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Abstract

To address the challenges of sim-to-real gap and sample efficiency in reinforcement1

learning (RL), this work studies distributionally robust Markov decision processes2

(RMDPs) — optimize the worst-case performance when the deployed environment3

is within an uncertainty set around some nominal MDP. Despite recent efforts,4

the sample complexity of RMDPs has remained largely undetermined. While the5

statistical implications of distributional robustness in RL have been explored in6

some specific cases, the generalizability of the existing findings remains unclear,7

especially in comparison to standard RL. Assuming access to a generative model8

that samples from the nominal MDP, we examine the sample complexity of9

RMDPs using a class of generalized Lp norms as the ’distance’ function for the10

uncertainty set, under two commonly adopted sa-rectangular and s-rectangular11

conditions. Our results imply that RMDPs can be more sample-efficient to solve12

than standard MDPs using generalized Lp norms in both sa- and s-rectangular13

cases, potentially inspiring more empirical research. We provide a near-optimal14

upper bound and a matching minimax lower bound for the sa-rectangular scenarios.15

For s-rectangular cases, we improve the state-of-the-art upper bound and also16

derive a lower bound using L∞ norm that verifies the tightness.17

1 Introduction18

Reinforcement learning (RL) [Sutton, 1988] is a popular paradigm in machine learning, particularly19

noted for its success in practical applications. The RL framework, usually modeled within the context20

of a Markov decision process (MDP), focuses on learning effective decision-making strategies based21

on interactions with an environment. However, the work of Mannor et al. [2004], among others,22

has highlighted a vulnerability in RL strategies, revealing the sensitivity to estimation errors in the23

reward and transition probabilities. A specific example of this is when, because of a sim-to-real gap,24

policies learned in idealized environments catastrophically fail when deployed in settings with slight25

changes or adversarial perturbations [Klopp et al., 2017, Mahmood et al., 2018].26

To address this issue, robust MDPs (RMDPs), proposed by Iyengar [2005] and Nilim and El Ghaoui27

[2005], have attracted considerable attention. RMDPs are formulated as max-min problems,28

seeking policies that are resilient to model estimation errors within a specified uncertainty set.29

Despite the robustness benefits, solving RMDPs is NP-hard for general uncertainty sets [Nilim and30

El Ghaoui, 2005]. To overcome this challenge, the assumption of rectangularity is often adopted,31

with uncertainty sets structured as products of independent subsets for each state or state-action pair,32

denoted as s-rectangular or sa-rectangular assumptions (see Definitions 4 and 5). These assumptions33

facilitate the use of methods such as robust value iteration and robust policy iteration, preserving34

many structural properties of MDPs [Ho et al., 2021]. The s-rectangular sets, though less restrictive,35

pose greater challenges, while the sa-rectangular sets allow for deterministic optimal policies akin36
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Result type Reference Distance

sa-rectangularity s-rectangularity

0 < σ ≲ 1− γ 1− γ ≲ σ < σmax 0 < σ̃ ≲ 1− γ 1− γ ≲ σ̃ < σ̃max

Upper bound

Yang et al. [2022a] TV S2A(2+σ)2

σ2(1−γ)4ε2
S2A(2+σ)2

σ2(1−γ)4ε2
S2A2(2+σ̃)2

σ̃2(1−γ)4ε2
S2A2(2+σ̃)2

σ̃2(1−γ)4ε2

Panaganti and Kalathil [2022] TV S2A
(1−γ)4ε2

S2A
(1−γ)4ε2 × ×

Shi et al. [2023] TV SA
(1−γ)3ε2

SA
σ(1−γ)2ε2 × ×

Clavier et al. [2023] Lp
SA

(1−γ)3ε2
SA

(1−γ)4ε2
SA

(1−γ)3ε2
SA

(1−γ)4ε2

This paper Lp
SA

(1−γ)3ε2
SA

σ(1−γ)2ε2
SA

(1−γ)3ε2
SA

(1−γ)2σ̃mins∥πs∥∗ε
2

This paper General Lp [1] SA
(1−γ)3ε2

SA
σ(1−γ)2ε2

SA
(1−γ)3ε2

SA
(1−γ)2σ̃Cg mins∥πs∥∗ε

2

Lower bound

Yang et al. [2022a] TV SA
(1−γ)3ε2

SA(1−γ)
σ4ε2 × ×

Shi et al. [2023] TV SA
(1−γ)3ε2

SA
σ(1−γ)2ε2 × ×

This paper Lp
SA

(1−γ)3ε2
SA

σ(1−γ)2ε2 × ×

This paper L∞
SA

(1−γ)3ε2
SA

σ(1−γ)2ε2
SA

(1−γ)3ε2
SA

σ̃(1−γ)2ε2

Table 1: Comparisons with prior results (up to log terms) regarding finding an ε-optimal policy for the
distributionally RMDP, where σ is the radius of the uncertainty set and σmax defined in Theorem 1.

to non-robust MDPs [Wiesemann et al., 2013]. Note that, while uncertainty in the reward can be37

easily handled, dealing with uncertainty in the transition kernel is much more difficult [Kumar et al.,38

2022, Derman et al., 2021].39

The question of sample efficiency is central in RL problems ranging from practice to theory. Although40

minimax rates are achieved in [Azar et al., 2013b, Li et al., 2023c] in the context of classical MDPs,41

this goal remains open, in general, in the context of RMDPs. Specifically, there exists prior work42

studying the sample complexity of distributionally robust RL for a few specific divergences such43

as total variation (TV ), χ2, KL, and Wasserstein (see a further discussion in Appendix 6) [Yang44

et al., 2022b, Zhou et al., 2021, Panaganti and Kalathil, 2022], while such results remain unclear45

for more general classes of Lp norms defined in 1.To this point, to the best of our knowledge, the46

results of sample complexity that achieve minimax optimality for the full range of uncertainty level47

are limited to only one case — TV distance [Shi et al., 2023].48

In this work, we focus on understanding the sample complexity of RMDPs with a general smooth49

Lp that will be defined in Def. 1. This generalization is appealing for both practice and theory. In50

practice, numerous applications are based on optimizations or learning approaches that involve51

general norms beyond those that have already been studied. Additionally, optimizing norm weighted52

ambiguity sets for Robust MDPs has been proposed in the context of RMDPs in Russel et al. [2019],53

which justifies our formulation. Theoretically, prior work has characterized the sample complexity of54

RMDPs for some specific norms have suggested intriguing insights about the statistical implications55

of distributional robustness in RL. It is interesting to further understand the statistical cost of robust56

RL in more general scenarios.One area of focus is the contrast between the sample efficiency of57

solving distributionally robust RL and solving standard RL. In particular, for the specific case of58

TV distance, Shi et al. [2023] shows that the sample complexity for solving robust RL is at least59

the same as and sometimes (when the uncertainty level is relatively large) could be smaller than60

that of standard RL. This motivates the following open question:61

Is distributionally robust RL more sample efficient than standard RL for norms defined in Def. (1) ?62

A second question is about the comparisons between the sample complexity of solving s-rectangular63

RMDPs and that of solving sa-rectangular RMDPs. Note that s-rectangular RMDPs have more64

complicated optimization formulations with additional variables (uncertainty levels for each action) to65

optimize. This leads to a richer class of optimal policy candidates—stochastic policies in s-rectangular66

cases, in contrast to the class of deterministic policies for sa-rectangular cases. In addition, existing67

sample complexity upper bounds for solving s-rectangular RMDPs are larger than that for solving68

sa-rectangularity [Yang et al., 2022b] for the investigated cases. This motivates the curious question:69

Does solving s-rectangular RMDPs require more samples than solving sa-rectangular RMDPs with70

general smooth Lp norms defined in Def. 1?71
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Main contributions. In this paper, we address each of the two questions discussed above. In72

particular, we provide the first sample complexity analysis for RMDPs with general Lp norms defined73

in 1 under both the s- and sa-rectangularity conditions. For convenience, we present a detailed74

comparison between the existing state-of-the-art and our results in Table 1 for quick reference and75

discuss the contributions and their implications below.76

• Considering the first question, we illustrate our results in both sa- and s-rectangular case in77

Figure 2. In the case of sa-rectangularity, we derive a sample complexity upper bound for RMDPs78

using general smooth Lp norms (cf. Theorem 1) in the order of Õ
(

SA
(1−γ)2 max{1−γ,Cgσ}ε2

)
. with79

Cg > 0 a positive constant related to the geometry of the norm defined in 1. For classical LP norms,80

Cg ≥ 1 so we can directly relax this constant to 1 to obtain the result in table 1. In addition, we81

provide a matching minimax lower bound (cf. Theorem 2) that confirms the near-optimality of82

the upper bound for almost full range of the uncertainty level. Our results match the near-optimal83

sample complexity derived in Shi et al. [2023] for the specific case using TV distance, while holding84

for broader cases using general Lp norms. The results rely on a new dual optimization form for85

sa-rectangular RMDPs and reveal the relationship between the sample complexity and this new dual86

form — the infinite span seminorm (controlled in Lemma 5), which may be of independent interest.87

In the case of s-rectangularity, we provide a sample complexity upper bound for solving RMDPs88

with general smooth Lp norms in the order of Õ
(

SA
(1−γ)2 max{1−γ,Cg mins∥πs∥∗σ}ε2

)
. This result89

improves the prior art Õ
(

SA
(1−γ)4ε2

)
in Clavier et al. [2023] for classical Lp when σ̃ ≲ 1− γ — by90

at least a factor of O
(

1
1−γ

)
. Furthermore, we present a lower bound for a representative case with91

L∞ norm, which corroborates the tightness of the upper bound. To the best of our knowledge, this92

is the first lower bound for solving RMDPs with s-rectangularity.93

• Considering the second question, as illustrated in Figure 2, our results highlight that robust RL is at94

least the same as and sometimes can be more sample-efficient to solve than standard RL for general95

smooth Lp norms in 1. This insight is of significant practical importance and serves to provide96

crucial motivation for the use and study of distributionally robustness in RL. Notably, robust RL97

does not only reduce the vulnerability of RL policy to estimation errors and sim-to-real gaps, but98

also leads to better data efficiency. In terms of comparing the statistical implications of sa- and99

s- rectangularity, our results show that solving s-rectangular RMDPs is not harder than solving100

sa-rectangular RMDPs in terms of sample requirement (See Theorem 3 and Figure 2, Right).101

• We highlight the technical contributions as below. For the upper bounds, regarding optimization102

contribution, we derive new dual optimization problem forms for both sa− and s− rectangular103

cases(Lemma 3 and 4), which is the foundation of the covering number argument in finite-sample104

analysis. From a statistical point of view, a new concentration lemma (See Lemma 8 for dual105

forms and two new lemmas to obtain sample complexity lower than classical RL, controlling the106

infinite span semi norm of the value function, both for sa− and s− rectangular case are derived107

(See Lemmas 5 and 6). For the lower bound, the technical contributions are mainly in s-rectangular108

cases, which involves entire new challenges compared to sa-rectangularity case: the optimal policies109

can be stochastic and hard to be characterized as a closed form, compared to the deterministic one110

in sa-rectangular cases. Therefore, we construct new hard instances for s-rectangular cases that111

is distinct from those used in sa-rectangular cases or standard RL.112

2 Problem Formulation: Robust Markov Decision Processes113

In this section, we formulate distributionally robust Markov decision processes (RMDPs) in the114

discounted infinite-horizon setting, introduce the sampling mechanism, and describe our goal.115

Standard Markov decision processes (MDPs). A discounted infinite-horizon MDP is represented116

by M = (S,A, γ, P, r), where S = {1, · · · , S} and A = {1, · · · , A} are the finite state and action117

spaces, respectively, γ ∈ [0, 1) is the discounted factor, P : S ×A → ∆(S) denotes the probability118

transition kernel, and r : S × A → [0, 1] is the immediate reward function, which is assumed to119

be deterministic. Moreover, we assume that the reward function is bounded in (0, 1) without loss of120

generality of the results due to the variance reward invariance. Finally we denote 1A or 1S the unitary121

vector of respectively dimension A or S. Moreover, es is the standard unitary vector supported122
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Figure 1: Left: Sample complexity results for RMDPs with sa- and s-rectangularity with Lp with
comparisons to prior arts [Shi et al., 2023] (for L1 norm, or called total variation distance) and
[Clavier et al., 2023] ; Right: The data and instance-dependent sample complexity upper bound of
solving s-rectangular dependency RMDPs with LP norms.

on s. The policy we are looking for is denoted by π : S → ∆(A), which specifies the probability123

of action selection over the action space in any state. Note that if the policy is deterministic in the124

sa-rectangular case, we overload the notation and refer to π(s) as the action selected by the policy125

π in state s. Finally, to characterize the cumulative reward, the value function V π,P for any policy126

π under the transition kernel P is defined by ∀s ∈ S127

V π,P (s) := Eπ,P

[ ∞∑
t=0

γtr
(
st, at

) ∣∣∣ s0 = s

]
. (1)

The expectation is taken over the randomness of the trajectory {st, at}∞t=0 generated by executing128

the policy π under the transition kernel P , such that at ∼ π(· | st) and st+1 ∼ P (· | st, at) for all129

t ≥ 0. In the same way, the Q function Qπ,P associated with any policy π under the transition kernel130

P is defined using expectation taken over the randomness of the trajectory under policy π as131

Qπ,P (s, a) := Eπ,P

[ ∞∑
t=0

γtr
(
st, at

) ∣∣∣ s0, a0 = s, a

]
, (2)

Distributionally robust MDPs. We consider distributionally robust MDPs (RMDPs) in the132

discounted infinite-horizon setting, denoted by Mrob = {S,A, γ,Uσ
∥.∥(P

0), r}, where S,A, γ, r133

are the same sets and parameters as in standard MDPs. The main difference compared to standard134

MDPs is that instead of assuming a fixed transition kernel P , it allows the transition kernel to be135

arbitrarily chosen from a prescribed uncertainty set Uσ
∥.∥(P

0) centered around a nominal kernel136

P 0 : S ×A → ∆(S), where the uncertainty set is specified using some called smooth norm denoted137

∥.∥ defined in of radius σ > 0 defined in 1.138

Definition 1 (General smooth Lp norms and dual norms). A norm ∥ · ∥ is said to be a general smooth139

Lp norm if140

• for all x ∈ Rn, ∥x∥ = ∥x∥p,w = (
∑n

k=1 wk(|xk|)p)1/p, where w ∈ Rn
+, is an arbitrary141

positive vector,142

• it is twice continuously differentiable Rudin et al. [1964] with the supremum of the Hessian143

Matrix over the simple CS = supx∈∆s

∥∥∇2 ∥x∥
∥∥
2
, where ∥∥2 here is the spectral norm144

Finally, we denote the dual norm of ∥·∥ as ∥·∥∗ s.t. ∥y∥∗ = maxx x
T y : ∥x∥ ≤ 1. Moreover, for any145

metric ∥.∥, we define Cg as Cg = 1/mins ∥es∥ where es ∈ RS is the standard basis of supported in s.146

Note the quantity CS exists as the Hessian is continuous for C2 functional and the simplex is a com-147

pact set, so by Extreme Value Theorem Rudin et al. [1964], CS is finite. Moreover, to give an example,148
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considering Lp, p ≥ 2, norms, Cs is bounded by S1/q. (See (151) ) This definition is general and149

includes Lp, p ≥ 2, all rescaled and weighted norms. Moreover, we could extend our result to a larger150

set than the one of the norms defined in Def. 1, this is why a complete discussion about the set of norms151

can be found in Appendix 7. However, it does not include divergences such as KL and χ2. Not that152

the case of TV which is not C2 smooth is treated independently with different arguments in the proof153

but has the same sample complexity. In particular, given the nominal transition kernel P 0 and some un-154

certainty level σ, the uncertainty set—with arbitrary smooth norm metric ∥ ∥ : RS× → R+ in sa rect-155

angular case or from RS×A in the s-rectangular case, is specified as Uσ
∥.∥(P

0) := ⊗s,a U sa,σ
∥.∥ (P 0

s,a)156

U sa,σ
∥.∥ (P 0

s,a) :=
{
Ps,a ∈ ∆(S) :

∥∥Ps,a − P 0
s,a

∥∥ ≤ σ
}
, (3)

Ps,a := P (· | s, a) ∈ R1×S , P 0
s,a := P 0(· | s, a) ∈ R1×S . (4)

where we denote a vector of the transition kernel P or P 0 at state-action pair (s, a). In other157

words, the uncertainty is imposed in a decoupled manner for each state-action pair, obeying the158

so-called sa-rectangularity [Zhou et al., 2021, Wiesemann et al., 2013]. More generally, we159

define s-rectangular MDPs as Uσ
∥.∥(P ) = ⊗s U s,σ̃

∥.∥(Ps), for the general smooth Lp norm ∥.∥. The160

uncertainty is imposed in a decoupled manner for each state pair, and a fixed budget given a state161

for all action is defined. To get a similar meaning for the radius of the ball between sa-rectangular162

and s-rectangular assumptions, we need to rescale the radius depending on the norm like in Yang163

et al. [2022b]. The s- uncertainty set is then defined using the rescaled radius σ̃ as164

U s,σ̃
∥.∥(Ps) :=

{
P ′
s ∈ ∆(S)A : ∥P ′

s − Ps∥ ≤ σ̃ = σ ∥1A∥
}
, (5)

Ps := P (·, · | s) ∈ R1×SA, P 0
s := P 0(·, · | s) ∈ R1×SA. (6)

where 1A ∈ RA denotes the unitary vector. For the specific case of respectively L1,Lp and L∞ norm,165

σ̃ is equal to |σA|, σ|A|1/p and σ. Note that this scaling allows for a fair comparison between sa-166

and s-rectangular MDPs. In RMDPs, we are interested in the worst-case performance of a policy167

π over all the possible transition kernels in the uncertainty set. This is measured by the robust value168

function V π,σ and the robust Q-function Qπ,σ in Mrob, defined respectively as ∀(s, a) ∈ S ×A169

V π,σ(s) := inf
P∈U sa,σ

∥.∥ (P 0)
V π,P (s), Qπ,σ(s, a) := inf

P∈U sa,σ
∥.∥ (P 0)

Qπ,P (s, a). (7)

Similarly for s-rectangularity, the value function is denoted V π,σ
s (s) := inf

P∈U s,σ̃
∥.∥(P

0)
V π,P (s).170

Optimal robust policy and robust Bellman operator. As a generalization of properties of standard171

MDPs in the sa-rectangular robust case, it is well-known that there exists at least one deterministic172

policy that maximizes the robust value function (resp. robust Q-function) simultaneously for all states173

(resp. state-action pairs) [Iyengar, 2005, Nilim and El Ghaoui, 2005] but not in the s-rectangular case.174

Therefore, we denote the optimal robust value function (resp. optimal robust Q-function) as V ⋆,σ175

(resp. Q⋆,σ), and the optimal robust policy as π⋆, which satisfy ∀(s, a) ∈ S ×A176

V ⋆,σ(s) := V π⋆,σ(s) = max
π

V π,σ(s), Q⋆,σ(s, a) := Qπ⋆,σ(s, a) = max
π

Qπ,σ(s, a). (8a)

A key concept in RMDPs is a generalization of Bellman’s optimality principle, encapsulated in the177

following robust Bellman consistency equation (resp. robust Bellman optimality equation):178

∀(s, a) ∈ S ×A, Qπ,σ(s, a) = r(s, a) + γ inf
P∈U sa,σ

∥.∥ (P 0
s,a)

PV π,σ, (9a)

∀(s, a) ∈ S ×A ,Q⋆,σ(s, a) = r(s, a) + γ inf
P∈U sa,σ

∥.∥ (P 0
s,a)

PV ⋆,σ. (9b)

for the sa-rectangular case and same equation replacing P 0
s,a by P 0

s and σ by σ̃. The robust Bellman179

operator [Iyengar, 2005, Nilim and El Ghaoui, 2005] is denoted by T σ(·) : RSA → RSA180

T σ(Qπ)(s, a) := r(s, a) + γ inf
P∈U sa,σ

∥.∥ (P 0
s,a)

PV, with V (s) := max
π

Qπ(s, a). (10)

for sa-rectangular MDPs. Given that Q⋆,σ is the unique-fixed point of T σ one can recover the181

optimal robust value function and Q-function using a procedure termed distributionally robust182

value iteration (DRV I). Generalizing the standard value iteration, DRV I starts from some given183

initialization and recursively applies the robust Bellman operator until convergence. As has been184

shown previously, this procedure converges rapidly due to the γ-contraction property of T σ with185

respect to the L∞ norm [Iyengar, 2005, Nilim and El Ghaoui, 2005].186
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3 Distributionally Robust Value Iteration187

Generative model-based sampling. Following Zhou et al. [2021], Panaganti and Kalathil [2022],188

we assume access to a generative model or a simulator [Kearns and Singh, 1999], which allows us189

to collect N independent samples for each state-action pair generated based on the nominal kernel190

P 0: ∀(s, a) ∈ S ×A, si,s,a
i.i.d∼ P 0(· | s, a), i = 1, 2, · · · , N. The total sample size is, therefore,191

NSA. We consider a model-based approach tailored to RMDPs, which first constructs an empirical192

nominal transition kernel based on the collected samples and then applies distributionally robust193

value iteration (DRVI) to compute an optimal robust policy. As we decouple the statistical estimation194

error and the optimization error, we exhibit an algorithm that can achieve arbitrary small error ϵopt195

in the empirical MDP defined as an empirical nominal transition kernel P̂ 0 ∈ RSA×S that can be196

constructed on the basis of the empirical frequency of state transitions, i.e. ∀(s, a) ∈ S ×A197

P̂ 0(s′ | s, a) := 1

N

N∑
i=1

1
{
si,s,a = s′

}
, (11)

which leads to an empirical RMDP M̂rob = {S,A, γ,Uσ
∥.∥(P̂

0), r}. Analogously, we can define198

the corresponding robust value function (resp. robust Q-function) of policy π in M̂rob as V̂ π,σ199

(resp. Q̂π,σ) (cf. (8)). In addition, we denote the corresponding optimal robust policy as π̂⋆ and the200

optimal robust value function (resp. optimal robust Q-function) as V̂ ⋆,σ (resp. Q̂⋆,σ) (cf. (9)), which201

satisfies the robust Bellman optimality equation ∀(s, a) ∈ S ×A:202

Q̂⋆,σ(s, a) = r(s, a) + γ inf
P∈U sa,σ

∥.∥ (P̂ 0
s,a)

PV̂ ⋆,σ. (12)

Equipped with P̂ 0, we can define the empirical robust Bellman operator T̂ σ as ∀(s, a) ∈ S ×A203

T̂ σ(Qπ)(s, a) := r(s, a) + γ inf
P∈U sa,σ

∥.∥ (P̂ 0
s,a)

PV, (13)

with V (s) := maxπ Q
π(s, a). The aim of this work is given the collected samples, to learn204

the robust optimal policy for the RMDP w.r.t. some prescribed uncertainty set Uσ(P 0) around the205

nominal kernel using as few samples as possible. Specifically, given some target accuracy level ε > 0,206

the goal is to seek an ε-optimal robust policy π̂ obeying207

∀s ∈ S : V ⋆,σ(s)− V π̂,σ(s) ≤ ε. (14)

V̂ π̂⋆,σ − V̂ π̂,σ ≤ εopt. (15)

This formulation allows plugging any solver of RMDPs in this bound, for instance, the distributionally208

robust value iteration (DRVI) algorithm detailed in Appendix 12.209

4 Theoretical guarantees210

In this section, we present our main results characterizing the sample complexity of solving RMDPs211

with sa-and s-rectangularity. Additionally, we discuss the implications of our results for the com-212

parisons between standard and robust RL, and for comparisons between sa- versus s-rectangularity.213

