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4 Université Paris Nanterre
{orso.forghieri, erwan.le-pennec}@polytechnique.edu, hind.castel@telecom-sudparis.eu, emmanuel.hyon@parisnanterre.fr

Abstract

High dimensionality of model-based Reinforcement Learn-
ing and Markov Decision Processes can be reduced using
abstractions of the state and action spaces. Although hierar-
chical learning and state abstraction methods have been ex-
plored over the past decades, explicit methods to build useful
abstractions of models are rarely provided. In this work, we
provide a new state abstraction method for solving infinite
horizon problems in the discounted and total settings. Our
approach is to progressively disaggregate abstract regions by
iteratively slicing aggregations of states relatively to a value
function. The distinguishing feature of our method, in con-
trast to previous approximations of the Bellman operator, is
the disaggregation of regions during value function iterations
(or policy evaluation steps). The objective is to find a more
efficient aggregation that reduces the error on each piece of
the partition. We provide a proof of convergence for this al-
gorithm without making any assumptions about the structure
of the problem. We also show that this process decreases the
computational complexity of the Bellman operator iteration
and provides useful abstractions. We then plug this state space
disaggregation process in classical Dynamic Programming
algorithms, namely Approximate Value Iteration, Q-Value It-
eration and Policy Iteration. Finally, we conduct a numeri-
cal comparison, which shows that our algorithm is faster than
both traditional dynamic programming approach and recent
aggregative methods that use a fixed number of partitions.

Introduction
The Markov Decision Process (MDP) serves as a compre-
hensive framework for addressing stochastic dynamic con-
trol problems. Within this framework, the environment un-
dergoes stochastic evolution, influenced by the actions of
an agent. The primary objective is to optimize expected
gains through strategic decision-making (Puterman 2014).
The global objective is to identify the optimal sequence of
actions, referred to as a policy, that maximizes the overall re-
turn. This pursuit extends to a diverse array of problem do-
mains, as highlighted in a recent overview (Boucherie and
van Dijk 2017). These encompass challenges in inventory
control, energy management, network optimization involv-
ing queues, and navigating stochastic shortest paths in robot

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

exploration. Achieving near-optimal control is crucial, ne-
cessitating precise solutions to address these problems.

Regarding the MDP state and action spaces, most model-
based methods suffers from high dimensionality and re-
quires decomposition techniques. To this end, the State Ab-
straction approach aims to cluster the original state space
while minimizing the information loss. The partition prob-
lem remains an open complex combinatorics challenge. In
this context, we introduce a class of iterative aggregation al-
gorithms for solving infinite horizon problems with both ex-
pected discounted and total criteria. Our approach integrates
state abstraction with Approximate Value Iteration (AVI),
Q-Value, and Policy Iteration (PI) algorithms. Our work fo-
cuses on spatial abstraction, not only solving the exact pro-
cess using aggregation but also introducing a novel method
for building abstractions with bounded error.A key innova-
tion is the progressive disaggregation along iteration steps,
grouping states with similar evolution under the Bellman op-
erator application and enhancing algorithm efficiency. We
provide a convergence proof without structural assumptions,
showcasing reduced computational complexity and valuable
abstractions. Numerical comparisons across various models
highlight our algorithm’s superiority in the MDP literature,
especially against other abstraction methods.

The structure of the article unfolds as follows: we first
establish a connection between approximate Bellman opera-
tors with State Aggregation and the optimal Bellman opera-
tor of the abstract MDP. Subsequently, we articulate a bound
on error to optimal value function contingent on the quality
of the aggregation employed and then introduce our algo-
rithms. Lastly, we assess the efficacy of our method through
benchmarking on classical models, showcasing its efficiency
in comparison to alternative approaches.

Related Works Dealing with large spaces is a well-
documented challenge in the MDP framework. To over-
come this, various strategies decompose complex MDPs
into more manageable counterparts. Notably, Factored
MDPs (Guestrin et al. 2003) represent states as dynamic fea-
ture vectors and use Dynamic Bayesian Networks for com-
pact representation and efficient computation. Another re-
cent approach, Reduced-Rank MDPs (Siddiqi et al. 2010),
expresses transition probabilities as scalar products of con-
tinuous functions, offering an effective dimensionality re-



duction technique. A general and promising method for
MDP approximation is the hierarchical approach (Hengst
2012), which considers either temporal abstractions for ac-
tions persisting over time (Sutton, Precup, and Singh 1999),
or state abstractions by aggregating states into meaningful
regions (Li, Walsh, and Littman 2006), enhancing efficiency
in handling complex MDPs. Considering Partially Observ-
able MDPs, Point-based Value Iteration (Pineau et al. 2003)
uses one state to represent a given region. Monte-Carlo Tree
Search (Coulom 2006) rely on a model-based local pol-
icy optimization, but will suffer from a state abstraction
that loose the tree structure of the actions. Moreover, most
policy-based approaches are geared towards Deep Learning
methods using policy gradient. They are efficient in practice,
but rarely ensure guarantees on quadratic or sup-norm error.

