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A B S T R A C T

Cardiotocography (CTG) is the main tool available to detect neonatal acidemia during delivery. Presently, ob-
stetricians and midwives primarily rely on visual interpretation, leading to a significant intra-observer vari-
ability. In this paper, we build and evaluate a convolutional neural network to detect neonatal acidemia from the 
CTG signals during delivery on a multicenter database with 27662 cases in five centers, including 3457 and 464 
cases of moderate and severe neonatal acidemia respectively (defined by a fetal pH at birth between 7.05 and 
7.20, and lower than 7.05 respectively). To use all the available records, the convolutional layers are pretrained 
on a task which consists in predicting several features known to be associated with neonatal acidemia from the 
raw CTG signals. In a cross-center evaluation, the AUC varies from 0.74 to 0.83 between the centers for the 
detection of severe acidemia, showing the ability of deep learning models to generalize from one dataset to the 
other and paving the way for more accurate models trained on larger databases. The model can still be signif-
icantly improved, by adding clinical variables to account for risk factors of acidemia that may not appear in the 
CTG signals. Further research will also be led to integrate the model in a tool that could assist humans in the 
interpretation of CTG.

1. Introduction

Neonatal acidemia is one of the main complications that may arise 
during delivery and is associated with various fetal impairments such as 
cerebral palsy, hypoxic-ischemic encephalopathy or even stillbirth [1], 
thus there is a high potential impact of improving the detection and 
management of neonatal acidemia in clinical practice.

Cardiotocography (CTG) is defined as the recording of fetal heart 
rate (FHR) and uterine contractions (UC) during pregnancy using an 
electronic fetal monitor and is the main tool available to monitor the 
fetal well-being. In developed countries, CTG is generally monitored 
continuously during delivery. Presently, obstetricians and midwives 
primarily rely on visual interpretation based on established guidelines 

[2]. Although those guidelines are constantly challenged [3,4], CTG 
interpretation methods have remained largely unchanged since CTG was 
introduced in the 1960s. CTG interpretation is known to be subject to a 
significant inter-observer and intra-observer variability [5–7] and the 
effectiveness of continuous CTG monitoring is still debated [8]. Intra-
partum fetal blood sampling or ST waveform analysis of fetal electro-
cardiogram has been suggested as a second-line test in case of abnormal 
fetal heart rate patterns [9,10]. In addition to their questionable 
contribution to reducing poor neonatal outcomes [11,12], these invasive 
methods are not without risks for the fetus, can be difficult to perform 
due to a long learning curve and require available medical staff [13,14].

Improving non-invasive CTG monitoring is a key challenge in ob-
stetrics to increase the sensitivity while reducing the rate of false 
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positives associated with unnecessary interventions. Building and 
deploying models to help practitioners with CTG interpretation is a 
promising solution to this challenge [15]. The first developed models 
were based on a quantitative adaptation of the guidelines proposed by 
the International Federation of Gynecology and Obstetrics (FIGO), like 
the Omniview-SisPorto and the OxSys systems [16–18].

The availability of clinical datasets [19,20], some of which are 
published in open-access, as well as the ability to digitize printed CTG 
traces [21] led to a surge of research on computerized CTG analysis 
using machine learning techniques [22–26]. In the last years, there have 
been several publications using deep learning models. Most of them are 
based on convolutional neural networks [27–29], and some use more 
complex architectures [30].

However, no model has been shown yet to bring a clear benefit over 
visual interpretation in a randomized controlled trial [31,32], which 
proves that despite their promises, such models still need to be 
rethought and refined. One of the main difficulties associated with 
building a model is that most available clinical datasets only contain a 
few hundreds or thousands of births. As neonatal acidemia is a rare 
event and may result in heterogeneous and patient-specific impact in the 
CTG patterns, training robust algorithms requires larger datasets. In the 
present paper, we introduce DeepCTG® 2.0, a model based on a CNN 
predicting neonatal acidemia during delivery using CTG signals devel-
oped and evaluated on a large multicenter clinical database.

