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Abstract

We study the sample complexity of obtaining an ǫ-optimal policy in Robust discounted Markov
Decision Processes (RMDPs), given only access to a generative model of the nominal kernel. This problem
is widely studied in the non-robust case, but results are much more scarce in the robust case. For sa- (resp

s-) rectangular uncertainty sets, until recently the best-known sample complexity was Õ(H
4|S|2|A|

ǫ2
) (resp.

Õ(H
4|S|2|A|2

ǫ2
)), when the uncertainty set is based on the total variation (TV), the KL or the Chi-square

divergences. Here, we consider uncertainty sets defined with an Lp-ball (recovering the TV case), and
study the sample complexity of any planning algorithm (with high accuracy guarantee on the solution)
applied to an empirical RMDP estimated using the generative model. In the general case, we prove

a sample complexity of Õ(H
4|S||A|

ǫ2
) for both the sa- and s-rectangular cases (improvements of |S| and

|S||A| respectively). When the size of the uncertainty is small enough, we improve the sample complexity

to Õ(H
3|S||A|

ǫ2
), recovering the lower-bound for the non-robust case for the first time and a robust lower-

bound. Finally, we also introduce simple and efficient algorithms for solving the studied Lp-RMDPs.

1 Introduction

Reinforcement learning (RL) (Sutton and Barto, 2018), often modelled as learning and decision-making in a
Markov decision process (MDP), has attracted increasing interest in recent years due to its remarkable suc-
cess in practice. A major goal of RL is to find a strategy or policy, based on a collection of data samples, that
can predict the expected cumulative rewards in an MDP, without direct access to a detailed description of the
underlying model. However, Mannor et al. (2004) showed that the policy and the value function could some-
times be sensitive to estimation errors of the reward and transition probabilities, meaning that a very small
perturbation of the reward and transition probabilities could lead to a significant change in the value function.

Robust MDPs (Iyengar, 2005; Nilim and El Ghaoui, 2005) (RMDPs) have been proposed to handle these
problems by letting the transition probability vary in an uncertainty (or ambiguity) set. In this way, the
solution of robust MDPs is less sensitive to model estimation errors with a properly chosen uncertainty set.
An RMDP problem is usually formulated as a max-min problem, where the objective is to find the policy that
maximises the value function for the worst possible model that lies within an uncertainty set around a nominal
model. Initially, RMPDs (Iyengar, 2005; Nilim and El Ghaoui, 2005) were developed because the solution of
MDPs can be very sensitive to the model parameters (Zhao et al., 2019; Packer et al., 2018). However, as the
solution of robust MDPs is NP-hard for general uncertainty sets (Nilim and El Ghaoui, 2005), the uncertainty
set is usually assumed to be rectangular (meaning that it can be decomposed as a product of uncertainty sets
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for each state or state-action pair), which allows tractability (Iyengar, 2005; Ho et al., 2021). These two kinds
of sets are called respectively s- and sa-rectangular sets. A fundamental difference between them is that the
greedy and optimal policy in sa-rectangular robust MDPs is deterministic, as in non-robust MDPs, but can
be stochastic in the s-rectangular case (Wiesemann et al., 2013). Compared to sa-rectangular robust MDPs,
s-rectangular robust MDPs are less restrictive but much more difficult to handle. Under this rectangularity
assumption, many structural properties of MDPs remain intact (Iyengar, 2005) and methods such as robust
value iteration, robust modified policy iteration, or partial robust policy iteration (Ho et al., 2021) can be
used to solve them. It is also known that the uncertainty in the reward can be easily handled, while handling
uncertainty in the transition kernel is much more difficult (Kumar et al., 2022; Derman et al., 2021).

In this work, we consider robust MDPs, with both sa- and s-rectangular uncertainty sets, consisting of
Lp-balls centred around the nominal model P0. We assume access to a generative model, which can sample a
next state from any state-action pair from the nominal model. The question we address is to know how many
samples are required to compute an ǫ-optimal policy. This classic abstraction, which allows studying the
sample complexity of planning over a long horizon, is widely studied in the non-robust setting Singh and Yee
(1994); Sidford et al. (2018); Azar et al. (2013); Agarwal et al. (2020); Li et al. (2020); Kozuno et al. (2022),
but much less in the robust setting (Yang et al., 2021; Panaganti and Kalathil, 2022; Shi and Chi, 2022;
Xu et al., 2023; Shi et al., 2023). We consider more specifically model-based robust RL. We call the genera-
tive model the same number of times for each state-action pair, to build a maximum likelihood estimate of
the nominal model, and use any planning algorithm for robust MDPs (with high accuracy guarantee on the
solution) on this empirical model. This setting will be discussed further later, but we insist right away that
it is especially meaningful in the robust setting, as an abstraction of sim-to-real. The research question we
address is: How many samples are required for guaranteeing an ǫ-optimal policy with high probability?

Our first contribution is to prove that for both s and sa-rectangular sets based on Lp-balls, the sample

complexity of the proposed approach is Õ(H
4|S||A|
ǫ2 ), with H = (1 − γ)−1 being the horizon term. Previous

works (Yang et al., 2021; Panaganti and Kalathil, 2022; Shi and Chi, 2022; Xu et al., 2023) study different
sets, based on the Kullback-Leibler (KL) divergence, Chi-square divergence, and total variation (TV). We
have the TV in common (L1-ball up to a normalizing factor), and, in this case, we improve these existing
results by |S| for the sa-rectangular case, and by |S||A| for the s-rectangular case, which is significant for large
state-action spaces. On the technical side, our results build heavily upon the dual view of robust Bellman
operators (Derman et al., 2021; Kumar et al., 2022). However, we deviate from this line of work by enforcing
the uncertainty set to belong to the simplex. This allows ensuring that the robust operators are not overly
conservative while ensuring they are γ-contractions, which is important for the theoretical analysis. On the
negative side, the algorithms they introduce are no longer applicable, which calls for new algorithmic design.

Our second contribution is to show that, if the uncertainty set is small enough, then we have a sample

complexity of Õ(H
3|S||A|
ǫ2 ). This is a further improvement by H of the previous bound, and it matches the

known lower bound for the non-robust case (Azar et al., 2013). On the technical side, it again builds upon
the dual view of robust Bellman operators with the deviation mentioned above. In addition to that, it adapts
two proof techniques of the non-robust case: The total variance technique of Azar et al. (2013) to reduce
the dependency to the horizon, and the absorbing MDP construction of Agarwal et al. (2020) to allow for a
wider range of valid ǫ.

As mentioned earlier, the algorithms of Derman et al. (2021); Kumar et al. (2022) are not applicable to
the more realistic uncertainty sets we consider. Our third contribution is an algorithm DRVI LP (see Alg.
1, 2): for Distributionally Robust Value Iteration for LP in sa− and s-rectangular case that solves exactly
RMDPs in the case of valid robust transitions that belong to the simplex, contrary to Kumar et al. (2022).
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2 Related Work

The question of sample complexity when having access to a generative model has been widely studied in the
non-robust setting (Singh and Yee, 1994; Sidford et al., 2018; Azar et al., 2013; Agarwal et al., 2020; Li et al.,
2020; Kozuno et al., 2022). Notably, Azar et al. (2013) provide a lower-bound of this sample complexity,

Ω̃( |S||A|H3

ǫ2 ), and show that (tabular) model-based RL reaches this lower-bound, making it minimax optimal
(up to polylog factors). This bound relies on the so-called total variance technique, that we adapt to the
robust setting. However, their result is only true for small enough ǫ, in the range (0,

√
H/|S|). This was

later improved to (0,
√
H) by Agarwal et al. (2020), thanks to a novel absorbing MDP construction, that we

also adapt to the robust setting.
Closer to our contributions are the works that study the sample complexity in the robust setting

(Yang et al., 2021; Panaganti and Kalathil, 2022; Xu et al., 2023; Shi and Chi, 2022). The study of sam-
ple complexity of specific algorithms (respectively either empirical robust value or Robust Phased Value
Learning) is studied by Panaganti and Kalathil (2022); Xu et al. (2023), while our results apply to any or-
acle planning (applied to the empirical model), as long as it provides a solution with enough accuracy. We
consider both s- and sa-rectangular uncertainty sets, as Yang et al. (2021), while Panaganti and Kalathil
(2022); Xu et al. (2023); Shi and Chi (2022) only consider the simpler sa-rectangular sets. They all study
either TV, KL or Chi-square balls, while we study Lp-balls. Shi and Chi (2022) improved the KL bound
compared to Yang et al. (2021); Panaganti and Kalathil (2022) in the sa rectangular case. The framework
of Xu et al. (2023) is slightly different as they consider finite horizon which adds a factor H in all bounds.
All previous results are not minimax optimal in terms of the horizon factor.

We rely more specifically on a reformulation of the minimisation problem over models as a much simpler
scalar optimisation dual expression. Note that even if the KL and Chi-square cases can also be written as a
simple scalar optimisation problem Panaganti and Kalathil (2022), our proof can not be adapted directly to
this setting. However, we have in common with Yang et al. (2021); Panaganti and Kalathil (2022) the total
variation case, which corresponds to a (scaled) L1-ball. For this case, we can compare our sample complexi-
ties. Without assumption on the size of the uncertainty set, we improve the existing sample complexities by
|S| and |S||A| respectively (for sa- or s-rectangularity). Also, our bounds have no dependency on the size
of the uncertainty set. Notice that as we consider a generic oracle planning algorithm, our bounds apply to
the algorithms of Panaganti and Kalathil (2022); Xu et al. (2023). If we further assume that the uncertainty
set is small enough, then we improve the bound by an additional H factor, reaching the minimax sample
complexity of the non-robust case. Table 1 summarizes the difference in sample complexity, and we’ll discuss
them again after stating our theorems.

Finally, the archival version of this contribution predates the concurrent work of Shi et al. (2023) that
studies the sample complexity of RMDPs for TV and χ2 divergence. In the very specific case of sa- rectan-
gular for TV which in this case coincides with L1 norm, Shi et al. (2023) retrieves our upper bound which
is minimax optimal in the regime where the radius of the uncertainty set is small and improves our result
in the regime where the radius of the uncertainty set is bigger than 1 − γ. However, our results hold more
generally for the s-rectangular case, and are still state-of-the-art for s-rectangular case with p ≥ 1 and for
sa−rectangular with p > 1. Notice also that the proof techniques are very different, and it is an interesting
research direction to know if their bound for the large radius regime or their lower-bound would extend to
the more general case studied here.

3 Preliminaries

For finite sets S and A, we write respectively |S| and |A| their cardinality. We write ∆A := {p : A → R |
p(a) ≥ 0,

∑
a∈A p(a) = 1} the simplex over A. For v ∈ R

S the classic Lq norm is ‖v‖qq =
∑

s v(s)
q . For the

conditional distribution π ∈ ∆S
A, we define the π-weighted Lq norm ‖u‖qq,π :=

∑
s |
∑

a π(a|s)u(s, a)|q, with

3



Table 1: Sample Complexity of TV for s- or sa rectangular with β (see Def 3.2) the radius of uncertainty
set (see also Tab. 2 in the appendix for a complete table with different norms)

Panaganti and Kalathil
(2022)

Yang et al. (2021) Our β ≥ 0 Our 1/(2Hγ) > β > 0 Shi et al. (2023)

sa-
rect.

Õ
(

|S|2|A|H4

ǫ2

)

Õ
(

|S|2|A|H4(2+β)2

ǫ2β2

)

Õ
(

|S||A|H4

ǫ2

)

Õ
(

|S||A|H3

ǫ2

)

Õ
(

|S||A|H2

ǫ2 min(1/H,β)

)

s-rect. × Õ
(

|S|2|A|2H4(2+β)2

ǫ2β2

)

Õ
(

|S||A|H4

ǫ2

)

Õ
(

|S||A|H3

ǫ2

)

×

u ∈ R
S×A. Finally, we denote Õ the O notation up to the logarithm factor.

3.1 Markov Decision Process

A Markov Decision Process (MDP) is defined by M = (S,A, P,R, γ, µ) where S and A are the finite state
and action spaces, P : S×A → ∆S is the transition kernel, R : S×A → [0, 1] is the reward function, µ ∈ ∆S
is the initial distribution over states and γ ∈ [0, 1) is the discount factor. A stationary policy π : S → ∆A
maps states to probability distributions over actions. We write Ps,a the vector P (·|s, a). We also define P π to
be the transition matrix on state-action pairs induced by a policy π: P π

(s,a),(s′,a′) = P (s′|s, a)π(a′|s′). Slightly
abusing notations, for V ∈ R

S , we define the vector VarP (V ) ∈ R
S×A as VarP (V )(s, a) := VarP (·|s,a)(V ),

so that VarP (V ) = P (V )2 − (PV )2 (with the square understood component-wise). Usually, the goal is to
estimate the value function defined as: V π

P,R(s) := E [
∑∞

n=0 γ
nR (sn, an) | s0 = s, π, P ] . The value function

V π
P,R for policy π, is the fixed point of the Bellmen operator TP,R, defined as T π

P,RV (s) =
∑

a π(a|s)[R(s, a)+

γ
∑

s′ P (s′|s, a)V (s′)]. We also define the optimal Bellman operator: T ∗
P,RV (s) = maxπs∈∆A

(
T πs

P,RV
)
(s).

