Near-Optimal Distributionally Robust Reinforcement Learning with General L_p Norms

Anonymous Author(s) Affiliation Address email

Abstract

 To address the challenges of sim-to-real gap and sample efficiency in reinforcement learning (RL), this work studies distributionally robust Markov decision processes (RMDPs) — optimize the worst-case performance when the deployed environment is within an uncertainty set around some nominal MDP. Despite recent efforts, the sample complexity of RMDPs has remained largely undetermined. While the statistical implications of distributional robustness in RL have been explored in some specific cases, the generalizability of the existing findings remains unclear, especially in comparison to standard RL. Assuming access to a generative model that samples from the nominal MDP, we examine the sample complexity of 10 RMDPs using a class of generalized L_p norms as the 'distance' function for the uncertainty set, under two commonly adopted sa-rectangular and s-rectangular conditions. Our results imply that RMDPs can be more sample-efficient to solve 13 than standard MDPs using generalized L_p norms in both sa- and s-rectangular cases, potentially inspiring more empirical research. We provide a near-optimal 15 upper bound and a matching minimax lower bound for the sa-rectangular scenarios. For s-rectangular cases, we improve the state-of-the-art upper bound and also 17 derive a lower bound using L_{∞} norm that verifies the tightness.

18 1 Introduction

 Reinforcement learning (RL) [\[Sutton, 1988\]](#page-11-0) is a popular paradigm in machine learning, particularly noted for its success in practical applications. The RL framework, usually modeled within the context of a Markov decision process (MDP), focuses on learning effective decision-making strategies based on interactions with an environment. However, the work of [Mannor et al.](#page-11-1) [\[2004\]](#page-11-1), among others, has highlighted a vulnerability in RL strategies, revealing the sensitivity to estimation errors in the reward and transition probabilities. A specific example of this is when, because of a sim-to-real gap, policies learned in idealized environments catastrophically fail when deployed in settings with slight changes or adversarial perturbations [\[Klopp et al., 2017,](#page-10-0) [Mahmood et al., 2018\]](#page-10-1).

 To address this issue, robust MDPs (RMDPs), proposed by [Iyengar](#page-10-2) [\[2005\]](#page-10-2) and [Nilim and El Ghaoui](#page-11-2) [\[2005\]](#page-11-2), have attracted considerable attention. RMDPs are formulated as max-min problems, seeking policies that are resilient to model estimation errors within a specified uncertainty set. [D](#page-11-2)espite the robustness benefits, solving RMDPs is NP-hard for general uncertainty sets [\[Nilim and](#page-11-2) [El Ghaoui, 2005\]](#page-11-2). To overcome this challenge, the assumption of rectangularity is often adopted, with uncertainty sets structured as products of independent subsets for each state or state-action pair, denoted as s-rectangular or sa-rectangular assumptions (see Definitions [4](#page-4-0) and [5\)](#page-4-1). These assumptions facilitate the use of methods such as robust value iteration and robust policy iteration, preserving many structural properties of MDPs [\[Ho et al., 2021\]](#page-10-3). The s-rectangular sets, though less restrictive, pose greater challenges, while the sa-rectangular sets allow for deterministic optimal policies akin

			sa-rectangularity		s-rectangularity	
Result type	Reference	Distance		$0 < \sigma \lesssim 1 - \gamma \mid 1 - \gamma \lesssim \sigma < \sigma_{\text{max}}$	$0 < \tilde{\sigma} \leq 1 - \gamma$	$1-\gamma \lesssim \tilde{\sigma} < \tilde{\sigma}_{\max}$
Upper bound	Yang et al. $[2022a]$	TV	$\frac{S^2 A (2+\sigma)^2}{\sigma^2 (1-\gamma)^4 \varepsilon^2}$	$\frac{S^2 A (2+\sigma)^2}{\sigma^2 (1-\gamma)^4 \varepsilon^2}$	$\frac{S^2 A^2 (2+\tilde{\sigma})^2}{\tilde{\sigma}^2 (1-\gamma)^4 \varepsilon^2}$	$\frac{S^2A^2(2+\tilde{\sigma})^2}{\tilde{\sigma}^2(1-\gamma)^4\varepsilon^2}$
	Panaganti and Kalathil [2022]	TV	$\frac{S^2 A}{(1-\gamma)^4 \varepsilon^2}$	$\frac{S^2 A}{(1-\gamma)^4 \varepsilon^2}$	\times	\times
	Shi et al. [2023]	TV	$\frac{SA}{(1-\gamma)^3\varepsilon^2}$	$\frac{SA}{\sigma(1-\gamma)^2\varepsilon^2}$	\times	\times
	Clavier et al. [2023]	L_p	$\frac{SA}{(1-\gamma)^3\varepsilon^2}$	$\frac{SA}{(1-\gamma)^4\varepsilon^2}$	$\frac{SA}{(1-\gamma)^3\varepsilon^2}$	$\frac{SA}{(1-\gamma)^4\varepsilon^2}$
	This paper	L_p	$\frac{SA}{(1-\gamma)^3\varepsilon^2}$	$\frac{SA}{\sigma(1-\gamma)^2\varepsilon^2}$	$\frac{SA}{(1-\gamma)^3\varepsilon^2}$	$\frac{SA}{(1-\gamma)^2\tilde{\sigma}\min_{s}\ \pi_{s}\ _{*}\varepsilon^2}$
	This paper	General L_p [1]	$\frac{SA}{(1-\gamma)^3 \varepsilon^2}$	$\frac{SA}{\sigma(1-\gamma)^2\varepsilon^2}$	$\frac{SA}{(1-\gamma)^3\varepsilon^2}$	$\frac{SA}{(1-\gamma)^2 \tilde{\sigma} C_g \min_s \pi_s _* \varepsilon^2}$
Lower bound	Yang et al. $[2022a]$	TV	$\frac{SA}{(1-\gamma)^3\varepsilon^2}$	$\frac{SA(1-\gamma)}{\sigma^4\epsilon^2}$	\times	\times
	Shi et al. [2023]	TV	$\frac{SA}{(1-\gamma)^3 \varepsilon^2}$	$\frac{SA}{\sigma(1-\gamma)^2\varepsilon^2}$	\times	\times
	This paper	L_p	$\frac{SA}{(1-\gamma)^3 \varepsilon^2}$	$\frac{SA}{\sigma(1-\gamma)^2\varepsilon^2}$	\times	\times
	This paper	L_{∞}	$\frac{SA}{(1-\gamma)^3 \varepsilon^2}$	$\frac{SA}{\sigma(1-\gamma)^2\varepsilon^2}$	$\frac{SA}{(1-\gamma)^3 \varepsilon^2}$	$\frac{SA}{\tilde{\sigma}(1-\gamma)^2\varepsilon^2}$

Table 1: Comparisons with prior results (up to log terms) regarding finding an ε -optimal policy for the distributionally RMDP, where σ is the radius of the uncertainty set and σ_{max} defined in Theorem [1.](#page-6-0)

³⁷ to non-robust MDPs [\[Wiesemann et al., 2013\]](#page-12-1). Note that, while uncertainty in the reward can be

³⁸ easily handled, dealing with uncertainty in the transition kernel is much more difficult [\[Kumar et al.,](#page-10-4)

³⁹ [2022,](#page-10-4) [Derman et al., 2021\]](#page-9-1).

 The question of sample efficiency is central in RL problems ranging from practice to theory. Although minimax rates are achieved in [\[Azar et al., 2013b,](#page-9-2) [Li et al., 2023c\]](#page-10-5) in the context of classical MDPs, this goal remains open, in general, in the context of RMDPs. Specifically, there exists prior work studying the sample complexity of distributionally robust RL for a few specific divergences such [a](#page-12-2)s total variation (TV) , χ^2 , KL, and Wasserstein (see a further discussion in Appendix [6\)](#page-14-0) [\[Yang](#page-12-2) [et al., 2022b,](#page-12-2) [Zhou et al., 2021,](#page-13-0) [Panaganti and Kalathil, 2022\]](#page-11-3), while such results remain unclear 46 for more general classes of L_p norms defined in [1.](#page-3-0)To this point, to the best of our knowledge, the results of sample complexity that achieve minimax optimality for the full range of uncertainty level 48 are limited to only one case $- TV$ distance [\[Shi et al., 2023\]](#page-11-4).

 In this work, we focus on understanding the sample complexity of RMDPs with a general smooth $50 L_p$ that will be defined in Def. [1.](#page-3-0) This generalization is appealing for both practice and theory. In practice, numerous applications are based on optimizations or learning approaches that involve general norms beyond those that have already been studied. Additionally, optimizing norm weighted ambiguity sets for Robust MDPs has been proposed in the context of RMDPs in [Russel et al.](#page-11-5) [\[2019\]](#page-11-5), which justifies our formulation. Theoretically, prior work has characterized the sample complexity of RMDPs for some specific norms have suggested intriguing insights about the statistical implications of distributional robustness in RL. It is interesting to further understand the statistical cost of robust RL in more general scenarios.One area of focus is the contrast between the sample efficiency of solving distributionally robust RL and solving standard RL. In particular, for the specific case of TV distance, [Shi et al.](#page-11-4) [\[2023\]](#page-11-4) shows that the sample complexity for solving robust RL is at least the same as and sometimes (when the uncertainty level is relatively large) could be smaller than that of standard RL. This motivates the following open question:

⁶² *Is distributionally robust RL more sample efficient than standard RL for norms defined in Def.* [\(1\)](#page-3-0) ?

63 A second question is about the comparisons between the sample complexity of solving s-rectangular 64 RMDPs and that of solving sa-rectangular RMDPs. Note that s-rectangular RMDPs have more ⁶⁵ complicated optimization formulations with additional variables (uncertainty levels for each action) to ⁶⁶ optimize. This leads to a richer class of optimal policy candidates—stochastic policies in s-rectangular 67 cases, in contrast to the class of deterministic policies for sa-rectangular cases. In addition, existing 68 sample complexity upper bounds for solving s-rectangular RMDPs are larger than that for solving 69 sa-rectangularity [\[Yang et al., 2022b\]](#page-12-2) for the investigated cases. This motivates the curious question: ⁷⁰ *Does solving* s*-rectangular RMDPs require more samples than solving* sa*-rectangular RMDPs with*

71 general smooth L_p norms defined in Def. [1?](#page-3-0)

 Main contributions. In this paper, we address each of the two questions discussed above. In 73 particular, we provide the first sample complexity analysis for RMDPs with general L_p norms defined in [1](#page-3-0) under both the s- and sa-rectangularity conditions. For convenience, we present a detailed comparison between the existing state-of-the-art and our results in Table [1](#page-1-0) for quick reference and discuss the contributions and their implications below.

 77 • Considering the first question, we illustrate our results in both sa- and s-rectangular case in ⁷⁸ Figure [2.](#page-2-0) In the case of sa-rectangularity, we derive a sample complexity upper bound for RMDPs 79 using general smooth L_p norms (cf. Theorem [1\)](#page-6-0) in the order of $\tilde{O}\left(\frac{SA}{(1-\gamma)^2 \max\{1-\gamma, C_g\sigma\}\varepsilon^2}\right)$. with 80 $C_g > 0$ a positive constant related to the geometry of the norm defined in [1.](#page-3-0) For classical L_P norms, $\overline{c}_q \geq 1$ so we can directly relax this constant to 1 to obtain the result in table [1.](#page-1-0) In addition, we ⁸² provide a matching minimax lower bound (cf. Theorem [2\)](#page-6-1) that confirms the near-optimality of ⁸³ the upper bound for almost full range of the uncertainty level. Our results match the near-optimal 84 sample complexity derived in [Shi et al.](#page-11-4) [\[2023\]](#page-11-4) for the specific case using TV distance, while holding 85 for broader cases using general L_p norms. The results rely on a new dual optimization form for 86 sa-rectangular RMDPs and reveal the relationship between the sample complexity and this new dual ⁸⁷ form — the infinite span seminorm (controlled in Lemma [5\)](#page-21-0), which may be of independent interest. 88 In the case of s-rectangularity, we provide a sample complexity upper bound for solving RMDPs

s with general smooth L_p norms in the order of $\widetilde{O}\left(\frac{SA}{(1-\gamma)^2 \max\{1-\gamma, C_g \min_s ||\pi_s||_* \sigma\} \varepsilon^2}\right)$. This result 90 improves the prior art $\widetilde{O}\left(\frac{SA}{(1-\gamma)^4\varepsilon^2}\right)$ in [Clavier et al.](#page-9-0) [\[2023\]](#page-9-0) for classical L_p when $\tilde{\sigma} \lesssim 1-\gamma$ — by 91 at least a factor of $O\left(\frac{1}{1-\gamma}\right)$. Furthermore, we present a lower bound for a representative case with

92 L_{∞} norm, which corroborates the tightness of the upper bound. To the best of our knowledge, this 93 is the first lower bound for solving RMDPs with s-rectangularity.

 • Considering the second question, as illustrated in Figure [2,](#page-2-0) our results highlight that robust RL is at least the same as and sometimes can be more sample-efficient to solve than standard RL for general 96 smooth L_p norms in [1.](#page-3-0) This insight is of significant practical importance and serves to provide crucial motivation for the use and study of distributionally robustness in RL. Notably, robust RL does not only reduce the vulnerability of RL policy to estimation errors and sim-to-real gaps, but 99 also leads to better data efficiency. In terms of comparing the statistical implications of sa - and s- rectangularity, our results show that solving s-rectangular RMDPs is not harder than solving 101 sa-rectangular RMDPs in terms of sample requirement (See Theorem [3](#page-7-0) and Figure [2,](#page-2-0) Right).

 • We highlight the technical contributions as below. For the upper bounds, regarding optimization 103 contribution, we derive new dual optimization problem forms for both $sa-$ and $s-$ rectangular cases(Lemma [3](#page-18-0) and [4\)](#page-19-0), which is the foundation of the covering number argument in finite-sample analysis. From a statistical point of view, a new concentration lemma (See Lemma [8](#page-23-0) for dual forms and two new lemmas to obtain sample complexity lower than classical RL, controlling the infinite span semi norm of the value function, both for sa− and s− rectangular case are derived (See Lemmas [5](#page-21-0) and [6\)](#page-21-1). For the lower bound, the technical contributions are mainly in s-rectangular cases, which involves entire new challenges compared to sa-rectangularity case: the optimal policies can be stochastic and hard to be characterized as a closed form, compared to the deterministic one 111 in sa-rectangular cases. Therefore, we construct new hard instances for s-rectangular cases that is distinct from those used in sa-rectangular cases or standard RL.

¹¹³ 2 Problem Formulation: Robust Markov Decision Processes

¹¹⁴ In this section, we formulate distributionally robust Markov decision processes (RMDPs) in the ¹¹⁵ discounted infinite-horizon setting, introduce the sampling mechanism, and describe our goal.

¹¹⁶ Standard Markov decision processes (MDPs). A discounted infinite-horizon MDP is represented 117 by $\mathcal{M} = (\mathcal{S}, \mathcal{A}, \gamma, P, r)$, where $\mathcal{S} = \{1, \cdots, S\}$ and $\mathcal{A} = \{1, \cdots, A\}$ are the finite state and action 118 spaces, respectively, $\gamma \in [0, 1)$ is the discounted factor, $P : \mathcal{S} \times \mathcal{A} \to \Delta(\mathcal{S})$ denotes the probability 119 transition kernel, and $r : \mathcal{S} \times \mathcal{A} \rightarrow [0, 1]$ is the immediate reward function, which is assumed to 120 be deterministic. Moreover, we assume that the reward function is bounded in $(0, 1)$ without loss of 121 generality of the results due to the variance reward invariance. Finally we denote 1_A or 1_S the unitary 122 vector of respectively dimension A or S. Moreover, e_s is the standard unitary vector supported

Figure 1: Left: Sample complexity results for RMDPs with sa - and s-rectangularity with L_p with comparisons to prior arts [\[Shi et al., 2023\]](#page-11-4) (for L_1 norm, or called total variation distance) and [\[Clavier et al., 2023\]](#page-9-0) ; Right: The data and instance-dependent sample complexity upper bound of solving s-rectangular dependency RMDPs with L_P norms.

123 on s. The policy we are looking for is denoted by $\pi : S \to \Delta(\mathcal{A})$, which specifies the probability ¹²⁴ of action selection over the action space in any state. Note that if the policy is deterministic in the 125 sa-rectangular case, we overload the notation and refer to $\pi(s)$ as the action selected by the policy 126 π in state s. Finally, to characterize the cumulative reward, the value function $V^{\pi,P}$ for any policy 127 π under the transition kernel P is defined by $\forall s \in \mathcal{S}$

$$
V^{\pi,P}(s) := \mathbb{E}_{\pi,P}\left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \Big| s_0 = s\right].
$$
 (1)

The expectation is taken over the randomness of the trajectory $\{s_t, a_t\}_{t=0}^{\infty}$ generated by executing 129 the policy π under the transition kernel P, such that $a_t \sim \pi(\cdot | s_t)$ and $s_{t+1} \sim P(\cdot | s_t, a_t)$ for all 130 $t \geq 0$. In the same way, the Q function $Q^{\pi, P}$ associated with any policy π under the transition kernel 131 P is defined using expectation taken over the randomness of the trajectory under policy π as

$$
Q^{\pi,P}(s,a) \coloneqq \mathbb{E}_{\pi,P}\left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \, \Big| \, s_0, a_0 = s, a\right],\tag{2}
$$

¹³² Distributionally robust MDPs. We consider distributionally robust MDPs (RMDPs) in the 133 discounted infinite-horizon setting, denoted by $\mathcal{M}_{\text{rob}} = \{S, A, \gamma, \mathcal{U}_{\|\cdot\|}^{\sigma}(P^0), r\}$, where S, A, γ, r ¹³⁴ are the same sets and parameters as in standard MDPs. The main difference compared to standard 135 MDPs is that instead of assuming a fixed transition kernel P , it allows the transition kernel to be 136 arbitrarily chosen from a prescribed uncertainty set $\mathcal{U}^{\sigma}_{\|\cdot\|}(P^0)$ centered around a *nominal* kernel 137 P^0 : $S \times A \to \Delta(S)$, where the uncertainty set is specified using some called smooth norm denoted 138 $\|\cdot\|$ defined in of radius $\sigma > 0$ defined in [1.](#page-3-0)

¹³⁹ Definition 1 (General smooth L^p norms and dual norms). *A norm* ∥ · ∥ *is said to be a general smooth* 140 L_p *norm if*

$$
\text{for all } x \in \mathbb{R}^n, \|x\| = \|x\|_{p,w} = (\sum_{k=1}^n w_k(|x_k|)^p)^{1/p}, \text{ where } w \in \mathbb{R}^n_+, \text{ is an arbitrary positive vector,}
$$

\n- it is twice continuously differentiable Rudin et al. [1964] with the supremum of the Hessian Matrix over the simple
$$
C_S = \sup_{x \in \Delta_s} ||\nabla^2 ||x|| ||_2
$$
, where $|||_2$ here is the spectral norm
\n

f finally, we denote the dual norm of $||\cdot||$ *as* $||\cdot||_*$ *s.t.* $||y||_* = \max_x x^T y : ||x|| \le 1$ *. Moreover, for any* 146 *metric* $||.||$, we define C_g as $C_g = 1/\min_s ||e_s||$ where $e_s \in \mathbb{R}^S$ is the standard basis of supported in s.

147 Note the quantity C_S exists as the Hessian is continuous for C^2 functional and the simplex is a com-148 pact set, so by Extreme Value Theorem [Rudin et al.](#page-11-6) [\[1964\]](#page-11-6), C_S is finite. Moreover, to give an example,

149 considering $L_p, p \ge 2$, norms, C_s is bounded by $S^{1/q}$. (See [\(151\)](#page-36-0)) This definition is general and 150 includes $L_p, p \geq 2$, all rescaled and weighted norms. Moreover, we could extend our result to a larger ¹⁵¹ set than the one of the norms defined in Def. [1,](#page-3-0) this is why a complete discussion about the set of norms 152 can be found in Appendix [7.](#page-15-0) However, it does not include divergences such as KL and χ^2 . Not that the case of TV which is not C^2 smooth is treated independently with different arguments in the proof 154 but has the same sample complexity. In particular, given the nominal transition kernel P^0 and some un-155 certainty level σ , the uncertainty set—with arbitrary smooth norm metric $\| \| : \mathbb{R}^S \times \to \mathbb{R}^+$ in sa rectangular case or from $\mathbb{R}^{S \times A}$ in the s-rectangular case, is specified as $\mathcal{U}_{\|\cdot\|}^{\sigma\|\cdot}(\mathbb{P}^0) \coloneqq \otimes_{s,a} \mathcal{U}_{\|\cdot\|}^{sa,\sigma}$ 156 angular case or from $\mathbb{R}^{S \times A}$ in the s-rectangular case, is specified as $\mathcal{U}_{\|\cdot\|}^{\sigma}(\overline{P^0}) \coloneqq \otimes_{s,a} \mathcal{U}_{\|\cdot\|}^{\mathsf{sa},\sigma}(P^0_{s,a})$

$$
\mathcal{U}_{\|\cdot\|}^{\mathsf{sa},\sigma}(P_{s,a}^0) \coloneqq \left\{ P_{s,a} \in \Delta(\mathcal{S}) : \left\| P_{s,a} - P_{s,a}^0 \right\| \leq \sigma \right\},\tag{3}
$$

$$
P_{s,a} := P(\cdot | s, a) \in \mathbb{R}^{1 \times S}, P_{s,a}^0 := P^0(\cdot | s, a) \in \mathbb{R}^{1 \times S}.
$$
 (4)

157 where we denote a vector of the transition kernel P or P^0 at state-action pair (s, a) . In other words, the uncertainty is imposed in a decoupled manner for each state-action pair, obeying the 159 so-called sa-rectangularity [\[Zhou et al., 2021,](#page-13-0) [Wiesemann et al., 2013\]](#page-12-1). More generally, we 160 define s-rectangular MDPs as $\mathcal{U}^{\sigma}_{\|\cdot\|}(P) = \otimes_s \mathcal{U}^{\mathfrak{s}, \widetilde{\sigma}}_{\|\cdot\|}(P_s)$, for the general smooth L_p norm $\|\cdot\|$. The uncertainty is imposed in a decoupled manner for each state pair, and a fixed budget given a state for all action is defined. To get a similar meaning for the radius of the ball between sa-rectangular [a](#page-12-2)nd s-rectangular assumptions, we need to rescale the radius depending on the norm like in [Yang](#page-12-2) [et al.](#page-12-2) [\[2022b\]](#page-12-2). The s- uncertainty set is then defined using the rescaled radius $\tilde{\sigma}$ as

$$
\mathcal{U}_{\|\cdot\|}^{s,\widetilde{\sigma}}(P_s) \coloneqq \left\{ P_s' \in \Delta(\mathcal{S})^{\mathcal{A}} : \|P_s' - P_s\| \le \widetilde{\sigma} = \sigma \, \|1_A\| \right\},\tag{5}
$$

$$
P_s := P(\cdot, \cdot | s) \in \mathbb{R}^{1 \times SA}, \quad P_s^0 := P^0(\cdot, \cdot | s) \in \mathbb{R}^{1 \times SA}.
$$
 (6)

165 where $1_A \in \mathbb{R}^A$ denotes the unitary vector. For the specific case of respectively L_1, L_p and L_∞ norm, $\tilde{\sigma}$ is equal to $|\sigma A|, \sigma |A|^{1/p}$ and σ . Note that this scaling allows for a fair comparison between sa-¹⁶⁷ and s-rectangular MDPs. In RMDPs, we are interested in the worst-case performance of a policy ¹⁶⁸ π over all the possible transition kernels in the uncertainty set. This is measured by the *robust value* 169 *function* $V^{\pi,\sigma}$ and the *robust Q-function* $Q^{\pi,\sigma}$ in \mathcal{M}_{rob} , defined respectively as $\forall (s, a) \in S \times \mathcal{A}$

$$
V^{\pi,\sigma}(s) := \inf_{P \in \mathcal{U}^{\mathsf{sa},\sigma}_{\|\cdot\|}(P^0)} V^{\pi,P}(s), \quad Q^{\pi,\sigma}(s,a) := \inf_{P \in \mathcal{U}^{\mathsf{sa},\sigma}_{\|\cdot\|}(P^0)} Q^{\pi,P}(s,a). \tag{7}
$$

170 Similarly for s-rectangularity, the value function is denoted $V_s^{\pi,\sigma}(s) := \inf_{P \in \mathcal{U}_{\|\cdot\|}^s(P^0)} V^{\pi,P}(s)$.

¹⁷¹ Optimal robust policy and robust Bellman operator. As a generalization of properties of standard 172 MDPs in the sa-rectangular robust case, it is well-known that there exists at least one deterministic ¹⁷³ policy that maximizes the robust value function (resp. robust Q-function) simultaneously for all states ¹⁷⁴ (resp. state-action pairs) [\[Iyengar, 2005,](#page-10-2) [Nilim and El Ghaoui, 2005\]](#page-11-2) but not in the s-rectangular case. 175 Therefore, we denote the *optimal robust value function* (resp. *optimal robust Q-function*) as $V^{\star,\sigma}$ 176 (resp. $Q^{*,\sigma}$), and the optimal robust policy as π^* , which satisfy $\forall (s, a) \in S \times A$

$$
V^{\star,\sigma}(s) \coloneqq V^{\pi^\star,\sigma}(s) = \max_{\pi} V^{\pi,\sigma}(s), \quad Q^{\star,\sigma}(s,a) \coloneqq Q^{\pi^\star,\sigma}(s,a) = \max_{\pi} Q^{\pi,\sigma}(s,a). \tag{8a}
$$

- ¹⁷⁷ A key concept in RMDPs is a generalization of Bellman's optimality principle, encapsulated in the
- ¹⁷⁸ following *robust Bellman consistency equation* (resp. *robust Bellman optimality equation*):

$$
\forall (s,a) \in \mathcal{S} \times \mathcal{A}, \quad Q^{\pi,\sigma}(s,a) = r(s,a) + \gamma \inf_{\mathcal{P} \in \mathcal{U}_{\|\cdot\|}^{\text{sa},\sigma}(P_{s,a}^0)} \mathcal{P}^{V^{\pi,\sigma}},\tag{9a}
$$

$$
\forall (s,a) \in \mathcal{S} \times \mathcal{A} \quad, Q^{\star,\sigma}(s,a) = r(s,a) + \gamma \inf_{\mathcal{P} \in \mathcal{U}^{\mathrm{sa},\sigma}_{\|\cdot\|}(P^0_{s,a})} \mathcal{P}^{V^{\star,\sigma}}. \tag{9b}
$$

¹⁷⁹ for the *sa*-rectangular case and same equation replacing $P_{s,a}^0$ by P_s^0 and σ by $\tilde{\sigma}$. The robust Bellman 180 operator [\[Iyengar, 2005,](#page-10-2) [Nilim and El Ghaoui, 2005\]](#page-11-2) is denoted by $\mathcal{T}^{\sigma}(\cdot): \mathbb{R}^{SA} \to \mathbb{R}^{SA}$

$$
\mathcal{T}^{\sigma}(Q^{\pi})(s,a) \coloneqq r(s,a) + \gamma \inf_{\mathcal{P} \in \mathcal{U}^{\text{sa},\sigma}_{\|\cdot\|}(P^0_{s,a})} \mathcal{P}V, \quad \text{with} \quad V(s) \coloneqq \max_{\pi} Q^{\pi}(s,a). \tag{10}
$$

181 for sa-rectangular MDPs. Given that $Q^{\star,\sigma}$ is the unique-fixed point of \mathcal{T}^{σ} one can recover the ¹⁸² optimal robust value function and Q-function using a procedure termed *distributionally robust* ¹⁸³ *value iteration* (DRV I). Generalizing the standard value iteration, DRV I starts from some given ¹⁸⁴ initialization and recursively applies the robust Bellman operator until convergence. As has been shown previously, this procedure converges rapidly due to the γ -contraction property of \mathcal{T}^{σ} with 186 respect to the L_{∞} norm [\[Iyengar, 2005,](#page-10-2) [Nilim and El Ghaoui, 2005\]](#page-11-2).

¹⁸⁷ 3 Distributionally Robust Value Iteration

¹⁸⁸ Generative model-based sampling. Following [Zhou et al.](#page-13-0) [\[2021\]](#page-13-0), [Panaganti and Kalathil](#page-11-3) [\[2022\]](#page-11-3), ¹⁸⁹ we assume access to a generative model or a simulator [\[Kearns and Singh, 1999\]](#page-10-6), which allows us ¹⁹⁰ to collect N independent samples for each state-action pair generated based on the *nominal* kernel 191 P^0 : $\forall (s, a) \in S \times A$, $s_{i,s,a} \stackrel{i.i.d}{\sim} P^0(\cdot | s, a)$, $i = 1, 2, \cdots, N$. The total sample size is, therefore, 192 NSA. We consider a model-based approach tailored to RMDPs, which first constructs an empirical ¹⁹³ nominal transition kernel based on the collected samples and then applies distributionally robust ¹⁹⁴ value iteration (DRVI) to compute an optimal robust policy. As we decouple the statistical estimation 195 error and the optimization error, we exhibit an algorithm that can achieve arbitrary small error ϵ_{out} is in the empirical MDP defined as an empirical nominal transition kernel $\hat{P}^0 \in \mathbb{R}^{S\cdot A \times S}$ that can be 197 constructed on the basis of the empirical frequency of state transitions, i.e. $\forall (s, a) \in S \times A$

$$
\widehat{P}^0(s' \mid s, a) \coloneqq \frac{1}{N} \sum_{i=1}^N \mathbb{1} \{ s_{i,s,a} = s' \},\tag{11}
$$

198 which leads to an empirical RMDP $\widehat{\mathcal{M}}_{\text{rob}} = \{S, A, \gamma, \mathcal{U}_{\|\cdot\|}^{\sigma}(\widehat{P}^0), r\}$. Analogously, we can define the corresponding robust value function (resp. robust Q-function) of policy π in $\widehat{\mathcal{M}}_{\text{rob}}$ as $\widehat{V}^{\pi,\sigma}$ (resp. $\hat{Q}^{\pi,\sigma}$) (cf. [\(8\)](#page-4-2)). In addition, we denote the corresponding *optimal robust policy* as $\hat{\pi}^*$ and the *optimal robust value function* (resp. *optimal robust Q-function*) as $\hat{V}^{\star,\sigma}$ (resp. $\hat{Q}^{\star,\sigma}$) (cf. [\(9\)](#page-4-3)), which \cos astisfies the robust Bellman optimality equation $\forall (s, a) \in S \times A$: satisfies the robust Bellman optimality equation $\forall (s, a) \in S \times A$:

$$
\widehat{Q}^{\star,\sigma}(s,a) = r(s,a) + \gamma \inf_{\mathcal{P} \in \mathcal{U}_{\|\cdot\|}^{sa}, \sigma} \widehat{\mathcal{P}}^{\widehat{V}^{\star,\sigma}}.
$$
\n(12)

203 Equipped with \widehat{P}^0 , we can define the empirical robust Bellman operator \widehat{T}^{σ} as $\forall (s, a) \in S \times A$

$$
\widehat{\mathcal{T}}^{\sigma}(Q^{\pi})(s,a) \coloneqq r(s,a) + \gamma \inf_{\mathcal{P} \in \mathcal{U}^{\text{sa},\sigma}_{\|\cdot\|}(\widehat{P}_{s,a})} \mathcal{P} V,\tag{13}
$$

204 with $V(s) := \max_{\pi} Q^{\pi}(s, a)$. The aim of this work is given the collected samples, to learn 205 the robust optimal policy for the RMDP w.r.t. some prescribed uncertainty set $\mathcal{U}^{\sigma}(P^{\bar{0}})$ around the 206 nominal kernel using as few samples as possible. Specifically, given some target accuracy level $\varepsilon > 0$, 207 the goal is to seek an ε -optimal robust policy $\hat{\pi}$ obeying

$$
\forall s \in \mathcal{S}: \quad V^{\star,\sigma}(s) - V^{\widehat{\pi},\sigma}(s) \le \varepsilon. \tag{14}
$$

$$
\widehat{V}^{\widehat{\pi}^*,\sigma} - \widehat{V}^{\widehat{\pi},\sigma} \le \varepsilon_{\text{opt}}.\tag{15}
$$

²⁰⁸ This formulation allows plugging any solver of RMDPs in this bound, for instance, the distributionally ²⁰⁹ robust value iteration (DRVI) algorithm detailed in Appendix [12.](#page-53-0)

²¹⁰ 4 Theoretical guarantees

²¹¹ In this section, we present our main results characterizing the sample complexity of solving RMDPs 212 with sa-and s-rectangularity. Additionally, we discuss the implications of our results for the com-213 parisons between standard and robust RL, and for comparisons between sa - versus s-rectangularity.

²¹⁴ 4.1 sa-rectangular uncertainty set with general smooth norms

215 To begin, we consider the RMDPs with sa -rectangularity with general norms. We first provide the following sample complexity upper bound for certain oracle planning algorithms, whose proof is postponed to Appendix [9.2.](#page-21-2) Technically, we derive two new dual forms for RMDPs problems using arbitrary norms in Lemmas [3](#page-18-0) and [4](#page-19-0) for respectively sa- and s-rectangular RMDPS. In these dual forms, a central quantity denoted sp(.)∗, representing the dispersion of the value function, appears 220 and is the dual span semi-norm associated with the considered general L_p norm $\|.\|$ defined in [1](#page-3-0) in the initial primal problem. The main challenge in this analysis is to derive a tight upper bound on this quantity in Lemmas [\(5\)](#page-21-0) and [\(6\)](#page-21-1), leading to the following sample complexity.

Theorem 1 (Upper bound for sa-rectangularity). *Consider the uncertainty set* $\mathcal{U}_{\|\cdot\|}^{\mathsf{sa},\sigma}(\cdot)$ *associated* 224 *with arbitrary smooth norm* $\|\cdot\|$ *defined in [1.](#page-3-0)* We denote $\sigma_{\max} := \max_{p_1, p_2 \in \Delta(S)} \|p_1 - p_2\|$ *as the accessible maximal uncertainty level. Consider any* $\delta \in (0,1)$, discount factor $\gamma \in \left[\frac{1}{4}, 1\right)$, and 226 *uncertainty level* $σ ∈ (0, σ_{max}]$ *. Let* $\hat{π}$ *be the output policy of some oracle planning algorithm with*
227 *optimization error* ε_{opt} introduced in (15). With introduced in 1, one has with probability at *optimization error* ε_{opt} *introduced in* [\(15\)](#page-5-0)*. With introduced in* 1*, one has with probability at least* $1-\delta$ *,*

$$
\forall s \in \mathcal{S}: \quad V^{\star,\sigma}(s) - V^{\hat{\pi},\sigma}(s) \le \varepsilon + \frac{8\varepsilon_{\text{opt}}}{1-\gamma}
$$
\n(16)

228 *for any* $\varepsilon \in (0, \sqrt{1/\max\{1 - \gamma, \sigma C_g\}}]$, as long as the total number of samples obeys

$$
NSA \gtrsim \frac{c_1 SA}{(1-\gamma)^2 \max\{1-\gamma, C_g \sigma\} \varepsilon^2} + \frac{c_2 SAC_S \left\|1_S\right\|_{*}}{(1-\gamma)^2 \epsilon} \tag{17}
$$

²²⁹ *with* c1, c2, c³ *a universal positive constant. For a sufficiently small level of accuracy* 230 $\epsilon \leq (\max\{1-\gamma, C_g\sigma\})/(C_S \|1_S\|)$ *, the sample complexity is*

$$
NSA \gtrsim \frac{c_3 SA}{(1 - \gamma)^2 \max\{1 - \gamma, C_g \sigma\} \varepsilon^2}
$$
\n(18)

231 Note that this result is also true for TV without the geometric smooth term depending on C_S . Consid-232 ering L_p norms, $C_g \ge 1$ and $C_S \le S^{1/q}$. In Theorem [1,](#page-6-0) we introduce the following minimax-optimal ²³³ lower bound to verify the tightness of the above upper bound; a proof is provided in Appendix [10.](#page-48-0)

Theorem 2 (Lower bound for sa-rectangularity). *Consider the uncertainty set* $\mathcal{U}_{\|\cdot\|}^{\mathsf{sa},\sigma}(\cdot)$ *associated with arbitrary* L_P *norm* $\|\cdot\|$ *defined in* [1](#page-3-0)*. We denote* $\sigma_{\max} := \max_{p_1, q_1 \in \Delta(S)} \|p_1 - p_2\|$ *as the accessible maximal uncertainty level.* Consider any tuple $(S, A, \gamma, \sigma, \varepsilon)$, where $\gamma \in \left[\frac{1}{2}, 1\right)$, $\sigma \in (0, \sigma_{\max}(1-c_0)]$ with $0 < c_0 \leq \frac{1}{8}$ being any small enough positive constant, and $\varepsilon \in$ $(0, \frac{c_0}{256(1-\gamma)}]$. We can construct two infinite-horizon RMDPs $\mathcal{M}_0, \mathcal{M}_1$ such that giving a dataset *with* N *independent samples for each state-action pair over the nominal transition kernel (for either* \mathcal{M}_0 *or* \mathcal{M}_1 *respectively), one has*

$$
\inf_{\widehat{\pi}} \max_{\mathcal{M} \in \{\mathcal{M}_0, \mathcal{M}_1\}} \left\{ \mathbb{P}_{\mathcal{M}} \Big(\max_{s \in \mathcal{S}} \left[V^{\star, \sigma}(s) - V^{\widehat{\pi}, \sigma}(s) \right] > \varepsilon \Big) \right\} \ge \frac{1}{8},
$$

241 *where the infimum is taken over all estimators* $\hat{\pi}$, \mathbb{P}_0 *(resp.* \mathbb{P}_1 *) are the probability when the RMDP is*
242 *M*₀ *(resp. M*₁), as long as, for c_7 is a universal positive constant. \mathcal{M}_0 (resp. \mathcal{M}_1), as long as, for c_7 *is a universal positive constant*,

$$
NSA \le \frac{c_7 SA}{(1 - \gamma)^2 \max\{1 - \gamma, C_g \sigma\} \varepsilon^2}.
$$
\n(19)

243 • Near minimax-optimal sample complexity with general L_p norms. Recall that Theorem [1](#page-6-0) shows that the sample complexity upper bound of oracle algorithms for RMDPs is in the order of $\widetilde{O}\left(\frac{SA}{(1-\gamma)^2 \max\{1-\gamma, C_g \sigma\} \varepsilon^2}\right)$. Combined with the lower bound in Theorem [2,](#page-6-1) we observe that the above sample complexity is near minimax-optimal, in almost the full range of uncertainty.