2. Material and methods

2.1. Datasets

The study was performed on a multicenter retrospective database 
including cases from three teaching hospitals of Assistance Publique des 
Hôpitaux de Paris (APHP), and two open-source datasets (Table I).

The three hospitals were Beaujon-APHP (Clichy, France), Robert- 
Debré-APHP (Paris, France) and Bichat-APHP (Paris, France), with the 
following inclusion periods: March 2006–February 2018 in Robert- 
Debré, January 2013–September 2022 in Bichat, and January 
2020–December 2022 in Beaujon.

Two open-source datasets were included as well: the CTU-UHB 
dataset [33], and the SPaM dataset introduced as part of the Work-
shop on Signal Processing and Monitoring in Labor [34]. The CTU-UHB 
dataset contained 552 cases collected at the University Hospital of Brno, 
with CTG signals, maternofetal data, and fetal outcome. The SPaM 
dataset contained 300 cases collected from three participating centers 
(Lyon, Brno and Oxford). Each center provided 100 cases: 80 cases with 
pH within 7.25–7.30 and 20 with pH ≤ 7.05. For every case, the CTG 
signals and binary outcome are available.

All cases for which the CTG signals, maternofetal data and fetal 
outcomes were available were included. The CTG signals include the 
FHR signal and the UC signal, with a 4Hz frequency. Cases with pre-
mature birth (gestational age <37 weeks) were excluded, leading to a 
total number of 27662 cases included. Neonatal acidemia was defined 
according to arterial pH at birth. Three groups of outcomes were 
defined: normal, moderate acidemia and severe acidemia, correspond-
ing to pH > 7.20, 7.05<pH ≤ 7.20 and pH ≤ 7.05 respectively.

2.2. Preprocessing of CTG signals

The signals were first averaged down to a 1Hz frequency. This had no 
impact on the performance of the model and enabled to decrease the size 
of the datasets and accelerate the training of the models. This choice is 
consistent with past studies [28].

The model inputs 60-min CTG segments which were built with the 
following methodology: 

• Missing segments of data lasting less than 10 min were interpolated 
using linear interpolation. Missing segments of over 10 min were not 
filled.

• For every case, the latest segment without any missing data (after 
interpolation) and lasting 10 min at least was selected. If such a 
segment did not exist, or if it started more than 90 min before de-
livery, the case was excluded. This led to the exclusion of 74 cases, 
representing less than 0.3 % of the total number of cases.

• When this segment lasted more than 60 min, we selected the last 60 
min. When it lasted less than 60 min, we padded the signals with 
zeroes on the left. Hence, given our 1Hz sampling, the size of the CTG 
segments that were analyzed is 3600.

Then, FHR and UC values were normalized by subtracting their mean 
and dividing by their standard deviation computed over the whole 
dataset.

2.3. Deep learning model

The classification model inputs a 60-min CTG segment and outputs 
the probabilities for each of the three possible outcomes (normal, 
moderate acidemia and severe acidemia).

The model is a CNN with the following architecture: 

• The CTG segments of shape (3600, 2) were processed with four 
convolutional blocks formed with a one-dimensional convolutional 
layer and a max-pooling layer, parametrized by the number of con-
volutional kernels and their size. We used 32, 32, 64 and 64 for the 
number of kernels, and 6, 6, 5, and 5 for their size. The output shape 

Table 1 
Description of the datasets.

Multicenter APHP dataset Public datasets

Hôpital 
Beaujon

Hôpital 
Robert- 
Debré

Hôpital 
Bichat

CTU- 
UHB

SPaM

Number of 
cases

383 19194 7242 549 294 27662

Fetal outcome: share of cases per pH at birth

pH ≤ 7.05 14 % 1 % 2 % 8 % 20 % 464
7.05 < pH ≤

7.20
19 % 8 % 22 % 27 % 0 % 3457

pH > 7.20 66 % 91 % 75 % 65 % 80 % 23741

Delivery mode: share of cases per delivery mode

Vaginal 68 % 70 % 72 % 92 % 100 % 
Operative 21 % 21 % 16 % 
Cesarean 

during 
labor

10 % 8 % 12 % 8 % 

CTG signals characteristics

Share of cases 
with more 
than 60 min 
of signal

94.0 % 92.7 % 93.8 % 84.9 
%

100.0 
%



Mean share of 
FHR 
missing 
points

7.9 % 9.9 % 8.6 % 15.7 
%

7.6 % 

Mean share of 
UC missing 
points

23.5 % 8.0 % 16.5 % 21.3 
%

7.9 % 

APHP assistance publique des hôpitaux de Paris, CTG cardiotocography, FHR 
fetal heart rate, UC uterine contractions.
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of the processed segments is (4, 64), which is flattened to a vector of 
shape 256.