The challenge of state aggregation in Reinforcement
Learning (RL) involves effectively grouping states while en-
suring the quality of the abstraction. In Model-Based RL,
spatial aggregation methods range from metric-relative ap-
proaches to deep learned representations, as comprehen-
sively reviewed by Starre et al. (2022). The selection of
merging criteria is crucial, with various approaches pro-
posed in the literature. These include bisimulation for state
grouping (Dean and Givan 1997), soft aggregation tech-
niques where states have probabilities of belonging to an ag-
gregated region (Singh et al. 1995), metric-based grouping
(Abel et al. 2016) or limiting the number of regions (Ferrer-
Mestres et al. 2020). Evaluating the quality of aggregation
typically involves leveraging results from approximated dy-
namic programming and stochastic optimization (Tsitsiklis
and Van Roy 1996; Abel 2019). Additionally, literature ex-
plores planning on a fixed aggregation (Gopalan et al. 2017),
although such approaches often require information that is
not available before addressing the original MDP.

Several techniques have been proposed to construct ab-
stractions without relying on information about the optimal
solution of MDPs (Bean et al. 1987; Rogers et al. 1991). No-
tably, the approach pioneered by Bertsekas, Castanon et al.
(1988) introduced aggregation based on the Bellman Resid-
ual, contributing significantly to the acceleration of opti-
mization processes. Recent works have emphasized the use
of options in approximating MDPs for efficient planning.
For instance, Ciosek and Silver (2015) and Abel et al. (2020)
incorporate options into state abstractions to expedite plan-
ning processes. Jothimurugan et al. (2021) propose identi-
fying relevant subgoals to accelerate planning by temporal
abstraction. However, these techniques often increase com-
putational complexity. In contrast, Chen et al. (2022) ap-
ply aggregation to Value Iteration (VI) to speed up com-
putations by grouping states with similar values. While this
approach improves computational speed, it does not fully
leverage spatial MDP structure. Our method addresses this
gap by maintaining previous aggregations, resulting in a
more effective grouping of states with similar optimal values
and trajectories through optimal Bellman operator iteration.
Tagorti et al. (2013) further demonstrate the significance of
aggregation, but highlight the challenge of refining aggre-
gation without worsening the distance to the optimal value
function.

Problem Setup
Our approach is grounded in MDPs, a well-documented
field. We clarify notations, outline Dynamic Programming
methods for model resolution, and integrate recent advance-
ments in State Abstraction and Approximate Dynamic Pro-
gramming.

Markov Decision Processes MDPs provide a framework
for decision-making optimization (Puterman 2014). For-
mally, a finite MDP is specified as a tuple ⟨S,A, T,R, γ⟩,
where S is the set of possible states, A is the set of actions
that the agent can select, T (s, a, s′) ∈ [0, 1] is the environ-
ment transition probability from s to s′ under action a and
R (s, a) ∈ R describes the reward received by the agent in
s triggering action a. Finally, we consider bounded rewards
and a discount factor γ ∈ (0, 1] to weight the incoming re-
ward priority.

The objective is to maximize the expected sum of dis-
counted immediate rewards in the upcoming trajectory of
states for an infinite horizon. The researched solution is a
deterministic policy π : S 7→ A that can decide which ac-
tion to select when in state s ∈ S.

For a given policy π, it is thus possible to define the value
function that gives a value to each state. It is defined as the
expected return applying the policy π and we have ∀s ∈ S:

V π(s) = E
st+1∼T (st,at,·)

[ ∞∑
t=0

γtR (st, π(st)) |s0 = s

]
.

The planning problem is centered on maximizing the ex-
pected return. In our setting, it exists a non necessarily
unique policy π∗ such that V π∗

(s) = maxπ V
π(s) simul-

taneously for all states s. It is worth noting that the optimal
value function V π∗

(denoted as V ∗) is the unique solution
to the optimal Bellman Equation

V (s) = max
a∈A

(
R (s, a) + γ

∑
s′∈S

T (s, a, s′) · V (s′)

)
,

(1)
for all s ∈ S (Puterman 2014). Along this article, we denote
by (T ∗V ) (s) the right term of Equation (1).

Dynamic Programming Any value function can be com-
puted recursively. Hence, for a given policy π ∈ AS , we
consider here the Bellman operator

T π : V ∈ RS 7→ Rπ + γTπ · V ∈ RS .

with Rπ(s) = R (s, π(s)) and Tπ(s, s′) = T (s, π(s), s′).
This Bellman operator updates any value function V rela-
tively to the reward and transition functions. It is a contrac-
tion for the sup-norm and its iteration can lead to a value
function solution of the Bellman equation V = T πV . One
also considers the optimal Bellman operator T ∗ defined by
Equation (1).

So far, we have considered the state value function V , but
a similar analysis can be conducted for the state-action value
function Q defined by

Qπ(s, a) = E
(st,at)t

[ ∞∑
t=0

γtR (st, π(st)) |s0 = s, a0 = a

]
.



The optimal Bellman operator in the Q-value case exists and
is defined as

T ∗
Q : Q ∈ RS×A → R+ γT ·max

a∈A
(Q) ∈ RS×A .

The practical solving of a MDP, can be done either by
maximizing the expected return V π for any state or by min-
imizing the Bellman residual namely ∥V − T ∗V ∥∞. The
Dynamic Programming methods generally aim to decrease
the Bellman residual. In the VI algorithm (respectively Q-
VI), one iterates the contracting optimal Bellman operator to
approximate the fixed point solution of the optimal Bellman
equation V ∗ = T ∗V ∗ (respectively Q∗ = T ∗

QQ∗) (Puter-
man 2014). PI algorithm alternates between finding the so-
lution to V = T πV and updating the current policy π ac-
cording to

πt+1(s)← argmax
a∈A

(
R (s, a) + γ

∑
s′∈S

T (s, a, s′)V πt(s′)

)
.