Both optimal and classical Bellman operators are γ-contractions Sutton and Barto (2018). This is why
sequences {V π

n | n ≥ 0}, and {V ∗
n | n ≥ 0}, defined as V π

n+1 := T π
P,RV

π
n and V ∗

n+1 := T ∗
P,RV

∗
n , converge linearly

to V π
P,R and V ∗

P,R, respectively the value function following π and the optimal value function. Finally, we

can define the Q-function, Qπ
P,R(s, a) := E [

∑∞
n=0 γ

nR (sn, an) | s0 = s, a0 = a, π, P ] . The value function and
Q-function are linked with the relation V π

P,R(s) = 〈(πs, Q
π
P,R(s)〉A. With these notations, we can define

Q-functions for transition probability transition P following policy π by

Qπ
P,R = R+ γPV π

P,R = R+ γP πQπ
P,R = (I − γP π)−1 R.

3.2 Robust Markov Decision Process

Once classical MDPs defined, we can define robust (optimal) Bellman operators T π
U and T ∗

U ,

T π
U (s) := min

R,P∈U

(
T π
P,RV

)
(s),

(T ∗
U V ) (s) := max

πs∈∆A
min

R,P∈U

(
T πs

P,RV
)
(s),

where P and R belong to the uncertainty set U . The optimal robust Bellman operator T ∗
U and robust Bellman

operator T π
U are γ-contraction maps for any policy π (Iyengar, 2005, Thm. 3.2) if the uncertainty set U is a

subset of ∆s so that the transition kernel is valid. Finally, for any initial values V π
0 , V ∗

0 , sequences defined
as V π

n+1 := T π
U V π

n and V ∗
n+1 := T ∗

U V
∗
n converge linearly to their respective fixed points, that is V π

n → V π
U and

V ∗
n → V ∗

U . This makes robust value iteration an attractive method for solving robust MDPs. In order to
obtain tractable forms of RMDPs, one has to make assumptions about the uncertainty sets and give them
a rectangularity structure (Iyengar, 2005). In the following, we will use an Lp norm as the distance between
distributions. The s- and sa-rectangular assumptions can be defined as follows, with R0 and P0 being called
the nominal reward and kernel.
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Assumption 3.1. (sa-rectangularity) We define sa-rectangular Lp-constrained uncertainty set as

Usa
p := (R0 +R)× (P0 + P) ,R = ×s∈S,a∈ARs,a,P = ×s∈S,a∈APs,a,Rs,a = {rs,a ∈ R | |rs,a| ≤ αs,a}

Ps,a = {Ps,a : S → R |
∑

s′
Ps,a(s

′) = 0, P0 + Ps,a ≥ 0, ‖Ps,a‖p ≤ βs,a}

Assumption 3.2. (s-rectangularity) We define s-rectangular Lp-constrained uncertainty set as

Us

p = (R0 +R)× (P0 + P) ,P = ×s∈SPs,R = ×s∈SRs, Rs =
{

rs : A → R | ‖rs‖p ≤ αs

}

Ps = {Ps : S × A → R |
∑

s′
Ps(s

′, a) = 0, Ps(.a) + P0 ≥ 0, ‖Ps‖p ≤ βs}

We write β = sups,a βs,a for sa-rectangular assumptions or β = sups βs for s-rectangular assumptions
and with the same manner α = sups,a αs,a. Moreover, we write P ∈ P0,s,a for P = P0,s,a + P ′ with

P ′ ∈ Ps,a and P ∈ P0,s for P = P π
0,s +P ′ with P ′ ∈ Ps, P

π
0,s(s

′) =
∑

a π(a|s)P0,s,a(s
′) ∈ R

S . The conditions∑
s′ Ps(s

′, a) = 0, Ps(.a) + P0 ≥ 0 or
∑

s′ Ps,a(s) = 0, Ps,a(s
′) + P0 ≥ 0 ensure that the robust kernel is in

the simplex. In comparison to sa-rectangular robust MDPs, s-rectangular robust MDPs are less restrictive
but much more difficult to deal with. Using rectangular assumptions and constraints defined with Lp-balls,
it is possible to derive simple dual forms for the (optimal) robust Bellman operators for the minimization
problem that involves the seminorm defined below:

Definition 3.1 (Span seminorm (Puterman, 1990)). Let q be such that it satisfies the Holder’s equality, i.e.
1
p + 1

q = 1. Let span-seminorm function spq : S → R and q-mean function ωq : S → R be defined as

spq(v) := min
ω∈R

‖v − ω1‖q, ωq(v) := argmin
ω∈R

‖v − ω1‖q.

One can think of those span-seminorms as semi-mean-centered-norms. These quantities represent the
dispersion of a distribution around its mean, and there are no order relations for this type of object. Semi-
norms appear in the (non-robust) RL community for others reasons (Puterman, 1990; Scherrer, 2013). For
p =1, 2 and ∞, closed form can be derived, corresponding to median, variance and range. This is not the
case for arbitrary p but span-seminorms can be efficiently computed in practice, see Kumar et al. (2022).
Once span-seminorms defined, we introduced the dual of the inner minimisation problem.

Lemma 3.3 (Duality for sa rectangular case with Lp norm). For any V ∈ R
S , P0,s,a = P0(.|s, a) ∈ R

S and
µ ∈ R

S

min
P∈P0,s,a

PV = max
µ≥0

P0,s,a(V − µ)− βs,aspq(V − µ) = max
α∈[Vmin,Vmax]

P0,s,a[V ]α − βs,aspq([V ]α).

with [V ]α(s) := α if V (s) > α and V (s) otherwise, and Vmin, Vmax respectively the minimum and the
maximum value taken by V.

Lemma 3.4 (Duality for s rectangular case.). Consider the probability kernel P π
0,s = ΠπP0,s,a ∈ R

s with

Ππ the projection matrix associated with a policy π such that P π
0,s(s

′) =
∑

a π(a|s)P0,s,a(s
′) ∈ R

S. For any

V ∈ R
S :

min
P∈P0,s

PV = max
µ≥0

P π
0,s(V − µ)− βs ‖πs‖q spq(V − µ) = max

α∈[Vmin,Vmax]

(
P π
0,s[V ]α − βs ‖πs‖q spq([V ]α)

)

Proofs car be found in Appendix B.5 ,B.6. These results allow computing robust value and Q-functions.
Close to our work, Derman et al. (2021); Kumar et al. (2022) also consider Lp-norms but do not assume
that robust kernel belongs to the simplex. In that sense, their formulation is a relaxation of the framework
of RMPDs. Using this relaxation, closed forms of robust Bellman operator can be obtained, see Kumar et al.
(2022, Thm. 1). In our work, we assume a valid transition kernel in the simplex (Ps,a ≥ 0 or Ps ≥ 0 for
respectively sa− or s− rectangular cases), leading to a dual form that has no closed form but which is a
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simple scalar optimisation problem. A complete discussion can be found in Appendix A.2. Finally, we denote
robust Q function for sa− and s− rectangular respectively Qπ

sa and Qπ
s and we define them from robust

value function V π
sa, V

π
s as :

V π
s (s) =

∑

a

π(a|s)Qπ
s (s, a), V

π
sa(s) =

∑

a

π(a|s)Qπ
sa(s, a)

Lemma 3.5. For sa− and s− rectangular,

Qπ
sa(s, a) = r

(s,a)
Qπ

sa
+ γP0,s,aV

π
sa, Q

π
s (s, a) = rsQπ

s
+ γP0,s,aV

π
s

with r
(s,a)
Qπ

sa
= R0(s, a)− αs,a + γ min

P∈Ps,a

PV π
sar

s
Qπ

s
= R0(s, a)−

( πs(a)

‖πs‖q

)q−1

αs + γ min
Pπ∈Ps

P πV π
s

Robust Q functions and dual forms of the robust Bellman operators will be central to our analysis of
the sample complexity of model-based robust RL. They allow improving the bound by a factor |S| or |S||A|
compared to existing results (Sec. 4). With additional technical subtleties, adapted from the non-robust
setting, and assuming the uncertainty set is small enough, they even allow improving the bound by a factor
|S|H or |S||A|H (Sec. 5).

3.3 Generative Model Framework

We consider the setting where we have access to a generative model, or sampler, that gives us samples
s′ ∼ P0(· | s, a), from the nominal model and from arbitrary state-action couples. Suppose we call our

sampler N times on each state-action pair (s, a). Let P̂ be our empirical model, the maximum likelihood

estimate of P0, P̂ (s′ | s, a) = Ps,a(s
′) = count(s′,s,a)

N , where count(s′, s, a) represents the number of times the

state-action pair (s, a) transitions to state s′. Moreover, we define M̂ as the empirical RMDP identical to

the original M except that it uses P̂ instead of P0 for the transition kernel. We denote by V̂ π and Q̂π the
value functions of a policy π in M̂ , and π̂⋆, Q̂⋆ and V̂ ⋆ denote the optimal policy and its value functions in
M̂ . It is assumed that the reward function R0 is known and deterministic and therefore exactly identical in
M and M̂ . Moreover, we write P ∈ P̂s,a for P = P̂s,a + P ′ with P ′ ∈ Ps,a and P ∈ P̂s for P = P̂s

π
+ P ′

with P ′ ∈ Ps, P̂s
π
(s′) =

∑
a π(a|s)P̂s,a(s

′) ∈ R
S .

Notice that our analysis would easily account for an estimated reward (the hard part being handling the
estimated transition model). This generative model framework, when we can only sample from the nominal
kernel, is classic and appears for both non-robust and robust MDPs (Agarwal et al., 2020; Panaganti et al.,
2022; Azar et al., 2013; Xu et al., 2023). In the robust case, it is especially relevant as an abstraction of
“sim-to-real”, the simulator giving access to the nominal kernel for learning a robust policy to be deployed
in the real world (assumed to belong to the uncertainty set).

The question of how to solve RMDPs and the related computational complexity are complementary, but
different from Theorems 4.1and 5.1. Indeed, an important point that differentiates us from Panaganti and Kalathil
(2022) is the use of a robust optimisation oracle. In (model-based) sample complexity analysis, the goal is

to determine the smallest sample size N such that a planner executed in M̂ yields a near-optimal policy
in the RMDP M . In order to decouple the statistical and computational aspects of planning with respect
to an approximate model M̂ , we will use an optimisation oracle that takes as input an (empirical) RMDP
and returns a policy π̂ that satisfies ‖Q̂∗ − Q̂π̂‖∞ ≤ ǫopt. Our final bound will depend on ǫ, the error made
from finite sample complexity, and ǫopt . In practice, the error ǫopt is typically decreasing at a linear speed
of γk at the kth iteration of the algorithm, as in classical MDPs because (optimal) Bellman operators are
γ-contraction in both classic and robust settings when the robust kernel belongs to the simplex.

The computational cost of RMDPs is addressed by Iyengar (2005) but not in the Lp case. Kumar et al.
(2022) address this question, using the regularised form of robust MDPs obtained with relaxed hypothesis on
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the kernel (See Appendix A.2). The conclusions of the latter are that Lp robust MDPs are computationally
as easy as non-robust MDPs for regularised forms, at least for some choices of p for their relaxation. However,
in their analysis, the use of γ-contraction of the Robust Bellman Operator is needed, whereas it does not
hold for sufficiently large β. Indeed, assuming robust kernel is not anymore in the simplex, Robust Bellman
Operator is not anymore a γ-contraction but an ǫ−contraction for ǫ close to 1 and only for a small range of
β, see Derman et al. (2021, Thm. 5.1). We address the question of solving RMPDs in the Lp case with a
valid robust kernel in Alg. 1 and 2, as a possible approach to ensure an ǫops solution in our analysis.

4 First Sample Complexity

The aim here is to obtain a general upper-bound on the sample complexity of RMDPs. This result is true
for sa- and s-rectangular sets and for any Lp norm with p ≥ 1.

Theorem 4.1. Assume δ > 0, ǫ > 0 and β > 0. Let π̂ be any ǫopt -optimal policy for M̂ , i.e. ‖Q̂π̂−Q̂⋆‖∞ ≤
ǫopt . With N calls to the sampler per state-action pair, such that N ≥ Cγ2 log(|S‖A|(1−γ)−1δ−1)

(1−γ)4ǫ2 , we obtain

the following guarantee for policy π̂,
∥∥Q∗ −Qπ̂

∥∥
∞ ≤ ǫ + ǫopt with probability at least 1 − δ, where C is

an absolute constant. Finally, for Ntotal = N |S||A| and H = 1/(1 − γ), we get an overall complexity of

Ntotal = Õ
(

H4|S||A|
ǫ2

)
.

4.1 Discussion

This result says that the policy π̂ computed by the planner on the empirical RMDP M̂ will be (ǫopt + ǫ)-
optimal in the original RMDP M . As explained before, there exists planning algorithms for RMDPs that
guarantee arbitrary small ǫopt, such as robust value iteration considered by Panaganti and Kalathil (2022)
or our algorithm 1 and 2. It will also apply to future planners, as long as they come with a convergence
guarantee. The error term ǫ is controlled by the number of samples: Ntot = Õ(H4|S||A|ǫ−2) calls to the
generative models allow guaranteeing an error ǫ. This is a gain in terms of sample complexity of |S| compared
to Panaganti and Kalathil (2022), for the sa-rectangular assumption. Our bound also holds for both s- and
sa-rectangular uncertainty sets. Panaganti et al. (2022) do not study the s-rectangular case, while Yang et al.
(2021) do, but have a worst dependency to |A| in this case. Their bounds also have additional dependencies on
the size of the uncertainty set, which we do not have. We recall that we do not cover the same cases, we do not
analyse the KL and Chi-Square robust set, while they do not analyse the Lp robust set for p > 1. However, the
above comparison holds for the total variation case that we have in common (p = 1). These bounds are clearly
stated in Table 1. In the non-robust setting, Azar et al. (2013) show that there exist MDPs where the sample

complexity is at least Ω̃
(

H3|A||S|
ǫ2

)
. Section 5 gives a new upper-bound inH3 which matches this lower-bound

for non-robust MDPs with an extra condition on the range of β (the uncertainty set should be small enough).