4.1 sa-rectangular uncertainty set with general smooth norms214

To begin, we consider the RMDPs with sa-rectangularity with general norms. We first provide the215

following sample complexity upper bound for certain oracle planning algorithms, whose proof is216

postponed to Appendix 9.2. Technically, we derive two new dual forms for RMDPs problems using217

arbitrary norms in Lemmas 3 and 4 for respectively sa- and s-rectangular RMDPS. In these dual218

forms, a central quantity denoted sp(.)∗, representing the dispersion of the value function, appears219

and is the dual span semi-norm associated with the considered general Lp norm ∥.∥ defined in 1220

in the initial primal problem. The main challenge in this analysis is to derive a tight upper bound221

on this quantity in Lemmas (5) and (6), leading to the following sample complexity.222
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Theorem 1 (Upper bound for sa-rectangularity). Consider the uncertainty set U sa,σ
∥·∥ (·) associated223

with arbitrary smooth norm ∥ · ∥ defined in 1. We denote σmax := maxp1,p2∈∆(S) ∥p1 − p2∥ as224

the accessible maximal uncertainty level. Consider any δ ∈ (0, 1), discount factor γ ∈
[
1
4 , 1
)
, and225

uncertainty level σ ∈ (0, σmax]. Let π̂ be the output policy of some oracle planning algorithm with226

optimization error εopt introduced in (15). With introduced in 1, one has with probability at least 1−δ,227

∀s ∈ S : V ⋆,σ(s)− V π̂,σ(s) ≤ ε+
8εopt
1− γ

(16)

for any ε ∈ (0,
√

1/max{1− γ, σCg}], as long as the total number of samples obeys228

NSA ≳
c1SA

(1− γ)2 max{1− γ,Cgσ}ε2
+

c2SACS ∥1S∥∗
(1− γ)2ϵ

(17)

with c1, c2, c3 a universal positive constant. For a sufficiently small level of accuracy229

ϵ ≤ (max{1− γ,Cgσ})/(CS ∥1S∥), the sample complexity is230

NSA ≳
c3SA

(1− γ)2 max{1− γ,Cgσ}ε2
(18)

Note that this result is also true for TV without the geometric smooth term depending on CS . Consid-231

ering Lp norms, Cg ≥ 1 and CS ≤ S1/q . In Theorem 1, we introduce the following minimax-optimal232

lower bound to verify the tightness of the above upper bound; a proof is provided in Appendix 10.233

Theorem 2 (Lower bound for sa-rectangularity). Consider the uncertainty set U sa,σ
∥·∥ (·) associated234

with arbitrary LP norm ∥ · ∥ defined in 1. We denote σmax := maxp1,q1∈∆(S) ∥p1 − p2∥ as235

the accessible maximal uncertainty level. Consider any tuple (S,A, γ, σ, ε), where γ ∈
[
1
2 , 1
)
,236

σ ∈ (0, σmax(1 − c0)] with 0 < c0 ≤ 1
8 being any small enough positive constant, and ε ∈237 (

0, c0
256(1−γ)

]
. We can construct two infinite-horizon RMDPs M0,M1 such that giving a dataset238

with N independent samples for each state-action pair over the nominal transition kernel (for either239

M0 or M1 respectively), one has240

inf
π̂

max
M∈{M0,M1}

{
PM

(
max
s∈S

[
V ⋆,σ(s)− V π̂,σ(s)

]
> ε
)}

≥ 1

8
,

where the infimum is taken over all estimators π̂, P0 (resp. P1) are the probability when the RMDP is241

M0 (resp. M1), as long as, for c7 is a universal positive constant,242

NSA ≤ c7SA

(1− γ)2 max{1− γ,Cgσ}ε2
. (19)

• Near minimax-optimal sample complexity with general Lp norms. Recall that Theorem 1243

shows that the sample complexity upper bound of oracle algorithms for RMDPs is in the order of244

Õ
(

SA
(1−γ)2 max{1−γ,Cgσ}ε2

)
. Combined with the lower bound in Theorem 2, we observe that the245

above sample complexity is near minimax-optimal, in almost the full range of uncertainty.246

• Solving RMDPs with general Lp norms can be easier than solving standard RL. Recall that247

the sample complexity of solving standard RL with a generative model [Agarwal et al., 2020, Li248

et al., 2024, Azar et al., 2013a] is: Õ
(

SA
(1−γ)3ε2

)
. Comparing this with the sample complexity in249

(18), it highlights that solving robust MDPs (cf. (18)) using any norm as the divergence function for250

the uncertainty set is not harder than (and is sometimes easier than) solving standard RL (cf. (4.1)).251

Specifically, when the uncertainty level is small σ ≲ 1 − γ, the sample complexity of solving252

robust MDPs matches that of standard MDPs. While when the uncertainty level is relatively larger253

1− γ ≲ σ ≤ σmax, the sample complexity of solving robust MDPs is smaller than that of standard254

MDPs by a factor or σ
1−γ , which goes to 1

1−γ when σ = O(1).255

• Comparisons with prior arts. In Figure 2, we illustrate the comparisons with two state-of-the-256

arts [Clavier et al., 2023, Shi et al., 2023] which use some divergence functions belonging to the class257

of general norms considered in this work. In particular, Shi et al. [2023] achieved the state-of-the-art258
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minimax-optimal sample complexity Õ
(

SA
(1−γ)2 max{1−γ,σ}ε2

)
for specific L1 norm (or called total259

variation distance). In this work, we attain near minimax-optimal sample complexity for any general260

norm (including L1) which matches the one in Shi et al. [2023] when narrowing down to L1 norm.261

Note that in TV case, Cg = 1. This reveals that the finding of robust MDPs can be easier than262

standard MDPs [Shi et al., 2023] in terms of sample requirement does not only hold for L1 norm,263

but for any general norm. In addition, compared to Clavier et al. [2023] which focuses on Lp norms264

for any 1 ≤ p ≤ ∞: when 1− γ ≲ σ ≤ σmax, we improve the sample complexity Õ( SA
(1−γ)4ε2 ) to265

Õ( SA
(1−γ)2σε2 ) by at least a factor of 1

1−γ ; otherwise, we match the results in Clavier et al. [2023].266

Burn-in Condition, Cg factor and TV case : In Th. 1 and 3 we need a sufficiently small level267

of accuracy ϵ ≤ (max{1 − γ,Cgσ})/(Cs ∥1S∥), to obtain the sample complexity. This type of268

condition is usual in MDPS analysis Shi et al. [2022] and is equivalent to burn in term. Moreover,269

the quantity CS exists (see 1) and for example, considering Lp norms, CS is bounded by S1/q . (See270

(151)) and the product CS ∥1S∥ is upper bounded by S for L2 norm. Moreover, note that our theorem271

for the smooth norm is also true for TV which is not C2 and has the same complexity as (Shi et al.272

[2023]. In this case, the burn-in condition is not needed. (See Lemma 9.3.3). Finally, the factor273

Cg = 1/mins ∥es∥ is norm dependent and depends on how big the vector es0 is in the considered274

norm. Note for classical Lp this quantity is bigger than 1, which reduces the sample complexity.275

4.2 s-rectangular uncertainty set with general norms276

To continue, we move on to the case when the uncertainty set is constructed under s-rectangularity277

smooth norm. The following theorem presents the sample complexity upper bound for learning an278

ϵ-optimal policy for RMDPs with s-rectangularity. A proof is shown in Appendix 9.2.279

Theorem 3 (Upper bound for s-rectangularity). Consider the uncertainty set U s,σ̃
∥·∥(·) with280

s-rectangularity. Consider any discount factor γ ∈
[
1
4 , 1
)
, the rescaled uncertainty level σ̃ = σ ∥1A∥,281

and denote σ̃max := ∥1A∥maxp1,p2∈∆(S) ∥p1 − p2∥ and δ ∈ (0, 1). Let π̂ be the output policy of282

an arbitrary optimization algorithm with error εopt. , with probability at least 1− δ, one has for any283

ε ∈ (0,
√

1/max{1− γ,Cg mins ∥πs∥∗ σ}], ∀s ∈ S : V ⋆,σ̃(s) − V π̂,σ̃(s) ≤ ε +
8εopt
1−γ as long284

as the total number of samples obeys285

NSA ≳
c4SA

(1− γ)2ε2
min

{
1

max{1− γ,Cgσ}
,

1

σCg min
s∈S

{
∥π∗

s∥∗ ∥1A∥ , ∥π̂s∥∗ ∥1A∥
}}+

c5SACS ∥1S∥∗
(1− γ)2ϵ

(20)

For a sufficiently small accuracy, ϵ ≤ (max{1− γ,Cgσ̃})/(Cs ∥1S∥) the sample complexity is286

NSA ≳
c6SA

(1− γ)2ε2
min

{
1

max{1− γ,Cgσ}
,

1

σCg mins∈S
{
∥π∗

s∥∗ ∥1A∥ , ∥π̂s∥∗ ∥1A∥
}} (21)

where π̂s ∈ ∆A denote the policy of the empirical RMPDs at state s, π∗
s ∈ ∆A the optimal policy287

given s of the true RMPDs, ∥.∥∗ the dual norm and c4, c5, c6 are universal constant. Note that this288

result is also true for TV without the term depending on smoothness CS . In addition, we provide the289

lower bounds for a representative divergence function — L∞ norm in the following. Note that for290

classical Lp, CS = S1/q and Cg can be lower bounded by 1. A proof is provided in Appendix 11.291

Theorem 4 (Lower bound for s-rectangularity). Consider the uncertainty set U s,σ̃
L∞

(·) associated with292

the L∞ norm. Consider any tuple (S,A, γ, σ, ε) and 0 < c0 ≤ 1
8 being any small enough positive293

constant, where γ ∈
[
1
2 , 1
)
, and ε ∈

(
0, c0

256(1−γ)

]
. Correspondingly, we denote the accessible294

maximal uncertainty level for U s,σ̃
L∞

(·) as σ∞
max := maxp1,p1∈∆(S)A ∥p1 − p2∥∞ = 1. Then we can295

construct a collection of infinite-horizon RMDPs ML∞ defined by the uncertainty set with U s,σ̃
L∞

(·)296

so that for any σ ∈ (0, σ∞
max(1− c0)], and any dataset with in total Nall independent samples for all297

state-action pairs over the nominal transition kernel (for any RMDP inside ML∞ ), one has298

inf
π̂

max
M∈ML∞

{
PM

(
max
s∈S

[
V ⋆,σ(s)− V π̂,σ(s)

]
> ε
)}

≥ 1

8
, (22)
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provided that for c8 is a universal positive constant,299

Nall ≤
c8SA

(1− γ)2 max{1− γ, σ}ε2
. (23)

with PM the probability when the RMDP is M, and the infimum is taken over all estimators π̂.300

Now we can present some implications of Theorem 3 and Theorem 4.301

• Robust MDPs with s-rectangularity are at least as easy as sa-rectangularity. Theorem 3302

shows that the sample complexity of solving RMDPs with s-rectangularity does not exceed the303

order of Õ
(

SA
(1−γ)2 max{1−γ,Cgσ}ε2

)
. This matches the sample complexity for sa-rectangularity304

(cf. (18)) and indicates that although s-rectangular RMDPs are of a more complicated formulation,305

solving s-rectangular RMDPs is at least as easy as solving sa-rectangular RMDPs in terms of the306

sample complexity. In addition to the worst-case sample complexity upper bound, Theorem 3 also307

provides a data and instance-dependent sample complexity upper bound for s-rectangular RMDPs308

(cf. in (20)).Taking the divergence function ∥ · ∥ = Lp for instance, the data and instance-dependent309

sample complexity upper bound is310 Õ
(

SA
(1−γ)2ε2

1
max{1−γ,σ}

)
if π̂s(a | s) = π∗

s (a | s) = 1
A , ∀(s, a) ∈ S ×A

Õ
(

SA
(1−γ)2ε2

1
max{1−γ,σA1/p}

)
if ∥π̂s(· | s)∥0 = ∥π∗

s (· | s)∥0 = 1, ∀s ∈ S.

where ∥.∥0 corresponds to the total number of nonzero elements in a vector.The intuition beyond311

this theorem is that when the policy becomes proportional to uniform, the uncertainty budget of312

the s-rectangular MDPs is equally spread into all actions, and we retrieve the sa-rectangular case.313

When the policy becomes deterministic, all the uncertainty budget concentrates on one action. In314

this case, most of the actions are not robust except one, and the problem is simpler than classical315

MDP for this only specific action. An illustration of this result can be found in Fig. 2.316

• Comparisons with prior arts. In Figure 2, we illustrate the comparisons with Clavier et al.317

[2023] which use Lp norms functions belonging to the class of general norms considered in this318

work. We do not compare in this section to Yang et al. [2022a] as it is not anymore state-of-the-art319

with regard to the work of Clavier et al. [2023]. In particular, the latest achieves in the s-rectangular320

case at sample complexity of Õ
(

SA
(1−γ)3ε2

)
in the regime where σ̃ ≲ 1− γ. In this regime, our result321

is the same but more general but in the regime where σ̃ ≳ 1− γ, they achieve sample complexity322

of Õ
(

SA
(1−γ)4ε2

)
which is bigger than our result Õ

(
SA

(1−γ)2 max{1−γ,σ}ε2

)
by a factor at least 1

1−γ .323

5 Conclusion324

This work refined sample complexity bounds to learn robust Markov decision processes when the325

uncertainty set is characterized by an general Lp metric, assuming the presence of a generative model.326

Our findings not only strengthen the current knowledge by improving both the upper and lower bounds,327

but also highlight that learning s-rectangular MDPs is less challenging in terms of sample complexity328

compared to classical sa-rectangular MDPs. This work is the first to provide results with a minimax329

bound, as prior results concerning s-rectangular cases were not minimax optimal. Additionally, we330

have established the minimax sample complexity for RMDPs using a general Lp norm, demonstrating331

that it is never larger than that required for learning standard MDPs. Our research identifies potential332

avenues for future work, such as exploring the characterization of tight sample complexity for RMDPs333

under a broader family of uncertainty sets, such as those defined by f -divergence. It would be highly334

desirable for a more unified theoretical foundation, as the distance between probability measures335

is more natural to define using divergence. Moreover, it would be interesting to focus on the finite-336

horizon Setting and linear setting, as our current analytical framework opens the door for potential ex-337

tensions to address finite-horizon RMDPs. Such an extension would contribute to a more comprehen-338

sive understanding of tabular cases. Finally, the case of linear MDPs would be interesting to explore.339
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6 Other related works532

Here we provide additional discussion of related work that could not be fit into the main paper due533

to space considerations. We limit our discussions to the tabular setting with finite state and action534

spaces provable RL algorithms.535

Classical reinforcement learning with finite-sample guarantees. A recent surge in attention536

for RL has leveraged the methodologies derived from high-dimensional probability and statistics537

to analyze RL algorithms in non-asymptotic scenarios. Substantial efforts have been devoted to538

conducting non-asymptotic sample analyses of standard RL in many settings. Illustrative instances539

encompass investigations employing Probably Approximately Correct (PAC) bonds in the context540

of generative model settings [Kearns and Singh, 1999, Beck and Srikant, 2012, Li et al., 2022a, Chen541

et al., 2020, Azar et al., 2013b, Sidford et al., 2018, Agarwal et al., 2020, Li et al., 2023a,b, Wainwright,542

2019] and the online setting via both in PAC-base or regret-based analyses [Jin et al., 2018, Bai543

et al., 2019, Li et al., 2021, Zhang et al., 2020b, Dong et al., 2019, Jin et al., 2020, Li et al., 2023c,544

Jafarnia-Jahromi et al., 2020, Yang et al., 2021] and finally offline setting [Rashidinejad et al., 2021,545

Xie et al., 2021, Yin et al., 2021, Shi et al., 2022, Li et al., 2022b, Jin et al., 2021, Yan et al., 2022].546

Robustness in reinforcement learning. Reinforcement learning has had notable achievements547

but has also exhibited significant limitations, particularly when the learned policy is susceptible548

to deviations in the deployed environment due to perturbations, model discrepancies, or structural549

modifications. To address these challenges, the idea of robustness in RL algorithms has been studied.550

Robustness could concern uncertainty or perturbations across different Markov Decision Processes551

(MDPs) components, encompassing reward, state, action, and the transition kernel. Moos et al. [2022]552

gives a recent overview of the different work in this field.553

The distributionally robust MDP (RMDP) framework has been proposed [Iyengar, 2005] to enhance554

the robustness of RL has been proposed. In addition to this work, various other research efforts,555

including, but not limited to, Zhang et al. [2020a, 2021], Han et al. [2022], Clavier et al. [2022],556

Qiaoben et al. [2021], explore robustness regarding state uncertainty. In these scenarios, the agent’s557

policy is determined on the basis of perturbed observations generated from the state, introducing558

restricted noise, or undergoing adversarial attacks. Finally, robustness considerations extend to559

uncertainty in the action domain. Works such as Tessler et al. [2019], Tan et al. [2020] consider560

the robustness of actions, acknowledging potential distortions introduced by an adversarial agent.561

Given the focus of our work, we provide a more detailed background on progress related to distribu-562

tionally robust RL. The idea of distributionally robust optimization has been explored within the con-563

text of supervised learning [Rahimian and Mehrotra, 2019, Gao, 2020, Duchi and Namkoong, 2018,564

Blanchet and Murthy, 2019] and has also been extended to distributionally robust dynamic program-565

ming and Distributionally Robust Markov Decision Processes (DRMDPs) such as in [Iyengar, 2005,566

Xu and Mannor, 2012, Wolff et al., 2012, Kaufman and Schaefer, 2013, Ho et al., 2018, Smirnova et al.,567

2019, Ho et al., 2021, Goyal and Grand-Clement, 2022, Derman and Mannor, 2020, Tamar et al., 2014,568

Badrinath and Kalathil, 2021]. Despite the considerable attention received, both empirically and theo-569

retically, most previous theoretical analyses in the context of RMDPs adopt an asymptotic perspective570

[Roy et al., 2017] or focus on planning with exact knowledge of the uncertainty set [Iyengar, 2005, Xu571

and Mannor, 2012, Tamar et al., 2014]. Many works have focused on the finite-sample performance572

of verifiable robust Reinforcement Learning (RL) algorithms. These investigations encompass various573

data generation mechanisms and uncertainty set formulations over the transition kernel. Closely574

related to our work, various forms of uncertainty sets have been explored, showcasing the versatility575

of approaches. Divergence such as Kullback-Leibler (KL) divergence is another prevalent choice,576

extensively studied by Yang et al. [2022a], Panaganti and Kalathil [2022], Zhou et al. [2021], Shi and577

Chi [2022], Xu et al. [2023], Wang et al. [2023], Blanchet et al. [2023], who investigated the sample578

complexity of both model-based and model-free algorithms in simulator or offline settings. Xu et al.579

[2023] considered various uncertainty sets, including those associated with the Wasserstein distance.580

The introduction of an R-contamination uncertainty set Wang and Zou [2021], has been proposed to581

tackle a robust Q-learning algorithm for the online setting, with guarantees analogous to standard RL.582

Finally, the finite-horizon scenario has been studied by Xu et al. [2023], Dong et al. [2022] with finite-583

sample complexity bounds for (RMDPs) using TV and χ2 divergence. More broadly, other related584

topics have been explored, such as the iteration complexity of policy-based methods [Li et al., 2022c,585

Kumar et al., 2023], and regularization-based robust RL [Yang et al., 2023]. Finally, Badrinath and586
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Kalathil [2021] examined a general sa-rectangular form of the uncertainty set, proposing a model-free587

algorithm for the online setting with linear function approximation to address large state spaces.588

7 Discussion on hypothesis of Theorems 1 and 3.589

• What norms are included in the Definition 1? In our upper bound result Theorems590

3 and 1, we upper bound the sample complexity for C2 norms and TV. The set of C2591

smooth norm is very large as it includes all, Lp norm, weighted, rescaled Lp norms for592

p ≥ 2. Weighted norms can be useful in practice, to get more weights on dangerous593

specific states in Robust MDPs formulation such as in Russel et al. [2019]. Moreover, note594

that our result can generalize to metric or pseudo metric (which are not homogeneous ie595

∥λ∥ = |λ| ∥x∥ ∀x ∈ Rn, λ ∈ R) with norms of the form x 7→ ϕ−1(
∑n

k=1, ϕ(|xk|)) with596

ϕ a convex incising function such as the norm is still positive, definite positive. Choosing597

ϕ(x) = xp leads to the Lp norms.598

• Assumptions on γ in Theorems 1 and 3, and Assumptions on γ for lower bound. When599

γ is small (e.g., γ ∈ (0, 1
2 ] leads to the effective horizon length is at most 2), the sequential600

structure almost disappears and is much less of interest for RL community. So people Li601

et al. [2023b] Yan et al. [2023] usually focus on reasonable range γ ∈ (c, 1) for some small602

positive constant c, such as γ ∈ [ 12 , 1). However, the theorems can be directly extended603

to a broader range of γ ∈ (c, 1) along with c as small as desired so that almost cover the604

full range (0, 1).605

• Why final results on s depend on π̂606

Theorem 3 is π̂ data dependent which is randomness-dependent measure. However, taking607

the minimum of this quantity leads to the same bound as is sa-rectangular, so to illustrate608

that it is possible to get tighter bounds for s-rectangular with instance-dependent RMDPs,609

we decide to write also randomness-dependent quantity, while the less tight upper bound610

is written also in the theorem, taking the first term in the “min” in (21).611

• Why our results are still true for TV ? Theorems 1 and 3 are stated for C2 smooth norms,612

however, our result is still true for TV which is not C2 as in this specific case, the dual613

of the optimization problem becomes a 1−dimensional problem. In this case in the main614

concentration lemma 8, the additional term involving smoothness term denoted CS is not615

present and the bound is simpler as is not required this additional term.616

• Why burn-in or sufficiently small ϵ condition is not too restrictive? The burn-in term in617

Th. 1 and 3 is proportional to 1/ϵ where the "sample complexity" term is proportional to618

1/ϵ2. The smooth term depending on CS or burn-in is then not too large for sufficiently619

small ϵcompared to the other term, which will give final the sample complexity.620

• Why this is not extendable to f -divergence currently? The f-divergence as a distinct family of621

divergence is beyond the scope of this paper. Current proof for arbitrary norms cannot be di-622

rectly extended since the key phenomenon of shrinking range of the robust value function has623

not been verified for f -divergence yet, while it is promising as an interesting future direction.624

8 Preliminaries625

These quantities appear in the dual formulation of the robust optimization problem and more pre-626

ciously the dual span semi norm sp(.)∗ note that for L2, we retrieve the classical mean with the627

definition of ω) With slight abuse of notation, we denote 0 (resp. 1) as the all-zero (resp. all-one)628

vector. We then introduce the notation [T ] := {1, · · · , T} for any positive integer T > 0. Then, for629

two vectors x = [xi]1≤i≤n and y = [yi]1≤i≤n, the notation x ≤ y (resp. x ≥ y) means xi ≤ yi630

(resp. xi ≥ yi) for all 1 ≤ i ≤ n. Finally, for any vector x, we overload the notation by letting631

x◦2 =
[
x(s, a)2

]
(s,a)∈S×A (resp. x◦2 =

[
x(s)2

]
s∈S), Finally, we drop the subscript ∥.∥ to write632

Uσ
∥.∥(·) = Uσ(·) for both sa- and s- rectangular assumptions.633

Matrix and Vector Notations. Throughout the analysis, we need to introduce or recall some matrix634

and vector notations in the following.635

• r ∈ RSA: the reward function vector r (so that r(s,a) = r(s, a) for all (s, a) ∈ S ×A).636
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• P 0 ∈ RSA×S : the nominal transition kernel matrix with P 0
s,a as the (s, a)-th row.637

• P̂ 0 ∈ RSA×S : the estimated nomimal transition kernel matrix with P̂ 0
s,a as the (s, a)-th638

row.639

• Ππ ∈ {0, 1}S×SA: a projection matrix associated with a given policy π taking the following640

form:641

Ππ =


1⊤π(1) 0⊤ · · · 0⊤

0⊤ 1⊤π(2) · · · 0⊤

...
...