State Abstraction The concept of constructing a new
MDP through state aggregation has been explored in
the literature, particularly in the examination of abstract
MDPs (Li, Walsh, and Littman 2006). This involves consid-
ering a ground MDP, denoted as MG = ⟨S,A, T,R, γ⟩,
and creating a new abstract MDP, denoted as MA =
⟨SA,A, TA, RA, γ⟩, from it. We first define State Aggrega-
tion.

Definition 1 (State aggregation). LetMG be an MDP and
S =

⊔K
k=1 Sk a partition of the state space. Let us assume

we give a weight ωk(s) to each state of a region Sk rel-
atively to the other states of this region Sk. The weights
ωk are positive and sum to 1 on each region. Moreover, if
s /∈ Sk, ωk(s) = 0. We finally store the weights into a ma-
trix ω ∈ [0, 1]K×|S| and the state-region correspondence in
a matrix ϕ such that ϕ[s, k] = 1s∈Sk

. It is now possible to
define a state aggregation by the tuple ((Sk)1≤k≤K , ϕ, ω).

When all states of a region are equally weighted, ω can
be computed as follows: ωk(s) =

1
|Sk| which corresponds to

ω =
(
ϕT · ϕ

)−1 · ϕT (Bertsekas, Castanon et al. 1988). Let
us note that the following analysis can also be done in the
general case of unequally weighted states. From now, the
State Abstraction simply consists in building a new MDP
from this aggregation.

Definition 2 (Abstract MDP, (Li, Walsh, and Littman
2006)). LetMG be an MDP and ((Sk)1≤k≤K , ϕ, ω) a state
aggregation. We represent each region Sk by an abstract
state sk. The abstract MDP MA can be therefore defined
by SA = {sk, 1 ≤ k ≤ K}, AA = A, TA = ω · T · ϕ and
RA = ω ·R.

The interest of State Abstraction is to reduce the size of
the original MDP gathering state with similar properties like
a close optimal value, a close optimal policy or a close op-
timal Q-value (Abel et al. 2016). It can be used to approxi-
mate the ground optimal policy, but also to highlight a struc-
ture in the ground MDP.

Approximate Dynamic Programming While Dynamic
Programming involves applying an operator to enhance the
current solution, Approximate Dynamic Programming fo-
cuses on updating an approximated version of the value
function (Powell 2007). In our context, we adopt the linear
parameterization

Vθ(s) =

K∑
k=1

θk1s∈Sk
,

with (Sk)1≤k≤K a state aggregation. Those value functions
are constant over each region Sk. The approximate Bellman
operator relative to this family of functions (denoted ΠT ∗)
is made of the optimal Bellman operator and a projection
matrix Π that averages the value on each region to obtain a
piecewise constant value function.
Definition 3 (Projected optimal Bellman operator (Tsitsiklis
and Van Roy 1996)). Let us note P the set of value func-
tion that are piecewise constant relatively to (Sk)k. Then,
the operator ΠT ∗ that checks

∀V ∈ RS , ΠT ∗V ∈ argmin
V ′∈P

∥V ′ − T ∗V ∥2

is the projected optimal Bellman operator ΠT ∗ = ϕ ·ω · T ∗

where ϕ and ω are described in Definition 1.
In the following sections, we will consider each of the

projected Bellman operators ΠT ∗, ΠT ∗
Q and ΠT π for any

policy π with Π = ϕ · ω.

Projected Bellman Operators and State
Abstraction

In what follows, we describe the relationship between the
projected Bellman operators and State Abstraction. We first
prove that a projected Bellman operator is exactly the Bell-
man operator of a smaller abstract MDP. As we want to im-
plement those operators, we evaluate theirs complexities and
compare it to the optimal Bellman operator T ∗.

Projected Bellman Equations and Abstract MDP We
are now interested in the unique solution of each of the equa-
tions Q = ΠT ∗

QQ and V = ΠT πV . We will namely prove
that those projected equations are the Bellman equations for
the associated abstract MDP. Let us note that it does not gen-
eralize to the equation V = ΠT ∗V . Indeed, as Q and V π

contain action information through Q and π, any value func-
tion solution to Ṽ = ΠT Ṽ is not necessarily associated with
a piecewise constant policy. The solution of V = ΠT ∗V is
therefore not necessarily the optimal value function of the
abstract MDP.

It is now interesting to note that value functions that are
solutions of these equations Q = ΠT ∗

QQ and V = ΠT πV
are piecewise constant. Indeed, the operator Π makes the
function being constant over the regions Sk. We are there-
fore adopting the following notations. Let Ṽ ∈ RS be a
piecewise constant value function relatively to a partition
(Sk)1≤k≤K . The entries of Ṽ are in a way redundant: for
any state s ∈ Sk, Ṽ (s) has the same value. We therefore
build a contracted representation V ∈ RK which contains a



single value for each region: ∀s ∈ Sk, Ṽ (s) = V(k). This
new value function V can be a value function to the asso-
ciated abstract MDP. Moreover, it is possible to switch be-
tween Ṽ and V using the relations Ṽ = ϕ ·V and V = ω · Ṽ .
We use similar notations for the Q-value: Q̃ and Q.

