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A B S T R A C T

Background: Cardiotocography (CTG), used during labor to assess fetal wellbeing, is subject to interobserver 
variability. Computerized CTG is a promising tool to improve fetal hypoxia detection.
Objective: To assess if adding clinical features improves the performance of a computerized CTG system to predict 
severe newborn acidemia (blood cord pH below 7.05).
Methods: A retrospective multicentric database was built using the data from two sources (the open-source CTU- 
UHB database and the data from Beaujon university hospital). Four CTG features were extracted from the fetal 
heart rate (FHR) signal (minimum and maximum value of the baseline, area covered by the accelerations and 
decelerations). Clinical features were also collected. Severe fetal acidemia was defined by arterial pH < 7.05 on 
umbilical cord sample. Risk factors for severe acidemia were sought by comparing cases with severe newborn 
acidemia to the rest of the cohort. We evaluated the accuracy of the model using both CTG and clinical features 
using area under the curve (AUC) in a cross-center, cross-validation approach.
Results: The datasets contained 1264 cases including 100 cases with severe acidemia. In univariate analysis, 
hypertensive disorders and other clinical features showed no significant difference, except for meconium-stained 
amniotic fluid (p = 0.03). Multivariate analysis revealed that a high deceleration area (OR = 1.09 [1.04––1.11]) 
and apparition of meconium amniotic fluid increased the risk of newborn acidemia (OR = 2.10[1.24–3.49]). In a 
k-fold cross-validation approach, DeepCTG®1.5 reached an AUC of 0.77, compared to 0.74 when using CTG 
features only.
Conclusion: The CTG features have a good accuracy to predict severe newborn acidemia, confirming existing 
literature. Integrating clinical features tends to enhance the accuracy. Further research will aim at using more 
advanced machine learning models to combine the features more efficiently.

Introduction

Fetal hypoxia is defined as a condition during the antenatal period in 
which the oxygen supply to fetal tissues is insufficient [1]. Fetal hypoxia 
affects 0.5 % to 1.0 % of deliveries worldwide, accounting for 23 % of 
primary causes of neonatal mortality [2]. Since direct access to the fetus 
is not possible during the antenatal period, we rely on measuring the 
umbilical cord pH after birth to assess and detect newborn acidemia 
[1,3]. Recognizing newborns at risk for neonatal acidemia and reducing 

its occurrence remains a crucial priority. Cardiotocography (CTG) dur
ing labor aims to reach this goal as a non-invasive tool assessing fetal 
well-being [4]. CTG monitors uterine contractions (UC) and fetal heart 
rate (FHR). It helps professionals to detect newborn acidemia and allows 
them to intervene in a timely manner to prevent any damage by per
forming caesarean section or instrumental vaginal delivery. The inter
pretation of CTG is visual and, despite the existence of clinical guidelines 
offering a framework for assessing and managing intrapartum fetal 
monitoring patterns[5], it is subject to inter- and intra-observer 
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variability [6,7]. In order to enhance the assessment of fetal well-being 
during labor, invasive second-line techniques such as fetal scalp blood 
sampling and ST analysis of the fetal ECG have been developed [8,9]. 
However, their effectiveness has been debated due to a lack of ran
domized studies demonstrating a reduction in fetal acidosis, and their 
use is not without any harm [10]. Recently, computerized CTG analysis 
systems based on state-of-the-art machine learning (ML) approaches 
have been developed to overcome the inter-observer variability [11,12].

In a previous work, we developed DeepCTG® 1.0 [13], a model able 
to predict fetal acidosis from CTG signals. DeepCTG® 1.0 is based on a 
logistic regression model fed with four features extracted from the last 
available 60 min of CTG signals (regardless of the mode of delivery, 
whether cesarean or vaginal): the minimum and maximum values of the 
FHR baseline, and the area covered by accelerations and decelerations. 
The Area Under the Curve (AUC) of the model is between 0.74 and 0.87 
depending on the centers on which the model is validated. DeepCTG® 
1.0 does not take into account clinical features, even if the probability of 
unfavorable neonatal outcomes is higher in cases of pathological preg
nancies or vulnerable fetuses. Several studies have identified various 
maternal and fetal criteria as risk factors for neonatal acidemia such as 
fetal growth restriction (FGR), gestational diabetes or intra uterine 
infection [14–17].

In this study, we introduce DeepCTG®1.5, a computerized CTG 
system that predicts fetal acidemia from both CTG and clinical features. 
The primary objective of this study is to evaluate if adding clinical 
features improves the performance of the model.