• Then, two fully-connected layers with ReLU activation and 256 units 
were applied successively.

• Finally, a fully-connected layer with Softmax activation and three 
output units was applied to output the probabilities for the three 
classes.

The following alternative architectures have been considered to 
process the CTG segments (the fully-connected layers are left 
unchanged): 

• Convolutional blocks with different numbers of kernels: either two 
times less kernels (16, 16, 32 and 32) or two times more kernels.

• Stacked Long Short-Term Memory (LSTM) layers: this architecture 
processes the CTG segments with LSTM layers, a recurrent neural 
network (RNN) variant that excels in capturing long-range de-
pendencies in sequential data. Stacking several of them allows to 
learn complex temporal features. We have evaluated this architec-
ture with 64 hidden units, and 1 or 3 stacked layers.

• Hybrid architecture combining convolutional blocks and a trans-
former: in this architecture, the CTG segments are processed first 
with two convolutional blocks (both of size 6 with 64 kernels) and 
then with a transformer, formed with several self-attention layers as 
described in Vaswani et al. [35]. The convolutional blocks extract 
local features from the input segments, while the transformer layers 
handle long-range dependencies via self-attention mechanisms. The 
application of convolutional blocks early in the processing has two 
main advantages: it reduces the temporal dimension (decreasing the 
computational power required by the transformer), and at the same 
time increases the features dimension (increasing the number of 
parameters in the transformer and hence its expressive power). We 
have evaluated this architecture with two sets of parameters for the 
transformer: 2 self-attention layers, 4 attention heads, 128 units in 
the feedforward layer, and 4 self-attention layers, 8 attention heads, 
256 units in the feedforward layer.

Those different architectures have been evaluated on the Robert 
Debré dataset (the training was performed on cases from other datasets).

2.4. Training and validation of the model

The model was evaluated separately on the five centers included in 
the study. For each center, we built a training, a validation and a test 
dataset the following way: 

• Only cases from the four other centers were included in the training 
and validation datasets. This ensured that the performance was 
representative of the performance that could be reached when using 
the model in a new hospital. 80 % of those cases were selected to be 
included in the training dataset, and the remaining 20 % were 
selected to be included in the validation dataset. Then, the training 
and validation datasets were formed with 10000 cases sampled with 
replacement from those cases: 6000 normal cases, 3000 cases of 
moderate acidemia and 1000 cases of severe acidemia. This choice 
enabled to overweight the cases with acidemia (i.e. pH < 7.05) given 
its low prevalence.

• The test dataset was formed with the cases in the center being 
evaluated.

The model was trained with the cross-entropy loss commonly used 
for classification tasks. We used early stopping with a patience param-
eter equal to three: training was stopped when the cross-entropy loss on 
the validation dataset did not improve during three consecutive epochs.

We pretrained the convolutional layers on a task which consisted in 
predicting from the raw CTG segments the value of several features 

extracted from the segments. The features extracted from the FHR 
segment are the minimum and maximum value of the baseline, the areas 
covered by accelerations and decelerations, and the short-term and long- 
term variabilities of the signal. The features extracted from the UC 
segment are the number of contractions and the total duration of the 
contractions. Those features are extracted following the methodology 
used in the DeepCTG® 1.0 model [29] and fully described in the cor-
responding paper. Pretraining the convolutional layers on this alterna-
tive task presented two advantages: this enabled to use all parts of CTG 
signals (and not only the segment just before delivery), increasing the 
size of the dataset by a factor between 5 and 10, and the definition of the 
task included features known to be linked to neonatal acidemia (Fig. 1). 
We report the performance of the model with no pretraining and with 
this pretraining methodology.