In the following proposition, we suggest that the solution
to Q = ΠT ∗

QQ is also the optimal Q-value function of the
abstract MDP.
Proposition 1. Let ((Sk)k, ϕ, ω) be an aggregation of the
state space. Let Q̃ = ϕ · Q be the unique solution to the
Q-projected optimal Bellman equation Q = ΠT ∗

QQ. Then
Q is the optimal Q-value function of the abstract MDPMA

described in Definition 2.
The proof simply consists in establishing that the equation

Q = ΠT ∗
QQ can be written as the optimal Bellman equation

Q = T ∗
QQ for the abstract MDP.

Proof. Let Q̃ = ϕ ·Q be the unique solution to Q = ΠT ∗
QQ.

Let Q∗
A be the optimal Q-value of the abstract MDP MA.

Let us show that those Q-values are the solution to the same
equation. The equation Q̃ = ΠT ∗

QQ̃ can be written:

Q̃ = ΠT ∗
QQ̃

⇐⇒ ϕ · Q = ϕ · ω · T ∗
Q (ϕ · Q)

⇐⇒ Q = ω · T ∗
Q (ϕ · Q)

⇐⇒ Q = ω ·R+ γω · T · ϕ ·max
a∈A

(Q)

⇐⇒ Q = RA + γTA ·max
a∈A

(Q) .

which is precisely the optimal Bellman equation for the ab-
stract MDPMA. As the solution to each of the equation is
unique, we can conclude that Q = Q∗

A.

As Abel et al. (2016), we focus here on an arbitrary policy
πA defined on the abstract state space SA. We define its gen-
eralization πG to the ground state space S, by the piecewise
constant policy given by:

π(s) = πA(sk) , ∀s ∈ Sk , ∀k ∈ J1 ; KK.

Proposition 1 has an equivalent for the T π operator. Hence,
in Proposition 2, we state that the value of any abstract pol-
icy Ṽ πA is the solution of a projected Bellman equation
Ṽ πA = ΠT πA Ṽ πA at the ground level.
Proposition 2. Let ((Sk)k, ϕ, ω) be an aggregation of the
state space. Let πA : SA 7→ A be an arbitrary policy and
πG : S 7→ A its generalization to the ground state space S.
Then, the value of this policy on the abstract MDP VπA is
the solution of the following projected Bellman equation

ϕ · VπA = ΠT πG (ϕ · VπA) .

The proof still relies on the unicity of the solution of a
fixed-point equality.

Proof. In the following, we prove the equivalence of the
equations

Ṽ = ΠT πG Ṽ and V = T πAV

which suffices to conclude on the proposition.

Ṽ = ΠT πG Ṽ ⇐⇒ ϕ · V = ΠT πG (ϕ · V)

⇐⇒ ϕ · V = ϕ · ω · (RπG + γ · TπG · ϕ · V)

⇐⇒ V = ω ·RπG + γ · ω · TπG · ϕ · V
⇐⇒ V = RπA

A + γ · TπA

A V ⇐⇒ V = T πAV

Those equivalences imply the wanted equality and therefore
on the property.

As we proved here that the solution of the projected Bell-
man equation is the optimal value function of an abstract
MDP, we now study the complexity of iterating a projected
Bellman operator.

Iterations of Projected Bellman Operators In this part,
we prove the convergence of any sequence of value func-
tions (or Q value function) on which we iterate any projected
Bellman operator.

Proposition 3. 1. Let Q0 ∈ RS×A be an arbitrary Q-value
function and let the iteration Qt+1 ← ΠT ∗

QQt be. Then
the series (Qt)t∈N converges to the unique solution to the
projected optimal Bellman equation Q = ΠT ∗

QQ.

2. Let π ∈ AS be an arbitrary policy. Let V0 ∈ RS be any
value function, and let the iteration Vt+1 ← ΠT πVt be.
Then (Vt) converges to the unique solution to the pro-
jected Bellman equation V = ΠT πV.

Bertsekas (2018) proved the contraction property of the
operator ΠT ∗. We generalize it to ΠT ∗

Q and ΠT π for any
policy π to prove Proposition 3.

Proposition 4. The operators ΠT ∗
Q and ΠT π for any policy

π are contracting.

Proof. The proof relies on the contraction induced by the
Bellman operator and on the following inequality true for
any T ∈ {T ∗

Q , T π}:

∥ϕ · ω · (T V − T V ′) ∥∞ ≤ ∥T V − T V ′∥∞
as ϕ simply repeats the entries in any vector V ∈ RS . This
property can be applied to ΠT ∗

Q and ΠT π for any policy π
to conclude the proof.

From now on, iterating any of the operator T ∗, ΠT ∗,
ΠT ∗

Q or ΠT π makes any value function converge to a unique
piecewise constant final value function. In the following, we
will be interested in the complexity of the computation of the
solution of the projected Bellman equation and will propose
a bound on the error to the optimal value function depending
on the specific aggregation and on the current value.

Projected Operator Complexity Now, we will consider
the complexity of computing the projected Bellman opera-
tors ΠT ∗, ΠT ∗

Q and ΠT πG for any piecewise constant policy
πG.

Proposition 5. The complexity of the computation of the
projected Bellman operators ΠT ∗

Q and ΠT πG for any piece-
wise constant policy πG are respectively O(K3 |A|) and
O(K3).