4.2 Sketch of Proof

This first proof is the simpler one, it relies notably on Hoeffding’s concentration arguments. We provide
a sketch, the full proof can be found in Appendix B. The resulting bound is not optimal in terms of the
horizon H , but it also does not impose any condition on the range of ǫ or β, contrary to the (better) bound
of Sec. 5. We would like to bound the supremum norm of the difference between the optimal Q-function
and the one of the policy computed by the planner in the empirical RMDP, according to the true RMDP,
‖Q∗ − Qπ̂‖∞. Using a simple decomposition and the fact that π∗ is not optimal in the empirical RMDP
(Q̂π∗ ≤ Q̂∗ = Q̂π̂∗

), we have that

Q∗ −Qπ̂ = Q∗ − Q̂∗ + Q̂∗ − Q̂π̂ + Q̂π̂ −Qπ̂.

As Q∗ − Q̂∗ ≤ Q∗ − Q̂π∗
, a triangle inequality yields

‖Q∗ −Qπ̂‖∞ ≤ ‖Q∗ − Q̂π∗‖∞ + ‖Q̂∗ − Q̂π̂‖∞ + ‖Q̂π̂ −Qπ̂‖∞.
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The second term is easy to bound, by the assumption of the planning oracle we have ‖Q̂∗ − Q̂π̂‖∞ ≤ ǫopt.
The two other terms are similar in nature. They compare the Q-functions of the same policy (either π∗ the
optimal one of the original RMDP, or π̂ the output of the planning algorithm) but for different RMPDs,
either the original one or the empirical one. For bounding the remaining terms, we need to introduce the
following notation. For any set D and a vector v, let define κD(v) = inf

{
u⊤v : u ∈ D

}
. This quantity cor-

responds to the inf form of the robust Bellman operator. The following lemma provides a data-dependent
bound of the two terms of interest.

Lemma 4.2. With Ps,a defined in Assumption 3.1 and P̂s,a the robust set centred around the empirical
MDPs,

‖Qπ̂ − Q̂π̂‖∞ ≤ γ

1− γ
max
s,a

|κP̂s,a
(V̂ π̂)− κP0,s,a(V̂

π̂)|

‖Q∗ − Q̂π∗‖∞ ≤ γ

1− γ
max
s,a

|κP̂s,a
(V ∗)− κP0,s,a(V

∗)|.

For proving these inequalities, we rely on fundamental properties of the (robust) Bellman operator, such
as γ-contraction. This lemma is written for the sa-rectangular assumption, but it is also true for the s-
rectangular one, replacing the robust set Ps,a by Ps. Now, we need to bound the resulting terms, which is
done by the following lemma.

Lemma 4.3. With probability at least 1− δ, we have

max
s,a

|κP̂s,a
(V̂ π̂)− κP0,s,a(V̂

π̂)| ≤
√

256 log (L)

(1− γ)2N
+ 2ǫopt

max
s,a

|κP̂s,a
(V̂ π∗

)− κP0,s,a(V̂
π∗
)| ≤

√
256 log (L)

(1− γ)2N

with L = log(8|S||A|/((1 − γ)δ))

Again, this also holds for s-rectangular sets. This inequality relies on a classic Hoeffding concentration
argument coupled with absorbing MDPs of Agarwal et al. (2020). Putting everything together, we have just
shown that :

‖Q∗ −Qπ̂‖∞ ≤ 3γǫopt
1− γ

+

√
1024γ2 log(L)

(1 − γ)4N

Solving in ǫ for the second term of the right-hand side gives the stated result.

5 Toward minimax optimal sample complexity

Now, we provide a better bound in terms of the horizon H , reaching (up to log factors) the lower-bound in
H3 for non-robust MDPs. Recall β = sups,a βs,a for the sa-rectangular assumption or β = sups βs for the
s-rectangular assumption. For the following result to hold, we need to assume that the uncertainty set is
small enough: we will require β ≤ 1−γ

2γ|S|1/q = 1
2(H−1)|S|1/q . For p = 1, q = ∞ and |S|1/q = 1 and we retrieve

results of Table 1. The following theorem is true for both sa- and s-rectangular uncertainty sets, and for
any Lp norm with p ≥ 1.

Theorem 5.1. let β0 ∈ (0, 1
2(H−1)|S|1/q ], for any κ > 0 and any ǫ0 ≤ κ

√
H it exists a C > 0 independent of

H such that for any β ∈ (0, β0) and any ǫ ∈ (0, ǫ0), whenever N the number of calls to the sampler per state-

action pair satisfies N ≥ C Lγ2H3

ǫ2 where L = log(8|S||A|/((1 − γ)δ)), it holds that if π̂ is any ǫopt -optimal

policy for M̂ , that is when ‖Q̂π̂ − Q̂⋆‖∞ ≤ ǫopt, then
∥∥Q∗ −Qπ̂

∥∥
∞ ≤ ǫ+

8ǫopt
1−γ with probability at least 1− δ.

So we have Ntotal = N |S||A| as an overall sample complexity Õ
(
H3|S||A|

ǫ2

)
for any ǫ < ǫ0.
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5.1 Discussion

The constants of Theorem 5.1 are explicitly given in Appendix C. For instance, for β0 = 1
8(H−1) and

ǫ0 =
√
16H, we have C = 1024, other choices being possible. Recall that in the non-robust case, the lower-

bound is Ω̃
(

H3|S||A|
ǫ2

)
(Azar et al., 2013). Our theorem states that any model-based robust RL approach, in

the generative model setting, with an accurate enough planner applied to the empirical RMDP, reaches this
lower bound, up to log terms. As far as we know, it is the first time that one shows that solving an RMDP
in this setting does not require more samples than solving a non-robust MDP, provided that the uncertainty
set is small enough. Our bound on ǫ is similar to the one of Agarwal et al. (2020) in the robust case with
their range [0,

√
H), we differ only by giving more flexibility in the choice of the constant C. The best range

of ǫ for non-robust MDPs is (0, H) (Li et al., 2020), we let its extension to the robust case for future work.
So far, we discussed the lower-bound for the non-robust case, that we reach. Indeed, non-robust MDPs can
be considered as a special case of MDPs with β = 0. As far as we know, the very first robust-specific lower-
bounds on the sample complexity have been proposed by Yang et al. (2021). They propose two lower-bounds
accounting for the size of the uncertainty set, one for the Chi-square case, and one for the total variation

case, which coincide with our Lp framework for p = 1 This bound is Ω̃
(

|S||A|(1−γ)
ε2 min

{
1

(1−γ)4 ,
1
β4

})
. This

lower-bound has two cases, depending on the size of the uncertainty set. If β ≤ (1 − γ) = 1/H , we re-

trieve the non-robust lower bound Ω̃
(

|S||A|H3

ε2

)
. Therefore, for an L1-ball, our upper-bound matches the

lower-bound, and we have proved that model-based robust RL in the generative model setting is minimax
optimal for any accurate enough planner. Their condition for this bound, β ≤ 1/H , is close to our condition,
β < 1/(4(H − 1). This suggests that our condition on β is not just a proof artefact. In the second case, if

β > 1−γ, the lower-bound is Ω̃
(

|S‖A|(1−γ)
ε2β4

)
. In this case, our theorem does not hold, and we only currently

get a bound in H4 (see Sec. 4), which doesn’t match this lower-bound.

In the case of TV , we know from posterior work (Shi et al., 2023) that it is possible to get a tighter
bound in the regime β > 1− γ but in the case of LP norm it is still an open question This is left as future
work. In the case where β is too large, the question arises whether RMDPs are useful as long as there is
little to control when the transition kernel can be too arbitrary. To sum up, to the best of our knowledge,
with a small enough uncertainty set, our work delivers the first ever minimax-optimal guarantee for RMDPs
according to the non-robust lower-bound for Lp-balls, and the first ever minimax-optimal guarantee accord-
ing to the robust lower-bound for the total variation case for sufficiently small radius of the uncertainty set,
which has been later refined on the larger set of β by Shi et al. (2023).

5.2 Sketch of proof

The full proof is provided in Appendix C. As in Sec. 4.2, we start from the inequality

‖Q∗ −Qπ̂‖∞ ≤ ‖Q∗ − Q̂π∗‖∞ + ‖Q̂∗ − Q̂π̂‖∞ + ‖Q̂π̂ −Qπ̂‖∞,

where the second term of the right-hand side can again be readily bounded, ‖Q̂∗ − Q̂π̂‖∞ ≤ ǫopt. To bound
the remaining two terms, if we want to obtain a tighter final bound, the contracting property of the ro-
bust Bellman operator will not be enough, we need a finer analysis. To achieve this, we rely on the total
variance technique introduced by Azar et al. (2013) for the non-robust case, combined with the absorbing
MDP construction of Agarwal et al. (2020), also for the non-robust case, which allows improving the range
of valid ǫ. The key underlying idea is to rely on a Bernstein concentration inequality rather than a Hoeffding
one, therefore considering the variance of the random variable rather than its range, tightening the bound.
Working with a Bernstein inequality will require controlling the variance of the return. A key result was
provided by Azar et al. (2013), that we extend to the robust setting,

∥∥∥(I − γP π
0 )

−1
√
VarP0 (V

π)
∥∥∥
∞

≤
√

2

(1− γ)3
. (1)
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Naively bounding the left-hand side would provide a bound in H2, while this (non-obvious) bound in
√
H3 is

crucial for obtaining on overall dependency in H3 in the end. Now, we come back to the terms ‖Q∗− Q̂π̂∗‖∞
and ‖Qπ̂ − Q̂π̂‖∞ that we have to bound. This bound should involve a term proportional to (I − γP π

0 )
−1 to

leverage later Eq. (1). The following lemma is inspired by Agarwal et al. (2020), and its proof relies crucially
on having a simple dual of the robust Bellman operator.

Lemma 5.2.

‖Qπ̂ − Q̂π̂‖∞ ≤γ‖(I − γP π̂
0 )

−1(P0 − P̂ )V̂ π̂‖∞ +
2γβ|S|1/q
1− γ

‖Qπ̂ − Q̂π̂‖∞.

This lemma also holds replacing also π̂ by π∗. We see that the term β appears in the bound. This comes
from the need to control the difference in penalisation between seminorms of value functions, from a technical
viewpoint. Indeed, the terms 2γβ

1−γ ‖Qπ−Q̂π‖∞ (with π being either π̂ or π∗) are not present in the non-robust

version of the bound, and are one of the main differences from the derivation of Agarwal et al. (2020). The

first term of the right-hand side of each bound ‖(I−γP π
0 )

−1(P0− P̂ )V̂ π‖∞ (with π being either π̂ or π∗) will
be upper-bounded using a Bernstein argument, leveraging also Eq. (1). The resulting lemma is the following.

Lemma 5.3. With probability at least 1− δ, we have

∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

< (CN + Cβ)‖Qπ̂ − Q̂π̂‖∞ + 4γ

√
L

N(1− γ)3
+

γ∆′
δ,N

1− γ
+

γǫopt
1− γ

(
2 +

√
8L

N

)
,

with Cβ = 2γβ|S|1/q
1−γ and CN = γ

1−γ

√
8L
N and where ∆′

δ,N =
√

cL
N + cL

(1−γ)N with L = log(8|S||A|/((1− γ)δ)).

For this result to be exploitable, we have to ensure that CN + Cβ < 1, which leads to β ≤ 1−γ
2γ|S|1/q , and

then CN + Cβ < 1 leads to a constraint on N in Theorem 5.1. Eventually, injecting the result of this last

lemma in the initial bound, keeping the dominant term in 1/
√
N and solving for ǫ provides the stated result,

cf Appendix C.

6 Conclusion

In this paper, we have studied the question of the sample complexity of model-based robust reinforcement
learning. We have considered the classic (in non-robust RL) generative model setting, where a sampler can
provide next-state samples from the nominal kernel and from arbitrary state-action couples. We focused our
study more specifically on sa- and s-rectangular uncertainty sets corresponding to Lp-balls around the nom-
inal. We ensure γ−contraction of Robust Bellman Operator in order not to be too conservative, contrary to
Derman et al. (2021) and Kumar et al. (2022) and propose two algorithms 1, 2 to solve LP RMDPs problem.

Without any restriction on the maximum level of suboptimality (ǫ) or the size of uncertainty set (β), we

have shown that the sample complexity of the studied general setting is Õ( |S||A|H4

ǫ2 ), already significantly
improving existing results (Yang et al., 2021; Panaganti and Kalathil, 2022). Our bound holds for both the
sa- and s-rectangular cases, and improves existing results (for the total variation) by respectively |S| and
|S||A|. By assuming a small enough uncertainty set, and for a small enough ǫ, we further improved this

bound to Õ( |S||A|H3

ǫ2 ), adapting proof techniques from the non-robust case (Azar et al., 2013; Agarwal et al.,
2020). This is a significant improvement. Our bound again holds for both the sa- and s- rectangular cases,
it matches the lower-bound for the non-robust case Azar et al. (2013), and it matches the total variation
lower-bound for the robust case when the uncertainty set is small enough (Yang et al., 2021). We think this
is an important step towards minimax optimal robust reinforcement learning.

