is stopped i. e. any x̃ with q elements
filled, such that R(x̃) follows the conditional distribution

ℙ(X,Y)[score(x̃,Y)|X̃ = x̃]. (3)

For feature vectors with less than q elements, the reward
function equals 0.
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The MDP starts with initial state X̃0 = “unknown”
p,

we then ask question A0, coordinate A0 is revealed (state
X̃1), we then ask question A1, reach state X̃2, and so on and
so forth, until a terminal state is reached. In our case, we
will stop when q questions will have been asked.

In one of our experiments (Coronary Heart Disease
dataset), we extend the setting to the case where initial in-
formation is available, allowing us to personalize the ini-
tial question. We also consider that to a given action, mul-
tiple features may be revealed. Other extensions are dis-
cussed in the last section.

Please note that it is straightforward to consider the
case where initial information is known, and we still
would like to reveal q new informations. Also, one might
consider a specific action-question interaction, for in-
stance: onemight consider that some action reveal groups
of features, because those are somewhat related and
packed together during the interaction. To do so, one
would only need to specify a binary matrix indicating the
relationship between an action and the feature revealed:
1 if it is, 0 otherwise. We applied this formalism to one of
the benchmark datasets, see Figure 2, for which we con-
sidered that gender information was available at the be-
ginning and we considered that action 6 consisted in a
short heart rate monitoring, hence providing us directly
with both systolic and diastolic blood pressure levels.

2.3 Proposed Solution

We assume that we have at our disposal the set
{(x(i), y(i)), i ∈ {1, . . . , n}}, consisting of n independent and
identically distributed instances from variables (X,Y) i. e.
full questionnaires. From there we can fit prediction func-
tion m̂, create the set of observed transitions and the set of
rewards for terminal states, sincewe define function score.
Based on those datasets we propose to learn π∗ through
the following state-action value functions:

∀(x̃, a) ∈ ̃X ×A
Qπ(x̃, a) = Eπ,(X,Y)[score(X̃q,Y)|X̃t = x̃,At = a]. (4)

The problembeing episodic (q steps) andhierarchical,
we canuse approximatedynamicprogramming [4] to learn
the value functions in a backward fashion as presented in
Figure 1.

Based on the calibrated neural networks { ̂fj, j ∈
{0, . . . , q−1}}wewould apply the Intelligent Questionnaire
as presented in algorithm 2.

The objective at the end is to get something resembling
the decision-making procedure presented in Figure 1.

Algorithm 1: Learning value functions.
1 Input data {(x(i), y(i)), i ∈ {1, . . . , n}}
2 Input function score
3 Learn fq−1 as ̂fq−1, where

fq−1 : ̃X ×A→ ℝ
(x̃, a) Ü→ E(X,Y)[score(X̃q,Y)|X̃q−1 = x̃,Aq−1 = a]

4 for j ∈ {q − 1, q − 2, . . . , 1} do
5 Learn fj−1 as ̂fj−1, where

fj−1 : ̃X ×A→ ℝ
(x̃, a) Ü→ E(X,Y)[maxa� ̂fj(X̃j, a�)|X̃j−1 = x̃,Aj−1 = a]

6 end
7 Return set of networks : { ̂fj, j ∈ {0, . . . , q − 1}}

Algorithm 2: Intelligent Questionnaire algorithm.
1 Interacting user knows (x, y)
2 Initialize x̃ ← “unknown”p

3 for j ∈ {1, . . . , q} do
/* select next action/question to ask */

4 aj ← arg maxa∈A ̂fj−1(x̃, a)
/* retrieve corresponding element */

5 x̃aj ← xaj
6 end
7 Return prediction of y : m̂(x̃)

2.4 Online Setting

Let us now assume that we are going to collect question-
naires in a smart way i. e. starting with no data and with
the constraint on the number of questions authorized.
Specifically, we assume that this process starts with a run-
in period where T0 observations of couples (X̃q,Y) are col-
lected following an initial exploration strategy π0 e. g. ran-
dom subset of q questions. Then, we estimate prediction
function m̂andQ-value estimates { ̂fj, j ∈ {0, . . . , q−1}}based
on available data. From there, we will follow strategy π1 to
collect new observations, balancing between data diver-
sity (exploration) and estimated optimal decisions based
on running estimates (exploitation). In this process, illus-
trated in Figure 3, we write D the dataset augmented step
by step.