2.5. Performance assessment and statistical methods

The receiver operating characteristic (ROC) curve of the model was 
built on every dataset for two binary classification tasks: the detection of 
cases of severe acidemia (by merging the two other classes) and the 
detection of cases of moderate or severe acidemia (by merging those two 
classes). The area under those ROC curves (AUC) was evaluated, with a 
90 % confidence interval estimated by bootstrapping the evaluation 
datasets with 100 bootstraps (built by drawing cases with replacement). 
Considering the width of the confidence intervals, AUCs were rounded 
to two decimal places only. For each dataset the performance reached by 
another model, DeepCTG® 1.0, was evaluated. This model is based on a 
logistic regression fed with features extracted from the CTG signals [29].

The impact of the following parameters on the performance of the 
model was evaluated: 

• Signal quality: each one of the three APHP datasets was broken down 
according to signal quality into three equally sized subsets, based on 
the proportion of missing values in the FHR segment fed to the 
model. Those subsets are named “High quality”, “Medium quality” 
and “Low quality”. The ROC curve of the model was evaluated on 
each subset to evaluate how the CTG signal quality impacts the 
performance of the model.

• Sample size and pretraining: models were trained on subsets of the 
training datasets, built by randomly sampling without replacement 
10 %, 50 % or 100 % of the cases. On every subset, two models were 
trained, with and without pretraining the convolutional layers. This 
enabled to evaluate how both the size of the training datasets and the 
pretraining of the convolutional layers impact the performance of the 
model. For the sake of clarity, this evaluation was done on the Robert 
Debré dataset only (the training was performed on cases from other 
datasets).

• Input features: on the Robert Debré dataset, we evaluated the model 
by using as inputs the FHR signal only, the UC signal only or both 
signals.

• Obstetric risk factors: the model was trained and evaluated on a low- 
risk subgroup excluding the following cases: breech presentation, 
gestational age >42 weeks, maternal body mass index (BMI) > 30 
kg/m2, gestational diabetes, pre-eclampsia, birthweight <10th 
percentile and >90th percentile, or suspicion of intrauterine infec-
tion during labor. This subgroup comprised 16424 cases, including 
237 cases (1.4 %) of severe acidemia and 1934 cases (11.8 %) of 
moderate acidemia. Those exclusion rules are based on variables that 
are known to influence the interpretation of CTG during labor. A 
further analysis was conducted on the false negatives in this sub-
group, defined as cases for which a normal outcome was predicted 
while the true outcome was a severe acidemia. By analyzing jointly 
the FHR and the clinical variables, those cases were carefully clas-
sified into five categories: (1) low signal quality (cases with a high 
share of FHR missing data), (2) bradycardia during pushing (a clear 
bradycardia was noticed during pushing, but the model 
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misinterpreted it), (3) other FHR anomalies (those anomalies could 
be detected visually but the model did not detect them), (4) evolu-
tion post CTG (cases where the neonatal acidemia appeared after the 
CTG recording finished and hence could not have been detected by 
the model), (5) unexplained (neonatal acidemia could not be 
detected visually by analyzing the case, hence it was hard to explain 
why the model was wrong).

The model was also evaluated on a low-risk subgroup built using 
rules based on clinical variables that are known to influence the inter-
pretation of CTG.

2.6. Evaluation of clinical practice

For every case in the three APHP datasets, it is known whether an 
anomaly in the CTG signals was detected by the practitioners during 
delivery. The sensitivity and specificity of the detection of moderate and 
severe acidemia by practitioners were estimated based on this infor-
mation, enabling to position clinical practice on the ROC curves.

This work had the approval of Robert Debré hospital’s Ethical 
committee (IRB 00006477).