. . .
...

0⊤ 0⊤ · · · 1⊤π(S)

, (24)

where 1⊤π(1), 1
⊤
π(2), . . . , 1

⊤
π(S) ∈ RA are simplex vector such as642

1⊤π(1) = (π(a1|s1), π(aA|s1), ..., π(aA|s1)).

• PV ∈ RSA×S , P̂V ∈ RSA×S are the matrices representing the probability transition kernel643

in the uncertainty set that leads to the worst-case value for any vector V ∈ RS . We denote644

PV
s,a (resp. P̂V

s,a) as the (s, a)-th row of the transition matrix PV (resp. P̂V ). The (s, a)-th645

rows of these transition matrices are defined for sa-rectangular assumptions as646

PV
s,a = argminP∈U sa,σ(P 0

s,a)
PV, and P̂V

s,a = argminP∈U sa,σ(P̂ 0
s,a)

PV. (25a)

Moreover, we will use of the following shorthand notation:647

Pπ,V
s,a := PV π,σ

s,a = argminP∈U sa,σ(P 0
s,a)

PV π,σ, Pπ,V̂
s,a := P V̂ π,σ

s,a = argminP∈U sa,σ(P 0
s,a)

PV̂ π,σ,

(25b)

P̂π,V
s,a := P̂V π,σ

s,a = argminP∈U sa,σ(P̂ 0
s,a)

PV π,σ, P̂π,V̂
s,a := P̂ V̂ π,σ

s,a = argminP∈U sa,σ(P̂ 0
s,a)

PV̂ π,σ.

(25c)

The corresponding probability transition matrices are denoted by Pπ,V ∈ RSA×S , Pπ,V̂ ∈648

RSA×S , P̂π,V ∈ RSA×S and P̂π,V̂ ∈ RSA×S , respectively.649

• Pπ ∈ RS×S , P̂π ∈ RS×S , Pπ,V ∈ RS×S , Pπ,V̂ ∈ RS×S , P̂
π,V

∈ RS×S and P̂
π,V̂

∈650

RS×S : six square probability transition matrices w.r.t. policy π over the states, namely651

Pπ := ΠπP 0, P̂π := ΠπP̂ 0, Pπ,V := ΠπPπ,V , Pπ,V̂ := ΠπPπ,V̂ ,

P̂
π,V

:= ΠπP̂π,V , and P̂
π,V̂

:= ΠπP̂π,V̂ . (26)

For s-rectangular, we will use the same notation for these transition matrices, removing652

a subscript for s-rectangular assumptions. Finally, we denote Pπ
s as the s-th row of the653

transition matrix Pπ .654

• rπ ∈ RS : a reward restricted to the actions chosen by the policy vector π, rπ = Ππr.655

• VarP (V ) ∈ RSA: for a given transition kernel P ∈ RSA×S and vector V ∈ RS , we denote656

the (s, a)-th row of VarP (V ) as657

VarP (s, a) := VarPs,a(V ). (27)

8.1 Additional definitions and basic facts658

For any norm smooth ∥.∥ introduced in 1, we define the span semi norm as659

Definition 2 (Span semi norm). Given any norm ∥ · ∥, we define the span semi norm as: sp(x) =660

minω∈R ∥v − ω1∥ and the generalized mean as ω(x) := argminω∈R ∥x− ω1∥.661

Let vector P ∈ R1×S and vector V ∈ RS , we define the variance662

VarP (V ) := P (V ◦ V )− (PV ) ◦ (PV ). (28)

The following lemma bounds the Lipschitz constant of the variance function.663
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Lemma 1. (Shi et al. [2023] , Lemma 2 ) Assuming 0 ≤ V1, V2 ≤ 1
1−γ which obey ∥V1 −V2∥∞ ≤ x664

, then for P ∈ ∆(S), one has665

|VarP (V1)−VarP (V2)| ≤
2x

(1− γ)
. (29)

Lemma 2. [Panaganti and Kalathil, 2022, Lemma 6] Consider any δ ∈ (0, 1). For any fixed policy666

π and fixed value vector V ∈ RS , one has with probability at least 1− δ,667

∣∣∣√VarP̂π (V )−
√
VarPπ (V )

∣∣∣ ≤
√

2∥V ∥2∞ log( 2SA
δ )

N
1.

8.2 Empirical robust MDP M̂rob Bellman equations668

We define the robust MDP M̂rob = {S,A, γ,Uσ(P̂ 0), r} based on the estimated nominal distribution669

P̂ 0 in (11). Then, we denote the associated robust value function (resp. robust Q-function) are V̂ π,σ670

(resp. Q̂π,σ). We can notice that that Q̂⋆,σ is the unique-fixed point of T̂ σ(·) (see Lemma 8.3), the671

empirical robust Bellman operator constructed using P̂ 0. Finally, similarly to (9), for M̂rob, the672

Bellman’s optimality principle gives the following robust Bellman consistency equation (resp. robust673

Bellman optimality equation) for sa-rectangular assumptions:674

∀(s, a) ∈ S ×A : Q̂π,σ(s, a) = r(s, a) + γ inf
P∈U sa,σ(P̂ 0

s,a)
PV̂ π,σ, (30a)

∀(s, a) ∈ S ×A : Q̂⋆,σ(s, a) = r(s, a) + γ inf
P∈U sa,σ(P̂ 0

s,a)
PV̂ ⋆,σ. (30b)

Using matrix notation, we can write the robust Bellman consistency equations as675

Qπ,σ = r + γ inf
P∈U sa,σ(P 0)

PV π,σ and Q̂π,σ = r + γ inf
P∈U sa,σ(P̂ 0)

PV̂ π,σ, (31)

which imply676

V π,σ = rπ + γΠπ inf
P∈U sa,σ(P 0)

PV π,σ (i)
= rπ + γPπ,V V π,σ,

V̂ π,σ = rπ + γΠπ inf
P∈U sa,σ(P̂ 0)

PV̂ π,σ (ii)
= rπ + γP̂

π,V̂
V̂ π,σ, (32)

where (i) and (ii) hold by the definitions in (24), (25) and (26). For s-rectangular, we can define the677

same notation, removing a subscript:678

V π,σ = rπ + γΠπ inf
P∈U s,σ̃(P 0)

PV π,σ (i)
= rπ + γPπ,V V π,σ,

V̂ π,σ = rπ + γΠπ inf
P∈U s,σ̃(P̂ 0)

PV̂ π,σ (ii)
= rπ + γP̂

π,V̂
V̂ π,σ, . (33)

8.3 Properties of the robust Bellman operator and dual representation679

The robust Bellman operator (cf. (10)) shares the γ-contraction property of the standard Bellman680

operator as:681

[Iyengar, 2005, Theorem 3.2] Given γ ∈ [0, 1), the robust Bellman operator T σ(·) (cf. (10)) is a682

γ-contraction w.r.t. ∥ · ∥∞. More formally, for any Q1, Q2 ∈ RSA s.t. Q1(s, a), Q2(s, a) ∈
[
0, 1

1−γ

]
683

for all (s, a) ∈ S ×A, one has684

∥T σ(Q1)− T σ(Q2)∥∞ ≤ γ ∥Q1 −Q2∥∞ . (34)
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It can be also shown that, Q⋆,σ is the unique fixed point of T σ(·) obeying 0 ≤ Q⋆,σ(s, a) ≤ 1
1−γ for685

all (s, a) ∈ S ×A.686

One of the main contributions is to derive the dual form of optimization problem using arbitrary687

norms. These lemma take ideas from Iyengar [2005] and are adapted to arbitrary norms and not only688

TV distance.689

Dual equivalence of the robust Bellman operator. Fortunately, the robust Bellman operator can690

be evaluated efficiently by resorting to its dual formulation, and this idea is central in all proofs for691

RMPDs. Dual formulation of RMDPs have been introduced in [Iyengar, 2005] but the proof was692

done uniquely for the TV and the χ2 case. Before continuing, for any V ∈ RS , we denote [V ]α as693

its clipped version by some non-negative vector α, namely,694

[V ]α(s) :=

{
α, if V (s) > α(s),

V (s), otherwise.
(35)

Defining the gradient of P 7→ ∥P∥ as ∇∥P∥, λ > 0, a positive scalar and ω is the generalized mean695

defined as the argmin in the definition of the span semi norm in Def.2, we derive two optimization696

lemmas.697

Lemma 3 (Strong duality using norm ∥∥ in the sa-rectangular case.). Consider any probability698

vector P ∈ ∆(S) and any fixed uncertainty level σ, we abbreviate the notation of the uncertainty set699

U sa,σ
∥.∥ (P ) (cf. (3)) as U sa,σ(P ). For any vector V ∈ RS obeying V ≥ 0, recalling the definition of700

[V ]α in (35), one has701

inf
P∈U sa,σ(P )

PV = max
µλ,ω
P ∈Mλ,ω

P

{
P (V − µλ,ω

P )− σ
(
sp((V − µλ,ω

P ))∗

)}
. (36)

= max
αλ,ω

P ∈Aλ,ω
P

{
P [V ]αλ,ω

P
− σ

(
sp([V ]αλ,ω

P
)∗

)}
(37)

where sp()∗ is defined in Def..2. Here, the two auxiliary variational family Aλ,ω
P ,Mλ,ω

P are defined702

as below:703

Aλ,ω
P = {αλ,ω

P : αλ,ω
P (s) = ω + λ|∇ ∥P∥ (s) : λ > 0, w > 0, P ∈ ∆(S), αλ,ω

P ∈
[
0,

1

1− γ

]S
}

(38)

Mλ,ω
P = {µλ,ω

P = V − αλ,ω
P , λ, ω ∈ R+, P ∈ ∆(S), µ ∈ RS

+, µ
λ,ω
P =

[
0,

1

1− γ

]S
} (39)

(40)

For L1 or TV , case , the vector αλ,ω
P reduces to a 1 dimensional scalar such as α ∈ [0, 1/(1− γ)].704

Proof.

inf
P∈U sa,σ(P )

PV = inf
{P:P∈∆s,∥P−P∥≤σ}

∑
s′

P(s′)V (s′)

= PV + inf
{y:∥y∥≤σ,1y=0,y≥−P}

∑
s′

y(s′)V (s′)

where we use the change of variable y(s′) = P(s′) − P(s′) for all s′ ∈ S. Then the Lagrangian705

function of the above optimization problem can be written as follows:706

inf
P∈Uσ

s,a(P )
PV =PV + sup

µ≥0,ν∈R
inf

{y:∥y∥≤σ}
−
∑
s′

µ(s)P(s′) +
∑
s′

(y(s′)(V (s′)− µ(s′)− ν) (41)

(a)
= PV + sup

µ≥0,ν∈R
−
∑
s′

µ(s′)P(s′)− σ ∥(V (s′)− µ(s′)− ν1)∥∗ (42)

(b)
= sup

µ≥0
P(V − µ)− σsp(V − µ)∗ (43)

19



where µ ∈ RS
+, ν ∈ R are Lagrangian variables, (a) is true using the equality case of Cauchy-Swartz707

inequality for dual norm Yang [1991], and (b) is due to is the definition of the span semi-norm (see708

(8)). The value that maximizes the inner maximization problem in (42) in ω(V, µ) is the generalized-709

mean by definition denoted with abbreviate notation ω. If the norm is differentiable, then we have710

that the equality (a) comes from the generalized Holder’s inequality for arbitrary norms Yang [1991],711

namely, defining z = (V − µ− ω), it satisfies712

z = ∥z∥∗ ∇∥y∥ (44)

The quantity ν is replaced by the generalized mean for equality in (b) while (44) comes from Yang713

[1991]. Using complementary slackness Karush [2013]stackness let B = {s ∈ S : µ(s) > 0}714

∀s ∈ B : y∗(s) = −P (s), (45)

which leads to the following equality by plugging the previous (45) in (44) and defining z∗ =715

V − µ∗ − ω:716

∀s ∈ B, z∗(s) = ∥z∗∥∗ ∇∥P∥ (s) (46)

or717

∀s ∈ B, V (s)− µ∗(s) = ω + λ∇∥P∥ (s)=̂αλ,ω
P (47)

by letting λ = ∥z∗∥∗ ∈ R+ . Note that here the hypothesis of 1 are use and especially separability is718

needed to ensure that for s ∈ B, ∇∥y∥ = ∇∥P∥ only depend on P (s) and not on other coordinates,719

which is true form generalized Lp norms. We can remark that v − µ∗ is P dependent, but if P is720

known, the best µ∗ is only determined by one 2 dimensional parameters λ = ∥v − µ∗ − ν∥∗ and721

ω ∈ R+. Moreover, when P is fixed, the scalar ω is a constant is fully determined by P , v and µ∗.722

This is why the quantity defined αλ
P varies through 2 parameter λ and ω. Given this observation, we723

can rewrite the optimization problem as :724

sup
µ≥0

P(V − µ)− σsp(V − µ)∗ = sup
µλ,ω
P ∈Mλ,ω

P

P(V − µλ,ω
P )− σsp((V − µλ,ω

P ))∗ (48)

= sup
αλ,ω

P ∈Aλ,ω
P

P[V ]αλ,ω
P

− σsp([V ]αλ,ω
P

)∗ (49)

where we defined the maximization problem on µ not in RS but at the optimal in the variational
family denote Mλ,ω

P = {v − αλ,ω
P , (λ, ω) ∈ R2

+, P ∈ ∆(S)}. We can rewrite the optimization
problem in terms of αP with

[V ]αλ,ω
P

(s) :=

{
αλ,ω
P ,

V (s), otherwise.

Contrary to the TV case, α is not a scalar but αλ,ω
P belongs to a variational family only determined725

by two parameter. Note that this lemma is still true writing subgradient and not gradient of P . As726

we assume C2-regularity on norms, the subgradient space of the norm reduce to the singleton of the727

gradient in our case. C2 smoothness will be needed in concentration part while it is possible to be728

more general in optimization lemmas. Note that for TV or L1, this lemma holds, but the vector αλ,ω
P729

reduces to a positive scalar denoted α which is equal to ∥v − µ∗∥∞ according to Iyengar [2005]730

731

Lemma 4 (Strong duality for the distance induced by the norm ∥∥ in the s-rectangular case.).732

Consider any probability vector Pπ := ΠπP ∈ ∆s for P ∈ ∆(S)A , any fixed uncertainty level σ̃733

and the uncertainty set U s,σ̃
∥.∥(P ), we abbreviate the subscript to use U s,σ̃(P ) := U s,σ̃

∥.∥(P ). Then for734

any vector V ∈ RS obeying V ≥ 0, recalling the definition of [V ]α in (35), one has735

inf
P∈U s,σ̃(P )

PπV =
∑
a

π(a|s)(
(

max
αλ,ω

Psa
∈Aλ,ω

Psa

Psa[V ]αλ,ω
Psa

− σ̃ ∥πs∥∗ sp([V ]αλ,ω
Psa

)∗

)
. (50)
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with the definition of sp()∗ in 8 and where the variational family Aλ,ω
P is defined as :736

Aλ,ω
P = {α ∈

[
0, 1/(1− γ)

]S
, α = ω + λ|∇ ∥P∥ | := αλ,ω

P } (51)

(52)

with ω is the generalized mean defined as the argmin in the definition of the span semi norm in 2 and737

λ, ω a positive scalar. Moreover, for L1 or TV , case, the vector αλ,ω
P reduces to a 1 dimensional738

scalar such as α ∈ [0, 1/(1− γ)].739

In the proof of the previous lemma, we decompose this problem s-rectangular radius σ̃ into sa-740

rectangular sub-problem with respectively radius σsa.741

Proof.

inf
Pπ∈U s,σ̃(Pπ)

PπV = inf
{σsa:∥σsa∥≤σ̃}

inf
P′∈U sa,σ(Psa)

∑
a

π(a|s)P ′V

(a)
=
∑
a

π(a|s)PsaV + min
{σsa:∥σsa∥≤σ̃}

∑
a

π(a|s) min
{y:∥y∥≤σsa,1y=0,y≥−Psa}

∑
s′

y(s′)V

where we use the change of variable y(s′) = Psa(s
′)−Psa(s

′) in (a). Then we case use the previous742

lemma for sa rectangular assumption, Lemma 3. Then,743

min
{σsa:∥σsa∥≤σ̃}

∑
a

π(a|s) min
{y,∥y∥≤σs,a,1y=0,y≥−Psa}

∑
s′

y(s′)V

= min
{σsa:∥σsa∥≤σ̃}

∑
a

π(a|s)max
µ≥0

(
− Psaµ− σsasp(V − µ)∗

)
=

(∑
a

π(a|s)max
µ≥0

{
(−Psaµ)− max

{σsa:∥σsa∥≤σ̃}

∑
a

π(a|s)σsp(V − µ)∗

})
=
∑
a

π(a|s)max
µ≥0

{
(−Psaµ)− σ̃ ∥πs∥∗ sp(V − µ)∗

}
.

We can exchange the min and the max as we get concave-convex problems in σ and µ in the second744

line according to minimax theorem [v. Neumann, 1928] and using Cauchy Swartz inequality which is745

attained in the last equality. Finally, we obtain:746

inf
P∈U s,σ̃(P)

PπV =
∑
a

π(a|s)
(
max
µ≥0

Psa(V − µ)− σ̃ ∥πs∥∗ sp(V − µ)∗

)
(a)
=
∑
a

π(a|s)
(

max
αλ,ω

Psa
∈Aλ,ω

Psa

Psa[V ]αλ,ω
Psa

− σ̃ ∥πs∥∗ sp([V ]αλ,ω
Psa

)∗

)
where in (a) we use the previous lemma for sa− rectangular case. Note that as we are using sa-747

rectangular case, for TV or L1, this lemma holds, but the vector αλ
P reduces to a positive scalar748

denoted α which is equal to ∥v − µ∗∥∞. (See also Iyengar [2005]).749

750

9 Proof of the upper bound : Theorem 1 and 3751

9.1 Technical lemmas752

We begin with a key lemma concerning the dynamic range of the robust value function V π,σ (cf. (7)),753

which produces tighter control when σ is large; the proof is deferred to Appendix 9.3.1. This lemma754

allows tighter control compared to Clavier et al. [2023].755
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Lemma 5. In sa−rectangular case (see (3), for any nominal transition kernel P ∈ RSA×S , any756

fixed uncertainty level σ, and any policy π, its corresponding robust value function V π,σ (cf. (7))757

satisfies758

sp(V π,σ)∞ ≤ 1

γmax{1− γ,Cgσ}
(53)

where Cg = 1/(mins ∥es∥) is a geometric constant depending on the geometry of the norm. For759

example, for Lp, norms p ≥ 1, Cg ≥ 1 which reduce the sample complexity. In s-rectangular case,760

we obtain a slightly different lemma because of the dependency on π.761

Lemma 6. The infinite span semi norm can be controlled as follows for every s in s-rectanuglar case762

(See (5)):763
764

sp(V π,σ)∞ ≤ 1

γmax{1− γ, ∥πs∥∗ Cgσ̃}
≤ 1

γmax{1− γ,mins ∥πs∥∗ Cgσ̃}
(54)

where Cg = 1
mins∥es∥ is a geometric constant depending on the geometry of the norm. These lemmas765

are required to get tight bounds for the sample complexity. The main difference between sa- and s-766

rectangular case is that we have an extra dependency on ∥πs∥∗, which represents how stochastic the767

policy can be in s rectangular MDPs.768

Lemma 7. Consider an MDP with transition kernel matrix P and reward function 0 ≤ r ≤ 1. For any769

policy π and its associated state transition matrix Pπ := ΠπP and value function 0 ≤ V π,P ≤ 1
1−γ770

(cf. (1)), one has for sa- and s- rectangular assumptions.771

(I − γPπ)
−1
√
VarPπ (V

π,P ) ≤

√
8

γ2(1− γ)2
sp(V π,P )∞1.