Let us now propose candidate strategies for π1. Con-
sider x̃ our partial information available after l features col-
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Figure 1: Intelligent Questionnaire expected. Actions chosen are
represented by black circles, transitions are colored depending on
revealed values and final predictions are indicated by functions m̂.
in terminal leaves. In this example, the algorithm splitted the range
of values for feature X1 in four bins. On the second layer, the algo-
rithm splitted differently the range of values of feature X2 depending
on the observed value for X1 (two and three bins respectively). This
process remembers all values provided before, partitions space
X and instead of assigning a single value for prediction, as a de-
cision tree would, it uses a prediction function based on retrieved
information. The objective is therefore not necessarily to group ob-
servations homogeneous in Y , but rather the ones following similar
underlying models of Y | ̃X .

Algorithm 3:Online Intelligent Questionnaire algo-
rithm.
1 Input (T0,T) : run-in phase and total durations
2 Input π0 : strategy followed during run-in phase
3 Input π1 : strategy followed after run-in phase
4 for t ∈ {1, . . . ,T} do
5 if t > T0 then
6 Estimate (m̂, { ̂fj}

q−1
j=0 ) based onD

7 end
8 Follow strategy π1{t>T0} for individual t
9 Store couple (x̃q, y) observed inD
10 end

lected. We propose first the softmax policy:

al+1 ∼ Multinomial( exp{β ̂fl(x̃, .)}
∑pk=1 exp{β ̂fl(x̃, k)}

) (5)

with control parameter β, β ≥ 0. Depending on the value of
β, this policy either picks the best estimated action (large
values of β) or picks uniformly at random (β = 0). This

policy makes the trade-off by drawing actions at random,
favoring smoothly actions which are estimated optimal.

Another policy is the Upper-Confidence Bound (UCB)
strategy which suggests taking:

al+1 = arg max
j=1,...p
̂fl(x̃, j) + α√log(|D|)/nj (6)

where |D| is the number of observations in D and nj de-
notes the number of observations in D where features of
the following set are known: j∪{k : x̃k ̸= “unknown”}. This
policy makes the trade-off by estimating an upper confi-
dence level on the true Q-values by adding to their esti-
mate a bound uncertainty which depends on the number
of similar data already collected.

3 Experiments
To evaluate the methodology presented above, we used
three toy models we built as well as three standard super-
vised learning benchmark datasets. The toy models were
built in order to ensure that the methodology achieves
proper performances against baselines and therefore vali-
date quantitatively its interest. Amongst the three datasets
we considered, there is the Boston Housing, the AMES
and the Coronary Heart Disease (CHD) dataset. The first
two, althoughnot practically realistic for the intendeduse,
serve as quantitative evaluation of the methodology per-
formance on real-life data. The CHD dataset however is
quite close to the motivation of this paper.

Amongst the six problems, four of them were regres-
sion problems, evaluated with Root Mean Squared Error
(RMSE) metric. The two others were binary classification
problems, evaluatedwithAreaUnder the Curve (AUC)met-
ric.

For each of those problems, we built an Intelligent
Questionnaire algorithm with a budget of q = 3 features to
uncover basedon trainingdata. The trainingdatawas split
in three equal parts: one to train the final predictor m̂, one
to train the Intelligent Questionnaire, and finally one to
validate the training.We used R package keras to calibrate
the feed-forward neural networks, relying on rmsprop op-
timizer, learning rate reduction on plateau as well as early
stopping.1 The overall performance results, obtained on 10
train-test splits are compiled in Table 1, followed by a fo-
cus on one of the Intelligent Questionnaire obtained on a
benchmark dataset.

1 Problem specific details, such as network dimensions can be found
at https://github.com/FredericLoge/SmartQuestions

https://github.com/FredericLoge/SmartQuestions
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3.1 Toy Models

Three toy models were considered in order to test our ap-
proach. In each case we simulated in total 6000 samples,
67% of which are used for training and the rest for test-
ing. As predictor functions, we used random forests with
100 trees, as implemented in the R package randomForest.
For models #2 and #3, we will write ε a standard Gaussian
noise generated independently of features X. For model #1
we considered the inaccuracy score function and for mod-
els #2 and #3 we used the squared prediction error.