3. Results

3.1. Description of the datasets

The database contains 27662 cases, including 464 cases (1.7 %) of 
severe acidemia (pH ≤ 7.05) and 3457 cases (12.5 %) of moderate 
acidemia (7.05<pH ≤ 7.20). The rate of cesarean delivery per center 
ranges from 8 % to 12 %. In all datasets, the CTG signals lasted more 
than 60 min in a large majority of cases (from 84.9 % for the CTU-UHB 
dataset to 100 % for the SPaM dataset). The proportion of missing data 
in the FHR signal is 15.7 % in the CTU-UHB dataset and below 10 % in 
the other datasets.

The low-risk subgroup comprises 16424 cases, including 237 cases 
(1.4 %) of severe acidemia and 1934 cases (11.8 %) of moderate acid-
emia (Table II).

3.2. Training and validation of the model

The model has been trained and evaluated on all datasets. Fig. 2
shows the loss and AUC evaluated on the train and validation datasets at 
every epoch during training, highlighting the effectiveness of our 
training methodology to prevent overfitting. The model performs better 
to detect severe acidemia than moderate acidemia, with a difference in 
AUC between 0.03 and 0.06 depending on the datasets. The AUC vary 
significantly between the datasets, from 0.70 to 0.83 in the detection of 
moderate and severe acidemia, and from 0.74 to 0.83 in the detection of 
severe acidemia (Fig. 3, Table III). The worse performance is reached on 
the CTU-UHB dataset, while the best performance occurs with the SPaM 
dataset. The model performs better than DeepCTG® 1.0 (i.e. a model 
based on a logistic regression), with an increase in AUC of 0.05. For the 
SPaM dataset, the detection of moderate and severe acidemia and the 
detection of severe acidemia only are identical tasks because the dataset 
did not contain any case of moderate acidemia. Because of the relatively 
low number of cases of acidemia in the datasets, the confidence intervals 
are wide, especially for the detection of severe acidemia.

The evaluation of clinical practice gave different results on the three 
APHP datasets: for the detection of severe acidemia, the sensitivity 
ranged from 42 % to 67 % and the specificity ranged from 12 % to 20 %. 
The performance of the model is better for the Bichat dataset, similar for 

Fig. 1. Architecture of the model.

Table 2 
Description of the low-risk subgroup.

Multicenter APHP dataset Public datasets

Hôpital 
Beaujon

Hôpital 
Robert- 
Debré

Hôpital 
Bichat

CTU- 
UHB

SPaM

Number of 
cases

151 11099 4524 356 294 16424

Fetal outcome: share of cases per pH at birth

pH ≤ 7.05 7 % 1 % 2 % 7 % 20 % 237
7.05 < pH 
≤ 7.20

21 % 7 % 22 % 28 % 0 % 1934

pH > 7.20 72 % 92 % 76 % 65 % 80 % 14253
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the Beaujon dataset, and worse for the Robert Debré dataset.

3.3. Comparison of different deep learning architectures

The models compared in that section were not pretrained (every 
architecture was trained from scratch). The number of parameters in the 
part of the model processing the CTG segments (excluding the fully- 
connected layers) is reported as a measure of the complexity of the 
model. The CNN with smaller kernels (four times less parameters) have a 

lower AUC (0.70 compared to 0.72), and using larger kernels (four times 
more parameters) does not increase the AUC, suggesting that the CNN 
architecture that was chosen throughout the paper has the right 
complexity regarding the problem and the size of the datasets. The ar-
chitectures based on LSTM layers have a significantly lower AUC. The 
Transformer architecture gives a slightly lower AUC (Table IV).

Fig. 2. Loss and AUC on train and validation datasets during training.

Fig. 3. ROC curve of the model on each center to detect moderate and severe acidemia.
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3.4. Validation of the model on a low-risk subgroup

The AUC scores range from 0.65 to 0.85 for detecting moderate and 
severe acidemia and from 0.68 to 0.85 for detecting severe acidemia 
alone. The worse performance is obtained on the CTU-UHB dataset. The 
performance on the low-risk subgroup is similar when the model is 
trained on the whole dataset or on the low-risk subgroup only (Table V). 
There are 58 false negatives (cases where the model predicted a normal 
outcome while the true outcome was a severe acidemia), which are 
described in Table VI.