See 9.3.7 for the proof772

9.2 Proof of Theorem 1 and Theorem 3773

The first decomposition of the proof of Theorem 1 and Theorem 3 Agarwal et al. [2020] while774

the argument needs essential adjustments in order to adapt to the robustness setting. One has by775

assumptions using any planner in empirical RMDPs :776 ∥∥V̂ ⋆,σ − V̂ π̂,σ
∥∥
∞ ≤ εopt, (55)

using previous inequality, performance gap
∥∥V ⋆,σ − V π̂,σ

∥∥
∞, can be upper bounded using 3 steps.777

First step: subdivide the performance gap in 3 terms. We recall the definition of the optimal778

robust policy π⋆ with regard to Mrob and the optimal robust policy π̂⋆, the optimal robust value779

function V̂ ⋆,σ (resp. robust value function Q̂π,σ) w.r.t. M̂rob. Then, the performance gap V ⋆,σ−V π̂,σ780

can be decomposed in one optimization term and two statistical error terms781

V ⋆,σ − V π̂,σ =
(
V π⋆,σ − V̂ π⋆,σ

)
+
(
V̂ π⋆,σ − V̂ π̂⋆,σ

)
+
(
V̂ π̂⋆,σ − V̂ π̂,σ

)
+
(
V̂ π̂,σ − V π̂,σ

)
(i)

≤
(
V π⋆,σ − V̂ π⋆,σ

)
+
(
V̂ π̂⋆,σ − V̂ π̂,σ

)
+
(
V̂ π̂,σ − V π̂,σ

)
(ii)

≤
(
V π⋆,σ − V̂ π⋆,σ

)
+ εopt +

(
V̂ π̂,σ − V π̂,σ

)
(56)

where (i) holds by V̂ π⋆,σ − V̂ π̂⋆,σ ≤ 0 since π̂⋆ is the robust optimal policy for M̂rob, and (ii) comes782

from (55) and definition of optimization error. The proof aims to control the last remaining terms in783

(56) using concentration theory and sufficiently big number of step N . To do so, we will consider a784

more general term V̂ π,σ − V π,σ for any policy π even if control of these two terms slightly differ at785
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the end. Using (32), it holds that for both sa- and s-rectangular assumptions:786

V̂ π,σ − V π,σ = rπ + γP̂
π,V̂

V̂ π,σ −
(
rπ + γPπ,V V π,σ

)
=
(
γP̂

π,V̂
V̂ π,σ − γPπ,V̂ V̂ π,σ

)
+
(
γPπ,V̂ V̂ π,σ − γPπ,V V π,σ

)
(i)

≤ γ
(
Pπ,V V̂ π,σ − Pπ,V V π,σ

)
+
(
γP̂

π,V̂
V̂ π,σ − γPπ,V̂ V̂ π,σ

)
,

where (i) holds because Pπ,V̂ V̂ π,σ ≤ Pπ,V V̂ π,σ because of the optimality of Pπ,V̂ (see. (25)).787

Factorizing terms leads to the following equation788

V̂ π,σ − V π,σ ≤ γ
(
I − γPπ,V

)−1
(
P̂

π,V̂
V̂ π,σ − Pπ,V̂ V̂ π,σ

)
. (57)

In the same manner, we can also obtain a lower bound of this quantity:789

V̂ π,σ − V π,σ = rπ + γP̂
π,V̂

V̂ π,σ −
(
rπ + γPπ,V V π,σ

)
=
(
γP̂

π,V̂
V̂ π,σ − γPπ,V̂ V̂ π,σ

)
+
(
γPπ,V̂ V̂ π,σ − γPπ,V V π,σ

)
≥ γ

(
Pπ,V̂ V̂ π,σ − Pπ,V̂ V π,σ

)
+
(
γP̂

π,V̂
V̂ π,σ − γPπ,V̂ V̂ π,σ

)
≥ γ

(
I − γPπ,V̂

)−1 (
P̂

π,V̂
V̂ π,σ − Pπ,V̂ V̂ π,σ

)
. (58)

Using both (57) and (58), we obtain infinite norm control:790 ∥∥V̂ π,σ − V π,σ
∥∥
∞ ≤ γmax

{∥∥∥ (I − γPπ,V
)−1

(
P̂

π,V̂
V̂ π,σ − Pπ,V̂ V̂ π,σ

)∥∥∥
∞
,∥∥∥(I − γPπ,V̂

)−1 (
P̂

π,V̂
V̂ π,σ − Pπ,V̂ V̂ π,σ

)∥∥∥
∞

}
. (59)

By decomposing the error in a symmetric way, he have791 ∥∥V̂ π,σ − V π,σ
∥∥
∞ ≤ γmax

{∥∥∥(I − γP̂
π,V
)−1 (

P̂
π,V

V π,σ − Pπ,V V π,σ
)∥∥∥

∞
,∥∥∥(I − γP̂

π,V̂
)−1(

P̂
π,V

V π,σ − Pπ,V V π,σ
)∥∥∥

∞

}
. (60)

Armed with these inequalities, we can use concentration inequalities to upper bound the two remaining792

terms
∥∥V̂ π⋆,σ − V π⋆,σ

∥∥
∞ and

∥∥V̂ π̂,σ − V π̂,σ
∥∥
∞ in (56). Taking π = π̂, applying (59) leads to793

∥∥V̂ π̂,σ − V π̂,σ
∥∥
∞ ≤ γmax

{∥∥∥(I − γP π̂,V̂
)−1 (

P̂
π̂,V̂

V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ
)∥∥∥

∞
,∥∥∥(I − γP π̂,V

)−1 (
P̂

π̂,V̂
V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ

)∥∥∥
∞

}
. (61)

Finally, π = π⋆, applying (60) gives us794 ∥∥V̂ π⋆,σ − V π⋆,σ
∥∥
∞ ≤ γmax

{∥∥∥(I − γP̂
π⋆,V

)−1(
P̂

π⋆,V
V π⋆,σ − Pπ⋆,V V π⋆,σ

)∥∥∥
∞
,∥∥∥(I − γP̂

π⋆,V̂
)−1(

P̂
π⋆,V

V π⋆,σ − Pπ⋆,V V π⋆,σ
)∥∥∥

∞

}
. (62)

Note that to control
∥∥V̂ π⋆,σ − V π⋆,σ

∥∥
∞, we use decomposition not depending on π̂ for value795

function as V π⋆,σ is deterministic and fixed, allowing use of classical concentration analysis tools.796

This decomposition is the same for both sa-rectangular and s-rectangular case.797
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Second step: bound first term and second term in (62) to control ∥V̂ π⋆,σ−V π⋆,σ∥∞ To control798

the two terms in (62), we use lemma 8 based Bernstein’s concentration argument and whose proof is799

in Appendix 9.3.3.800

Lemma 8. For both sa− and s-rectangular setting, consider any δ ∈ (0, 1), with probability 1− δ,801

it holds:802 ∣∣∣P̂π⋆,V
V π⋆,σ − Pπ⋆,V V π⋆,σ

∣∣∣ ≤ 2

√
L

N

√
VarPπ⋆ (V ⋆,σ) +

3LCS ∥1∥∗
N(1− γ)

(63)

with L = 2 log(18 ∥1∥∗ SAN/δ) and where VarPπ⋆ (V ⋆,σ) is defined in (27). Moreover, for the803

specific case of TV , this lemma is true without the smoothness term 3LCS∥1∥∗
N(1−γ) .804

Armed with the above lemma, now we control the first term on the right-hand side of (62) as follows:805 (
I − γP̂

π⋆,V
)−1(

P̂
π⋆,V

V π⋆,σ − Pπ⋆,V V π⋆,σ
)

(a)

≤
(
I − γP̂

π⋆,V
)−1∥∥∥P̂π⋆,V

V π⋆,σ − Pπ⋆,V V π⋆,σ
∥∥∥
∞

(b)

≤
(
I − γP̂

π⋆,V
)−1

(
2

√
L

N

√
VarPπ⋆ (V ⋆,σ) +

3LCS ∥1∥∗
N(1− γ)

)
≤
(
I − γP̂

π⋆,V
)−1 3LCS ∥1∥∗

N(1− γ)
1 + 2

√
L

N

(
I − γP̂

π⋆,V
)−1√

Var
P̂

π⋆,V (V ⋆,σ)︸ ︷︷ ︸
=:R1

+ 2

√
L

N

(
I − γP̂

π⋆,V
)−1

√∣∣∣VarP̂π⋆ (V ⋆,σ)−Var
P̂

π⋆,V (V ⋆,σ)
∣∣∣︸ ︷︷ ︸

=:R2

+ 2

√
L

N

(
I − γP̂

π⋆,V
)−1(√

VarPπ⋆ (V ⋆,σ)−
√
VarP̂π⋆ (V ⋆,σ)

)
︸ ︷︷ ︸

=:R3

, (64)

where (a) holds as the matrix
(
I − γP̂

π⋆,V
)−1

is positive definite, (b) holds due to Lemma 8, and806

the last point holds from the following decomposition for variance and triangular inequality807

√
VarPπ⋆ (V ⋆,σ) =

(√
VarPπ⋆ (V ⋆,σ)−

√
VarP̂π⋆ (V ⋆,σ)

)
+
√
VarP̂π⋆ (V ⋆,σ)

≤
(√

VarPπ⋆ (V ⋆,σ)−
√

VarP̂π⋆ (V ⋆,σ)
)

+

√∣∣∣VarP̂π⋆ (V ⋆,σ)−Var
P̂

π⋆,V (V ⋆,σ)
∣∣∣+√Var

P̂
π⋆,V (V ⋆,σ).

Finally, the fact that P̂
π⋆,V

is a stochastic matrix, so808

(
I − γP̂

π⋆,V
)−1

1 =
(
I +

∞∑
t=1

γt
(
P̂

π⋆,V
)t)

1 ≤ 1

1− γ
1. (65)

Armed with these inequalities, the three terms R1,R2,R3 in (64) can be controlled separately.809

• Consider R1. We first introduce the following lemma, whose proof is postponed to Ap-810

pendix 9.3.4.811

24



Lemma 9. Consider any δ ∈ (0, 1). With probability at least 1− δ, one has812

(
I − γP̂

π⋆,V
)−1√

Var
P̂

π⋆,V (V ⋆,σ) ≤ 4

√√√√(1 + (√ L
(1−γ)2N +

CS∥1∥∗L

N(1−γ)

))
γ3(1− γ)2 max{1− γ,Cgσ}

1

≤ 4

√√√√(1 + (√ L
(1−γ)2N +

CS∥1∥∗L

N(1−γ)

))
γ3(1− γ)3

1

with L = 2 log(
18∥1∥∗SAN

δ ) in the sa-rectangular case. In the s-rectangular case, it holds:813

(
I − γP̂

π⋆,V
)−1√

Var
P̂

π⋆,V (V ⋆,σ) ≤ ≤ 4

√√√√ (
1 +

(√
L

(1−γ)2N +
CS∥1∥∗L

N(1−γ)

))
γ3(1− γ)2 max{1− γ,Cgσ̃mins ∥πs∥∗}

1

≤ 4

√√√√(1 + (√ L
(1−γ)2N +

CS∥1∥∗L

N(1−γ)

))
γ3(1− γ)3

1

Using Lemma 9 and inserting back to (64) gives in sa-rectangular case814

R1 = 2

√
L

N

(
I − γP̂

π⋆,V
)−1√

Var
P̂

π⋆,V (V ⋆,σ)

≤ 8

√√√√ L

γ3(1− γ)2 max{1− γ,Cgσ}N

(
1 +

√
L

(1− γ)2N
+

CS ∥1∥∗ L
N(1− γ)

)
1. (66)

• Consider R2. First, denote V ′ := V ⋆,σ − η1 η ∈ R, by Lemma 5, we have for any π,815

0 ≤ min
η

∥V ∥∞ − η1 ≤ 1

γmax{1− γ,Cgσ}
. (67)

for sa-rectangular case or in s-rectangular we obtain816

0 ≤ min
η

∥V − η1∥∞ ≤ 1

γmax{1− γ, σ̃Cg ∥πs∥∗}
(68)

by the definition of the span semi norm. Moreover, we can use Holder with L1 and L∞ we817

have for both sa and s-rectangular case to as it holds that:818

∣∣VarP̃s,a
(V ⋆,σ)− VarPs,a(V

⋆,σ)
∣∣ = ∣∣VarP̃s,a

(V ′)− VarPs,a(V
′)
∣∣

≤
∥∥P̃s,a − Ps,a

∥∥
1

∥∥V ′∥∥2
∞

a
≤ σ1

(γ2(max (1− γ), Cgσ)2

≤ 1

γ2 max{(1− γ), σCg}
(69)

In the first inequality, we use
∥∥V ′

∥∥2
∞ =

∥∥V ′2
∥∥
∞ and and we use Lemma 5 in (a) where819

Cgσ = σ1.820

With the same arguments for s-rectangular, we obtain for V ′ := V ⋆,σ − η1 η ∈ R,821 ∣∣Ππ⋆
(
VarP̃s

(V ⋆,σ)− VarPs
(V ⋆,σ)

)∣∣ = ∣∣Ππ⋆
(
VarP̃s

(V ′)− VarPs
(V ′)

)∣∣
≤
∑
a

π(a|s)(P̃s(s
′, a)− Ps(s

′, a))V (s′)2 (70)

a
≤ ∥V ′∥2∞

∑
a

π(a|s)(P̃s(s
′, a)− Ps(s

′, a))
b
≤ ∥V ′∥2∞ σ̃ ∥πs∥∗ (71)

c
≤

σ̃Cg ∥π∗
s∥∗

∥∥V ′
∥∥
∞

γ ∥π∗
s∥∗ σ̃Cg

1 ≤
∥∥V ′

∥∥
γ

1. (72)
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where where (a) and (b) comes Cauchy Swartz inequality, , (c) comes lemma 6. Then, taking822

the sup over s in the previous equations, it holds823

∣∣Ππ⋆
(
VarP̃s

(V ⋆,σ)− VarPs
(V ⋆,σ)

)∣∣ ≤ infη∈R+

∥∥V − η1′
∥∥

γ
1 (73)

≤ 1

γ2σ̃mins ∥π∗
s∥∗ Cg

1. (74)

Applying the previous inequality, it holds in sa-rectangular case:824

R2 = 2

√
L

N

(
I − γP̂

π⋆,V
)−1

√∣∣∣VarP̂π⋆ (V ⋆,σ)−Var
P̂

π⋆,V (V ⋆,σ)
∣∣∣

= 2

√
L

N

(
I − γP̂

π⋆,V
)−1√∣∣Ππ⋆

(
VarP̂ 0(V ⋆,σ)−VarP̂π⋆,V (V ⋆,σ)

)∣∣
≤ 2

√
L

N

(
I − γP̂

π⋆,V
)−1√∥∥VarP̂ 0(V ⋆,σ)−VarP̂π⋆,V (V ⋆,σ)

∥∥
∞ 1

≤ 2

√
L

N

(
I − γP̂

π⋆,V
)−1

√
1

γ2 max{1− γ,Cgσ}
1 (75)

≤ 4

√
L

γ2(1− γ)2 max{1− γ,Cgσ}N
1, (76)

where the last inequality uses
(
I − γP̂

π⋆,V
)−1

1 ≤ 1
1−γ 1 (cf. (65)). for sa-rectangular825

In the s-rectangular case, we obtain a different result as826

R2 = 2

√
L

N

(
I − γP̂

π⋆,V
)−1

√∣∣∣VarP̂π⋆ (V ⋆,σ)−Var
P̂

π⋆,V (V ⋆,σ)
∣∣∣

= 2

√
L

N

(
I − γP̂

π⋆,V
)−1√∣∣Ππ⋆

(
VarP̂ 0(V ⋆,σ)−VarP̂π⋆,V (V ⋆,σ)

)∣∣
≤ 2

√
L

N

(
I − γP̂

π⋆,V
)−1

√
1

γ2 max{1− γ,mins ∥π∗
s∥∞ Cgσ̃}

1 (77)

≤ 2

√
L

γ2(1− γ)2 max{1− γ,mins ∥π∗
s∥∞ σ̃Cg}N

1, (78)

• Consider R3. The following lemma plays an important role.827

Applying Lemma 2 and using π = π⋆ and V = V ⋆,σ , it holds828

√
VarPπ⋆ (V ⋆,σ)−

√
VarP̂π⋆ (V ⋆,σ) ≤

√
2∥V ⋆,σ∥2∞ log( 2SA

δ )

N
1,

which can be inserted in (64) to gives829

R3 = 2

√
L

N

(
I − γP̂

π⋆,V
)−1 (√

VarPπ⋆ (V ⋆,σ)−
√
VarP̂π⋆ (V ⋆,σ)

)
≤ 4

(1− γ)

log(SAN
δ )∥[V ⋆,σ∥∞

N
1 ≤ 4L

(1− γ)2N
1, (79)

where the last line uses
(
I − γP̂

π⋆,V
)−1

1 ≤ 1
1−γ 1 (cf. (65)).830
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Finally, inserting the results of R1 in (66), R2 in (78), R3 in (79), and (65) back into (64) gives831 (
I − γP̂

π⋆,V
)−1(

P̂
π⋆,V

V π⋆,σ − Pπ⋆,V V π⋆,σ
)

(80)

≤ 8

√√√√ L

γ3(1− γ)2 max{1− γ,Cgσ}N

(
1 +

√
L

(1− γ)2N
+

CS ∥1∥∗ L
N(1− γ)

)
1 +

3LCS ∥1∥∗
N(1− γ)2

1

+ 2

√
2L

γ2(1− γ)2 max{1− γ,Cgσ}N
1 +

4L

(1− γ)2N
1

≤ 10

√√√√ 2L

γ3(1− γ)2 max{1− γ,Cgσ}N

(
1 +

√
L

(1− γ)2N
+

CS ∥1∥∗ L
N(1− γ)

)
1 +

4L

(1− γ)2N
1 +

3LCS ∥1∥∗
N(1− γ)2

1

≤ 160

√√√√ L(1 +
CS∥1∥∗
N(1−γ) )

(1− γ)2 max{1− γ,Cgσ}N
1 +

7LCS ∥1∥∗
N(1− γ)2

1, (81)

where the last inequality holds by the fact γ ≥ 1
4 and letting N ≥ L

(1−γ)2 . We have the same result832

for s-rectangular, replacing, max{1− γ,Cgσ} by max{1− γ,mins ∥π∗
s∥∗ σ̃Cg}.833

Now we are ready to control second term in (62) to control ∥V̂ π⋆,σ − V π⋆,σ∥∞. To proceed,834

applying Lemma 8 on the second term of the right-hand side of (62) leads to835 (
I − γP̂

π⋆,V̂
)−1(

P̂
π⋆,V

V π⋆,σ − Pπ⋆,V V π⋆,σ
)

≤
(
I − γP̂

π⋆,V̂
)−1

(
2

√
L

N

√
VarPπ⋆ (V ⋆,σ) +

3LCS ∥1∥∗
N(1− γ)

)
≤
(
I − γP̂

π⋆,V̂
)−1L′CS ∥1∥∗

N(1− γ)
+ 2

√
L

N

(
I − γP̂

π⋆,V̂
)−1

√
Var

P̂
π⋆,V̂ (V̂ π⋆,σ)︸ ︷︷ ︸

=:R4

2

√
L

N

(
I − γP̂

π⋆,V̂
)−1

(√
Var

P̂
π⋆,V̂ (V π⋆,σ − V̂ π⋆,σ)

)
︸ ︷︷ ︸

=:R5

+ 2

√
L

N

(
I − γP̂

π⋆,V̂
)−1

(√∣∣∣VarP̂π⋆ (V ⋆,σ)−Var
P̂

π⋆,V̂ (V ⋆,σ)
∣∣∣)︸ ︷︷ ︸

=:R6

+ 2

√
L

N

(
I − γP̂

π⋆,V̂
)−1 (√

VarPπ⋆ (V ⋆,σ)−
√

VarP̂π⋆ (V ⋆,σ)
)

︸ ︷︷ ︸
=:R7

. (82)

We now bound the above four terms R4,R5,R6,R7 separately.836

• Using Lemma 7 with P = P̂π⋆,V̂ , π = π⋆ and V = V̂ π⋆,σ which follow V̂ π⋆,σ =837

rπ⋆ + γP̂
π⋆,V̂

V̂ π⋆,σ , and in view of (65), the term R4 in (82) can be controlled as follows:838

R4 = 2

√
L

N

(
I − γP̂

π⋆,V̂
)−1

√
Var

P̂
π⋆,V̂ (V̂ π⋆,σ)

≤ 2

√
L

N

√
8min{sp(V̂ π⋆,σ)∗, 1/(1− γ))

γ2(1− γ)2
1

≤ 8

√
L

γ3(1− γ)2 max{1− γ,Cgσ}N
1, (83)
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where the last inequality is due to Lemma 5 for sa-rectangular case and with the same839

quantity replacing max{1 − γ, σ} by max{1 − γ,mins ∥π∗
s∥∗ σ̃} in the s− rectangular840

case.841

• For bounding R5, we can simply use (65)) to get842

R5 = 2

√
L

N

(
I − γP̂

π⋆,V̂
)−1

√
Var

P̂
π⋆,V̂ (V π⋆,σ − V̂ π⋆,σ)

≤ 2

√
L

(1− γ)2N

∥∥∥V ⋆,σ − V̂ π⋆,σ
∥∥∥
∞

1. (84)

moreover,843 ∥∥∥V ⋆,σ − V̂ π⋆,σ
∥∥∥
∞

≤
∥∥∥V ⋆,σ − V̂ π⋆,σ

∥∥∥
∞

≤
∥∥∥V ⋆,σ − V̂ π⋆,σ

∥∥∥
∞

(85)

as for a > 0, b > 0, we have [a]− [b] < [a− b]. Finally, we obtain844

R5 ≤ 2

√
L

(1− γ)2N

∥∥∥V ⋆,σ − V̂ π⋆,σ
∥∥∥
∞

1. (86)

• The term R6 can upper bounded as (78) as follows:845

R6 ≤ 2

√
2L

γ2(1− γ)2 max{1− γ,Cgσ}N
1. (87)

for sa-rectangular case and with the same quantity replacing max{1−γ,Cgσ} by max{1−846

γ,mins ∥π∗
s∥∗ σ̃Cg} in the s− rectangular case.847

• Finally, R7 can be controlled the same as (79) shown below:848

R7 ≤ 4L

(1− γ)2N
1. (88)

Combining the results in (83), (86), (87), and (88) and inserting back to (82) leads to for N ≥ L
(1−γ)2849

(
I − γP̂

π⋆,V̂
)−1(

P̂
π⋆,V

V π⋆,σ − Pπ⋆,V V π⋆,σ
)
≤ 8

√√√√ L(1 +
CS∥1∥∗
N(1−γ) )

γ3(1− γ)2 max{1− γ,Cgσ}N
1

+ 2

√
L

(1− γ)2N

∥∥∥V ⋆,σ − V̂ π⋆,σ
∥∥∥
∞

1 + 2

√
2L

γ2(1− γ)2 max{1− γ,Cgσ}N
1 +

7LCS ∥1∥∗
N(1− γ)2

≤ 80

√√√√ L(1 +
CS∥1∥∗
N(1−γ) )

(1− γ)2 max{1− γ,Cgσ}N
1 + 2

√
L

(1− γ)2N

∥∥∥V ⋆,σ − V̂ π⋆,σ
∥∥∥
∞

1 +
7LCS ∥1∥∗
N(1− γ)2

,

(89)

where the last inequality follows from the assumption γ ≥ 1
4 . Finally, inserting (81) and (89) back to850

(62) yields851

∥∥∥V̂ π⋆,σ − V π⋆,σ
∥∥∥
∞

≤ max

{
160

√√√√ L(1 +
CS∥1∥∗
N(1−γ) )

(1− γ)2 max{1− γ,Cgσ}N
+

7LCS ∥1∥∗
N(1− γ)2

,

80

√√√√ L(1 +
CS∥1∥∗
N(1−γ) )

(1− γ)2 max{1− γ,Cgσ}N
+ 2

√
L

(1− γ)2N

∥∥∥V ⋆,σ − V̂ π⋆,σ
∥∥∥
∞

+
7LCS ∥1∥∗
N(1− γ)2

}

≤ 160

√√√√ L(1 +
CS∥1∥∗
N(1−γ) )

(1− γ)2 max{1− γ,Cgσ}N
+

14LCS ∥1∥∗
N(1− γ)2

, (90)

where the last inequality holds by taking N ≥ 16 log(SAN
δ )

(1−γ)2 rearranging terms. In s-rectangular case,852

we obtain the same result, replacing max{1− γ,Cgσ} by max{1− γ,mins ∥π∗
s∥∗ Cgσ̃}.853
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Third step: controlling ∥V̂ π̂,σ −V π̂,σ∥∞ or bounding the first and second term in (61). Unlike854

the earlier term, one has to face a more complicated statistical dependency between π̂ and the855

empirical RMDP. To begin with, we introduce the following lemma which controls the main term on856

the right-hand side of (61), which is proved in Appendix 9.3.5.857

Lemma 10. Consider any δ ∈ (0, 1). Taking N ≥ L′′ with probability at least 1− δ, one has for sa-858

or s-rectangular case :859 ∣∣∣P̂ π̂,V̂
V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ

∣∣∣ ≤ 2

√
L′

N

√
VarP 0

s,a
(V̂ ⋆,σ)1 + 2εopt1 +

15L′′CS ∥1∥∗
N(1− γ)

≤ 2

√
L′′

(1− γ)2N
1 + 2εopt1 +

14L′′CS ∥1∥∗
N(1− γ)

1. (91)

with L′′ = 2 log(
54∥1∥∗SAN2

(1−γ)δ ). Moreover,For TV this lemma holds but without the geometric term860

14L′′CS∥1∥∗
N(1−γ) 1. Taking the sup over s gives the final result.861

With Lemma 10 in hand, we have to control first term in (61)862 (
I − γP π̂,V̂

)−1(
P̂

π̂,V̂
V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ

)
(i)

≤
(
I − γP π̂,V̂

)−1
∣∣∣∣P̂ π̂,V̂

V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ

∣∣∣∣
≤ 2

√
L′

N

(
I − γP π̂,V̂

)−1
√

VarP π̂ (V̂ ⋆,σ) +
(
I − γP π̂,V π̂

)−1
(
2εopt

)
1 (92)

+
(
I − γP π̂,V π̂

)−1 14L′′CS ∥1∥∗
N(1− γ)

1

(ii)

≤

(
2εopt
1− γ

)
1 + 2

√
L′

N

(
I − γP π̂,V̂

)−1√
Var

P π̂,V̂ (V̂ π̂,σ)︸ ︷︷ ︸
=:S1

+ 2

√
L′

N

(
I − γP π̂,V̂

)−1
√∣∣∣VarP π̂,V̂ (V̂ ⋆,σ)−Var

P π̂,V̂ (V̂ π̂,σ)
∣∣∣︸ ︷︷ ︸

=:S2

+ 2

√
L′

N

(
I − γP π̂,V̂

)−1
√∣∣∣VarP π̂ (V̂ ⋆,σ)−Var

P π̂,V̂ (V̂ ⋆,σ)
∣∣∣︸ ︷︷ ︸

=:S3

, (93)

where (i) and (ii) hold by the fact that each row of (1− γ)
(
I − γP π̂,V̂

)−1

is a probability vector863

that falls into ∆(S). The remainder of the proof will focus on controlling the three terms in (93)864

separately.865

• For S1, we introduce the following lemma, whose proof is postponed to 9.3.6.866

Lemma 11. Consider any δ ∈ (0, 1). Taking N ≥ L′′

(1−γ)2 one has with probability at least867

1− δ, for sa− rectangular868

(
I − γP π̂,V̂

)−1√
Var

P π̂,V̂ (V̂ π̂,σ) ≤ 6

√√√√ (
1 + εopt +

L′′CS∥1∥∗
N(1−γ)

)
γ3(1− γ)2 max{1− γ, σ}

1

≤ 6

√√√√(1 + εopt +
L′′CS∥1∥∗
N(1−γ)

)
(1− γ)3γ3

1.

and for s-rectangular869
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(
I − γP π̂,V̂

)−1√
Var

P π̂,V̂ (V̂ π̂,σ) ≤ 6

√√√√ L′′
(
1 + εopt +

CS∥1∥∗
N(1−γ)

)
γ3(1− γ)2 max{1− γ,Cgσ̃mins ∥π̂s∥∞}

1

≤ 6

√√√√L′′
(
1 + εopt +

CS∥1∥∗
N(1−γ)

)
(1− γ)3γ2

1.