3.1.1 Model #1, Set of Rules with Binary Features

We consider p = 8 mutually independent binary features

Xj ∼ B(0.5) ∀j ∈ {1, . . . , p}.

Let E(X) denote the union of arbitrarily chosen events:

E(X) .={X1 = X2 = X8 = 0} ∪ {X6 = 0,X2 = X3 = 1}

∪ {X8 = X1 = X3 = 1} ∪ {X4 = X5 = X6 = 0}

∪ {X3 = X4 = X2 = 1} ∪ {X4 = X8 = X1 = 1}

∪ {X3 = X5 = X7 = 0}.

We define Y |X .= 1{Ē(X)}. The target is therefore defined
deterministically based on X.

3.1.2 Model #2, Set of Rules with Binary and Continuous
Features

We consider p = 6 mutually independent features

∀j ∈ {1, . . . , p − 1} Xj ∼ B(0.5), Xp ∼ U[0, 1].

From there

Y |X = 1{E1(X) ∩ ̄E2(X)} + 21{E2(X)} + 0.2ε

with

E1(X)
.
={X1 = 0, {X2 = 0 ∪ X6 > .7}} ∪ {X4 = X5 = 0,X6 > .4}

∪ {X1 = X3 = 0,X6 > .8},

E2(X)
.
={X1 = 1, {X3 = 1 ∪ X6 > .7}} ∪ {X3 = X5 = 1,X6 > .6}.

In this toy model we add some stochasticity in the tar-
get and we consider mixed-type features.

3.1.3 Model #3: Regression with Continuous Features

We consider p = 8 mutually independent features

Xj ∼ N (0, 1) ∀j ∈ {1, . . . , p}.

From there,

Y |X = (X2 + X3)1{X1 < 0} + (X4 + X5)1{X1 ≥ 0} +√2ε.

In this model, the target is a linear regression of the
covariates, whose parameters depend on whether the first
coordinate is strictly positive or not.

3.2 Benchmark Datasets

Three benchmark datasets where considered: the Boston
Housing dataset [10], the more recent AMES dataset [8]
and the Coronary Heart Disease dataset [2, 1]. The first two
contain house prices and characteristics jointly. Because
of the relatively low sample sizes we relied on linear re-
gression models as prediction functions, rather than non-
parametric models. For the Coronary Heart Disease prob-
lem, having relatively large sample size we used extreme
gradient boosting with validation split for early stopping,
relying on R package xgboost.

3.2.1 Boston Housing Dataset

This dataset contains 506 observations (one per suburb)
and 13 variables, amongst which: the median value of
owner-occupied homes (the target), crime rate, average
number of rooms, pupil-teacher ratio.

3.2.2 House Prices Dataset, AMES

This dataset consists of 2930 observations of house value
(log-scaled) and 81 characteristics such as overall qual-
ity, year of construction, surface information. The set of
features was brought down to the following ten variables:
OverallQual, GrLivArea, YearBuilt, GarageCars, TotalB-
smtSF, GarageArea, X1stFlrSF, FullBath, YearRemodAdd,
LotArea.

3.2.3 Coronary Heart Disease, CHD

This dataset contains 4238 observations of patients: socio-
demographic information (e. g. gender), medical informa-
tion (e. g. diabetes), medical examination (e. g. glucose)
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Figure 2: Feature-action relationship matrix for CHD problem: gen-
der is assumed to be available initially, as it is considered to be a
zero cost variables. Systolic and diastolic blood pressure are col-
lected through a blood pressure measurement (action 6), all the
others are collected with their own specific measurement / question
e. g. blood glucose measurement for glucose, heart rate monitoring,
asking for diabetes history.

and finally whether the patient developed Coronary Heart
Disease during the following ten year period. For this prob-
lem, we assumed gender as an already-known feature and
one-to-one relationship between actions and features ex-
cept for one: action 6 reveals diastolic and systolic blood
pressure simultaneously, see Figure 2.

3.3 Results

For each problem, we replicate the train/test split at ran-
dom 10 times, calibrate our Intelligent Questionnaire as
well as three baselines on the training set and evaluate
on the test set. Toy model #1 and CHD being classification
problems we used the AUC metric for comparison, whilst
we used RMSE for all other problems.