There are a number of natural perspectives, such as knowing if we could extend our results to other kinds
of uncertainty sets, or to extend our last bound to larger uncertainty sets (despite the fact that if the dynam-
ics is too unpredictable, there may be little left to be controlled). Our results build heavily on the simple
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dual form of the robust Bellman operator, which prevents us from considering, for the moment, uncertainty
sets based on the KL or Chi-square divergence. Beyond their theoretical advantages such as contraction of
the Robust Bellman Operator, these simple dual forms also provide practical and computationally efficient
planning algorithms. Therefore, another interesting research direction would be to know if one could derive
additional useful uncertainty sets relying primarily on the regularization viewpoint.
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A Overview and useful inequalities

The appendix is organised as follows

• In Appendix A.1, a comprehensive table with state-of-the-art complexity for every distance.

• In Appendix A.2, we provide more details/explanations on the difference between our formulation on
the one of Kumar et al. (2022) and Derman et al. (2021).

• In Appendix A.3, we give more details about our algorithm :DRVI LP

• In Appendix A.4, we give some useful inequalities frequently used in the proofs.

• In Appendix B, we prove Theorem 4.1.

• In Appendix C, we prove Theorem 5.1.

• In Appendix D.1, we set complexity of algorithm 1 and 2.

Finally, the proofs for the s-rectangular and sa-rectangular cases are often very similar. If this is true,
we will combine them in a single proof with the two cases detailed when needed.

A.1 Table of sample Complexity

Table 2: Sample Complexity for different metric and s- or sa rectangular assumptions with β the radius of
uncertainty set, H the horizon factor, ǫ the precicion, p̄, β0,p = (1−γ)/(2γ|S|1/q). the smallest positive state
transition probability of the nominal kernel visited by the optimal robust policy (see Yang et al. (2021)).

Panaganti and Kalathil
(2022)

Yang et al. (2021) Shi and Chi
(2022)

Our β ≥ 0 Our β0,p >
β > 0

Shi et al. (2023)
β > 1 − γ

Shi et al. (2023)
0 < β < 1 − γ

TV
(sa)

Õ
(

|S|2|A|H4

ǫ2

)
Õ
(

|S|2|A|H4(2+β)2

ǫ2β2

)
× Õ

(
|S||A|H4

ǫ2

)
Õ
(

|S||A|H3

ǫ2

)
Õ
(

|S||A|H2

ǫ2β

)
Õ
(

|S||A|H3

ǫ2

)

TV
(s)

× Õ
(

|S|2|A|2H4(2+β)2

ǫ2β2

)
× Õ

(
|S||A|H4

ǫ2

)
Õ
(

|S||A|H3

ǫ2

)
× ×

Lp
(sa)

× × × Õ
(

|S||A|H4

ǫ2

)
Õ
(

|S||A|H3

ǫ2

)
× ×

Lp
(s)

× × × Õ
(

|S||A|H4

ǫ2

)
Õ
(

|S||A|H3

ǫ2

)
× ×

χ2

(sa)
Õ
(

|S|2|A|βH4

ǫ2

)
Õ
(

|S|2|A|(1+β)2H4

ε2(
√

1+β−1)2

)
× × × Õ

(
|S||A|βH4

ǫ2

)
Õ
(

|S||A|βH4

ǫ2

)

χ2

(s)
× Õ

(
|S|2|A3|(1+β)2H4

ε2(
√

1+β−1)2

)
× × × ×

KL
(sa)

Õ
(

|S|2|A| exp(H)H4

β2ε2

)
Õ
(

|S|2|A|H4

p̄2ǫ2β2

)
Õ
(

|S||A|H4

p̄ǫ2β4

)
× × × ×

KL
(s)

× Õ
(

|S|2|A|2H4

p̄2ǫ2β2

)
× × × × ×
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A.2 Relation with related work

In the work of Derman et al. (2021) close forms for RMDPs with Lp norms are derived assuming the following
uncertainty set :

Assumption A.1. (sa-rectangularity in Derman et al. (2021))

Usa
p := (R0 +R)× (P0 + P) ,R = ×s∈S,a∈ARs,a,Rs,a =

{
rs,a ∈ R | ‖rs,a‖p ≤ αs,a

}

P = ×s∈S,a∈APs,aPs,a = {Ps,a : S → R |
∑

s′

Ps,a (s
′) = 0, ‖Ps,a‖p ≤ βs,a}

Using these uncertainty sets leads to the following Bellman Operator :

Theorem A.2 (Derman et al. (2021)). The sa-rectangular Robust Bellman operator is equivalent to a regu-

larised non-robust Bellman operator: for rs,aV,π(s, a) = −
(
αs + γβs,a ‖V ‖q

)
+R0(s, a), where ‖πs‖q is q-norm

of the vector π(· | s) ∈ ∆A, we have

T π
Us

p
V (s) = 〈πs, r

s,a
V,π(s, a) + γ

∑

s′

P0 (s
′ | s, a)V (s′)〉A

Using this formulation, they get a closed form for the inner minimisation problem and for the Robust
Bellman Operator

The work Kumar et al. (2022) modifies the work of Derman et al. (2021) using Kernel that sum to 1,∑
s′ Ps,a(s

′) = 0 in their definition, but using this uncertainty set, it is still possible to get a robust kernel
out of the simplex. Using this formulation, they also get a closed form for the inner minimisation problem
and for the Robust Bellman Operator.

Assumption A.3. (sa-rectangularity in Kumar et al. (2022))

Usa
p := (R0 +R)× (P0 + P) ,R = ×s∈S,a∈ARs,a,Rs,a =

{
rs,a ∈ R | ‖rs,a‖p ≤ αs,a

}

P = ×s∈S,a∈APs,aPs,a = {Ps,a : S → R |
∑

s′

Ps,a (s
′) = 0, ‖Ps,a‖p ≤ βs,a}

Using these uncertainty sets where robust Kernel may not belong anymore to the simplex as they do not
assume P0 + Ps,a ≥ 0. This leads to the following Bellman Operator :

Theorem A.4 (Kumar et al. (2022)). The sa-rectangular Robust Bellman operator is equivalent to a regu-
larised non-robust Bellman operator: for rs,aV,π(s, a) = −

(
αs + γβs,aspq(V )

)
+R0(s, a), where ‖πs‖q is q-norm

of the vector π(· | s) ∈ ∆A, we have

T π
Us

p
V (s) = 〈πs, r

s,a
V,π(s, a) + γ

∑

s′

P0 (s
′ | s, a)V (s′)〉A

where spq(V ) in defined in Def. 3.1.These results are due to the following lemma.

Lemma A.5 ( Kumar et al. (2022). Duality for the minimisation problem for sa rectangular case with Lp

norm without simplex constrain).

inf
P :
∑

s′ P (s′)=0‖P−P̂s,a‖
p
≤βs,a

PV = P̂s,aV − βs,aspq(V )

Our analysis assumes the positivity of the kernel function, P0 + Ps ≥ 0 in s-rectangular or P0 + Ps,a ≥ 0
for sa-rectangular case. Using this more realistic assumption, we can not obtain a closed form of the robust
Bellman operator. However, we are still able to compute a dual form for the inner minimisation problem of
RMDPs. With our definition of rectangularity in the simplex:
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Assumption A.6. (sa-rectangularity) We define sa-rectangular Lp-constrained uncertainty set as

Usa
p := (R0 +R)× (P0 + P) ,R = ×s∈S,a∈ARs,a,P = ×s∈S,a∈APs,a,Rs,a = {rs,a ∈ R | |rs,a| ≤ αs,a}

Ps,a = {Ps,a : S → R |
∑

s′

Ps,a(s
′) = 0, P0 + Ps,a ≥ 0, , ‖Ps,a‖p ≤ βs,a}

and using κD(v) = inf
{
u⊤v : u ∈ D

}
., we obtain :

Lemma A.7 (Duality for the minimisation problem for sa rectangular case with Lp norm).

κP̂s,a
(V ) = max

µ≥0
{P̂s,a(V − µ)− βs,aspq(V − µ)} = max

α∈[Vmin,Vmax]
P̂s,a[V ]α − βs,aspq([V ]α).

with [V ]α(s) :=

{
α, if V (s) > α

V (s), otherwise.

Proof can be found on Appendix B.5
Contrary to previous lemma in Kumar et al. (2022), there is an additional max operator in our dual

formulation. Interestingly, their formulation is a relaxation of our Lemmas 3.3 as their formulation does not
assume the positivity of the kernel. Their relaxation allows practical algorithms with close form, but still
suffer from non-exact formulation of RMDPs with robust Kernel that are not in the simplex.

One crucial point in our analysis is that Bellman Operator for RMDPs is a γ- contraction for robust kernel
in the simplex for any radius β (see Iyengar (2005)). For Kumar et al. (2022) and Derman et al. (2021) the
range of β where their Robust Bellman Operator is a contraction is smaller than 1−γ

γ|S|1/q (see Proposition

4 of Derman et al. (2021)) which is the range where we have minimax optimality in our Theorem 5.1. For
β > 1−γ

γ|S|1/q , there is no contraction anymore. In the following, we will assume that robust kernels belong to

the simplex to use γ-contraction in our proof of sample complexity and ensure convergence of the following
Distributionally Robust value Iteration for Lp norms for any β Algoritm 1.

A.3 Model based algorithm

Algorithm 1: DRVI LP: Distributionally robust value iteration DRVI for LP norms with
sa−rectangular assuptions

1 input: empirical nominal transition kernel P̂0; reward function r; uncertainty level β.

2 initialization: Q̂0(s, a) = 0, V̂0(s) = 0 for all (s, a) ∈ S ×A.
3 for t = 1, 2, · · · , T do

4 for ∀s ∈ S, a ∈ A do

5 Set Q̂t(s, a) according to (3) for sa−rectangular ;

6 for ∀s ∈ S do

7 Set V̂t(s) = maxa Q̂t(s, a);

8 output: Q̂T , V̂T and π̂ obeying π̂(s) = argmaxa Q̂T (s, a).

We propose Alg. 1 to solve robust MDPs in the case of LP norms using value Iteration with sa- rectan-
gularity assumptions. First, we can remark that directly solving (3) is computationally costly as it requires
an optimization over an S-dimensional probability simplex at each iteration, especially when the dimension
of the state space S is large. However, using strong duality like Iyengar (2005) for the TV , (3) one can
also solve using the dual problem of this formulation. The equivalence between the two formulations can be
found in Lemma 3.3. Using the dual form, the optimization reduces to a scalar optimization problem that
can be solved efficiently using any 1−dimensional solver if there exists an analytic form of the span-semi
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norm. Then the iterates
{
Q̂t

}
t≥0

of DRVI for LP norms converge linearly to the fixed point Q̂⋆, owing to

the appealing γ-contraction property of robust MDPs in the simplex. From an initialization Q̂0 = 0, the
update rule at the t-th (t ≥ 1) iteration can be formulated as for sa-rectangular case as:

∀(s, a) ∈ S ×A : Q̂t(s, a) =r(s, a) + max
µ≥0

P̂ (V̂t−1 − µ)− βs,aspq(V̂t−1 − µ) (2)

=r(s, a) + max
α∈[Vmin,Vmax]

P̂[V̂t−1]α − βs,aspq([V̂t−1]α), (3)

The specific form of the dual problem depends on the choice of the norm. In the case of L1, L2, or L∞,
span semi-norms involved in dual problems have closed form (respectively equals to median, variance, or
span), and equation 3 corresponds to 1-D minimisation problem.

But in general cases, one has to compute span-semi norms that can be easily computed using binary
search solving ∑

s

sign (v(s) − ωp(v)) |v(s)− ωp(v)|
1

p−1 = 0

to compute ωn and then setting the semi norm spq(v) = ‖v − ωn‖. Recall the q-variance function spq : S → R

and q-mean function ωq : S → R be defined as

spq(v) := min
ω∈R

‖v − ω1‖q, ωq(v) := argmin
ω∈R

‖v − ω1‖q.

See Kumar et al. (2022) for discussion about computing span semi norms. So in the general case, we can
also compute the maximum solving :

∀(s, a) ∈ S ×A : Q̂t(s, a) =r(s, a) + max
α∈[Vmin,Vmax]

max
w∈R

P̂[V̂t−1]α − βs,a

∥∥∥[V̂t−1]α − w
∥∥∥
q
,

Using any 2−D convex optimization algorithm solves the problem as this problem is jointly concave in (α,w)

because (α,w) → −
∥∥∥[V̂t−1]α − w

∥∥∥
q
is concave using norm property and (α,w) → P̂[V̂t−1]α also. Then the

sum is concave.
Finally, in the sa-case we compute the best policy which is the greedy policy of the final Q-estimates Q̂T

as the final policy π̂:

∀s ∈ S : π̂(s) = argmax
a

Q̂T (s, a).

In the s− rectangular case: recall that the Bellman optimality operator rectangular is from A.8:

T π
Us

p
V (s) = −‖πs‖q αs + γ min

Pπ∈Ps

P πV +
∑

a

π(a|s)
(
R0(s, a) + γP0(s

′|s, a)V (s′)
)

using lemma B.6 to compute the dual of the minimization problem. We obtain:

T ∗
Us

p
V (s) = max

πs∈∆A
max

α∈[Vmin,Vmax]

∑

a

π(a|s)
(
R0(s, a)+γP0(s

′|s, a)[V ]α(s
′))
)
−‖πs‖q (αs+γβsspq([V ]α))

)
(4)

Without any analytic form of the semi-norm, we obtain the following problem, which is still concave:

T ∗
Us

p
V (s) = max

πs∈∆A
max

α∈[Vmin,Vmax]
max
w∈R

∑

a

π(a|s)
(
R0(s, a)+γP0(s

′|s, a)[V ]α(s
′))
)
−‖πs‖q (αs+γβs ‖[V ]α − w‖q)

)

(5)
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Algorithm 2: DRVI LP: Distributionally robust value iteration DRVI for LP norms with
s−rectangular assumptions

1 input: empirical nominal transition kernel P̂0; reward function r; uncertainty level β.