Applying Lemma 11 and (65) to (93) leads to870

S1 = 2

√
L′

N

(
I − γP π̂,V̂

)−1√
Var

P π̂,V̂ (V̂ π̂,σ)

≤ 12

√
L′′

γ3(1− γ)2 max{1− γ,Cgσ}N
1. (94)

for sa-rectangular and the same quantity replacing max{1 − γ,Cgσ} by max{1 −871

γ,Cgσ̃mins ∥π̂s∥∗} for s− rectangular case.872

• Applying Lemma 1 with ∥V̂ ⋆,σ − V̂ π̂,σ∥∞ ≤ εopt and (65), S2 can be controlled as873

S2 = 2

√
L′′

N

(
I − γP π̂,V̂

)−1
√∣∣∣VarP π̂,V̂ (V̂ ⋆,σ)−Var

P π̂,V̂ (V̂ π̂,σ)
∣∣∣

≤ 4

√
L′′

N

(
I − γP π̂,V̂

)−1

√
εopt

1

1− γ

2

≤ 8

√
εoptL′′

(1− γ)4N
1. (95)

• S3 can be controlled similar to R2 in (78) as follows:874

S3 = 2

√
L′′

N

(
I − γP π̂,V̂

)−1
√∣∣∣VarP π̂ (V̂ ⋆,σ)−Var

P π̂,V̂ (V̂ ⋆,σ)
∣∣∣

≤ 4

√
L′′

N

(
I − γP π̂,V̂

)−1
√

1

γ2 max{1− γ,Cgσ}
1 ≤ 8

√
L′′

γ2(1− γ)2 max{1− γ,Cgσ}N
1

(96)

for sa-rectangular and replacing max{1 − γ, σ} by max{1 − γ, σ̃mins ∥π̂s∥∗} for s−875

rectangular case.876

Finally, summing up the results in (94), (95), and (96) and inserting them back to (93) yields: taking877

N ≥ L′′

(1−γ)2 , with probability at least 1− δ,878 (
I − γP π̂,V̂

)−1
(
P̂

π̂,V̂
V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ

)
≤
(
2εopt
1− γ

)
1 +

14L′′CS ∥1∥∗
N(1− γ)2

1

+ 12

√√√√ L′′
(
1 + εopt +

CS∥1∥∗
N(1−γ)

)
γ3(1− γ)2 max{1− γ,Cgσ}N

1 + 8

√
εoptL′

(1− γ)4N
1 + 8

√
L′

γ2(1− γ)2 max{1− γ,Cgσ}N
1

≤ 16

√√√√ L′′
(
1 + εopt +

CS∥1∥∗
N(1−γ)

)
γ3(1− γ)2 max{1− γ, σ}N

1 +

(
2εoptγ

(1− γ)
+ 8

√
εoptγL′

(1− γ)4N
1 +

15L′′CS ∥1∥∗
N(1− γ)2

1

)
(97)
(98)

for sa-rectangular and the same quantity replacing max{1− γ, σ} by max{1− γ, σ̃mins ∥π̂s∥∗}879

for s− rectangular case. In this step, it is harder to decouple terms as V̂ π̂ depends on data both in π̂880

and V̂ .881
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Step 5: controlling ∥V̂ π̂,σ − V π̂,σ∥∞: bounding the second term in (61). Towards this, applying882

Lemma 10 leads to in sa-rectangular case:883

(
I − γP π̂,V

)−1(
P̂

π̂,V̂
V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ

)
≤
(
I − γP π̂,V

)−1∣∣∣P̂ π̂,V̂
V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ

∣∣∣
≤ 2

√
L′′

N

(
I − γP π̂,V

)−1
√
VarP π̂ (V̂ ⋆,σ) +

(
I − γP π̂,V

)−1
(
2εopt

)
1 (99)

+
(
I − γP π̂,V

)−1L′′14CS ∥1∥∗
N(1− γ)

1

≤

(
2εopt

(1− γ)

)
1 + 2

√
L′′

N

(
I − γP π̂,V

)−1√
VarP π̂,V (V π̂,σ)︸ ︷︷ ︸

=:S4

+
(
I − γP π̂,V

)−1L′′CS ∥1∥∗
N(1− γ)

1

+ 2

√
L′

N

(
I − γP π̂,V

)−1√
VarP π̂,V (V̂ π̂,σ − V π̂,σ)︸ ︷︷ ︸

=:S5

+ 2

√
L′′

N

(
I − γP π̂,V̂

)−1
√∣∣∣VarP π̂,V (V̂ ⋆,σ)−VarP π̂,V ([V̂ π̂,σ)

∣∣∣︸ ︷︷ ︸
=:S6

+ 2

√
L′′

N

(
I − γP π̂,V̂

)−1
√∣∣∣VarP π̂ (V̂ ⋆,σ)−VarP π̂,V ([V̂ ⋆,σ)

∣∣∣︸ ︷︷ ︸
=:S7

. (100)

We shall bound each of the terms separately.884

• Applying Lemma 7 with P = P π̂,V , π = π̂, and taking V = V π̂,σ which obeys V π̂,σ =885

rπ̂ + γP π̂,V V π̂,σ , the term S4 can be controlled similar to (83) as follows:886

S4 ≤ 8

√√√√ L′′
(
1 + εopt +

CS∥1∥∗
N(1−γ)

)
γ3(1− γ)2 max{1− γ,Cgσ}N

1. (101)

for sa-rectangular and the same quantity replacing max{1 − γ,Cgσ} by max{1 −887

γ,mins ∥π̂s∥∗ σ̃Cg} for s− rectangular case.888

• For S5, it is observed that889

S5 = 2

√
L′′

N

(
I − γP π̂,V

)−1√
VarP π̂,V (V̂ π̂,σ − V π̂,σ)

≤ 2

√
L′′

(1− γ)2N

∥∥∥V π̂,σ − V̂ π̂,σ
∥∥∥
∞

1. (102)

• Next, observing that S6 and S7 are almost the same as the terms S2 (controlled in (95)) and890

S3 (controlled in (96)) in (93), it is easily verified that they can be controlled as follows891

S6 ≤ 4

√
εoptL′′

(1− γ)4N
1, S7 ≤ 4

√
L′′

γ2(1− γ)2 max{1− γ,Cgσ}N
1. (103)
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for sa-rectangular and the same quantity replacing max{1− γ, σ} by max{1− γ,mins ∥π̂s∥∗ σ̃}892

for s− rectangular case. Then inserting the results in (101), (102), and (103) back to (100) leads to893 (
I − γP π̂,V

)−1(
P̂

π̂,V̂
V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ

)
(104)

≤

(
2εopt

(1− γ)

)
1 + 8

√√√√ L′′
(
1 + εopt +

CS∥1∥∗
N(1−γ)

)
γ3(1− γ)2 max{1− γ, σ}N

1 +
14L′′CS ∥1∥∗
N(1− γ)2

1

+ 2

√
L′′

(1− γ)2N

∥∥∥V π̂,σ − V̂ π̂,σ
∥∥∥
∞

1 + 4

√
L′′εopt

(1− γ)4N
1 + 4

√
L′′

γ2(1− γ)2 max{1− γ,Cgσ}N
1

≤ 12

√√√√ L′′
(
1 + εopt +

CS∥1∥∗
N(1−γ)

)
γ3(1− γ)2 max{1− γ, σ}N

+ 4

√
L′′

(1− γ)2N

∥∥∥V π̂,σ − V̂ π̂,σ
∥∥∥
∞

1 (105)

+
3εopt

(1− γ)
+

14L′′CS ∥1∥∗
N(1− γ)2

1. (106)

(107)

Taking N ≥ 16L′′

1−γ , we obtain 2εopt
(1−γ) + 4εopt

√
L′′

(1−γ)4N 1 ≤ 3εopt
(1−γ) with probability at least 1 − δ,894

inserting (97) and (105) back to (61)895

∥∥∥V̂ π̂,σ − V π̂,σ
∥∥∥
∞

≤ max
{
16

√√√√ L′′
(
1 + εopt +

CS∥1∥∗
N(1−γ)

)
γ3(1− γ)2 max{1− γ, σ}N

1 +

(
2εoptγ

(1− γ)
+

14L′′CS ∥1∥∗
N(1− γ)2

1

)
,

12

√√√√ L′′
(
1 + εopt +

CS∥1∥∗
N(1−γ)

)
γ3(1− γ)2 max{1− γ, σ}N

+ 4

√
L′′

(1− γ)2N

∥∥∥V π̂,σ − V̂ π̂,σ
∥∥∥
∞

1 (108)

+
3εopt

(1− γ)
+

14L′′CS ∥1∥∗
N(1− γ)2

1.
}

≤ 48

√√√√ L′′
(
1 + εopt +

CS∥1∥∗
N(1−γ)

)
γ3(1− γ)2 max{1− γ,Cgσ}N

+
6εopt

(1− γ)
+

28L′′CS ∥1∥∗
N(1− γ)2

1 (109)

for sa-rectangular and the same quantity, replacing max{1−γ,Cgσ} by max{1−γ, σ̃mins ∥π̂s∥∗}896

for s− rectangular case. The proof is similar for TV without the geometric term depending on CS .897

Step 6: summing all the previous inequalities results. Using all the previous results in (90) and898

(109) and inserting back to (56) complete the proof as follows: taking N ≥ 16L′′

(1−γ)2 , γ > 1/4, , with899

probability at least 1− δ, for sa-rectangular900 ∥∥V ⋆,σ − V π̂,σ
∥∥
∞ ≤

∥∥V π⋆,σ − V̂ π⋆,σ
∥∥
∞ + εopt +

∥∥V̂ π̂,σ − V π̂,σ
∥∥
∞

≤ εopt + 48

√√√√ L′′
(
1 + εopt +

CS∥1∥∗
N(1−γ)

)
γ3(1− γ)2 max{1− γ,Cgσ}N

+
6εopt

(1− γ)
+

28L′′CS ∥1∥∗
N(1− γ)2

1

+ 160

√√√√ L(1 +
CS∥1∥∗
N(1−γ) )

(1− γ)2 max{1− γ,Cgσ}N
+

14LCS ∥1∥∗
N(1− γ)2

≤ 8εopt
1− γ

+
42L′′CS ∥1∥∗
N(1− γ)2

+ 1508

√√√√ L′′(1 +
CS∥1∥∗
N(1−γ) )

(1− γ)2 max{1− γ,Cgσ}N
(110)
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where the last inequality holds by γ ≥ 1
4 and N ≥ 16L′′

(1−γ)2 for sa-rectangular and the same quantity901

replacing max{1 − γ, σ} by max{1 − γ, σ̃mins{∥π∗
s∥∗}} for s− rectangular case. The proof is902

similar for TV without the geometric term depending on CS .903

9.3 Proof of the auxiliary lemmas904

9.3.1 Proof of Lemma 5905

Similarly to Shi et al. [2023], denoting s0 the argmax of V π,σ such that V π,σ (s0) = mins∈S V π,σ(s)906

using recursive Bellman’s equation907

max
s∈S

V π,σ(s) = max
s∈S

Ea∼π(·|s)

[
r(s, a) + γ inf

P∈Uσ(Ps,a)
PV π,σ

]
(111)

≤ max
(s,a)∈S×A

(
1 + γ inf

P∈Uσ(Ps,a)
PV π,σ

)
(112)

where the second line holds since the reward function r(s, a) ∈ [0, 1] for all (s, a) ∈ S ×A.908

Then we construct for any (s, a) ∈ S × A P̃s,a ∈ RS by reducing the values of some elements of909

Ps,a such that Ps,a ≥ P̃s,a ≥ 0 and
∑

s′

(
Ps,a (s

′)− P̃s,a (s
′)
)
= σCs,a

g . with Cs,a
g = 1

∥es0∥
It910

lead to P̃s,a + σCs,a
g e⊤s0 ∈ Uσ

∥∥ (Ps,a), where es0 is the standard basis vector supported on s0, since911

1

2

∥∥∥P̃s,a + σCs,a
g e⊤s0 − Ps,a

∥∥∥ ≤ 1

2

∥∥∥P̃s,a − Ps,a

∥∥∥+ Cs,a
g σ ∥es0∥

2
= σ/2 + σ/2 = σ (113)

Consequently,912

inf
P∈Uσ

∥.∥(Ps,a)
PV π,σ ≤

(
P̃s,a + σCs,a

g e⊤s0

)
V π,σ ≤

∥∥∥P̃s,a

∥∥∥
1
∥V π,σ∥∞ + σV π,σ (s0)Cg (114)

≤ (1− Cs,a
g σ)max

s∈S
V π,σ(s) + σCs,a

g min
s∈S

V π,σ(s) (115)

where the second inequality holds by913 ∥∥∥P̃s,a

∥∥∥
1
=
∑
s′

P̃s,a (s
′) = −

∑
s′

(
Ps,a (s

′)− P̃s,a (s
′)
)
+
∑
s′

Ps,a (s
′) = 1− σCs,a

g (116)

Plugging this back to the previous relation gives914

max
s∈S

V π,σ(s) ≤ 1 + γ(1− Cs,a
g σ)max

s∈S
V π,σ(s) + γCs,a

g σmin
s∈S

V π,σ(s) (117)

which, by rearranging terms, yields915

max
s∈S

V π,σ(s) ≤
1 + γCs,a

g σmins∈S V π,σ(s)

1− γ(1− Cs,a
g σ)

(118)

≤ 1

(1− γ) + γCs,a
g σ

+min
s∈S

V π,σ(s) ≤ 1

γmax{1− γ,Cs,a
g σ}

+min
s∈S

V π,σ(s)

(119)

So rearranging term it holds :916

sp(V π,σ)∞ ≤ 1

γmax{1− γ,Cgσ}
(120)

As we pick the supreme over s ov this quantity, Cs,a
g is replaced by Cg = 1/(mins ∥es∥) to obtain a917

control for every s.918
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9.3.2 Proof of Lemma 6919

Similarly to 5 denoting s0 the argmax of V π,σ such that V π,σ (s0) = mins∈S V π,σ(s) using recursive920

Bellman’s equation921

max
s∈S

V π,σ(s) = max
s∈S

Ea∼π(·|s)

[
r(s, a) + γ inf

P∈Uσ(Ps)
PV π,σ̃

]
(121)

≤ max
(s)∈S

(
1 + γ inf

Pπ∈Uσ(Pπ
s )

PπV π,σ̃

)
(122)

where the second line holds since the reward function r(s, a) ∈ [0, 1] for all (s, a) ∈ S × A.Then922

we construct for any (s) ∈ S P̃s ∈ RS×A by reducing the values of some elements of Ps such that923

Ps ≥ P̃s ≥ 0 and924

∀a ∈ A,
∑
s′

(
Ps (s

′, a)− P̃s (s
′, a)

)
= σs,aC

s
g

Writting ∥σs,a∥ ≤ σ̃ we construction σs,a such that925 ∑
a

π(a|s)
∑
s′

(
Ps (s

′, a)− P̃s (s
′, a)

)
= ∥πs∥∗ σ̃C

s
g (123)

Not that this construction is possible as it is simply Cauchy Swartz equality case.926

It leads to P̃s + σe⊤s0,a ∈ U σ̃ (Ps), where es0,a ∈ RS×A is the standard basis vector supported on s0927

which is equal to 1 at s0 for every a and otherwise.928

1

2

∥∥∥P̃s + σs,aC
s
ge

⊤
s0,a − Ps

∥∥∥ ≤ 1

2

∥∥∥P̃s − Ps

∥∥∥+ σ̃ ∥es0∥Cg

2
= σ̃/2 + σ̃/2 (124)

as Cs
g ∥σs,aes0,a∥ is equal to Cs

g σ̃ ∥es0∥ Consequently,929

inf
Pπ∈Uσ(Ps)

PπV π,σ̃ ≤ Ππ
(
P̃π
s + σCs

ge
⊤
s0

)
V π,σ̃ (125)

=
∑
a

∑
s′

P̃s(s
′, a)π(a|s)V π,σ̃(s′) + σes0,aC

s
gV

π,σ̃ (s0)π(a|s) (126)

=
∑
a

sup
s′

V (s′)(
∑
s′

P̃s(s
′, a)))π(a|s) + V π,σ̃ (s0)π(a|s)σs,aC

s
g (127)

(a)
= max

s∈S
V π,σ(s)

∑
a

(1− σCs
g)π(a|s) +

∑
a

V π,σ̃ (s0)π(a|s)σs,aC
s
g (128)

(b)
= max

s∈S
V π,σ(s)(1− σ̃Cs

g) ∥πs∥∗ + ∥πs∥∗ σ̃C
s
g min

s∈S
V π,σ̃(s) (129)

≤ (1− Cs
g σ̃)max

s∈S
V π,σ(s) + σCs

g min
s∈S

V π,σ̃(s) (130)

where ∥π∥∞ is the norm of the vector π(.|s) and where (a) holds because930 ∑
s′

P̃s (s
′) = −

∑
s′

(
Ps (s

′)− P̃s (s
′)
)
+
∑
s′

Ps (s
′) = 1− σs,aC

s
g (131)

Finally (b) is due to (123). Plugging this back to the previous relation gives931

max
s∈S

V π,σ̃(s) ≤ 1 + γ(1− σ̃Cs
g ∥πs∥∗)max

s∈S
V π,σ(s) + γ ∥πs∥∗ σC

s
g min

s∈S
V π,σ̃(s) (132)
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which, by rearranging terms, yields932

max
s∈S

V π,σ̃(s) ≤
1 + γσ̃ ∥πs∥∗ Cs

g mins∈S V π,σ̃(s)

1− γ(1− Cs
g σ̃ ∥πs∥∗)

(133)

≤ 1

(1− γ) + ∥πs∥∗ γCs
g σ̃

+min
s∈S

V π,σ̃(s) (134)

≤ 1

(1− γ) + γ ∥πs∥∗ Cs
g σ̃

+min
s∈S

V π,σ̃(s) (135)

≤ 1

γmax{1− γ,Cs
g ∥πs∥∗ σ̃}

+min
s∈S

V π,σ̃(s) (136)

So rearranging and taking the sumpremum over all sterm it holds :933

sp(V π,σ̃)∞ ≤ 1

γmax{1− γ,mins ∥πs∥∗ Cgσ̃}
(137)

As we pick the supreme over s ovf this quantity, Cs
g is replaced by Cg = 1/mins ∥es∥934

9.3.3 Proof of Lemma 8935

Proof. Concentration of the robust values function. with probability 1− δ, it holds:936 ∣∣∣Pπ,V
s,a V − P̂π,V

s,a V
∣∣∣ ≤ 2

√
L

N

√
Var[V ]α∗∗(V ) +

3LCS ∥1∥∗
N(1− γ)

with L = 2 log(18 ∥1∥∗ SAN/δ) and First we can use optimization duality such as in (50):937 ∣∣∣Pπ,V
s,a V − P̂π,V

s,a V
∣∣∣ (138)

=
∣∣∣ max
µλ,ω

P0
s,a

∈Mλ,ω

P0
s,a

{
P 0
s,a(V − µ)− σ (sp((V − µ))∗)

}
− max

µλ,ω

P̂0
s,a

∈Mλ,ω

P̂0
s,a

{
P̂ 0
s,a(V − µλ,ω

P̂ 0
s,a

)− σ

(
sp((V − µλ,ω

P̂ 0
s,a

))∗

)} ∣∣∣
≤ max

{∣∣∣ max
µλ,ω

P0
s,a

∈Mλ,ω

P0
s,a

{
P 0
s,a(V − µλ,ω

P 0
s,a

)− σ
(
sp((V − µλ,ω

P 0
s,a

))∗

)}
− max

µλ,ω

P0
s,a

∈Mλ,ω

P0
s,a

{
P̂ 0
s,a(V − µλ,ω

P 0
s,a

)− σ
(
sp((V − µλ,ω

P 0
s,a

))∗

)} ∣∣∣; (139)

∣∣∣ max
µλ,ω

P̂0
s,a

∈Mλ,ω

P̂0
s,a

{
P̂ 0
s,a(V − µλ,ω

P̂ 0
s,a

)− σ

(
sp((V − µλ,ω

P̂ 0
s,a

))∗

)}
(140)

− max
µλ,ω

P̂0
s,a

∈Mλ,ω

P̂0
s,a

{
P 0
s,a(V − µλ,ω

P̂ 0
s,a

)− σ

(
sp((V − µλ,ω

P̂ 0
s,a

))∗

)} ∣∣∣}

≤ max
{ ∣∣∣∣∣∣ max

µ∈µλ,ω

P0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V − µλ,ω

P 0
s,a

)

∣∣∣∣∣∣︸ ︷︷ ︸
=:gs,a(α

λ,ω
P ,V )

,

∣∣∣∣∣∣ max
µλ,ω

P̂0
s,a

∈Mλ,ω

P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V − µλ,ω

P̂ 0
s,a

)

∣∣∣∣∣∣︸ ︷︷ ︸
=:gs,a(α

λ,ω

P̂
,V )

}

(141)

where in the first equality we use Lemma 3. The final inequality is a consequence of the 1-938

Lipschitzness of the max operator. First, we control gs,a(α
λ,ω
P , V ). To do so, we use for a fixed αλ,ω

P939
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and any vector V that is independent with P̂ 0, the Bernstein’s inequality, one has with probability at940

least 1− δ with sa-rectangular notations,941

gs,a(α
λ,ω
P , V ) =

∣∣∣(P 0
s,a − P̂ 0

s,a

)
[V ]αλ,ω

P

∣∣∣ ≤
√

2 log(2δ )

N

√
VarP 0

s,a
(V ) +

2 log(2δ )

3N(1− γ)
. (142)

Once pointwise concentration derived, we will use uniform concentration to yield this lemma. First,942

union bound, is obtained noticing that gs,a(α
λ,ω
P , V ) is 1-Lipschitz w.r.t. λ and ω as it is linear in943