Materials and methods

Datasets

We performed a retrospective multicentric study on two datasets: 
CTU-UHB and Beaujon. CTU-UHB is an open-access database with 550 
intrapartum CTG recordings that were carefully selected from 9164 re
cordings collected between 2010 and 2012 in the obstetrics ward of the 
University Hospital in Brno, Czech Republic [18]. The Beaujon dataset 
contains 714 CTG recordings collected at Beaujon-APHP University 
Hospital (Clichy, France). Every delivery with an arterial pH level below 
7.15 that occurred from January 2020 to December 2022 was included 
in the study. Additionally, for each delivery with a pH below 7.15, the 
most recent delivery with a pH above 7.15 was also included. For both 
centers, the CTG signals were recorded continuously until birth for 
vaginal deliveries or until a decision was made to perform a cesarean 
section. The CTG signals were captured using a doppler ultrasound 
probe placed on the mother’s abdomen and for some cases in the CTU- 
UHB cohort with a fetal scalp electrode. All deliveries were after 37 
weeks of gestation (WG).

For each CTG recording, both maternal and fetal characteristics were 
collected. The maternal parameters included age, parity, gestational 
diabetes, and hypertensive disorders of pregnancy (i.e. pre-eclampsia or 
gestational hypertension). The clinical data for the newborn included 
sex, birth weight, gestational age, Apgar score < 7 at five minutes, 
umbilical cord arterial pH. Obstetric data included the occurrence of 
meconium-stained amniotic fluid and delivery mode. Growth restriction 
was defined by a birth weight was below the 10th percentile and mac
rosomia by a birth weight above the 90th percentile on our local chart 
[19].

Statistical analysis

The primary outcome was the presence of severe acidemia, as 
defined by an arterial umbilical cord pH below 7.05 at birth. A 
descriptive analysis of the clinical features was performed: for quanti
tative variables, we present the mean and standard deviation, and for 
discrete variables the counts and percentages.

Univariate analyses were performed on the clinical features to 

compare both groups using parametric and non-parametric tests if 
appropriate. Secondly, a multivariate analysis was conducted with 
clinical features with p-values less than 0.20, as well as four CTG fea
tures extracted using the methodology described in DeepCTG® 1.0 [13]
(minimum and maximum value of the baseline, area covered by accel
erations and decelerations). These four variables were the best per
forming features in univariate analysis and were easily explainable. We 
did not incorporate uterine contractions because of the large rate of 
missing data in Beaujon dataset. Variables with p-values > 0.2, but with 
a widely recognized association with fetal hypoxia were kept in the 
model as well. The odds ratios are reported with their 95 % CI.

Prediction model DeepCTG®1.5

The prediction model DeepCTG® 1.5 is a logistic regression model 
fed with the CTG and clinical features in the multivariate analysis. We 
performed both a cross-center and a k-fold cross-validation. For the 
cross-center validation, we trained the model on a dataset (Beaujon or 
CTU-UHB) and validated it on the other. In the k-fold cross validation, 
all cases in both datasets were gathered and split into 5 folds. Then, for 
every fold, the model is trained on the 4 other folds and validated on it.

The performance of the model was assessed using the area under the 
curve (AUC) with a 95 % CI.

All the statistical analyses were performed on R 4.4.0 software.

Ethical approval

This work had the approval of Robert Debré hospital’s Ethical 
committee (IRB 00006477).

Results

Description of datasets

The study included 1264 cases from two centers: CTU-UHB (550 
cases) and Beaujon (714 cases). The overall prevalence of severe acidosis 
across both centers was 7.9 %. The average maternal age was 29.7 years 
in both centers. Gestational diabetes was more prevalent in Beaujon 
dataset (16.7 %) compared to CTU-UHB (6.7 %), while the incidence of 
hypertension disorder was 3.6 % in Beaujon dataset and 3.1 % in CTU- 
UHB. The average gestational age at birth was 39.6 WG in Beaujon 
dataset and 40.0 WG in CTU-UHB. The cesarean rate is higher in the 
CTU-UHB dataset (24 % vs 9 % in Beaujon dataset). Among the new
borns, 17.9 % were classified as FGR in Beaujon dataset, compared to 
13.3 % in CTU-UHB. 26.8 % of pregnancies had a meconium amniotic 
fluid in Beaujon dataset compared to 11.6 % for CTU-UHB. Table 1
summarizes the maternal and fetal characteristics in both datasets.