In Table 1 we report the test set performance average
and its standard deviation in parenthesis. The oracle cor-
responds to the model using all p features and best q sub-
set relies on the fixed subset of features which performs
best on the training set. CART algorithm with maximum
depth q is a decision tree calibrated using Rpackage Rpart.
On all problems, whether it be toy models or benchmark
datasets, the Intelligent Questionnaire outperforms both
best q subset and the decision tree with maximum depth.
For toymodels, optimal performance bounds are provided
as element of comparison.

In Figure 3 are represented the question sequences
asked by the Intelligent Questionnaire on a test set of the
AMES problem. The thickness of the arrows indicate the
proportions of cases making the transitions. The best q
subset was found to be (OverallQual, GrLiveArea, Year-
Built). Those variables still matter a lot in the Intelligent
Questionnaire, but it seems to be more interesting, de-
pending onOverallQual observed to ask for GarageArea or
YearBuilt. This questionnaire manages which information
ismore important to get depending onpreviously recorded
values, as expected. Note that without initial information,
the first feature asked for is systematically the same. In the
CHD problem however, we witnessed that depending on
the gender, known initially, the first question asked var-
ied.

Table 1: Average and standard deviation of prediction performance on test sets, on 10 different train/test splits. On each problem, our ap-
proach performed better than the best q subset and the CART decision tree, getting close to the oracle predictor.

Problem Metric Bound Oracle Intelligent Questionnaire Best q subset CART, maxdepth = q
Toy models
#1 AUC 1 1 (0) 0.87 (0.01) 0.75 (0.02) 0.81 (0.01)
#2 RMSE 0.2 0.3 (0.01) 0.37 (0.01) 0.46 (0.01) 0.41 (0.01)
#3 RMSE √2 1.56 (0.02) 1.57 (0.03) 1.83 (0.03) 1.84 (0.02)
Benchmark datasets
Boston Housing RMSE 4.99 (0.57) 4.92 (0.54) 5.33 (0.54) 5.16 (0.64)
AMES Housing RMSE 4.3 (0.22) 4.56 (0.14) 4.67 (0.19) 5.62 (0.15)
CHD AUC 69.73 (1.92) 62.38 (3.2) 61.04 (4.35) 60 (3.41)
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Figure 3: Diagram showing the paths taken during the application of the Intelligent Questionnaire on the test set on AMES dataset. Note:
contrary to a decision tree which explicits the directions, this graph is only a representation of which features where asked, not why.

4 Reinforcement Learning on Toy
Model

In practice, it is interesting to be able to update sequen-
tially our model whilst using it, as presented in section 3.
In this section we investigate our ability to quickly find
a proper questionnaire on one of the toy models intro-
duced earlier using a Reinforcement Learning approach
[17]. The associated exploration-exploitation dilemma is
the following: choosing questions enhancing our knowl-
edge of ℙ(X,Y) (exploration) versus choosing questions
enhancing predictive power ofY given the partial informa-
tion requested (exploitation). A related example is the 20
questions problem studied in [7]. Different formulations of
the data acquisition setting (not always labelled, partially-
known features) were proposed by [15].

4.1 Specifics

We considered toy model #3 presented in preceding sec-
tion: consider p = 8 mutually independent random gaus-
sians features

Xj ∼ Gaussian(0, 1) ∀j ∈ {1, . . . , p}.

The target variable is defined by the simple linear
model

Y = {
X1 + X2 + σε if X3 < 0
X4 + X5 + σε otherwise

where ε ∼ Gaussian(0, 1) is the noise random variable,
independent of X. Parameter σ, which controls the noise
level in the model will be set to σ2 = 0.4 in order to have a
Signal-to-Noise ratio of 5.We consider theproblemof grad-
ually sampling data using the questionnaire i. e. gathering
only q = 3 elements of feature vector X at a time.

We start with 32 samples for each q-question combina-
tion and then at each iterationwe sample a total of 32⋅(pq ) =
1792 elements, accordingly with exploration policies. At
every iteration, half of the samples are kept for learning
functionm andhalf for theneural networkQ-value approx-
imation. To approximate m we will rely on random forest
algorithm. At each iteration, we will also follow greedily
the current questionnaire on a free-test dataset of 2000
samples. This will allow us to track the performance im-
provements of the Intelligent Questionnaire constructed
and see which exploration method performs well and un-
der which conditions.