λ and ω. Moreover, λ∗ = ∥V − µ∗ − ω∥∗ obeying λ∗ ≤ ∥1∥∗
1−γ . The quantity ω ∈ [0, 1/(1 − γ)]944

as it is always smaller that V by definition. We construct then a 2-dimensional a ε1-net Nε1 over945

λ∗ ∈ [0,
∥1∥∗
1−γ ] and ω ∈ [0, 1/(1 − γ)] whose size satisfies |Nε1 | ≤

(
3∥1∥∗

ε1(1−γ)

)2
[Vershynin, 2018].946

Using union bound and (142), it holds with probability at least 1− δ
SA that for all λ ∈ Nε1 ,947

gs,a(α
λ
P , V ) ≤

√
2 log(

2SA|Nε1 |
δ )

N

√
VarP 0

s,a
(V ) +

2 log(
2SA|Nε1 |

δ )

3N(1− γ)
. (143)

Using the previous equation and also (141), it results in using notation 2 log( 18SAN
δ ) = L,948

gs,a(α
λ
P , V )

(a)

≤ sup
αλ

P∈Nε1

∣∣∣(P 0
s,a − P̂ 0

s,a

)
[V ]αλ

P

∣∣∣+ ε1

(b)

≤

√
2 log(

2SA|Nε1 |
δ )

N

√
VarP 0

s,a
(V ) +

2 log(
2SA|Nε1 |

δ )

3N(1− γ)
+ ε1 (144)

(c)

≤

√
2 log(

2SA|Nε1 |
δ )

N

√
VarP 0

s,a
(V ) +

log(
2SA|Nε1 |

δ )

N(1− γ)

(d)

≤ 2

√
L

N

√
VarP 0

s,a
(V ) +

L

N(1− γ)
(145)

≤ 2

√
L

N
∥V ∥∞ +

L

N(1− γ)

≤ 3

√
L

(1− γ)2N
(146)

where (a) is because the optimal α∗ falls into the ε1-ball centered around some point inside Nε1 and949

gs,a(α
λ
P , V ) is 1-Lipschitz with regard to λ and ω, (b) is due to Eq. (143), (c) arises from taking950

ε1 =
log(

2SA|Nε1
|

δ )

3N(1−γ) , (d) is verified by |Nε1 | ≤
(

3∥1∥∗
ε1(1−γ)

)2
≤ 9N ∥1∥ and that variance of a ceiling951

function of a vector is smaller than the variance of non-ceiling vector , and the last inequality comes952

from the fact ∥V ⋆,σ∥∞ ≤ 1
1−γ and taking N ≥ 2 log(

18SAN∥1∥∗
δ ) = L.953

Contrary to the previous term, the second term gs,a(α
λ
P̂
, V ) is more difficult as we need concentration,954

but there is an extra dependency in the data thought the parameter αλ
P̂

. We need to decouple this955

problem using absorbing MDPs. Then it leads to956
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gs,a(α
λ,ω

P̂
, V ) (147)

= | max
µλ,ω

P̂0
s,a

∈Mλ,ω

P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V − µλ,ω

P̂ 0
s,a

)| (148)

= | max
µ∈Mλ,ω

P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V − µλ,ω

P 0
s,a

) +
(
P 0
s,a − P̂ 0

s,a

)
(µλ,ω

P 0
s,a

− µλ,ω

P̂ 0
s,a

)| (149)

≤ | max
µλ,ω

P0
s,a

∈Mλ,ω

P0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V − µλ,ω

P 0
s,a

) + max
µλ,ω

P̂0
s,a

∈Mλ,ω

P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(µλ,ω

P 0
s,a

− µλ,ω

P̂ 0
s,a

)|

(150)

In the first equality, we add the term µλ,ω
P 0

s,a
to retrieve the previous concentration problem, fixing P 0

s,a957

and optimizing λ, ω. In the second, we extend the max using triangular inequality. The first term in958

the last equality is exactly the term we have controlled previously, while the second one needs more959

attention. We decouple the dependency of the data, and then controlling the difference between the µ.960

Then using the characterization of the optimal µ from equation (47):961 (
P 0
s,a − P̂ 0

s,a

)
(µλ,ω

P 0
s,a

− µλ,ω

P̂ 0
s,a

) =
∑
s′

λ
(
P 0
s,a(s

′)− P̂ 0
s,a(s

′)
)
(∇
∥∥P 0

s,a

∥∥−∇
∥∥∥P̂ 0

s,a

∥∥∥)
Here we assume that the subgradient are gradient as we assume that the norm is C2. The question962

that arises is whether the gradient if the norm is Lipschitz. Assuming that the norm is C2, using963

Mean value theorem, we know that964

∥∥∥(∇∥∥P 0
s,a

∥∥−∇
∥∥∥P̂ 0

s,a

∥∥∥)∥∥∥
2
≤ sup

x∈∆(S)

∥∥∇2 ∥x∥
∥∥
2

∥∥∥(P 0
s,a − P̂ 0

s,a)
∥∥∥
2
.

As the norm is C2, is continuous and as the simplex is bounded, this quantity exists according to965

Extreme value theorem. It is possible to compute this contact depending on S for explicit norm such966

as Lp. Indeed, for L2:967

∇2 ∥x∥2 =
(I − x

⊗
x)

∥x∥2
2

∥x∥2
≤ 1

∥x∥2
I ≤ 1

minx∈∆(S) ∥x∥2
I =

√
S

where
⊗

is the Kronecker product. So we have an upper bound independently of x. For Lp = ∥x∥p968

norms, p ≥ 2, we have simple taking derivative twice:969

∇2 ∥x∥p =
p− 1

Lp

(
Ap−2 − gpg

T
p

)
with970

A = Diag

(
abs(x)

Lp

)
gp = Ap−2

(
x

Lp

)
.

where Diag is the diagonal matrix. However, as x ≤ Lp, A ≤ I , we get971

H ≤ p− 1

∥x∥p
≤ (p− 1)S1/q = CS (151)

where the 1/Lp is minimized for the uniform distribution. Then using Cauchy Swartz inequality, it972

holds973 (
P 0
s,a − P̂ 0

s,a

)
(µλ,ω

P 0
s,a

− µλ,ω

P̂ 0
s,a

) ≤ λ
∥∥∥(P 0

s,a − P̂ 0
s,a

)∥∥∥2
2
. (152)

Then the question is how to bound the quantity
∥∥∥(P 0

s,a − P̂ 0
s,a

)∥∥∥2
2
. To do so, we will use Mac974

Diarmid inequality.975
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Definition 3. Bounded difference property976

A function f : X1 × . . .Xn → R satisfies the bounded difference property if for each i = 1, . . . , n977

the change of coordinate from si to s′i may change the value of the function at most on ci978

∀i ∈ [n] : sup
x′
i∈Xi

|f (x1, . . . , xi, . . . , xn)− f (x1, . . . , x
′
i, . . . , xn)| ≤ ci

In our case, we consider f (X1, . . . , Xn) = ∥
∑n

k=1 Xk∥2. Then we can notice that by triangle979

inequality for any x1, . . . , xn and x′
k with Xi,s′ = P 0

i,s,a(s
′)− P 0

s,a(s
′) ( index i holds for index of980

sample generated from the generative model) that981

f (x1, . . . , xk, . . . , xn) = ∥x1 + . . .+ xn∥2 ≤ ∥x1 + . . .+ xn − xk + x′
k∥2 + ∥xk − x′

k∥2
≤ f (x1, . . . , x

′
k, . . . , xn) + 2

Theorem 5. (McDiarmid’s inequality). McDiarmid et al. [1989] Let f : X1 × . . .Xn → R be a982

function satisfying the bounded difference property with bounds c1, . . . , cn. Consider independent983

random variables X1, . . . , Xn, Xi ∈ Xi for all i. Then for any t > 0984

P [f (X1, . . . , Xn)− E [f (X1, . . . , Xn)] ≥ t] ≤ exp

(
− 2t2∑n

i=1 c
2
i

)
Using McDiarmid’s inequality and union bound, we can bound the term as here985 ∥∥∥(P 0

s,a − P̂ 0
s,a

)∥∥∥2
2
− E[

∥∥∥(P 0
s,a − P̂ 0

s,a

)∥∥∥2
2
] ≤ 2N log(|S||A|/δ))

N2

with probability 1− δ/(|S||A|). Moreover, the additional term can be bounded as follows:986

E[
∥∥∥(P 0

s,a − P̂ 0
s,a

)∥∥∥2
2
] = E[

∑
s′

(P 0
s,a(s

′)− P 0
s,a(s

′))2 = E[
∑
s′

(
1

N

N∑
i

Xi,s′)
2]

with Xi,s′ = P 0
i,s,a(s

′)− P 0
s,a(s

′) is one sample sampled from the generative model. Then987

E[
∥∥∥(P 0

s,a − P̂ 0
s,a

)∥∥∥2
2
] =

1

N2

∑
s′

Var(
N∑
i

Xi,s)
a
=

1

N2

N∑
i

∑
s′

Var(Xi,s)

=
1

N2

N∑
i

E(
∑
s′

X2
i,s) ≤

4

N

where (a) the last equality comes from the independence of the random variables and where the last988

inequality comes from the fact the maximum of two elements in the simplex is bounded by 2. Finally,989

regrouping the two terms, we obtain with probability 1− δ/(|S||A|):990

∥∥∥(P 0
s,a − P̂ 0

s,a

)∥∥∥2
2
≤ 2N log(|S||A|/(δ)))

N2
+

4

N
=

8 log(|S||A|/(δ)))
N

+
4

N

≤ 6 log(|S||A|/(δ))
N

=
L′

N

with L′ = 6 log(|S||A|/(δ)). Finally, plugging the previous equation in (152):991

max
µ∈µλ

P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(µλ

P 0
s,a

− µ)| ≤ max
λ

∥∥∥(P 0
s,a − P̂ 0

s,a

)∥∥∥2
2
CSλ.
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This term can be easily controlled by taking the supremum over λ which is a 1 dimensional parameter.992

Then we can bound λ ∈ [0, H ∥1∥∗]. Indeed,993

λ∗ = ∥V − µ∗ − η∥∗ ≤ ∥V ∥∗ ≤ H ∥1∥∗ .
Finally, we obtain:994

max
λ

∥∥∥(P 0
s,a − P̂ 0

s,a

)∥∥∥2
2
CSλ ≤

L′CS ∥1∥∗
N(1− γ)

.

Regrouping all terms:995

gs,a(α
λ
P̂
, V ) ≤ | max

µλ
P0
s,a

∈Mλ
P0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V − µλ

P 0
s,a

) + max
µλ
P̂0
s,a

∈Mλ
P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(µλ

P 0
s,a

− µλ
P̂ 0

s,a
)|

≤ 2

√
L

N

√
Var(V ) +

L′CS ∥1∥∗
N(1− γ)

+
L

N(1− γ)
≤ 2

√
L

N

√
Var(V ) +

3LCS ∥1∥∗
N(1− γ)

(153)
(154)

We can recognize that the second term is a second order term as long as N ≥ (CS ∥1∥∗)2 , we can996

regroup the two terms. Finally, as gs,a(αλ
P̂
, V ) ≥ gs,a(α

λ
P , V ), we obtain997

∣∣∣Pπ,V
s,a V − P̂π,V

s,a V
∣∣∣ ≤ 2

√
L

N

√
VarP 0

s,a
(V ) +

3LCS ∥1∥∗
N(1− γ)

(155)

It is important to note that the geometry of the norm is present in the second order term 3LCS∥1∥
N(1−γ)998

but this term is negligible as it is proportional to 1/N with regard to the variance term in 1/
√
N .999

Moreover, note that the quantity CS ∥1∥∗ = S for L2 norms.1000

For the specific case of TV which is not C2 smooth, this lemma still holds as in (141), we only need1001

to control one term without the dependency on data in the supremum as αλ
P reduces to a scalar α1002

which does not depend on P . Then extra decomposition using smoothness of the norm is not needed,1003

as the only remaining term in the max in (141) is the left hand side term.1004

For the s-rectangular case, the first equation can be rewritten simply factorizing by π(a|s) using1005

lemma 4.1006

∣∣∣Pπ,V
s,a V − P̂π,V

s,a V
∣∣∣ = ∣∣∣∑

a

π(a|s) max
µλ
P0
s,a

∈Mλ
P0
s,a

{
P 0
s,a(V − µ)− σ (sp((V − µ))∗)

}
− max

µλ
P̂0
s,a

∈Mλ
P̂0
s,a

{
P̂ 0
s,a(V − µλ

P̂ 0
s,a

)− σ
(
sp((V − µλ

P̂ 0
s,a

)∗

)} ∣∣∣ (156)

≤
∑
a

π(a|s)
(
2

√
L

N

√
VarP 0

s,a
(V ) +

LCS ∥1∥∗
N(1− γ)

)
(157)

= 2

√
L

N

√
VarP 0

s,a
(V ) +

3LCS ∥1∥∗
N(1− γ)

(158)

using sa-rectangular results, which gives the result.1007

Combining this lemma with a matrix notation, one has with probability 1− δ:1008

∣∣∣P̂π∗,V
V π∗,σ − Pπ∗,V V π∗,σ

∣∣∣ ≤ 2

√
L

N

√
VarP∗ (V ⋆,σ) +

3LCS ∥1∥∗
N(1− γ)

(159)

(160)

1009
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9.3.4 Proof of Lemma 91010

Using the same argument as in (209), it holds that for any α∗ solution of (??) or (53)1011

(
I − γP̂

π⋆,V
)−1√

Var
P̂

π⋆,V (V ⋆,σ) =

√
1

1− γ

√√√√ ∞∑
t=0

γt
(
P̂

π⋆,V
)t

Var
P̂

π⋆,V ([V ⋆,σ]α∗∗).

(161)

Then we can control Var
P̂

π⋆,V (V ⋆,σ) . Defining V ′ := V ⋆,σ−η1, η ∈ R, we use Bellman’s equation1012

in (32)) which lead to1013

V ′ = V ⋆,σ − η1 ≤ V ⋆,σ − η1 = rπ⋆ + γPπ⋆,V V ⋆,σ − η1 (162)

=rπ⋆ + γPπ⋆,V [V ⋆,σ − γσsp(V ⋆,σ)∗ − η1 (163)

= r′π⋆ + γP̂
π⋆,V

V ′ + γ
(
Pπ⋆,V − P̂

π⋆,V
)
V ⋆,σ − γσsp([V ⋆,σ)∗ (164)

= r′π⋆ + γP̂
π⋆,V

V ′ + γ
(
Pπ⋆,V − P̂

π⋆,V
)
V ⋆,σ (165)

≤ r′π⋆ + γP̂
π⋆,V

V ′ + γ
(
Pπ⋆,V − P̂

π⋆,V
)
V ⋆,σ (166)

where in the second line we use Lemma 3. and we define r′π⋆ = rπ⋆ − (1 − γ)η < rπ⋆ < 1. We1014

obtain the same result in s-rectangular case using lemma 4 instead. Then1015

Var
P̂

π⋆,V ([V ⋆,σ)
(a)
= Var

P̂
π⋆,V (V ′) = P̂

π⋆,V
(V ′ ◦ V ′)−

(
P̂

π⋆,V
V ′) ◦ (P̂π⋆,V

V ′)
= P̂

π⋆,V
(V ′ ◦ V ′)−

(
P̂

π⋆,V
V ′) ◦ (P̂π⋆,V

V ′)
(b)

≤ P̂
π⋆,V

(V ′ ◦ V ′)− 1

γ2

(
V ′ − r′π⋆ − γ

(
Pπ⋆,V − P̂

π⋆,V
)
V ⋆,σ

)◦2
= P̂

π⋆,V
(V ′ ◦ V ′)− 1

γ2
V ′ ◦ V ′ +

2

γ2
V ′ ◦

(
r′π⋆ + γ

(
Pπ⋆,V − P̂

π⋆,V
)
V ⋆,σ

)
− 1

γ2

(
r′π⋆ + γ

(
Pπ⋆,V − P̂

π⋆,V
)
V ⋆,σ

)◦2
(c)

≤ P̂
π⋆,V

(V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′ +

2

γ2
∥V ′∥∞1 (167)

+
2

γ
∥V ′∥∞

∣∣∣(Pπ⋆,V − P̂
π⋆,V

)
V ⋆,σ

∣∣∣ (168)

≤ P̂
π⋆,V

(V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′ +

2

γ2
∥V ′∥∞1 (169)

+
2

γ
∥V ′∥∞

(
2

√
L

(1− γ)2N
+

3CS ∥1∥∗ L
N(1− γ)

)
1, (170)

where (a) holds by the fact that VarPπ
(V −c1) = VarPπ

(V ) for any scalar c and V ∈ RS , (b) follows1016

from (166), (c) arises from 1
γ2V

′ ◦V ′ ≥ 1
γV

′ ◦V ′ and −1 ≤ rπ⋆ − (1− γ)Vmin1 = r′π⋆ ≤ rπ⋆ ≤ 1,1017
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and the last inequality holds by Lemma 8. Plugging (170) into (161) leads to1018

(
I − γP̂

π⋆,V
)−1√

Var
P̂

π⋆,V (V ⋆,σ) (171)

≤
√

1

1− γ

( ∞∑
t=0

γt

(
P̂

π⋆,V
)t
(
P̂

π⋆,V
(V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′ +

2

γ2
∥V ′∥∞1 (172)

+
2

γ
∥V ′∥∞

(
2

√
L

(1− γ)2N
+

3CS ∥1∥∗ L
N(1− γ)

)
1

))1/2
(i)

≤
√

1

1− γ

√√√√∣∣∣∣ ∞∑
t=0

γt
(
P̂

π⋆,V
)t(

P̂
π⋆,V

(V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′

)∣∣∣∣
+

√
1

1− γ

√√√√ ∞∑
t=0

γt
(
P̂

π⋆,V
)t( 2

γ2
∥V ′∥∞1 +

2

γ
∥V ′∥∞

(
2

√
L

(1− γ)2N
+

3CS ∥1∥∗ L
N(1− γ)

)
1

)

≤
√

1

1− γ

√√√√∣∣∣∣ ∞∑
t=0

γt
(
P̂

π⋆,V
)t [

P̂
π⋆,V

(V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′

]∣∣∣∣ (173)

+

√√√√(2 + 2
(
2
√

L
(1−γ)2N +

3CS∥1∥∗L

N(1−γ)

))
∥V ′∥∞

(1− γ)2γ2
1, (174)

where (i) holds by the triangle inequality. Therefore, the remainder of the proof shall focus on the1019

first term, which follows1020

∣∣∣∣ ∞∑
t=0

γt
(
P̂

π⋆,V
)t(

P̂
π⋆,V

(V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′

)∣∣∣∣
=

∣∣∣∣( ∞∑
t=0

γt
(
P̂

π⋆,V
)t+1

−
∞∑
t=0

γt−1
(
P̂

π⋆,V
)t)

(V ′ ◦ V ′)

∣∣∣∣ ≤ 1

γ
∥V ′∥2∞1 (175)

by recursion. Inserting (175) back to (174) leads to1021

(
I − γP̂

π⋆,V
)−1√

Var
P̂

π⋆,V (V ⋆,σ]α∗)

≤

√
∥V ∥2∞
γ(1− γ)

1 + 3

√√√√(1 + (√ L
(1−γ)2N +

CS∥1∥∗L

N(1−γ)

))
∥V ′∥∞

(1− γ)2γ2
1

≤ 4

√√√√(1 + (√ L
(1−γ)2N +

CS∥1∥∗L

N(1−γ)

))
∥V ′∥∞

(1− γ)2γ2
1 (176)

≤ 4

√√√√(1 + (1√ L
(1−γ)2N +

CS∥1∥∗L

N(1−γ)

))
∥V ′∥∗

(1− γ)2γ2
1 (177)
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Taking the infimum over η in the right-hand side, recall V ′ := V ⋆,σ − η1, we obtain the definition of1022

the span semi norm.1023 (
I − γP̂

π⋆,V
)−1√

Var
P̂

π⋆,V (V ⋆,σ]α∗) ≤ 4

√√√√(1 + (√ L
(1−γ)2N +

CS∥1∥∗L

N(1−γ)

))
sp(V ⋆,σ)∗

(1− γ)2γ2
1

≤ 4

√√√√(1 + (√ L
(1−γ)2N +

CS∥1∥∗L

N(1−γ)

))
γ3(1− γ)2 max{1− γ,Cgσ}

1 (178)

≤ 4

√√√√(1 + (√ L
(1−γ)2N +

CS∥1∥∗L

N(1−γ)

))
γ3(1− γ)3

1, (179)

where the penultimate inequality follows from applying Lemma 5 with P = P 0 and π = π⋆:1024

sp(V ⋆,σ)∗ ≤ 1

γmax{1− γ,Cgσ}
.

or with an extra factor for s rectangular assumptions.1025

sp(V ⋆,σ)∗ ≤ 1

γmax{1− γ,mins ∥πs∥∗ σ̃Cg}
.