Risk factors of fetal acidemia

We classified the cases based on their acidemia status, resulting in 
100 cases of severe acidemia and 1164 cases without hypoxia. Although 
the occurrence of hypertension disorders appeared higher in the severe 
acidemia group, the difference was not statistically significant (p =
0.22). The mean maternal age was 29.7 years in both groups (p = 0.82). 
Gestational diabetes was present in 15.0 % of cases with severe hypoxia 
and 12.2 % of cases without acidemia, showing no significant difference 
(p = 0.31). Newborns with severe acidemia tended to have a lower birth 
weight with 21.0 % classified as FGR compared to 15.5 % in the other 
group, but this difference was not significative (p = 0.12). The presence 
of meconium-stained amniotic fluid is only features that was signifi
cantly associated to newborn acidemia (p = 0.03). Additionally, there 
was no significant difference between the groups in terms of mean birth 
weight, incidence of macrosomia, sex distribution, or mean gestational 
age at birth. A detailed comparison of the maternal and fetal charac
teristics between the groups is presented in Table 2.
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In the multivariate analysis, deceleration showed a significant as
sociation with newborn acidemia (OR = 1.09, 95 % CI 1.04––1.11, p <
0.001). Among clinical features, maternal age and diabetes did not 
significantly influence outcomes, while meconium in the amniotic fluid 
significantly increased the odds of adverse outcomes (OR = 2.10, 95 % 

CI 1.24–3.49, p < 0.001). Hypertension disorders were not significantly 
associated with the outcome (1.98, 95 % CI 0.61–5.29, p = 0.20) 
(Table 3.).

Logistic regression DeepCTG®1.5

The model fed with clinical features only (maternal age, FGR, dia
betes, hypertension disorder, and meconium amniotic fluid) reached an 
AUC of 0.61 (0.50–0.67) when trained on CTU-UHB and tested on 
Beaujon and of 0.53 (0.44–0.62) when trained on Beaujon and tested on 
CTU-UHB. CTG features demonstrated a better predictive performance 
with an AUC of 0.73 (0.65–0.79) and 0.70 (0.60–0.80) under similar 
cross-validation conditions. In cross-center validation, the integration of 
all features has a limited impact on the AUCs (0.71 on both datasets). In 
k-fold validation, the AUC increased from 0.74 (0.68–0.80) to 0.77 
(0.71–0.83) when integrating the clinical features (Table 4, Fig. 1). The 
95 % confidence intervals on the AUCs are wide.

Discussion

In this study, we introduced DeepCTG®1.5, a logistic regression 
model that combines both clinical and CTG features to predict severe 
fetal acidemia during labor. In a cross-center validation, the AUC was 
0.71 on Beaujon dataset and 0.71 on CTU-UHB dataset, and in a k-fold 
validation approach it reached 0.77 (compared to 0.74 with a model 
using the CTG features only). The integration of clinical variables in the 
model tends to increase the AUC, but this improvement is not significant 
given the width of the confidence intervals on AUC values.

Most existing studies related to computerized CTG build prediction 
models based on CTG features only, and a large part of them validate the 
model on the open-source CTU-UHB dataset, enabling a comparison of 
the results. For example, Gatellier et al.[23] used a multivariate logistic 
regression to predict pH below 7.10, finding an AUC of 0.72. However, 
the same dataset was used for evaluation and testing, which could 
introduce a bias. Abry et al [24] used another machine learning algo
rithm to predict pH < 7.05, achieving an AUC of 0.70. The SisPorto and 
OxSys computerized CTG models [20–22] are built and evaluated on 
private datasets. The model by Petrozziello et al. [25] is trained on a 
significantly larger dataset of over 35,000 cases and is based on more 
advanced deep learning methods. It reports an AUC of 0.82, but those 
results are biased because cases of moderate acidemia are excluded from 
the dataset.

One main identified limit of those approaches is that they do not 
integrate clinical parameters such as maternal and obstetrical factors, 
that are known to influence newborn outcome and thus CTG interpre
tation [26]. For instance, gestational diabetes mellitus and mean blood 
glucose are significantly correlated with an increase in baseline and a 
decrease in short-term variability [27]. The presence of hypertension 
disorder and other placenta − mediated complication such us FGR has 
also been identified as a risk factor for fetal acidosis [14,17,22]. Fetuses 

Table 1 
Maternal and fetal features.