We considered the softmax and UCB exploration poli-
cies, presented in section 2.4, setting, quite arbitrarily two
different exploration parameters. For all but one of the
softmax approaches,weused the square root absolute pre-
diction error instead of the squared error, because the lat-
ter has a highly-skewed distribution towards zero, which
seems to be causing issues in the neural network training.
It howevermay be that some parameters in the training on
the neural network should be changed for the approach to
perform properly.
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The template neural network used for computing
( ̂f2, ̂f1) had the following characteristics: fully-connected
neural network, with four hidden layers of 24 neurons, in-
put of size 24 (the first 16 representing the partially-known
vector, the last 8 indicating which action is selected) and
with output size 1. Note that an alternative architecture
could be to take as input 16 elements for the partially-
known vector and in output 8 elements, one per action.
Our architecture is slightly simpler to work with during
training.

In order to obtain our results, we repeated each sce-
nario i. e. exploration policy in 10 experiments with set
seed values.

4.2 Results

In order to analyze and compare the algorithms perfor-
mances we represent here the Root Mean Squared Error
(RMSE) of prediction observed on test and acquired sam-
ples on figures 4 and 5 respectively.

ExaminingFigure 4,which represents theRMSEdistri-
bution over time steps and for thedifferent policies,we can
make several observations: (a) UCBmethods take a longer
time to reduce RMSE in contrast with softmax exploration,

Figure 4: RMSE on test samples (n = 2000) per iteration and policy.
The median RMSE is represented by the bold points, and the 1st and
3rd quantiles define the boundaries of the ribbon. The best possible
performance is represented by the lower bound horizontal line, at
level σ.

(b) UCBmethods also present overallmore variability than
softmax experiment do, (c) the reward distribution mat-
ters, as the softmax policy relying on original squared er-
rors is the only onwhich seems to stuck to a floor level, two
times larger than the lower bound (σ = √0.4).

One can note that, because of the particular param-
eters, in the case of softmax the less-exploratory option
(β = 12) is preferable tomore exploratory one (β = 6). How-
ever, if we were to increase the parameter β too much, we
would tend towards a purely greedy strategy i. e. picking
the best estimated option which does not take into consid-
eration the uncertainty of our estimates and risks focusing
too much on sub-optimal actions. In the case of UCB, we
can see that in this case it was preferable to pick a larger
exploration bonus in order to make the solution converge
faster.

We followed the analysis by checking which action
was selected first in the learnt questionnaire and we
observed that the softmax approach allows to converge
quickly to picking question 3 first for almost all exper-
iments around step 15, whilst this proportion is around
75% for UCB(100) and 50% for UCB (50).

Let us now analyze how the different exploration poli-
cies behaved on the acquired samples based on Figure 5.
It appears that the RMSE on acquired samples drops only

Figure 5: RMSE on acquired samples (n = 1792) per iteration and
policy. The median RMSE is represented by the bold points, and the
1st and 3rd quantiles define the boundaries of the ribbon. The best
possible performance is represented by the lower bound horizontal
line, at level σ.
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for the softmax policies, indicating that the samples col-
lected were close to optimal selections. This finding was
confirmed by checking the proportion of triplets sampled
(1, 2, 3) and (3, 4, 5).

4.3 Suggestions

In this experiment, it appears that the softmax exploration
policy seems to bemore easy to dealwith compared toUCB
from an exploration perspective: it allows for much more
exploration, without waiting for next steps; as such the
learning happensmore quickly andwhenwe finally differ-
entiate in terms of Q-values it clearly stands out, whereas
in UCB it is not so clear, performs poorly in comparison in
terms of cumulative regret as well as final regret. Also it
seems more intuitive to compare Q-values amongst them-
selves rather than with an exploration bonus of a com-
pletely different nature. Also, it seems that reward distri-
bution (at the last layer of the questionnaire) does matter,
comparing the case where the squared error was taken in-
steadof the root absolute error. Somethingwe thoughtfully
omitted, is that the reward function changes throughout
iterations, since it is defined based on our prediction m̂ of
m, which is updated as more data is actually available. We
are fortunate enough, or in a sufficiently simple setting at
least, for this approach to be working. Now, it seems rea-
sonable that we would have some idea of the variance of
our prediction,which opens the possibility to learn not the
exact error but a lower upper bound on it (optimism-based
approach).