Proof. As ΠT ∗
Q and ΠT πG can be viewed as the Bellman

operators T ∗
Q and T πA , then theirs complexities can be com-

puted from the abstract MDP point of view. We therefore
deduce it from the matrix computations

T ∗
Q (Q) = RA + γ · TA ·max

a∈A
(Q)

and
T πA (V) = RπA

A + γ · TπA

A · V
knowing that the complexity of the product M · N , with
M ∈ Rl×m, and N ∈ Rm×n is equal to l ·m · n.

We consider now the computation complexity of the pro-
jected optimal Bellman operator ΠT ∗ that we will iterate.

Proposition 6. For any piecewise constant value func-
tion Ṽ , the number of operations to compute ΠT ∗Ṽ is
O(|S|2 K |A|).

Proof. Considering

ΠT ∗ (ϕ · V) = ϕ · ωmax
a∈A

(R+ γ · T · ϕ · V)

the precomputation of the matrix product T ·ϕ ∈ R|S|×A×K

allows the matrix product (T · ϕ) ·V to have a complexity of
O(|S|2 K |A|).

The complexities of O(|S|2 K |A|) for ΠT ∗, O(K3 |A|)
for ΠT ∗

Q , and O(K3) for ΠT π are much smaller than the
O(|S|3 |A|) complexity for T ∗. Having established that
computing projected operators is more straightforward than
traditional ones, we introduce an algorithm to systematically
disaggregate regions into smaller ones, facilitating the evo-
lution of a piecewise constant value function.

Progressive Disaggregation Process
In this section, we first establish a bound between a given
piecewise constant value function and the optimal value
function of any MDP. This bound depends on the aggrega-
tion quality (i.e. the capacity to aggregate states with the
same value function) and the projected Bellman residual
Ṽ − ΠT Ṽ but does not use the optimal value function.
We then provide the Progressive Disaggregation algorithm
which is based on this bound: we iteratively improve the ag-
gregation quality (reducing one term of the bound of Theo-
rem 1) and decrease the projected Bellman residual by ap-
plying the projected Bellman operator.

Theorem 1 (Optimal Error Bound with Arbitrary Partition).
Let Ṽ ∈ RS be any piecewise constant value function. Its
distance to the optimal value function V ∗ can be bounded
as follows:

∥Ṽ − V ∗∥∞ ≤
1

1− γ
max

1≤k≤K
SpanSk

(
T ∗Ṽ

)
+

1

1− γ
∥Ṽ −ΠT ∗Ṽ ∥∞ ,

(2)

where SpanSk
(V ) := maxs∈Sk

V (s)−mins∈Sk
V (s).

Proof. We mainly use the classical inequality:

∀V ∈ RS , ∥V − V ∗∥∞ ≤
1

1− γ
∥V − T ∗V ∥∞

and also the following one:

∀V ∈ RS , ∥V −ΠV ∥∞ ≤ max
1≤k≤K

SpanSk
(V ) .

Concatenating inequalities, we get:

∥V ∗ − Ṽ ∥∞ ≤
1

1− γ
∥Ṽ − T ∗Ṽ ∥∞

≤ 1

1− γ

(
∥ΠT ∗Ṽ − T ∗Ṽ ∥∞ + ∥Ṽ −ΠT ∗Ṽ ∥∞

)
≤ 1

1− γ

(
max

1≤k≤K
SpanSk

(
T ∗Ṽ

)
+ ∥Ṽ −ΠT ∗Ṽ ∥∞

)

We furthermore note that max1≤k≤K SpanSk

(
T ∗Ṽ

)
measures how much the aggregation groups states having
the same value and that ∥Ṽ − ΠT ∗Ṽ ∥∞ estimates the op-
timality of the current piecewise value function relatively to
the projected Bellman operator. Let us note that the quantity
∥Ṽ −ΠT ∗Ṽ ∥∞ can be arbitrarily reduced iterating ΠT ∗ as
the operator ΠT ∗ contracts space with a factor γ.
Corollary 1. Inequality 2 can also be formulated using
ΠT ∗

Q and ΠT πG for any piecewise constant policy πG.
We therefore propose an algorithm with initialization

Ṽ0 = (0)s∈S and a unique region S1 = S. We then iter-
ate the two following steps successively:

• Apply ΠT ∗ until ∥Ṽ −ΠT ∗Ṽ ∥∞ is smaller than ϵ

• Compute Vt+1 := T ∗Vt. Divide each region until
maxs∈Sk

Vt+1−mins∈Sk
Vt+1 is smaller than ϵ for each

region k ∈ J1 ; KK.
When applying this process, we separate states having dif-

ferent trajectories through value iteration. Moreover, note
that the ΠT ∗ operator changes at each region division step.
The goal is also to take advantage of the time savings from
the projected Bellman operator application compared to the
optimal ground one.

Proposed Algorithms
In this section, we provide the pseudocode for the algorithm
that we described previously. We give its adaptation to Q-
Value Iteration and Modified Policy Iteration. We then prove
the convergence of the algorithm and lead a complexity anal-
ysis to conclude on its performance condition.