3.5. Impact of missing data

For the three APHP datasets, the performance of the model signifi-
cantly increases with the quality of the signal (Fig. 4). The difference in 
AUC between the “Low quality” and “High quality” cases is 0.06 for the 
Bichat and Robert Debré datasets and 0.11 for the Beaujon dataset. 
Clinical practice is also impacted by the signal quality: the sensitivity 
between the “Low quality” and “High quality” cases ranges from 47 % to 
52 % for the Robert Debré dataset, and from 31 % to 38 % for the Bichat 
dataset, with similar specificities.

3.6. Impact of pretraining and of the size of the datasets

The AUC increases with the number of cases used for training, from 
0.69 to 0.82 to detect severe acidemia when using 10 % and 100 % of the 
available cases. The AUC significantly increases when the convolutional 
layers is pretrained, from 0.72 to 0.75 to detect moderate and severe 
acidemia, and from 0.78 to 0.82 to detect severe acidemia (Table VII).

3.7. Impact of the input features fed to the model

The highest AUC is reached when both FHR and UC signals are used 
as inputs (Table VIII). As expected, the FHR signal is the most important 
feature, and a model based on UC signal only as a poor performance 
(AUC is 0.61 for the detection of moderate and severe acidemia).

4. Discussion

We introduced DeepCTG® 2.0, a convolutional neural network to 
detect neonatal acidemia from CTG signals. The model was trained and 

Table 3 
AUC of the model per dataset with 90 % confidence interval.

DeepCTG® 2.0 (convolutional 
neural network)

DeepCTG® 1.0 (logistic 
regression)

Dataset AUC to detect 
moderate and 
severe acidemia

AUC to detect 
severe 
acidemia

AUC to detect 
moderate and 
severe acidemia

AUC to detect 
severe 
acidemia

Beaujon 0.74 
(0.70–0.79)

0.79 
(0.74–0.83)

0.71 
(0.66–0.76)

0.76 
(0.72–0.82)

Robert 
Debré

0.75 
(0.73–0.76)

0.81 
(0.78–0.84)

0.72 
(0.70–0.73)

0.77 
(0.74–0.81)

Bichat 0.72 
(0.71–0.73)

0.75 
(0.72–0.79)

0.72 
(0.70–0.73)

0.73 
(0.70–0.76)

CTU- 
UHB

0.70 
(0.67–0.74)

0.74 
(0.67–0.81)

0.67 
(0.63–0.71)

0.71 
(0.64–0.79)

SPaM 0.83 (0.77–0.88) 0.78 (0.74–0.84)

Table 4 
AUC of the model with different deep learning architectures.

Architecture of the model Number of parameters to process CTG 
segments (in thousands)

AUC to detect moderate and 
severe acidemia

AUC to detect severe 
acidemia

CNN 
Number of kernels: 32, 32, 64, 64

37 0.72 (0.71–0.73) 0.78 (0.74–0.81) 0.76 
(0.75–0.77)

0.75 
(0.72–0.79)

CNN 
Number of kernels: 16, 16, 32, 32

10 0.70 (0.69–0.72) 0.77 (0.73–0.80) 0.75 
(0.74–0.77)

0.74 
(0.70–0.77)

CNN 
Number of kernels: 64, 64, 128, 
128

149 0.72 (0.71–0.73) 0.78 (0.74–0.81) 0.76 
(0.75–0.77)

0.75 
(0.72–0.79)

LSTM (1 layer) 
64 hidden units

17 0.67 (0.66–0.68) 0.73 (0.69–0.76) 0.54 
(0.53–0.56)

0.60 
(0.56–0.66)

LSTM (3 stacked layers) 
64 hidden units

84 0.69 (0.68–0.70) 0.75 (0.70–0.77) 0.54 
(0.53–0.56)

0.60 
(0.56–0.66)

Transformer 
2 attention layers, 4 heads, 128 
feedforward units

45 0.71 (0.70–0.73) 0.78 (0.73–0.80) 0.74 
(0.72–0.75)

0.75 
(0.71–0.78)

Transformer 
4 attention layers, 8 heads, 256 
feedforward units

112 0.69 (0.68–0.71) 0.76 (0.71–0.78) 0.72 
(0.71–0.74)

0.73 
(0.69–0.76)

Table 5 
AUC of the model on the low-risk subgroup.