9.3.5 Proof of Lemma 101026

In this proof, we will sa-rectangular notations, especially α∗∗
s,a but it holds also for α∗∗

s and s-1027

rectangular case. For any (s, a) ∈ S ×A, using the results in (141), for both sa-rectangular case:1028

∣∣∣P̂ π̂,V̂
s,a V̂ π̂,σ − P π̂,V̂

s,a V̂ π̂,σ
∣∣∣ ≤ max

{ ∣∣∣∣(P 0
s,a − P̂ 0

s,a

) [
V̂ π̂,σ

]
αλ,ω∗

Ps,a

∣∣∣∣ , ∣∣∣∣(P 0
s,a − P̂ 0

s,a

) [
V̂ π̂,σ

]
αλ,ω∗

P̂s,a

∣∣∣∣ }
(180)

The first term in this max can be bounded using:1029

∣∣∣(P 0
s,a − P̂ 0

s,a

) [
V̂ π̂,σ

]
αλ,ω∗

Psa

∣∣∣ (181)

(a)

≤
(∣∣∣(P 0

s,a − P̂ 0
s,a

) [
V̂ ⋆,σ

]
αλ,ω∗

Psa

∣∣∣+ ∣∣∣(P 0
s,a − P̂ 0

s,a

)([
V̂ π̂,σ

]
αλ,ω∗

Psa

−
[
V̂ ⋆,σ

]
αλ,ω∗

Psa

)∣∣∣)
≤
( ∣∣∣(P 0

s,a − P̂ 0
s,a

) [
V̂ ⋆,σ

]
αλ,ω∗

Psa

∣∣+ ∥∥∥P 0
s,a − P̂ 0

s,a

∥∥∥
1

∥∥∥[V̂ π̂,σ
]
αλ,ω∗

Psa

−
[
V̂ ⋆,σ

]
αλ,ω∗

Psa

∥∥
∞

)
(b)

≤
∣∣∣(P 0

s,a − P̂ 0
s,a

) [
V̂ ⋆,σ

]
αλ,ω∗

Psa

∣∣∣+ 2
∥∥∥V̂ π̂,σ − V̂ ⋆,σ

∥∥∥
∞

(c)

≤
∣∣∣(P 0

s,a − P̂ 0
s,a

) [
V̂ ⋆,σ

]
αλ,ω∗

Psa

∣∣∣+ 2εopt (182)

where (a) comes from the triangle inequality, and (b) comes from
∥∥P 0

s,a − P̂ 0
s,a

∥∥
1

≤ 2 and1030 ∥∥[V̂ π̂,σ
]
αλ,ω∗

Psa

−
[
V̂ ⋆,σ

]
αλ,ω∗

Psa

∥∥
∞ ≤

∥∥V̂ π̂,σ − V̂ ⋆,σ
∥∥
∞, and (c) follows from the definition of the1031

optimization error in (55). The second term of the max can be controlled in the same manner, i.e.:1032

∣∣∣∣(P 0
s,a − P̂ 0

s,a

) [
V̂ π̂,σ

]
αλ,ω∗

P̂sa

∣∣∣∣ ≤ ∣∣∣∣(P 0
s,a − P̂ 0

s,a

) [
V̂ ⋆,σ

]
αλ,ω∗

P̂sa

∣∣∣∣+ 2εopt (183)

≤ | max
µλ
P0
s,a

∈Mλ
P0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V̂ ⋆,σ − µλ

P 0
s,a

) + max
µλ
P̂0
s,a

∈Mλ
P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(µλ

P 0
s,a

− µλ
P̂ 0

s,a
)|

(184)
+ 2εopt (185)
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where the last inequality follow the decomposition of (147). Finally, to control the remaining term1033

max
µλ
P0
s,a

∈Mλ
P0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V̂ ⋆,σ − µλ

P 0
s,a

) = max
αλ

P∈Aλ
P

{
(P 0

s,a − P̂ 0
s,a) [V ]αλ

P

}
(186)

(185) for any given α ∈ [0, αλ,ω∗
Psa

[⊂
[
0, 1

1−γ

]S
in the variational family with one parameter λ, with1034

the dependency between V̂ ⋆,σ and P̂ 0, we resort to the following leave-one-out argument or absorbing1035

MDPs used in [Agarwal et al., 2020, Li et al., 2022b, Shi and Chi, 2022, Clavier et al., 2023]. To1036

begin, we create a collection of auxiliary RMDPs that exhibit the intended statistical independence1037

between robust value functions and the estimated nominal transition kernel. These auxiliary RMDPs1038

are designed to be minimally distinct from the initial RMDPs, subsequently, we manage to control1039

the relevant term within these auxiliary RMDPs and demonstrate that its value closely approximates1040

the target quantity for the desired RMDP. Recall that the empirical infinite-horizon robust MDP M̂rob1041

is defined using the nominal transition kernel P̂ 0. Inspired by Agarwal et al. [2020], we can construct1042

an auxiliary absorbing robust MDP M̂s,u
rob for each state s and any non-negative scalar u ≥ 0, so1043

that it is the same as M̂rob except for the transition properties in state s. These auxiliary MDPS are1044

called absorbing MDPs are have been used for the first time in the context of RMDPS in Clavier et al.1045

[2023]. Defining the reward function and nominal transition kernel of M̂s,u
rob as P s,u and rs,u, which1046

are expressed as follows using the same notation as Shi et al. [2023]:1047

{
rs,u(s, a) = u ∀a ∈ A,

rs,u(s̃, a) = r(s̃, a) ∀(s̃, a) ∈ S ×A and s̃ ̸= s.
(187)

1048 {
P s,u(s′ | s, a) = 1(s′ = s) ∀(s′, a) ∈ S ×A,

P s,u(· | s̃, a) = P̂ 0(· | s̃, a) ∀(s̃, a) ∈ S ×A and s̃ ̸= s,
(188)

Nominal transition probability at state s of the auxiliary M̂s,u
rob never leaves state s once entered,1049

which gives the name absorbing to these auxiliary RMPDs. Finally, we define the robust Bellman1050

operator T̂ σ
s,u(·) associated M̂s,u

rob as1051

T̂ σ
s,u(Q)(s̃, a) = rs,u(s̃, a) + γ inf

P∈U sa,σ(P s,u
s̃,a )

PV, with V (s̃) = max
a

Q(s̃, a). (189)

in sa-rectangular case and with stochastic policy in s-rectangular case. Using these auxiliary RMDPs1052

we can remark equivalence between M̂rob and the auxiliary RMDP M̂s,u
rob fixed-point. First, Q̂⋆,σ1053

is the unique-fixed point of T̂ σ(·) with associated value V̂ ⋆,σ. We will show that the robust value1054

function V̂ ⋆,σ
s,u⋆ obtained from the fixed point of T̂ σ

s,u(·)is the same as the the robust value function1055

V̂ ⋆,σ derived from T̂ σ(·), as long as we choose u as1056

u⋆ := u⋆(s) = V̂ ⋆,σ(s)− γ inf
P∈U sa,σ(es)

PV̂ ⋆,σ. (190)

with es is the s-th standard basis vector in RS . This assertion is verified as:1057

• First for state s′ ̸= s, for all a ∈ A: it holds1058

rs,u
⋆

(s′, a) + γ inf
P∈U sa,σ(P s,u⋆

s′,a )

PV̂ ⋆,σ = r(s′, a) + γ inf
P∈U sa,σ(P̂ 0

s′,a)
PV̂ ⋆,σ

= T̂ σ(Q̂⋆,σ)(s′, a) = Q̂⋆,σ(s′, a), (191)
where the first equality holds because of (187) and (188), and the last inequality comes1059

from that Q̂⋆,σ is the fixed point of T̂ σ(·) (see Lemma 8.3) and the definition of the robust1060

Bellman operator in (13).1061

• Then for state s, for any a ∈ A :1062

rs,u
⋆

(s, a) + γ inf
P∈Uσ(P s,u⋆

s,a )

PV̂ ⋆,σ = u⋆ + γ inf
P∈U sa,σ(es)

PV̂ ⋆,σ

= V̂ ⋆,σ(s)− γ inf
P∈U sa,σ(es)

PV̂ ⋆,σ + γ inf
P∈U sa,σ(es)

PV̂ ⋆,σ = V̂ ⋆,σ(s), (192)
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using in the first equality is the definition of P s,u⋆

s,a in (188) and where we use the definition1063

of u⋆ in (190) in the second one.1064

Finally, we have proved that there exists a fixed point Q̂⋆,σ
s,u⋆ of the operator T̂ σ

s,u⋆(·) by taking1065 {
Q̂⋆,σ

s,u⋆(s, a) = V̂ ⋆,σ(s) ∀a ∈ A,

Q̂⋆,σ
s,u⋆(s′, a) = Q̂⋆,σ(s′, a) ∀s′ ̸= s and a ∈ A.

(193)

we have confirmed the existence of a fixed point of the operator T̂ σ
s,u⋆(·) with corresponding value1066

function V̂ ⋆,σ
s,u⋆ that coincide with V̂ ⋆,σ. Note that the corresponding properties between M̂rob and1067

M̂s,u
rob in Step 1 and Step 2 hold in fact for any uncertainty set and s- or sa-rectangular assumptions.1068

Equipped with these fixed point equalities, we can use concentration inequalities to show this lemma.1069

Concentration inequality using an ε-net for all reward values u. First we can verify that1070

0 ≤ u⋆ ≤ [V̂ ⋆,σ(s)]αλ,ω∗
Ps,a

≤ V̂ ⋆,σ(s) ≤ 1

1− γ
. (194)

We first construct a Nε2-net over the interval
[
0, 1/(1− γ)

]
, where |Nε2 | the size of the net can be1071

controlled by |Nε2 | ≤ 3
ε2(1−γ) [Vershynin, 2018]. The only parameter that vary is λ in the variation1072

family αλ
Psa

so we have 1-dimensional control and not a vector in RS . Then similarly to Lemma 8.3,1073

it holds that for each u ∈ Nε2 , there exists a unique fixed point Q̂⋆,σ
s,u of the operator T̂ σ

s,u(·), which1074

satisfies 0 ≤ Q̂⋆,σ
s,u ≤ 1

1−γ · 1. Consequently, the corresponding robust value function can be upper1075

bounded by
∥∥∥V̂ ⋆,σ

s,u

∥∥∥
∞

≤ 1
1−γ . Using (188) and (187) by construction for all u ∈ Nε2 , M̂s,u

rob is1076

statistically independent of P̂ 0
s,a. This independence indicates that [V̂ ⋆,σ

s,u ]α and P̂ 0
s,a are independent1077

for a fixed α. Using (145) and (146) and taking the union bound over all (s, a, α) ∈ S ×A×Nε1 ,1078

u ∈ Nε2 gives that, with probability at least 1− δ, it holds for all (s, a, u) ∈ S ×A×Nε2 that1079

max
αλ,ω

Psa
∈Aλ,ω

Psa

∣∣∣(P 0
s,a − P̂ 0

s,a

) [
V̂ ⋆,σ
s,u

]
αλ,ω∗

Psa

∣∣∣ ≤ 2

√
2 log(

18∥1∥∗SAN |Nε2 |
δ )

N

√
VarP 0

s,a
(V̂ ⋆,σ

s,u ) (195)

+ ε2

≤ 2

√
2 log(

18∥1∥∗SAN |Nε2
|

δ )

(1− γ)2N
+ ε2, (196)

Finally, we use uniform concentration to obtain the lemma. Recalling that u⋆ ∈
[
0, 1

1−γ

]
(see1080

(194)), we can always find some u ∈ Nε2 such that |u − u⋆| ≤ ε2. Consequently, plugging in the1081

operator T̂ σ
s,u(·) in (189) yields1082

∀Q ∈ RSA :
∥∥∥T̂ σ

s,u(Q)− T̂ σ
s,u⋆(Q)

∥∥∥
∞

= |u− u⋆| ≤ ε2

We can then remark that the fixed points of T̂ σ
s,u(·) and T̂ σ

s,u⋆(·) obey1083 ∥∥∥Q̂⋆,σ
s,u − Q̂⋆,σ

s,u⋆

∥∥∥
∞

=
∥∥∥T̂ σ

s,u(Q̂
⋆,σ
s,u)− T̂ σ

s,u⋆(Q̂
⋆,σ
s,u⋆)

∥∥∥
∞

≤
∥∥∥T̂ σ

s,u(Q̂
⋆,σ
s,u)− T̂ σ

s,u(Q̂
⋆,σ
s,u⋆)

∥∥∥
∞

+
∥∥∥T̂ σ

s,u(Q̂
⋆,σ
s,u⋆)− T̂ σ

s,u⋆(Q̂
⋆,σ
s,u⋆)

∥∥∥
∞

≤ γ
∥∥∥Q̂⋆,σ

s,u − Q̂⋆,σ
s,u⋆

∥∥∥
∞

+ ε2,

where we use that the operator T̂ σ
s,u(·) is a γ-contraction. It gives that:1084 ∥∥∥Q̂⋆,σ

s,u − Q̂⋆,σ
s,u⋆

∥∥∥
∞

≤ ε2
(1− γ)

and
∥∥∥V̂ ⋆,σ

s,u − V̂ ⋆,σ
s,u⋆

∥∥∥
∞

≤
∥∥∥Q̂⋆,σ

s,u − Q̂⋆,σ
s,u⋆

∥∥∥
∞

≤ ε2
(1− γ)

.

(197)

44



Finally to control the first term in (185), using the identity V̂ ⋆,σ = V̂ ⋆,σ
s,u⋆ or fixed point relation1085

between the two RMPDS, established in previous step of the proof gives that: for all (s, a) ∈ S ×A,1086

max
αλ,ω

Ps,a
∈Aλ,ω

Ps,a

∣∣∣∣(P 0
s,a − P̂ 0

s,a

)
[V̂ ⋆,σ]αλ,ω

Ps,a

∣∣∣∣
≤ max

αλ,ω
Ps,a

∈Aλ,ω
Ps,a

∣∣∣∣(P 0
s,a − P̂ 0

s,a

)
[V̂ ⋆,σ]αλ,ω

Ps,a

∣∣∣∣
(a)

≤ max
αλ,ω

Ps,a
∈Aλ,ω

Ps,a

{∣∣∣∣(P 0
s,a − P̂ 0

s,a

)
[V̂ ⋆,σ

s,u ]αλ,ω
Ps,a

∣∣∣∣+ ∣∣∣∣(P 0
s,a − P̂ 0

s,a

)(
[V̂ ⋆,σ

s,u ]αλ,ω
Ps,a

− [V̂ ⋆,σ
s,u⋆ ]αλ

Ps,a

)∣∣∣∣}
(b)

≤ max
αλ,ω

Ps,a
∈Aλ,ω

Ps,a

∣∣∣(P 0
s,a − P̂ 0

s,a

)
[V̂ ⋆,σ

s,u ]αλ
Ps,a

∣∣∣+ 2ε2
(1− γ)

(c)

≤ 2ε2
(1− γ)

+ ε2 + 2

√
2 log(

18∥1∥∗SAN |Nε2 |
δ )

N

√
VarP 0

s,a
(V̂ ⋆,σ

s,u ) +
4 log(

18∥1∥∗SAN |Nε2 |
δ )

3N(1− γ)

≤ 3ε2
(1− γ)

+ 2

√
2 log(

18∥1∥∗SAN |Nε2 |
δ )

N

√
VarP 0

s,a
(V̂ ⋆,σ) +

4 log(
18∥1∥∗SAN |Nε2 |

δ )

3N(1− γ)

+ 2

√
2 log(

18∥1∥∗SAN |Nε2 |
δ )

N

√∣∣∣VarP 0
s,a

(V̂ ⋆,σ)−VarP 0
s,a

(V̂ ⋆,σ
s,u )

∣∣∣
(d)

≤ 3ε2
(1− γ)

+ 2

√
2
log(

18∥1∥∗SAN |Nε2
|

δ )

N

√
VarP 0

s,a
(V̂ ⋆,σ) + 2

√
4ε2 log(

18∥1∥∗SAN |Nε2
|

δ )

N(1− γ)2

(198)

≤ 2

√
L′′

N

√
VarP 0

s,a
(V̂ ⋆,σ) +

14 log(
54∥1∥∗SAN |Nε2

|
δ )

N(1− γ)
(199)

≤ 16

√
L′′

(1− γ)2N
, (200)

with L′′ = log
(

54∥1∥∗SAN2

(1−γ)δ

)
where (a) comes from triangular inequality, (b) is due (197), for any1087

α ∈ RS1088 ∣∣∣(P 0
s,a − P̂ 0

s,a

)(
[V̂ ⋆,σ

s,u ]α − [V̂ ⋆,σ
s,u⋆ ]α

)∣∣∣ ≤ ∥∥∥P 0
s,a − P̂ 0

s,a

∥∥∥
1

∥∥∥[V̂ ⋆,σ
s,u ]α − [V̂ ⋆,σ

s,u⋆ ]α

∥∥∥
∞

≤ 2
∥∥∥V̂ ⋆,σ

s,u − V̂ ⋆,σ
s,u⋆

∥∥∥
∞

≤ 2ε2
(1− γ)

, (201)

(c) follows from (195), (d) holds using Lemma 1 with (197). Here, the two last inequalities hold by1089

letting ε2 =
2 log(

18∥1∥∗SAN|Nε2
|

δ )

N , which gives |Nε2 | ≤ 3
ε2(1−γ) ≤

3N
1−γ , and the last inequality holds1090

by the fact VarP 0
s,a

(V̂ ⋆,σ) ≤ ∥V̂ ⋆,σ∥∞ ≤ 1
1−γ and letting N ≥ 2 log

(
54∥1∥∗SAN2

(1−γ)δ

)
= L′′.1091

Rewriting (180), the first term of the max is controlled.1092

max
{ ∣∣∣∣(P 0

s,a − P̂ 0
s,a

) [
V̂ π̂,σ

]
αλ∗

Ps,a

∣∣∣∣ , ∣∣∣∣(P 0
s,a − P̂ 0

s,a

) [
V̂ π̂,σ

]
αλ∗

P̂s,a

∣∣∣∣ }
The second term can be controlled by the same term as the first one plus an additional term with1093 ∣∣∣∣(P 0

s,a − P̂ 0
s,a

) [
V̂ π̂,σ

]
αλ∗

P̂s,a

∣∣∣∣ ≤
| max
µλ
P0
s,a

∈Mλ
P0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(V̂ ⋆,σ − µλ

P 0
s,a

) + max
µλ
P̂0
s,a

∈Mλ
P̂0
s,a

(
P 0
s,a − P̂ 0

s,a

)
(µλ

P 0
s,a

− µλ
P̂ 0

s,a
)|
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and similarly to previous lemma in (153), the residual or term in the right in the previous equation1094

can be controlled with L′CS∥1∥∗
N(1−γ) Finally, putting (199) and (200) back into Equation (185) and using1095

Eq. (200) with probability at least 1− δ we obtain1096

∣∣∣P̂ π̂,V̂
s,a V̂ π̂,σ − P π̂,V̂

s,a V̂ π̂,σ
∣∣∣ ≤ max

αλ,ω
Ps,a

∈Aλ,ω
Ps,a

∣∣∣∣(P 0
s,a − P̂ 0

s,a

)
[V̂ ⋆,σ]αλ,ω

Ps,a

∣∣∣∣+ 2εopt

≤ 2

√
L′

N

√
VarP 0

s,a
(V̂ ⋆,σ) + 2εopt +

14L′′CS ∥1∥∗
N(1− γ)

≤ 2

√
L′′

(1− γ)2N
+ 2εopt +

14L′′CS ∥1∥∗
N(1− γ)

, (202)

∀(s, a) ∈ S ×A. Using matrix form we obtain finally:1097

∣∣∣∣P̂ π̂,V̂
V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ

∣∣∣∣ ≤ 2

√
L′′

N

√
VarP 0

s,a
(V̂ ⋆,σ)1 + 2εopt1

≤ 2

√
L′′

(1− γ)2N
1 + 2εopt1.+

14L′′CS ∥1∥∗
N(1− γ)

(203)

The proof is similar in the s-rectangular case, factorising by π(a|s), like in in 8. Moreover, the proof1098

is similar for TV without the geometric term depending on CS .1099

9.3.6 Proof of Lemma 111100

We always use the same manner as in Appendix 9.3.4. Similarly to (161), it holds:1101

(
I − γP π̂,V̂

)−1√
Var

P π̂,V̂ (V̂ π̂,σ) ≤
√

1

1− γ

√√√√ ∞∑
t=0

γt
(
P π̂,V̂

)t
Var

P π̂,V̂ (V̂ π̂,σ). (204)

In order to upper bound Var
P π̂,V̂ (V̂

π̂,σ), we define V ′ := V̂ π̂,σ − η1 for any α∗ solving a dual1102

optimization problem with η ∈ R. Using as (168), it holds1103

Var
P π̂,V̂ (V̂

π̂,σ) ≤ P π̂,V̂ (V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′ +

2

γ2
∥V ′∥∞1 +

2

γ
∥V ′∥∞

∣∣∣∣(P̂ π̂,V̂
− P π̂,V̂

)
V̂ π̂,σ

∣∣∣∣
≤ P π̂,V̂ (V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′ +

2

γ2
∥V ′∥∞1 +

2

γ
∥V ′∥∞

(
2

√
L′′

(1− γ)2N
+ 2εopt +

14L′′CS ∥1∥∗
N(1− γ)

)
1,

(205)
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where the last inequality makes use of Lemma 10. Plugging (205) back into (204) leads to1104 (
I − γP π̂,V̂

)−1√
Var

P π̂,V̂ (V̂ π̂,σ)
(a)

≤
√

1

1− γ

√√√√∣∣∣∣ ∞∑
t=0

γt
(
P π̂,V̂

)t (
P π̂,V̂ (V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′

)∣∣∣∣
+

√√√√ 1

(1− γ)2γ2

(
2

√
L′′

(1− γ)2N
+ 2εopt +

14L′′CS ∥1∥∗
N(1− γ)

)
∥V ′∥∞1

(b)

≤

√
∥V ′∥2∞
γ(1− γ)

1 +

√√√√√
(
2
√

L′′

(1−γ)2N + 2εopt +
14L′′CS∥1∥∗

N(1−γ)

)
∥V ′∥∞

(1− γ)2γ2
1

(c)

≤

√
∥V ′∥2∞
γ(1− γ)

1 + 5

√(
1 + εopt +

L′′CS ∥1∥∗
N(1− γ)

) ∥V ′∥∞
(1− γ)2γ2

1

(206)

≤ 6

√(
1 + εopt +

L′′CS ∥1∥∗
N(1− γ)

) ∥V ′∥∞
(1− γ)2γ2

1, (207)

where (a) is the same as (174), (b) holds by repeating the argument of (175), (c) follows by taking1105

N ≥ L′′

(1−γ)2 and then the last inequality holds by ∥V ′∥∞ ≤ ∥V ⋆,σ∥∞ ≤ 1
1−γ . Then taking the1106

infimum over η in the right-hand side of the equation in the definition of V ′ and using sp(.)∞ ≤ ∥.∥∗1107

gives1108

(
I − γP π̂,V̂

)−1√
Var

P π̂,V̂ (V̂ π̂,σ) ≤ 6

√(
1 + εopt +

L′′CS ∥1∥∗
N(1− γ)

) sp(V )∞
(1− γ)2γ2

1

Finally, applying Lemma 5 with P = P̂ 0 and π = π̂ yields1109

sp(V̂ π̂,σ)∗ ≤ 1

γmax{1− γ, γCgσ}
, (208)

for sa-rectangular or1110

sp(V̂ π̂,σ)∗ ≤ 1

γmax{1− γ,mins ∥π̂∥∗ σ̃}

which can be inserted into (207) and gives in sa-rectangular case:1111

(
I − γP π̂,V̂

)−1√
Var

P π̂,V̂ (V̂ π̂,σ) ≤ 6

√√√√ (
1 + εopt +

L′′CS∥1∥∗
N(1−γ)

)
γ3(1− γ)2 max{1− γ, σ}

1

≤ 6

√√√√(1 + εopt +
L′′CS∥1∥∗
N(1−γ)

)
(1− γ)3γ3

1.

where first inequalities comes from that we can bound it Eq. left-hand side of equation (207) by1112

∥V ′∥∞ ≤ ∥V ⋆,σ∥∞ ≤ 1
1−γ . Proof for s-rectangular is similar, but requires adding an extra factor1113

depending on the norm of the current policy and we have:1114

(
I − γP π̂,V̂

)−1√
Var

P π̂,V̂ (V̂ π̂,σ) ≤ 6

√√√√ (
1 + εopt +

L′′CS∥1∥∗
N(1−γ)

)
γ3(1− γ)2 max{1− γ,Cgσ̃mins ∥π̂s∥∞}

1

≤ 6

√√√√(1 + εopt +
L′′CS∥1∥∗
N(1−γ)

)
(1− γ)3γ2

1.
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9.3.7 Proof of Lemma 71115

Observing that each row of Pπ belongs to ∆(S), it can be directly verified that each row of (1 −1116

γ) (I − γPπ)
−1 falls into ∆(S). As a result,1117

(I − γPπ)
−1
√
VarPπ (V

π,P ) =
1

1− γ
(1− γ) (I − γPπ)

−1
√
VarPπ (V

π,P )

(a)

≤ 1

1− γ

√
(1− γ) (I − γPπ)

−1
VarPπ (V

π,P )

=

√
1

1− γ

√√√√ ∞∑
t=0

γt (Pπ)
t
VarPπ (V

π,P ), (209)

where (a) is due to Jensen’s inequality. Then for any η ∈ R+, V ′ := V π,P − η1 for any α solving a1118

dual optimization problem, we can upper bound VarPπ
(V π,P ) :1119

VarPπ
(V π,P )

(i)
= VarPπ

(V ′) = Pπ (V
′ ◦ V ′)−

(
PπV

′) ◦ (PπV
′)

(ii)

≤ Pπ (V
′ ◦ V ′)− 1

γ2
(V ′ − rπ + (1− γ)η1) ◦ (V ′ − rπ + (1− γ)η1)

= Pπ (V
′ ◦ V ′)− 1

γ2
V ′ ◦ V ′ +

2

γ2
V ′ ◦ (rπ − (1− γ)η1)− 1

γ2
(rπ − (1− γ)η1) ◦ (rπ − (1− γ)η1)

≤ Pπ (V
′ ◦ V ′)− 1

γ
V ′ ◦ V ′ +

2

γ2
∥V ′∥∞1 ≤ Pπ (V

′ ◦ V ′)− 1

γ
V ′ ◦ V ′ +

2

γ2
∥V ′∥∞1, (210)

where (i) holds by the fact that VarPπ (V
π,P − b1) = VarPπ ([V

π,P ) for any scalar b and V π,P ∈ RS ,1120

(ii) follows from V ′ ≤ rπ + γPπV
π,P − η1 = rπ − (1 − γ)η1 + γPπV

′, and the last line arises1121

from 1
γ2V

′ ◦ V ′ ≥ 1
γV

′ ◦ V ′ and ∥rπ − (1 − γ)η1∥∞ ≤ 1. for η ∈ [0, 1/(1 − γ)[ Plugging (210)1122

back to (209) leads to1123

(I − γPπ)
−1
√
VarPπ

(V π,P ) ≤
√

1

1− γ

√√√√ ∞∑
t=0

γt (Pπ)
t

(
Pπ (V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′ +

2

γ2
∥V ′∥∞1

)
(i)

≤
√

1

1− γ

√√√√∣∣∣∣ ∞∑
t=0

γt (Pπ)
t

(
Pπ (V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′

) ∣∣∣∣+√ 1

1− γ

√√√√ ∞∑
t=0

γt (Pπ)
t 2

γ2
∥V ′∥∞1

≤
√

1

1− γ

√√√√∣∣∣∣( ∞∑
t=0

γt (Pπ)
t+1 −

∞∑
t=0

γt−1 (Pπ)
t

)
(V ′ ◦ V ′)

∣∣∣∣+
√

2∥V ′∥∞1

γ2(1− γ)2

(ii)

≤

√
∥V ′∥2∞1

γ(1− γ)
+

√
2∥V ′∥∞1

γ2(1− γ)2

≤

√
8∥V ′∥∞1

γ2(1− γ)2
, (211)

(212)

where (i) holds by the triangle inequality, (ii) holds by following recursion, and the last inequality
holds by ∥V ′∥∞ ≤ 1

1−γ . Then taking the minimum over η in the right-hand side of the equation
gives the result.