Formulation In Algorithm 1, we describe the Progressive
Disaggregation Value Iteration (PDVI) process. It can be
summarized into “While the bound of the Theorem 1 is not
lower than ϵ, alternate between dividing heterogeneous re-
gions and updating the piecewise constant value function
Ṽ ”. To fully benefit from the disaggregation process, it is



Algorithm 1: Progressive Disaggregation Value Iteration
Input:M = ⟨S,A, T,R, γ⟩, ϵ > 0
Output: A value V , an aggregation (Sk)k of the state space

1: K := 1, S1 := S, V0 := (0)1≤k≤K

2: while

∥Vt −ΠT ∗Vt∥∞ + max
1≤k≤K

SpanSk
(T ∗Vt) > 2ϵ

do
3: Vt+1 := T ∗ (ϕ · Vt)
4: if max1≤k≤K SpanSk

(Vt+1) > ϵ then
5: (Sk)k = UpdateRegion(k, Vk, (Sk)k, ϵ)
6: end if
7: while ∥Vt −ΠT ∗Vt∥∞ > ϵ do
8: Vt+1 ← ΠT ∗Vt
9: end while

10: end while
11: return (V, (Sk)k)

Algorithm 2: UpdateRegions
Input: V , (Sk)k, ϵ
Output: Updated partition (S′

k)k
1: for l ∈ J1 ; KK do
2: if SpanSl

(V ) > ϵ then
3: (Sk)k := (Sk)k\Sl

4: for p ∈ J0 ; ⌈ 1ϵ (maxV|Sl
−minV|Sl

)⌉K do
5: Ip :=

[
minV|Sl

+ p.ϵ,minV|Sl
+ (p+ 1).ϵ

]
6: Sp := {s ∈ Sl, V (s) ∈ Ip}
7: if Sp ̸= ∅ then
8: (Sk)k := (Sk)k ⊔ Sp

9: end if
10: end for
11: end if
12: end for
13: return Updated partition {Sk}

possible to implement the UpdateRegion function ensuring
a O(|S|) complexity.

As this algorithm consists in iterating ΠT ∗ and dividing
regions along T ∗V , we generalize it to the Q-value pro-
cess by applying ΠT ∗

Q and divide the regions along T ∗
QQ̃.

We name this new algorithm Progressive Disaggregation Q-
Value Iteration (PDQVI). In the region division step, we en-
sure for any region k

SpanSk

(
T ∗
QQ̃
)
:= max

Sk×A
T ∗
QQ̃− min

Sk×A
T ∗
QQ̃ ≤ ϵ.

Moreover, PDQVI provides a state abstraction gathering
states with close optimal Q-value.

We also propose a policy-based algorithm named Pro-
gressive Disaggregation Policy Iteration (PDPI) based on
Modified Policy Iteration (MPI). In MPI, we start from an
arbitrary given policy. We then iteratively evaluate its value
function V π (being the solution of V π = T πV π) and up-
date the policy using V π . In PDPI, we changed the Policy
Evaluation part into a disaggregation process, progressively

dividing regions and evaluating the solution of V = ΠT πV
at the same time.

Convergence Property In this part, we state a guarantee
of convergence for PDVI, PDQVI and PDPI and character-
ize the aggregation provided by the algorithms.

Proposition 7 (Convergence Guarantee for PDVI). Let
(V, (Sk)k) denote the value and the abstraction computed
by PDVI. Then, the following properties hold.

1. Algorithm 1 finishes in a finite number of steps.
2. The distance to optimal value function checks:

∥ϕ · V− V ∗∥∞ ≤
2ϵ

1− γ

where the precision ϵ is an input of the algorithm. More-
over, for any region k ∈ J1 ; KK,

∀s, s′ ∈ Sk, |V ∗(s)− V ∗(s′)| ≤ 4ϵ

1− γ
.

We stated here that PDVI converges with an accuracy sim-
ilar to VI and aggregates states having close optimal values.

Proof. 1. At first, let us prove that Algorithm 1 stops within
|S|+ 1 steps by contradiction. Let us assume that

∥Vt −ΠT ∗Vt∥∞ + max
1≤k≤K

SpanSk
(T ∗Vt) > 2ϵ

after |S| + 2 steps. As at the end of each step
t ∈ J0 ; |S| + 2K, ∥Vt − ΠT ∗Vt∥∞ ≤ ϵ
(due to the lines 7-9 condition), then it follows that
max1≤k≤K SpanSk

(T ∗Vt) > ϵ as the while condition
is not fulfilled. We therefore deduce that for each of the
steps t ∈ J1 ; |S| + 1K, a disaggregation step has oc-
curred. Given that for each disaggregation step, the num-
ber of regions strictly increases, we deduce that at step
t = |S| + 1, the state aggregation is made of |S| + 1 re-
gions which is impossible. We then conclude on the finite
number of step of PDVI.

2. The final precision condition

∥ϕ · V− V ∗∥∞ ≤
2ϵ

1− γ

is ensured by the while loop condition and Theorem 1.
Finally, let us show that the regions (Sk)k group states
having close optimal value. Let k ∈ J1 ; KK be any re-
gion and s, s′ ∈ Sk be states. We observe that

|V ∗(s)− V ∗(s′)|

≤
∣∣∣V ∗(s)− Ṽ (s)

∣∣∣+ ∣∣∣Ṽ (s)− V ∗(s′)
∣∣∣

=
∣∣∣V ∗(s)− Ṽ (s)

∣∣∣+ ∣∣∣Ṽ (s′)− V ∗(s′)
∣∣∣ ≤ 4ϵ

1− γ

Second step comes from Ṽ (s) = Ṽ (s′) as s and s′ are in
the same region. The last inequality can be stated using
the final precision of the algorithm.