2 initialization: V̂0(s) = 0 for all s ∈ S.
3 for t = 1, 2, · · · , T do

4 for ∀s ∈ S, do
5 Set Vk+1 = T ∗

Us
p
Vk for s−rectangular with operator defined in 4

6 output: V̂T and πT (a | s) ∝ (AT (s, a))
p−11(AT (s, a) ≥ 0), with A defined in 11.

So we obtain a function that is concave of dimension |A|+1 which can be solved naively using any convex
optimizer if we have access to an analytic form of the span semi-norm, which is the case for p = 1, 2,∞ and
a concave function of dimension |A|+ 2 otherwise. The resulting algorithm consists at iterating :

Vk+1 = T ∗
Us

p
Vk (6)

and that can be solved naively using any convex optimizer for this problem of dimension |A|+ 2. However,
following Kumar et al. (2022), it is possible to get a simple solution for this minimisation problem over π.
At iteration t, first we need to solve

max
α∈[Vmin,Vmax]

max
w∈R

∑

a

π(a|s)
(
R0(s, a) + γP0(s

′|s, a)[V ]α(s
′))
)
− ‖πs‖q (αs + γβs ‖[V ]α − w‖q)

)
(7)

as in classical sa-rectangular case using 2−convex solver. Then once w∗ and α∗ founded, we can replace it
in the previous expression that gives:

max
πs∈∆A

∑

a

π(a|s)
(
R0(s, a) + γP0(s

′|s, a)[V ]α∗(s′))
)
− ‖πs‖q (αs + γβsspq([V ]α∗))

)
. (8)

Using Th. 10 and Th 11. of Kumar et al. (2022), we obtain that the optimal robust Bellman operator can be

evaluated easily. Indeed, the Robust Bellman Operator
(
T ∗
Us

p
V
)
(s) is the solution of the following equation

that can be found using binary search between [maxa Q(s, a)− σ,maxa Q(s, a)],

∑

a

(Q(s, a)− x)p1(Q(s, a) ≥ x) = σp.

where σ = αs + γβsspq([V ]α∗), and Q(s, a) = R0(s, a) + γ
∑

s′ P0 (s
′ | s, a) [V ]α∗ (s′).

Moreover, the greedy policy π w.r.t. value function v, defined as T ∗
Us

p
V = T π

Us
p
V is a threshold policy. It

takes only those actions that have positive advantage, with probability proportional to (p− 1)th power of its
advantage. That is, the optimal policy for s-rectangular MDPs can be expressed as :

π(a | s) ∝ (A(s, a))p−11(A(s, a) ≥ 0),

where
A(s, a) = R0(s, a) + γ

∑

s′

P0 (s
′ | s, a) [V ]α∗ (s′)−

(
T ∗
Us

p
V
)
(s) (9)

Using these results we avoid |A|+2 dimensional convex optimisation problem at each step. The complexity
of our algorithm is the same as Kumar et al. (2023) except that we are using an additional 1−dimensional
optimisation problem to find the maximum over α or 2d-dimensional optimisation problem when both span-
seminorm and α are not known. The final policy is taken as:
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π(a | s) ∝ (A(s, a))p−11(A(s, a) ≥ 0), (10)

AT (s, a) = R0(s, a) + γ
∑

s′

P̂ (s′ | s, a) [V̂t]α∗ (s′)−
(
T ∗
Us

p
V̂T

)
(s) (11)

Finally, complexity of our algorithm can be found in annex D.1.

A.4 Useful Inequalities

Here we present some useful inequalities used frequently in the derivation. Consider any P a transition
matrix and βs for s rectangular uncertain sets or βsa for sa- uncertainty sets, then for I = (1, 1, ..., 1)⊤ :

(1 − γP )−1 (γβs) I <
β

1− γ
I and (1− γP )−1

I ≤ 1

1− γ
I (12)

∀q ∈ N
∗, spq(.) ≤ 2 ‖.‖q < 2|S|1/q ‖.‖∞ , sp(.)∞ ≤ 2 ‖.‖∞ (13)

spq,π(.) ≤ 2 ‖.‖q,π ≤ 2 ‖.‖q (14)

Eq. (12) is true, taking the supremum norm of the left-hand side inequality. Eq. (13) and Eq. (14) come
from properties of norms, see Eq. (1) from Scherrer (2013).

A.5 Robust Bellman Operator and robust Q values

This is proof of Lemma 3.5:

Lemma A.8. Robust Bellman Operator for sa− and s− rectangular are :

T π
Usa

p
V (s) =

∑

a

π(a|s)
(
− αs,a +R0(s, a) + γ

∑

s′

P0(s
′, s, a)v(s′) + γ min

P∈Ps,a

PV
)

T π
Us

p
V (s) = −‖πs‖q αs + γ min

Pπ∈Ps

P πV +
∑

a

π(a|s)
(
R0(s, a) + γP0(s

′|s, a)V (s′)
)

Proof. For sa-rectangular: by rectangularity

T π
Usa

p
V (s) =

∑

a

π(a|s)
(
− αs,a +R0(s, a) + γ min

P∈P0+Ps,a

PV
)

=
∑

a

π(a|s)
(
− αs,a +R0(s, a) + γ min

P∈Ps,a

PV + P0,s,aV
)

For s−rectangular case :

T π
Us

p
V (s) = min

Pπ∈Pπ
0 +Ps,

γPV + min
R∈Rπ

0+Rs

∑

a

π(a|s)R(s, a)

=
∑

a

π(a|s)R0(s, a) + min
R∈Rs

∑

a

π(a|s)R(s, a) +
∑

a

π(a|s)γ
∑

s′

P0(s
′|s, a)V (s′) + min

Pπ∈Ps,

γP πV

(a)
=
∑

a

π(a|s)
(
R0(s, a) +

∑

s′

P0(s
′|s, a)V (s′)

)
− αs ‖πs‖q + min

Pπ∈Ps

γP πV

where (a) comes from Holder’s inequality.
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Lemma A.9. For sa− and s− rectangular,

Qπ
sa(s, a) = r

(s,a)
Qπ

sa
+ γP0,s,aV

π
sa,

Qπ
s (s, a) = rsQπ

s
+ γP0,s,aV

π
s

with

r
(s,a)
Qπ

sa
= R0(s, a)− αs,a + γ min

P∈Ps,a

PV π
sa

rsQπ
s
= R0(s, a)−

( πs(a)

‖πs‖q

)q−1

αs + γ min
Pπ∈Ps

P πV π
s )

Proof. The result comes directly as for sa-rectangular the following relations hold,

V π
sa(s) =

∑

a

π(a|s)Qπ
sa(s, a) and

and for s-rectangular case

V π
s (s) =

∑

a

π(a|s)Qπ
s (s, a).

Then using fixed point equation of Bellman operator: T π
Us

p
V π
s (s) = V π

s (s) or T π
Usa

p
V π
sa(s) = V π

sa(s) and previous

Lemma A.8 for the expression of T π
Us

p
V π
s (s), we can identify the robust Q values that give the result

B An first bound

To lighten notations, we remove subscript s in most places and denote for example V π instead of V π
s for

s-rectangular sets.

Lemma B.1 (Decomposition of the bound).

∥∥Q∗ −Qπ̂
∥∥
∞ ≤

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

+
∥∥∥Q̂π∗ − Q̂π̂

∥∥∥
∞

+
∥∥∥Q̂π̂ −Qπ̂

∥∥∥
∞

Proof.

0 ≤ Q∗ −Qπ̂ = Q∗ − Q̂∗
︸︷︷︸
≥Q̂π∗

+Q̂∗ − Q̂π̂ + Q̂π̂ −Qπ̂

≤ Q∗ − Q̂π∗ + Q̂∗ − Q̂π̂ + Q̂π̂ −Qπ̂

⇒ ‖Q∗ −Qπ̂‖∞ ≤ ‖Q∗ − Q̂π∗‖∞ + ‖Q̂∗ − Q̂π̂‖∞ + ‖Q̂π̂ −Qπ̂‖∞

This decomposition is the starting point of our proofs for both Theorems 4.1 and 5.1. In this decomposi-
tion, the second term satisfies ‖Q∗ − Q̂π∗‖∞ ≤ ǫopt by definition. This term goes to 0 exponentially fast as

the robust Bellman operator is a γ-contraction. The two last terms ‖Q∗ − Q̂π∗‖∞ and ‖Q̂π̂ −Qπ̂‖∞ need to
be controlled using concentration inequalities between the true MDP and the estimated one. To do so, we
need concentration inequalities such as the following Lemma B.2.
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Lemma B.2 (Hoeffding’s inequality for V ). For any V ∈ R
|S| with ‖V ‖∞ ≤ H, with probability at least

1− δ, we have

max
(s,a)

∣∣∣P0V − P̂V
∣∣∣ ≤ H

√
log(2|S‖A|/δ)

2N
.

Proof. For any (s, a) pair, assume a discrete random variable taking value V (i) with probability P0,s,a(i) for
all i ∈ {1, 2, · · · , |S|}. Using Hoeffding’s inequality (Hoeffding, 1994) and ‖V ‖∞ ≤ H :

P

(
P0V − P̂V ≥ ε

)
≤ exp

(
−Nε2/(2H2)

)
and P

(
P̂V − P0V ≥ ε

)
≤ exp

(
−Nε2/(2H2)

)
.

Then, taking ε = H
√

2 log(2|S||A|/δ)
N , we get

P

(∣∣∣P0V − P̂V
∣∣∣ ≥ H

√
log(2|S||A|/δ)

N

)
≤ δ

|S||A| .

Finally, using a union bound:

P

(
max
(s,a)

∣∣∣P0V − P̂V
∣∣∣ ≥ H

√
2 log(2|S||A|/δ)

N

)
≤
∑

s,a

P

(∣∣∣P0V − P̂V
∣∣∣ ≥ H

√
2 log(2|S‖A|/δ)

N

)
≤ δ.

This completes the concentration proof. Next we will look at the contraction argument of the robust
Bellman operator.

Lemma B.3 (Contraction of infimum operator). For D = Ps,a or Ps, the function

∀s, a, v 7→ κD(v) = inf
{
u⊤v : u ∈ D

}

is 1-Lipchitz.

Proof. We have that

∀(s, a) ∈ S ×A, κPs,a (V2)− κPs,a (V1) = inf
p∈Ps,a

p⊤V2 − inf
p̃∈Ps,a

p̃⊤V1 = inf
p∈Ps,a

sup
p̃∈Ps,a

p⊤V2 − p̃⊤V1

≥ inf
p∈Ps,a

p⊤ (V2 − V1) = κPs,a (V2 − V1) .

Then ∀ε > 0, there exists Ps,a ∈ Ps,a such that

P⊤
s,a (V2 − V1)− ε ≤ κPs,a (V2 − V1) .

Using those two properties,

κPs,a (V1)− κPs,a (V2) ≤ P⊤
s,a (V1 − V2) + ε ≤ ‖Ps,a‖1 ‖V1 − V2‖+ ε = ‖V1 − V2‖+ ε,

where we used the Holder’s inequality. Since ε is arbitrary small, we obtain, κPs,a (V1) − κPs,a (V2) ≤
‖V1 − V2‖. Exchanging the roles of V1 and V2 give the result.

The proof is similar for Ps.

Note that an immediate consequence is the already known γ- contraction of the robust Bellman operator.

Lemma B.4 (Upper-bounds of
∥∥∥Qπ̂ − Q̂π̂

∥∥∥
∞

and
∥∥∥Q∗ − Q̂π∗

∥∥∥
∞
).

∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

≤ γ

1− γ
max
s,a

∣∣∣κP̂s,a
(V̂ π̂)− κP0,s,a(V̂

π̂)
∣∣∣ ,

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

≤ γ

1− γ
max
s,a

∣∣∣κP̂s,a
(V ∗)− κP0,s,a(V

∗)
∣∣∣ .
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Proof. For the first inequality, since we can rewrite the robust Q-function for any uncertainty sets on the

dynamics as Qπ̂ (s, a) = r− αs,a + γκP0,s,a

(
V π̂
)
(see Eq. (3.5)), or replacing αs,a by αs

(
π̂s(a)
‖π̂s‖q

)q−1

in the s-

rectangular case:

Qπ̂ (s, a)− Q̂π̂ (s, a)
(a)
= γκP0,s,a

(
V π̂
)
− γκP̂s,a

(
V̂ π̂
)

= γ
(
κP0,s,a

(
V π̂
)
− κP0,s,a

(
V̂ π̂
))

+ γ
(
κP0,s,a

(
V̂ π̂
)
− κP̂s,a

(
V̂ π̂
))

with Ps,a defined in Assumption 3.1 and P̂s,a with the same definition but centred around the empirical
MDP. Hence, taking the supremum norm ‖.‖∞,

∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

= max
s,a

∣∣∣γ
(
κP0,s,a

(
V π̂
)
− κP0,s,a

(
V̂ π̂
))

+ γ
(
κP0,s,a

(
V̂ π̂
)
− κP̂s,a

(
V̂ π̂
))∣∣∣

(b)

≤ γ
∥∥∥V π̂ − V̂ π̂

∥∥∥
∞

+max
s,a

∣∣∣γ
(
κP0,s,a

(
V̂ π̂
)
− κP̂s,a

(
V̂ π̂
))∣∣∣

≤ γ
∥∥∥V π̂ − V̂ π̂

∥∥∥
∞

+ γmax
s,a

∣∣∣κP̂s,a
(V̂ π̂)− κP0,s,a(V̂

π̂)
∣∣∣

(c)

≤ γ
∥∥∥Qπ̂ − Q̂π̂

∥∥∥
∞

+ γmax
s,a

∣∣∣κP̂s,a
(V̂ π̂)− κP0,s,a(V̂

π̂)
∣∣∣ .