247 • Solving RMDPs with general L_p norms can be easier than solving standard RL. Recall that ²⁴⁸ [t](#page-10-7)he sample complexity of solving standard RL with a generative model [\[Agarwal et al., 2020,](#page-9-3) [Li](#page-10-7) 249 [et al., 2024,](#page-10-7) [Azar et al., 2013a\]](#page-9-4) is: $\tilde{O}\left(\frac{SA}{(1-\gamma)^3 \varepsilon^2}\right)$. Comparing this with the sample complexity in 250 [\(18\)](#page-6-2), it highlights that solving robust MDPs (cf. (18)) using any norm as the divergence function for 251 the uncertainty set is not harder than (and is sometimes easier than) solving standard RL (cf. (4.1)). 252 Specifically, when the uncertainty level is small $\sigma \lesssim 1 - \gamma$, the sample complexity of solving ²⁵³ robust MDPs matches that of standard MDPs. While when the uncertainty level is relatively larger 254 $1 - \gamma \lesssim \sigma \leq \sigma_{\text{max}}$, the sample complexity of solving robust MDPs is smaller than that of standard 255 MDPs by a factor or $\frac{\sigma}{1-\gamma}$, which goes to $\frac{1}{1-\gamma}$ when $\sigma = O(1)$.

²⁵⁶ • Comparisons with prior arts. In Figure [2,](#page-2-0) we illustrate the comparisons with two state-of-the-²⁵⁷ arts [\[Clavier et al., 2023,](#page-9-0) [Shi et al., 2023\]](#page-11-4) which use some divergence functions belonging to the class ²⁵⁸ of general norms considered in this work. In particular, [Shi et al.](#page-11-4) [\[2023\]](#page-11-4) achieved the state-of-the-art

259 minimax-optimal sample complexity $\widetilde{O}\left(\frac{SA}{(1-\gamma)^2 \max\{1-\gamma,\sigma\}\varepsilon^2}\right)$ for specific L_1 norm (or called total ²⁶⁰ variation distance). In this work, we attain near minimax-optimal sample complexity for any general 261 norm (including L_1) which matches the one in [Shi et al.](#page-11-4) [\[2023\]](#page-11-4) when narrowing down to L_1 norm. 262 Note that in TV case, $C_g = 1$. This reveals that the finding of robust MDPs can be easier than 263 standard MDPs [\[Shi et al., 2023\]](#page-11-4) in terms of sample requirement does not only hold for L_1 norm, 264 but for any general norm. In addition, compared to [Clavier et al.](#page-9-0) [\[2023\]](#page-9-0) which focuses on L_p norms 265 for any $1 \le p \le \infty$: when $1 - \gamma \lesssim \sigma \le \sigma_{\text{max}}$, we improve the sample complexity $\widetilde{O}(\frac{SA}{(1-\gamma)^4 \varepsilon^2})$ to 266 $\widetilde{O}(\frac{SA}{(1-\gamma)^2\sigma\epsilon^2})$ by at least a factor of $\frac{1}{1-\gamma}$; otherwise, we match the results in [Clavier et al.](#page-9-0) [\[2023\]](#page-9-0).

267 Burn-in Condition, C_g factor and TV case: In Th. [1](#page-6-0) and [3](#page-7-0) we need a sufficiently small level 268 of accuracy $\epsilon \leq (\max\{1-\gamma, C_q\sigma\})/(C_s ||1_S||)$, to obtain the sample complexity. This type of ²⁶⁹ condition is usual in MDPS analysis [Shi et al.](#page-11-7) [\[2022\]](#page-11-7) and is equivalent to burn in term. Moreover, 270 the quantity C_S exists (see [1\)](#page-3-0) and for example, considering L_p norms, C_S is bounded by $S^{1/q}$. (See 271 [\(151\)](#page-36-0)) and the product $C_S ||1_S||$ is upper bounded by S for L_2 norm. Moreover, note that our theorem 272 for the smooth norm is also true for TV which is not C^2 and has the same complexity as [\(Shi et al.](#page-11-4) ²⁷³ [\[2023\]](#page-11-4). In this case, the burn-in condition is not needed. (See Lemma [9.3.3\)](#page-34-0). Finally, the factor 274 $C_g = 1/\min_s ||e_s||$ is norm dependent and depends on how big the vector e_{s_0} is in the considered 275 norm. Note for classical L_p this quantity is bigger than 1, which reduces the sample complexity.

²⁷⁶ 4.2 s-rectangular uncertainty set with general norms

²⁷⁷ To continue, we move on to the case when the uncertainty set is constructed under s-rectangularity ²⁷⁸ smooth norm. The following theorem presents the sample complexity upper bound for learning an 279 ϵ -optimal policy for RMDPs with s-rectangularity. A proof is shown in Appendix [9.2.](#page-21-2)

280 **Theorem 3** (Upper bound for s-rectangularity). *Consider the uncertainty set* $\mathcal{U}_{\|\cdot\|}^{s,\widetilde{\sigma}}(\cdot)$ *with*

 $_{281}$ *s*-rectangularity. Consider any discount factor $\gamma \in [\frac{1}{4}, 1]$, the rescaled uncertainty level $\tilde{\sigma} = \sigma ||1_A||$, 282 and denote $\tilde{\sigma}_{\max} := \|1_A\| \max_{p_1, p_2 \in \Delta(S)} \|p_1 - p_2\|$ and $\delta \in (0, 1)$. Let $\hat{\pi}$ be the output policy of
283 an arbitrary optimization algorithm with error ε_{opt} , with probability at least $1 - \delta$, one has f

 $\epsilon \in (0, \sqrt{1/\max\{1-\gamma, C_g\min_s\|\pi_s\|_*\sigma\}}], \, \forall s \in \mathcal{S}: \quad V^{\star,\widetilde{\sigma}}(s) - V^{\widehat{\pi},\widetilde{\sigma}}(s) \leq \varepsilon + \frac{8\varepsilon_{\mathsf{opt}}}{1-\gamma}\ as\ long$ ²⁸⁵ *as the total number of samples obeys*

$$
NSA \gtrsim \frac{c_4 SA}{(1 - \gamma)^2 \varepsilon^2} \min \left\{ \frac{1}{\max\{1 - \gamma, C_g \sigma\}}, \frac{1}{\sigma C_g \min_{s \in S} \left\{ \left\| \pi_s^* \right\|_{*} \left\| 1_A \right\|, \left\| \hat{\pi}_s \right\|_{*} \left\| 1_A \right\| \right\}} \right\} + \frac{c_5 S A C_S \left\| 1_S \right\|_{*}}{(1 - \gamma)^2 \epsilon} \tag{20}
$$

286 *For a sufficiently small accuracy,* $\epsilon \leq (\max\{1-\gamma, C_g\tilde{\sigma}\})/(C_s \|\mathbb{1}_S\|)$ *the sample complexity is*

$$
NSA \gtrsim \frac{c_6 SA}{(1 - \gamma)^2 \varepsilon^2} \min \left\{ \frac{1}{\max\{1 - \gamma, C_g \sigma\}}, \frac{1}{\sigma C_g \min_{s \in \mathcal{S}} \left\{ \left\| \pi_s^* \right\|_* \left\| 1_A \right\|, \left\| \hat{\pi}_s \right\|_* \left\| 1_A \right\| \right\}} \right\} \tag{21}
$$

287 where $\hat{\pi}_s \in \Delta_A$ denote the policy of the empirical RMPDs at state $s, \pi_s^* \in \Delta_A$ the optimal policy 288 given s of the true RMPDs, $\|\cdot\|_*$ the dual norm and c_4, c_5, c_6 are universal constant. Note that this 289 result is also true for TV without the term depending on smoothness C_S . In addition, we provide the 290 lower bounds for a representative divergence function — L_{∞} norm in the following. Note that for 291 classical L_p , $C_S = S^{1/q}$ and C_g can be lower bounded by 1. A proof is provided in Appendix [11.](#page-48-1)

Theorem 4 (Lower bound for s-rectangularity). *Consider the uncertainty set* $\mathcal{U}_{L_{\infty}}^{s,\tilde{\sigma}}(\cdot)$ *associated with the* L_{∞} *norm. Consider any tuple* $(S, A, \gamma, \sigma, \varepsilon)$ *and* $0 < c_0 \leq \frac{1}{8}$ *being any small enough positive constant, where* $\gamma \in \left[\frac{1}{2}, 1\right)$, and $\varepsilon \in (0, \frac{c_0}{256(1-\gamma)}]$. Correspondingly, we denote the accessible *maximal uncertainty level for* $\mathcal{U}_{L_{\infty}}^{5,\widetilde{\sigma}}(\cdot)$ *as* $\sigma_{\max}^{\infty} := \max_{p_1,p_1\in\Delta(\mathcal{S})^A} \|p_1-p_2\|_{\infty} = 1$. Then we can $-$ construct a collection of infinite-horizon RMDPs \mathcal{M}_{L_∞} defined by the uncertainty set with $\mathcal{U}_{L_\infty}^{\mathbf{s},\widetilde{\sigma}}(\cdot)$ 297 so that for any $\sigma \in (0, \sigma_{\max}^{\infty}(1-c_0)]$, and any dataset with in total $N_{\sf all}$ independent samples for all *state-action pairs over the nominal transition kernel (for any RMDP inside* M^L∞*), one has*

$$
\inf_{\widehat{\pi}} \max_{\mathcal{M} \in \mathcal{M}_{L_{\infty}}} \left\{ \mathbb{P}_{\mathcal{M}} \big(\max_{s \in \mathcal{S}} \left[V^{\star,\sigma}(s) - V^{\widehat{\pi},\sigma}(s) \right] > \varepsilon \big) \right\} \ge \frac{1}{8},\tag{22}
$$

²⁹⁹ *provided that for* c⁸ *is a universal positive constant,*

$$
N_{\text{all}} \le \frac{c_8 SA}{(1 - \gamma)^2 \max\{1 - \gamma, \sigma\} \varepsilon^2}.
$$
\n(23)

300 *with* \mathbb{P}_M *the probability when the RMDP is* M, and the infimum is taken over all estimators $\hat{\pi}$.

³⁰¹ Now we can present some implications of Theorem [3](#page-7-0) and Theorem [4.](#page-7-1)

302 • Robust MDPs with s-rectangularity are at least as easy as sa -rectangularity. Theorem [3](#page-7-0) ³⁰³ shows that the sample complexity of solving RMDPs with s-rectangularity does not exceed the 304 order of $\tilde{O}\left(\frac{SA}{(1-\gamma)^2 \max\{1-\gamma, C_g \sigma\} \varepsilon^2}\right)$. This matches the sample complexity for sa-rectangularity ³⁰⁵ (cf. [\(18\)](#page-6-2)) and indicates that although s-rectangular RMDPs are of a more complicated formulation, 306 solving s-rectangular RMDPs is at least as easy as solving sa -rectangular RMDPs in terms of the ³⁰⁷ sample complexity. In addition to the worst-case sample complexity upper bound, Theorem [3](#page-7-0) also ³⁰⁸ provides a data and instance-dependent sample complexity upper bound for s-rectangular RMDPs 309 (cf. in [\(20\)](#page-7-2)). Taking the divergence function $\|\cdot\| = L_p$ for instance, the data and instance-dependent ³¹⁰ sample complexity upper bound is

$$
\begin{cases}\n\widetilde{O}\left(\frac{SA}{(1-\gamma)^2\varepsilon^2}\frac{1}{\max\{1-\gamma,\sigma\}}\right) & \text{if } \widehat{\pi}_s(a\,|\,s) = \pi_s^*(a\,|\,s) = \frac{1}{A}, \quad \forall (s,a) \in \mathcal{S} \times \mathcal{A} \\
\widetilde{O}\left(\frac{SA}{(1-\gamma)^2\varepsilon^2}\frac{1}{\max\{1-\gamma,\sigma A^{1/p}\}}\right) & \text{if } \|\widehat{\pi}_s(\cdot\,|\,s)\|_0 = \|\pi_s^*(\cdot\,|\,s)\|_0 = 1, \quad \forall s \in \mathcal{S}.\n\end{cases}
$$

311 where $\|\cdot\|_0$ corresponds to the total number of nonzero elements in a vector. The intuition beyond this theorem is that when the policy becomes proportional to uniform, the uncertainty budget of 313 the s-rectangular MDPs is equally spread into all actions, and we retrieve the sa-rectangular case. When the policy becomes deterministic, all the uncertainty budget concentrates on one action. In this case, most of the actions are not robust except one, and the problem is simpler than classical MDP for this only specific action. An illustration of this result can be found in Fig. [2.](#page-2-0)

³¹⁷ • Comparisons with prior arts. In Figure [2,](#page-2-0) we illustrate the comparisons with [Clavier et al.](#page-9-0) 318 [\[2023\]](#page-9-0) which use L_p norms functions belonging to the class of general norms considered in this ³¹⁹ work. We do not compare in this section to [Yang et al.](#page-12-0) [\[2022a\]](#page-12-0) as it is not anymore state-of-the-art ³²⁰ with regard to the work of [Clavier et al.](#page-9-0) [\[2023\]](#page-9-0). In particular, the latest achieves in the s-rectangular s21 case at sample complexity of $\widetilde{O}\left(\frac{SA}{(1-\gamma)^3\varepsilon^2}\right)$ in the regime where $\tilde{\sigma} \lesssim 1-\gamma$. In this regime, our result 322 is the same but more general but in the regime where $\tilde{\sigma} \gtrsim 1 - \gamma$, they achieve sample complexity 323 of $\widetilde{O}\left(\frac{SA}{(1-\gamma)^4\epsilon^2}\right)$ which is bigger than our result $\widetilde{O}\left(\frac{SA}{(1-\gamma)^2 \max\{1-\gamma,\sigma\}\epsilon^2}\right)$ by a factor at least $\frac{1}{1-\gamma}$.

³²⁴ 5 Conclusion

 This work refined sample complexity bounds to learn robust Markov decision processes when the 326 uncertainty set is characterized by an general L_p metric, assuming the presence of a generative model. Our findings not only strengthen the current knowledge by improving both the upper and lower bounds, but also highlight that learning s-rectangular MDPs is less challenging in terms of sample complexity 329 compared to classical sa-rectangular MDPs. This work is the first to provide results with a minimax bound, as prior results concerning s-rectangular cases were not minimax optimal. Additionally, we 331 have established the minimax sample complexity for RMDPs using a general L_p norm, demonstrating that it is never larger than that required for learning standard MDPs. Our research identifies potential avenues for future work, such as exploring the characterization of tight sample complexity for RMDPs under a broader family of uncertainty sets, such as those defined by f -divergence. It would be highly desirable for a more unified theoretical foundation, as the distance between probability measures is more natural to define using divergence. Moreover, it would be interesting to focus on the finite- horizon Setting and linear setting, as our current analytical framework opens the door for potential ex- tensions to address finite-horizon RMDPs. Such an extension would contribute to a more comprehen-sive understanding of tabular cases. Finally, the case of linear MDPs would be interesting to explore.

340 References

- Alekh Agarwal, Sham Kakade, and Lin F Yang. Model-based reinforcement learning with a generative model is minimax optimal. In *Conference on Learning Theory*, pages 67–83. PMLR, 2020.
- Mohammad Azar, Rémi Munos, and Hilbert J Kappen. Minimax pac bounds on the sample complexity of reinforcement learning with a generative model. *Machine learning*, 91:325–349, 2013a.
- Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J Kappen. Minimax PAC bounds on the sample complexity of reinforcement learning with a generative model. *Machine learning*, 91(3): 325–349, 2013b.
- Kishan Panaganti Badrinath and Dileep Kalathil. Robust reinforcement learning using least squares policy iteration with provable performance guarantees. In *International Conference on Machine Learning*, pages 511–520. PMLR, 2021.
- Yu Bai, Tengyang Xie, Nan Jiang, and Yu-Xiang Wang. Provably efficient Q-learning with low switching cost. *arXiv preprint arXiv:1905.12849*, 2019.
- Carolyn L Beck and Rayadurgam Srikant. Error bounds for constant step-size Q-learning. *Systems & control letters*, 61(12):1203–1208, 2012.
- Jose Blanchet and Karthyek Murthy. Quantifying distributional model risk via optimal transport. *Mathematics of Operations Research*, 44(2):565–600, 2019.
- Jose Blanchet, Miao Lu, Tong Zhang, and Han Zhong. Double pessimism is provably efficient for distributionally robust offline reinforcement learning: Generic algorithm and robust partial coverage. *arXiv preprint arXiv:2305.09659*, 2023.
- Zaiwei Chen, Siva Theja Maguluri, Sanjay Shakkottai, and Karthikeyan Shanmugam. Finite- sample analysis of stochastic approximation using smooth convex envelopes. *arXiv preprint arXiv:2002.00874*, 2020.
- Pierre Clavier, Stéphanie Allassonière, and Erwan Le Pennec. Robust reinforcement learning with distributional risk-averse formulation. *arXiv preprint arXiv:2206.06841*, 2022.
- Pierre Clavier, Erwan Le Pennec, and Matthieu Geist. Towards minimax optimality of model-based robust reinforcement learning. *arXiv preprint arXiv:2302.05372*, 2023.
- Esther Derman and Shie Mannor. Distributional robustness and regularization in reinforcement learning. *arXiv preprint arXiv:2003.02894*, 2020.
- Esther Derman, Matthieu Geist, and Shie Mannor. Twice regularized MDPs and the equivalence between robustness and regularization. *Advances in Neural Information Processing Systems*, 34, 2021.
- Jing Dong, Jingwei Li, Baoxiang Wang, and Jingzhao Zhang. Online policy optimization for robust MDP. *arXiv preprint arXiv:2209.13841*, 2022.
- Kefan Dong, Yuanhao Wang, Xiaoyu Chen, and Liwei Wang. Q-learning with UCB exploration is sample efficient for infinite-horizon MDP. *arXiv preprint arXiv:1901.09311*, 2019.
- John Duchi and Hongseok Namkoong. Learning models with uniform performance via distributionally robust optimization. *arXiv preprint arXiv:1810.08750*, 2018.
- Rui Gao. Finite-sample guarantees for wasserstein distributionally robust optimization: Breaking the curse of dimensionality. *arXiv preprint arXiv:2009.04382*, 2020.
- Vineet Goyal and Julien Grand-Clement. Robust markov decision processes: Beyond rectangularity. *Mathematics of Operations Research*, 2022.
- Songyang Han, Sanbao Su, Sihong He, Shuo Han, Haizhao Yang, and Fei Miao. What is the solution for state adversarial multi-agent reinforcement learning? *arXiv preprint arXiv:2212.02705*, 2022.
- Chin Pang Ho, Marek Petrik, and Wolfram Wiesemann. Fast bellman updates for robust MDPs. In *International Conference on Machine Learning*, pages 1979–1988. PMLR, 2018.
- Chin Pang Ho, Marek Petrik, and Wolfram Wiesemann. Partial policy iteration for l1-robust markov decision processes. *Journal of Machine Learning Research*, 22(275):1–46, 2021.
- Garud N Iyengar. Robust dynamic programming. *Mathematics of Operations Research*, 30(2): 257–280, 2005.
- Mehdi Jafarnia-Jahromi, Chen-Yu Wei, Rahul Jain, and Haipeng Luo. A model-free learning algorithm for infinite-horizon average-reward MDPs with near-optimal regret. *arXiv preprint arXiv:2006.04354*, 2020.
- Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is Q-learning provably efficient? In *Advances in Neural Information Processing Systems*, pages 4863–4873, 2018.
- Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-free exploration for reinforcement learning. In *International Conference on Machine Learning*, pages 4870–4879. PMLR, 2020.
- Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline RL? In *International Conference on Machine Learning*, pages 5084–5096, 2021.
- William Karush. Minima of functions of several variables with inequalities as side conditions. In *Traces and emergence of nonlinear programming*, pages 217–245. Springer, 2013.
- David L Kaufman and Andrew J Schaefer. Robust modified policy iteration. *INFORMS Journal on Computing*, 25(3):396–410, 2013.
- Michael J Kearns and Satinder P Singh. Finite-sample convergence rates for Q-learning and indirect algorithms. In *Advances in neural information processing systems*, pages 996–1002, 1999.
- Olga Klopp, Karim Lounici, and Alexandre B Tsybakov. Robust matrix completion. *Probability Theory and Related Fields*, 169(1-2):523–564, 2017.
- Aounon Kumar, Alexander Levine, Tom Goldstein, and Soheil Feizi. Certifying model accuracy under distribution shifts. *arXiv preprint arXiv:2201.12440*, 2022.
- Navdeep Kumar, Esther Derman, Matthieu Geist, Kfir Levy, and Shie Mannor. Policy gradient for s-rectangular robust markov decision processes. *arXiv preprint arXiv:2301.13589*, 2023.
- Gen Li, Laixi Shi, Yuxin Chen, Yuantao Gu, and Yuejie Chi. Breaking the sample complexity barrier to regret-optimal model-free reinforcement learning. *Advances in Neural Information Processing Systems*, 34, 2021.
- Gen Li, Yuejie Chi, Yuting Wei, and Yuxin Chen. Minimax-optimal multi-agent RL in Markov games with a generative model. *Neural Information Processing Systems*, 2022a.
- Gen Li, Laixi Shi, Yuxin Chen, Yuejie Chi, and Yuting Wei. Settling the sample complexity of model-based offline reinforcement learning. *arXiv preprint arXiv:2204.05275*, 2022b.
- Gen Li, Changxiao Cai, Yuxin Chen, Yuting Wei, and Yuejie Chi. Is Q-learning minimax optimal? a tight sample complexity analysis. *Operations Research*, 2023a.
- Gen Li, Yuting Wei, Yuejie Chi, and Yuxin Chen. Breaking the sample size barrier in model-based reinforcement learning with a generative model. *accepted to Operations Research*, 2023b.
- Gen Li, Yuling Yan, Yuxin Chen, and Jianqing Fan. Minimax-optimal reward-agnostic exploration in reinforcement learning. *arXiv preprint arXiv:2304.07278*, 2023c.
- Gen Li, Yuting Wei, Yuejie Chi, and Yuxin Chen. Breaking the sample size barrier in model-based reinforcement learning with a generative model. *Operations Research*, 72(1):203–221, 2024.
- Yan Li, Tuo Zhao, and Guanghui Lan. First-order policy optimization for robust markov decision process. *arXiv preprint arXiv:2209.10579*, 2022c.
- A Rupam Mahmood, Dmytro Korenkevych, Gautham Vasan, William Ma, and James Bergstra. Benchmarking reinforcement learning algorithms on real-world robots. In *Conference on robot learning*, pages 561–591. PMLR, 2018.

 Shie Mannor, Duncan Simester, Peng Sun, and John N Tsitsiklis. Bias and variance in value function estimation. In *Proceedings of the twenty-first international conference on Machine learning*,

- Colin McDiarmid et al. On the method of bounded differences. *Surveys in combinatorics*, 141(1): 148–188, 1989.
- Janosch Moos, Kay Hansel, Hany Abdulsamad, Svenja Stark, Debora Clever, and Jan Peters. Robust reinforcement learning: A review of foundations and recent advances. *Machine Learning and Knowledge Extraction*, 4(1):276–315, 2022.
- Arnab Nilim and Laurent El Ghaoui. Robust control of Markov decision processes with uncertain transition matrices. *Operations Research*, 53(5):780–798, 2005.
- Kishan Panaganti and Dileep Kalathil. Sample complexity of robust reinforcement learning with a generative model. In *International Conference on Artificial Intelligence and Statistics*, pages 9582–9602. PMLR, 2022.
- You Qiaoben, Xinning Zhou, Chengyang Ying, and Jun Zhu. Strategically-timed state-observation attacks on deep reinforcement learning agents. In *ICML 2021 Workshop on Adversarial Machine Learning*, 2021.
- Hamed Rahimian and Sanjay Mehrotra. Distributionally robust optimization: A review. *arXiv preprint arXiv:1908.05659*, 2019.
- Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline reinforcement learning and imitation learning: A tale of pessimism. *Neural Information Processing Systems (NeurIPS)*, 2021.
- Aurko Roy, Huan Xu, and Sebastian Pokutta. Reinforcement learning under model mismatch. *Advances in neural information processing systems*, 30, 2017.
- Walter Rudin et al. *Principles of mathematical analysis*, volume 3. McGraw-hill New York, 1964.
- Reazul Hasan Russel, Bahram Behzadian, and Marek Petrik. Optimizing norm-bounded weighted ambiguity sets for robust mdps. *arXiv preprint arXiv:1912.02696*, 2019.
- Laixi Shi and Yuejie Chi. Distributionally robust model-based offline reinforcement learning with near-optimal sample complexity. *arXiv preprint arXiv:2208.05767*, 2022.
- Laixi Shi, Gen Li, Yuting Wei, Yuxin Chen, and Yuejie Chi. Pessimistic Q-learning for offline rein- forcement learning: Towards optimal sample complexity. In *Proceedings of the 39th International Conference on Machine Learning*, volume 162, pages 19967–20025. PMLR, 2022.
- Laixi Shi, Gen Li, Yuting Wei, Yuxin Chen, Matthieu Geist, and Yuejie Chi. The curious price of distributional robustness in reinforcement learning with a generative model. *arXiv preprint arXiv:2305.16589*, 2023.
- Aaron Sidford, Mengdi Wang, Xian Wu, Lin Yang, and Yinyu Ye. Near-optimal time and sample complexities for solving Markov decision processes with a generative model. In *Advances in Neural Information Processing Systems*, pages 5186–5196, 2018.
- Elena Smirnova, Elvis Dohmatob, and Jérémie Mary. Distributionally robust reinforcement learning. *arXiv preprint arXiv:1902.08708*, 2019.
- Richard S Sutton. Learning to predict by the methods of temporal differences. *Machine learning*, 3 (1):9–44, 1988.
- Aviv Tamar, Shie Mannor, and Huan Xu. Scaling up robust MDPs using function approximation. In *International conference on machine learning*, pages 181–189. PMLR, 2014.
- Kai Liang Tan, Yasaman Esfandiari, Xian Yeow Lee, and Soumik Sarkar. Robustifying reinforcement learning agents via action space adversarial training. In *2020 American control conference (ACC)*,
- pages 3959–3964. IEEE, 2020.

page 72, 2004.

- Chen Tessler, Yonathan Efroni, and Shie Mannor. Action robust reinforcement learning and applica-
- tions in continuous control. In *International Conference on Machine Learning*, pages 6215–6224. PMLR, 2019.
- A. B. Tsybakov. *Introduction to nonparametric estimation*, volume 11. Springer, 2009.
- J v. Neumann. Zur theorie der gesellschaftsspiele. *Mathematische annalen*, 100(1):295–320, 1928.
- Roman Vershynin. *High-dimensional probability: An introduction with applications in data science*, volume 47. Cambridge university press, 2018.
- 485 Martin J Wainwright. Stochastic approximation with cone-contractive operators: Sharp ℓ_{∞} -bounds for Q-learning. *arXiv preprint arXiv:1905.06265*, 2019.
- Shengbo Wang, Nian Si, Jose Blanchet, and Zhengyuan Zhou. A finite sample complexity bound for distributionally robust q-learning. *arXiv preprint arXiv:2302.13203*, 2023.
- Yue Wang and Shaofeng Zou. Online robust reinforcement learning with model uncertainty. *Advances in Neural Information Processing Systems*, 34, 2021.
- Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust markov decision processes. *Mathe-matics of Operations Research*, 38(1):153–183, 2013.
- Eric M Wolff, Ufuk Topcu, and Richard M Murray. Robust control of uncertain markov decision processes with temporal logic specifications. In *2012 IEEE 51st IEEE Conference on Decision and Control (CDC)*, pages 3372–3379. IEEE, 2012.
- Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. Policy finetuning: Bridg- ing sample-efficient offline and online reinforcement learning. *Advances in neural information processing systems*, 34, 2021.
- Huan Xu and Shie Mannor. Distributionally robust Markov decision processes. *Mathematics of Operations Research*, 37(2):288–300, 2012.
- Zaiyan Xu, Kishan Panaganti, and Dileep Kalathil. Improved sample complexity bounds for distribu-tionally robust reinforcement learning. *arXiv preprint arXiv:2303.02783*, 2023.
- Yuling Yan, Gen Li, Yuxin Chen, and Jianqing Fan. The efficacy of pessimism in asynchronous Q-learning. *arXiv preprint arXiv:2203.07368*, 2022.
- Yuling Yan, Gen Li, Yuxin Chen, and Jianqing Fan. The efficacy of pessimism in asynchronous q-learning. *IEEE Transactions on Information Theory*, 2023.
- Kunhe Yang, Lin Yang, and Simon Du. Q-learning with logarithmic regret. In *International Conference on Artificial Intelligence and Statistics*, pages 1576–1584. PMLR, 2021.
- Wei H Yang. On generalized holder inequality. 1991.
- Wenhao Yang, Liangyu Zhang, and Zhihua Zhang. Toward theoretical understandings of robust Markov decision processes: Sample complexity and asymptotics. *The Annals of Statistics*, 50(6): 3223–3248, 2022a.
- Wenhao Yang, Liangyu Zhang, and Zhihua Zhang. Toward theoretical understandings of robust markov decision processes: Sample complexity and asymptotics. *The Annals of Statistics*, 50(6): 3223–3248, 2022b.
- Wenhao Yang, Han Wang, Tadashi Kozuno, Scott M Jordan, and Zhihua Zhang. Avoiding model estimation in robust markov decision processes with a generative model. *arXiv preprint arXiv:2302.01248*, 2023.
- Ming Yin, Yu Bai, and Yu-Xiang Wang. Near-optimal offline reinforcement learning via double variance reduction. *arXiv preprint arXiv:2102.01748*, 2021.
- Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning, and Cho-Jui Hsieh. Robust deep reinforcement learning against adversarial perturbations on state observations.
- *Advances in Neural Information Processing Systems*, 33:21024–21037, 2020a.
- Huan Zhang, Hongge Chen, Duane Boning, and Cho-Jui Hsieh. Robust reinforcement learning on state observations with learned optimal adversary. *arXiv preprint arXiv:2101.08452*, 2021.
- Zihan Zhang, Yuan Zhou, and Xiangyang Ji. Almost optimal model-free reinforcement learning via reference-advantage decomposition. *Advances in Neural Information Processing Systems*, 33,
- 2020b.
- Zhengqing Zhou, Qinxun Bai, Zhengyuan Zhou, Linhai Qiu, Jose Blanchet, and Peter Glynn.
- Finite-sample regret bound for distributionally robust offline tabular reinforcement learning. In
- *International Conference on Artificial Intelligence and Statistics*, pages 3331–3339. PMLR, 2021.

6 Other related works

 Here we provide additional discussion of related work that could not be fit into the main paper due to space considerations. We limit our discussions to the tabular setting with finite state and action spaces provable RL algorithms.

536 Classical reinforcement learning with finite-sample guarantees. A recent surge in attention for RL has leveraged the methodologies derived from high-dimensional probability and statistics to analyze RL algorithms in non-asymptotic scenarios. Substantial efforts have been devoted to conducting non-asymptotic sample analyses of standard RL in many settings. Illustrative instances encompass investigations employing Probably Approximately Correct (PAC) bonds in the context [o](#page-9-6)f *generative model* settings [\[Kearns and Singh, 1999,](#page-10-6) [Beck and Srikant, 2012,](#page-9-5) [Li et al., 2022a,](#page-10-8) [Chen](#page-9-6) [et al., 2020,](#page-9-6) [Azar et al., 2013b,](#page-9-2) [Sidford et al., 2018,](#page-11-8) [Agarwal et al., 2020,](#page-9-3) [Li et al., 2023a,](#page-10-9)[b,](#page-10-10) [Wainwright,](#page-12-3) [2019\]](#page-12-3) and the *online setting* via both in PAC-base or regret-based analyses [\[Jin et al., 2018,](#page-10-11) [Bai](#page-9-7) [et al., 2019,](#page-9-7) [Li et al., 2021,](#page-10-12) [Zhang et al., 2020b,](#page-13-1) [Dong et al., 2019,](#page-9-8) [Jin et al., 2020,](#page-10-13) [Li et al., 2023c,](#page-10-5) [Jafarnia-Jahromi et al., 2020,](#page-10-14) [Yang et al., 2021\]](#page-12-4) and finally *offline setting* [\[Rashidinejad et al., 2021,](#page-11-9) [Xie et al., 2021,](#page-12-5) [Yin et al., 2021,](#page-12-6) [Shi et al., 2022,](#page-11-7) [Li et al., 2022b,](#page-10-15) [Jin et al., 2021,](#page-10-16) [Yan et al., 2022\]](#page-12-7).

 Robustness in reinforcement learning. Reinforcement learning has had notable achievements but has also exhibited significant limitations, particularly when the learned policy is susceptible to deviations in the deployed environment due to perturbations, model discrepancies, or structural modifications. To address these challenges, the idea of robustness in RL algorithms has been studied. Robustness could concern uncertainty or perturbations across different Markov Decision Processes (MDPs) components, encompassing reward, state, action, and the transition kernel. [Moos et al.](#page-11-10) [\[2022\]](#page-11-10) gives a recent overview of the different work in this field.

 The distributionally robust MDP (RMDP) framework has been proposed [\[Iyengar, 2005\]](#page-10-2) to enhance the robustness of RL has been proposed. In addition to this work, various other research efforts, including, but not limited to, [Zhang et al.](#page-12-8) [\[2020a,](#page-12-8) [2021\]](#page-13-2), [Han et al.](#page-9-9) [\[2022\]](#page-9-9), [Clavier et al.](#page-9-10) [\[2022\]](#page-9-10), [Qiaoben et al.](#page-11-11) [\[2021\]](#page-11-11), explore robustness regarding state uncertainty. In these scenarios, the agent's policy is determined on the basis of perturbed observations generated from the state, introducing restricted noise, or undergoing adversarial attacks. Finally, robustness considerations extend to uncertainty in the action domain. Works such as [Tessler et al.](#page-12-9) [\[2019\]](#page-12-9), [Tan et al.](#page-11-12) [\[2020\]](#page-11-12) consider the robustness of actions, acknowledging potential distortions introduced by an adversarial agent.

 Given the focus of our work, we provide a more detailed background on progress related to distribu- tionally robust RL. The idea of distributionally robust optimization has been explored within the con- text of supervised learning [\[Rahimian and Mehrotra, 2019,](#page-11-13) [Gao, 2020,](#page-9-11) [Duchi and Namkoong, 2018,](#page-9-12) [Blanchet and Murthy, 2019\]](#page-9-13) and has also been extended to distributionally robust dynamic program- ming and Distributionally Robust Markov Decision Processes (DRMDPs) such as in [\[Iyengar, 2005,](#page-10-2) [Xu and Mannor, 2012,](#page-12-10) [Wolff et al., 2012,](#page-12-11) [Kaufman and Schaefer, 2013,](#page-10-17) [Ho et al., 2018,](#page-9-14) [Smirnova et al.,](#page-11-14) [2019,](#page-11-14) [Ho et al., 2021,](#page-10-3) [Goyal and Grand-Clement, 2022,](#page-9-15) [Derman and Mannor, 2020,](#page-9-16) [Tamar et al., 2014,](#page-11-15) [Badrinath and Kalathil, 2021\]](#page-9-17). Despite the considerable attention received, both empirically and theo- retically, most previous theoretical analyses in the context of RMDPs adopt an asymptotic perspective [\[Roy et al., 2017\]](#page-11-16) or focus on planning with exact knowledge of the uncertainty set [\[Iyengar, 2005,](#page-10-2) [Xu](#page-12-10) [and Mannor, 2012,](#page-12-10) [Tamar et al., 2014\]](#page-11-15). Many works have focused on the finite-sample performance of verifiable robust Reinforcement Learning (RL) algorithms. These investigations encompass various data generation mechanisms and uncertainty set formulations over the transition kernel. Closely related to our work, various forms of uncertainty sets have been explored, showcasing the versatility of approaches. Divergence such as Kullback-Leibler (KL) divergence is another prevalent choice, [e](#page-11-17)xtensively studied by [Yang et al.](#page-12-0) [\[2022a\]](#page-12-0), [Panaganti and Kalathil](#page-11-3) [\[2022\]](#page-11-3), [Zhou et al.](#page-13-0) [\[2021\]](#page-13-0), [Shi and](#page-11-17) [Chi](#page-11-17) [\[2022\]](#page-11-17), [Xu et al.](#page-12-12) [\[2023\]](#page-12-12), [Wang et al.](#page-12-13) [\[2023\]](#page-12-13), [Blanchet et al.](#page-9-18) [\[2023\]](#page-9-18), who investigated the sample complexity of both model-based and model-free algorithms in simulator or offline settings. [Xu et al.](#page-12-12) [\[2023\]](#page-12-12) considered various uncertainty sets, including those associated with the Wasserstein distance. The introduction of an R-contamination uncertainty set [Wang and Zou](#page-12-14) [\[2021\]](#page-12-14), has been proposed to tackle a robust Q-learning algorithm for the online setting, with guarantees analogous to standard RL. Finally, the finite-horizon scenario has been studied by [Xu et al.](#page-12-12) [\[2023\]](#page-12-12), [Dong et al.](#page-9-19) [\[2022\]](#page-9-19) with finite-584 sample complexity bounds for (RMDPs) using TV and χ^2 divergence. More broadly, other related topics have been explored, such as the iteration complexity of policy-based methods [\[Li et al., 2022c,](#page-10-18) [Kumar et al., 2023\]](#page-10-19), and regularization-based robust RL [\[Yang et al., 2023\]](#page-12-15). Finally, [Badrinath and](#page-9-17)

 [Kalathil](#page-9-17) [\[2021\]](#page-9-17) examined a general sa -rectangular form of the uncertainty set, proposing a model-free algorithm for the online setting with linear function approximation to address large state spaces.

7 Discussion on hypothesis of Theorems [1](#page-6-0) and [3.](#page-7-0)

8 Preliminaries

 These quantities appear in the dual formulation of the robust optimization problem and more pre-627 ciously the dual span semi norm sp(.)_∗ note that for L_2 , we retrieve the classical mean with the 628 definition of ω) With slight abuse of notation, we denote 0 (resp. 1) as the all-zero (resp. all-one) 629 vector. We then introduce the notation $[T] := \{1, \dots, T\}$ for any positive integer $T > 0$. Then, for 630 two vectors $x = [x_i]_{1 \le i \le n}$ and $y = [y_i]_{1 \le i \le n}$, the notation $x \le y$ (resp. $x \ge y$) means $x_i \le y_i$ 631 (resp. $x_i \geq y_i$) for all $1 \leq i \leq n$. Finally, for any vector x, we overload the notation by letting 632 $x^{\circ 2} = [x(s, a)^2]_{(s, a) \in S \times A}$ (resp. $x^{\circ 2} = [x(s)^2]_{s \in S}$), Finally, we drop the subscript $||.||$ to write 633 $\mathcal{U}^{\sigma}_{\|\cdot\|}(\cdot) = \mathcal{U}^{\sigma}(\cdot)$ for both *sa*- and *s*- rectangular assumptions.

634 Matrix and Vector Notations. Throughout the analysis, we need to introduce or recall some matrix and vector notations in the following.

636 \bullet $r \in \mathbb{R}^{SA}$: the reward function vector r (so that $r_{(s,a)} = r(s,a)$ for all $(s,a) \in S \times A$).