Finally, we could consider a more permissive version
of the game, where we can actually ask more than three
questions, but are penalized for it. That way, we could po-
tentially learn much more, and it would open the way to
more diverse exploration strategies.

5 Conclusion

In this work we built an adaptive predictive-questionnaire
under constraint over the number of questions, motivated
by the important balance between data acquisition and
user experience. As this is a sequential decision-making
problem we used a Markov Decision Process to model it.
Furthermore, its episodic and hierarchical structure al-
lowed us to apply an approximate dynamic programming
approach to learn the best adaptive questionnaire based
on available data on couple (X, Y), which is the standard
setting in supervised learning. Regarding the evaluation of

this approach, we have shown on three toy models as well
as three classic benchmarkdatasets that our approachout-
performs (a) a decision tree submitted to the same bud-
get constraint of questions (b) classic models based on the
most informative subset of questions. Option (b) beingnon
adaptive and option (a) being limited to one-dimensional
splits of data, our approach allows for much more flexi-
bility. The application on the third dataset, which is the
closest to our target application, showed that this ap-
proach can integrate easily some initially-known features
and how actions unveil features. Finally, we showed on a
toy model that our approach can be pursued in an online
setting, which is interesting for practical applications. As
a continuation of this work, we have a few ideas for further
research.

Scaling with (p, q)
In our approach we relied on an approximation of state-
value functions based on neural networks, without con-
sidering much on the dimension parameters. It is appar-
ent that the higher (pq ) is, the more difficult the problem
becomes with blunt overall search. The exploration ap-
proaches from active & reinforcement learning will surely
be handy to help identify q-sized subsets which are unin-
formative and handle this potential dimension issue.

Stopping Criterion
In the algorithm constructed, we assumed a budget con-
straint over the features requested. This approach makes
sense in some applications as it reduces globally the num-
ber of requests from us to the user and it simplifies some
computational aspects. We could also consider the case
where we would stop asking questions as soon as we be-
lieve we have gathered enough information on X in order
to predict Y to a satisfying level.

Performance Criterion
Aswedefined it, the performance of our algorithm is quan-
tified through predictive power. From the user experience
perspective, it might be worth taking into account the
cost of each question/action: in the Coronary Heart Dis-
ease problem, somemedical exams and checksmight have
higher costs than others and as such be favored differently.
Bringing this work a step closer to Human-Computer Inter-
action, we could even consider choosing the appropriate
question format e. g. radio-button choice versus numeric
input. Overall this is about balancingpredictive power and
information retrieval cost, keeping in mind that such cost
is related to user experience.
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Truthful Responses
Throughout this work we assumed that when an element
of X is asked for it is revealed exactly. As such, the same el-
ement is never asked for twice andwe completely trust the
response given. In some applications, the order and over-
all position of a question in a survey affects the answer
given, which can sometimes have very important conse-
quences, see [12]. Therefore, the answer given should be
treated as a noisy version of the truth, where the noise
actually depends on the order followed and previous an-
swers that were given. This would lead us to model the in-
teraction through a Partially Observable MDP [11].

Towards Human Computer Interaction, Online Evaluation
The framework we worked on suffers from the same is-
sues one might find in the supervised learning setting,
which assumes that independent and identically dis-
tributed pairs of random variables (X,Y) are observed: the
data collection phase is often overlooked. Our objective in
next steps with this project is to deploy such an algorithm
on a tele-monitoring use case related to Air Liquide Home
Care programs, where the difficulties linked to the ques-
tionnaire answering on tablets could be challenging for el-
derly patients. This requires going through regulatory pro-
tocols for access to data for algorithm training and piloting
in a secure mode to carry out an online evaluation of the
method. Finally, although this framework is presented for
questionnaires in this paper, it is quite generic and there-
fore adaptable to other situations. For instance, it could be
quite useful for developing dialog-based interfaces to in-
telligent systems.
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