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ABSTRACT 

We introduce a sparse image representation that takes ad- 
vantage of the geometrical regularity of edges in images. A 
new class of one-dimensional wavelet orthonormal bases, 
called foveal wavelets, are introduced to detect and recon- 
struct singularities. Foveal wavelets are extended in two di- 
mensions, to follow the geometry of arbitrary curves. The 
resulting two dimensional “bandelets” define orthonormal 
families that can restore close approximations of regular 
edges with few non-zero coefficients. A double layer im- 
age coding algorithm is described. Edges are coded with 
quantized bandelet coefficients, and a smooth residual im- 
age is coded in a standard two-dimensional wavelet basis. 

1. GEOMETRICAL COMPRESSION 

Currently, the most efficient image transform codes are ob- 
tained in orthonormal wavelet bases. For a given distor- 
tion associated to a quantizer, at high compression rates the 
bit budget is proportional to the number of non-zero quan- 
tized coefficients [ 11. For images decomposed in wavelet 
orthonormal bases, these non-zero coefficients are created 
by singularities and contours. When the contours are along 
regular curves, this bit budget can be reduced by taking ad- 
vantage of this regularity [2]. Many image compression 
with edge coding have already been proposed [3,4,5,6],  
but they rely on ad-hoc algorithms to represent the edge 
information, which makes it difficult to compute and opti- 
mize the distortion rate. In this paper, we construct “ban- 
delet” orthonormal bases that carry all the edge informa- 
tion and take advantage of their regularity by concentrating 
their energy over few coefficients. An application to image 
compression is studied. 

2. FOVEAL WAVELET BASES 

Contours are considered here as one-dimensional singular- 
ities that move in the image plane. We first construct a 
new family of orthonormal wavelets, all centered as the 
same location, which can “absorb” the singular behavior 
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of a signal. We define two mother wavelets Q’(t) and 
Q2 ( t ) ,  which are respectively antisymmetric and symmet- 
ric with respect to t = 0, and such that J @(t)d t  = 0 for 
IC = { 1,2}. For any location U we denote 

Q? 39u ( t )  = 2-j/’ q k ( 2 - j ( t  - U ) )  for L = 1,2. 

There exists such mother wavelets, which are C’ and such 
that for any U E R and J E Z, the family 

I 

is orthonormal [7]. These wavelets zoom on a single posi- 
tion U and are thus called foveal wavelets, by analogy with 
the foveal vision. To reconstruct discontinuities, we insure 
that left and right indicator functions, l[u,+m) and l(-m,u~ 
can be written as linear combinations of foveal wavelets. 
This is the case for the mother wavelets shown in Figure 1. 
Foveal wavelets of larger support, which also reconstruct 
discontinuities of higher derivatives are constructed in [7], 
but will not be used here. Foveal wavelet families are easily 
discretized while retaining their orthogonality properties. 
The scale parameter 2 j  is then limited by the resolution of 
the signal measurement. 

1, 1 0- 

Fig. 1. Foveal mother wavelets Q1 and Q’ 

Let Vu be the space generated by the foveal family lo- 
cated at U .  The orthogonal projection o f f  in Vu is 

.l 2 

j=-m k=l 

An important property of these foveal wavelets is their abil- 
ity to eliminate singularities located at U .  If f is differ- 
entiable in a left and right neighborhood of U ,  but not at 
U where it may be discontinuous, then one can prove that 
f - Pv, f is continuous at U and has a bounded derivative 
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over a whole neighborhood of U [7]. The singularity off 
at U IS thus absorbed by its foveal coefhcients at U .  

Non-oscillating singularities of f are entirely charac- 
terized by the foveal wavelet coefficients at U .  One can 
prove that f is Lipschitz (Y at U if and only if I (f, I = 
0 ( 2 - a ( j + 1 / 2 ) ) .  Singularities are detected by computing 

J 2 

jz-00 k = l  

I f f  has a Lipschitz regularity a < 1 at U ,  and hence is not 
differentiable at U then € ( U )  = +CQ, but i f f  is Lipschitz 
regularity a > 1 at U then € ( U )  < +W. Singularity are 
thus detected from the amplitude of € ( U ) .  