- 637 **•** P^0 ∈ $\mathbb{R}^{S A \times S}$: the nominal transition kernel matrix with $P^0_{s,a}$ as the (s, a) -th row.
- 638 $\widehat{P}^0 \in \mathbb{R}^{SA \times S}$: the estimated nomimal transition kernel matrix with $\widehat{P}_{s,a}^0$ as the (s, a) -th ⁶³⁹ row.
- $\bullet \ \Pi^{\pi} \in \{0,1\}^{S \times SA}$: a projection matrix associated with a given policy π taking the following ⁶⁴¹ form:

$$
\Pi^{\pi} = \begin{pmatrix} 1_{\pi(1)}^{\top} & 0^{\top} & \cdots & 0^{\top} \\ 0^{\top} & 1_{\pi(2)}^{\top} & \cdots & 0^{\top} \\ \vdots & \vdots & \ddots & \vdots \\ 0^{\top} & 0^{\top} & \cdots & 1_{\pi(S)}^{\top} \end{pmatrix},
$$
 (24)

642 where $1_{\pi(1)}^{\top}, 1_{\pi(2)}^{\top}, \ldots, 1_{\pi(S)}^{\top} \in \mathbb{R}^A$ are simplex vector such as

$$
1_{\pi(1)}^{\top} = (\pi(a_1|s_1), \pi(a_A|s_1), ..., \pi(a_A|s_1)).
$$

 e^{443} • $P^V \in \mathbb{R}^{SAS}$, $\widehat{P}^V \in \mathbb{R}^{SAS}$ are the matrices representing the probability transition kernel 644 in the uncertainty set that leads to the worst-case value for any vector $V \in \mathbb{R}^S$. We denote 645 $P_{s,a}^V$ (resp. $\hat{P}_{s,a}^V$) as the (s, a) -th row of the transition matrix P^V (resp. \hat{P}^V). The (s, a) -th ⁶⁴⁶ rows of these transition matrices are defined for sa-rectangular assumptions as

$$
P_{s,a}^V = \operatorname{argmin}_{\mathcal{P} \in \mathcal{U}^{\mathsf{sa}, \sigma}(P_{s,a}^0)} \mathcal{P} V, \quad \text{and} \quad \widehat{P}_{s,a}^V = \operatorname{argmin}_{\mathcal{P} \in \mathcal{U}^{\mathsf{sa}, \sigma}(\widehat{P}_{s,a}^0)} \mathcal{P} V. \quad (25a)
$$

⁶⁴⁷ Moreover, we will use of the following shorthand notation:

$$
P_{s,a}^{\pi,V} := P_{s,a}^{V^{\pi,\sigma}} = \operatorname{argmin}_{\mathcal{P} \in \mathcal{U}^{\text{sa},\sigma}(P_{s,a}^0)} \mathcal{P}^{V^{\pi,\sigma}}, P_{s,a}^{\pi,\widehat{V}} := P_{s,a}^{\widehat{V}^{\pi,\sigma}} = \operatorname{argmin}_{\mathcal{P} \in \mathcal{U}^{\text{sa},\sigma}(P_{s,a}^0)} \mathcal{P}^{\widehat{V}^{\pi,\sigma}},
$$
\n(25b)

$$
\widehat{P}_{s,a}^{\pi,V} := \widehat{P}_{s,a}^{V^{\pi,\sigma}} = \mathop{\rm argmin}_{P \in \mathcal{U}^{\mathsf{sa},\sigma}(\widehat{P}_{s,a}^0)} P V^{\pi,\sigma}, \widehat{P}_{s,a}^{\pi,\widehat{V}} := \widehat{P}_{s,a}^{\widehat{V}^{\pi,\sigma}} = \mathop{\rm argmin}_{P \in \mathcal{U}^{\mathsf{sa},\sigma}(\widehat{P}_{s,a}^0)} P \widehat{V}^{\pi,\sigma}.
$$
\n(25c)

648 The corresponding probability transition matrices are denoted by $P^{\pi, V} \in \mathbb{R}^{SA \times S}$, $P^{\pi, V} \in$ 649 $\mathbb{R}^{SA \times S}, \hat{P}^{\pi, V} \in \mathbb{R}^{SA \times S}$ and $\hat{P}^{\pi, \hat{V}} \in \mathbb{R}^{SA \times S}$, respectively.

650 •
$$
P^{\pi} \in \mathbb{R}^{S \times S}
$$
, $\widehat{P}^{\pi} \in \mathbb{R}^{S \times S}$, $\underline{P}^{\pi, V} \in \mathbb{R}^{S \times S}$, $\underline{P}^{\pi, \widehat{V}} \in \mathbb{R}^{S \times S}$, $\widehat{\underline{P}}^{\pi, V} \in \mathbb{R}^{S \times S}$ and $\widehat{\underline{P}}^{\pi, \widehat{V}} \in \mathbb{R}^{S \times S}$ is a *square* probability transition matrices w.r.t. policy π over the states, namely

$$
P^{\pi} := \Pi^{\pi} P^{0}, \qquad \widehat{P}^{\pi} := \Pi^{\pi} \widehat{P}^{0}, \qquad \underline{P}^{\pi, V} := \Pi^{\pi} P^{\pi, V}, \qquad \underline{P}^{\pi, \widehat{V}} := \Pi^{\pi} P^{\pi, \widehat{V}},
$$

$$
\underline{\widehat{P}}^{\pi, V} := \Pi^{\pi} \widehat{P}^{\pi, V}, \qquad \text{and} \qquad \underline{\widehat{P}}^{\pi, \widehat{V}} := \Pi^{\pi} \widehat{P}^{\pi, \widehat{V}}.
$$
(26)

⁶⁵² For s-rectangular, we will use the same notation for these transition matrices, removing 653 as the s-th row of the s-rectangular assumptions. Finally, we denote P_s^{π} as the s-th row of the 654 transition matrix P^{π} .

655 • $r_{\pi} \in \mathbb{R}^{S}$: a reward restricted to the actions chosen by the policy vector π , $r_{\pi} = \Pi^{\pi} r$.

656 • $Var_P(V) \in \mathbb{R}^{SA}$: for a given transition kernel $P \in \mathbb{R}^{SA \times S}$ and vector $V \in \mathbb{R}^S$, we denote 657 the (s, a) -th row of $Var_P(V)$ as

$$
\text{Var}_P(s, a) \coloneqq \text{Var}_{P_{s,a}}(V). \tag{27}
$$

⁶⁵⁸ 8.1 Additional definitions and basic facts

- ⁶⁵⁹ For any norm smooth ∥.∥ introduced in [1,](#page-3-0) we define the span semi norm as
- 660 **Definition 2** (Span semi norm). *Given any norm* $\|\cdot\|$ *, we define the span semi norm as:* $sp(x)$ =
- 661 min_{$\omega \in \mathbb{R}$} $\|v \omega \mathbf{1}\|$ *and the generalized mean as* $\omega(x) := \arg \min_{\omega \in \mathbb{R}} \|x \omega \mathbf{1}\|$ *.*
- 662 Let vector $P \in \mathbb{R}^{1 \times S}$ and vector $V \in \mathbb{R}^{S}$, we define the variance

$$
Var_P(V) := P(V \circ V) - (PV) \circ (PV).
$$
\n(28)

⁶⁶³ The following lemma bounds the Lipschitz constant of the variance function.

664 **Lemma 1.** *[\(Shi et al.](#page-11-4) [\[2023\]](#page-11-4)* , Lemma 2) Assuming $0 \leq V_1, V_2 \leq \frac{1}{1-\gamma}$ which obey $\|V_1 - V_2\|_\infty \leq x$ 665 *, then for* $P \in \Delta(S)$ *, one has*

$$
|\text{Var}_P(V_1) - \text{Var}_P(V_2)| \le \frac{2x}{(1-\gamma)}.\tag{29}
$$

666 **Lemma 2.** *[\[Panaganti and Kalathil, 2022,](#page-11-3) Lemma 6] Consider any* $\delta \in (0,1)$ *. For any fixed policy* α π *and fixed value vector* $V \in \mathbb{R}^S$, *one has with probability at least* $1 - \delta$,

$$
\Big|\sqrt{\text{Var}_{\widehat{P}^\pi}(V)}-\sqrt{\text{Var}_{P^\pi}(V)}\Big|\leq \sqrt{\frac{2\|V\|_\infty^2\log(\frac{2SA}{\delta})}{N}}1.
$$

668 8.2 Empirical robust MDP $\widehat{\mathcal{M}}_{\text{rob}}$ Bellman equations

669 We define the robust MDP $\widehat{\mathcal{M}}_{\text{rob}} = \{S, A, \gamma, \mathcal{U}^{\sigma}(\widehat{P}^0), r\}$ based on the estimated nominal distribution \widehat{P}^0 in [\(11\)](#page-5-1). Then, we denote the associated robust value function (resp. robust Q-function) are $\widehat{V}^{\pi,\sigma}$ $\widehat{Q}^{\pi,\sigma}$. We can notice that that $\widehat{Q}^{\star,\sigma}$ is the unique-fixed point of $\widehat{\mathcal{T}}^{\sigma}(\cdot)$ (see Lemma [8.3\)](#page-17-0), the empirical robust Bellman operator constructed using \hat{P}^0 . Finally, similarly to [\(9\)](#page-4-3), for $\hat{\mathcal{M}}_{\text{rob}}$, the ⁶⁷³ Bellman's optimality principle gives the following *robust Bellman consistency equation* (resp. *robust* ⁶⁷⁴ *Bellman optimality equation*) for sa-rectangular assumptions:

$$
\forall (s, a) \in \mathcal{S} \times \mathcal{A}: \quad \widehat{Q}^{\pi, \sigma}(s, a) = r(s, a) + \gamma \inf_{\mathcal{P} \in \mathcal{U}^{\text{ss}, \sigma}(\widehat{P}_{s, a}^0)} \mathcal{P}\widehat{V}^{\pi, \sigma},\tag{30a}
$$

$$
\forall (s,a) \in \mathcal{S} \times \mathcal{A}: \quad \widehat{Q}^{\star,\sigma}(s,a) = r(s,a) + \gamma \inf_{\mathcal{P} \in \mathcal{U}^{\mathsf{sa},\sigma}(\widehat{P}_{s,a}^0)} \mathcal{P}\widehat{V}^{\star,\sigma}.
$$
 (30b)

⁶⁷⁵ Using matrix notation, we can write the robust Bellman consistency equations as

$$
Q^{\pi,\sigma} = r + \gamma \inf_{\mathcal{P} \in \mathcal{U}^{\text{sa},\sigma}(P^0)} \mathcal{P}^{V^{\pi,\sigma}} \quad \text{and} \quad \widehat{Q}^{\pi,\sigma} = r + \gamma \inf_{\mathcal{P} \in \mathcal{U}^{\text{sa},\sigma}(\widehat{P}^0)} \mathcal{P}^{\widehat{V}^{\pi,\sigma}},\tag{31}
$$

⁶⁷⁶ which imply

$$
V^{\pi,\sigma} = r_{\pi} + \gamma \Pi^{\pi} \inf_{\mathcal{P} \in \mathcal{U}^{\text{sa},\sigma}(P^0)} \mathcal{P} V^{\pi,\sigma} \stackrel{\text{(i)}}{=} r_{\pi} + \gamma \underline{P}^{\pi,V} V^{\pi,\sigma},
$$

$$
\widehat{V}^{\pi,\sigma} = r_{\pi} + \gamma \Pi^{\pi} \inf_{\mathcal{P} \in \mathcal{U}^{\text{sa},\sigma}(\widehat{P}^0)} \mathcal{P}\widehat{V}^{\pi,\sigma} \stackrel{\text{(ii)}}{=} r_{\pi} + \gamma \underline{\widehat{P}}^{\pi,\widehat{V}} \widehat{V}^{\pi,\sigma},
$$
 (32)

 677 where (i) and (ii) hold by the definitions in [\(24\)](#page-16-0), [\(25\)](#page-16-1) and [\(26\)](#page-16-2). For s-rectangular, we can define the 678 same notation, removing a subscript:

$$
V^{\pi,\sigma} = r_{\pi} + \gamma \Pi^{\pi} \inf_{\mathcal{P} \in \mathcal{U}^{s,\tilde{\sigma}}(P^0)} \mathcal{P} V^{\pi,\sigma} \stackrel{\text{(i)}}{=} r_{\pi} + \gamma \underline{P}^{\pi,V} V^{\pi,\sigma},
$$

$$
\widehat{V}^{\pi,\sigma} = r_{\pi} + \gamma \Pi^{\pi} \inf_{\mathcal{P} \in \mathcal{U}^{s,\tilde{\sigma}}(\widehat{P}^0)} \mathcal{P} \widehat{V}^{\pi,\sigma} \stackrel{\text{(ii)}}{=} r_{\pi} + \gamma \underline{\widehat{P}}^{\pi,\widehat{V}} \widehat{V}^{\pi,\sigma},.
$$
 (33)

⁶⁷⁹ 8.3 Properties of the robust Bellman operator and dual representation

680 The robust Bellman operator (cf. [\(10\)](#page-4-4)) shares the γ -contraction property of the standard Bellman ⁶⁸¹ operator as:

682 **[\[Iyengar, 2005,](#page-10-2) Theorem 3.2]** Given $\gamma \in [0, 1)$, the robust Bellman operator $\mathcal{T}^{\sigma}(\cdot)$ (cf. [\(10\)](#page-4-4)) is a γ -contraction w.r.t. $\|\cdot\|_{\infty}$. More formally, for any $Q_1, Q_2 \in \mathbb{R}^{SA}$ s.t. $Q_1(s, a), Q_2(s, a) \in \left[0, \frac{1}{1-\gamma}\right]$ 683 684 for all $(s, a) \in S \times A$, one has

$$
\left\|\mathcal{T}^{\sigma}(Q_1) - \mathcal{T}^{\sigma}(Q_2)\right\|_{\infty} \leq \gamma \left\|Q_1 - Q_2\right\|_{\infty}.
$$
\n(34)

685 It can be also shown that, $Q^{*,\sigma}$ is the unique fixed point of $\mathcal{T}^{\sigma}(\cdot)$ obeying $0 \leq Q^{*,\sigma}(s, a) \leq \frac{1}{1-\gamma}$ for 686 all $(s, a) \in S \times A$.

⁶⁸⁷ One of the main contributions is to derive the dual form of optimization problem using arbitrary ⁶⁸⁸ norms. These lemma take ideas from [Iyengar](#page-10-2) [\[2005\]](#page-10-2) and are adapted to arbitrary norms and not only 689 TV distance.

⁶⁹⁰ Dual equivalence of the robust Bellman operator. Fortunately, the robust Bellman operator can ⁶⁹¹ be evaluated efficiently by resorting to its dual formulation, and this idea is central in all proofs for ⁶⁹² RMPDs. Dual formulation of RMDPs have been introduced in [\[Iyengar, 2005\]](#page-10-2) but the proof was 693 done uniquely for the TV and the χ^2 case. Before continuing, for any $V \in \mathbb{R}^S$, we denote $[V]_{\alpha}$ as 694 its clipped version by some non-negative vector α , namely,

$$
[V]_{\alpha}(s) := \begin{cases} \alpha, & \text{if } V(s) > \alpha(s), \\ V(s), & \text{otherwise.} \end{cases}
$$
 (35)

695 Defining the gradient of $P \mapsto ||P||$ as $\nabla ||P||$, $\lambda > 0$, a positive scalar and ω is the generalized mean ⁶⁹⁶ defined as the argmin in the definition of the span semi norm in Def[.2,](#page-16-3) we derive two optimization ⁶⁹⁷ lemmas.

⁶⁹⁸ Lemma 3 (Strong duality using norm ∥∥ in the sa-rectangular case.). *Consider any probability* ⁶⁹⁹ *vector* P ∈ ∆(S) *and any fixed uncertainty level* σ*, we abbreviate the notation of the uncertainty set* $\mathcal{U}^{\mathsf{sa},\sigma}_{\mathsf{II} \;\;\mathsf{II}}$ $\mathcal{U}^{\mathsf{sa},\sigma}_{\|\cdot\|}(P)$ (cf. \hat{P})) as $\mathcal{U}^{\mathsf{sa},\sigma}(P)$. For any vector $V \in \mathbb{R}^S$ obeying $V \geq 0$, recalling the definition of 701 $[V]_{\alpha}$ *in* [\(35\)](#page-18-1)*, one has*

$$
\inf_{\mathcal{P}\in\mathcal{U}^{\mathsf{sa},\sigma}(P)} \mathcal{P}V = \max_{\mu_P^{\lambda,\omega}\in\mathcal{M}_P^{\lambda,\omega}} \left\{ P(V-\mu_P^{\lambda,\omega}) - \sigma \left(\mathrm{sp}((V-\mu_P^{\lambda,\omega}))_* \right) \right\}.
$$
 (36)

$$
= \max_{\alpha_P^{\lambda,\omega} \in A_P^{\lambda,\omega}} \left\{ P \left[V \right]_{\alpha_P^{\lambda,\omega}} - \sigma \left(\text{sp}([V]_{\alpha_P^{\lambda,\omega}})_* \right) \right\} \tag{37}
$$

ro2 where ${\rm sp}()$ _{*} is defined in Def.[.2.](#page-16-3) Here, the two auxiliary variational family ${\rm A}_P^{\lambda,\omega},$ ${\rm M}_P^{\lambda,\omega}$ are defined ⁷⁰³ *as below:*

$$
\mathcal{A}_P^{\lambda,\omega} = \{ \alpha_P^{\lambda,\omega} : \alpha_P^{\lambda,\omega}(s) = \omega + \lambda |\nabla| \|P\| \ (s) : \lambda > 0, w > 0, P \in \Delta(S), \alpha_P^{\lambda,\omega} \in \left[0, \frac{1}{1-\gamma}\right]^S \} \tag{38}
$$

$$
\mathcal{M}_P^{\lambda,\omega} = \{\mu_P^{\lambda,\omega} = V - \alpha_P^{\lambda,\omega}, \lambda, \omega \in \mathbb{R}^+, P \in \Delta(S), \mu \in \mathbb{R}_+^S, \mu_P^{\lambda,\omega} = \left[0, \frac{1}{1-\gamma}\right]^S\}
$$
(39)

704 For L_1 or TV, case, the vector $\alpha_P^{\lambda,\omega}$ reduces to a 1 dimensional scalar such as $\alpha \in [0,1/(1-\gamma)]$.

Proof.

$$
\inf_{\mathcal{P} \in \mathcal{U}^{\text{sa},\sigma}(P)} \mathcal{P}V = \inf_{\{\mathcal{P} : \mathcal{P} \in \Delta_s, \|\mathcal{P} - P\| \le \sigma\}} \sum_{s'} \mathcal{P}(s')V(s')
$$
\n
$$
= PV + \inf_{\{y : \|y\| \le \sigma, 1y = 0, y \ge -P\}} \sum_{s'} y(s')V(s')
$$

705 where we use the change of variable $y(s') = \mathcal{P}(s') - P(s')$ for all $s' \in \mathcal{S}$. Then the Lagrangian ⁷⁰⁶ function of the above optimization problem can be written as follows:

$$
\inf_{\mathcal{P} \in \mathcal{U}_{s,a}^{\sigma}(P)} \mathcal{P}V = PV + \sup_{\mu \ge 0, \nu \in \mathbb{R}} \inf_{\{y : \|y\| \le \sigma\}} -\sum_{s'} \mu(s)P(s') + \sum_{s'} (y(s')(V(s') - \mu(s') - \nu) \tag{41}
$$

$$
\stackrel{(a)}{=} PV + \sup_{\mu \ge 0, \nu \in \mathbb{R}} -\sum_{s'} \mu(s')P(s') - \sigma ||(V(s') - \mu(s') - \nu \mathbf{1})||_* \tag{42}
$$

$$
\stackrel{(b)}{=} \sup_{\mu \ge 0} P(V - \mu) - \sigma \, \text{sp}(V - \mu)_* \tag{43}
$$

707 where $\mu \in \mathbb{R}^S_+$, $\nu \in \mathbb{R}$ are Lagrangian variables, (a) is true using the equality case of Cauchy-Swartz inequality for dual norm [Yang](#page-12-17) [\[1991\]](#page-12-17), and (b) is due to is the definition of the span semi-norm (see [\(8\)](#page-15-1)). The value that maximizes the inner maximization problem in [\(42\)](#page-18-2) in $\omega(V,\mu)$ is the generalized- mean by definition denoted with abbreviate notation ω . If the norm is differentiable, then we have that the equality (a) comes from the generalized Holder's inequality for arbitrary norms [Yang](#page-12-17) [\[1991\]](#page-12-17), 712 namely, defining $z = (V - \mu - \omega)$, it satisfies

$$
z = \|z\|_* \nabla \|y\| \tag{44}
$$

713 The quantity ν is replaced by the generalized mean for equality in (b) while [\(44\)](#page-19-1) comes from [Yang](#page-12-17) 714 [\[1991\]](#page-12-17). Using complementary slackness [Karush](#page-10-20) [\[2013\]](#page-10-20)stackness let $\mathcal{B} = \{s \in \mathcal{S} : \mu(s) > 0\}$

$$
\forall s \in \mathcal{B} : y^*(s) = -P(s), \tag{45}
$$

715 which leads to the following equality by plugging the previous [\(45\)](#page-19-2) in [\(44\)](#page-19-1) and defining z^* = 716 $V - \mu^* - \omega$:

$$
\forall s \in \mathcal{B}, \quad z^*(s) = \|z^*\|_* \nabla \|P\| \ (s)
$$
\n
$$
(46)
$$

⁷¹⁷ or

$$
\forall s \in \mathcal{B}, \quad V(s) - \mu^*(s) = \omega + \lambda \nabla ||P|| \ (s) \hat{=} \alpha_P^{\lambda, \omega} \tag{47}
$$

718 by letting $\lambda = \|z^*\|_* \in \mathbb{R}^+$. Note that here the hypothesis of [1](#page-3-0) are use and especially separability is 719 needed to ensure that for $s \in \mathcal{B}$, $\nabla ||y|| = \nabla ||P||$ only depend on $P(s)$ and not on other coordinates, 720 which is true form generalized L_p norms. We can remark that $v - \mu^*$ is P dependent, but if P is $\lim_{z \to z_1}$ known, the best μ^* is only determined by one 2 dimensional parameters $\lambda = \|v - \mu^* - v\|_*$ and $\omega \in \mathbb{R}^+$. Moreover, when P is fixed, the scalar ω is a constant is fully determined by P, v and μ^* . This is why the quantity defined α_P^{λ} varies through 2 parameter λ and ω . Given this observation, we ⁷²⁴ can rewrite the optimization problem as :

$$
\sup_{\mu \ge 0} P(V - \mu) - \sigma \mathrm{sp}(V - \mu)_* = \sup_{\mu_P^{\lambda, \omega} \in \mathcal{M}_P^{\lambda, \omega}} P(V - \mu_P^{\lambda, \omega}) - \sigma \mathrm{sp}((V - \mu_P^{\lambda, \omega}))_*
$$
(48)

$$
= \sup_{\alpha_P^{\lambda,\omega} \in A_P^{\lambda,\omega}} P[V]_{\alpha_P^{\lambda,\omega}} - \sigma \mathrm{sp}([V]_{\alpha_P^{\lambda,\omega}})_*
$$
\n⁽⁴⁹⁾

where we defined the maximization problem on μ not in \mathbb{R}^S but at the optimal in the variational family denote $\mathcal{M}_P^{\lambda,\omega} = \{v - \alpha_P^{\lambda,\omega}, (\lambda,\omega) \in \mathbb{R}_+^2, P \in \Delta(S)\}\.$ We can rewrite the optimization problem in terms of α_P with

$$
[V]_{\alpha_P^{\lambda,\omega}}(s):=\begin{cases} \alpha_P^{\lambda,\omega},\\ V(s), \quad \text{otherwise}. \end{cases}
$$

725 Contrary to the TV case, α is not a scalar but $\alpha_P^{\lambda,\omega}$ belongs to a variational family only determined 726 by two parameter. Note that this lemma is still true writing subgradient and not gradient of P . As 727 we assume C^2 -regularity on norms, the subgradient space of the norm reduce to the singleton of the 728 gradient in our case. C^2 smoothness will be needed in concentration part while it is possible to be more general in optimization lemmas. Note that for TV or L_1 , this lemma holds, but the vector $\alpha_P^{\lambda,\omega}$ reduces to a positive scalar denoted α which is equal to $||v - \mu^*||_{\infty}$ according to [Iyengar](#page-10-2) [\[2005\]](#page-10-2) 729

$$
\bf 731
$$

⁷³² Lemma 4 (Strong duality for the distance induced by the norm ∥∥ in the s-rectangular case.). *consider any probability vector* $P^{\pi} := \Pi^{\pi}P \in \Delta_s$ *for* $P \in \Delta(S)^{\mathcal{A}}$, any fixed uncertainty level $\tilde{\sigma}$ *and the uncertainty set* $\mathcal{U}^{s,\widetilde{\sigma}}_{\|\cdot\|}(P)$ *, we abbreviate the subscript to use* $\mathcal{U}^{s,\widetilde{\sigma}}(P) \coloneqq \mathcal{U}^{s,\widetilde{\sigma}}_{\|\cdot\|}(P)$ *. Then for* 735 *any vector* $V \in \mathbb{R}^S$ obeying $V \geq 0$, recalling the definition of $[V]_{\alpha}$ in [\(35\)](#page-18-1), one has

$$
\inf_{\mathcal{P}\in\mathcal{U}^{s,\tilde{\sigma}}(P)} \mathcal{P}^{\pi}V = \sum_{a} \pi(a|s) \big(\Big(\max_{\alpha_{P_{sa}}^{\lambda,\omega} \in \mathcal{A}^{\lambda,\omega}_{P_{sa}}} P_{sa}[V]_{\alpha_{P_{sa}}^{\lambda,\omega}} - \tilde{\sigma} \, \|\pi_s\|_* \operatorname{sp}([V]_{\alpha_{P_{sa}}^{\lambda,\omega}})_*\big).
$$
 (50)

 \Box

with the definition of sp()[∗] *in [8](#page-15-1) and where the variational family* A λ,ω P ⁷³⁶ *is defined as :*

$$
\mathbf{A}_{P}^{\lambda,\omega} = \{ \alpha \in [0,1/(1-\gamma)]^{S}, \alpha = \omega + \lambda |\nabla ||P|| \mid := \alpha_{P}^{\lambda,\omega} \}
$$
(51)

(52)

 \Box

⁷³⁷ *with* ω *is the generalized mean defined as the argmin in the definition of the span semi norm in [2](#page-16-3) and*

 λ, ω a positive scalar. Moreover, for L_1 or TV, case, the vector $\alpha_P^{\lambda,\omega}$ reduces to a 1 dimensional 739 *scalar such as* $\alpha \in [0, 1/(1-\gamma)]$.

740 In the proof of the previous lemma, we decompose this problem s-rectangular radius $\tilde{\sigma}$ into sa-741 rectangular sub-problem with respectively radius σ_{sa} .

Proof.

$$
\inf_{\mathcal{P}^{\pi} \in \mathcal{U}^{s,\tilde{\sigma}}(P^{\pi})} \mathcal{P}^{\pi} V = \inf_{\{\sigma_{sa} : \|\sigma_{sa}\| \leq \tilde{\sigma}\}} \inf_{\mathcal{P}' \in \mathcal{U}^{ss,\sigma}(P_{sa})} \sum_{a} \pi(a|s) \mathcal{P}' V
$$
\n
$$
\stackrel{(a)}{=} \sum_{a} \pi(a|s) P_{sa} V + \min_{\{\sigma_{sa} : \|\sigma_{sa}\| \leq \tilde{\sigma}\}} \sum_{a} \pi(a|s) \min_{\{y : \|y\| \leq \sigma_{sa}, y = 0, y \geq -P_{sa}\}} \sum_{s'} y(s') V
$$

742 where we use the change of variable $y(s') = \mathcal{P}_{sa}(s') - P_{sa}(s')$ in (a). Then we case use the previous ⁷⁴³ lemma for sa rectangular assumption, Lemma [3.](#page-18-0) Then,

$$
\min_{\{\sigma_{sa}:\|\sigma_{sa}\|\leq\tilde{\sigma}\}} \sum_{a} \pi(a|s) \min_{\{y,\|y\|\leq\sigma_{s,a},1y=0,y\geq-P_{sa}\}} \sum_{s'} y(s')V
$$
\n
$$
= \min_{\{\sigma_{sa}:\|\sigma_{sa}\|\leq\tilde{\sigma}\}} \sum_{a} \pi(a|s) \max_{\mu\geq 0} \left(-P_{sa}\mu - \sigma_{sa}sp(V-\mu)_{*} \right)
$$
\n
$$
= \left(\sum_{a} \pi(a|s) \max_{\mu\geq 0} \left\{ (-P_{sa}\mu) - \max_{\{\sigma_{sa}:\|\sigma_{sa}\|\leq\tilde{\sigma}\}} \sum_{a} \pi(a|s) \sigma sp(V-\mu)_{*} \right\} \right)
$$
\n
$$
= \sum_{a} \pi(a|s) \max_{\mu\geq 0} \left\{ (-P_{sa}\mu) - \tilde{\sigma} \|\pi_{s}\|_{*} sp(V-\mu)_{*} \right\}.
$$

744 We can exchange the min and the max as we get concave-convex problems in σ and μ in the second ⁷⁴⁵ line according to minimax theorem [\[v. Neumann, 1928\]](#page-12-18) and using Cauchy Swartz inequality which is ⁷⁴⁶ attained in the last equality. Finally, we obtain:

$$
\inf_{\mathcal{P}\in\mathcal{U}^{s,\tilde{\sigma}}(P)} \mathcal{P}^{\pi}V = \sum_{a} \pi(a|s) \Big(\max_{\mu\geq 0} P_{sa}(V-\mu) - \tilde{\sigma} \left\| \pi_s \right\|_* \text{sp}(V-\mu)_* \Big)
$$

$$
\stackrel{(a)}{=} \sum_{a} \pi(a|s) \Big(\max_{\substack{\lambda,\omega\\ \alpha_{Psa}^{\lambda,\omega} \in \mathcal{A}_{Psa}^{\lambda,\omega}}} P_{sa}[V]_{\alpha_{Psa}^{\lambda,\omega}} - \tilde{\sigma} \left\| \pi_s \right\|_* \text{sp}([V]_{\alpha_{Psa}^{\lambda,\omega}})_* \Big)
$$

747 where in (a) we use the previous lemma for $sa-$ rectangular case. Note that as we are using $sa-$ 748 rectangular case, for TV or L_1 , this lemma holds, but the vector α_P^{λ} reduces to a positive scalar τ ⁴⁹ denoted α which is equal to $||v - \mu^*||_{\infty}$. (See also [Iyengar](#page-10-2) [\[2005\]](#page-10-2)).

750

⁷⁵¹ 9 Proof of the upper bound : Theorem [1](#page-6-0) and [3](#page-7-0)

⁷⁵² 9.1 Technical lemmas

753 We begin with a key lemma concerning the dynamic range of the robust value function $V^{\pi,\sigma}$ (cf. [\(7\)](#page-4-6)), 754 which produces tighter control when σ is large; the proof is deferred to Appendix [9.3.1.](#page-32-0) This lemma ⁷⁵⁵ allows tighter control compared to [Clavier et al.](#page-9-0) [\[2023\]](#page-9-0).

Lemma 5. *In* sa−*rectangular case (see* [\(3\)](#page-4-5)*, for any nominal transition kernel* P ∈ R SA×^S ⁷⁵⁶ *, any fixed uncertainty level* σ*, and any policy* π*, its corresponding robust value function* V π,σ ⁷⁵⁷ *(cf.* [\(7\)](#page-4-6)*)*

⁷⁵⁸ *satisfies*

$$
\text{sp}(V^{\pi,\sigma})_{\infty} \le \frac{1}{\gamma \max\{1-\gamma, C_g \sigma\}}\tag{53}
$$

759 where $C_g = 1/(\min_s ||e_s||)$ is a geometric constant depending on the geometry of the norm. For 760 example, for L_p , norms $p \geq 1$, $C_g \geq 1$ which reduce the sample complexity. In s-rectangular case, 761 we obtain a slightly different lemma because of the dependency on π .

⁷⁶² Lemma 6. *The infinite span semi norm can be controlled as follows for every* s *in* s*-rectanuglar case* ⁷⁶³ *(See* [\(5\)](#page-4-1)*):* 764

$$
\mathrm{sp}(V^{\pi,\sigma})_{\infty} \le \frac{1}{\gamma \max\{1-\gamma, \left\|\pi_s\right\|_* C_g \tilde{\sigma}\}} \le \frac{1}{\gamma \max\{1-\gamma, \min_s \left\|\pi_s\right\|_* C_g \tilde{\sigma}\}}\tag{54}
$$

765 where $C_g = \frac{1}{\min_s ||e_s||}$ is a geometric constant depending on the geometry of the norm. These lemmas 766 are required to get tight bounds for the sample complexity. The main difference between sa - and s - τ ₆₇ rectangular case is that we have an extra dependency on $\|\pi_s\|_*$, which represents how stochastic the ⁷⁶⁸ policy can be in s rectangular MDPs.

769 Lemma 7. *Consider an MDP with transition kernel matrix P and reward function* $0 \le r \le 1$ *. For any policy* π *and its associated state transition matrix* $P_\pi \coloneqq \Pi^{\pi} P$ *and value function* $0 \leq V^{\pi, P} \leq \frac{1}{1-\gamma}$ 770 ⁷⁷¹ *(cf.* [\(1\)](#page-3-1)*), one has for* sa*- and* s*- rectangular assumptions.*

$$
(I - \gamma P_{\pi})^{-1} \sqrt{\text{Var}_{P_{\pi}}(V^{\pi,P})} \leq \sqrt{\frac{8}{\gamma^2 (1 - \gamma)^2} \text{sp}(V^{\pi,P})_{\infty}} 1.
$$

⁷⁷² *See [9.3.7](#page-47-0) for the proof*

⁷⁷³ 9.2 Proof of Theorem [1](#page-6-0) and Theorem [3](#page-7-0)

⁷⁷⁴ The first decomposition of the proof of Theorem [1](#page-6-0) and Theorem [3](#page-7-0) [Agarwal et al.](#page-9-3) [\[2020\]](#page-9-3) while ⁷⁷⁵ the argument needs essential adjustments in order to adapt to the robustness setting. One has by ⁷⁷⁶ assumptions using any planner in empirical RMDPs :

$$
\left\| \widehat{V}^{\star,\sigma} - \widehat{V}^{\widehat{\pi},\sigma} \right\|_{\infty} \leq \varepsilon_{\text{opt}},\tag{55}
$$

777 using previous inequality, performance gap $||V^{*,\sigma} - V^{\hat{\pi},\sigma}||_{\infty}$, can be upper bounded using 3 steps.