CTU-UHB Beaujon

Total number of cases 550 714
Maternal Clinical Data ​

Age in years (std) 29.7 (4.5) 29.7 (5.2)
Primiparous 68.4 % 57.0 %

Gestational diabetes 6.7 % 16.7 %
Hypertension disorder 3.1 % 3.6 %

Meconium amniotic fluid 11.6 % 26.8 %
Delivery mode ​ ​

Vaginal 48 % 76 %
Operative 28 % 15 %
Cesarean 24 % 9 %

Fetal outcome ​
pH < 7.05 7.8 % 8.0 %

7.05 ≤ pH < 7.15 12.5 % 45.5 %
pH ≥ 7.15 79.6 % 46.5 %

Apgar 5′ < 7 8.2 % 10.5 %
Birth weight (Kg): mean (std) 3.4 (0.5) 3.3 (0.5)

Fetal growth restriction 13.3 % 17.9 %
Macrosomia 7.1 % 5.9 %

Sex (rate of female) 46.8 % 48.4 %
Term (SA): mean (std) 40 (1.1) 39.6 (1.5)

Table 2 
Comparisons of the maternal and fetal characteristics between groups.

Severe acidemia 
(pH <7.05)

No severe acidemia 
(pH≥ 7.05)

p- 
value

Total number of 
cases

100 1164 ​

Maternal Clinical 
Data

​ ​ ​

Maternal age (std) 30 (5.33) 30 (4.87) 0.82
Gestational diabetes 15.0% 12.2% 0.31

Hypertension 
disorder

5.0% 3.3% 0.22

Meconium amniotic 
fluid

32.0% 19.1% 0.03

Fetal outcome ​ ​ ​
Birth weight(g): 

mean (std)
3327 (471) 3313 (488) 0.79

Fetal growth 
restriction

21.0% 15.5% 0.12

Macrosomia 4.0% 6.7% 0.59
Sex (rate of female) 48.5% 47.2% 0.89

Term (WG): mean 
(std)

39.7 (1.15) 39.8 (1.40) 0.92

WG week of gestation ​ ​ ​

Table 3 
Multivariate analysis of newborn acidemia risk factors.

OR CI 95 % p-value

Cardiotocography features ​ ​ ​
FHR Minimum baseline (beats/min) 0.99 0.98–1.02 0.77
FHR Maximum baseline (beats/min) 1.03 0.99–1.08 0.06

FHR Acceleration area (beats) 1.13 1.05–1.20 0.24
FHR Deceleration area (beats) 1.08 1.04––1.11 <0.001

Clinical features ​ ​ ​
Maternal age 1.03 0.99–1.09 0.17

Fetal growth restriction 1.33 0.73–2.32 0.33
Gestational diabetes 1.14 0.57–2.15 0.69

Hypertension disorders 1.98 0.61–5.29 0.20
Meconium amniotic fluid 2.10 1.24–3.49 <0.001

FHR fetal heart rate.

Table 4 
Evaluation and validation of DeepCTG@ 1.5. AUC with 95% confident intervals.

Validation dataset

Beaujon 
(trained on 
CTU-UHB)

CTU-UHB 
(trained on 
Beaujon)

All datasets (k- 
fold cross- 
validation)

Clinical features (maternal 
age,FGR, diabetes, 
hypertension disorder, 
meconium amniotic fluid)

0.61 
(0.50–0.67)

0.53 
(0.44–0.62)

0.61 
(0.54–0.68)

Cardiotocography features 0.73 
(0.65–0.79)

0.70 
(0.60–0.80)

0.74 
(0.68–0.80)

CTG + Clinical features 0.71 
(0.65–0.80)

0.71 
(0.61–0.80)

0.77 
(0.71–0.83)

FGR fetal growth restriction. CTG Cardiotocography.
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with FGR had less acceleration and increase risk of late decelerations 
[28]. Nulliparity is also a risk factor with prolonged duration of labor 
and delivery and that increases the fetus’ exposure to the risk of hypoxia 
[14,29]. A few studies aimed at building prediction models based on 
clinical parameters only. A large multi-center retrospective study in 
China developed a model using both antenatal and delivery features and 
demonstrated good accuracy to predict fetal asphyxia defined by APGAR 
score < 7 with pH < 7.05 (AUC = 0.73) [17]. However, the model 
included visual detection of abnormal FHR in the logistic regression, 
which had the highest odds ratio 4.75 (3.74–5.8). Similar results were 
reported in a large retrospective study with 5667 newborns using 
antepartum and intrapartum features and identified key predictors 
including gestational age, nulliparity, previous cesarean delivery, 
maternal diabetes, spontaneous labor onset, and meconium-stained 
amniotic fluid (AUC = 0.66) [29]. A. Houzé de l’Aulnoit et al. devel
oped a multivariate model incorporating clinical features (nulliparity, 
term, sex, time between the end of recording and delivery) and auto
matically selected CTG features. Their model’s discriminant ability 
(AUC = 0.79) is comparable to ours [30].