Line (a) comes from the rectangularity assumption, (b) uses the triangular inequality and the 1-contraction

of the infimum in Lemma B.3, (c) uses the fact that ‖V π − V̂ π‖∞ ≤ ‖Qπ − Q̂π‖∞ for any π. As 1− γ < 1,
we get the first stated result.

One can note that the proof is true for any policy, so it is also true for both π̂ and π∗ which concludes
the proof. This proof is written for the sa-rectangular assumption, it is also true for the s-rectangular case
with slightly different notations, replacing D = P0,s,a by D = P0,s. Now we need to find new form for κ for
both s and sa rectangular assumptions.

For the second claim,
∥∥∥Q∗ − Q̂π∗

∥∥∥
∞

≤ γ

1− γ
max
s,a

∣∣∣κP̂s,a
(V ∗)− κP0,s,a(V

∗)
∣∣∣ .

we are using a slightly different modification:

Q∗ (s, a)− Q̂π∗
(s, a)

(a)
= γκP0,s,a (V

∗)− γκP̂s,a

(
V̂ π∗

)

= γκP0,s,a (V
∗)− γκP0,s,a

(
V̂ π∗

)
+ γκP0,s,a

(
V̂ π∗

)
− γκP̂s,a

(
V̂ π∗

)

≤ γ
∥∥∥Q∗ − Q̂π∗

∥∥∥
∞

+max
s,a

∣∣∣κP̂s,a
(V ∗)− κP0,s,a(V

∗)
∣∣∣

using the same arguments as in the first inequality. Solving gives the result.

Lemma B.5 (Duality for the minimisation problem for sa rectangular case.). Denoting P̂ the vector P̂s,a

or P0 for P0,s,a ,

κP̂s,a
(V̂ π̂) = max

µ≥0
{P̂(V̂ π̂ − µ)− βs,aspq(V̂

π̂ − µ)} = max
α∈[Vmin,Vmax]

P̂[V̂ π̂]α − βs,aspq([V̂
π̂]α).

κP0,s,a(V
∗) = max

µ≥0
{P0(V

∗ − µ)− βs,aspq(V
∗ − µ)} = max

α∈[Vmin,Vmax]
P0[V

∗]α − βs,aspq([V
∗]α).

with [V ]α(s) :=

{
α, if V (s) > α

V (s), otherwise.

21



Proof. First, we will show that

κP̂s,a
(V̂ π̂) = max

µ≥0
{P̂(V̂ π̂ − µ)− βs,aspq(V̂

π̂ − µ)}

The second equation of this lemma is the same as the first one, replacing the centre of the ball constrain
P̂s,a by P0,s,a and π̂ by π∗. By definition,

κP̂s,a
(V̂ π̂) = min

P∈∆s,‖P−P̂‖
p
≤βs,a

∑

s′

P (s′)V̂ π̂(s′) = P̂s,aV̂
π̂ + min

y,‖y‖p≤βs,a,1y=0,y≥−P̂

∑

s′

y(s′)V̂ π̂(s′)

where we use the change of variable y(s′) = P (s′) − P̂(s′). Then writing the Lagrangian we get for µ ∈
R

|S|
+ ,γ ∈ R the Lagrangian variables:

P̂V̂ π̂ + max
µ≥0,ν∈R

min
y:‖y‖p≤βs,a

−
∑

s′

µ(s)P̂(s′) +
∑

s′

(y(s′)(V̂ π̂(s′)− µ(s′)− ν) (15)

(a)
= P̂V̂ π̂ + max

µ≥0,ν∈R

−
∑

s′

µ(s′)P̂(s′)− βs,a

∥∥∥(V̂ π̂(s′)− µ(s′)− ν)
∥∥∥
q

(16)

(b)
= max

µ≥0
P̂(V̂ π̂ − µ)− βs,aspq(V̂

π̂ − µ) (17)

where (a) is true using the equality case of Holder’s inequality and (b) is the definition of the span semi-norm
(see Def. 3.1). The value that maximizes the inner maximization problem in 16 in ν is the q-mean (see Def.
3.1) by definition denoted wp.

Now the aim is to prove that

max
µ≥0

{P̂(V̂ π̂ − µ)− βs,aspq(V̂
π̂ − µ)} = max

α∈[Vmin,Vmax]
P̂[V̂ π̂]α − βs,aspq([V̂

π̂]α).

In this equality, optimisation reduces in terms of µ ∈ R
+ to scalar bounded optimization in α. First, we

have to remark that in Eq 15, the minimum is attained for :

y(s′) = −βs,az(s
′)

‖z‖p
(18)

because we are doing linear minimization under convex constraints. The value of vector z is z(s′) = (V̂ π̂(s′)−
µ(s′) − wq)P̂(s

′) with wq defined as the q-mean. The quantity z/ ‖z‖p has unitary p-norm and its sign is

determined (V̂ π̂(s′)−µ(s′)−wq). We can choose any multiplicative scalar value as the vector is normalized,

here we choose P̂(s′).
Complementary slackness in equation 17 gives that for all s′ such that µ(s′) > 0, y∗(s′) = −q(s′) or

equivalently :
y∗(s′) = −q(s′) ⇐⇒ V̂ π̂(s′)− µ(s′) = wp + ‖z‖p /βs,a = α

with α a constant. Since the optimal value of the initial problem is at least mins′ V̂
π̂(s′) and lower than

maxs′ V̂
π̂(s′) , we have maxs′ V̂

π̂(s′) ≥ α ≥ mins′ V̂
π̂(s′). The value of α is not known in practice but we

can recognise that the optimal value of µ is :

µ∗(s) =

{
V̂ π̂(s)− α, V̂ π̂(s) ≥ α

0, otherwise

Then the dual optimisation problem Eq 17 reduces to

max
µ≥0

P̂(V̂ π̂ − µ)− βs,aspq(V̂
π̂ − µ) = max

α∈[Vmin,Vmax]
P̂[V̂ π̂ ]α − βs,aspq([V̂

π̂]α).
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with [V ]α(s) :=

{
α, if V (s) > α

V (s), otherwise.

The thing which is of capital importance is that the second part of the equation spq([V ]α) does not

depend on P̂.

Lemma B.6 (Duality for the minimisation problem for s rectangular case.). Considering a projection matrix

associated with a given policy π such that P π
s (s

′) =
∑

a π(a|s)Ps,a(s
′) and denoting P̂ π ∈ R

s the vector P̂ π
s (.)

or P π
0 for P π

0,s(.), we have:

κP̂s
(V̂ π̂) = max

α∈[Vmin,Vmax]

(
P̂ π[V̂ π̂]α − βs ‖πs‖q spq([V̂ π̂]α)

)

κP0,s(V
∗) = max

α∈[Vmin,Vmax]

(
P π
0 [V

∗]α − βs ‖πs‖q spq([V ∗]α)
)
.

with [V ]α(s) :=

{
α, if V (s) > α

V (s), otherwise.

Proof. We will first show that

κP̂s
(V̂ π̂) = P̂ πV̂ π̂ +max

µ≥0

(
(−P̂ πµ)− γβs ‖πs‖q spq(V̂ π̂ − µ)

)

The second equation is the same replacing the centre of the ball constrain P̂ π
s by P π

0 and π̂ by π∗. By
definition,

κP̂s,
(V̂ π̂)(s) = min

P∈∆s,P∈P̂s

V̂ π̂(s) = min
P∈∆s,P∈P̂s

∑

a

π̂(a|s)PV̂ π̂

(a)
=
∑

a

π̂(a|s)P̂s,aV̂
π̂ + min

‖βs,a‖p≤βs

∑

a

π̂(a|s) min
y,‖y‖p≤βs,a,1y=0,y≥−P̂

∑

s′

y(s′)V̂ π̂

where we use the change of variable y(s′) = P (s′)− P̂(s′) in (a). Then we case use the previous lemma for
sa rectangular assumption, Lemma 3.3. Then,

min
‖βs,a‖p

≤βs

∑

a

π̂(a|s) min
y,‖y‖p≤βs,a,1y=0,y≥−P̂

∑

s′

y(s′)V̂ π̂ = min
‖βs,a‖p

≤βs

∑

a

π̂(a|s)max
µ≥0

(
− P̂µ− βs,aspq(V̂

π̂ − µ)
)

= max
µ≥0

(∑

a

π̂(a|s)(−P̂µ)− max
‖βs,a‖p

≤βs

∑

a

π̂(a|s)βs,aspq(V̂
π̂ − µ)

)

= max
µ≥0

(∑

a

π̂(a|s)(−P̂µ)− βs ‖πs‖q spq(V̂ π̂ − µ)

)

we can exchange the min and the max as we get concave-convex problems in βs,a and µ in the second line
and using Holder’s inequality in the last line. Finally, we obtain:

23



κP̂s,
(V̂ π̂) =max

µ≥0

∑

a

π̂(a|s)(P̂(V̂ π̂ − µ)− βs ‖πs‖q spq(V̂ π̂ − µ)

(a)
= max

α∈[Vmin,Vmax]

∑

a

π̂(a|s)
(
P̂[V̂ π̂]α − βs ‖πs‖q spq([V̂ π̂]α)

)

where in (a) we use Lemma 3.3. Second claim is the same replacing V̂ π̂ by V ∗, π̂ by π∗ and P̂ by P0.

Lemma B.7. For s and sa rectangular assumptions,

∣∣∣κP̂s,a
(V̂ π̂)− κP0,s,a(V̂

π̂)
∣∣∣ ≤ max

s,a
|(P̂s,a − P0,s,a)V̂

π̂| (19)

∣∣∣κP̂s
(V ∗)− κP0,s(V

∗)
∣∣∣ ≤ max

s,a
|(P̂s,a − P0,s,a)V

∗| (20)

Proof.

∣∣∣κP̂s,a
(V̂ π̂)− κP0,s,a(V̂

π̂)
∣∣∣ (a)= max

α∈[Vmin,Vmax]
P̂s,a[V̂

π̂]α − βs,aspq([V̂
π̂]α)

− max
α∈[Vmin,Vmax]

P0,s,a[V̂
π̂]α − βs,aspq([V̂

π̂]α)|

(b)

≤ max
α∈[Vmin,Vmax]

|(P̂ − P0,s,a)[V̂
π̂]α|

(c)

≤ |(P̂s,a − P0,s,a)V̂
π̂| ≤ max

s,a
|(P̂s,a − P0,s,a)V̂

π̂|

where (a) is previous lemma, (b) is 1-Lipchitz property of max operator, (c) is triangular inequality that
the maximum is attained for α = Vmax for the equality. For s rectangular,

∣∣∣κP̂s,a
(V̂ π̂)− κP0,s,a(V̂

π̂)
∣∣∣ (a)= max

α∈[Vmin,Vmax]

∑

a

π̂(a|s)(
(
P̂s,a[V̂

π̂]α − βs ‖πs‖q spq([V̂ π̂]α)
)

− max
α∈[Vmin,Vmax]

∑

a

π̂(a|s)(
(
P0,s,a[V̂

π̂]α − βs ‖πs‖q spq([V̂ π̂ ]α)
)
|

(b)

≤ max
α∈[Vmin,Vmax]

|
∑

a

π̂(a|s)(P̂s,a − P0,s,a)[V̂
π̂ ]α|

≤ max
s,a

|(P̂s,a − P0,s,a)V̂
π̂ |

Note that at this point, quantities for s and sa rectangular is the same as the part with span semi norms
cancelled. Now, note that the main problem is that we can not apply classical Hoeffding’s inequality as P̂
is dependent of data as V̂ π̂. We need to decouple V̂ π̂ using s absorbing MDPS as in Agarwal et al. (2020)
but using Hoeffding arguments. Proof of the second claim is similar.

Lemma B.8 (s-absorbing MDPs for Hoeffding’s concentration Inequalities).

24



As in Agarwal paper Agarwal et al. (2020), we define for a state s and a scalar u, the MDP called Ms,u

such that: Ms,u is identical to M except that state s is absorbing in Ms,u, i.e. PMs,u(s | s, a) = 1 for
all a, and the reward at state s in Ms,u is (1 − γ)u. The remainder of the transition model and reward
function are identical to those in M . In the following, we will use V π

s,u to denote the value function V π
Ms,u

and correspondingly for Q and reward and transition functions to avoid notational clutter. Then, we have
that for all policies π :

V π
s,u(s) = u

because s is absorbing with reward (1− γ)u. For some state s, we will only consider the MDP Ms,u for u in
a finite set Us with

Us ⊂ [V ⋆(s)−∆δ,NV ⋆(s) + ∆δ,N ] .

with ∆δ,N := γ
(1−γ)2

√
2 log(2|S||A|/δ)

N The set Us consists of evenly spaced elements in this interval, where we

set the size of |Us| appropriately later on. As before, we let M̂s,u denote the MDP that uses the empirical

model P̂ instead of P , at all non-absorbing states and abbreviate the value functions in M̂s,u as V̂ π
s,u. Then

we have for a fix a state s, action a, a finite set Us, and δ ≥ 0, that for all u ∈ Us: with probability greater
than 1− δ, it holds :

|(P̂s,a − P0,s,a)V
π̂
u | ≤ 1

(1 − γ)

√
2 log (4 |Us| /δ)

N
(21)

Now This is just Hoeffding’s inequality applied to the finite set Us as now V π̂
u and P̂s,a are now independent.