⁷⁷⁸ First step: subdivide the performance gap in 3 terms. We recall the definition of the optimal robust policy π^* with regard to \mathcal{M}_{rob} and the optimal robust policy $\hat{\pi}^*$, the optimal robust value function $\widehat{V}^{\star,\sigma}$ (resp. robust value function $\widehat{Q}^{\pi,\sigma}$) w.r.t. $\widehat{\mathcal{M}}_{\text{rob}}$. Then, the performance gap $V^{\star,\sigma}-V^{\widehat{\pi},\sigma}$ 780 ⁷⁸¹ can be decomposed in one optimization term and two statistical error terms

$$
V^{\star,\sigma} - V^{\widehat{\pi},\sigma} = \left(V^{\pi^{\star},\sigma} - \widehat{V}^{\pi^{\star},\sigma} \right) + \left(\widehat{V}^{\pi^{\star},\sigma} - \widehat{V}^{\widehat{\pi}^{\star},\sigma} \right) + \left(\widehat{V}^{\widehat{\pi}^{\star},\sigma} - \widehat{V}^{\widehat{\pi},\sigma} \right) + \left(\widehat{V}^{\widehat{\pi},\sigma} - V^{\widehat{\pi},\sigma} \right)
$$

\n
$$
\stackrel{\text{(i)}}{\leq} \left(V^{\pi^{\star},\sigma} - \widehat{V}^{\pi^{\star},\sigma} \right) + \left(\widehat{V}^{\widehat{\pi}^{\star},\sigma} - \widehat{V}^{\widehat{\pi},\sigma} \right) + \left(\widehat{V}^{\widehat{\pi},\sigma} - V^{\widehat{\pi},\sigma} \right)
$$

\n
$$
\stackrel{\text{(ii)}}{\leq} \left(V^{\pi^{\star},\sigma} - \widehat{V}^{\pi^{\star},\sigma} \right) + \varepsilon_{\text{opt}} + \left(\widehat{V}^{\widehat{\pi},\sigma} - V^{\widehat{\pi},\sigma} \right) \tag{56}
$$

The value of the policy for $\hat{V}^{\pi^*, \sigma} - \hat{V}^{\hat{\pi}^*, \sigma} \leq 0$ since $\hat{\pi}^*$ is the robust optimal policy for $\hat{\mathcal{M}}_{\text{rob}}$, and (ii) comes from (55) and definition of optimization error. The proof aims to control ⁷⁸³ from [\(55\)](#page-21-3) and definition of optimization error. The proof aims to control the last remaining terms in 784 [\(56\)](#page-21-4) using concentration theory and sufficiently big number of step N. To do so, we will consider a ⁷⁸⁵ more general term $\hat{V}^{\pi,\sigma} - V^{\pi,\sigma}$ for any policy π even if control of these two terms slightly differ at 786 the end. Using (32) , it holds that for both sa - and s-rectangular assumptions:

$$
\hat{V}^{\pi,\sigma} - V^{\pi,\sigma} = r_{\pi} + \gamma \underline{\hat{P}}^{\pi,\widehat{V}} \widehat{V}^{\pi,\sigma} - (r_{\pi} + \gamma \underline{P}^{\pi,V} V^{\pi,\sigma})
$$
\n
$$
= \left(\gamma \underline{\hat{P}}^{\pi,\widehat{V}} \widehat{V}^{\pi,\sigma} - \gamma \underline{P}^{\pi,\widehat{V}} \widehat{V}^{\pi,\sigma}\right) + \left(\gamma \underline{P}^{\pi,\widehat{V}} \widehat{V}^{\pi,\sigma} - \gamma \underline{P}^{\pi,V} V^{\pi,\sigma}\right)
$$
\n
$$
\stackrel{\text{(i)}}{\leq} \gamma \left(\underline{P}^{\pi,V} \widehat{V}^{\pi,\sigma} - \underline{P}^{\pi,V} V^{\pi,\sigma}\right) + \left(\gamma \underline{\hat{P}}^{\pi,\widehat{V}} \widehat{V}^{\pi,\sigma} - \gamma \underline{P}^{\pi,\widehat{V}} \widehat{V}^{\pi,\sigma}\right),
$$

787 where (i) holds because $\underline{P}^{\pi,V}\hat{V}^{\pi,\sigma} \leq \underline{P}^{\pi,V}\hat{V}^{\pi,\sigma}$ because of the optimality of $\underline{P}^{\pi,V}$ (see. [\(25\)](#page-16-1)). ⁷⁸⁸ Factorizing terms leads to the following equation

$$
\widehat{V}^{\pi,\sigma} - V^{\pi,\sigma} \le \gamma \left(I - \gamma \underline{P}^{\pi,V} \right)^{-1} \left(\underline{\widehat{P}}^{\pi,\widehat{V}} \widehat{V}^{\pi,\sigma} - \underline{P}^{\pi,\widehat{V}} \widehat{V}^{\pi,\sigma} \right). \tag{57}
$$

⁷⁸⁹ In the same manner, we can also obtain a lower bound of this quantity:

$$
\widehat{V}^{\pi,\sigma} - V^{\pi,\sigma} = r_{\pi} + \gamma \underline{\widehat{P}}^{\pi,\widehat{V}} \widehat{V}^{\pi,\sigma} - (r_{\pi} + \gamma \underline{P}^{\pi,V} V^{\pi,\sigma})
$$
\n
$$
= \left(\gamma \underline{\widehat{P}}^{\pi,\widehat{V}} \widehat{V}^{\pi,\sigma} - \gamma \underline{P}^{\pi,\widehat{V}} \widehat{V}^{\pi,\sigma}\right) + \left(\gamma \underline{P}^{\pi,\widehat{V}} \widehat{V}^{\pi,\sigma} - \gamma \underline{P}^{\pi,V} V^{\pi,\sigma}\right)
$$
\n
$$
\geq \gamma \left(\underline{P}^{\pi,\widehat{V}} \widehat{V}^{\pi,\sigma} - \underline{P}^{\pi,\widehat{V}} V^{\pi,\sigma}\right) + \left(\gamma \underline{\widehat{P}}^{\pi,\widehat{V}} \widehat{V}^{\pi,\sigma} - \gamma \underline{P}^{\pi,\widehat{V}} \widehat{V}^{\pi,\sigma}\right)
$$
\n
$$
\geq \gamma \left(I - \gamma \underline{P}^{\pi,\widehat{V}}\right)^{-1} \left(\underline{\widehat{P}}^{\pi,\widehat{V}} \widehat{V}^{\pi,\sigma} - \underline{P}^{\pi,\widehat{V}} \widehat{V}^{\pi,\sigma}\right).
$$
\n(58)

⁷⁹⁰ Using both [\(57\)](#page-22-0) and [\(58\)](#page-22-1), we obtain infinite norm control:

$$
\left\| \widehat{V}^{\pi,\sigma} - V^{\pi,\sigma} \right\|_{\infty} \leq \gamma \max \left\{ \left\| \left(I - \gamma \underline{P}^{\pi,\hat{V}} \right)^{-1} \left(\underline{\widehat{P}}^{\pi,\hat{V}} \widehat{V}^{\pi,\sigma} - \underline{P}^{\pi,\hat{V}} \widehat{V}^{\pi,\sigma} \right) \right\|_{\infty}, \right\}
$$
\n
$$
\left\| \left(I - \gamma \underline{P}^{\pi,\hat{V}} \right)^{-1} \left(\underline{\widehat{P}}^{\pi,\hat{V}} \widehat{V}^{\pi,\sigma} - \underline{P}^{\pi,\hat{V}} \widehat{V}^{\pi,\sigma} \right) \right\|_{\infty} \right\}.
$$
\n(59)

⁷⁹¹ By decomposing the error in a symmetric way, he have

$$
\left\| \widehat{V}^{\pi,\sigma} - V^{\pi,\sigma} \right\|_{\infty} \leq \gamma \max \left\{ \left\| \left(I - \gamma \underline{\widehat{P}}^{\pi,\widetilde{V}} \right)^{-1} \left(\underline{\widehat{P}}^{\pi,\widetilde{V}} V^{\pi,\sigma} - \underline{P}^{\pi,\widetilde{V}} V^{\pi,\sigma} \right) \right\|_{\infty},
$$

$$
\left\| \left(I - \gamma \underline{\widehat{P}}^{\pi,\widehat{V}} \right)^{-1} \left(\underline{\widehat{P}}^{\pi,\widetilde{V}} V^{\pi,\sigma} - \underline{P}^{\pi,\widetilde{V}} V^{\pi,\sigma} \right) \right\|_{\infty} \right\}.
$$
(60)

⁷⁹² Armed with these inequalities, we can use concentration inequalities to upper bound the two remaining 793 terms $\|\hat{V}^{\pi^\star,\sigma} - V^{\pi^\star,\sigma}\|_{\infty}$ and $\|\hat{V}^{\hat{\pi},\sigma} - V^{\hat{\pi},\sigma}\|_{\infty}$ in [\(56\)](#page-21-4). Taking $\pi = \hat{\pi}$, applying [\(59\)](#page-22-2) leads to

$$
\left\| \widehat{V}^{\widehat{\pi},\sigma} - V^{\widehat{\pi},\sigma} \right\|_{\infty} \leq \gamma \max \left\{ \left\| \left(I - \gamma \underline{P}^{\widehat{\pi},\widehat{V}} \right)^{-1} \left(\underline{\widehat{P}}^{\widehat{\pi},\widehat{V}} \widehat{V}^{\widehat{\pi},\sigma} - \underline{P}^{\widehat{\pi},\widehat{V}} \widehat{V}^{\widehat{\pi},\sigma} \right) \right\|_{\infty},
$$

$$
\left\| \left(I - \gamma \underline{P}^{\widehat{\pi},V} \right)^{-1} \left(\underline{\widehat{P}}^{\widehat{\pi},\widehat{V}} \widehat{V}^{\widehat{\pi},\sigma} - \underline{P}^{\widehat{\pi},\widehat{V}} \widehat{V}^{\widehat{\pi},\sigma} \right) \right\|_{\infty} \right\}.
$$
(61)

794 Finally, $\pi = \pi^*$, applying [\(60\)](#page-22-3) gives us

$$
\|\widehat{V}^{\pi^*,\sigma} - V^{\pi^*,\sigma}\|_{\infty} \leq \gamma \max\left\{ \left\| \left(I - \gamma \widehat{\underline{P}}^{\pi^*,V}\right)^{-1} \left(\widehat{\underline{P}}^{\pi^*,V} V^{\pi^*,\sigma} - \underline{P}^{\pi^*,V} V^{\pi^*,\sigma}\right) \right\|_{\infty}, \right\}
$$
\n
$$
\left\| \left(I - \gamma \widehat{\underline{P}}^{\pi^*,\widehat{V}}\right)^{-1} \left(\widehat{\underline{P}}^{\pi^*,V} V^{\pi^*,\sigma} - \underline{P}^{\pi^*,V} V^{\pi^*,\sigma}\right) \right\|_{\infty} \right\}.
$$
\n(62)

795 Note that to control $\left\| \hat{V}^{\pi^*, \sigma} - V^{\pi^*, \sigma} \right\|_{\infty}$, we use decomposition not depending on $\hat{\pi}$ for value 796 function as $V^{\pi^*,\sigma}$ is deterministic and fixed, allowing use of classical concentration analysis tools. 797 This decomposition is the same for both sa -rectangular and s -rectangular case.

Second step: bound first term and second term in [\(62\)](#page-22-4) to control $\|\hat{V}^{\pi^*,\sigma} - V^{\pi^*,\sigma}\|_{\infty}$ To control ⁷⁹⁹ the two terms in [\(62\)](#page-22-4), we use lemma [8](#page-23-0) based Bernstein's concentration argument and whose proof is ⁸⁰⁰ in Appendix [9.3.3.](#page-34-0)

801 **Lemma 8.** *For both* sa– *and* s-rectangular setting, consider any $\delta \in (0,1)$, with probability $1-\delta$, ⁸⁰² *it holds:*

$$
\left| \underline{\widehat{P}}^{\pi^*,V} V^{\pi^*,\sigma} - \underline{P}^{\pi^*,V} V^{\pi^*,\sigma} \right| \leq 2\sqrt{\frac{L}{N}} \sqrt{\text{Var}_{P^{\pi^*}}(V^{*,\sigma})} + \frac{3LC_S \left\| 1 \right\|_{*}}{N(1-\gamma)}
$$
(63)

- ω *with* $L = 2\log(18||1||_* SAN/\delta)$ and where $\text{Var}_{P^{\pi^*}}(V^{*,\sigma})$ is defined in [\(27\)](#page-16-4). Moreover, for the s ⁰⁴ *specific case of* TV , this lemma is true without the smoothness term $\frac{3LC_S||1||_*}{N(1-\gamma)}$.
- 805 Armed with the above lemma, now we control the first term on the right-hand side of [\(62\)](#page-22-4) as follows:

$$
(I - \gamma \underline{\widehat{P}}^{\pi^*,V})^{-1} (\underline{\widehat{P}}^{\pi^*,V} V^{\pi^*,\sigma} - \underline{P}^{\pi^*,V} V^{\pi^*,\sigma})
$$
\n
$$
\leq (I - \gamma \underline{\widehat{P}}^{\pi^*,V})^{-1} ||\underline{\widehat{P}}^{\pi^*,V} V^{\pi^*,\sigma} - \underline{P}^{\pi^*,V} V^{\pi^*,\sigma}||_{\infty}
$$
\n
$$
\leq (I - \gamma \underline{\widehat{P}}^{\pi^*,V})^{-1} (2\sqrt{\frac{L}{N}} \sqrt{\text{Var}_{P^{\pi^*}}(V^{\star,\sigma})} + \frac{3LC_S ||1||_*}{N(1 - \gamma)})
$$
\n
$$
\leq (I - \gamma \underline{\widehat{P}}^{\pi^*,V})^{-1} \frac{3LC_S ||1||_*}{N(1 - \gamma)} + 2\sqrt{\frac{L}{N}} (I - \gamma \underline{\widehat{P}}^{\pi^*,V})^{-1} \sqrt{\text{Var}_{\widehat{P}}^{\pi^*,V} (V^{\star,\sigma})}
$$
\n
$$
+ 2\sqrt{\frac{L}{N}} (I - \gamma \underline{\widehat{P}}^{\pi^*,V})^{-1} \sqrt{|\text{Var}_{\widehat{P}^{\pi^*}}(V^{\star,\sigma}) - \text{Var}_{\widehat{P}^{\pi^*,V}}(V^{\star,\sigma})|}
$$
\n
$$
=:\mathcal{R}_2
$$
\n
$$
+ 2\sqrt{\frac{L}{N}} (I - \gamma \underline{\widehat{P}}^{\pi^*,V})^{-1} (\sqrt{\text{Var}_{P^{\pi^*}}(V^{\star,\sigma})} - \sqrt{\text{Var}_{\widehat{P}^{\pi^*}}(V^{\star,\sigma})}), \qquad (64)
$$

806 where (a) holds as the matrix $(I - \gamma \hat{P}^{\pi^*,V})^{-1}$ is positive definite, (b) holds due to Lemma [8,](#page-23-0) and ⁸⁰⁷ the last point holds from the following decomposition for variance and triangular inequality

$$
\sqrt{\text{Var}_{P^{\pi^{\star}}}(V^{\star,\sigma})} = \left(\sqrt{\text{Var}_{P^{\pi^{\star}}}(V^{\star,\sigma})} - \sqrt{\text{Var}_{\hat{P}^{\pi^{\star}}}(V^{\star,\sigma})}\right) + \sqrt{\text{Var}_{\hat{P}^{\pi^{\star}}}(V^{\star,\sigma})}
$$
\n
$$
\leq \left(\sqrt{\text{Var}_{P^{\pi^{\star}}}(V^{\star,\sigma})} - \sqrt{\text{Var}_{\hat{P}^{\pi^{\star}}}(V^{\star,\sigma})}\right)
$$
\n
$$
+ \sqrt{\left|\text{Var}_{\hat{P}^{\pi^{\star}}}(V^{\star,\sigma}) - \text{Var}_{\hat{P}^{\pi^{\star},V}}(V^{\star,\sigma})\right|} + \sqrt{\text{Var}_{\hat{P}^{\pi^{\star},V}}(V^{\star,\sigma})}.
$$

808 Finally, the fact that $\underline{\hat{P}}^{\pi^*,V}$ is a stochastic matrix, so

$$
\left(I - \gamma \underline{\widehat{P}}^{\pi^*,V}\right)^{-1}1 = \left(I + \sum_{t=1}^{\infty} \gamma^t \left(\underline{\widehat{P}}^{\pi^*,V}\right)^t\right)1 \le \frac{1}{1-\gamma}1. \tag{65}
$$

809 Armed with these inequalities, the three terms $\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3$ in [\(64\)](#page-23-1) can be controlled separately.

810 • Consider \mathcal{R}_1 . We first introduce the following lemma, whose proof is postponed to Ap-⁸¹¹ pendix [9.3.4.](#page-39-0)

812 **Lemma 9.** *Consider any* $\delta \in (0, 1)$ *. With probability at least* $1 - \delta$ *, one has*

$$
\begin{array}{lcl} \displaystyle \Big(I-\gamma \underline{\widehat{P}}^{\pi^\star,V}\Big)^{-1}\sqrt{\text{Var}_{\underline{\widehat{P}}^{\pi^\star,V}}(V^{\star,\sigma})} & \displaystyle \leq 4\sqrt{\frac{\Big(1+\Big(\sqrt{\frac{L}{(1-\gamma)^2N}}+\frac{C_S\|1\|_\ast L}{N(1-\gamma)}\Big)\Big)}{\gamma^3(1-\gamma)^2\max\{1-\gamma, C_g\sigma\}}}\Big] \\ & \displaystyle \leq 4\sqrt{\frac{\Big(1+\Big(\sqrt{\frac{L}{(1-\gamma)^2N}}+\frac{C_S\|1\|_\ast L}{N(1-\gamma)}\Big)\Big)}{\gamma^3(1-\gamma)^3}}1 \end{array}
$$

 ω *with* $L = 2 \log(\frac{18||1||*SAN}{\delta})$ *in the sa-rectangular case. In the s-rectangular case, it holds:*

$$
\begin{array}{lcl} \displaystyle \Big(I-\gamma \underline{\widehat{P}}^{\pi^\star,V}\Big)^{-1}\sqrt{\text{Var}_{\underline{\widehat{P}}^{\pi^\star,V}}(V^{\star,\sigma})}\leq & \displaystyle \leq 4\sqrt{\frac{\Big(1+\Big(\sqrt{\frac{L}{(1-\gamma)^2N}}+\frac{C_S\|1\|_*L}{N(1-\gamma)}\Big)\Big)}{\gamma^3(1-\gamma)^2\max\{1-\gamma, C_g\tilde{\sigma}\min_s\|\pi_s\|_\ast\}}}\mathbf{1}\\ \displaystyle & \leq 4\sqrt{\frac{\Big(1+\Big(\sqrt{\frac{L}{(1-\gamma)^2N}}+\frac{C_S\|1\|_*L}{N(1-\gamma)}\Big)\Big)}{\gamma^3(1-\gamma)^3}}\mathbf{1} \end{array}
$$

⁸¹⁴ Using Lemma [9](#page-24-0) and inserting back to [\(64\)](#page-23-1) gives in sa-rectangular case

$$
\mathcal{R}_1 = 2\sqrt{\frac{L}{N}} \left(I - \gamma \underline{\widehat{P}}^{\pi^\star, V}\right)^{-1} \sqrt{\text{Var}_{\underline{\widehat{P}}^{\pi^\star, V}}(V^{\star, \sigma})}
$$

\$\leq 8\sqrt{\frac{L}{\gamma^3 (1 - \gamma)^2 \max\{1 - \gamma, C_g \sigma\} N} \left(1 + \sqrt{\frac{L}{(1 - \gamma)^2 N} + \frac{C_S ||1||_* L}{N (1 - \gamma)}}\right)}\$1. (66)

815 • Consider \mathcal{R}_2 . First, denote $V' := V^{*,\sigma} - \eta \mathbb{1} \eta \in \mathbb{R}$, by Lemma [5,](#page-21-0) we have for any π ,

$$
0 \le \min_{\eta} \|V\|_{\infty} - \eta \le \frac{1}{\gamma \max\{1 - \gamma, C_g \sigma\}}.\tag{67}
$$

816 for sa-rectangular case or in s-rectangular we obtain

$$
0 \le \min_{\eta} \|V - \eta \mathbf{1}\|_{\infty} \le \frac{1}{\gamma \max\{1 - \gamma, \tilde{\sigma} C_g \|\pi_s\|_* \}} \tag{68}
$$

817 by the definition of the span semi norm. Moreover, we can use Holder with L_1 and L_∞ we 818 have for both sa and s-rectangular case to as it holds that:

$$
\left| \operatorname{Var}_{\widetilde{P}_{s,a}}(V^{\star,\sigma}) - \operatorname{Var}_{P_{s,a}}(V^{\star,\sigma}) \right| = \left| \operatorname{Var}_{\widetilde{P}_{s,a}}(V') - \operatorname{Var}_{P_{s,a}}(V') \right|
$$

\n
$$
\leq \left\| \widetilde{P}_{s,a} - P_{s,a} \right\|_1 \left\| V' \right\|_{\infty}^2 \stackrel{a}{\leq} \frac{\sigma_1}{(\gamma^2 (\max(1-\gamma), C_g \sigma)^2)}
$$

\n
$$
\leq \frac{1}{\gamma^2 \max\{(1-\gamma), \sigma C_g\}}
$$
 (69)

In the first inequality, we use $||V'||$ 2 819 In the first inequality, we use $||V'||_{\infty}^2 = ||V'^2||_{\infty}$ and and we use Lemma [5](#page-21-0) in (a) where 820 $C_g \sigma = \sigma_1$.

821 With the same arguments for *s*-rectangular, we obtain for $V' := V^{*,\sigma} - η1$ η ∈ ℝ,

$$
\left| \Pi^{\pi^*} \left(\text{Var}_{\widetilde{P}_s} (V^{\star,\sigma}) - \text{Var}_{P_s} (V^{\star,\sigma}) \right) \right| = \left| \Pi^{\pi^*} \left(\text{Var}_{\widetilde{P}_s} (V') - \text{Var}_{P_s} (V') \right) \right|
$$

$$
\leq \sum_a \pi(a|s) (\widetilde{P}_s(s',a) - P_s(s',a)) V(s')^2
$$
(70)

$$
\stackrel{a}{\leq} \left\|V'\right\|_{\infty}^2 \sum_{a} \pi(a|s) (\widetilde{P}_s(s',a) - P_s(s',a)) \stackrel{b}{\leq} \left\|V'\right\|_{\infty}^2 \widetilde{\sigma} \left\|\pi_s\right\|_{*} \tag{71}
$$

$$
\leq \frac{\tilde{\sigma}C_g \left\|\pi_s^*\right\|_* \left\|V'\right\|_{\infty}}{\gamma \left\|\pi_s^*\right\|_* \tilde{\sigma}C_g} 1 \leq \frac{\left\|V'\right\|}{\gamma} 1. \tag{72}
$$

⁸²² where where (a) and (b) comes Cauchy Swartz inequality, , (c) comes lemma [6.](#page-21-1) Then, taking 823 the sup over s in the previous equations, it holds

$$
\left| \Pi^{\pi^*} \left(\text{Var}_{\widetilde{P}_s} (V^{\star,\sigma}) - \text{Var}_{P_s} (V^{\star,\sigma}) \right) \right| \le \frac{\inf_{\eta \in \mathbb{R}^+} \left\| V - \eta \mathbf{1}' \right\|}{\gamma} \tag{73}
$$

 $\leq \frac{1}{2\alpha+1}$ $\gamma^2 \tilde{\sigma} \min_s \|\pi_s^*\|_* C_g$ (74)

824 Applying the previous inequality, it holds in sa-rectangular case:

$$
\mathcal{R}_{2} = 2\sqrt{\frac{L}{N}} \Big(I - \gamma \underline{\widehat{P}}^{\pi^{*},V}\Big)^{-1} \sqrt{\Big| \text{Var}_{\widehat{P}^{\pi^{*}}} (V^{\star,\sigma}) - \text{Var}_{\underline{\widehat{P}}^{\pi^{*},V}} (V^{\star,\sigma}) \Big|}
$$
\n
$$
= 2\sqrt{\frac{L}{N}} \Big(I - \gamma \underline{\widehat{P}}^{\pi^{*},V}\Big)^{-1} \sqrt{\big|\Pi^{\pi^{*}} \left(\text{Var}_{\widehat{P}^{0}}(V^{\star,\sigma}) - \text{Var}_{\widehat{P}^{\pi^{*},V}} (V^{\star,\sigma})\right) \big|}
$$
\n
$$
\leq 2\sqrt{\frac{L}{N}} \Big(I - \gamma \underline{\widehat{P}}^{\pi^{*},V}\Big)^{-1} \sqrt{\Big\|\text{Var}_{\widehat{P}^{0}}(V^{\star,\sigma}) - \text{Var}_{\widehat{P}^{\pi^{*},V}} (V^{\star,\sigma}) \Big\|_{\infty} 1}
$$
\n
$$
\leq 2\sqrt{\frac{L}{N}} \Big(I - \gamma \underline{\widehat{P}}^{\pi^{*},V}\Big)^{-1} \sqrt{\frac{1}{\gamma^{2} \max\{1 - \gamma, C_{g}\sigma\}} 1}
$$
\n(75)

$$
\leq 4\sqrt{\frac{L}{\gamma^2(1-\gamma)^2 \max\{1-\gamma, C_g \sigma\} N}} 1,
$$
\n(76)

825 where the last inequality uses $(I - \gamma \hat{P}^{\pi^*,V})^{-1}$ $1 \leq \frac{1}{1-\gamma}$ (cf. [\(65\)](#page-23-2)). for sa-rectangular 826 In the *s*-rectangular case, we obtain a different result as

$$
\mathcal{R}_{2} = 2\sqrt{\frac{L}{N}} \left(I - \gamma \underline{\widehat{P}}^{\pi^{\star},V}\right)^{-1} \sqrt{\left|\text{Var}_{\widehat{P}^{\pi^{\star}}}(V^{\star,\sigma}) - \text{Var}_{\underline{\widehat{P}}^{\pi^{\star},V}}(V^{\star,\sigma})\right|}
$$
\n
$$
= 2\sqrt{\frac{L}{N}} \left(I - \gamma \underline{\widehat{P}}^{\pi^{\star},V}\right)^{-1} \sqrt{\left|\Pi^{\pi^{\star}}\left(\text{Var}_{\widehat{P}^{0}}(V^{\star,\sigma}) - \text{Var}_{\widehat{P}^{\pi^{\star},V}}(V^{\star,\sigma})\right)\right|}
$$
\n
$$
\leq 2\sqrt{\frac{L}{N}} \left(I - \gamma \underline{\widehat{P}}^{\pi^{\star},V}\right)^{-1} \sqrt{\frac{1}{\gamma^{2} \max\{1 - \gamma, \min_{s} \|\pi_{s}^{\star}\|_{\infty} C_{g} \tilde{\sigma}\}}}\n\tag{77}
$$

$$
\leq 2\sqrt{\frac{L}{\gamma^2(1-\gamma)^2 \max\{1-\gamma, \min_s \|\pi_s^*\|_{\infty} \tilde{\sigma}C_g\} N}} 1,
$$
\n(78)

827 • Consider \mathcal{R}_3 . The following lemma plays an important role.

828 Applying Lemma [2](#page-17-2) and using $\pi = \pi^*$ and $V = V^{*,\sigma}$, it holds

$$
\sqrt{\text{Var}_{P^{\pi^{\star}}}(V^{\star,\sigma})}-\sqrt{\text{Var}_{\widehat{P}^{\pi^{\star}}}(V^{\star,\sigma})}\leq \sqrt{\frac{2\|V^{\star,\sigma}\|_{\infty}^{2}\log(\frac{2SA}{\delta})}{N}}1,
$$

⁸²⁹ which can be inserted in [\(64\)](#page-23-1) to gives

$$
\mathcal{R}_3 = 2\sqrt{\frac{L}{N}} \left(I - \gamma \underline{\widehat{P}}^{\pi^*,V} \right)^{-1} \left(\sqrt{\text{Var}_{P^{\pi^*}}(V^{*,\sigma})} - \sqrt{\text{Var}_{\widehat{P}^{\pi^*}}(V^{*,\sigma})} \right)
$$

$$
\leq \frac{4}{(1-\gamma)} \frac{\log(\frac{SAN}{\delta}) ||[V^{*,\sigma}||_{\infty}}{N} 1 \leq \frac{4L}{(1-\gamma)^2 N} 1,
$$
 (79)

830 where the last line uses $(I - \gamma \underline{\hat{P}}^{\pi^*,V})^{-1} \le \frac{1}{1-\gamma}1$ (cf. [\(65\)](#page-23-2)).

831 Finally, inserting the results of \mathcal{R}_1 in [\(66\)](#page-24-1), \mathcal{R}_2 in [\(78\)](#page-25-0), \mathcal{R}_3 in [\(79\)](#page-25-1), and [\(65\)](#page-23-2) back into [\(64\)](#page-23-1) gives

$$
\left(I - \gamma \underline{\widehat{P}}^{\pi^*,V}\right)^{-1} \left(\underline{\widehat{P}}^{\pi^*,V} V^{\pi^*,\sigma} - \underline{P}^{\pi^*,V} V^{\pi^*,\sigma}\right) \tag{80}
$$
\n
$$
\leq 8 \sqrt{\frac{L}{\gamma^3 (1-\gamma)^2 \max\{1-\gamma, C_g \sigma\} N} \left(1 + \sqrt{\frac{L}{(1-\gamma)^2 N}} + \frac{C_S \left\|1\right\|_{*} L}{N(1-\gamma)}\right) 1 + \frac{3LC_S \left\|1\right\|_{*} 1}{N(1-\gamma)^2} 1}
$$
\n
$$
+ 2 \sqrt{\frac{2L}{\gamma^2 (1-\gamma)^2 \max\{1-\gamma, C_g \sigma\} N} 1 + \frac{4L}{(1-\gamma)^2 N} 1}
$$
\n
$$
\leq 10 \sqrt{\frac{2L}{\gamma^3 (1-\gamma)^2 \max\{1-\gamma, C_g \sigma\} N} \left(1 + \sqrt{\frac{L}{(1-\gamma)^2 N}} + \frac{C_S \left\|1\right\|_{*} L}{N(1-\gamma)}\right) 1 + \frac{4L}{(1-\gamma)^2 N} 1 + \frac{3LC_S \left\|1\right\|_{*}}{N(1-\gamma)^2} 1}
$$
\n
$$
\leq 160 \sqrt{\frac{L(1 + \frac{C_S \left\|1\right\|_{*}}{N(1-\gamma)} \sum_{j=1}^{N} \left(1 + \frac{7LC_S \left\|1\right\|_{*}}{N(1-\gamma)^2} 1 + \frac{7LC_S \left\|1\right\|_{*}}{N(1-\gamma)^2} 1}, \tag{81}
$$

832 where the last inequality holds by the fact $\gamma \ge \frac{1}{4}$ and letting $N \ge \frac{L}{(1-\gamma)^2}$. We have the same result ss for *s*-rectangular, replacing, max{1 − γ, $C_g \sigma$ } by max{1 − γ, min_s $||\pi_s^*||_* \tilde{\sigma} C_g$ }.

834 Now we are ready to control **second term in** [\(62\)](#page-22-4) to control $\|\hat{V}^{\pi^*, \sigma} - V^{\pi^*, \sigma}\|_{\infty}$. To proceed, ⁸³⁵ applying Lemma [8](#page-23-0) on the second term of the right-hand side of [\(62\)](#page-22-4) leads to

$$
(I - \gamma \underline{\widehat{P}}^{\pi^*, \widehat{V}})^{-1} (\underline{\widehat{P}}^{\pi^*, V} V^{\pi^*, \sigma} - \underline{P}^{\pi^*, V} V^{\pi^*, \sigma})
$$

\n
$$
\leq (I - \gamma \underline{\widehat{P}}^{\pi^*, \widehat{V}})^{-1} (2\sqrt{\frac{L}{N}} \sqrt{\text{Var}_{P^{\pi^*}}(V^{*, \sigma})} + \frac{3LC_S ||1||_*}{N(1 - \gamma)})
$$

\n
$$
\leq (I - \gamma \underline{\widehat{P}}^{\pi^*, \widehat{V}})^{-1} \frac{L'C_S ||1||_*}{N(1 - \gamma)} + 2\sqrt{\frac{L}{N}} (I - \gamma \underline{\widehat{P}}^{\pi^*, \widehat{V}})^{-1} \sqrt{\text{Var}_{\widehat{P}^{\pi^*, \widehat{V}}}(\widehat{V}^{\pi^*, \sigma})}
$$

\n
$$
=:\mathcal{R}_4
$$

\n
$$
\frac{2\sqrt{\frac{L}{N}} (I - \gamma \underline{\widehat{P}}^{\pi^*, \widehat{V}})^{-1} (\sqrt{\text{Var}_{\widehat{P}^{\pi^*, \widehat{V}}} (V^{\pi^*, \sigma} - \widehat{V}^{\pi^*, \sigma}))}
$$

\n
$$
+ 2\sqrt{\frac{L}{N}} (I - \gamma \underline{\widehat{P}}^{\pi^*, \widehat{V}})^{-1} (\sqrt{|\text{Var}_{\widehat{P}^{\pi^*}} (V^{*, \sigma}) - \text{Var}_{\widehat{P}^{\pi^*, \widehat{V}}} (V^{*, \sigma}))})}
$$

\n
$$
+ 2\sqrt{\frac{L}{N}} (I - \gamma \underline{\widehat{P}}^{\pi^*, \widehat{V}})^{-1} (\sqrt{\text{Var}_{P^{\pi^*}} (V^{*, \sigma})} - \sqrt{\text{Var}_{\widehat{P}^{\pi^*}} (V^{*, \sigma}))}.
$$

\n(82)

836 We now bound the above four terms \mathcal{R}_4 , \mathcal{R}_5 , \mathcal{R}_6 , \mathcal{R}_7 separately.

* Using Lemma 7 with
$$
P = \hat{P}^{\pi^*, \hat{V}}, \pi = \pi^*
$$
 and $V = \hat{V}^{\pi^*, \sigma}$ which follow $\hat{V}^{\pi^*, \sigma} =$
\n $r_{\pi^*} + \gamma \underline{\hat{P}}^{\pi^*, \hat{V}} \hat{V}^{\pi^*, \sigma}$, and in view of (65), the term \mathcal{R}_4 in (82) can be controlled as follows:
\n
$$
\mathcal{R}_4 = 2\sqrt{\frac{L}{N}} \Big(I - \gamma \underline{\hat{P}}^{\pi^*, \hat{V}}\Big)^{-1} \sqrt{\text{Var}_{\underline{\hat{P}}^{\pi^*, \hat{V}}} (\hat{V}^{\pi^*, \sigma})}
$$

$$
\leq 2\sqrt{\frac{L}{N}}\sqrt{\frac{8\min\{\text{sp}(\hat{V}^{\pi^*,\sigma})_*,1/(1-\gamma))}{\gamma^2(1-\gamma)^2}}1
$$

$$
\leq 8\sqrt{\frac{L}{\gamma^3(1-\gamma)^2\max\{1-\gamma,C_g\sigma\}N}}1,
$$
 (83)

839 where the last inequality is due to Lemma [5](#page-21-0) for sa-rectangular case and with the same quantity replacing $\max\{1-\gamma, \sigma\}$ by $\max\{1-\gamma, \min_s ||\pi_s^*||_* \tilde{\sigma}\}\$ in the s- rectangular ⁸⁴¹ case.

842 • For bounding \mathcal{R}_5 , we can simply use [\(65\)](#page-23-2)) to get

$$
\mathcal{R}_{5} = 2\sqrt{\frac{L}{N}} \left(I - \gamma \underline{\widehat{P}}^{\pi^{\star}, \widehat{V}}\right)^{-1} \sqrt{\text{Var}_{\underline{\widehat{P}}^{\pi^{\star}, \widehat{V}}} \left(V^{\pi^{\star}, \sigma} - \widehat{V}^{\pi^{\star}, \sigma}\right)}
$$

$$
\leq 2\sqrt{\frac{L}{(1 - \gamma)^{2}N}} \left\| V^{\star, \sigma} - \widehat{V}^{\pi^{\star}, \sigma} \right\|_{\infty} 1.
$$
 (84)

⁸⁴³ moreover,

$$
\left\| V^{*,\sigma} - \widehat{V}^{\pi^*,\sigma} \right\|_{\infty} \le \left\| V^{*,\sigma} - \widehat{V}^{\pi^*,\sigma} \right\|_{\infty} \le \left\| V^{*,\sigma} - \widehat{V}^{\pi^*,\sigma} \right\|_{\infty}
$$
(85)

as for
$$
a > 0, b > 0
$$
, we have $[a] - [b] < [a - b]$. Finally, we obtain

$$
\mathcal{R}_5 \le 2\sqrt{\frac{L}{(1-\gamma)^2 N}} \left\| V^{\star,\sigma} - \widehat{V}^{\pi^\star,\sigma} \right\|_{\infty} 1. \tag{86}
$$

845 • The term \mathcal{R}_6 can upper bounded as [\(78\)](#page-25-0) as follows:

$$
\mathcal{R}_6 \le 2\sqrt{\frac{2L}{\gamma^2(1-\gamma)^2 \max\{1-\gamma, C_g \sigma\} N}} 1.
$$
\n(87)

846 for sa-rectangular case and with the same quantity replacing max $\{1-\gamma, C_g\sigma\}$ by max $\{1-\gamma, C_g\sigma\}$ 847 γ , $\min_s \|\pi_s^*\|_* \tilde{\sigma} C_g\}$ in the s– rectangular case.

848 • Finally, \mathcal{R}_7 can be controlled the same as [\(79\)](#page-25-1) shown below:

$$
\mathcal{R}_7 \le \frac{4L}{(1-\gamma)^2 N} 1. \tag{88}
$$

649 Combining the results in [\(83\)](#page-26-1), [\(86\)](#page-27-0), [\(87\)](#page-27-1), and [\(88\)](#page-27-2) and inserting back to [\(82\)](#page-26-0) leads to for $N \ge \frac{L}{(1-\gamma)^2}$

$$
\left(I - \gamma \underline{\hat{P}}^{\pi^*,\hat{V}}\right)^{-1} \left(\underline{\hat{P}}^{\pi^*,V} V^{\pi^*,\sigma} - \underline{P}^{\pi^*,V} V^{\pi^*,\sigma}\right) \le 8 \sqrt{\frac{L\left(1 + \frac{C_S\|1\|_*}{N(1-\gamma)}\right)}{\gamma^3 (1-\gamma)^2 \max\{1-\gamma, C_g\sigma\}N}} 1 + 2\sqrt{\frac{L}{(1-\gamma)^2 N}} \left\|V^{*,\sigma} - \hat{V}^{\pi^*,\sigma}\right\|_{\infty} 1 + 2\sqrt{\frac{2L}{\gamma^2 (1-\gamma)^2 \max\{1-\gamma, C_g\sigma\}N}} 1 + \frac{7LC_S\|1\|_*}{N(1-\gamma)^2}
$$

$$
\le 80\sqrt{\frac{L\left(1 + \frac{C_S\|1\|_*}{N(1-\gamma)}\right)}{(1-\gamma)^2 \max\{1-\gamma, C_g\sigma\}N}} 1 + 2\sqrt{\frac{L}{(1-\gamma)^2 N}} \left\|V^{*,\sigma} - \hat{V}^{\pi^*,\sigma}\right\|_{\infty} 1 + \frac{7LC_S\|1\|_*}{N(1-\gamma)^2},
$$
\n(89)

sso where the last inequality follows from the assumption $\gamma \geq \frac{1}{4}$. Finally, inserting [\(81\)](#page-26-2) and [\(89\)](#page-27-3) back to ⁸⁵¹ [\(62\)](#page-22-4) yields

$$
\left\| \widehat{V}^{\pi^*, \sigma} - V^{\pi^*, \sigma} \right\|_{\infty} \le \max \left\{ 160 \sqrt{\frac{L(1 + \frac{C_S \|1\|_*}{N(1-\gamma)})}{(1-\gamma)^2 \max\{1-\gamma, C_g \sigma\} N}} + \frac{7LC_S \|1\|_*}{N(1-\gamma)^2}, \right\}
$$

\n
$$
80 \sqrt{\frac{L(1 + \frac{C_S \|1\|_*}{N(1-\gamma)})}{(1-\gamma)^2 \max\{1-\gamma, C_g \sigma\} N}} + 2 \sqrt{\frac{L}{(1-\gamma)^2 N}} \left\| V^{*, \sigma} - \widehat{V}^{\pi^*, \sigma} \right\|_{\infty} + \frac{7LC_S \|1\|_*}{N(1-\gamma)^2} \right\}
$$

\n
$$
\le 160 \sqrt{\frac{L(1 + \frac{C_S \|1\|_*}{N(1-\gamma)})}{(1-\gamma)^2 \max\{1-\gamma, C_g \sigma\} N}} + \frac{14LC_S \|1\|_*}{N(1-\gamma)^2}, \tag{90}
$$

where the last inequality holds by taking $N \geq \frac{16 \log(\frac{SAN}{\delta})}{(1-\gamma)^2}$ 852 where the last inequality holds by taking $N \geq \frac{10 \log(\frac{N}{\delta})}{(1-\gamma)^2}$ rearranging terms. In s-rectangular case, ss we obtain the same result, replacing max {1 − γ , $C_g \sigma$ } by max{1 − γ , min_s $||\pi_s^*||_* C_g \tilde{\sigma}$ }.

Third step: controlling $\|\widehat{V}^{\widehat{\pi},\sigma} - V^{\widehat{\pi},\sigma}\|_{\infty}$ **or bounding the first and second term in [\(61\)](#page-22-5).** Unlike 855 the earlier term, one has to face a more complicated statistical dependency between $\hat{\pi}$ and the empirical RMDP. To begin with, we introduce the following lemma which controls the main term on ⁸⁵⁶ empirical RMDP. To begin with, we introduce the following lemma which controls the main term on ⁸⁵⁷ the right-hand side of [\(61\)](#page-22-5), which is proved in Appendix [9.3.5.](#page-41-0)

 ϵ_{B} **Lemma 10.** *Consider any* $\delta \in (0, 1)$ *. Taking* $N \geq L''$ *with probability at least* $1 - \delta$ *, one has for sa-*⁸⁵⁹ *or* s*-rectangular case :*

$$
\left| \underline{\widehat{P}}^{\widehat{\pi},\widehat{V}} \widehat{V}^{\widehat{\pi},\sigma} - \underline{P}^{\widehat{\pi},\widehat{V}} \widehat{V}^{\widehat{\pi},\sigma} \right| \leq 2\sqrt{\frac{L'}{N}} \sqrt{\text{Var}_{P_{s,a}^0}(\widehat{V}^{\star,\sigma})} 1 + 2\varepsilon_{\text{opt}} 1 + \frac{15L''C_S \left\|1\right\|_{*}}{N(1-\gamma)} \n\leq 2\sqrt{\frac{L''}{(1-\gamma)^2 N}} 1 + 2\varepsilon_{\text{opt}} 1 + \frac{14L''C_S \left\|1\right\|_{*}}{N(1-\gamma)} 1.
$$
\n(91)

860 with $L'' = 2 \log(\frac{54||1||_* S A N^2}{(1 - \gamma) \delta})$. Moreover,For TV this lemma holds but without the geometric term $\frac{14L''C_S||1||_*}{N(1-\gamma)}$ 1. Taking the sup over s gives the final result.