We also mention that PDQVI aggregates states having
close optimal Q-value and PDPI also groups states having
close optimal value V ∗. Both converge and provide optimal
Q-value and optimal policies following the same steps for
the proof. We add that the proof of the policy-based disag-
gregation algorithm convergence contains some subtlety and
precise that we keep the value function V π from one policy
evaluation to the next one. We finally state that PDPI still
converges in the expected total-reward criterion (γ = 1).
This convergence result can only be checked with the as-
sumption R ≥ 0 as we use the convergence properties of
PIM in the expected total-reward case (Puterman 2014).

Complexity Analysis
We provide here a complexity analysis for PDVI, PDQVI
and PDPI and see that the worst-case complexity of those
algorithms can be higher than the traditional ones. This
characterization will also explain why our disaggregation
method can be outperformed by traditional ones on some
specific models that we identify. Hence, to prove the bounds,
one considers an unichain model (Puterman 2014).

Proposition 8 (Disaggregation Algorithm Complexity). Let
us assume that any VI-like algorithm takes n steps to reach
an ϵ-close optimal value. To reach an ϵ-optimal value func-
tion, our algorithms require the following number of opera-
tions.

Algorithm PDVI PDQVI PDPI

Operations O(n |S|4 |A|) O(n |S|4 |A|) O(n |S|4)

Proof. Let us evaluate the complexity of PDV I . We first
claim that there exists a model for which solving with this
algorithm requires a maximum number of disaggregation
steps (|S| steps). For each visited aggregation, we then count
the operations necessary to approximate the solution of the
projected optimal Bellman equation Ṽ = ΠT ∗Ṽ . Finally,
we sum the operations required at each visited aggregation
to deduce the overall computational complexity.

Let us consider an unichain model made of |S| states, as-
suming the exit is on the first state s0. The PDVI process
initially distinguishes the exit from others states ({s0} ⊔
{s1 · · · , s|S|}) and then discovers the immediately con-
nected states ({s0}⊔{s1}⊔{s2 · · · , s|S|}) and so on, which
results in |S| disaggregation steps.

Considering the execution of |S| iterations of the ΠT ∗

operator and according to Proposition 6, each iteration of
ΠT ∗ takes O(K |S|2 |A|) operations. We assume it takes
n operations to approximate the solution of the projected
optimal Bellman equation Ṽ = ΠT ∗Ṽ with an accuracy ϵ.
The total number of operations through the |S| iterations can
be estimated as O(|S| 2 |A|

∑|S|
K=1 K) = O(|S|4 |A|).

The same kind of argument allows evaluating the com-
plexity of Progressive Disaggregation Q-Value Iteration and
Progressive Disaggregation Policy Iteration.

Let us note that Value Iteration algorithm takes at most
O(n |S|3 |A|) operations (Feinberg and He 2020) and Pol-
icy Iteration requires O(|S|3) (Littman, Dean, and Kael-
bling 1995). We obviously lose in complexity during disag-
gregation in some specific cases that we detailed here. Nev-
ertheless, we claim (based on numerical experiments per-
formed later) that these worst-case bounds are not reached
in practice, and that the average complexity of our algorithm
is much better.

Numerical Results
We conducted a benchmark of our approach on three scal-
able models. We compared PDVI, PDQVI and PDPI to
usual VI, Modified PI, as well as Bertsekas’ approach (Bert-
sekas, Castanon et al. 1988) and Chen’s Adaptive Aggre-
gation (Chen et al. 2022)1. These two methods leverage
aggregation-disaggregation processes to accelerate dynamic
programming updates. However, unlike our approach, they
do not gather information on the MDP throughout the pro-
cess. Our comparison with a diverse set of solving methods
shows that our disaggregation algorithms outperform other
methods on most of the models.

We selected configurable models with variable state space
and action space sizes. We evaluated MDPs on a randomly
generated transition matrix, a toy model (four rooms), and a
real-life problem. The Random MDPs are commonly used in
the literature to benchmark solvers (Archibald, McKinnon,
and Thomas 1995; Bhatnagar et al. 2009). The Four Rooms
model is a stochastic shortest path model (Hengst 2012; Sut-
ton and Barto 2018) that we scaled to explore the state space
size impact. Finally, we faced a real-life queue management
situation with scalable servers and queue sizes (Ohno and
Ichiki 1987; Tournaire et al. 2022) already used for bench-
mark (Puterman 2014).

We ran our experiments on one thread of a CPU Intel
Xeon @ 3.00GHz, using Python with numpy and scipy
with at most 16GB of RAM. As Chen Adaptive Aggrega-
tion method was behind the other value-based method by at
least a factor 2, we did not keep it in the numerical results.

Random Models Our slicing strategy gave its best on ran-
dom models. We drew random distributions T (s, a, .) on S
for any (s, a) ∈ S × A. We also build R with random co-
efficients in [0, 1]. We set |S| = 500 and |A| = 50 and
a variable proportion of nonzero entries (named density) in
the transition matrix. As the density of the transition matrix
impacted the most the optimal value function shape, we set
a maximum of diversity in this parameter going from 1%
(almost empty matrix) to 65% (two over three pairs of state
are connected by a nonzero transition) of nonzero entries.
As shown in Table 1, our disaggregation methods demon-
strate their advantages for both value and policy-based ap-
proaches. Small transition matrices densities induce inde-
pendent states while higher densities of T smooth the op-
timal value function.