Lemma B.9 (Agarwal et al. (2020), Lemma 7). Let u∗ = V ⋆
M (s) and uπ = V π

M (s). We have

V ⋆
M = V ⋆

s,u⋆ , and for all policies π, V π
M = V π

Mπ
s,uπ

Proof can be found in Agarwal et al. (2020), Lemma 7.

Lemma B.10. For any u, u′, s and policy π:

∥∥Qπ
s,u −Qπ

s,u′
∥∥
∞ ≤ |u− u′|

Proof. To obtain the result in our robust MDP setting, we need a similar stability property like in Lemma
8 of Agarwal et al. (2020), but for the robust value functions. It turns out that this a direct consequence of
the property for classical MDP. Agarwal in Agarwal et al. (2020) show equation 22 for classical MPDs, then
we have for RMDPs:

|Qπ
Ms,u

(s, a)−Qπ
Ms,u′ (s, a)| ≤

1

1− γ
|u− u′| (22)

⇒| inf
M

Qπ
Ms,u

(s, a)− inf
M

Qπ
Ms,u

(s, a)| ≤ 1

1− γ
|u− u′| (23)

⇒| sup
π

inf
M

Qπ
Ms,u

(s, a)− sup
π

inf
M

Qπ
Ms,u

(s, a)| ≤ 1

1− γ
|u − u′|. (24)

which concludes the proof for RMDPs.

Lemma B.11 (Hoeffding’s Concentration for dependent variables). Removing s, a notations for kernels,

∣∣∣
(
P0 − P̂

)
· V̂ ⋆

∣∣∣ ≤ 1

(1 − γ)

√
2 log (4 |Us| /δ)

N
+ 2 min

u∈Us

∣∣∣V̂ ⋆(s)− u
∣∣∣ (25)
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Proof.

∣∣∣
(
P0 − P̂

)
· V̂ ⋆

∣∣∣ =
∣∣∣
(
P0 − P̂

)
·
(
V̂ ⋆ − V ⋆

s,u + V ⋆
s,u

)∣∣∣ (26)

≤
∣∣∣
(
P0 − P̂

)
·
(
V̂ ⋆ − V ⋆

s,u

)∣∣∣+
∣∣∣
(
P0 − P̂

)
·
(
V ⋆
s,u

)∣∣∣ (27)

(a)

≤ 2
∥∥∥V̂ ⋆ − V ⋆

s,u

∥∥∥
∞

+
1

(1 − γ)

√
2 log (4 |Us| /δ)

N
(28)

(b)

≤ +2
∣∣∣V̂ ⋆(s)− u

∣∣∣+ 1

(1− γ)

√
2 log (4 |Us| /δ)

N
(29)

(30)

where (a) is 21 or Hoeffding’s inequality for s-absorbing MDPs and Holder’s inequality. By Lemmas B.9
and B.10, ∥∥∥V̂ ⋆ − V ⋆

s,u

∥∥∥
∞

=
∥∥∥V̂ ⋆

s,V̂ ⋆(s)
− V ⋆

s,u

∥∥∥
∞

≤
∣∣∣V̂ ⋆(s)− u

∣∣∣ .

which is point (b). The last min operator in the result comes from the fact that the previous equation holds
for all u ∈ Us, we take the best possible choice, which completes the proof of the first claim. The proof of
the second claim is analogous.

Lemma B.12 (Crude bound for Robust MDPs). This lemma is needed for next Lemma B.13 but the proof
differs from the classical MDP setting. For s and sa rectangular assumptions,

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

≤ ∆δ,N and
∥∥∥Q∗ − Q̂∗

∥∥∥
∞

≤ ∆δ,N with ∆δ,N =
γ

(1− γ)2

√
2 log(2|S||A|δ)

N

Proof. For the first claim :

∥∥∥Qπ − Q̂π
∥∥∥
∞

= max
s,a

∣∣∣γ
(
κP0,s,a (V

π)− κP̂s,a
(V π)

)
+ γ

(
κP̂s,a

(V π)− κP̂s,a

(
V̂ π
))∣∣∣

(b)

≤ max
s,a

∣∣∣γ
(
κP0,s,a (V

π)− κP̂s,a
(V π)

)∣∣∣+ γ
∥∥∥V π − V̂ π

∥∥∥
∞

(b)

≤ γmax
s,a

∣∣∣κP̂s,a
(V π)− κP0,s,a(V

π)
∣∣∣ + γ

∥∥∥Qπ − Q̂π
∥∥∥
∞

.

where we use contraction of κ, lemma B.3 in (a) and
∥∥∥Qπ − Q̂π

∥∥∥
∞

≤
∥∥∥V π − V̂ π

∥∥∥
∞

in (c) for any π.

Solving we get : ∥∥∥Qπ − Q̂π
∥∥∥
∞

≤ γ

1− γ
max
s,a

∣∣∣κP̂s,a
(V π)− κP0,s,a(V

π)
∣∣∣

Then using Lemma B.7, we obtain :

∥∥∥Qπ − Q̂π
∥∥∥
∞

≤ γ

1− γ
max
s,a

∣∣∣κP̂s,a
(V π)− κP0,s,a(V

π)
∣∣∣ ≤ γ

1− γ

∥∥∥(P̂ − P0)V
π
∥∥∥
∞

Taking π = π∗, in the quantity
∥∥∥(P̂ − P0)V

π∗
∥∥∥
∞
, V π∗

is independent of the data and we can use classical

Hoeffding inequality, Lemma B.2. Finally, we have

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

≤ γ

1− γ

∥∥∥(P̂ − P0)V
π
∥∥∥
∞

≤ γ

(1− γ)2

√
2 log(2|S||A|δ)

N

For the second point, using s or sa rectangular assumptions,
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∥∥∥Q∗ − Q̂∗
∥∥∥
∞

≤
∥∥∥T π∗

Usa
p
Q∗ − T̂ π̂∗

Usa
p
Q∗ + T̂ π̂∗

Usa
p
Q∗ − T̂ π̂∗

Usa
p
Q̂∗
∥∥∥
∞

≤
∥∥∥T π∗

Usa
p
Q∗ − T̂ π̂∗

Usa
p
Q∗
∥∥∥
∞

+
∥∥∥T̂ π̂∗

Usa
p
Q∗ − T̂ π̂∗

Usa
p
Q̂∗
∥∥∥
∞

(a)

≤
∥∥∥T π∗

Usa
p
Q∗ − T̂ π̂∗

Usa
p
Q∗
∥∥∥
∞

+ γ
∥∥∥Q∗ − Q̂∗

∥∥∥
∞

(b)

≤
∥∥∥κP̂s,a

(V ∗)− κP0,s,a(V
∗)
∥∥∥
∞

+ γ
∥∥∥Q∗ − Q̂∗

∥∥∥
∞

Then using Lemma B.7, and solving we get :

∥∥∥Q∗ − Q̂∗
∥∥∥
∞

γ

1− γ

∥∥∥κP̂s,a
(V ∗)− κP0,s,a(V

∗)
∥∥∥
∞

≤ γ

1− γ

∥∥∥(P0 − P̂)V ∗
∥∥∥
∞

Finally using Lemma B.2, we obtain

∥∥∥Q∗ − Q̂∗
∥∥∥
∞

≤ γ

(1− γ)2

√
2 log(2|S||A|δ)

N

which concludes the proof.

Lemma B.13 (Similar to Agarwal, Agarwal et al. (2020) lemma 9 but for RMPDs). With probability 1− δ,
we have:

min
u∈Us

∣∣∣V̂ ⋆(s)− u
∣∣∣ ≤ 4γ

√
4 log(4|S||A|/δ)

N

Proof. The proof can be found in Agarwal et al. (2020) and is similar for RMDs than for classical MPDs and
consists in choosing Us to be the evenly spaced elements in the interval

[
V ⋆(s)−∆δ/2,NV ⋆(s) + ∆δ/2,N

]
,

then finally the size of Us is chosen to be |Us| = 1
(1−γ)2 . Using lemma , with probability greater than 1− δ/2,

we have V̂ ⋆(s) ∈
[
V ⋆(s)−∆δ/2,NV ⋆(s) + ∆δ/2,N

]
for all s according to Lemma B.12. This implies using

that that V̂ π∗
will land in one of |Us| − 1evenly sized sub-intervals of length 2∆δ/2,N :

min
u∈Us

∣∣∣V̂ ⋆(s)− u
∣∣∣ ≤

2∆δ/2,N

|Us| − 1
=

2

|Us| − 1

γ

(1 − γ)2

√
4 log(4|S||A|/δ)

N
≤ 4γ

√
4 log(4|S||A|/δ)

N

Lemma B.14 (Relation between concentration of robust and non-robust MDPs). With probability 1 − δ,
we get:

max
s,a

∣∣∣κP̂s,a
(V π̂)− κP0,s,a(V

π̂)
∣∣∣ ≤ max

s,a

∣∣∣
(
P0 − P̂

)
V π̂
∣∣∣ ≤ 8

(1− γ)

√
4 log (8|S||A|/((1− γ)δ))

N
+ 2ǫopt.

max
s,a

∣∣∣κP̂s,a
(V ∗)− κP0,s,a(V

∗)
∣∣∣ ≤ max

s,a

∣∣∣
(
P0 − P̂

)
V ∗
∣∣∣ ≤ 8

(1− γ)

√
4 log (8|S||A|/((1− γ)δ))

N
.

Proof. Using Lemma B.7, we directly have the first inequality equality part of the first statement:

max
s,a

∣∣∣κP̂s,a
(V̂ π̂)− κP0,s,a(V̂

π̂)
∣∣∣ ≤ max

(s,a)

∣∣∣
(
P0 − P̂

)
V̂ π̂
∣∣∣ ≤ max

(s,a)
|(P0 − P̂)(V̂ π̂ − V̂ ∗)|+max

(s,a)
|(P0 − P̂)V̂ ∗|

Then, combining Lemma B.11 and B.13, using |Us| = 1
(1−γ)2 , with probability 1− δ, we have :
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|
(
P0 − P̂

)
V̂ π̂| ≤4γ

√
4 log(4|S||A|/δ)

N
+

1

(1− γ)

√
4 log (8|S||A|/((1− γ)δ))

N
++2ǫopt.

≤ 8

(1 − γ)

√
4 log (8|S||A|/((1− γ)δ))

N
+ 2ǫopt.

The proof is exactly the same by replacing π̂ by π∗ but without the 2ǫopt , which gives the second stated
result. Again, this proof is written for the sa-rectangular assumption, it is also true for the s-rectangular
case with slightly different notations, replacing D = P0,s,a by D = P0,s.

These two inequalities are the core of our proof, as the closed form solution of the min problem in the
robust setting only depends on α, β and the current value function.

Theorem B.15. Suppose δ > 0, ǫ > 0 and β > 0, let π̂ be any ǫopt -optimal policy for M̂ , i.e.
∥∥∥Q̂π̂ − Q̂⋆

∥∥∥
∞

≤
ǫopt . If

N ≥ Cγ2 log
(
|S‖A|(1 − γ)−1δ−1

)

(1− γ)4ǫ2
,

we get ∥∥Q∗ −Qπ̂
∥∥
∞ ≤ ǫ+ ǫopt

with probability at least 1 − δ, where C is an absolute constant. Finally, for Ntotal = N |S||A| and H =
1/(1− γ), we get an overall complexity of

Ntotal = Õ
(
H4|S||A|

ǫ2

)
.

Proof.

∥∥Q∗ −Qπ̂
∥∥
∞

(a)

≤
∥∥∥Q∗ − Q̂∗

∥∥∥
∞

+
∥∥∥Q̂∗ − Q̂π̂

∥∥∥
∞

+
∥∥∥Q̂π̂ −Qπ̂

∥∥∥
∞

(b)

≤ ǫopt +
γ

(1− γ)

(
max
s,a

∣∣∣κP̂s,a
(V ∗)− κPs,a (V

∗)
∣∣∣+max

s,a

∣∣κPs,a

(
V π̂
)
− κPs,a

(
V π̂
)∣∣
)

(c)

≤ 16γ

(1− γ)2

√
4 log(8|S‖A|/((1− γ)δ)

N
+ ǫopt +

2γǫopt
1− γ

≤ 16γ

(1− γ)2

√
4 log(8|S‖A|/((1− γ)δ)

N
+ ǫopt +

2γǫopt
1− γ

(d)

≤ ǫ+
3γǫopt
1− γ

Inequality (a) is due to Lemma B.1. Inequality (b) comes from Lemma B.4. Finally, inequality (c) comes
from Lemma B.14 and inequality (d) from the form of N in the theorem. Note that this proof holds for both
s- and sa-rectangular assumptions.

C Towards minimax optimal bounds

We start from the same decomposition as the proof of Theorem 4.1 proved in Lemma B.1:

∥∥Q∗ −Qπ̂
∥∥
∞ ≤

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

+
∥∥∥Q̂π∗ − Q̂π̂

∥∥∥
∞

+
∥∥∥Q̂π̂ −Qπ̂

∥∥∥
∞

.