862 With Lemma [10](#page-28-0) in hand, we have to control first term in [\(61\)](#page-22-5)

$$
\begin{split}\n&\left(I - \gamma \underline{P}^{\widehat{\pi}, \widehat{V}}\right)^{-1} \left(\underline{\widehat{P}}^{\widehat{\pi}, \widehat{V}} \widehat{V}^{\widehat{\pi}, \sigma} - \underline{P}^{\widehat{\pi}, \widehat{V}} \widehat{V}^{\widehat{\pi}, \sigma}\right) \\
&\stackrel{\text{(i)}}{\leq} \left(I - \gamma \underline{P}^{\widehat{\pi}, \widehat{V}}\right)^{-1} \left|\underline{\widehat{P}}^{\widehat{\pi}, \widehat{V}} \widehat{V}^{\widehat{\pi}, \sigma} - \underline{P}^{\widehat{\pi}, \widehat{V}} \widehat{V}^{\widehat{\pi}, \sigma}\right| \\
&\leq 2 \sqrt{\frac{L'}{N}} \left(I - \gamma \underline{P}^{\widehat{\pi}, \widehat{V}}\right)^{-1} \sqrt{\text{Var}_{P^{\widehat{\pi}}}(\widehat{V}^{\star, \sigma})} + \left(I - \gamma \underline{P}^{\widehat{\pi}, V^{\widehat{\pi}}}\right)^{-1} \left(2\varepsilon_{\text{opt}}\right)1\n\end{split} \tag{92}
$$
\n
$$
+ \left(I - \gamma \underline{P}^{\widehat{\pi}, V^{\widehat{\pi}}}\right)^{-1} \frac{14L''C_S \|\mathbf{1}\|_{*}}{N(1 - \gamma)}1\n\leq \left(\frac{2\varepsilon_{\text{opt}}}{1 - \gamma}\right)1 + 2\sqrt{\frac{L'}{N}} \left(I - \gamma \underline{P}^{\widehat{\pi}, \widehat{V}}\right)^{-1} \sqrt{\text{Var}_{\underline{P}^{\widehat{\pi}, \widehat{V}}}(\widehat{V}^{\widehat{\pi}, \sigma})} \\
&=:\varepsilon_{1} \\
+ 2\sqrt{\frac{L'}{N}} \left(I - \gamma \underline{P}^{\widehat{\pi}, \widehat{V}}\right)^{-1} \sqrt{\left|\text{Var}_{\underline{P}^{\widehat{\pi}, \widehat{V}}}(\widehat{V}^{\star, \sigma}) - \text{Var}_{\underline{P}^{\widehat{\pi}, \widehat{V}}}(\widehat{V}^{\widehat{\pi}, \sigma})\right|} \\
&=:\varepsilon_{2} \\
+ 2\sqrt{\frac{L'}{N}} \left(I - \gamma \underline{P}^{\widehat{\pi}, \widehat{V}}\right)^{-1} \sqrt{\left|\text{Var}_{P^
$$

863 where (i) and (ii) hold by the fact that each row of $(1 - \gamma) (I - \gamma \underline{P}^{\hat{\pi}, \hat{V}})^{-1}$ is a probability vector 864 that falls into $\Delta(S)$. The remainder of the proof will focus on controlling the three terms in [\(93\)](#page-28-1) ⁸⁶⁵ separately.

866 • For S_1 , we introduce the following lemma, whose proof is postponed to [9.3.6.](#page-45-0)

Lemma 11. *Consider any* $\delta \in (0,1)$ *. Taking* $N \geq \frac{L''}{(1-\gamma)}$ **11.** Consider any $\delta \in (0,1)$. Taking $N \geq \frac{L^{\gamma}}{(1-\gamma)^2}$ one has with probability at least 868 $1 - \delta$, for sa - *rectangular*

$$
\begin{array}{ll} \displaystyle \Big(I-\gamma \underline{P}^{\widehat{\pi},\widehat{V}}\Big)^{-1}\sqrt{\text{Var}_{\underline{P}^{\widehat{\pi},\widehat{V}}}(\widehat{V}^{\widehat{\pi},\sigma})} & \leq 6\sqrt{\frac{\Big(1+\varepsilon_{\mathsf{opt}}+\frac{L^{\prime\prime}C_S\|1\|_{*}}{N(1-\gamma)}\Big)}{\gamma^3(1-\gamma)^2\max\{1-\gamma,\sigma\}}}\mathbf{1} \\ & \leq 6\sqrt{\frac{\Big(1+\varepsilon_{\mathsf{opt}}+\frac{L^{\prime\prime}C_S\|1\|_{*}}{N(1-\gamma)}\Big)}{(1-\gamma)^3\gamma^3}}\mathbf{1}. \end{array}
$$

⁸⁶⁹ *and for* s*-rectangular*

$$
\begin{aligned} \left(I - \gamma \underline{P}^{\widehat{\pi},\widehat{V}}\right)^{-1}\sqrt{\operatorname{Var}_{\underline{P}^{\widehat{\pi},\widehat{V}}}(\widehat{V}^{\widehat{\pi},\sigma})} &\leq 6\sqrt{\frac{L''\Big(1+\varepsilon_{\mathsf{opt}} + \frac{C_S\|1\|_*}{N(1-\gamma)}\Big)}{\gamma^3(1-\gamma)^2\max\{1-\gamma, C_g\widetilde{\sigma}\min_s\|\widehat{\pi}_s\|_\infty\}}}\mathbf{1}\\ &\leq 6\sqrt{\frac{L''\Big(1+\varepsilon_{\mathsf{opt}} + \frac{C_S\|1\|_*}{N(1-\gamma)}\Big)}{(1-\gamma)^3\gamma^2}}\mathbf{1}. \end{aligned}
$$

⁸⁷⁰ Applying Lemma [11](#page-28-2) and [\(65\)](#page-23-2) to [\(93\)](#page-28-1) leads to

$$
S_1 = 2\sqrt{\frac{L'}{N}} \left(I - \gamma \underline{P}^{\widehat{\pi}, \widehat{V}}\right)^{-1} \sqrt{\text{Var}_{\underline{P}^{\widehat{\pi}, \widehat{V}}}(\widehat{V}^{\widehat{\pi}, \sigma})}
$$

\$\leq 12\sqrt{\frac{L''}{\gamma^3 (1 - \gamma)^2 \max\{1 - \gamma, C_g \sigma\} N}}\$1. (94)

871 for sa-rectangular and the same quantity replacing $\max\{1 - \gamma, C_g\sigma\}$ by $\max\{1 - \gamma, C_g\sigma\}$ 872 γ , $C_g \tilde{\sigma}$ min_s $\|\hat{\pi}_s\|_*$ } for s– rectangular case.

⁸⁷³ • Applying Lemma 1 with
$$
\|\widehat{V}^{\star,\sigma} - \widehat{V}^{\widehat{\pi},\sigma}\|_{\infty} \leq \varepsilon_{\text{opt}}
$$
 and (65), S_2 can be controlled as

$$
S_2 = 2\sqrt{\frac{L''}{N}} \Big(I - \gamma \underline{P}^{\widehat{\pi}, \widehat{V}} \Big)^{-1} \sqrt{\Big| \text{Var}_{\underline{P}^{\widehat{\pi}, \widehat{V}}} (\widehat{V}^{\star,\sigma}) - \text{Var}_{\underline{P}^{\widehat{\pi}, \widehat{V}}} (\widehat{V}^{\widehat{\pi},\sigma}) \Big|}
$$

\$\leq 4\sqrt{\frac{L''}{N}} \Big(I - \gamma \underline{P}^{\widehat{\pi}, \widehat{V}} \Big)^{-1} \sqrt{\varepsilon_{\text{opt}} \frac{1}{1 - \gamma^2}} \leq 8\sqrt{\frac{\varepsilon_{\text{opt}} L''}{(1 - \gamma)^4 N}} 1. \tag{95}

874 • S_3 can be controlled similar to \mathcal{R}_2 in [\(78\)](#page-25-0) as follows:

$$
S_3 = 2\sqrt{\frac{L''}{N}} \left(I - \gamma \underline{P}^{\hat{\pi}, \hat{V}} \right)^{-1} \sqrt{\left| \text{Var}_{P^{\hat{\pi}}} (\hat{V}^{\star, \sigma}) - \text{Var}_{\underline{P}^{\hat{\pi}, \hat{V}}} (\hat{V}^{\star, \sigma}) \right|}
$$

\$\leq 4\sqrt{\frac{L''}{N}} \left(I - \gamma \underline{P}^{\hat{\pi}, \hat{V}} \right)^{-1} \sqrt{\frac{1}{\gamma^2 \max\{1 - \gamma, C_g \sigma\}} 1} \leq 8\sqrt{\frac{L''}{\gamma^2 (1 - \gamma)^2 \max\{1 - \gamma, C_g \sigma\} N}} \tag{96}

 $f(x)$ for sa-rectangular and replacing $\max\{1 - \gamma, \sigma\}$ by $\max\{1 - \gamma, \tilde{\sigma} \min_s ||\hat{\pi}_s||_*\}$ for s− ⁸⁷⁶ rectangular case.

⁸⁷⁷ Finally, summing up the results in [\(94\)](#page-29-0), [\(95\)](#page-29-1), and [\(96\)](#page-29-2) and inserting them back to [\(93\)](#page-28-1) yields: taking $N \geq \frac{L''}{(1-\gamma)}$ 878 $N \geq \frac{L^{\prime\prime}}{(1-\gamma)^2}$, with probability at least $1-\delta$,

$$
\left(I - \gamma \underline{P}^{\widehat{\pi}, \widehat{V}}\right)^{-1} \left(\underline{\widehat{P}}^{\widehat{\pi}, \widehat{V}} \widehat{V}^{\widehat{\pi}, \sigma} - \underline{P}^{\widehat{\pi}, \widehat{V}} \widehat{V}^{\widehat{\pi}, \sigma}\right) \leq \left(\frac{2\varepsilon_{\text{opt}}}{1 - \gamma}\right) 1 + \frac{14L''C_S \,||1||_*}{N(1 - \gamma)^2} 1
$$
\n
$$
+ 12\sqrt{\frac{L''\left(1 + \varepsilon_{\text{opt}} + \frac{C_S \,||1||_*}{N(1 - \gamma)}\right)}{\gamma^3 (1 - \gamma)^2 \max\{1 - \gamma, C_g \sigma\} N} 1 + 8\sqrt{\frac{\varepsilon_{\text{opt}} L'}{(1 - \gamma)^4 N}} 1 + 8\sqrt{\frac{L'}{\gamma^2 (1 - \gamma)^2 \max\{1 - \gamma, C_g \sigma\} N}} 1
$$
\n
$$
\leq 16\sqrt{\frac{L''\left(1 + \varepsilon_{\text{opt}} + \frac{C_S \,||1||_*}{N(1 - \gamma)}\right)}{\gamma^3 (1 - \gamma)^2 \max\{1 - \gamma, \sigma\} N}} 1 + \left(\frac{2\varepsilon_{\text{opt}} \gamma}{(1 - \gamma)} + 8\sqrt{\frac{\varepsilon_{\text{opt}} \gamma L'}{(1 - \gamma)^4 N}} 1 + \frac{15L''C_S \,||1||_*}{N(1 - \gamma)^2} 1\right)}
$$
\n(97)

 $f(3)$ for sa-rectangular and the same quantity replacing $\max\{1-\gamma,\sigma\}$ by $\max\{1-\gamma,\tilde{\sigma}\min_s \|\hat{\pi}_s\|_*\}$ for s− rectangular case. In this step, it is harder to decouple terms as $\hat{V}^{\hat{\pi}}$ depends on data both in $\hat{\pi}$ 881 and \hat{V} .

882 Step 5: controlling $\|\hat{V}^{\hat{\pi},\sigma} - V^{\hat{\pi},\sigma}\|_{\infty}$: bounding the second term in [\(61\)](#page-22-5). Towards this, applying 883 Lemma [10](#page-28-0) leads to in sa-rectangular case:

$$
\left(I - \gamma \underline{P}^{\hat{\pi},V}\right)^{-1} \left(\underline{\hat{P}}^{\hat{\pi},\hat{V}} \widehat{V}^{\hat{\pi},\sigma} - \underline{P}^{\hat{\pi},\hat{V}} \widehat{V}^{\hat{\pi},\sigma}\right) \leq \left(I - \gamma \underline{P}^{\hat{\pi},V}\right)^{-1} \left|\underline{\hat{P}}^{\hat{\pi},\hat{V}} \widehat{V}^{\hat{\pi},\sigma} - \underline{P}^{\hat{\pi},\hat{V}} \widehat{V}^{\hat{\pi},\sigma}\right|
$$
\n
$$
\leq 2\sqrt{\frac{L''}{N}} \left(I - \gamma \underline{P}^{\hat{\pi},V}\right)^{-1} \sqrt{\text{Var}_{P^{\hat{\pi}}}(\widehat{V}^{\star,\sigma})} + \left(I - \gamma \underline{P}^{\hat{\pi},V}\right)^{-1} \left(2\varepsilon_{\text{opt}}\right)1 \tag{99}
$$
\n
$$
+ \left(I - \gamma \underline{P}^{\hat{\pi},V}\right)^{-1} \frac{L''14C_S \left\|1\right\|_*}{N(1-\gamma)}1
$$
\n
$$
\leq \left(\frac{2\varepsilon_{\text{opt}}}{(1-\gamma)}\right)1 + \underbrace{2\sqrt{\frac{L''}{N}} \left(I - \gamma \underline{P}^{\hat{\pi},V}\right)^{-1} \sqrt{\text{Var}_{P^{\hat{\pi},V}}(V^{\hat{\pi},\sigma})}}_{=:S_4} + \underbrace{2\sqrt{\frac{L'}{N}} \left(I - \gamma \underline{P}^{\hat{\pi},V}\right)^{-1} \sqrt{\text{Var}_{P^{\hat{\pi},V}}(\widehat{V}^{\hat{\pi},\sigma} - V^{\hat{\pi},\sigma})}}_{=:S_5}
$$
\n
$$
+ 2\sqrt{\frac{L''}{N}} \left(I - \gamma \underline{P}^{\hat{\pi},\hat{V}}\right)^{-1} \sqrt{\text{Var}_{P^{\hat{\pi},V}}(\widehat{V}^{\star,\sigma}) - \text{Var}_{P^{\hat{\pi},V}}([\widehat{V}^{\hat{\pi},\sigma})]}_{=:S_6}
$$
\n
$$
+ 2\sqrt{\frac{L''}{N}} \left(I - \gamma \underline{P}^{\hat{\pi},\hat{V}}\right)^{-1} \sqrt{\text{Var}_{P^{\hat{\pi},V}}(\widehat{V
$$

⁸⁸⁴ We shall bound each of the terms separately.

N

⁸⁸⁵ • Applying Lemma 7 with
$$
P = \underline{P}^{\hat{\pi}, V}
$$
, $\pi = \hat{\pi}$, and taking $V = V^{\hat{\pi}, \sigma}$ which obeys $V^{\hat{\pi}, \sigma} = r_{\hat{\pi}} + \gamma \underline{P}^{\hat{\pi}, V} V^{\hat{\pi}, \sigma}$, the term S_4 can be controlled similar to (83) as follows:

 $=:\mathcal{S}_7$

$$
\mathcal{S}_4 \le 8 \sqrt{\frac{L'' \left(1 + \varepsilon_{\mathsf{opt}} + \frac{C_S ||1||_*}{N(1-\gamma)}\right)}{\gamma^3 (1-\gamma)^2 \max\{1-\gamma, C_g \sigma\} N}} 1.
$$
\n(101)

887 for sa-rectangular and the same quantity replacing $\max\{1 - \gamma, C_g\sigma\}$ by $\max\{1 - \gamma, C_g\sigma\}$ 888 γ , $\min_s \|\hat{\pi_s}\|_* \tilde{\sigma} C_g$ for s– rectangular case.

889 • For S_5 , it is observed that

$$
S_5 = 2\sqrt{\frac{L''}{N}} \left(I - \gamma \underline{P}^{\widehat{\pi}, V}\right)^{-1} \sqrt{\text{Var}_{\underline{P}^{\widehat{\pi}, V}}(\widehat{V}^{\widehat{\pi}, \sigma} - V^{\widehat{\pi}, \sigma})}
$$

$$
\leq 2\sqrt{\frac{L''}{(1 - \gamma)^2 N}} \left\|V^{\widehat{\pi}, \sigma} - \widehat{V}^{\widehat{\pi}, \sigma}\right\|_{\infty} 1.
$$
 (102)

890 • Next, observing that S_6 and S_7 are almost the same as the terms S_2 (controlled in [\(95\)](#page-29-1)) and 891 S_3 (controlled in [\(96\)](#page-29-2)) in [\(93\)](#page-28-1), it is easily verified that they can be controlled as follows

$$
\mathcal{S}_6 \le 4\sqrt{\frac{\varepsilon_{\text{opt}}L''}{(1-\gamma)^4N}}1, \qquad \qquad \mathcal{S}_7 \le 4\sqrt{\frac{L''}{\gamma^2(1-\gamma)^2\max\{1-\gamma, C_g\sigma\}N}}1. \tag{103}
$$

so for sa-rectangular and the same quantity replacing $\max\{1-\gamma,\sigma\}$ by $\max\{1-\gamma,\min_s ||\hat{\pi_s}||_*\tilde{\sigma}\}$ 893 for s− rectangular case. Then inserting the results in [\(101\)](#page-30-0), [\(102\)](#page-30-1), and [\(103\)](#page-30-2) back to [\(100\)](#page-30-3) leads to

$$
\left(I - \gamma \underline{P}^{\widehat{\pi},V}\right)^{-1} \left(\underline{\widehat{P}}^{\widehat{\pi},\widehat{V}} \widehat{V}^{\widehat{\pi},\sigma} - \underline{P}^{\widehat{\pi},\widehat{V}} \widehat{V}^{\widehat{\pi},\sigma}\right) \tag{104}
$$
\n
$$
\leq \left(\frac{2\varepsilon_{\text{opt}}}{(1-\gamma)}\right)1 + 8\sqrt{\frac{L''\left(1 + \varepsilon_{\text{opt}} + \frac{C_S\|\mathbf{1}\|_{*}}{N(1-\gamma)}\right)}{\gamma^3(1-\gamma)^2 \max\{1-\gamma,\sigma\}N}1 + \frac{14L''C_S\|\mathbf{1}\|_{*}}{N(1-\gamma)^2 1}
$$

$$
+2\sqrt{\frac{L''}{(1-\gamma)^2N}}\left\|V^{\hat{\pi},\sigma}-\hat{V}^{\hat{\pi},\sigma}\right\|_{\infty}+4\sqrt{\frac{L''\varepsilon_{\text{opt}}}{(1-\gamma)^4N}}+4\sqrt{\frac{L''}{\gamma^2(1-\gamma)^2\max\{1-\gamma,C_g\sigma\}N}}1\right\}\leq 12\sqrt{\frac{L''\left(1+\varepsilon_{\text{opt}}+\frac{C_S\|1\|_*}{N(1-\gamma)}\right)}{\gamma^3(1-\gamma)^2\max\{1-\gamma,\sigma\}N}+4\sqrt{\frac{L''}{(1-\gamma)^2N}}\left\|V^{\hat{\pi},\sigma}-\hat{V}^{\hat{\pi},\sigma}\right\|_{\infty}1}
$$
(105)

$$
+\frac{3\varepsilon_{\text{opt}}}{(1-\varepsilon)} + \frac{14L''C_S\|1\|_*}{N(1-\varepsilon)^2} 1.
$$
 (106)

$$
\frac{1}{(1-\gamma)} + \frac{1}{N(1-\gamma)^2} \tag{100}
$$

(107)

Taking $N \geq \frac{16L''}{1-\alpha}$ 894 Taking $N \ge \frac{16L''}{1-\gamma}$, we obtain $\frac{2\varepsilon_{\text{opt}}}{(1-\gamma)} + 4\varepsilon_{\text{opt}}\sqrt{\frac{L''}{(1-\gamma)^4N}}1 \le \frac{3\varepsilon_{\text{opt}}}{(1-\gamma)}$ with probability at least $1-\delta$, ⁸⁹⁵ inserting [\(97\)](#page-29-3) and [\(105\)](#page-31-0) back to [\(61\)](#page-22-5)

$$
\left\| \widehat{V}^{\widehat{\pi},\sigma} - V^{\widehat{\pi},\sigma} \right\|_{\infty} \le \max \left\{ 16 \sqrt{\frac{L'' \left(1 + \varepsilon_{\text{opt}} + \frac{C_S \|\mathbf{1}\|_*}{N(1-\gamma)} \right)}{\gamma^3 (1-\gamma)^2 \max\{1-\gamma,\sigma\} N}} 1 + \left(\frac{2\varepsilon_{\text{opt}} \gamma}{(1-\gamma)} + \frac{14L'' C_S \|\mathbf{1}\|_*}{N(1-\gamma)^2} 1 \right),
$$

$$
12 \sqrt{\frac{L'' \left(1 + \varepsilon_{\text{opt}} + \frac{C_S \|\mathbf{1}\|_*}{N(1-\gamma)} \right)}{\gamma^3 (1-\gamma)^2 \max\{1-\gamma,\sigma\} N}} + 4 \sqrt{\frac{L''}{(1-\gamma)^2 N}} \left\| V^{\widehat{\pi},\sigma} - \widehat{V}^{\widehat{\pi},\sigma} \right\|_{\infty} 1
$$
 (108)

$$
+\frac{3\varepsilon_{\text{opt}}}{(1-\gamma)} + \frac{14L''C_S \left\|1\right\|_{*}}{N(1-\gamma)^2} 1.\right\}
$$

\n
$$
\leq 48\sqrt{\frac{L''\left(1+\varepsilon_{\text{opt}} + \frac{C_S\left\|1\right\|_{*}}{N(1-\gamma)}\right)}{\gamma^3(1-\gamma)^2 \max\{1-\gamma, C_g\sigma\}N} + \frac{6\varepsilon_{\text{opt}}}{(1-\gamma)} + \frac{28L''C_S \left\|1\right\|_{*}}{N(1-\gamma)^2} 1}
$$
(109)

s96 for *sα*-rectangular and the same quantity, replacing $\max\{1-\gamma, C_g\sigma\}$ by $\max\{1-\gamma, \tilde{\sigma} \min_s ||\hat{\pi}_s||_*\}$ 897 for s− rectangular case. The proof is similar for TV without the geometric term depending on C_S .

898 Step 6: summing all the previous inequalities results. Using all the previous results in [\(90\)](#page-27-4) and [\(109\)](#page-31-1) and inserting back to [\(56\)](#page-21-4) complete the proof as follows: taking $N \ge \frac{16L''}{(1-\gamma)}$ 899 (109) and inserting back to (56) complete the proof as follows: taking $N \ge \frac{16L^6}{(1-\gamma)^2}$, $\gamma > 1/4$, with 900 probability at least $1 - \delta$, for sa-rectangular

$$
\|V^{*,\sigma} - V^{\hat{\pi},\sigma}\|_{\infty} \le \|V^{\pi^*,\sigma} - \hat{V}^{\pi^*,\sigma}\|_{\infty} + \varepsilon_{\text{opt}} + \|\hat{V}^{\hat{\pi},\sigma} - V^{\hat{\pi},\sigma}\|_{\infty}
$$

\n
$$
\le \varepsilon_{\text{opt}} + 48\sqrt{\frac{L''\left(1 + \varepsilon_{\text{opt}} + \frac{C_S \|1\|_{*}}{N(1-\gamma)}\right)}{\gamma^3 (1-\gamma)^2 \max\{1-\gamma, C_g \sigma\} N} + \frac{6\varepsilon_{\text{opt}}}{(1-\gamma)} + \frac{28L''C_S \|1\|_{*}}{N(1-\gamma)^2} 1 + 160\sqrt{\frac{L(1 + \frac{C_S \|1\|_{*}}{N(1-\gamma)})}{(1-\gamma)^2 \max\{1-\gamma, C_g \sigma\} N} + \frac{14LC_S \|1\|_{*}}{N(1-\gamma)^2}}\n\n
$$
\le \frac{8\varepsilon_{\text{opt}}}{1-\gamma} + \frac{42L''C_S \|1\|_{*}}{N(1-\gamma)^2} + 1508\sqrt{\frac{L''(1 + \frac{C_S \|1\|_{*}}{N(1-\gamma)})}{(1-\gamma)^2 \max\{1-\gamma, C_g \sigma\} N}}
$$

\n
$$
(110)
$$
$$

where the last inequality holds by $\gamma \geq \frac{1}{4}$ and $N \geq \frac{16L''}{(1-\gamma)}$ 901 where the last inequality holds by $\gamma \ge \frac{1}{4}$ and $N \ge \frac{16L}{(1-\gamma)^2}$ for sa-rectangular and the same quantity 902 replacing max{1 − γ, σ} by max{1 − γ, σ̃ min_s{ $\|\pi_s^*\|_*$ }} for s– rectangular case. The proof is 903 similar for TV without the geometric term depending on \widetilde{C}_S .

⁹⁰⁴ 9.3 Proof of the auxiliary lemmas

⁹⁰⁵ 9.3.1 Proof of Lemma [5](#page-21-0)

906 Similarly to [Shi et al.](#page-11-4) [\[2023\]](#page-11-4), denoting s_0 the argmax of $V^{\pi,\sigma}$ such that $V^{\pi,\sigma}(s_0) = \min_{s \in S} V^{\pi,\sigma}(s)$ ⁹⁰⁷ using recursive Bellman's equation

$$
\max_{s \in S} V^{\pi,\sigma}(s) = \max_{s \in S} \mathbb{E}_{a \sim \pi(\cdot|s)} \left[r(s,a) + \gamma \inf_{\mathcal{P} \in \mathcal{U}^{\sigma}(P_{s,a})} \mathcal{P} V^{\pi,\sigma} \right]
$$
(111)

$$
\leq \max_{(s,a)\in S\times\mathcal{A}} \left(1 + \gamma \inf_{\mathcal{P}\in\mathcal{U}^{\sigma}(P_{s,a})} \mathcal{P}V^{\pi,\sigma}\right) \tag{112}
$$

908 where the second line holds since the reward function $r(s, a) \in [0, 1]$ for all $(s, a) \in S \times A$.

909 Then we construct for any $(s, a) \in S \times A$ $\widetilde{P}_{s,a} \in \mathbb{R}^S$ by reducing the values of some elements of 910 $P_{s,a}$ such that $P_{s,a} \ge \widetilde{P}_{s,a} \ge 0$ and $\sum_{s'} \left(P_{s,a} \left(s' \right) - \widetilde{P}_{s,a} \left(s' \right) \right) = \sigma C_g^{s,a}.$ with $C_g^{s,a} = \frac{1}{\| e_{s_0} \|}$ It

911 lead to
$$
\tilde{P}_{s,a} + \sigma C_9^{s,a} e_{s_0}^{\top} \in \mathcal{U}_{\parallel \parallel}^{\sigma} (P_{s,a})
$$
, where e_{s_0} is the standard basis vector supported on s_0 , since

$$
\frac{1}{2} \left\| \widetilde{P}_{s,a} + \sigma C_g^{s,a} e_{s_0}^\top - P_{s,a} \right\| \le \frac{1}{2} \left\| \widetilde{P}_{s,a} - P_{s,a} \right\| + \frac{C_g^{s,a} \sigma \left\| e_{s_0} \right\|}{2} = \sigma/2 + \sigma/2 = \sigma \tag{113}
$$

⁹¹² Consequently,

$$
\inf_{\mathcal{P}\in\mathcal{U}_{\|\cdot\|}^{\sigma}(P_{s,a})}\mathcal{P}V^{\pi,\sigma}\leq\left(\widetilde{P}_{s,a}+\sigma C_{g}^{s,a}e_{s_{0}}^{\top}\right)V^{\pi,\sigma}\leq\left\|\widetilde{P}_{s,a}\right\|_{1}\left\|V^{\pi,\sigma}\right\|_{\infty}+\sigma V^{\pi,\sigma}\left(s_{0}\right)C_{g}\tag{114}
$$

$$
\leq (1 - C_g^{s,a} \sigma) \max_{s \in \mathcal{S}} V^{\pi,\sigma}(s) + \sigma C_g^{s,a} \min_{s \in \mathcal{S}} V^{\pi,\sigma}(s)
$$
\n(115)

⁹¹³ where the second inequality holds by

$$
\left\| \widetilde{P}_{s,a} \right\|_1 = \sum_{s'} \widetilde{P}_{s,a} \left(s' \right) = -\sum_{s'} \left(P_{s,a} \left(s' \right) - \widetilde{P}_{s,a} \left(s' \right) \right) + \sum_{s'} P_{s,a} \left(s' \right) = 1 - \sigma C_g^{s,a} \tag{116}
$$

⁹¹⁴ Plugging this back to the previous relation gives

$$
\max_{s \in \mathcal{S}} V^{\pi,\sigma}(s) \le 1 + \gamma (1 - C_g^{s,a} \sigma) \max_{s \in \mathcal{S}} V^{\pi,\sigma}(s) + \gamma C_g^{s,a} \sigma \min_{s \in \mathcal{S}} V^{\pi,\sigma}(s)
$$
(117)

⁹¹⁵ which, by rearranging terms, yields

$$
\max_{s \in S} V^{\pi,\sigma}(s) \le \frac{1 + \gamma C_g^{s,a} \sigma \min_{s \in S} V^{\pi,\sigma}(s)}{1 - \gamma (1 - C_g^{s,a} \sigma)} \le \frac{1}{(1 - \gamma) + \gamma C_g^{s,a} \sigma} + \min_{s \in S} V^{\pi,\sigma}(s) \le \frac{1}{\gamma \max\{1 - \gamma, C_g^{s,a} \sigma\}} + \min_{s \in S} V^{\pi,\sigma}(s)
$$
\n(118)

⁹¹⁶ So rearranging term it holds :

$$
\mathrm{sp}(V^{\pi,\sigma})_{\infty} \le \frac{1}{\gamma \max\{1-\gamma, C_g \sigma\}}\tag{120}
$$

917 As we pick the supreme over s ov this quantity, $C_g^{s,a}$ is replaced by $C_g = 1/(\min_s ||e_s||)$ to obtain a 918 control for every s.

919 9.3.2 Proof of Lemma [6](#page-21-1)

920 Similarly to [5](#page-21-0) denoting s_0 the argmax of $V^{\pi,\sigma}$ such that $V^{\pi,\sigma}(s_0) = \min_{s \in S} V^{\pi,\sigma}(s)$ using recursive ⁹²¹ Bellman's equation

$$
\max_{s \in \mathcal{S}} V^{\pi,\sigma}(s) = \max_{s \in \mathcal{S}} \mathbb{E}_{a \sim \pi(\cdot|s)} \left[r(s,a) + \gamma \inf_{\mathcal{P} \in \mathcal{U}^{\sigma}(P_s)} \mathcal{P} V^{\pi,\tilde{\sigma}} \right]
$$
(121)

$$
\leq \max_{(s)\in\mathcal{S}} \left(1 + \gamma \inf_{\mathcal{P}^\pi \in \mathcal{U}^\sigma(P_s^\pi)} \mathcal{P}^\pi V^{\pi,\tilde{\sigma}} \right) \tag{122}
$$

922 where the second line holds since the reward function $r(s, a) \in [0, 1]$ for all $(s, a) \in S \times A$. Then 923 we construct for any $(s) \in \mathcal{S} \widetilde{P}_s \in \mathbb{R}^{S \times A}$ by reducing the values of some elements of P_s such that 924 $P_s \geq \widetilde{P}_s \geq 0$ and

$$
\forall a \in A, \sum_{s'} \left(P_s \left(s', a \right) - \widetilde{P}_s \left(s', a \right) \right) = \sigma_{s,a} C_g^s
$$

925 Writting $\|\sigma_{s,a}\| \leq \tilde{\sigma}$ we construction $\sigma_{s,a}$ such that

$$
\sum_{a} \pi(a|s) \sum_{s'} \left(P_s\left(s',a\right) - \widetilde{P}_s\left(s',a\right) \right) = \|\pi_s\|_* \tilde{\sigma} C_g^s \tag{123}
$$

⁹²⁶ Not that this construction is possible as it is simply Cauchy Swartz equality case.

927 It leads to $\widetilde{P}_s + \sigma e_{s_0,a}^{\top} \in \mathcal{U}^{\tilde{\sigma}}(P_s)$, where $e_{s_0,a} \in \mathbb{R}^{S \times A}$ is the standard basis vector supported on s_0 928 which is equal to 1 at s_0 for every a and otherwise.

$$
\frac{1}{2} \left\| \widetilde{P}_s + \sigma_{s,a} C_g^s e_{s_0,a}^\top - P_s \right\| \le \frac{1}{2} \left\| \widetilde{P}_s - P_s \right\| + \frac{\widetilde{\sigma} \left\| e_{s_0} \right\| C_g}{2} = \widetilde{\sigma}/2 + \widetilde{\sigma}/2 \tag{124}
$$

929 as $C_g^s || \sigma_{s,a} e_{s_0,a} ||$ is equal to $C_g^s \tilde{\sigma} || e_{s_0} ||$ Consequently,

=

$$
\inf_{\mathcal{P}^\pi \in \mathcal{U}^\sigma(P_s)} \mathcal{P}^\pi V^{\pi,\tilde{\sigma}} \leq \Pi^\pi \left(\widetilde{P}_s^\pi + \sigma C_g^s e_{s_0}^\top \right) V^{\pi,\tilde{\sigma}} \tag{125}
$$

$$
= \sum_{a} \sum_{s'} \widetilde{P}_s(s',a) \pi(a|s) V^{\pi,\tilde{\sigma}}(s') + \sigma e_{s_0,a} C_g^s V^{\pi,\tilde{\sigma}}(s_0) \pi(a|s) \tag{126}
$$

$$
= \sum_{a} \sup_{s'} V(s') \left(\sum_{s'} \widetilde{P}_s(s', a)\right) \pi(a|s) + V^{\pi, \tilde{\sigma}}(s_0) \pi(a|s) \sigma_{s, a} C_g^s \tag{127}
$$

$$
\stackrel{(a)}{=} \max_{s \in \mathcal{S}} V^{\pi,\sigma}(s) \sum_{a} (1 - \sigma C_g^s) \pi(a|s) + \sum_{a} V^{\pi,\tilde{\sigma}}(s_0) \pi(a|s) \sigma_{s,a} C_g^s \quad (128)
$$

$$
\stackrel{(b)}{=} \max_{s \in \mathcal{S}} V^{\pi,\sigma}(s) \left(1 - \tilde{\sigma} C_g^s\right) \left\|\pi_s\right\|_* + \left\|\pi_s\right\|_* \tilde{\sigma} C_g^s \min_{s \in \mathcal{S}} V^{\pi,\tilde{\sigma}}(s) \tag{129}
$$

$$
\leq (1 - C_g^s \tilde{\sigma}) \max_{s \in \mathcal{S}} V^{\pi, \sigma}(s) + \sigma C_g^s \min_{s \in \mathcal{S}} V^{\pi, \tilde{\sigma}}(s)
$$
\n(130)

930 where $\|\pi\|_{\infty}$ is the norm of the vector $\pi(.|s)$ and where (a) holds because

$$
\sum_{s'} \widetilde{P}_s \left(s' \right) = -\sum_{s'} \left(P_s \left(s' \right) - \widetilde{P}_s \left(s' \right) \right) + \sum_{s'} P_s \left(s' \right) = 1 - \sigma_{s,a} C_g^s \tag{131}
$$

⁹³¹ Finally (b) is due to [\(123\)](#page-33-0). Plugging this back to the previous relation gives

$$
\max_{s \in \mathcal{S}} V^{\pi,\tilde{\sigma}}(s) \le 1 + \gamma (1 - \tilde{\sigma} C_g^s \left\| \pi_s \right\|_*) \max_{s \in \mathcal{S}} V^{\pi,\sigma}(s) + \gamma \left\| \pi_s \right\|_* \sigma C_g^s \min_{s \in \mathcal{S}} V^{\pi,\tilde{\sigma}}(s) \tag{132}
$$

⁹³² which, by rearranging terms, yields

$$
\max_{s \in \mathcal{S}} V^{\pi,\tilde{\sigma}}(s) \le \frac{1 + \gamma \tilde{\sigma} \left\| \pi_s \right\|_* C_g^s \min_{s \in \mathcal{S}} V^{\pi,\tilde{\sigma}}(s)}{1 - \gamma (1 - C_g^s \tilde{\sigma} \left\| \pi_s \right\|_*)} \tag{133}
$$

$$
\leq \frac{1}{(1-\gamma) + \|\pi_s\|_* \gamma C_g^s \tilde{\sigma}} + \min_{s \in \mathcal{S}} V^{\pi, \tilde{\sigma}}(s)
$$
(134)

$$
\leq \frac{1}{(1-\gamma) + \gamma \left\|\pi_s\right\|_* C_g^s \tilde{\sigma}} + \min_{s \in \mathcal{S}} V^{\pi, \tilde{\sigma}}(s)
$$
\n(135)

$$
\leq \frac{1}{\gamma \max\{1 - \gamma, C_g^s \|\pi_s\|_* \tilde{\sigma}\}} + \min_{s \in \mathcal{S}} V^{\pi, \tilde{\sigma}}(s)
$$
(136)

⁹³³ So rearranging and taking the sumpremum over all sterm it holds :

$$
\mathrm{sp}(V^{\pi,\tilde{\sigma}})_{\infty} \le \frac{1}{\gamma \max\{1-\gamma, \min_{s} \|\pi_{s}\|_{*} C_{g}\tilde{\sigma}\}}\tag{137}
$$

934 As we pick the supreme over s ovf this quantity, C_g^s is replaced by $C_g = 1/\min_s ||e_s||$

935 9.3.3 Proof of Lemma [8](#page-23-0)

 $\overline{}$ \mid

936 *Proof.* Concentration of the robust values function. with probability $1 - \delta$, it holds:

$$
\left|P_{s,a}^{\pi,V}V-\widehat{P}_{s,a}^{\pi,V}V\right|\leq 2\sqrt{\frac{L}{N}}\sqrt{\text{Var}[V]_{\alpha^{**}}}(V)+\frac{3LC_S\left\|1\right\|_{*}}{N(1-\gamma)}
$$