1The code is available at https://github.com/OrsoF/state space
disaggregation.git



Density VI PDVI PDQVI MPI PDPI Bertsekas

1% 113.3± 1.0 6.6± 0.5 8.0± 0.4 3.0± 1.25 1.09± 0.23 2.8± 0.6
10% 300.3± 10.9 7.5± 0.1 15.2± 0.3 1.65± 0.46 1.57± 0.45 2.5± 0.3
25% 751.7± 16.0 6.2± 0.6 24.1± 0.8 1.17± 0.08 0.72± 0.11 1.5± 0.4
45% 1397.7± 23.7 7.6± 1.3 36.3± 1.7 1.83± 0.32 0.61± 0.21 2.0± 0.2
65% 1915.4± 54.2 6.7± 0.4 50.3± 3.6 2.86± 1.03 1.57± 0.74 3.3± 0.7

Table 1: Random MDPs mean solving time (s). S = 500, A = 50, γ = 0.99, ε = 10−2, 10 experiments.

|S| VI PDVI PDQVI MPI PDPI Bertsekas

8100 12.1± 0.5 8.0± 1.3 15.3± 0.7 1442.5± 39.2 267.5± 5.6 1626.1± 13.4
12544 41.5± 0.8 18.8± 1.8 35.3± 1.6 4211.0± 63.1 994.7± 6.3 3577.2± 14.8

Table 2: Tandem Queues model mean solving time (s). |S| ∈ {8100, 12544}, |A| = 3, γ = 0.99, ε = 10−2, 10 experiments.

|S| VI PDVI PDQVI MPI PDPI Bertsekas

36 2.72± 0.0 7.46± 0.4 103.28± 0.7 2± 1 1± 0.1 1± 0.5
100 3.63± 0.1 6.77± 1.7 267.63± 2.6 18± 3 2± 0.7 19± 0.9
196 3.57± 0.4 9.25± 2.7 276.04± 2.5 29± 4 3± 0.4 29± 0.9
324 10.25± 0.8 14.16± 5.0 456.31± 7.9 47± 7 10± 1.2 47± 0.6

Table 3: Four Rooms model mean solving time (s). |S| ∈ {36, 100, 196, 324}, |A| = 4, γ = 0.999, ε = 10−3, 10 experiments.

Real Model We considered tandem queues management
inspired from a real-world server operation (Ohno and Ichiki
1987). Here, the agent scales two servers relatively to the
load of two tandem queues with parallel servers. There are 3
actions (add, keep or remove a server) for each queue, which
gives 9 actions in total. We could scale here the size of the
queue and the size of the server to adjust the state space
dimension. We present the results for |S| ∈ {8100, 12544}.
According to common hypothesis in this domain, we chose
a queue size (15 and 16) greater than the server size (6 and
7) inspired by Tournaire et al. (2022).

In the results shown in Table 2, the disaggregation method
still outperforms MPI, VI, and Bertsekas’ approach. This
model is particularly quickly solved by value-based meth-
ods, and the PDVI process benefits from region updates in-
stead of updates on single states.

Classical Model We finally considered the grid model
four rooms (Hengst 2012). It is made of four rooms (5 × 5
states for each) with doors connecting adjacent rooms. The
goal is to reach a given square and each action (N , S, E or
W ) leads to the adjacent state with a probability .8 (if it is ac-
cessible) and otherwise leads to stay in the same state. When
reaching the exit, the agent returns to the starting room. We
scaled the model size in order to make it more complex.
The model is very sparse with a density of 2/ |S|, which
implies a sparsity of at least 98% for our instance. The slic-
ing algorithm performs better as the state space dimension
increases for the policy-based version. We increased the dis-
count factor up to 0.999 and the final precision to 10−3 so
that the value-based methods are outperformed by policy-
based ones. The results are shown in Table 3. Note that
the partition found by our method gathers states which are
equidistant from the exit.

Conclusion
Approaching the exact MDP solution remains a question
that deeply depends on the problem structure. In this con-
text, we present an approximation method that combines
State Abstraction and aggregation methods to accelerate tra-
ditional dynamic programming algorithms.

We focused on three main aspects. Initially, we estab-
lished a robust connection between the projected Bellman
operator and the abstract MDP’s Bellman operator, extend-
ing it to the Q-value case and introducing a policy-based
version. Following that, we presented a bound on the dis-
tance to the optimal value function based on a given state ab-
straction, leading to a progressive disaggregation process to
refine state partitions. Our algorithm tests demonstrated the
effectiveness of this approach, particularly in solving MDPs
with dense transition matrices. Compared to Modified Pol-
icy Iteration and other Adaptive Aggregation methods, the
policy-based approach significantly outperformed in solving
realistic MDP instances with well-known models.

However, further testing on MDP instances is needed. Al-
gorithmic improvements should be implemented to switch
to dynamic programming when partitioning is inefficient.
Tailoring our approach specifically to challenges akin to the
shortest path problem is crucial. Taking inspiration from the
approximation of Tsitsiklis and Castañon, this method could
also be combined with progressive disaggregation process.
Future work should also investigate generalizations to the
model-free Reinforcement Learning problem, incorporating
not only state grouping but also the approximation of the
state space using Deep Learning methods.
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