DeepCTG® 2.0 
(convolutional neural 
network)

DeepCTG® 2.0 
(convolutional neural 
network)

Dataset AUC to 
detect 
moderate 
and severe 
acidemia

AUC to 
detect 
severe 
acidemia

Dataset AUC to 
detect 
moderate 
and severe 
acidemia

AUC to 
detect 
severe 
acidemia

Beaujon 0.70 
(0.61–0.78)

0.77 
(0.66–0.90)

Beaujon 0.74 
(0.66–0.81)

0.77 
(0.60–0.87)

Robert 
Debré

0.75 
(0.74–0.76)

0.82 
(0.78–0.87)

Robert 
Debré

0.74 
(0.72–0.75)

0.80 
(0.75–0.85)

Bichat 0.74 
(0.72–0.75)

0.75 
(0.71–0.80)

Bichat 0.73 
(0.71–0.74)

0.76 
(0.70–0.80)

CTU- 
UHB

0.65 
(0.60–0.69)

0.68 
(0.59–0.78)

CTU- 
UHB

0.66 
(0.60–0.72)

0.69 
(0.59–0.80)

SPaM 0.85 (0.79–0.89) SPaM 0.84 (0.79–0.87)
Model trained on whole database/ 

evaluated on low-risk subgroup
Model trained on low-risk subgroup/ 
evaluated on low-risk subgroup

Table 6 
Categorization of the false negatives in the low-risk subgroup.

Category Number of cases (%)

Low signal quality (missing data) 14 (24)
Bradycardia during pushing 11 (19)
Other aFHR 12 (21)
Evolution post CTG* 10 (17)
Unexplained 11(19)

Total 58 (100)

aFHR abnormal fetal heart rate.
*ombilical cord prolaps, delay between the end of the record and the birth, 
severe bradycardia.
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validated on a large multicenter database. In a cross-center validation, 
the AUC varied from 0.74 to 0.83 between the centers for the detection 
of severe acidemia, performing better than a simpler logistic regression 
model. The pretraining of the model on a task which consisted in pre-
dicting features known to be associated with neonatal acidemia signif-
icantly improved the performance.

The performance of the model significantly varied between the 
datasets: the highest AUC was achieved on the SPaM dataset, mainly 
because this dataset did not contain any case of moderate acidemia. The 
lowest AUC was obtained on the CTU-UHB dataset, probably because of 
the low quality of the CTG signals in this dataset. Those results should be 
interpreted cautiously given the large width of the confidence intervals, 
coming from the relatively low number of pathological cases in the 
datasets.

The comparison with other published models is challenging as the 

models are evaluated on different clinical databases or using different 
outcomes. Several published studies were based on the CTU-UHB 
dataset [24,36] and reported an AUC between 0.72 and 0.74 [37–40] 
for the detection of acidemia with pH thresholds of 7.05 or 7.10. Pet-
rozziello et al. reported the highest AUC (0.82), however it was obtained 
on a subset of the dataset excluding the cases of moderate acidemia [41].

Comparing the model with clinical practice gave different conclu-
sions across datasets, with a significant variability in the sensitivity and 
specificity in the three centers. The evaluation of clinical practice in 
Petrozziello et al. [41] also gave different results, with a lower sensi-
tivity around 31 % to detect severe acidemia. Further studies should be 
led to characterize the cases for which the model performs better than 
clinical practice and conversely.

The CNN architecture used throughout the paper compared favor-
ably to other kinds of neural networks based on LSTMs (a type of 
recurrent neural networks) or transformers. Using a larger CNN did not 
bring any increase in performance at the cost of a higher complexity of 
the model. It was shown that pretraining the convolutional layers on a 
task that enabled to use all the available CTG signals (and not only the 
60 min before delivery) significantly increased the performance of the 
model. Further work will be conducted on pretraining, especially to 
pretrain the layers on a larger dataset containing possibly other times-
eries than CTG signals, as suggested by Zerveas et al. [42]. The use of a 
foundational model for time series like TimeGPT [43] could also be 
considered.