937 with $L = 2 \log(18 ||1||_* SAN/\delta)$ and First we can use optimization duality such as in [\(50\)](#page-19-3):

$$
\left|P_{s,a}^{\pi,V}V - \hat{P}_{s,a}^{\pi,V}V\right|
$$
\n
$$
= \left|\max_{\mu_{P_{s,a}^0}^{\lambda,\omega} \in \mathcal{M}_{P_{s,a}^0}^{\lambda,\omega}} \left\{P_{s,a}^0(V-\mu) - \sigma\left(\text{sp}((V-\mu))_*\right)\right\}
$$
\n
$$
- \max_{\mu_{P_{s,a}^0}^{\lambda,\omega} \in \mathcal{M}_{P_{s,a}^0}^{\lambda,\omega}} \left\{\hat{P}_{s,a}^0(V-\mu_{\hat{P}_{s,a}^0}^{\lambda,\omega}) - \sigma\left(\text{sp}((V-\mu_{\hat{P}_{s,a}^0}^{\lambda,\omega}))_*\right)\right\}\right|
$$
\n
$$
\leq \max \left\{\left|\max_{\mu_{P_{s,a}^0}^{\lambda,\omega} \in \mathcal{M}_{P_{s,a}^0}^{\lambda,\omega}} \left\{P_{s,a}^0(V-\mu_{P_{s,a}^0}^{\lambda,\omega}) - \sigma\left(\text{sp}((V-\mu_{P_{s,a}^0}^{\lambda,\omega}))_*\right)\right\}\right|
$$
\n
$$
- \max_{\mu_{P_{s,a}^0}^{\lambda,\omega} \in \mathcal{M}_{P_{s,a}^0}^{\lambda,\omega}} \left\{\hat{P}_{s,a}^0(V-\mu_{P_{s,a}^0}^{\lambda,\omega}) - \sigma\left(\text{sp}((V-\mu_{P_{s,a}^0}^{\lambda,\omega}))_*\right)\right\}|;
$$
\n
$$
\left|\max_{\mu_{P_{s,a}^0}^{\lambda,\omega} \in \mathcal{M}_{P_{s,a}^0}^{\lambda,\omega}} \left\{\hat{P}_{s,a}^0(V-\mu_{P_{s,a}^0}^{\lambda,\omega}) - \sigma\left(\text{sp}((V-\mu_{P_{s,a}^0}^{\lambda,\omega}))_*\right)\right\}|;
$$
\n
$$
(140)
$$

$$
\max_{\substack{\mu_{\hat{P}_{s,a}^0}^{\lambda,\omega}\in\mathcal{M}_{\hat{P}_{s,a}^0}}}\left\{\widehat{P}_{s,a}^0(V-\mu_{\hat{P}_{s,a}^0}^{\lambda,\omega})-\sigma\left(\text{sp}((V-\mu_{\hat{P}_{s,a}^0}^{\lambda,\omega}))_*\right)\right\}
$$
(140)

$$
-\max_{\mu_{\hat{P}_{s,a}^{0}}^{ \lambda,\omega} \in \mathcal{M}_{\hat{P}_{s,a}^{0}}} \left\{ P_{s,a}^{0}(V - \mu_{\hat{P}_{s,a}^{0}}^{ \lambda,\omega}) - \sigma \left(\text{sp}((V - \mu_{\hat{P}_{s,a}^{0}}^{ \lambda,\omega}))_{*} \right) \right\} \qquad \Big| \right\}
$$

$$
\leq \max \left\{ \left| \max_{\mu \in \mu_{\hat{P}_{s,a}^{0}}^{ \lambda,\omega} } \left(P_{s,a}^{0} - \hat{P}_{s,a}^{0} \right) (V - \mu_{P_{s,a}^{0}}^{ \lambda,\omega}) \right|, \left| \max_{\mu_{\hat{P}_{s,a}^{0}}^{ \lambda,\omega} \in \mathcal{M}_{\hat{P}_{s,a}^{0}}^{ \lambda,\omega} } \left(P_{s,a}^{0} - \hat{P}_{s,a}^{0} \right) (V - \mu_{\hat{P}_{s,a}^{0}}^{ \lambda,\omega}) \right| \right\}
$$

$$
= g_{s,a}(\alpha_{\hat{P}}^{\lambda,\omega},V) \qquad (141)
$$

⁹³⁸ where in the first equality we use Lemma [3.](#page-18-0) The final inequality is a consequence of the 1- Lipschitzness of the max operator. First, we control $g_{s,a}(\alpha_P^{\lambda,\omega}, V)$. To do so, we use for a fixed $\alpha_P^{\lambda,\omega}$ 939

940 and any vector V that is independent with \hat{P}^0 , the Bernstein's inequality, one has with probability at 941 least $1 - \delta$ with sa-rectangular notations,

$$
g_{s,a}(\alpha_P^{\lambda,\omega}, V) = \left| \left(P_{s,a}^0 - \widehat{P}_{s,a}^0 \right) [V]_{\alpha_P^{\lambda,\omega}} \right| \le \sqrt{\frac{2\log(\frac{2}{\delta})}{N}} \sqrt{\text{Var}_{P_{s,a}^0}(V)} + \frac{2\log(\frac{2}{\delta})}{3N(1-\gamma)}. \tag{142}
$$

⁹⁴² Once pointwise concentration derived, we will use uniform concentration to yield this lemma. First, 943 union bound, is obtained noticing that $g_{s,a}(\alpha_P^{\lambda,\omega}, V)$ is 1-Lipschitz w.r.t. λ and ω as it is linear in P 944 λ and ω . Moreover, $\lambda^* = ||V - \mu^* - \omega||_*$ obeying $\lambda^* \le \frac{||1||_*}{1-\gamma}$. The quantity $\omega \in [0, 1/(1-\gamma)]$ 945 as it is always smaller that V by definition. We construct then a 2-dimensional a ε_1 -net N_{ε_1} over 946 $\lambda^* \in [0, \frac{\|1\|_*}{1-\gamma}]$ and $\omega \in [0, 1/(1-\gamma)]$ whose size satisfies $|N_{\varepsilon_1}| \le \left(\frac{3\|1\|_*}{\varepsilon_1(1-\gamma)}\right)^2$ [\[Vershynin, 2018\]](#page-12-19). 947 Using union bound and [\(142\)](#page-35-0), it holds with probability at least $1 - \frac{\delta}{SA}$ that for all $\lambda \in N_{\epsilon_1}$,

$$
g_{s,a}(\alpha_P^{\lambda}, V) \le \sqrt{\frac{2\log(\frac{2SA|N_{\varepsilon_1}|}{\delta})}{N}}\sqrt{\text{Var}_{P_{s,a}^0}(V)} + \frac{2\log(\frac{2SA|N_{\varepsilon_1}|}{\delta})}{3N(1-\gamma)}.
$$
 (143)

948 Using the previous equation and also [\(141\)](#page-34-1), it results in using notation $2\log(\frac{18SAN}{\delta}) = L$,

$$
g_{s,a}(\alpha_P^{\lambda}, V) \stackrel{(a)}{\leq} \sup_{\alpha_P^{\lambda} \in N_{\epsilon_1}} \left| \left(P_{s,a}^{0} - \widehat{P}_{s,a}^{0} \right) [V]_{\alpha_P^{\lambda}} \right| + \varepsilon_1
$$
\n
$$
\stackrel{(b)}{\leq} \sqrt{\frac{2 \log(\frac{2SA|N_{\epsilon_1}|}{\delta})}{N}} \sqrt{\text{Var}_{P_{s,a}^{0}}(V)} + \frac{2 \log(\frac{2SA|N_{\epsilon_1}|}{\delta})}{3N(1-\gamma)} + \varepsilon_1 \qquad (144)
$$
\n
$$
\stackrel{(c)}{\leq} \sqrt{\frac{2 \log(\frac{2SA|N_{\epsilon_1}|}{\delta})}{N}} \sqrt{\text{Var}_{P_{s,a}^{0}}(V)} + \frac{\log(\frac{2SA|N_{\epsilon_1}|}{\delta})}{N(1-\gamma)}
$$
\n
$$
\stackrel{(d)}{\leq} 2\sqrt{\frac{L}{N}} \sqrt{\text{Var}_{P_{s,a}^{0}}(V)} + \frac{L}{N(1-\gamma)}
$$
\n
$$
\leq 2\sqrt{\frac{L}{N}} ||V||_{\infty} + \frac{L}{N(1-\gamma)}
$$
\n
$$
\leq 3\sqrt{\frac{L}{(1-\gamma)^2 N}} \qquad (146)
$$

949 where (a) is because the optimal α^* falls into the ε_1 -ball centered around some point inside N_{ε_1} and 950 $g_{s,a}(\alpha_P^{\lambda}, V)$ is 1-Lipschitz with regard to λ and ω , (b) is due to Eq. [\(143\)](#page-35-1), (c) arises from taking $\varepsilon_1 = \frac{\log(\frac{2SA|N_{\varepsilon_1}|}{\delta})}{3N(1-\gamma)}$ 951 $\varepsilon_1 = \frac{\log(\frac{2SA|N_{\varepsilon_1}|}{\delta})(1-\gamma)}{3N(1-\gamma)}$, (d) is verified by $|N_{\varepsilon_1}| \le (\frac{3\|1\|_*}{\varepsilon_1(1-\gamma)})^2 \le 9N \|1\|$ and that variance of a ceiling ⁹⁵² function of a vector is smaller than the variance of non-ceiling vector , and the last inequality comes 953 from the fact $||V^{\star,\sigma}||_{\infty} \le \frac{1}{1-\gamma}$ and taking $N \ge 2\log(\frac{18SAN||1||_*}{\delta}) = L$.

954 Contrary to the previous term, the second term $g_{s,a}(\alpha_{\hat{P}}^{\lambda}, V)$ is more difficult as we need concentration, 955 but there is an extra dependency in the data thought the parameter $\alpha_{\hat{P}}^{\lambda}$. We need to decouple this ⁹⁵⁶ problem using absorbing MDPs. Then it leads to

$$
g_{s,a}(\alpha_{\hat{P}}^{\lambda,\omega},V) \tag{147}
$$

$$
=|\max_{\substack{\lambda,\omega\\ \hat{P}_{s,a}^{\lambda,\omega}\in\mathcal{M}_{\hat{P}_{s,a}^{\lambda}}} }\left(P_{s,a}^{0}-\hat{P}_{s,a}^{0}\right)(V-\mu_{\hat{P}_{s,a}^{\lambda}}^{\lambda,\omega})|
$$
(148)

$$
=|\max_{\mu\in\mathcal{M}^{\lambda,\omega}_{\hat{P}_{s,a}^0}}\left(P_{s,a}^0-\hat{P}_{s,a}^0\right)(V-\mu_{P_{s,a}^0}^{\lambda,\omega})+\left(P_{s,a}^0-\hat{P}_{s,a}^0\right)(\mu_{P_{s,a}^0}^{\lambda,\omega}-\mu_{\hat{P}_{s,a}^0}^{\lambda,\omega})|
$$
(149)

$$
\leq \left| \max_{\mu_{P_{s,a}}^{\lambda,\omega} \in \mathcal{M}_{P_{s,a}}^{\lambda,\omega}} \left(P_{s,a}^0 - \widehat{P}_{s,a}^0 \right) (V - \mu_{P_{s,a}}^{\lambda,\omega}) + \max_{\mu_{\hat{P}_{s,a}}^{\lambda,\omega} \in \mathcal{M}_{\hat{P}_{s,a}}^{\lambda,\omega}} \left(P_{s,a}^0 - \widehat{P}_{s,a}^0 \right) (\mu_{P_{s,a}}^{\lambda,\omega} - \mu_{\hat{P}_{s,a}}^{\lambda,\omega}) \right|
$$
\n(150)

957 In the first equality, we add the term $\mu_{P_{s,a}}^{\lambda,\omega}$ to retrieve the previous concentration problem, fixing $P_{s,a}^0$ 958 and optimizing λ, ω . In the second, we extend the max using triangular inequality. The first term in ⁹⁵⁹ the last equality is exactly the term we have controlled previously, while the second one needs more 960 attention. We decouple the dependency of the data, and then controlling the difference between the μ . 961 Then using the characterization of the optimal μ from equation [\(47\)](#page-19-4):

$$
\left(P_{s,a}^{0}-\widehat{P}_{s,a}^{0}\right)\left(\mu_{P_{s,a}^{0}}^{\lambda,\omega}-\mu_{\hat{P}_{s,a}^{0}}^{\lambda,\omega}\right)=\sum_{s'}\lambda\left(P_{s,a}^{0}(s')-\widehat{P}_{s,a}^{0}(s')\right)\left(\nabla\big\|P_{s,a}^{0}\big\|-\nabla\big\|\hat{P}_{s,a}^{0}\big\|\right)
$$

962 Here we assume that the subgradient are gradient as we assume that the norm is C^2 . The question 963 that arises is whether the gradient if the norm is Lipschitz. Assuming that the norm is C^2 , using ⁹⁶⁴ Mean value theorem, we know that

$$
\left\|(\nabla \left\|P_{s,a}^0\right\| - \nabla \left\|\hat{P}_{s,a}^0\right\|)\right\|_2 \le \sup_{x \in \Delta(S)} \left\|\nabla^2 \left\|x\right\|\right\|_2 \left\|(P_{s,a}^0 - \hat{P}_{s,a}^0)\right\|_2.
$$

965 As the norm is C^2 , is continuous and as the simplex is bounded, this quantity exists according to ⁹⁶⁶ Extreme value theorem. It is possible to compute this contact depending on S for explicit norm such 967 as L_p . Indeed, for L_2 :

$$
\nabla^2 \|x\|_2 = \frac{(I - \frac{x \otimes x)}{\|x\|_2^2}}{\|x\|_2} \le \frac{1}{\|x\|_2} I \le \frac{1}{\min_{x \in \Delta(S)} \|x\|_2} I = \sqrt{S}
$$

where \otimes is the Kronecker product. So we have an upper bound independently of x. For $L_p = ||x||_p$ 968 969 norms, $p \geq 2$, we have simple taking derivative twice:

$$
\nabla^2 \|x\|_p = \frac{p-1}{L_p} \left(\mathcal{A}^{p-2} - g_p g_p^T\right)
$$

⁹⁷⁰ with

$$
\mathcal{A} = \text{Diag}\left(\frac{\text{abs}(x)}{L_p}\right)
$$

$$
g_p = \mathcal{A}^{p-2}\left(\frac{x}{L_p}\right).
$$

971 where Diag is the diagonal matrix. However, as $x \leq L_p$, $A \leq I$, we get

$$
H \le \frac{p-1}{\|x\|_p} \le (p-1)S^{1/q} = C_S \tag{151}
$$

972 where the $1/L_p$ is minimized for the uniform distribution. Then using Cauchy Swartz inequality, it ⁹⁷³ holds

$$
\left(P_{s,a}^{0} - \widehat{P}_{s,a}^{0}\right)\left(\mu_{P_{s,a}^{0}}^{\lambda,\omega} - \mu_{\hat{P}_{s,a}^{0}}^{\lambda,\omega}\right) \leq \lambda \left\| \left(P_{s,a}^{0} - \widehat{P}_{s,a}^{0}\right) \right\|_{2}^{2}.
$$
 (152)

Then the question is how to bound the quantity $\|\mathbf{v}\|$ $\left(P^0_{s,a}-\widehat{P}^0_{s,a}\right)\n\right\|$ 2 974 Then the question is how to bound the quantity $\left\| \left(P_{s,a}^0 - P_{s,a}^0 \right) \right\|_2$. To do so, we will use Mac ⁹⁷⁵ Diarmid inequality.

⁹⁷⁶ Definition 3. *Bounded difference property*

977 *A function* $f: \mathcal{X}_1 \times \ldots \mathcal{X}_n \to \mathbb{R}$ *satisfies the bounded difference property if for each* $i = 1, \ldots, n$ s ⁷⁸ *the change of coordinate from* s_i *to* s'_i *may change the value of the function at most on* c_i

$$
\forall i \in [n]: \sup_{x_i' \in \mathcal{X}_i} |f(x_1,\ldots,x_i,\ldots,x_n) - f(x_1,\ldots,x_i',\ldots,x_n)| \leq c_i
$$

979 In our case, we consider $f(X_1, \ldots, X_n) = ||\sum_{k=1}^n X_k||_2$. Then we can notice that by triangle 980 inequality for any x_1, \ldots, x_n and x'_k with $X_{i,s'} = P^0_{i,s,a}(s') - P^0_{s,a}(s')$ (index *i* holds for index of ⁹⁸¹ sample generated from the generative model) that

$$
f(x_1,...,x_k,...,x_n) = ||x_1 + ... + x_n||_2 \le ||x_1 + ... + x_n - x_k + x'_k||_2 + ||x_k - x'_k||_2
$$

\$\leq f(x_1,...,x'_k,...,x_n) + 2\$

982 **Theorem 5.** *(McDiarmid's inequality). [McDiarmid et al.](#page-11-18) [\[1989\]](#page-11-18) Let* $f : \mathcal{X}_1 \times \ldots \mathcal{X}_n \to \mathbb{R}$ be a 983 *function satisfying the bounded difference property with bounds* c_1, \ldots, c_n . Consider independent 984 *random variables* $X_1, \ldots, X_n, X_i \in \mathcal{X}_i$ for all *i*. Then for any $t > 0$

$$
\mathbb{P}\left[f\left(X_1,\ldots,X_n\right)-\mathbb{E}\left[f\left(X_1,\ldots,X_n\right)\right]\geq t\right]\leq \exp\left(-\frac{2t^2}{\sum_{i=1}^n c_i^2}\right)
$$

⁹⁸⁵ Using McDiarmid's inequality and union bound, we can bound the term as here

$$
\left\| \left(P_{s,a}^0 - \widehat{P}_{s,a}^0 \right) \right\|_2^2 - \mathbb{E}[\left\| \left(P_{s,a}^0 - \widehat{P}_{s,a}^0 \right) \right\|_2^2] \le \frac{2N \log(|S| |A| / \delta)}{N^2}
$$

986 with probability $1 - \delta/(|S||A|)$. Moreover, the additional term can be bounded as follows:

$$
\mathbb{E}[\left\| \left(P_{s,a}^0 - \widehat{P}_{s,a}^0 \right) \right\|_2^2] = \mathbb{E}[\sum_{s'} \left(P_{s,a}^0(s') - P_{s,a}^0(s') \right)^2 = \mathbb{E}[\sum_{s'} \left(\frac{1}{N} \sum_{i}^N X_{i,s'} \right)^2]
$$

987 with $X_{i,s'} = P^0_{i,s,a}(s') - P^0_{s,a}(s')$ is one sample sampled from the generative model. Then

$$
\mathbb{E}[\left\| \left(P_{s,a}^0 - \hat{P}_{s,a}^0 \right) \right\|_2^2] = \frac{1}{N^2} \sum_{s'} \text{Var}(\sum_{i}^N X_{i,s}) \stackrel{a}{=} \frac{1}{N^2} \sum_{i}^N \sum_{s'} \text{Var}(X_{i,s})
$$

$$
= \frac{1}{N^2} \sum_{i}^N \mathbb{E}(\sum_{s'} X_{i,s}^2) \le \frac{4}{N}
$$

⁹⁸⁸ where (a) the last equality comes from the independence of the random variables and where the last ⁹⁸⁹ inequality comes from the fact the maximum of two elements in the simplex is bounded by 2. Finally, 990 regrouping the two terms, we obtain with probability $1 - \delta/(|S||A|)$:

$$
\left\| \left(P_{s,a}^0 - \widehat{P}_{s,a}^0 \right) \right\|_2^2 \le \frac{2N \log(|S||A|/(\delta)))}{N^2} + \frac{4}{N} = \frac{8 \log(|S||A|/(\delta)))}{N} + \frac{4}{N}
$$

$$
\le \frac{6 \log(|S||A|/(\delta))}{N} = \frac{L'}{N}
$$

991 with $L' = 6 \log(|S||A|/(\delta))$. Finally, plugging the previous equation in [\(152\)](#page-36-1):

$$
\max_{\mu \in \mu^{\lambda}_{\hat{P}_{s,a}^0}} \left(P_{s,a}^0 - \hat{P}_{s,a}^0 \right) (\mu^{\lambda}_{P_{s,a}^0} - \mu) \le \max_{\lambda} \left\| \left(P_{s,a}^0 - \hat{P}_{s,a}^0 \right) \right\|_2^2 C_S \lambda.
$$

- 992 This term can be easily controlled by taking the supremum over λ which is a 1 dimensional parameter.
- 993 Then we can bound $\lambda \in [0, H \|1\|_*]$. Indeed,

$$
\lambda^* = \left\|V - \mu^* - \eta\right\|_* \leq \left\|V\right\|_* \leq H \left\|1\right\|_*.
$$

⁹⁹⁴ Finally, we obtain:

$$
\max_{\lambda} \left\| \left(P_{s,a}^0 - \widehat{P}_{s,a}^0 \right) \right\|_2^2 C_S \lambda \le \frac{L' C_S \left\| 1 \right\|_*}{N(1 - \gamma)}.
$$

⁹⁹⁵ Regrouping all terms:

$$
g_{s,a}(\alpha_{\hat{P}}^{\lambda}, V) \leq |\max_{\mu_{P_{s,a}}^{\lambda} \in \mathcal{M}_{P_{s,a}}^{\lambda}} \left(P_{s,a}^{0} - \hat{P}_{s,a}^{0} \right) (V - \mu_{P_{s,a}}^{\lambda}) + \max_{\mu_{P_{s,a}}^{\lambda} \in \mathcal{M}_{P_{s,a}}^{\lambda}} \left(P_{s,a}^{0} - \hat{P}_{s,a}^{0} \right) (\mu_{P_{s,a}}^{\lambda} - \mu_{P_{s,a}}^{\lambda})|
$$

$$
\leq 2\sqrt{\frac{L}{N}}\sqrt{\text{Var}(V)} + \frac{L'C_S \, ||1||_*}{N(1 - \gamma)} + \frac{L}{N(1 - \gamma)} \leq 2\sqrt{\frac{L}{N}}\sqrt{\text{Var}(V)} + \frac{3LC_S \, ||1||_*}{N(1 - \gamma)} \tag{153}
$$

996 We can recognize that the second term is a second order term as long as $N \geq (C_S ||1||_*)^2$, we can 997 regroup the two terms. Finally, as $g_{s,a}(\alpha_{\hat{P}}^{\lambda}, V) \ge g_{s,a}(\alpha_P^{\lambda}, V)$, we obtain

$$
\left| P_{s,a}^{\pi,V} V - \hat{P}_{s,a}^{\pi,V} V \right| \le 2 \sqrt{\frac{L}{N}} \sqrt{\text{Var}_{P_{s,a}^{0}}(V)} + \frac{3LC_S \left\| 1 \right\|_{*}}{N(1-\gamma)}
$$
(155)

It is important to note that the geometry of the norm is present in the second order term $\frac{3LCs||1||}{N(1-\gamma)}$ 998 999 but this term is negligible as it is proportional to $1/N$ with regard to the variance term in $1/\sqrt{N}$. 1000 Moreover, note that the quantity $C_S ||1||_* = S$ for L_2 norms.

1001 For the specific case of TV which is not C^2 smooth, this lemma still holds as in [\(141\)](#page-34-1), we only need 1002 to control one term without the dependency on data in the supremum as α_P^{λ} reduces to a scalar α ¹⁰⁰³ which does not depend on P. Then extra decomposition using smoothness of the norm is not needed, ¹⁰⁰⁴ as the only remaining term in the max in [\(141\)](#page-34-1) is the left hand side term.

1005 For the s-rectangular case, the first equation can be rewritten simply factorizing by $\pi(a|s)$ using ¹⁰⁰⁶ lemma [4.](#page-19-0)

$$
\left| P_{s,a}^{\pi,V}V - \hat{P}_{s,a}^{\pi,V}V \right| = \left| \sum_{a} \pi(a|s) \max_{\mu_{P_{s,a}^0}^{\lambda} \in \mathcal{M}_{P_{s,a}^0}^{\lambda}} \left\{ P_{s,a}^0(V - \mu) - \sigma \left(\text{sp}((V - \mu))_* \right) \right\} - \max_{\mu_{P_{s,a}^0}^{\lambda} \in \mathcal{M}_{P_{s,a}^0}^{\lambda}} \left\{ \hat{P}_{s,a}^0(V - \mu_{P_{s,a}^0}^{\lambda}) - \sigma \left(\text{sp}((V - \mu_{P_{s,a}^0}^{\lambda})_* \right) \right\} \right| \tag{156}
$$

$$
\leq \sum_{a} \pi(a|s) \left(2\sqrt{\frac{L}{N}} \sqrt{\text{Var}_{P_{s,a}^{0}}(V)} + \frac{LC_S \left\|1\right\|_{*}}{N(1-\gamma)} \right) \tag{157}
$$

$$
=2\sqrt{\frac{L}{N}}\sqrt{\text{Var}_{P_{s,a}^{0}}(V)}+\frac{3LC_{S}\left\|1\right\|_{*}}{N(1-\gamma)}
$$
(158)

- ¹⁰⁰⁷ using sa-rectangular results, which gives the result.
- 1008 Combining this lemma with a matrix notation, one has with probability 1δ :

$$
\left| \hat{\underline{P}}^{\pi^*,V} V^{\pi^*,\sigma} - \underline{P}^{\pi^*,V} V^{\pi^*,\sigma} \right| \le 2 \sqrt{\frac{L}{N}} \sqrt{\text{Var}_{P^*} (V^{*,\sigma})} + \frac{3LC_S \left\| 1 \right\|_{*}}{N(1-\gamma)}
$$
(159)

(160)

 \Box

1009

¹⁰¹⁰ 9.3.4 Proof of Lemma [9](#page-24-0)

1011 Using the same argument as in [\(209\)](#page-47-1), it holds that for any α^* solution of (??) or [\(53\)](#page-21-6)

$$
\left(I - \gamma \underline{\widehat{P}}^{\pi^\star, V}\right)^{-1} \sqrt{\text{Var}_{\underline{\widehat{P}}^{\pi^\star, V}}(V^{\star, \sigma})} = \sqrt{\frac{1}{1 - \gamma}} \sqrt{\sum_{t=0}^{\infty} \gamma^t \left(\underline{\widehat{P}}^{\pi^\star, V}\right)^t \text{Var}_{\underline{\widehat{P}}^{\pi^\star, V}}([V^{\star, \sigma}]_{\alpha^{\star \star}})}}. \tag{161}
$$

Then we can control $\text{Var}_{\underline{\widehat{P}}^{\pi^*},V}(V^{*,\sigma})$. Defining $V' := V^{*,\sigma} - \eta \mathbb{1}, \eta \in \mathbb{R}$, we use Bellman's equation ¹⁰¹³ in [\(32\)](#page-17-1)) which lead to

$$
V' = V^{\star,\sigma} - \eta \mathbf{1} \le V^{\star,\sigma} - \eta \mathbf{1} = r_{\pi^*} + \gamma \underline{P}^{\pi^*,V} V^{\star,\sigma} - \eta \mathbf{1}
$$
 (162)

$$
=r_{\pi^*} + \gamma P^{\pi^*,V}[V^{*,\sigma} - \gamma \sigma s p(V^{*,\sigma})_* - \eta 1
$$
\n
$$
= \tau^* V
$$
\n(163)

$$
=r'_{\pi^*} + \gamma \underline{\widehat{P}}^{\pi^*,V} V' + \gamma \Big(P^{\pi^*,V} - \underline{\widehat{P}}^{\pi^*,V} \Big) V^{*,\sigma} - \gamma \sigma \text{sp}([V^{*,\sigma})_* \tag{164}
$$

$$
=r'_{\pi^*} + \gamma \underline{\hat{P}}^{\pi^*,V} V' + \gamma \Big(\underline{P}^{\pi^*,V} - \underline{\hat{P}}^{\pi^*,V}\Big) V^{*,\sigma} \tag{165}
$$

$$
\leq r'_{\pi^*} + \gamma \underline{\widehat{P}}^{\pi^*,V} V' + \gamma \Big(\underline{P}^{\pi^*,V} - \underline{\widehat{P}}^{\pi^*,V} \Big) V^{*,\sigma} \tag{166}
$$

1014 where in the second line we use Lemma [3.](#page-18-0) and we define $r'_{\pi^*} = r_{\pi^*} - (1 - \gamma)\eta < r_{\pi^*} < 1$. We ¹⁰¹⁵ obtain the same result in s-rectangular case using lemma [4](#page-19-0) instead. Then

$$
\operatorname{Var}_{\underline{\widehat{P}}^{\pi^*,V}}([V^{*,\sigma}) \stackrel{\text{(a)}}{=} \operatorname{Var}_{\underline{\widehat{P}}^{\pi^*,V}}(V') = \underline{\widehat{P}}^{\pi^*,V}(V' \circ V') - (\underline{\widehat{P}}^{\pi^*,V}V') \circ (\underline{\widehat{P}}^{\pi^*,V}V') \n= \underline{\widehat{P}}^{\pi^*,V}(V' \circ V') - (\underline{\widehat{P}}^{\pi^*,V}V') \circ (\underline{\widehat{P}}^{\pi^*,V}V') \n\stackrel{\text{(b)}}{\leq} \underline{\widehat{P}}^{\pi^*,V}(V' \circ V') - \frac{1}{\gamma^2}(V' - r'_{\pi^*} - \gamma(\underline{P}^{\pi^*,V} - \underline{\widehat{P}}^{\pi^*,V})V^{*,\sigma})^{^{2}} \n= \underline{\widehat{P}}^{\pi^*,V}(V' \circ V') - \frac{1}{\gamma^2}V' \circ V' + \frac{2}{\gamma^2}V' \circ (r'_{\pi^*} + \gamma(\underline{P}^{\pi^*,V} - \underline{\widehat{P}}^{\pi^*,V})V^{*,\sigma}) \n- \frac{1}{\gamma^2}(r'_{\pi^*} + \gamma(\underline{P}^{\pi^*,V} - \underline{\widehat{P}}^{\pi^*,V})V^{*,\sigma})^{^{^{2}} \n\leq \underline{\widehat{P}}^{\pi^*,V}(V' \circ V') - \frac{1}{\gamma}V' \circ V' + \frac{2}{\gamma^2}||V'||_{\infty}1
$$
\n(167)

$$
+\frac{2}{\gamma}||V'||_{\infty}\left|\left(\underline{P}^{\pi^{\star},V}-\underline{\widehat{P}}^{\pi^{\star},V}\right)V^{\star,\sigma}\right|\right.
$$
\n(168)

$$
\leq \underline{\widehat{P}}^{\pi^*,V} \left(V' \circ V' \right) - \frac{1}{\gamma} V' \circ V' + \frac{2}{\gamma^2} ||V'||_{\infty} 1 \tag{169}
$$

$$
+\frac{2}{\gamma}||V'||_{\infty}\left(2\sqrt{\frac{L}{(1-\gamma)^2N}}+\frac{3C_S||1||_{*}L}{N(1-\gamma)}\right)1,
$$
\n(170)

1016 where (a) holds by the fact that $Var_{P_{\pi}}(V - c1) = Var_{P_{\pi}}(V)$ for any scalar c and $V \in \mathbb{R}^{S}$, (b) follows 1017 from [\(166\)](#page-39-1), (c) arises from $\frac{1}{\gamma^2}V' \circ V' \ge \frac{1}{\gamma}V' \circ V'$ and $-1 \le r_{\pi^*} - (1 - \gamma)V_{\min}1 = r'_{\pi^*} \le r_{\pi^*} \le 1$, ¹⁰¹⁸ and the last inequality holds by Lemma [8.](#page-23-0) Plugging [\(170\)](#page-39-2) into [\(161\)](#page-39-3) leads to

$$
\left(I - \gamma \underline{\widehat{P}}^{\pi^\star, V}\right)^{-1} \sqrt{\text{Var}_{\underline{\widehat{P}}^{\pi^\star, V}}(V^{\star, \sigma})}
$$
\n(171)

$$
\leq \sqrt{\frac{1}{1-\gamma}} \Big(\sum_{t=0}^{\infty} \gamma^t \left(\underline{\widehat{P}}^{\pi^*,V}\right)^t \left(\underline{\widehat{P}}^{\pi^*,V}\left(V'\circ V'\right) - \frac{1}{\gamma}V'\circ V' + \frac{2}{\gamma^2}||V'||_{\infty}1\right) \tag{172}
$$

$$
+\frac{2}{\gamma}||V'||_{\infty}\left(2\sqrt{\frac{L}{(1-\gamma)^{2}N}}+\frac{3C_{S}||1||_{*}L}{N(1-\gamma)}\right)\right)^{1/2}
$$
\n
$$
\leq \sqrt{\frac{1}{1-\gamma}}\sqrt{\left|\sum_{t=0}^{\infty}\gamma^{t}\left(\widehat{\underline{P}}^{\pi^{*},V}\right)^{t}\left(\widehat{\underline{P}}^{\pi^{*},V}(V'\circ V')-\frac{1}{\gamma}V'\circ V'\right)\right|}
$$
\n
$$
+\sqrt{\frac{1}{1-\gamma}}\sqrt{\sum_{t=0}^{\infty}\gamma^{t}\left(\widehat{\underline{P}}^{\pi^{*},V}\right)^{t}\left(\frac{2}{\gamma^{2}}||V'||_{\infty}1+\frac{2}{\gamma}||V'||_{\infty}\left(2\sqrt{\frac{L}{(1-\gamma)^{2}N}}+\frac{3C_{S}||1||_{*}L}{N(1-\gamma)}\right)\right)}
$$
\n
$$
\leq \sqrt{\frac{1}{1-\gamma}}\sqrt{\left|\sum_{t=0}^{\infty}\gamma^{t}\left(\widehat{\underline{P}}^{\pi^{*},V}\right)^{t}\left[\widehat{\underline{P}}^{\pi^{*},V}(V'\circ V')-\frac{1}{\gamma}V'\circ V'\right]\right|}
$$
\n(173)

$$
+\sqrt{\frac{\left(2+2\left(2\sqrt{\frac{L}{(1-\gamma)^2N}}+\frac{3C_S||1||_*L}{N(1-\gamma)}\right)\right)||V'||_{\infty}}{(1-\gamma)^2\gamma^2}}1,
$$
\n(174)

¹⁰¹⁹ where (i) holds by the triangle inequality. Therefore, the remainder of the proof shall focus on the ¹⁰²⁰ first term, which follows

$$
\left| \sum_{t=0}^{\infty} \gamma^{t} \left(\underline{\hat{P}}^{\pi^{*},V} \right)^{t} \left(\underline{\hat{P}}^{\pi^{*},V} \left(V' \circ V' \right) - \frac{1}{\gamma} V' \circ V' \right) \right|
$$

=
$$
\left| \left(\sum_{t=0}^{\infty} \gamma^{t} \left(\underline{\hat{P}}^{\pi^{*},V} \right)^{t+1} - \sum_{t=0}^{\infty} \gamma^{t-1} \left(\underline{\hat{P}}^{\pi^{*},V} \right)^{t} \right) \left(V' \circ V' \right) \right| \leq \frac{1}{\gamma} ||V'||_{\infty}^{2} 1
$$
 (175)

¹⁰²¹ by recursion. Inserting [\(175\)](#page-40-0) back to [\(174\)](#page-40-1) leads to

$$
\left(I - \gamma \hat{\underline{P}}^{\pi^*,V}\right)^{-1} \sqrt{\text{Var}_{\hat{\underline{P}}^{\pi^*,V}}(V^{*,\sigma}]_{\alpha^*}}\n\n\leq \sqrt{\frac{||V||_{\infty}^2}{\gamma(1-\gamma)}} 1 + 3\sqrt{\frac{\left(1 + \left(\sqrt{\frac{L}{(1-\gamma)^2 N}} + \frac{C_S ||1||_* L}{N(1-\gamma)}\right)\right) ||V'||_{\infty}}{(1-\gamma)^2 \gamma^2}} 1\n\n\leq 4\sqrt{\frac{\left(1 + \left(\sqrt{\frac{L}{(1-\gamma)^2 N}} + \frac{C_S ||1||_* L}{N(1-\gamma)}\right)\right) ||V'||_{\infty}}{(1-\gamma)^2 \gamma^2}} 1\n\n\sqrt{\frac{\left(1 + \left(\sqrt{\frac{L}{(1-\gamma)^2 N}} + \frac{C_S ||1||_* L}{N(1-\gamma)}\right)\right) ||V'||_{\infty}}{(1+\left(1\sqrt{\frac{L}{(1-\gamma)^2 N}} + \frac{C_S ||1||_* L}{N(1-\gamma)}\right)\right) ||V'||_*}\n
$$
\n(176)

$$
\leq 4\sqrt{\frac{\left(1+\left(1\sqrt{\frac{L}{(1-\gamma)^2N}}+\frac{C_S\|1\|_{*}L}{N(1-\gamma)}\right)\right)\|V'\|_{*}}{(1-\gamma)^2\gamma^2}}1\tag{177}
$$

1022 Taking the infimum over η in the right-hand side, recall $V' := V^{*,\sigma} - \eta$, we obtain the definition of ¹⁰²³ the span semi norm.

$$
\left(I - \gamma \underline{\widehat{P}}^{\pi^*,V}\right)^{-1} \sqrt{\text{Var}_{\underline{\widehat{P}}^{\pi^*,V}}(V^{*,\sigma}]_{\alpha^*}} \le 4 \sqrt{\frac{\left(1 + \left(\sqrt{\frac{L}{(1-\gamma)^2 N}} + \frac{C_S ||1||_* L}{N(1-\gamma)}\right)\right) \text{sp}(V^{*,\sigma})_*}{(1-\gamma)^2 \gamma^2}} 1
$$

$$
\le 4 \sqrt{\frac{\left(1 + \left(\sqrt{\frac{L}{(1-\gamma)^2 N}} + \frac{C_S ||1||_* L}{N(1-\gamma)}\right)\right)}{\gamma^3 (1-\gamma)^2 \max\{1-\gamma, C_g \sigma\}} 1}
$$
(178)

$$
\le 4 \sqrt{\frac{\left(1 + \left(\sqrt{\frac{L}{(1-\gamma)^2 N}} + \frac{C_S ||1||_* L}{N(1-\gamma)}\right)\right)}{\gamma^3 (1-\gamma)^3} 1},
$$
(179)

1024 where the penultimate inequality follows from applying Lemma [5](#page-21-0) with $P = P^0$ and $\pi = \pi^*$:

$$
\mathrm{sp}(V^{\star,\sigma})_* \leq \frac{1}{\gamma \max\{1-\gamma, C_g \sigma\}}.
$$

¹⁰²⁵ or with an extra factor for s rectangular assumptions.

$$
\mathrm{sp}(V^{\star,\sigma})_* \leq \frac{1}{\gamma \max\{1-\gamma, \min_s \|\pi_s\|_* \tilde{\sigma} C g\}}.
$$

¹⁰²⁶ 9.3.5 Proof of Lemma [10](#page-28-0)