For signal compression, one must concentrate the sig- 
nal energy over the fewest possible number of coefficients. 
For a signal whose singularities are mostly discontinuities, 
a principal component analysis over foveal wavelet coef- 
ficients shows that at any given location, most of the en- 
ergy is absorbed by a single vector, which is the projec- 
tion of a discontinuity is the space Vu. To incorporate 
this vector among foveal wavelets, an orthogonal change 
of basis is performed among antisymmetric foveal wavelets 
{ Q i , u } j .  The resulting orthonormal basis { Q:+)j includes 
a vector that is discontinuous at U and the remaining ones 
have the same support but are continuous at U and have a 
number of oscillations that depend upon j. These vectors 
are very similar to wavelet packets. and are thus called 
foveal wavelet packets [8]. Figure 2 shows the graph of 
the discrete antisymmetric foveal wavelets at the four finest 
scales, and the foveal wavelet packets are constructed from 
these. 

Fig. 2. The top row shows antisymmetric foveal wavelets 
Qi,o and the bottom row displays the corresponding foveal 
wavelet packets 'v:,o.. The projection of discontinuity on 
VO is at the bottom nght. 

3. BANDELETS FOR IMAGES 

The singularities of an image f(z1, z 2 )  are detected with 
one-dimensional foveal wavelets, along each line and each 
column of the image. The detected singularities are chained 
together to form edge curves, and a two-dimensional ban- 
delet family is constructed along each curve. These ban- 
delets reconstruct the singular profile of the image along 
each edge curve. 

Let us consider a horizontal scan-line defined by 
f ( ~ ,  U Z ) ,  where u2 is a fixed and z1 varies. It is decom- 

posed over one-dimensional foveal wavelets, and for each 
U we compute 

€ u 2 ( U )  = I(f(z1,'1L2), q,.(zl)jl2 
j k = l  

A singularity corresponds to a point u1 where cuz ( U )  is lo- 
cally maximum when U varies. This singularity is located 
(u1,u2) in the image plane. The same procedure is ap- 
plied along the image columns to detect singularities. Fig- 
ure 3(b) gives the value of cu2(u) for an image scan-line 
shown in Figure 3(a). 

50 100 150 200 250 

Fig. 3. (top): Horizontal scan-line of the image in Figure 
5(a) at u2 = 170. (bottom): Value of cuz ( U ) .  

Singularities detected along lines and columns are 
chained together to form edge curves. These edges are 
either parameterized vertically with u1 = c(u2) or hori- 
zontally with u 2  = c(u1). The singularity profile of the 
image along a vertical edge at (u1,uz) can be restored by 
the foveal wavelet coefficients 

If the edge is regular, then one can verify that for j and 
IC fixed, the foveal coefficient W ; , ~ ( U ~ )  vary smoothly as 
a function of u2. These coefficients are thus efficiently 
compressed by decomposing them along u2 in a standard 
Daubechies orthogonal wavelet basis: 

(4) 

which is called a wavelet band or bandelets, because their 
support are in a band surrounding the curve z1 = ~ ( 2 2 ) .  If 
the curve is parameterized by z2 = c(z1) then the corre- 
sponding bandelet family is 
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From the orthogonality of foveal vavelets and Daubechies 
wavelets, we easily prove that a wavelet band is orthonor- 
mal [SI. Figure 4 shows few bandelets along a particular 
curve. Observe also that the antisymmetric fove_al wavelet Qi can be replaced by foveal wavelet packets Qi without 
affecting the orthogonality of these families. 

Fig. 4. Examples of bandelets in (4) along a curve 2 2  = 
c(z1) shown in black. 

The Daubechies wavelet in (3) takes advantage of the 
smooth evolution of the singularity profile to produce few 
bandelet coefficients of large amplitude at the coarser scales 
2', whereas fine scale coefficients are negligible. Let V, 
be the space generated by the foveal band in (4). If f 
is differentiable on a left and a right neighborhood of the 
curve z1 = c(z2) then one can prove [SI that the residual 
r = f - Pv, f is continuous along the curve and has a 
bounded derivative on a whole neighborhood of this curve. 
The bandelet coefficients thus reproduce the edge and re- 
moves the singularities. 

along the rows and columns of the image i n  Figura 5(a). 
Let V = @iVei be the space generated by the wavelet 
bands corresponding to all curves. Figure 5(c) displays the 
image f i f  reconstructed from the bandelet coefficients. It 
carries all the edge structures and the residual r = f - fif 
in Figure 5(d) is a smooth function. 