The specification of the outcome is debated in the literature [15,36,
44]. Most studies about computerized CTG use an outcome based on the 
fetal pH at birth [45], with thresholds between 7.05 and 7.20 [36], and 
some use the Apgar at one or 5 min [46]. The pH is a poor proxy for fetal 
compromise and unfavorable neonatal outcomes. However, as it is the 
most readily available, we will use it to develop a detection algorithm 
that could be adapted to any better proxy agreed by professionals and 
patient [34,44]. It could be refined to a composite outcome that includes 
both clinical and biological variables [44,47]. While most previously 
published models use two classes (e.g. normal and severe acidemia), we 
chose to model three (i.e. normal, moderate and severe acidemia). This 
choice prevented the model from relying on a single threshold and 
allowed it to trigger various alerts for practitioners.

Although we hypothesized that the model should perform better in a 
low-risk subgroup, since our model does not yet incorporate clinical 
covariables and risk-factors for acidemia [37,48], this was not the case, 

Fig. 4. Impact of signal quality on the ROC curve.

Table 7 
AUC of the model with and without pretraining, and as a function of the number 
of cases included in the training dataset.

With pretraining Without pretraining

Share of 
cases from 
the training 
datasets

AUC to detect 
moderate and 
severe 
acidemia

AUC to detect 
severe 
acidemia

AUC to detect 
moderate and 
severe 
acidemia

AUC to detect 
severe 
acidemia

10 % 0.68 
(0.66–0.69)

0.69 
(0.65–0.73)

0.66 
(0.65–0.67)

0.67 
(0.64–0.70)

50 % 0.74 
(0.73–0.75)

0.81 
(0.78–0.84)

0.72 
(0.70–0.72)

0.76 
(0.72–0.80)

100 % 0.75 
(0.74–0.76)

0.82 
(0.79–0.84)

0.72 
(0.71–0.73)

0.78 
(0.74–0.81)

Table 8 
AUC of the model when fed with FHR signal only, UC signal only, or both signals.

Input 
signals

AUC to detect moderate and severe 
acidemia

AUC to detect severe 
acidemia

FHR only 0.73 (0.71–0.74) 0.79 (0.76–0.82)
UC only 0.61 (0.60–0.63) 0.69 (0.66–0.72)
FHR and 

UC
0.75 (0.73–0.76) 0.81 (0.78–0.84)
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possibly because of the reduction in the sample size used to train the 
model. A careful analysis of the false negatives in this subgroup high-
lighted specific areas that could require improvement. While poor signal 
quality was a significant cause, the model misinterpreted bradycardia in 
a significant proportion of these false negatives, possibly because of the 
similarity of this pattern with the normal maternal heart rate [11]. 
Building specific algorithms to detect maternal heart rate and process 
the FHR accordingly would help in those cases [49].

Several other areas for improvement of the model will be addressed 
in future developments. First, we will add clinical variables and risk- 
factors to the CTG as an input to the model. This has been done in 
several studies [25,50,51]. Second, a strong correlation was highlighted 
between the quality of the CTG signals and the performance of the model 
[41,49], suggesting that advanced techniques for missing data imputa-
tion could improve the model, although a previous study by Asfaw et al. 
[52] shows a modest improvement to the classification model. Finally, 
to be useful for practitioners as a tool assisting them in the interpretation 
of CTG, the model should produce interpretable indicators to support 
the prediction of fetal acidemia (i.e. the proportion of deceleration, the 
absence of acceleration, bradycardia, or even the proportion of missing 
data).

5. Conclusion

We validated a deep learning model for the prediction of neonatal 
acidemia during labor on a large multicenter database with encouraging 
and robust results. Pretraining the model on a prediction task that 
leveraged the whole signals and based on expert knowledge of neonatal 
acidemia significantly increased the performance. Although we 
acknowledge that significant adjustments are required before such a 
model can be implemented in clinical practice, this work is a first step to 
build a tool that could assist humans in the interpretation of CTG.
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