(I − γPπ)
−1
√

VarPπ (V
π,P ) ≤

√
8sp(V π,P )∞
γ2(1− γ)2

However, we also ∥V ′∥∞ ≤ ∥V π,P ∥∞ ≤ 1
1−γ in (211). So finally, the result is1124

(I − γPπ)
−1
√
VarPπ (V

π,P ) ≤

√
8

γ2(1− γ)2
min{sp([V π,P )∞,

1

1− γ
}1.
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10 Proof of Theorem 21125

In this section, we focus on the scenarios in the uncertainty sets are constructed with (s, a)-1126

rectangularity condition with some general norms. Towards this, we firstly observe that for the1127

two limiting cases ℓ1 norm and ℓ∞ norm, one has ∥p1 − p2∥1 ≤ 2 and ∥p1 − p2∥∞ ≤ 1 for any two1128

probability distribution p1, p2 ∈ RS . Namely, the accessible ranges of the uncertainty level σ for ℓ11129

norm and ℓ∞ norm are (0, 2] and (0, 1], respectively. In addition, we have1130

∀p1, p2 ∈ RS : ∥p1 − p2∥∞ ≤ ∥p1 − p2∥ ≤ ∥p1 − p2∥1 (213)

for any norm ∥ · ∥. It indicates that the accessible range of the uncertainty level σ∥·∥ for any given1131

norm ∥ · ∥ is between
(
0, σmax

∥·∥
]
, where 1 ≤ σmax

∥·∥ ≤ 2.1132

To continue, we specify the definition of the uncertainty set with sa-rectangularity condition with1133

some given general norm ∥ · ∥ as below: for any nominal transition kernel P ∈ RSA×S ,1134

Uσ
∥·∥(P ) := Uσ

∥·∥(P ) = ⊗ Uσ
p (Ps,a), Uσ

∥·∥(Ps,a) :=
{
P ′
s,a ∈ ∆(S) :

∥∥P ′
s,a − Ps,a

∥∥ ≤ σ∥·∥

}
.

(214)

Then, we recall the assumption of the uncertainty radius σ∥·∥ ∈
(
0, σmax

∥·∥ (1− c0)
]

with 0 < c0 < 1.1135

Then, resorting to the same class of hard MDPs in [Shi et al., 2023, Section C.1], we can complete1136

the proof by directly following the same proof pipeline of Shi et al. [2023, Section C] by replacing σ1137

with σmax
∥·∥ σ∥·∥.1138

11 Proof of Theorem 41139

Developing the lower bound for the cases with s-rectangular uncertainty set involves several new1140

challenges compared to that of (s, a)-rectangular cases. Specifically, the first challenge is that the1141

optimal policy can be stochastic and hard to be characterized with a closed form for the RMDPs with1142

a s-rectangular uncertainty set, rather than deterministic polices in (s, a)-rectangular cases. Such1143

richer and smoother class of optimal policies makes slightly changing the transition kernel generally1144

could only leads to a smoothly changed stochastic optimal policy instead of a completely different1145

one. Such reduced changing of optimal policy further gives smaller performance gap, thus challenges1146

of a tighter lower bound. Second, most of the hard instances in the literature are constructed as SA1147

states with a constant number of action spaces without loss of generality. While when it comes to1148

s-rectangular uncertainty set, the action space size becomes important and can’t be assumed as a1149

constant anymore. So a new class of instances are required.1150

To address these challenges, in this section, we construct a new set of hard RMDP instances for two1151

limiting cases: ℓ1 norm and ℓ∞ norm.1152

11.1 Construction of the hard problem instances1153

Before proceeding, we introduce two useful sets related to the state space and action space as below:1154

S = {0, 1, . . . , S}, and A = {0, 1, · · · , A− 1}.

In this section, we construct a set of RMDPs termed as Mℓ∞ , which consists of S(A−1) components1155

including S(A− 1) components, each associates with some different state-action pair. Specifically, it1156

is defined as1157

Mℓ∞ :=
{
Mθ =

(
S,A,Uσ(P θ), r, γ

)
| θ ∈ Θ =

{
(i, j) : (i, j) ∈ S ×A \ {0}

}}
. (215)

We introduce the detailed definition of Mℓ∞ by introducing several key components of it sequentially.1158

In particular, for any RMDP Mθ ∈ Mℓ∞ , the state space is of size 2S, which includes two classes1159

of states X = {x0, x1, · · · , xS−1} and Y = {y0, y1, · · · , yS−1}. The action space for each state is1160

A of A possible actions. So we have totally 2S states and there is in total 2SA state-action pairs.1161
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Armed with the above definitions, we can first introduce the following nominal transition kernel: for1162

all (s, a) ∈ X ∪ Y ×A1163

P (0,0)(s′ | s, a) =


p1(s′ = yi) + (1− p)1(s′ = xi) if s = xi, a = 0, ∀i ∈ S

q1(s′ = yi) + (1− q)1(s′ = xi) if s = xi, a ̸= 0, ∀i ∈ S

1(s′ = s) if s ∈ Y

(216)

Here, p and q are set according to1164

0 ≤ p ≤ 1 and 0 ≤ q = p−∆ (217)

for some p and ∆ > 0 that will be introduced momentarily.1165

Then we introduce the S(A− 1) components inside M∞. Namely, for any (i, j) ∈ S ×A \ {0}, the1166

nominal transition kernel of M(i,j) is specified as1167

P (i,j)(s′ | s, a) =


p1(s′ = yi) + (1− p)1(s′ = xi) if s = xi, a = j

q1(s′ = yi) + (1− q)1(s′ = xi) if s = xi ∈ X , a = 0

P (0,0)(s′ | s, a) otherwise

(218)

In words, the nominal transition kernel of each variant M(i,j) only differs slightly from that of the1168

basic nominal transition kernel P (0,0) when s = xi and a = {0, j}, which makes all the components1169

inside Mℓ∞ closed to each other.1170

In addition, the reward function is defined as1171

∀a ∈ A : r(s, a) =

 1 if s ∈ Y

0 otherwise.
(219)

Uncertainty set of the transition kernels. Recall the following useful notation for any transition1172

probability P , i.e., the transition vector associated with some state s is denoted as:1173

Ps := P (·, · | s) ∈ R1×SA, P 0
s := P 0(·, · | s) ∈ R1×SA. (220)

With this in hand, the uncertainty set (definition in (5)) with ℓ∞ norm for any P θ with θ ∈ Θ can be1174

represented as:1175

U s,σ̃
∞ (P θ

s ) := U s,σ̃
∥.∥(P

θ
s ) =

{
P ′
s ∈ ∆(S)A :

∥∥P ′
s − P θ

s

∥∥ ≤ σ̃ = σ ∥1∥∞ = σ
}
. (221)

So without loss of generality, we set the radius σ ∈ (0, (1− c0)] with 0 < c0 < 1. Before proceeding,1176

we observe that as the uncertainty set above is defined with respect to ℓ∞, it directly implies that for1177

each (s, a) ∈ S ×A, the uncertainty set is independent and can be decomposed as1178

U s,σ̃
∞ (P θ

s ) = ⊗U s,σ̃
∥.∥(P

θ
s,a) =

{
P ′
s,a ∈ ∆(S) :

∥∥P ′
s,a − P θ

s,a

∥∥ ≤ σ
}
. (222)

Notably, this indicates that using s-rectangular uncertainty set with ℓ∞ norm as the divergence1179

function is analogous to the case of using (s, a)-rectangular uncertainty set with ℓ∞ norm. As a1180

result, we follow the pipeline of the prior art Shi et al. [2023, Section C] which established the1181

minimax-optimal lower bound for (s, a)-rectangular RMDPs with TV distance, which is analogous1182

to the ℓ∞ case. Towards this, we set p, q,∆ as the same as the ones in Shi et al. [2023, Section C.1],1183

where we recall the expressions of p, q,∆ for self-contained as below: taking c1 := c0
2 ,1184

p = (1 + c1)max{1− γ, σ} and ∆ ≤ c1 max{1− γ, σ}, (223)

which ensure several facts:1185

0 ≤ p ≤ 1 and p ≥ q ≥ max{1− γ, σ}. (224)
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Value functions and optimal policies. For each RMDP instance Mθ ∈ Mℓ∞ , with some abuse1186

of notation, we denote π⋆
θ as the optimal policy. In addition, let V π,σ

θ (resp. V ⋆,σ
θ ) represent the1187

corresponding robust value function of any policy π (resp. π⋆
θ ) with uncertainty level σ. Armed with1188

these notations, the following lemma shows some essential properties concerning the value functions1189

and optimal policies; the proof is postponed to Appendix 11.3.1190

Lemma 12. Consider any Mθ ∈ Mℓ∞ and any policy π, one has1191

∀(i, j) ∈ Θ : V π,σ
(i,j)(xi) ≤

γ
(
zπ(i,j) − σ

)
(1− γ)

(
1 +

γ
(
zπ
(i,j)

−σ
)

1−γ(1−σ)

)
(1− γ (1− σ))

, (225)

where zπ(i,j) is defined as1192

∀(i, j) ∈ Θ : zπ(i,j) := pπ(j |xi) + q [1− π(j |xi)] . (226)

In addition, the robust optimal value functions and the robust optimal policies satisfy1193

∀(i, j) ∈ Θ, s ∈ X : V ⋆,σ
(i,j)(s) =

γ (p− σ)

(1− γ)
(
1 + γ(p−σ)

1−γ(1−σ)

)
(1− γ (1− σ))

(227)

and1194

π⋆
(i,j)(j |xi) = 1 and π⋆

(i,j)(0 | s) = 1 ∀s ∈ X \ {xi}. (228)

In words, this lemma shows that for any RMDP M(i,j), the optimal policy on state xi satisfies1195

π⋆
(i,j)(j |xi) = 1 and will focus on a = 0 for all other states s ∈ X \ {xi}.1196

11.2 Establishing the minimax lower bound1197

Step 1: converting the goal to estimate (i, j). Now we are in position to derive the lower bound.1198

Recall the goal is to control the following quantity associated with any policy estimator π̂ based on1199

the dataset with in total Nall samples:1200

max
(i,j)∈Θ

P(i,j)

{
max

s∈X∪Y

(
V ⋆,σ
(i,j)(s)− V π̂,σ

(i,j)(s)
)}

≥ max
(i,j)∈Θ

P(i,j)

{
max
s∈X

(
V ⋆,σ
(i,j)(s)− V π̂,σ

(i,j)(s)
)}

.

(229)

To do so, we can invoke a key claim in Shi et al. [2023] here since our problem setting can be reduced1201

to the same one in Shi et al. [2023]: With ε ≤ c1
32(1−γ) , letting1202

∆ = 32(1− γ)max{1− γ, σ}ε ≤ c1 max{1− γ, σ} (230)

which satisfies (223), it leads to that for any policy π̂ and all (i, j) ∈ Θ,1203

V ⋆,σ
(i,j)(xi)− V π̂,σ

(i,j)(xi) ≥ 2ε
(
1− π̂(j |xi)

)
,

∀s ∈ X \ {xi} : V ⋆,σ
(i,j)(s)− V π̂,σ

(i,j)(s) ≥ 2ε
(
1− π̂(0 | s)

)
. (231)

Before continuing, we introduce a useful notation for the subset of Θ excluding the cases with state i1204

is selected:1205

∀i ∈ S : Θ−i = Θ \ {(i′, j) : i′ = i, j ∈ A \ {0}}. (232)

Armed with the above facts and notations, we first suppose there exists a policy π̂ such that for some1206

(i, j) ∈ Θ,1207

P(i,j)

{
V ⋆,σ
(i,j)(xi)− V π̂,σ

(i,j)(xi) ≤ ε
}
≥ 3

4
. (233)

which in view of (231) indicates that we necessarily have π̂(j |xi) ≥ 1
A with probability at least 3

4 .1208
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As a result, taking1209

j′ = argmax
a∈A

π̂(a |xi), (234)

we are motivated to construct the following estimate of θ:1210

θ̂

{
= (i, j′) if j′ > 0

∈ G−w if j′ = 0,
(235)

which satisfies1211

P(i,j)

{
θ̂ = (i, j)

}
≥ P(i,j)

{
j′ = j

}
≥ P(i,j)

{
π̂(j |xi) >

1

A

}
≥ 3

4
. (236)

Step 2: developing the probability of error in testing multiple hypotheses. Before proceeding,1212

we discuss the dataset consisting of in total Nall independent samples. Observing that each RMDP1213

inside the set Mℓ∞ are constructed symmetrically associated with one pair of states (xi, yi) for all1214

i ∈ S and another action j ∈ A × {0}, respectively. Therefore, it is obvious that the dataset is1215

supposed to be generated uniformly on each (xi, yi, j) to maximize the information gain, leading to1216
Nall

S(A−1) samples for any states-action (xi, yi, j) with i ∈ S, j ∈ A \ {0}.1217

Then we are ready to turn to the hypothesis testing problem over (i, j) ∈ Θ. Towards this, we1218

consider the minimax probability of error defined as follows:1219

pe := inf
ϕ

max
(i,j)∈Θ

{
P(i,j)

(
ϕ ̸= (i, j)

)}
, (237)

where the infimum is taken over all possible tests ϕ constructed from the dataset introduced above.1220

To continue, armed with the above dataset with Nall independent samples, we denote µi,j1221

(resp. µi,j(s, a)) as the distribution vector (resp. distribution) of each sample tuple (s, a, s′) un-1222

der the nominal transition kernel P (i,j) associated with M(i,j). With this in mind, combined with1223

Fano’s inequality from Tsybakov [2009, Theorem 2.2] and the additivity of the KL divergence1224

(cf. Tsybakov [2009, Page 85]), we obtain1225

pe ≥ 1−Nall

max
(i,j),(i′,j′)∈Θ,(i,j)̸=(i′,j′)

KL
(
µi,j |µi′,j′

)
+ log 2

log |Θ|
(i)

≥ 1−Nall max
(i,j),(i′,j′)∈Θ,(i,j)̸=(i′,j′)

KL
(
µi,j |µi′,j′

)
− 1

2

=
1

2
−Nall max

(i,j),(i′,j′)∈Θ,(i,j)̸=(i′,j′)
KL
(
µi,j |µi′,j′

)
(238)

where (i) holds by log |Θ| ≥ 2 log 2 as long as S(A− 1) are large enough.1226

Then following the same proof pipeline of Shi et al. [2023, Section C.2], we can arrive at1227

pe ≥
1

2
− Nall

S(A− 1)

4096

c1
(1− γ)2 max{1− γ, σ}ε2 ≥ 1

4
, (239)

if the sample size is selected as1228

Nall ≤
c1S(A− 1)

16396(1− γ)2 max{1− γ, σ}ε2
. (240)

Step 3: summing up the results together. Finally, we suppose that there exists an estimator π̂1229

such that1230

max
(i,j)∈Θ

P(i,j)

[
max

s∈X∪Y

(
V ⋆,σ
(i,j)(s)− V π̂,σ

(i,j)(s)
)
≥ ε

]
<

1

4
, (241)

then according to (229), we necessarily have1231

∀s ∈ X : max
(i,j)∈Θ

P(i,j)

[
V ⋆,σ
(i,j)(s)− V π̂,σ

(i,j)(s) ≥ ε
]
<

1

4
, (242)
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which indicates1232

∀s ∈ X : max
(i,j)∈Θ

P(i,j)

[
V ⋆,σ
(i,j)(s)− V π̂,σ

(i,j)(s) < ε
]
≥ 3

4
. (243)

As a consequence, (236) shows we must have1233

∀(i, j) ∈ Θ : P(i,j)

[
θ̂ = (i, j)

]
≥ 3

4
(244)

to achieve (241). However, this would contract with (239) if the sample size condition in (240) is1234

satisfied. Thus, we complete the proof.1235

11.3 Proof of Lemma 121236

Without loss of generality, we first consider any M(i,j) with (i, j) ∈ S × A \ {0}. Following the1237

same routine of Shi et al. [2023, Section C.3.1], we can verify that the order of the robust value1238

function V π,σ
(i,j) over different states satisfies1239

∀k ∈ S : V π,σ
(i,j)(xk) ≤ V π,σ

(i,j)(yk), (245)

which means the robust value function of the states inside X are always not larger than the corre-1240

sponding states inside Y .1241

Then we denote the minimum of the robust value function over states as below:1242

V π,σ
(i,j),min

:= min
s∈S

V π,σ
(i,j)(s). (246)

In the following arguments, we first take a moment to assume V π,σ
(i,j),min = V π,σ

(i,j)(xi). With this in1243

mind, we arrive at1244

V π,σ
(i,j)(yi) = 1 + γ (1− σ)V π,σ

(i,j)(yi) + γσV π,σ
(i,j),min =

1 + γσV π,σ
(i,j)(xi)

1− γ (1− σ)
. (247)

Then, when we move on to the characterization of the robust value function at state xi. To do so, we1245

notice two important facts:1246

1) The nominal transition probability P
(i,j)
xi,a at state-action pair (xi, a) for any a ∈ A is a1247

Bernoulli distribution (see (218) and (216)). The TV distance and the ℓ∞ norm between1248

two Bernoulli distribution are the same.1249

2) Invoking the definitions of the nominal transition probability in (218) and (216), we have1250

P
(i,j)
xi,j

= p1(s′ = yi) + (1− p)1(s′ = xi)

P (i,j)
xi,a = q1(s′ = yi) + (1− q)1(s′ = xi) ∀a ∈ A \ {j}. (248)

With the above two facts in hand, our problem setting is reduced to the same one in Shi et al. [2023]1251

and can reuse the results in Shi et al. [2023, Section C.3.1] to achieve1252

V π,σ
(i,j)(xi) ≤

γ(zπ
(i,j)−σ)

1−γ(1−σ)

(1− γ)

(
1 +

γ
(
zπ
(i,j)

−σ
)

1−γ(1−σ)

) . (249)

and1253

π⋆
(i,j)(j |xi) = 1

V ⋆,σ
(i,j)(xi) =

γ
(
zπ⋆

(i,j)−σ
)

1−γ(1−σ)

(1− γ)

(
1 +

γ
(
zπ⋆

(i,j)
−σ

)
1−γ(1−σ)

) =

γ(p−σ)
1−γ(1−σ)

(1− γ)
(
1 + γ(p−σ)

1−γ(1−σ)

) . (250)

Analogously, we can verify that for other xk ∈ X \ {xi},1254

π⋆
(i,j)(0 |xk) = 1

V ⋆,σ
(i,j)(xk) =

γ(p−σ)
1−γ(1−σ)

(1− γ)
(
1 + γ(p−σ)

1−γ(1−σ)

) . (251)
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12 DRVI for sa− rectangular algorithm for arbitrary norm1255

In order to compute the fixed point of T̂ σ, distributionally robust value iteration (DRVI), is defined1256

in Algorithm 1. For sa-rectangularity, starting from an initialization Q̂0 = 0, the update rule at the1257

t-th (t ≥ 1) iteration is the following ∀(s, a) ∈ S ×A:1258

Q̂π
t (s, a) = T̂ σQ̂π

t−1(s, a) = r(s, a) + γ inf
P∈U sa,σ

∥.∥ (P̂ 0
s,a)

PV̂t−1, (252)

where V̂t−1(s) = maxπ Q̂
π
t−1(s, a) for all s ∈ S.1259

Directly solving (252) is computationally expensive since it involves optimization over a S-1260

dimensional probability simplex at each iteration, especially when the dimension of the state space S1261

is large. Fortunately, given strong duality (252) can be equivalently solved using its dual problem,1262

which concerns optimizing a two variable (λ and ω) and thus can be solved efficiently. The specific1263

form of the dual problem depends on the choice of the norm ∥.∥, which we shall discuss separately in1264

Appendix 8.3. To complete the description, we output the greedy policy of the final Q-estimate Q̂T1265

as the final policy π̂, namely,1266

∀s ∈ S : π̂(s) = argmax
a

Q̂T (s, a). (253)

Encouragingly, the iterates
{
Q̂t

}
t≥0

of DRV I converge linearly to the fixed point Q̂⋆,σ, owing to1267

the appealing γ-contraction property of T̂ σ .1268

input: empirical nominal transition kernel P̂ 0; reward function r; uncertainty level σ; number of
iterations T .

initialization: Q̂0(s, a) = 0, V̂0(s) = 0 for all (s, a) ∈ S ×A.
for t = 1, 2, ..., T do

for s ∈ S, a ∈ A do
Set Q̂t(s, a) according to (252);

end
for s ∈ S do

Set V̂t(s) = maxa Q̂t(s, a);
end

end
output: Q̂T , V̂T and π̂ obeying π̂(s) := argmaxa Q̂T (s, a).
Algorithm 1: Distributionally robust value iteration (DRV I) for infinite-horizon RMDPs for
sa-rectangular for arbitrary norm

Using Algorithm 1, it allows getting an ϵopt error in the empirical MDP in the sa-rectangular case. In1269

the s-rectangular case, finding an algorithm to get ϵopt is more difficult to use, as the policy is not1270

deterministic anymore and 1 cannot anymore be applied. For Lp norms, Clavier et al. [2023] derived1271

an algorithm but for arbitrary norm we need to consider a more general problem for arbitrary norm in1272

Appendix 121273
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• The answer NA means that the abstract and introduction do not include the claims1281
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