1027 In this proof, we will sa-rectangular notations, especially $\alpha_{s,a}^{**}$ but it holds also for α_s^{**} and s-1028 rectangular case. For any $(s, a) \in S \times A$, using the results in [\(141\)](#page-34-1), for both sa-rectangular case:

$$
\left| \widehat{P}_{s,a}^{\widehat{\pi},\widehat{V}} \widehat{V}^{\widehat{\pi},\sigma} - P_{s,a}^{\widehat{\pi},\widehat{V}} \widehat{V}^{\widehat{\pi},\sigma} \right| \le \max \left\{ \left| \left(P_{s,a}^{0} - \widehat{P}_{s,a}^{0} \right) \left[\widehat{V}^{\widehat{\pi},\sigma} \right]_{\alpha_{P_{s,a}}^{\lambda,\omega*}} \right|, \left| \left(P_{s,a}^{0} - \widehat{P}_{s,a}^{0} \right) \left[\widehat{V}^{\widehat{\pi},\sigma} \right]_{\alpha_{\widehat{P}_{s,a}}^{\lambda,\omega*}} \right| \right\}
$$
(180)

¹⁰²⁹ The first term in this max can be bounded using:

$$
\left| \left(P_{s,a}^{0} - \hat{P}_{s,a}^{0} \right) [\hat{V}^{\hat{\pi},\sigma}]_{\alpha_{P_{s,a}}^{\lambda,\omega*}} \right|
$$
\n
$$
\stackrel{(a)}{\leq} \left(\left| \left(P_{s,a}^{0} - \hat{P}_{s,a}^{0} \right) [\hat{V}^{\star,\sigma}]_{\alpha_{P_{s,a}}^{\lambda,\omega*}} \right| + \left| \left(P_{s,a}^{0} - \hat{P}_{s,a}^{0} \right) (\left[\hat{V}^{\hat{\pi},\sigma}]_{\alpha_{P_{s,a}}^{\lambda,\omega*}} - [\hat{V}^{\star,\sigma}]_{\alpha_{P_{s,a}}^{\lambda,\omega*}} \right| \right) \right|
$$
\n
$$
\leq \left(\left| \left(P_{s,a}^{0} - \hat{P}_{s,a}^{0} \right) [\hat{V}^{\star,\sigma}]_{\alpha_{P_{s,a}}^{\lambda,\omega*}} \right| + \left\| P_{s,a}^{0} - \hat{P}_{s,a}^{0} \right\|_{1} \left\| [\hat{V}^{\hat{\pi},\sigma}]_{\alpha_{P_{s,a}}^{\lambda,\omega*}} - [\hat{V}^{\star,\sigma}]_{\alpha_{P_{s,a}}^{\lambda,\omega*}} \right\|_{\infty} \right)
$$
\n
$$
\stackrel{(b)}{\leq} \left| \left(P_{s,a}^{0} - \hat{P}_{s,a}^{0} \right) [\hat{V}^{\star,\sigma}]_{\alpha_{P_{s,a}}^{\lambda,\omega*}} \right| + 2 \left\| \hat{V}^{\hat{\pi},\sigma} - \hat{V}^{\star,\sigma} \right\|_{\infty}
$$
\n
$$
\stackrel{(c)}{\leq} \left| \left(P_{s,a}^{0} - \hat{P}_{s,a}^{0} \right) [\hat{V}^{\star,\sigma}]_{\alpha_{P_{s,a}}^{\lambda,\omega*}} \right| + 2\varepsilon_{\text{opt}} \tag{182}
$$

1030 where (a) comes from the triangle inequality, and (b) comes from $||P_{s,a}^0 - \widehat{P}_{s,a}^0||_1 \leq 2$ and 1031 $\left\| \begin{bmatrix} \hat{V}^{\hat{\pi},\sigma} \end{bmatrix}_{\alpha_{P_{sa}}^{\lambda,\omega*}} - \begin{bmatrix} \hat{V}^{\star,\sigma} \end{bmatrix}_{\alpha_{P_{sa}}^{\lambda,\omega*}} \right\|_{\infty} \leq \left\| \hat{V}^{\hat{\pi},\sigma} - \hat{V}^{\star,\sigma} \right\|_{\infty}$, and (c) follows from the definition of the ¹⁰³² optimization error in [\(55\)](#page-21-3). The second term of the max can be controlled in the same manner, i.e.:

$$
\left| \left(P_{s,a}^{0} - \widehat{P}_{s,a}^{0} \right) \left[\widehat{V}^{\widehat{\pi},\sigma} \right]_{\alpha_{\widehat{P}_{s,a}}^{\lambda,\omega}} \right| \leq \left| \left(P_{s,a}^{0} - \widehat{P}_{s,a}^{0} \right) \left[\widehat{V}^{\star,\sigma} \right]_{\alpha_{\widehat{P}_{s,a}}^{\lambda,\omega}} \right| + 2\varepsilon_{\text{opt}} \tag{183}
$$
\n
$$
\leq \left| \max_{\substack{\mu_{\widehat{P}_{s,a}}^{\lambda} \in \mathcal{M}^{\lambda}_{\widehat{P}_{s,a}}} \left(P_{s,a}^{0} - \widehat{P}_{s,a}^{0} \right) \left(\widehat{V}^{\star,\sigma} - \mu_{\widehat{P}_{s,a}^{0}}^{\lambda} \right) + \max_{\substack{\mu_{\widehat{P}_{s,a}}^{\lambda} \in \mathcal{M}^{\lambda}_{\widehat{P}_{s,a}}}} \left(P_{s,a}^{0} - \widehat{P}_{s,a}^{0} \right) \left(\mu_{\widehat{P}_{s,a}}^{\lambda} - \mu_{\widehat{P}_{s,a}}^{\lambda} \right) \right|
$$
\n
$$
(184)
$$

 $+ 2\varepsilon_{\text{opt}}$ (185)

¹⁰³³ where the last inequality follow the decomposition of [\(147\)](#page-36-2). Finally, to control the remaining term

$$
\max_{\mu_{P_{s,a}^0}^{\lambda} \in \mathcal{M}_{P_{s,a}^0}^{\lambda}} \left(P_{s,a}^0 - \widehat{P}_{s,a}^0 \right) (\widehat{V}^{\star,\sigma} - \mu_{P_{s,a}^0}^{\lambda}) = \max_{\alpha_P^{\lambda} \in A_P^{\lambda}} \left\{ \left(P_{s,a}^0 - \widehat{P}_{s,a}^0 \right) [V]_{\alpha_P^{\lambda}} \right\} \tag{186}
$$

1034 [\(185\)](#page-41-1) for any given $\alpha \in [0, \alpha_{P_{sa}}^{\lambda,\omega*} [\subset [0, \frac{1}{1-\gamma}]^S$ in the variational family with one parameter λ , with the dependency between $\hat{V}^{\star,\sigma}$ and \hat{P}^0 , we resort to the following leave-one-out argument or absorbing
1035 , we resort to the following leave-one-out argument or absorbing ¹⁰³⁶ MDPs used in [\[Agarwal et al., 2020,](#page-9-3) [Li et al., 2022b,](#page-10-15) [Shi and Chi, 2022,](#page-11-17) [Clavier et al., 2023\]](#page-9-0). To ¹⁰³⁷ begin, we create a collection of auxiliary RMDPs that exhibit the intended statistical independence ¹⁰³⁸ between robust value functions and the estimated nominal transition kernel. These auxiliary RMDPs ¹⁰³⁹ are designed to be minimally distinct from the initial RMDPs, subsequently, we manage to control ¹⁰⁴⁰ the relevant term within these auxiliary RMDPs and demonstrate that its value closely approximates 1041 the target quantity for the desired RMDP. Recall that the empirical infinite-horizon robust MDP $\widehat{\mathcal{M}}_{\text{rob}}$ is defined using the nominal transition kernel \widehat{P}^0 . Inspired by Agarwal et al. [2020], we can c 1042 is defined using the nominal transition kernel \hat{P}^0 . Inspired by [Agarwal et al.](#page-9-3) [\[2020\]](#page-9-3), we can construct 1043 an auxiliary absorbing robust MDP $\widehat{\mathcal{M}}_{\text{rob}}^{s,u}$ for each state s and any non-negative scalar $u \ge 0$, so that it is the same as $\widehat{\mathcal{M}}_{\text{rob}}$ except for the transition properties in state s. These auxiliary MDPS are called absorbing MDPs are have been used for the first time in the context of RMDPS in Clavier et all called absorbing MDPs are have been used for the first time in the context of RMDPS in [Clavier et al.](#page-9-0) 1046 [\[2023\]](#page-9-0). Defining the reward function and nominal transition kernel of $\widehat{\mathcal{M}}_{\text{rob}}^{s,u}$ as $P^{s,u}$ and $r^{s,u}$, which ¹⁰⁴⁷ are expressed as follows using the same notation as [Shi et al.](#page-11-4) [\[2023\]](#page-11-4):

$$
\begin{cases} r^{s,u}(s,a) = u & \forall a \in \mathcal{A}, \\ r^{s,u}(\tilde{s},a) = r(\tilde{s},a) & \forall (\tilde{s},a) \in \mathcal{S} \times \mathcal{A} \text{ and } \tilde{s} \neq s. \end{cases}
$$
(187)

1048

$$
\begin{cases} P^{s,u}(s' \mid s, a) = \mathbb{1}(s' = s) & \forall (s', a) \in S \times \mathcal{A}, \\ P^{s,u}(\cdot \mid \widetilde{s}, a) = \widehat{P}^{0}(\cdot \mid \widetilde{s}, a) & \forall (\widetilde{s}, a) \in S \times \mathcal{A} \text{ and } \widetilde{s} \neq s, \end{cases}
$$
(188)

1049 Nominal transition probability at state s of the auxiliary $\widehat{\mathcal{M}}_{\text{coh}}^{s,u}$ never leaves state s once entered, ¹⁰⁵⁰ which gives the name absorbing to these auxiliary RMPDs. Finally, we define the robust Bellman 1051 operator $\widehat{\mathcal{T}}_{s,u}^{\sigma}(\cdot)$ associated $\widehat{\mathcal{M}}_{\text{rob}}^{s,u}$ as

$$
\widehat{\mathcal{T}}_{s,u}^{\sigma}(Q)(\tilde{s},a) = r^{s,u}(\tilde{s},a) + \gamma \inf_{\mathcal{P} \in \mathcal{U}^{\text{sa},\sigma}(P_{\tilde{s},a}^{s,u})} \mathcal{P}V, \qquad \text{with } V(\tilde{s}) = \max_{a} Q(\tilde{s},a). \tag{189}
$$

¹⁰⁵² in sa-rectangular case and with stochastic policy in s-rectangular case. Using these auxiliary RMDPs 1053 we can remark equivalence between $\widehat{\mathcal{M}}_{\text{rob}}$ and the auxiliary RMDP $\widehat{\mathcal{M}}_{\text{rob}}^{s,u}$ fixed-point. First, $\widehat{Q}^{\star,\sigma}$ 1054 is the unique-fixed point of $\widehat{\mathcal{T}}^{\sigma}(\cdot)$ with associated value $\widehat{V}^{\star,\sigma}$. We will show that the robust value function $\hat{V}_{s,u}^{\star,\sigma}$ obtained from the fixed point of $\hat{\mathcal{T}}_{s,u}^{\sigma}(\cdot)$ is the same as the the robust value function 1056 $\hat{V}^{\star,\sigma}$ derived from $\hat{\mathcal{T}}^{\sigma}(\cdot)$, as long as we choose u as

$$
u^* := u^*(s) = \widehat{V}^{*,\sigma}(s) - \gamma \inf_{\mathcal{P} \in \mathcal{U}^{\mathsf{sa},\sigma}(e_s)} \mathcal{P}\widehat{V}^{*,\sigma}.
$$
 (190)

1057 with e_s is the s-th standard basis vector in \mathbb{R}^S . This assertion is verified as:

$$
\text{First for state } s' \neq s \text{, for all } a \in \mathcal{A} \text{:\ it holds} \\
 r^{s, u^*}(s', a) + \gamma \inf_{\mathcal{P} \in \mathcal{U}^{\mathbf{s}, a}, \sigma(P_{s', a}^{s, u^*})} \mathcal{P}\widehat{V}^{\star, \sigma} = r(s', a) + \gamma \inf_{\mathcal{P} \in \mathcal{U}^{\mathbf{s}, \sigma}(\widehat{P}_{s', a}^0)} \mathcal{P}\widehat{V}^{\star, \sigma} \\
= \widehat{\mathcal{T}}^{\sigma}(\widehat{Q}^{\star, \sigma})(s', a) = \widehat{Q}^{\star, \sigma}(s', a), \tag{191}
$$

where the first equality holds because of (187) and (188), and the last inequality comes from that
$$
\hat{Q}^{\star,\sigma}
$$
 is the fixed point of $\hat{\mathcal{T}}^{\sigma}(\cdot)$ (see Lemma 8.3) and the definition of the robust Bellman operator in (13).

1062 • Then for state s, for any $a \in \mathcal{A}$:

$$
r^{s,u^*}(s,a) + \gamma \inf_{\mathcal{P} \in \mathcal{U}^{\sigma}(P_{s,a}^{s,u^*})} \mathcal{P}\widehat{V}^{\star,\sigma} = u^* + \gamma \inf_{\mathcal{P} \in \mathcal{U}^{\text{sa},\sigma}(e_s)} \mathcal{P}\widehat{V}^{\star,\sigma}
$$

$$
= \widehat{V}^{\star,\sigma}(s) - \gamma \inf_{\mathcal{P} \in \mathcal{U}^{\text{sa},\sigma}(e_s)} \mathcal{P}\widehat{V}^{\star,\sigma} + \gamma \inf_{\mathcal{P} \in \mathcal{U}^{\text{sa},\sigma}(e_s)} \mathcal{P}\widehat{V}^{\star,\sigma} = \widehat{V}^{\star,\sigma}(s), \qquad (192)
$$

1063 using in the first equality is the definition of $P_{s,a}^{s,u^*}$ in [\(188\)](#page-42-1) and where we use the definition 1064 of u^* in [\(190\)](#page-42-2) in the second one.

1065 Finally, we have proved that there exists a fixed point $\hat{Q}_{s,u}^{*,\sigma}$ of the operator $\hat{\mathcal{T}}_{s,u}^{\sigma}(\cdot)$ by taking

$$
\begin{cases}\n\widehat{Q}_{s,u^*}^{\star,\sigma}(s,a) = \widehat{V}^{\star,\sigma}(s) & \forall a \in \mathcal{A}, \\
\widehat{Q}_{s,u^*}^{\star,\sigma}(s',a) = \widehat{Q}^{\star,\sigma}(s',a) & \forall s' \neq s \text{ and } a \in \mathcal{A}.\n\end{cases}
$$
\n(193)

1066 we have confirmed the existence of a fixed point of the operator $\widehat{\mathcal{T}}_{s,u^*}^{\sigma}(\cdot)$ with corresponding value function $\hat{V}_{s,u*}^{*,\sigma}$ that coincide with $\hat{V}^{*,\sigma}$. Note that the corresponding properties between $\widehat{\mathcal{M}}_{\text{rob}}$ and 1068 $\widehat{\mathcal{M}}_{\text{rob}}^{s,u}$ in Step 1 and Step 2 hold in fact for any uncertainty set and s- or sa-rectangular assumptions. ¹⁰⁶⁹ Equipped with these fixed point equalities, we can use concentration inequalities to show this lemma.

1070 Concentration inequality using an ε -net for all reward values u. First we can verify that

$$
0 \le u^{\star} \le \left[\widehat{V}^{\star,\sigma}(s)\right]_{\alpha_{Ps,a}^{\lambda,\omega\star}} \le \widehat{V}^{\star,\sigma}(s) \le \frac{1}{1-\gamma}.\tag{194}
$$

1071 We first construct a N_{ϵ_2} -net over the interval $[0, 1/(1 - \gamma)]$, where $|N_{\epsilon_2}|$ the size of the net can be 1072 controlled by $|N_{\epsilon_2}| \leq \frac{3}{\epsilon_2(1-\gamma)}$ [\[Vershynin, 2018\]](#page-12-19). The only parameter that vary is λ in the variation family $\alpha_{P_{sa}}^{\lambda}$ so we have 1-dimensional control and not a vector in \mathbb{R}^S . Then similarly to Lemma [8.3,](#page-17-0) 1074 it holds that for each $u \in N_{\varepsilon_2}$, there exists a unique fixed point $\widehat{Q}_{s,u}^{\star,\sigma}$ of the operator $\widehat{\mathcal{T}}_{s,u}^{\sigma}(\cdot)$, which 1075 satisfies $0 \leq \widehat{Q}_{s,u}^{\star,\sigma} \leq \frac{1}{1-\gamma} \cdot 1$. Consequently, the corresponding robust value function can be upper 1076 bounded by $\left\| \widehat{V}_{s,u}^{*,\sigma} \right\|_{\infty} \leq \frac{1}{1-\gamma}$. Using [\(188\)](#page-42-1) and [\(187\)](#page-42-0) by construction for all $u \in N_{\epsilon_2}$, $\widehat{\mathcal{M}}_{\text{rob}}^{s,u}$ is statistically independent of $\widehat{P}_{s,a}^0$. This independence indicates that $[\widehat{V}_{s,u}^{\star,\sigma}]_{\alpha}$ and $\widehat{P}_{s,a}^0$ are independent 1078 for a fixed α. Using [\(145\)](#page-35-2) and [\(146\)](#page-35-3) and taking the union bound over all $(s, a, \alpha) \in S \times A \times N_{\epsilon_1}$, 1079 $u \in N_{\epsilon_2}$ gives that, with probability at least $1-\delta$, it holds for all $(s, a, u) \in S \times A \times N_{\epsilon_2}$ that

$$
\max_{\alpha_{P_{sa}}^{\lambda,\omega} \in A_{P_{sa}}^{\lambda,\omega}} \left| \left(P_{s,a}^{0} - \widehat{P}_{s,a}^{0} \right) \left[\widehat{V}_{s,u}^{\star,\sigma} \right]_{\alpha_{P_{sa}}^{\lambda,\omega}} \right| \leq 2 \sqrt{\frac{2 \log(\frac{18||1||*SAN|N_{\varepsilon_2}|}{\delta})}{N}} \sqrt{\text{Var}_{P_{s,a}^{0}}(\widehat{V}_{s,u}^{\star,\sigma})} \quad (195)
$$
\n
$$
+ \varepsilon_2
$$
\n
$$
\leq 2 \sqrt{\frac{2 \log(\frac{18||1||*SAN|N_{\varepsilon_2}|}{\delta})}{(1-\gamma)^2 N}} + \varepsilon_2,
$$
\n(196)

1080 Finally, we use **uniform concentration** to obtain the lemma. Recalling that $u^* \in [0, \frac{1}{1-\gamma}]$ (see 1081 [\(194\)](#page-43-0)), we can always find some $\overline{u} \in N_{\epsilon_2}$ such that $|\overline{u} - u^*| \leq \epsilon_2$. Consequently, plugging in the 1082 operator $\widehat{\mathcal{T}}_{s,u}^{\sigma}(\cdot)$ in [\(189\)](#page-42-3) yields

$$
\forall Q \in \mathbb{R}^{SA} : \quad \left\| \widehat{\mathcal{T}}_{s,\overline{u}}^{\sigma}(Q) - \widehat{\mathcal{T}}_{s,u^{\star}}^{\sigma}(Q) \right\|_{\infty} = |\overline{u} - u^{\star}| \leq \varepsilon_2
$$

1083 We can then remark that the fixed points of $\hat{\mathcal{T}}_{s,\overline{u}}^{\sigma}(\cdot)$ and $\hat{\mathcal{T}}_{s,u^*}^{\sigma}(\cdot)$ obey

$$
\begin{aligned} \left\| \widehat{Q}_{s,\overline{u}}^{\star,\sigma} - \widehat{Q}_{s,u^{\star}}^{\star,\sigma} \right\|_{\infty} &= \left\| \widehat{\mathcal{T}}^{\sigma}_{s,\overline{u}} (\widehat{Q}_{s,\overline{u}}^{\star,\sigma}) - \widehat{\mathcal{T}}^{\sigma}_{s,u^{\star}} (\widehat{Q}_{s,u^{\star}}^{\star,\sigma}) \right\|_{\infty} \\ & \leq \left\| \widehat{\mathcal{T}}^{\sigma}_{s,\overline{u}} (\widehat{Q}_{s,\overline{u}}^{\star,\sigma}) - \widehat{\mathcal{T}}^{\sigma}_{s,\overline{u}} (\widehat{Q}_{s,u^{\star}}^{\star,\sigma}) \right\|_{\infty} + \left\| \widehat{\mathcal{T}}^{\sigma}_{s,\overline{u}} (\widehat{Q}_{s,u^{\star}}^{\star,\sigma}) - \widehat{\mathcal{T}}^{\sigma}_{s,u^{\star}} (\widehat{Q}_{s,u^{\star}}^{\star,\sigma}) \right\|_{\infty} \\ & \leq \gamma \left\| \widehat{Q}_{s,\overline{u}}^{\star,\sigma} - \widehat{Q}_{s,u^{\star}}^{\star,\sigma} \right\|_{\infty} + \varepsilon_{2}, \end{aligned}
$$

1084 where we use that the operator $\widehat{\mathcal{T}}_{s,u}^{\sigma}(\cdot)$ is a γ -contraction. It gives that:

$$
\left\| \widehat{Q}_{s,\overline{u}}^{\star,\sigma} - \widehat{Q}_{s,u^{\star}}^{\star,\sigma} \right\|_{\infty} \le \frac{\varepsilon_2}{(1-\gamma)} \quad \text{and} \quad \left\| \widehat{V}_{s,\overline{u}}^{\star,\sigma} - \widehat{V}_{s,u^{\star}}^{\star,\sigma} \right\|_{\infty} \le \left\| \widehat{Q}_{s,\overline{u}}^{\star,\sigma} - \widehat{Q}_{s,u^{\star}}^{\star,\sigma} \right\|_{\infty} \le \frac{\varepsilon_2}{(1-\gamma)}. \tag{197}
$$

Finally to control the first term in [\(185\)](#page-41-1), using the identity $\hat{V}^{\star,\sigma} = \hat{V}^{\star,\sigma}_{s,u^{\star}}$ or fixed point relation 1086 between the two RMPDS, established in previous step of the proof gives that: for all $(s, a) \in S \times A$,

$$
\max_{\alpha_{P_{s,a}}^{\lambda,\omega} \in A_{P_{s,a}}^{\lambda,\omega}} \left| \left(P_{s,a}^{0} - \hat{P}_{s,a}^{0} \right) [\hat{V}^{\star,\sigma}]_{\alpha_{P_{s,a}}^{\lambda,\omega}} \right|
$$
\n
$$
\leq \max_{\alpha_{P_{s,a}}^{\lambda,\omega} \in A_{P_{s,a}}^{\lambda,\omega}} \left| \left(P_{s,a}^{0} - \hat{P}_{s,a}^{0} \right) [\hat{V}^{\star,\sigma}]_{\alpha_{P_{s,a}}^{\lambda,\omega}} \right|
$$
\n(a)
\n(a)
\n
$$
\leq \max_{\alpha_{P_{s,a}}^{\lambda,\omega} \in A_{P_{s,a}}^{\lambda,\omega}} \left\{ \left| \left(P_{s,a}^{0} - \hat{P}_{s,a}^{0} \right) [\hat{V}_{s,\overline{u}}^{\star,\sigma}]_{\alpha_{P_{s,a}}^{\lambda,\omega}} \right| + \left| \left(P_{s,a}^{0} - \hat{P}_{s,a}^{0} \right) \left([\hat{V}_{s,\overline{u}}^{\star,\sigma}]_{\alpha_{P_{s,a}}^{\lambda,\omega}} - [\hat{V}_{s,u}^{\star,\sigma}]_{\alpha_{P_{s,a}}^{\lambda,\omega}} \right) \right| \right\}
$$
\n(b)
\n
$$
\leq \max_{\alpha_{P_{s,a}}^{\lambda,\omega} \in A_{P_{s,a}}^{\lambda,\omega}} \left| \left(P_{s,a}^{0} - \hat{P}_{s,a}^{0} \right) [\hat{V}_{s,\overline{u}}^{\star,\sigma}]_{\alpha_{P_{s,a}}^{\lambda,\omega}} \right| + \frac{2\varepsilon_2}{(1-\gamma)}
$$
\n
$$
\leq \frac{2\varepsilon_2}{(1-\gamma)} + \varepsilon_2 + 2\sqrt{\frac{2\log(\frac{18||1||}{\delta}SAN|N\varepsilon_2|)}{N}} \sqrt{\text{Var}_{P_{s,a}^0}(\hat{V}^{\star,\sigma})} + \frac{4\log(\frac{18||1||}{\delta}SAN|N\varepsilon_2|)}{3N(1-\gamma)}
$$
\n
$$
+ 2\sqrt{\frac{2\log(\frac{18||1||}{\delta}SAN|N\varepsilon_2|)}{N}} \sqrt{\text{Var}_{P_{s,a}^0}(\hat{V}^{\star,\sigma})} + \
$$

$$
\leq 2\sqrt{\frac{L''}{N}}\sqrt{\text{Var}_{P_{s,a}^0}(\hat{V}^{\star,\sigma})} + \frac{14\log(\frac{54||1||_*SAN|N_{\varepsilon_2}|}{\delta})}{N(1-\gamma)}
$$
\n
$$
(199)
$$

$$
\leq 16\sqrt{\frac{L''}{(1-\gamma)^2N}},\tag{200}
$$

1087 with $L'' = \log\left(\frac{54||1||_* S A N^2}{(1-\gamma)\delta}\right)$ where (a) comes from triangular inequality, (b) is due [\(197\)](#page-43-1), for any 1088 $\alpha \in \mathbb{R}^S$

$$
\left| \left(P_{s,a}^{0} - \widehat{P}_{s,a}^{0} \right) \left([\widehat{V}_{s,\overline{u}}^{\star,\sigma}]_{\alpha} - [\widehat{V}_{s,u^{\star}}^{\star,\sigma}]_{\alpha} \right) \right| \leq \left\| P_{s,a}^{0} - \widehat{P}_{s,a}^{0} \right\|_{1} \left\| [\widehat{V}_{s,\overline{u}}^{\star,\sigma}]_{\alpha} - [\widehat{V}_{s,u^{\star}}^{\star,\sigma}]_{\alpha} \right\|_{\infty}
$$

$$
\leq 2 \left\| \widehat{V}_{s,\overline{u}}^{\star,\sigma} - \widehat{V}_{s,u^{\star}}^{\star,\sigma} \right\|_{\infty} \leq \frac{2\varepsilon_{2}}{(1-\gamma)},
$$
 (201)

¹⁰⁸⁹ (c) follows from [\(195\)](#page-43-2), (d) holds using Lemma [1](#page-17-3) with [\(197\)](#page-43-1). Here, the two last inequalities hold by letting $\varepsilon_2 = \frac{2 \log(\frac{18||1||*SAN|N_{\varepsilon_2}|}{\delta})}{N}$ 1090 letting $\varepsilon_2 = \frac{2 \log(\frac{n}{\delta} - \frac{n}{\delta})}{N}$, which gives $|N_{\varepsilon_2}| \leq \frac{3}{\varepsilon_2(1-\gamma)} \leq \frac{3N}{1-\gamma}$, and the last inequality holds 1091 by the fact $\text{Var}_{P_{s,a}^0}(\widehat{V}^{\star,\sigma}) \leq \|\widehat{V}^{\star,\sigma}\|_{\infty} \leq \frac{1}{1-\gamma}$ and letting $N \geq 2 \log \left(\frac{54 \|1\|_* S A N^2}{(1-\gamma)\delta} \right) = L''$. ¹⁰⁹² Rewriting [\(180\)](#page-41-2), the first term of the max is controlled.

$$
\max \left\{ \left| \left(P_{s,a}^0 - \widehat{P}_{s,a}^0 \right) \left[\widehat{V}^{\widehat{\pi},\sigma} \right]_{\alpha_{P_{s,a}}^{\lambda *}} \right|, \left| \left(P_{s,a}^0 - \widehat{P}_{s,a}^0 \right) \left[\widehat{V}^{\widehat{\pi},\sigma} \right]_{\alpha_{\widehat{P}_{s,a}}^{\lambda *}} \right| \right\}
$$

¹⁰⁹³ The second term can be controlled by the same term as the first one plus an additional term with

$$
\begin{array}{l} \left| \left(P_{s,a}^0 - \widehat{P}_{s,a}^0 \right) \big[\widehat{V}^{\widehat{\pi},\sigma} \big]_{\alpha_{\hat{P}_{s,a}}^{\lambda \ast}} \right| \leq \\[3mm] \max_{\mu_{\hat{P}_{s,a}}^{\lambda} \in \mathcal{M}_{\hat{P}_{s,a}^0}^{\lambda}} \left(P_{s,a}^0 - \widehat{P}_{s,a}^0 \right) \big(\widehat{V}^{\star,\sigma} - \mu_{P_{s,a}}^{\lambda} \big) + \max_{\mu_{\hat{P}_{s,a}}^{\lambda} \in \mathcal{M}_{\hat{P}_{s,a}^0}^{\lambda}} \left(P_{s,a}^0 - \widehat{P}_{s,a}^0 \right) \big(\mu_{P_{s,a}}^{\lambda} - \mu_{\hat{P}_{s,a}^0}^{\lambda} \big) \end{array}
$$

¹⁰⁹⁴ and similarly to previous lemma in [\(153\)](#page-38-0), the residual or term in the right in the previous equation 1095 can be controlled with $\frac{L'C_S||1||_*}{N(1-\gamma)}$ Finally, putting [\(199\)](#page-44-0) and [\(200\)](#page-44-1) back into Equation [\(185\)](#page-41-1) and using 1096 Eq. [\(200\)](#page-44-1) with probability at least $1 - \delta$ we obtain

$$
\left| \widehat{P}_{s,a}^{\widehat{\pi},\widehat{V}} \widehat{V}^{\widehat{\pi},\sigma} - P_{s,a}^{\widehat{\pi},\widehat{V}} \widehat{V}^{\widehat{\pi},\sigma} \right| \leq \max_{\alpha_{P_{s,a}}^{\lambda,\omega} \in A_{P_{s,a}}^{\lambda,\omega}} \left| \left(P_{s,a}^{0} - \widehat{P}_{s,a}^{0} \right) [\widehat{V}^{\star,\sigma}]_{\alpha_{P_{s,a}}^{\lambda,\omega}} \right| + 2\varepsilon_{\text{opt}} \n\leq 2\sqrt{\frac{L'}{N}} \sqrt{\text{Var}_{P_{s,a}^{0}} (\widehat{V}^{\star,\sigma})} + 2\varepsilon_{\text{opt}} + \frac{14L''C_{S} \left\| 1 \right\|_{*}}{N(1-\gamma)} \n\leq 2\sqrt{\frac{L''}{(1-\gamma)^{2}N}} + 2\varepsilon_{\text{opt}} + \frac{14L''C_{S} \left\| 1 \right\|_{*}}{N(1-\gamma)},
$$
\n(202)

1097 $\forall (s, a) \in S \times A$. Using matrix form we obtain finally:

$$
\left| \underline{\widehat{P}}^{\widehat{\pi},\widehat{V}} \widehat{V}^{\widehat{\pi},\sigma} - \underline{P}^{\widehat{\pi},\widehat{V}} \widehat{V}^{\widehat{\pi},\sigma} \right| \leq 2\sqrt{\frac{L''}{N}} \sqrt{\text{Var}_{P_{s,a}^0}(\widehat{V}^{\star,\sigma})} 1 + 2\varepsilon_{\text{opt}} 1
$$

$$
\leq 2\sqrt{\frac{L''}{(1-\gamma)^2 N}} 1 + 2\varepsilon_{\text{opt}} 1. + \frac{14L''C_S \left\| 1 \right\|_{*}}{N(1-\gamma)}
$$
(203)

1098 The proof is similar in the s-rectangular case, factorising by $\pi(a|s)$, like in in [8.](#page-23-0) Moreover, the proof 1099 is similar for TV without the geometric term depending on C_S .

¹¹⁰⁰ 9.3.6 Proof of Lemma [11](#page-28-2)

¹¹⁰¹ We always use the same manner as in Appendix [9.3.4.](#page-39-0) Similarly to [\(161\)](#page-39-3), it holds:

$$
\left(I - \gamma \underline{P}^{\widehat{\pi},\widehat{V}}\right)^{-1} \sqrt{\text{Var}_{\underline{P}^{\widehat{\pi},\widehat{V}}}(\widehat{V}^{\widehat{\pi},\sigma})} \le \sqrt{\frac{1}{1-\gamma}} \sqrt{\sum_{t=0}^{\infty} \gamma^t \left(\underline{P}^{\widehat{\pi},\widehat{V}}\right)^t \text{Var}_{\underline{P}^{\widehat{\pi},\widehat{V}}}(\widehat{V}^{\widehat{\pi},\sigma})}. \tag{204}
$$

1102 In order to upper bound $\text{Var}_{\underline{P}^{\hat{\pi}}, \hat{V}}(\hat{V}^{\hat{\pi}, \sigma})$, we define $V' \coloneqq \hat{V}^{\hat{\pi}, \sigma} - \eta 1$ for any α^* solving a dual 1103 optimization problem with $\eta \in \mathbb{R}$. Using as [\(168\)](#page-39-4), it holds

$$
\begin{split} &\text{Var}_{\underline{P}^{\widehat{\pi},\widehat{V}}}(\widehat{V}^{\widehat{\pi},\sigma}) \leq \underline{P}^{\widehat{\pi},\widehat{V}}\left(V'\circ V'\right) - \frac{1}{\gamma}V'\circ V' + \frac{2}{\gamma^2}||V'||_{\infty}1 + \frac{2}{\gamma}||V'||_{\infty}\left|\left(\underline{\widehat{P}}^{\widehat{\pi},\widehat{V}} - \underline{P}^{\widehat{\pi},\widehat{V}}\right)\widehat{V}^{\widehat{\pi},\sigma}\right| \\ &\leq \underline{P}^{\widehat{\pi},\widehat{V}}\left(V'\circ V'\right) - \frac{1}{\gamma}V'\circ V' + \frac{2}{\gamma^2}||V'||_{\infty}1 + \frac{2}{\gamma}||V'||_{\infty}\left(2\sqrt{\frac{L''}{(1-\gamma)^2N}} + 2\varepsilon_{\text{opt}} + \frac{14L''C_S}{N(1-\gamma)}\right)1, \end{split} \tag{205}
$$

¹¹⁰⁴ where the last inequality makes use of Lemma [10.](#page-28-0) Plugging [\(205\)](#page-45-1) back into [\(204\)](#page-45-2) leads to

$$
\left(I - \gamma \underline{P}^{\widehat{\pi},\widehat{V}}\right)^{-1} \sqrt{\text{Var}_{\underline{P}^{\widehat{\pi},\widehat{V}}}(\widehat{V}^{\widehat{\pi},\sigma})} \stackrel{(a)}{\leq} \sqrt{\frac{1}{1-\gamma}} \sqrt{\left|\sum_{t=0}^{\infty} \gamma^{t} \left(\underline{P}^{\widehat{\pi},\widehat{V}}\right)^{t} \left(\underline{P}^{\widehat{\pi},\widehat{V}}\left(V'\circ V'\right) - \frac{1}{\gamma}V'\circ V'\right)\right|} \n+ \sqrt{\frac{1}{(1-\gamma)^{2}\gamma^{2}} \left(2\sqrt{\frac{L''}{(1-\gamma)^{2}N}} + 2\varepsilon_{\text{opt}} + \frac{14L''C_{S}\|1\|_{*}}{N(1-\gamma)}\right) \|V'\|_{\infty}1} \n\overset{(b)}{\leq} \sqrt{\frac{\|V'\|_{\infty}^{2}}{\gamma(1-\gamma)}} 1 + \sqrt{\frac{\left(2\sqrt{\frac{L''}{(1-\gamma)^{2}N}} + 2\varepsilon_{\text{opt}} + \frac{14L''C_{S}\|1\|_{*}}{N(1-\gamma)}\right) \|V'\|_{\infty}}{(1-\gamma)^{2}\gamma^{2}}}
$$
\n
$$
\overset{(c)}{\leq} \sqrt{\frac{\|V'\|_{\infty}^{2}}{\gamma(1-\gamma)}} 1 + 5\sqrt{\left(1+\varepsilon_{\text{opt}} + \frac{L''C_{S}\|1\|_{*}}{N(1-\gamma)}\right) \frac{\|V'\|_{\infty}}{(1-\gamma)^{2}\gamma^{2}}}
$$
\n
$$
\leq 6\sqrt{\left(1+\varepsilon_{\text{opt}} + \frac{L''C_{S}\|1\|_{*}}{N(1-\gamma)}\right) \frac{\|V'\|_{\infty}}{(1-\gamma)^{2}\gamma^{2}}} 1, \tag{207}
$$

¹¹⁰⁵ where (a) is the same as [\(174\)](#page-40-1), (b) holds by repeating the argument of [\(175\)](#page-40-0), (c) follows by taking $N \geq \frac{L''}{(1-\gamma)}$ 1106 $N \geq \frac{L''}{(1-\gamma)^2}$ and then the last inequality holds by $||V'||_{\infty} \leq ||V^{\star,\sigma}||_{\infty} \leq \frac{1}{1-\gamma}$. Then taking the infimum over η in the right-hand side of the equation in the definition of V' and using sp(.)_∞ \leq $||.||_*$ 1107 ¹¹⁰⁸ gives

$$
\left(I - \gamma \underline{P}^{\widehat{\pi},\widehat{V}}\right)^{-1}\sqrt{\text{Var}_{\underline{P}^{\widehat{\pi},\widehat{V}}}(\widehat{V}^{\widehat{\pi},\sigma})} \leq 6\sqrt{\left(1 + \varepsilon_{\textsf{opt}} + \frac{L''C_S\left\|1\right\|_{*}}{N(1-\gamma)}\right)\frac{\textsf{sp}(V)_{\infty}}{(1-\gamma)^2\gamma^2}}1
$$

Finally, applying Lemma [5](#page-21-0) with $P = \hat{P}^0$ and $\pi = \hat{\pi}$ yields

$$
\text{sp}(\widehat{V}^{\widehat{\pi},\sigma})_* \le \frac{1}{\gamma \max\{1-\gamma,\gamma C_g \sigma\}},\tag{208}
$$

¹¹¹⁰ for sa-rectangular or

$$
\mathrm{sp}(\widehat{V}^{\widehat{\pi},\sigma})_*\leq \frac{1}{\gamma\max\{1-\gamma,\min_s\|\widehat{\pi}\|_*\,\tilde{\sigma}\}}
$$