4. IMAGE COMPRESSION 

Image compression with bandelets is compared with a trans- 
form coding in a two-dimensional wavelet basis. At low bit 
rates, the performance of a basis in a transform code de- 
pends upon the ability of the basis to approximate the im- 
age with few non-zero coefficients [ 11. The bandelet coeffi- 
cients of f  characterize its projection f i f ,  and the smooth 
residual T is decomposed in a two-dimensional wavelet ba- 
sis. To better concentrate the image energy over few coef- 
ficients, the bandelets are constructed with foveal wavelet 
packets $: rather than foveal wavelets XPj. We denote f~ 
the signal reconstructed only from the M largest bandelet 
coefficients of f and wavelet coefficients of r (sorted to- 
gether). For a piecewise regular image composed of re- 
gions where f is uniformly Lipschitz a, separated by bound- 
aries curves which are also uniformly Lipschitz a, one can 
prove that I l f  - f ~ l l  = O(M-*) .  This approximation 
error when decomposing directly f in a two-dimensional 
wavelet basis and reconstructing an approximation f~ from 
the M largest coefficients. For a piecewise regular image 
the error has a slower decay I l f  - fM 1 1  - because 
many large wavelet coefficients are needed to restore the 
discontinuities. 

To construct an image code, the bandelet coefficients 
o f f  and the wavelet coefficients of the residual r are uni- 
formly quantized and these coefficients are stored with an 
arithmetic code. The geometry of each curve c, is recorded 
with a lossless wavelet lifting code [9] which takes advan- 
tage of the the regularity of these curves. 

There are two potential sources of gain with respect to a 
transform code in an two-dimensional wavelet basis. First, 
we already saw that a more precise image can be recon- 
structed with fewer coefficients in a bandelet representa- 
tion. Second, a large part of the bit budget in a wavelet code 
is used to code the position of the M significant coefficients 
(not quantized to zero). In a bandelet representation, sig- 
nificant coefficients are along regular curves that can be 
coded with fewer coefficients by taking advantage of the 
geometrical regularity of these curves. Numerical compar- 
isons between JPEG-2000 and a bandelet image code will 
be presented at the conference. 

At low bit rates, a large bit budget is affected to the 
coding of the geometry of edge curves as opposed to the 

Fig. 5. (a): pepper image f .  (b): edge curves detected 
along the image rows and columns. (c): partial reconstruc- 
tion Pv f from bandelet coefficient along the edges in (b). 
(d): residual T = f - 4.f. 

value of bandelet coefficients. This geometrical bit budget 
can be reduced with a lossy code which approximates each 
curve ci( t )  with a close curve C i ( t ) .  This introduce an error 
term in the mean-square distortion, which can be proved to 
be proportional to Jci ( t )  - C i ( t ) l  d t .  For piecewise regu- 
lar images, a careful study of the distortion rate shows that Figure 5(b) shows a family of curves {ci}i detected 
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the geometry remains the most expensive element to code, 
because displacements of edges introduce produce a large 
amplitude mean-square error.‘This issue is studied in [8]. 
However, from a perception point of view, small displace- 
ment of edges hardly affect the image quality, as long as 
the global shape of each edge is retained. Optimizing a 
bandelet code by taking advantage of visual perception is a 
promising direction. Examples of image compression with 
errors on the geometry will be shown at the conference. 

5. CONCLUSION 

To optimize a bandelet geometrical code, the main diffi- 
culty is to choose appropriately the curves ci. These curve 
must correspond to singularities that are better coded with 
bandelets than with standard separable wavelets. Adapting 
the geometry to improve the code is a complex problem 
that is currently being studied. 

Clearly, a bandelet code is particularly well adapted to 
piecewise regular images such as the peppers in Figure 5.  
However, a proper optimization of the double layer struc- 
ture of this code, using bandelets and two-dimensional or- 
thogonal wavelets, can guarantee a performance at least 
equal to a standard wavelet code, for any type of image. 
The allocation of bits between the geometry, the bandelet 
coefficients and the orthogonal wavelet coefficients of the 
residual remains to be better understood. 
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