In our study, we found no maternal or fetal criteria associated with 
severe acidosis except for meconium amniotic fluid, as described in 
literature [14,15,17,22,29]. Thus, a prediction model using clinical 
features only has a poor performance. One possible explanation for this 
finding is the limited data available [31]. The combination of ante
partum risk factors and intrapartum CTG features improved slightly the 
performance of the model (AUC = 0.77) compared with CTG features 
only (AUC = 0.74) in the k-fold cross-validation approach. This result 
does not hold in the cross-center validation approach, suggesting that 
further work will be needed to build a model that integrates clinical 
features and generalizes well to new centers. Surprisingly, we found that 
a higher acceleration area is linked to an increase in the risk of fetal 
hypoxia (even if this link is not statistically significant), which was the 
opposite of what we expected [5]. We hypothesize that the high insta
bility of the FHR signal during the last phase of delivery harms the 
quality of the baseline estimate.

No RCTs have validated algorithms using both clinical and signal 
features, though some target CTG-only systems. The largest RCT, the 
INFANT study [32] with over 47.000 deliveries, showed no improve
ment in neonatal outcomes. Meta-analyses suggest that computerized 
CTG systems do not affect outcomes like acidosis or APGAR scores 
[33,34], raising questions about their clinical integration and the 

suitability of RCTs for such validations due to cost and duration.
Our work had several limitations. First it was built on two datasets 

that are both biased: the CTU-UHB dataset is formed with cases 
extracted from a larger cohort, and in Beaujon dataset half of the cases 
have a pH lower than 7.15. A validation of the system on another 
retrospective cohort would be needed to confirm the performance of the 
system. Secondly, several features known to be linked to newborn 
acidemia are not included in the study. The uterine contractions are not 
used in the set of CTG features. Regarding the clinical features, the set of 
features integrated in the study is limited because we had to include 
variables that are available in the two datasets. We could not then 
evaluate other blood gas parameters or other clinical characteristics that 
are involved in a poor neonatal outcome, such as BMI, history of 
caesarean or intrauterine infection [14,29,35]. We also did not consider 
the use of oxytocin during labor, which can contribute to adverse fetal 
conditions if the uterus does not relax properly [36]. Also, on a physi
ological point of view, the different stages of labor should be analyzed 
separately. However, we showed in a previous work [13] that on our 
cohort, training and validating according to the mode of delivery did not 
impact the performance of the model, suggesting that both stages could 
be analyzed in the same way. Automatic detection of the labor stage 
from the signal is challenging too. This point could be investigated 
further in future work. Another limitation is the relatively small sample 
size of the training datasets as well as the small number of cases of severe 
acidemia, given the low arterial pH threshold (7.05) we used to define 
this group, following other publications [24]. Because of this, we only 
defined a training and a validation set and we did not define an inde
pendent test set, possibly introducing a bias in the evaluated perfor
mance. The small sample size also limited the complexity of machine 
learning or deep learning methods. The logistic regression employed is a 
powerful tool for developing prediction models, but it might not effec
tively capture complex interactions between features. More advanced 
methods like deep learning models can learn more complex nonlinear 
relationships, however they require large datasets to be trained in a 
robust way [12,37]. By incorporating clinical parameters into these 
powerful automated models their ability to screen for fetal hypoxia and 
newborn acidemia might be enhanced. Further work aims also to define 
the desired outcomes, other than pH, [38] and determining the optimal 
threshold for intervention. Practitioners must establish a target false 
positive rate, which will inherently dictate an acceptable true positive 
rate, to avoid unnecessary interventions.

Fig. 1. Receiver-operating characteristic curves of DeepCTG@ 1.5 on all cases, k-fold cross-validation (outcome: pH < 7.05).
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Conclusion

While CTG features alone show strong predictive power, integrating 
clinical features improves the model accuracy for predicting newborn 
acidemia, although slightly. Future research will focus on deploying 
more sophisticated machine learning techniques to effectively combine 
clinical and cardiotocography features, a process that will necessitate 
large training datasets.
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