1111 which can be inserted into (207) and gives in sa-rectangular case:

$$
\begin{aligned} \left(I - \gamma \underline{P}^{\widehat{\pi},\widehat{V}}\right)^{-1}\sqrt{\text{Var}_{\underline{P}^{\widehat{\pi},\widehat{V}}}(\widehat{V}^{\widehat{\pi},\sigma})} & \leq 6\sqrt{\frac{\left(1 + \varepsilon_{\mathsf{opt}} + \frac{L^{\prime \prime} C_S \|1\|_{*}}{N(1-\gamma)}\right)}{\gamma^3 (1-\gamma)^2 \max\{1-\gamma,\sigma\}}}\mathbf{1} \\ & \leq 6\sqrt{\frac{\left(1 + \varepsilon_{\mathsf{opt}} + \frac{L^{\prime \prime} C_S \|1\|_{*}}{N(1-\gamma)}\right)}{(1-\gamma)^3 \gamma^3}}\mathbf{1}. \end{aligned}
$$

¹¹¹² where first inequalities comes from that we can bound it Eq. left-hand side of equation [\(207\)](#page-46-0) by $||V'||_{\infty} \le ||V^{\star,\sigma}||_{\infty} \le \frac{1}{1-\gamma}$. Proof for s-rectangular is similar, but requires adding an extra factor ¹¹¹⁴ depending on the norm of the current policy and we have:

$$
\begin{aligned} \left(I - \gamma \underline{P}^{\widehat{\pi},\widehat{V}}\right)^{-1}\sqrt{\text{Var}_{\underline{P}^{\widehat{\pi},\widehat{V}}}(\widehat{V}^{\widehat{\pi},\sigma})} &\leq 6\sqrt{\frac{\left(1 + \varepsilon_{\text{opt}} + \frac{L''C_S\|\mathbf{1}\|_*}{N(1-\gamma)}\right)}{\gamma^3(1-\gamma)^2\max\{1-\gamma, C_g\tilde{\sigma}\min_s\|\widehat{\pi}_s\|_\infty\}}}\mathbf{1}\\ &\leq 6\sqrt{\frac{\left(1 + \varepsilon_{\text{opt}} + \frac{L''C_S\|\mathbf{1}\|_*}{N(1-\gamma)}\right)}{(1-\gamma)^3\gamma^2}}\mathbf{1}. \end{aligned}
$$

¹¹¹⁵ 9.3.7 Proof of Lemma [7](#page-21-5)

1116 Observing that each row of P_π belongs to $\Delta(S)$, it can be directly verified that each row of $(1 -$ 1117 γ) $(I - \gamma P_{\pi})^{-1}$ falls into $\Delta(S)$. As a result,

$$
(I - \gamma P_{\pi})^{-1} \sqrt{\text{Var}_{P_{\pi}}(V^{\pi, P})} = \frac{1}{1 - \gamma} (1 - \gamma) (I - \gamma P_{\pi})^{-1} \sqrt{\text{Var}_{P_{\pi}}(V^{\pi, P})}
$$

$$
\overset{\text{(a)}}{\leq} \frac{1}{1 - \gamma} \sqrt{(1 - \gamma) (I - \gamma P_{\pi})^{-1} \text{Var}_{P_{\pi}}(V^{\pi, P})}
$$

$$
= \sqrt{\frac{1}{1 - \gamma}} \sqrt{\sum_{t=0}^{\infty} \gamma^{t} (P_{\pi})^{t} \text{Var}_{P_{\pi}}(V^{\pi, P})},
$$
 (209)

1118 where (a) is due to Jensen's inequality. Then for any $\eta \in \mathbb{R}^+$, $V' \coloneq V^{\pi, P} - \eta 1$ for any α solving a 1119 dual optimization problem, we can upper bound $\text{Var}_{P_{\pi}}(V^{\pi,P})$:

$$
\begin{split}\n\text{Var}_{P_{\pi}}(V^{\pi,P}) & \stackrel{\text{(i)}}{=} \text{Var}_{P_{\pi}}(V') = P_{\pi}(V' \circ V') - (P_{\pi}V') \circ (P_{\pi}V') \\
&\stackrel{\text{(ii)}}{\leq} P_{\pi}(V' \circ V') - \frac{1}{\gamma^2}(V' - r_{\pi} + (1 - \gamma)\eta 1) \circ (V' - r_{\pi} + (1 - \gamma)\eta 1) \\
& = P_{\pi}(V' \circ V') - \frac{1}{\gamma^2}V' \circ V' + \frac{2}{\gamma^2}V' \circ (r_{\pi} - (1 - \gamma)\eta 1) - \frac{1}{\gamma^2}(r_{\pi} - (1 - \gamma)\eta 1) \circ (r_{\pi} - (1 - \gamma)\eta 1) \\
&\leq P_{\pi}(V' \circ V') - \frac{1}{\gamma}V' \circ V' + \frac{2}{\gamma^2} ||V'||_{\infty} 1 \leq P_{\pi}(V' \circ V') - \frac{1}{\gamma}V' \circ V' + \frac{2}{\gamma^2} ||V'||_{\infty} 1,\n\end{split} \tag{210}
$$

1120 where (i) holds by the fact that $\text{Var}_{P_{\pi}}(V^{\pi,P} - bI) = \text{Var}_{P_{\pi}}([V^{\pi,P})$ for any scalar b and $V^{\pi,P} \in \mathbb{R}^S$, 1121 (ii) follows from $V' \le r_\pi + \gamma P_\pi V^{\pi, P} - \eta_1 = r_\pi - (1 - \gamma)\eta_1 + \gamma P_\pi V'$, and the last line arises 1122 from $\frac{1}{\gamma^2}V' \circ V' \geq \frac{1}{\gamma}V' \circ V'$ and $||r_{\pi} - (1 - \gamma)\eta||_{\infty} \leq 1$. for $\eta \in [0, 1/(1 - \gamma)]$ Plugging [\(210\)](#page-47-2) ¹¹²³ back to [\(209\)](#page-47-1) leads to

$$
(I - \gamma P_{\pi})^{-1} \sqrt{\text{Var}_{P_{\pi}}(V^{\pi}, P)} \leq \sqrt{\frac{1}{1 - \gamma}} \sqrt{\sum_{t=0}^{\infty} \gamma^{t} (P_{\pi})^{t} \left(P_{\pi} (V' \circ V') - \frac{1}{\gamma} V' \circ V' + \frac{2}{\gamma^{2}} ||V'||_{\infty} 1 \right)}
$$

\n
$$
\stackrel{(i)}{\leq} \sqrt{\frac{1}{1 - \gamma}} \sqrt{\left| \sum_{t=0}^{\infty} \gamma^{t} (P_{\pi})^{t} \left(P_{\pi} (V' \circ V') - \frac{1}{\gamma} V' \circ V' \right) \right|} + \sqrt{\frac{1}{1 - \gamma}} \sqrt{\sum_{t=0}^{\infty} \gamma^{t} (P_{\pi})^{t} \frac{2}{\gamma^{2}} ||V'||_{\infty} 1}
$$

\n
$$
\leq \sqrt{\frac{1}{1 - \gamma}} \sqrt{\left| \left(\sum_{t=0}^{\infty} \gamma^{t} (P_{\pi})^{t+1} - \sum_{t=0}^{\infty} \gamma^{t-1} (P_{\pi})^{t} \right) (V' \circ V') \right|} + \sqrt{\frac{2 ||V'||_{\infty} 1}{\gamma^{2} (1 - \gamma)^{2}}}
$$

\n
$$
\stackrel{(ii)}{\leq} \sqrt{\frac{||V'||_{\infty} 1}{\gamma (1 - \gamma)}} + \sqrt{\frac{2 ||V'||_{\infty} 1}{\gamma^{2} (1 - \gamma)^{2}}},
$$

\n
$$
\leq \sqrt{\frac{8 ||V'||_{\infty} 1}{\gamma^{2} (1 - \gamma)^{2}}},
$$

\n(211)

where (i) holds by the triangle inequality, (ii) holds by following recursion, and the last inequality holds by $||V'||_{\infty} \le \frac{1}{1-\gamma}$. Then taking the minimum over η in the right-hand side of the equation gives the result.

$$
(I - \gamma P_{\pi})^{-1} \sqrt{\text{Var}_{P_{\pi}}(V^{\pi}, P)} \le \sqrt{\frac{8\text{sp}(V^{\pi}, P)_{\infty}}{\gamma^2 (1 - \gamma)^2}}
$$

1124 However, we also $||V'||_{\infty} \le ||V^{\pi,P}||_{\infty} \le \frac{1}{1-\gamma}$ in [\(211\)](#page-47-3). So finally, the result is

$$
(I - \gamma P_{\pi})^{-1} \sqrt{\text{Var}_{P_{\pi}}(V^{\pi}, P)} \leq \sqrt{\frac{8}{\gamma^2 (1 - \gamma)^2} \min\{\text{sp}([V^{\pi}, P)_{\infty}, \frac{1}{1 - \gamma}\}}.
$$

¹¹²⁵ 10 Proof of Theorem [2](#page-6-1)

1126 In this section, we focus on the scenarios in the uncertainty sets are constructed with (s, a) -¹¹²⁷ rectangularity condition with some general norms. Towards this, we firstly observe that for the 1128 two limiting cases ℓ_1 norm and ℓ_{∞} norm, one has $||p_1 - p_2||_1 \leq 2$ and $||p_1 - p_2||_{\infty} \leq 1$ for any two 1129 probability distribution $p_1, p_2 \in \mathbb{R}^S$. Namely, the accessible ranges of the uncertainty level σ for ℓ_1 1130 norm and ℓ_{∞} norm are $(0, 2]$ and $(0, 1]$, respectively. In addition, we have

$$
\forall p_1, p_2 \in \mathbb{R}^S: \quad \|p_1 - p_2\|_{\infty} \le \|p_1 - p_2\| \le \|p_1 - p_2\|_1 \tag{213}
$$

1131 for any norm $\|\cdot\|$. It indicates that the accessible range of the uncertainty level $\sigma_{\|\cdot\|}$ for any given 1132 norm $\|\cdot\|$ is between $(0, \sigma_{\|\cdot\|}^{\max}]$, where $1 \leq \sigma_{\|\cdot\|}^{\max} \leq 2$.

1133 To continue, we specify the definition of the uncertainty set with sa-rectangularity condition with 1134 some given general norm $\|\cdot\|$ as below: for any nominal transition kernel $P \in \mathbb{R}^{S_{A}^{T} \times S}$,

$$
\mathcal{U}^{\sigma}_{\|\cdot\|}(P) \coloneqq \mathcal{U}^{\sigma}_{\|\cdot\|}(P) = \otimes \mathcal{U}^{\sigma}_{p}(P_{s,a}), \qquad \mathcal{U}^{\sigma}_{\|\cdot\|}(P_{s,a}) \coloneqq \Big\{P'_{s,a} \in \Delta(\mathcal{S}) : \big\|P'_{s,a} - P_{s,a}\big\| \leq \sigma_{\|\cdot\|}\Big\}.\tag{214}
$$

1135 Then, we recall the assumption of the uncertainty radius $\sigma_{\|\cdot\|} \in (0, \sigma_{\|\cdot\|}^{\max}(1-c_0)]$ with $0 < c_0 < 1$.

¹¹³⁶ Then, resorting to the same class of hard MDPs in [\[Shi et al., 2023,](#page-11-4) Section C.1], we can complete 1137 the proof by directly following the same proof pipeline of [Shi et al.](#page-11-4) [\[2023,](#page-11-4) Section C] by replacing σ 1138 with $\sigma_{\|\cdot\|}^{\max} \sigma_{\|\cdot\|}$.

¹¹³⁹ 11 Proof of Theorem [4](#page-7-1)

 Developing the lower bound for the cases with s-rectangular uncertainty set involves several new 1141 challenges compared to that of (s, a) -rectangular cases. Specifically, the first challenge is that the optimal policy can be stochastic and hard to be characterized with a closed form for the RMDPs with 1143 a s-rectangular uncertainty set, rather than deterministic polices in (s, a) -rectangular cases. Such richer and smoother class of optimal policies makes slightly changing the transition kernel generally could only leads to a smoothly changed stochastic optimal policy instead of a completely different one. Such reduced changing of optimal policy further gives smaller performance gap, thus challenges of a tighter lower bound. Second, most of the hard instances in the literature are constructed as SA states with a constant number of action spaces without loss of generality. While when it comes to s-rectangular uncertainty set, the action space size becomes important and can't be assumed as a constant anymore. So a new class of instances are required.

¹¹⁵¹ To address these challenges, in this section, we construct a new set of hard RMDP instances for two 1152 limiting cases: ℓ_1 norm and ℓ_∞ norm.

¹¹⁵³ 11.1 Construction of the hard problem instances

¹¹⁵⁴ Before proceeding, we introduce two useful sets related to the state space and action space as below:

 $S = \{0, 1, \ldots, S\},$ and $\mathcal{A} = \{0, 1, \cdots, A - 1\}.$

1155 In this section, we construct a set of RMDPs termed as $\mathcal{M}_{\ell_{\infty}}$, which consists of $S(A-1)$ components 1156 including $S(A - 1)$ components, each associates with some different state-action pair. Specifically, it ¹¹⁵⁷ is defined as

$$
\mathcal{M}_{\ell_{\infty}} \coloneqq \left\{ \mathcal{M}_{\theta} = \left(\mathcal{S}, \mathcal{A}, \mathcal{U}^{\sigma}(P^{\theta}), r, \gamma \right) \mid \theta \in \Theta = \left\{ (i, j) : (i, j) \in \mathcal{S} \times \mathcal{A} \setminus \{0\} \right\} \right\}.
$$
 (215)

1158 We introduce the detailed definition of $\mathcal{M}_{\ell_{\infty}}$ by introducing several key components of it sequentially. 1159 In particular, for any RMDP $M_\theta \in \mathcal{M}_{\ell_\infty}$, the state space is of size 2S, which includes two classes 1160 of states $\mathcal{X} = \{x_0, x_1, \dots, x_{S-1}\}\$ and $\mathcal{Y} = \{y_0, y_1, \dots, y_{S-1}\}\$. The action space for each state is 1161 A of A possible actions. So we have totally $2S$ states and there is in total $2SA$ state-action pairs.

¹¹⁶² Armed with the above definitions, we can first introduce the following nominal transition kernel: for 1163 all $(s, a) \in \mathcal{X} \cup \mathcal{Y} \times \mathcal{A}$

$$
P^{(0,0)}(s' | s, a) = \begin{cases} p1(s' = y_i) + (1-p)1(s' = x_i) & \text{if } s = x_i, a = 0, \quad \forall i \in S \\ q1(s' = y_i) + (1-q)1(s' = x_i) & \text{if } s = x_i, a \neq 0, \quad \forall i \in S \\ 1(s' = s) & \text{if } s \in \mathcal{Y} \end{cases}
$$
 (216)

1164 Here, p and q are set according to

$$
0 \le p \le 1 \quad \text{and} \quad 0 \le q = p - \Delta \tag{217}
$$

1165 for some p and $\Delta > 0$ that will be introduced momentarily.

1166 Then we introduce the $S(A-1)$ components inside \mathcal{M}_{∞} . Namely, for any $(i, j) \in S \times A \setminus \{0\}$, the 1167 nominal transition kernel of $\mathcal{M}_{(i,j)}$ is specified as

$$
P^{(i,j)}(s' | s, a) = \begin{cases} p1(s' = y_i) + (1-p)1(s' = x_i) & \text{if } s = x_i, a = j \\ q1(s' = y_i) + (1-q)1(s' = x_i) & \text{if } s = x_i \in \mathcal{X}, a = 0 \\ P^{(0,0)}(s' | s, a) & \text{otherwise} \end{cases}
$$
(218)

1168 In words, the nominal transition kernel of each variant $\mathcal{M}_{(i,j)}$ only differs slightly from that of the 1169 basic nominal transition kernel $P^{(0,0)}$ when $s = x_i$ and $a = \{0, j\}$, which makes all the components 1170 inside $\mathcal{M}_{\ell_{\infty}}$ closed to each other.

¹¹⁷¹ In addition, the reward function is defined as

 $\forall a \in \mathcal{A}: r(s,a) =$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ 1 if $s \in \mathcal{Y}$ 0 otherwise. (219)

¹¹⁷² Uncertainty set of the transition kernels. Recall the following useful notation for any transition 1173 probability P , i.e., the transition vector associated with some state s is denoted as:

$$
P_s := P(\cdot, \cdot | s) \in \mathbb{R}^{1 \times SA}, \quad P_s^0 := P^0(\cdot, \cdot | s) \in \mathbb{R}^{1 \times SA}.
$$
 (220)

1174 With this in hand, the uncertainty set (definition in [\(5\)](#page-4-1)) with ℓ_{∞} norm for any P^{θ} with $\theta \in \Theta$ can be ¹¹⁷⁵ represented as:

$$
\mathcal{U}_{\infty}^{\mathbf{s},\widetilde{\sigma}}(P_s^{\theta}) \coloneqq \mathcal{U}_{\|\cdot\|}^{\mathbf{s},\widetilde{\sigma}}(P_s^{\theta}) = \left\{ P_s' \in \Delta(\mathcal{S})^{\mathcal{A}} : \left\| P_s' - P_s^{\theta} \right\| \le \widetilde{\sigma} = \sigma \left\| 1 \right\|_{\infty} = \sigma \right\}.
$$
 (221)

1176 So without loss of generality, we set the radius $\sigma \in (0, (1-c_0)]$ with $0 < c_0 < 1$. Before proceeding, 1177 we observe that as the uncertainty set above is defined with respect to ℓ_{∞} , it directly implies that for 1178 each $(s, a) \in S \times A$, the uncertainty set is independent and can be decomposed as

$$
\mathcal{U}_{\infty}^{\mathfrak{s},\widetilde{\sigma}}(P_s^{\theta}) = \otimes \mathcal{U}_{\|\cdot\|}^{\mathfrak{s},\widetilde{\sigma}}(P_{s,a}^{\theta}) = \left\{ P_{s,a}' \in \Delta(\mathcal{S}) : \left\| P_{s,a}' - P_{s,a}^{\theta} \right\| \leq \sigma \right\}.
$$
 (222)

1179 Notably, this indicates that using s-rectangular uncertainty set with ℓ_{∞} norm as the divergence 1180 function is analogous to the case of using (s, a) -rectangular uncertainty set with ℓ_{∞} norm. As a ¹¹⁸¹ result, we follow the pipeline of the prior art [Shi et al.](#page-11-4) [\[2023,](#page-11-4) Section C] which established the 1182 minimax-optimal lower bound for (s, a) -rectangular RMDPs with TV distance, which is analogous 1183 to the ℓ_{∞} case. Towards this, we set p, q, Δ as the same as the ones in [Shi et al.](#page-11-4) [\[2023,](#page-11-4) Section C.1], 1184 where we recall the expressions of p, q, Δ for self-contained as below: taking $c_1 \coloneqq \frac{c_0}{2}$,

$$
p = (1 + c_1) \max\{1 - \gamma, \sigma\} \quad \text{and} \quad \Delta \le c_1 \max\{1 - \gamma, \sigma\}, \tag{223}
$$

¹¹⁸⁵ which ensure several facts:

$$
0 \le p \le 1 \quad \text{and} \quad p \ge q \ge \max\{1 - \gamma, \sigma\}. \tag{224}
$$

1186 Value functions and optimal policies. For each RMDP instance $\mathcal{M}_{\theta} \in \mathcal{M}_{\ell_{\infty}}$, with some abuse 1187 of notation, we denote π_{θ}^* as the optimal policy. In addition, let $V_{\theta}^{\pi,\sigma}$ (resp. $V_{\theta}^{*,\sigma}$) represent the 1188 corresponding robust value function of any policy π (resp. π^{\star}_{θ}) with uncertainty level σ . Armed with ¹¹⁸⁹ these notations, the following lemma shows some essential properties concerning the value functions ¹¹⁹⁰ and optimal policies; the proof is postponed to Appendix [11.3.](#page-52-0)

1191 **Lemma 12.** *Consider any* $M_{θ} ∈ M_{ℓ_{∞}}$ *and any policy* π*, one has*

$$
\forall (i,j) \in \Theta: \quad V_{(i,j)}^{\pi,\sigma}(x_i) \leq \frac{\gamma(z_{(i,j)}^{\pi}-\sigma)}{(1-\gamma)\left(1+\frac{\gamma(z_{(i,j)}^{\pi}-\sigma)}{1-\gamma(1-\sigma)}\right)(1-\gamma(1-\sigma))},\tag{225}
$$

1192 *where* $z_{(i,j)}^{\pi}$ is defined as

$$
\forall (i,j) \in \Theta: \quad z_{(i,j)}^{\pi} := p\pi(j|x_i) + q[1 - \pi(j|x_i)]. \tag{226}
$$

¹¹⁹³ *In addition, the robust optimal value functions and the robust optimal policies satisfy*

$$
\forall (i,j) \in \Theta, s \in \mathcal{X}: \quad V_{(i,j)}^{*,\sigma}(s) = \frac{\gamma(p-\sigma)}{(1-\gamma)\left(1 + \frac{\gamma(p-\sigma)}{1-\gamma(1-\sigma)}\right)(1-\gamma(1-\sigma))} \tag{227}
$$

¹¹⁹⁴ *and*

$$
\pi_{(i,j)}^*(j \mid x_i) = 1 \qquad \text{and} \qquad \pi_{(i,j)}^*(0 \mid s) = 1 \quad \forall s \in \mathcal{X} \setminus \{x_i\}. \tag{228}
$$

1195 In words, this lemma shows that for any RMDP $\mathcal{M}_{(i,j)}$, the optimal policy on state x_i satisfies 1196 $\pi_{(i,j)}^{\star}(j | x_i) = 1$ and will focus on $a = 0$ for all other states $s \in \mathcal{X} \setminus \{x_i\}.$

¹¹⁹⁷ 11.2 Establishing the minimax lower bound

1198 Step 1: converting the goal to estimate (i, j) . Now we are in position to derive the lower bound. 1199 Recall the goal is to control the following quantity associated with any policy estimator $\hat{\pi}$ based on the dataset with in total N_{all} samples: the dataset with in total N_{all} samples:

$$
\max_{(i,j)\in\Theta} \mathbb{P}_{(i,j)}\left\{\max_{s\in\mathcal{X}\cup\mathcal{Y}}\left(V_{(i,j)}^{\star,\sigma}(s)-V_{(i,j)}^{\widehat{\pi},\sigma}(s)\right)\right\} \geq \max_{(i,j)\in\Theta} \mathbb{P}_{(i,j)}\left\{\max_{s\in\mathcal{X}}\left(V_{(i,j)}^{\star,\sigma}(s)-V_{(i,j)}^{\widehat{\pi},\sigma}(s)\right)\right\}.\tag{229}
$$

¹²⁰¹ To do so, we can invoke a key claim in [Shi et al.](#page-11-4) [\[2023\]](#page-11-4) here since our problem setting can be reduced 1202 to the same one in [Shi et al.](#page-11-4) [\[2023\]](#page-11-4): With $\varepsilon \leq \frac{c_1}{32(1-\gamma)}$, letting

$$
\Delta = 32(1 - \gamma) \max\{1 - \gamma, \sigma\} \varepsilon \le c_1 \max\{1 - \gamma, \sigma\}
$$
\n(230)

1203 which satisfies [\(223\)](#page-49-0), it leads to that for any policy $\hat{\pi}$ and all $(i, j) \in \Theta$,

$$
V_{(i,j)}^{\star,\sigma}(x_i) - V_{(i,j)}^{\hat{\pi},\sigma}(x_i) \ge 2\varepsilon \left(1 - \hat{\pi}(j \mid x_i)\right),
$$

\n
$$
\forall s \in \mathcal{X} \setminus \{x_i\} : \quad V_{(i,j)}^{\star,\sigma}(s) - V_{(i,j)}^{\hat{\pi},\sigma}(s) \ge 2\varepsilon \left(1 - \hat{\pi}(0 \mid s)\right).
$$
\n(231)

1204 Before continuing, we introduce a useful notation for the subset of Θ excluding the cases with state i ¹²⁰⁵ is selected:

$$
\forall i \in \mathcal{S}: \quad \Theta_{-i} = \Theta \setminus \{ (i', j) : i' = i, j \in \mathcal{A} \setminus \{0\} \}.
$$
 (232)

1206 Armed with the above facts and notations, we first suppose there exists a policy $\hat{\pi}$ such that for some 1207 $(i, j) \in \Theta$. $(i, j) \in \Theta$,

$$
\mathbb{P}_{(i,j)}\left\{V_{(i,j)}^{\star,\sigma}(x_i) - V_{(i,j)}^{\widehat{\pi},\sigma}(x_i) \le \varepsilon\right\} \ge \frac{3}{4}.
$$
\n(233)

1208 which in view of [\(231\)](#page-50-0) indicates that we necessarily have $\hat{\pi}(j | x_i) \geq \frac{1}{A}$ with probability at least $\frac{3}{4}$.

¹²⁰⁹ As a result, taking

$$
j' = \arg\max_{a \in \mathcal{A}} \hat{\pi}(a \mid x_i),\tag{234}
$$

1210 we are motivated to construct the following estimate of θ :

$$
\widehat{\theta}\begin{cases}\n=(i,j') & \text{if } j' > 0 \\
\in \mathcal{G}_{-w} & \text{if } j' = 0,\n\end{cases}
$$
\n(235)

¹²¹¹ which satisfies

$$
\mathbb{P}_{(i,j)}\{\hat{\theta} = (i,j)\} \ge \mathbb{P}_{(i,j)}\{j'=j\} \ge \mathbb{P}_{(i,j)}\{\hat{\pi}(j|x_i) > \frac{1}{A}\} \ge \frac{3}{4}.
$$
 (236)

¹²¹² Step 2: developing the probability of error in testing multiple hypotheses. Before proceeding, 1213 we discuss the dataset consisting of in total N_{all} independent samples. Observing that each RMDP inside the set $\mathcal{M}_{\ell_{\infty}}$ are constructed symmetrically associated with one pair of states (x_i, y_i) for all 1215 $i \in S$ and another action $j \in A \times \{0\}$, respectively. Therefore, it is obvious that the dataset is 1216 supposed to be generated uniformly on each (x_i, y_i, j) to maximize the information gain, leading to 1217 $\frac{N_{all}}{S(A-1)}$ samples for any states-action (x_i, y_i, j) with $i \in S, j \in A \setminus \{0\}.$

1218 Then we are ready to turn to the hypothesis testing problem over $(i, j) \in \Theta$. Towards this, we ¹²¹⁹ consider the minimax probability of error defined as follows:

$$
p_{\mathbf{e}} := \inf_{\phi} \max_{(i,j) \in \Theta} \{ \mathbb{P}_{(i,j)} \big(\phi \neq (i,j) \big) \},\tag{237}
$$

1220 where the infimum is taken over all possible tests ϕ constructed from the dataset introduced above.

1221 To continue, armed with the above dataset with N_{all} independent samples, we denote $\mu^{i,j}$ 1222 (resp. $\mu^{i,j}(s,a)$) as the distribution vector (resp. distribution) of each sample tuple (s, a, s') un-1223 der the nominal transition kernel $P^{(i,j)}$ associated with $\mathcal{M}_{(i,j)}$. With this in mind, combined with ¹²²⁴ Fano's inequality from [Tsybakov](#page-12-20) [\[2009,](#page-12-20) Theorem 2.2] and the additivity of the KL divergence ¹²²⁵ (cf. [Tsybakov](#page-12-20) [\[2009,](#page-12-20) Page 85]), we obtain

$$
p_{\text{e}} \ge 1 - N_{\text{all}} \frac{\max\limits_{(i,j),(i',j')\in\Theta,(i,j)\ne(i',j')} \text{KL}(\mu^{i,j} | \mu^{i',j'}) + \log 2}{\log |\Theta|}
$$

\n(i)
\n(j)
\n
$$
\ge 1 - N_{\text{all}} \max_{(i,j),(i',j')\in\Theta,(i,j)\ne(i',j')} \text{KL}(\mu^{i,j} | \mu^{i',j'}) - \frac{1}{2}
$$

\n
$$
= \frac{1}{2} - N_{\text{all}} \max_{(i,j),(i',j')\in\Theta,(i,j)\ne(i',j')} \text{KL}(\mu^{i,j} | \mu^{i',j'})
$$
 (238)

1226 where (i) holds by $log |\Theta| \geq 2 log 2$ as long as $S(A - 1)$ are large enough.

¹²²⁷ Then following the same proof pipeline of [Shi et al.](#page-11-4) [\[2023,](#page-11-4) Section C.2], we can arrive at

$$
p_e \ge \frac{1}{2} - \frac{N_{\text{all}}}{S(A-1)} \frac{4096}{c_1} (1-\gamma)^2 \max\{1-\gamma, \sigma\} \varepsilon^2 \ge \frac{1}{4},\tag{239}
$$

¹²²⁸ if the sample size is selected as

$$
N_{\text{all}} \le \frac{c_1 S(A-1)}{16396(1-\gamma)^2 \max\{1-\gamma,\sigma\}\varepsilon^2}.
$$
 (240)

1229 **Step 3: summing up the results together.** Finally, we suppose that there exists an estimator $\hat{\pi}$ such that such that

$$
\max_{(i,j)\in\Theta} \mathbb{P}_{(i,j)}\left[\max_{s\in\mathcal{X}\cup\mathcal{Y}} \left(V_{(i,j)}^{\star,\sigma}(s) - V_{(i,j)}^{\hat{\pi},\sigma}(s)\right) \geq \varepsilon\right] < \frac{1}{4},\tag{241}
$$

¹²³¹ then according to [\(229\)](#page-50-1), we necessarily have

$$
\forall s \in \mathcal{X}: \quad \max_{(i,j) \in \Theta} \mathbb{P}_{(i,j)} \left[V_{(i,j)}^{\star,\sigma}(s) - V_{(i,j)}^{\hat{\pi},\sigma}(s) \ge \varepsilon \right] < \frac{1}{4},\tag{242}
$$

¹²³² which indicates

$$
\forall s \in \mathcal{X}: \quad \max_{(i,j) \in \Theta} \mathbb{P}_{(i,j)} \left[V_{(i,j)}^{\star,\sigma}(s) - V_{(i,j)}^{\hat{\pi},\sigma}(s) < \varepsilon \right] \ge \frac{3}{4}.\tag{243}
$$

¹²³³ As a consequence, [\(236\)](#page-51-0) shows we must have

$$
\forall (i,j) \in \Theta: \quad \mathbb{P}_{(i,j)}\left[\widehat{\theta} = (i,j)\right] \ge \frac{3}{4}
$$
\n(244)

¹²³⁴ to achieve [\(241\)](#page-51-1). However, this would contract with [\(239\)](#page-51-2) if the sample size condition in [\(240\)](#page-51-3) is ¹²³⁵ satisfied. Thus, we complete the proof.

¹²³⁶ 11.3 Proof of Lemma [12](#page-50-2)

1237 Without loss of generality, we first consider any $\mathcal{M}_{(i,j)}$ with $(i,j) \in \mathcal{S} \times \mathcal{A} \setminus \{0\}$. Following the ¹²³⁸ same routine of [Shi et al.](#page-11-4) [\[2023,](#page-11-4) Section C.3.1], we can verify that the order of the robust value function $V_{(i,j)}^{\pi,\sigma}$ 1239 function $V_{(i,j)}^{\pi,\sigma}$ over different states satisfies

$$
\forall k \in \mathcal{S}: \quad V_{(i,j)}^{\pi,\sigma}(x_k) \le V_{(i,j)}^{\pi,\sigma}(y_k),\tag{245}
$$

1240 which means the robust value function of the states inside χ are always not larger than the corre-1241 sponding states inside \mathcal{Y} .

¹²⁴² Then we denote the minimum of the robust value function over states as below:

$$
V_{(i,j),\min}^{\pi,\sigma} := \min_{s \in S} V_{(i,j)}^{\pi,\sigma}(s).
$$
 (246)

In the following arguments, we first take a moment to assume $V_{(i,j),min}^{\pi,\sigma} = V_{(i,j)}^{\pi,\sigma}$ 1243 In the following arguments, we first take a moment to assume $V_{(i,j),min}^{\pi,\sigma} = V_{(i,j)}^{\pi,\sigma}(x_i)$. With this in ¹²⁴⁴ mind, we arrive at

$$
V_{(i,j)}^{\pi,\sigma}(y_i) = 1 + \gamma (1 - \sigma) V_{(i,j)}^{\pi,\sigma}(y_i) + \gamma \sigma V_{(i,j),\min}^{\pi,\sigma} = \frac{1 + \gamma \sigma V_{(i,j)}^{\pi,\sigma}(x_i)}{1 - \gamma (1 - \sigma)}.
$$
 (247)

1245 Then, when we move on to the characterization of the robust value function at state x_i . To do so, we ¹²⁴⁶ notice two important facts:

1247 1) The nominal transition probability $P_{x_i,a}^{(i,j)}$ at state-action pair (x_i, a) for any $a \in \mathcal{A}$ is a 1248 Bernoulli distribution (see [\(218\)](#page-49-1) and [\(216\)](#page-49-2)). The TV distance and the ℓ_{∞} norm between ¹²⁴⁹ two Bernoulli distribution are the same.

¹²⁵⁰ 2) Invoking the definitions of the nominal transition probability in [\(218\)](#page-49-1) and [\(216\)](#page-49-2), we have

$$
P_{x_i,j}^{(i,j)} = p1(s' = y_i) + (1-p)1(s' = x_i)
$$

\n
$$
P_{x_i,a}^{(i,j)} = q1(s' = y_i) + (1-q)1(s' = x_i) \quad \forall a \in \mathcal{A} \setminus \{j\}.
$$
\n(248)

¹²⁵¹ With the above two facts in hand, our problem setting is reduced to the same one in [Shi et al.](#page-11-4) [\[2023\]](#page-11-4) ¹²⁵² and can reuse the results in [Shi et al.](#page-11-4) [\[2023,](#page-11-4) Section C.3.1] to achieve

$$
V_{(i,j)}^{\pi,\sigma}(x_i) \le \frac{\frac{\gamma(z_{(i,j)}^{\pi}-\sigma)}{1-\gamma(1-\sigma)}}{(1-\gamma)\left(1+\frac{\gamma(z_{(i,j)}^{\pi}-\sigma)}{1-\gamma(1-\sigma)}\right)}.
$$
\n(249)

¹²⁵³ and

$$
\pi_{(i,j)}^{\star}(j \,|\, x_i) = 1
$$

$$
V_{(i,j)}^{\star,\sigma}(x_i) = \frac{\frac{\gamma\left(z_{(i,j)}^{\star},-\sigma\right)}{1-\gamma(1-\sigma)}}{\left(1-\gamma\right)\left(1+\frac{\gamma\left(z_{(i,j)}^{\star},-\sigma\right)}{1-\gamma(1-\sigma)}\right)} = \frac{\frac{\gamma(p-\sigma)}{1-\gamma(1-\sigma)}}{\left(1-\gamma\right)\left(1+\frac{\gamma(p-\sigma)}{1-\gamma(1-\sigma)}\right)}.
$$
(250)

1254 Analogously, we can verify that for other $x_k \in \mathcal{X} \setminus \{x_i\}$,

$$
\pi_{(i,j)}^{\star}(0 \mid x_k) = 1
$$
\n
$$
V_{(i,j)}^{\star,\sigma}(x_k) = \frac{\frac{\gamma(p-\sigma)}{1-\gamma(1-\sigma)}}{(1-\gamma)\left(1+\frac{\gamma(p-\sigma)}{1-\gamma(1-\sigma)}\right)}.
$$
\n(251)

 12 DRVI for sa – rectangular algorithm for arbitrary norm

1256 In order to compute the fixed point of $\hat{\mathcal{T}}^{\sigma}$, distributionally robust value iteration (DRVI), is defined in Algorithm [1.](#page-53-1) For sa-rectangularity, starting from an initialization $\hat{Q}_0 = 0$, the update rule at the t-th $(t > 1)$ iteration is the following $\forall (s, a) \in S \times A$: t-th (t > 1) iteration is the following $\forall (s, a) \in S \times A$:

$$
\widehat{Q}_t^{\pi}(s, a) = \widehat{\mathcal{T}}^{\sigma} \widehat{Q}_{t-1}^{\pi}(s, a) = r(s, a) + \gamma \inf_{\mathcal{P} \in \mathcal{U}_{\|\cdot\|}^{\text{ss}, \sigma}(\widehat{P}_{s, a}^0)} \mathcal{P} \widehat{V}_{t-1},
$$
\n(252)

1259 where $\hat{V}_{t-1}(s) = \max_{\pi} \hat{Q}_{t-1}^{\pi}(s, a)$ for all $s \in \mathcal{S}$.

¹²⁶⁰ Directly solving [\(252\)](#page-53-2) is computationally expensive since it involves optimization over a S-1261 dimensional probability simplex at each iteration, especially when the dimension of the state space S ¹²⁶² is large. Fortunately, given strong duality [\(252\)](#page-53-2) can be equivalently solved using its dual problem, 1263 which concerns optimizing a two variable (λ and ω) and thus can be solved efficiently. The specific ¹²⁶⁴ form of the dual problem depends on the choice of the norm ∥.∥, which we shall discuss separately in 1265 Appendix [8.3.](#page-17-4) To complete the description, we output the greedy policy of the final Q-estimate \hat{Q}_T 1266 as the final policy $\hat{\pi}$, namely. as the final policy $\hat{\pi}$, namely,

$$
\forall s \in \mathcal{S}: \quad \widehat{\pi}(s) = \arg \max_{a} \widehat{Q}_T(s, a). \tag{253}
$$

1267 Encouragingly, the iterates $\left\{\widehat{Q}_t\right\}_{t\geq 0}$ of DRVI converge linearly to the fixed point $\widehat{Q}^{\star,\sigma}$, owing to the appealing γ -contraction property of $\hat{\mathcal{T}}^{\sigma}$.

input: empirical nominal transition kernel \hat{P}^0 ; reward function r; uncertainty level σ ; number of iterations T.

initialization:
$$
Q_0(s, a) = 0
$$
, $V_0(s) = 0$ for all $(s, a) \in S \times A$.
\n**for** $t = 1, 2, ..., T$ **do**
\n**for** $s \in S$, $a \in A$ **do**
\n**Set** $\hat{Q}_t(s, a)$ according to (252);
\n**end**
\n**for** $s \in S$ **do**
\n**Set** $\hat{V}_t(s) = \max_a \hat{Q}_t(s, a)$;
\n**end**
\n**end**

output: \hat{Q}_T , \hat{V}_T and $\hat{\pi}$ obeying $\hat{\pi}(s) := \arg \max_a \hat{Q}_T (s, a)$. Algorithm 1: Distributionally robust value iteration $(DRVI)$ for infinite-horizon RMDPs for sa-rectangular for arbitrary norm

1269 Using Algorithm [1,](#page-53-1) it allows getting an ϵ_{opt} error in the empirical MDP in the sa-rectangular case. In 1270 the s-rectangular case, finding an algorithm to get ϵ_{opt} is more difficult to use, as the policy is not 1271 deterministic anymore and [1](#page-53-1) cannot anymore be applied. For L_p norms, [Clavier et al.](#page-9-0) [\[2023\]](#page-9-0) derived ¹²⁷² an algorithm but for arbitrary norm we need to consider a more general problem for arbitrary norm in ¹²⁷³ Appendix [12](#page-53-1)

NeurIPS Paper Checklist