However, we need tighter concentration arguments for this proof.
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In the following, we will frequently use the fact that, for any policy π, written below for the s-rectangular
case (a similar expression can be obtained for the sa-rectangular case, adapting the regularized reward),

Recall, the fix point equation for Qπ can be written as :

Qπ = (I − γP π
0 )

−1
(R0 − αs

(
πs/ ‖πs‖q

)q−1

+ γ inf
Pπ∈Ps

P πV π) (31)

It will be applied notably to π̂ and π∗ (recall that Q∗ = Qπ∗
), in the RMDP but also in the empirical

one.

Lemma C.1. For s-rectangular we have

(I − γP π
0 )

−1
rs
Q̂π

s
−
(
I − γP̂ π

)−1

rs
Q̂π

s

(a)
= (I − γP π

0 )
−1
((

I − γP̂ π
)
− (I − γP π

0 )
)
Q̂π

s

= γ (I − γP π
0 )

−1
(
P π
0 − P̂ π

)
Q̂π

s

= γ (I − γP π
0 )

−1 (P0 − P̂ )V̂ π
s

and for optimal policy

(
I − γP π∗

0

)−1

rs
Q̂π∗

s
−
(
I − γP̂ π∗

)−1

rs
Q̂π∗

s
= γ

(
I − γP π∗

0

)−1

(P0 − P̂ )V̂ π∗

s (32)

(
I − γP π̂

0

)−1
rs
Q̂π̂

s
−
(
I − γP̂ π̂

)−1

rs
Q̂π̂

s
= γ

(
I − γP π̂

0

)−1
(P0 − P̂ )V̂ π̂

s (33)

The solution is a bit different as rs
Q̂π

s

is the regularised form of the Lp optimisation problem with simplex

constraints which correspond to rs
Q̂π

s

= R0 −
(

π∗
s

‖π∗
s‖q

)q−1

αs + γ infPπ∈Ps P
πV̂ π or for sa case : r

(s,a)

Q̂π
sa

=

R0 − αsa + γ infPπ∈Ps P
πV̂ π

Indeed, even without close form, we can write the problem with an expectation over the nominal and the
infimum problem.

Lemma C.2 (Upper bound on Q∗ − Q̂π∗
and on Qπ̂ − Q̂π̂, all Q values are now with robust under simplex

constraints.).

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

≤γ
∥∥∥(I − γP π∗

0 )−1(P0 − P̂ )V̂ π∗
∥∥∥
∞

+
2γβ|S|1/q
1− γ

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

≤γ
∥∥∥
(
I − γP π̂

0

)−1
(P0 − P̂ )V̂ π̂

∥∥∥
∞

+
2γβ|S|1/q
1− γ

∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞
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Proof.

Q∗ − Q̂π∗

=
(
I − γP π∗

0

)−1

(R0 −
( π∗

s

‖π∗
s‖q

)q−1

αs + inf
Pπ∈Ps

P πV ∗)

−
(
I − γP̂ π∗

)−1

(R0 −
( π∗

s

‖π∗
s‖q

)q−1

αs + inf
Pπ∈Ps

P πV̂ π∗
)

=
(
I − γP π∗

0

)−1

(R0 −
( π∗

s

‖π∗
s‖q

)q−1

αs + γ inf
Pπ∈Ps

P πV ∗)

−
(
I − γP π∗

0

)−1

(R0 −
( π∗

s

‖π∗
s‖q

)q−1

αs + γ inf
Pπ∈Ps

P πV̂ π∗
)

+
(
I − γP π∗

0

)−1

(R0 −
( π∗

s

‖π∗
s‖q

)q−1

αs + γ inf
Pπ∈Ps

P πV̂ π∗
)

−
(
I − γP̂ π∗

)−1

(R0 −
( π∗

s

‖π∗
s‖q

)q−1

αs + γ inf
Pπ∈Ps

P πV̂ π∗
)

(a)
=γ

(
I − γP π∗

0

)−1

(P0 − P̂ )V̂ π∗
+
(
I − γP π∗

0

)−1

γ

(
inf

Pπ∈Ps

P πV ∗ − inf
Pπ∈Ps

P πV̂ π∗
)

where in (a) we use previous Lemma C.1.

Hence, taking the supremum norm ‖.‖∞,

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

=
∥∥∥∥γ
(
I − γP π∗

0

)−1

(P0 − P̂ )V̂ π∗
+
(
I − γP π∗

0

)−1

γ

(
inf

Pπ∈Ps

P πV ∗ − inf
Pπ∈Ps

P πV̂ π∗
)∥∥∥∥

∞
(b)

≤
∥∥∥∥γ
(
I − γP π∗

0

)−1

(P0 − P̂ )V̂ π∗
∥∥∥∥
∞

+

∥∥∥∥
(
I − γP π∗

0

)−1

γ

(
inf

Pπ∈Ps

P πV ∗ − inf
Pπ∈Ps

P πV̂ π∗
)∥∥∥∥

∞
(c)

≤
∥∥∥∥γ
(
I − γP π∗

0

)−1

(P0 − P̂ )V̂ π∗
∥∥∥∥
∞

+
γ

1− γ
| inf
Pπ∈Ps

P πV ∗ − inf
Pπ∈Ps

P πV̂ π∗ |

(d)

≤
∥∥∥∥γ
(
I − γP π∗

0

)−1

(P0 − P̂ )V̂ π∗
∥∥∥∥
∞

+
γ

1− γ
sup

Pπ∈Ps

P π | V ∗ − V̂ π∗ |

(e)

≤
∥∥∥∥γ
(
I − γP π∗

0

)−1

(P0 − P̂ )V̂ π∗
∥∥∥∥
∞

+
γ

1− γ
sup

P :‖P‖p≤βs,
∑

s P (s)=0

P | V ∗ − V̂ π∗ |

(f)

≤
∥∥∥∥γ
(
I − γP π∗

0

)−1

(P0 − P̂ )V̂ π∗
∥∥∥∥
∞

− γ

1− γ
inf

P :‖P‖p≤βs,
∑

s P (s)=0
−P | V ∗ − V̂ π∗ |

(g)

≤
∥∥∥∥γ
(
I − γP π∗

0

)−1

(P0 − P̂ )V̂ π∗
∥∥∥∥
∞

+
γβ|S|1/q
1− γ

spq,π∗(Q∗ − Q̂π∗
)

(h)

≤
∥∥∥∥γ
(
I − γP π∗

0

)−1

(P0 − P̂ )V̂ π∗
∥∥∥∥
∞

+
2γβ|S|1/q
1− γ

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

where (b) is the triangular inequality, (c) Eq. (12), (d) is the triangular inequality for seminorms, (d) is
|infA f − infA g| ≤ supA |f − g|., (e) is a relaxation (f) is the relation between sup and inf, (g) is lemma 1 of
Kumar et al. (2022)), (h) is inequality for seminorms and norms (13).

For brevity in the remaining analysis, let us define the shorthand:

L = log(8|S||A|/((1 − γ)δ)).
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Recall, slightly abusing the notation, for V ∈ R
S , we define the vector VarP (V ) ∈ R

S×A as VarP (V ) =
P (V )2 − (PV )2.

Lemma C.3 (Agarwal et al. (2020), Lemma 9). With probability greater than 1− δ,

∣∣∣(P0 − P̂ )V̂ ⋆
∣∣∣ ≤

√
8L

N

√
VarP0

(
V̂ ⋆
)
+∆′

δ,N I

∣∣∣(P0 − P̂ )V̂ π⋆
∣∣∣ ≤

√
8L

N

√
VarP0

(
V̂ π⋆

)
+∆′

δ,N I

where ∆′
δ,N =

√
cL

N
+

cL

(1− γ)N
and c is a universal constant smaller than 16.

Proof. The proof of Agarwal et al. (2020) holds for classical MDP but can be adapted to the robust setting
using all lemmas proved for the bound in H4 previously. Lemma B.9,B.10 ,B.12,B.13,22 are needed but the
main difference is that we are using Berstein’s inequality and not Hoeffding’s inequality. The idea is first, as
in the previous proof, to apply Berstein’s inequality to independent variables using s absorbing MDPs then
using Lemma B.13.

Proof. Similar to Agarwal et al. (2020), we first show that

∣∣∣
(
P0 − P̂

)
· V̂ ⋆

∣∣∣ ≤
√

2 log (4 |Us| /δ)
N

√
VarP0

(
V̂ ⋆
)

+ min
u∈Us

∣∣∣V̂ ⋆(s)− u
∣∣∣
(
1 +

√
2 log (4 |Us| /δ)

N

)
+

2 log (4 |Us| /δ)
(1− γ)3N

∣∣∣
(
P0 − P̂

)
· V̂ π⋆

∣∣∣ ≤
√

2 log (4 |Us| /δ)
N

√
VarP0

(
V̂ π⋆

)

+ min
u∈Us

∣∣∣V̂ π⋆

(s)− u
∣∣∣
(
1 +

√
2 log (4 |Us| /δ)

N

)
+

2 log (4 |Us| /δ)
(1− γ)3N

First, with probability greater than 1− δ, we have that for all u ∈ Us.

∣∣∣
(
P0 − P̂

)
· V̂ ⋆

∣∣∣ =
∣∣∣
(
P0 − P̂

)
·
(
V̂ ⋆ − V ⋆

s,u + V ⋆
s,u

)∣∣∣
(a)

≤
∣∣∣
(
P0 − P̂

)
·
(
V̂ ⋆ − V ⋆

s,u

)∣∣∣+
∣∣∣
(
P0 − P̂

)
·
(
V ⋆
s,u

)∣∣∣
(b)

≤
∥∥∥V̂ ⋆ − V ⋆

s,u

∥∥∥
∞

+

√
2 log (4 |Us| /δ)

N

√
VarP0

(
V ⋆
s,u

)
+

2 log (4 |Us| /δ)
(1− γ)3N

(c)
=
∥∥∥V̂ ⋆ − V ⋆

s,u

∥∥∥
∞

+

√
2 log (4 |Us| /δ)

N

√
VarP0

(
V̂ ⋆ − V ⋆

s,u − V̂ ⋆
)
+

2 log (4 |Us| /δ)
(1 − γ)3N

(d)

≤
∥∥∥V̂ ⋆ − V ⋆

M̂s,u

∥∥∥
∞

(
1 +

√
2 log (4 |Us| /δ)

N

)
+

√
2 log (4 |Us| /δ)

N

√
VarP0

(
V̂ ⋆
)
+

2 log (4 |Us| /δ)
(1− γ)3N

using the triangle inequality in (a), (b) classical Berstein’s inequality, (d) for variance and Lemmas B.9 and
B.10 such as ∥∥∥V̂ ⋆ − V ⋆

s,u

∥∥∥
∞

=
∥∥∥V̂ ⋆

s,V̂ ⋆(s)
− V ⋆

s,u

∥∥∥
∞

≤
∣∣∣V̂ ⋆(s)− u

∣∣∣ .

It is true for u ∈ Us, so we take the best possible choice, which completes the proof of the first claim. The
proof of the second claim is similar. Then using Lemma B.13 gives the final concentration theorem.
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Lemma C.4 (Azar et al. (2013), Lemma 7). This is an adaptation of Azar et al. (2013) to RMDPs. For
any policy π,

∥∥∥(I − γP π
0 )

−1
√
VarP0 (V

π)
∥∥∥
∞

≤
√

2

(1− γ)3
,

where P0 is the nominal transition model of M .

Proof. This proof is exactly the same for Robust and non robust MDPs, as it uses only standard computations
such as the Jensen inequality and no robust form which are specific to this problem. The main difference is
that we are doing the proof on the nominal of our robust set P0, considering the regularized robust Bellman
operator and associated regularized reward functions.

Azar et al. (2013) introduce the variance of the sum of discounted rewards starting at state-action (s, a),

Σπ(s, a) := E[|
∑

t≥0

γtR0(st, at)−Qπ(s, a)|2|s0 = s, a0 = a],

and we defined the same variance for robust MDPs using robust rewards r
(s,a)
Qπ

sa
and rsQπ

s
and using robust

Q-function instead of classical Q-function in the definition of Σ. Then, in their Lemma 6 they show that,
for any π:

Σπ = VarP0 (V
π) + γ2P π

0 Σ
π,

which is, in fact, a Bellman equation for the variance. The proof is exactly the same for RMDPs considering

our robust reward r
(s,a)
Qπ

sa
or rsQπ

s
and not classical R0. Note that this is thanks to the regularised form of

robust RMDPs. Finally, Lemma C.4 is the same as their Lemma 7 considering robust rewards. This lemma
is usually called the total variance lemma. This completes the proof.

Lemma C.5. The following upper bound holds with probability 1− δ:

∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

< (CN + Cβ)
∥∥∥Qπ̂ − Q̂π̂

∥∥∥
∞

+ γ4

√
L

N(1− γ)3
+

γ∆′
δ,N

1− γ
+

γǫopt
1− γ

(
2 +

√
8L

N

)
(34)

with CN = γ
1−γ

√
8L
N and Cβ = 2γβ|S|1/q

1−γ .
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Proof.
∥∥∥Qπ̂ − Q̂π̂

∥∥∥
∞

(a)

≤ γ

∥∥∥∥
(
I − γP π̂

0

)−1

(P0 − P̂ )V̂ π̂

∥∥∥∥
∞

+
2γβ|S|1/q
1− γ

∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

(b)

≤ γ

∥∥∥∥
(
I − γP π̂

)−1

(P0 − P̂ )V̂ ⋆

∥∥∥∥
∞

+ γ
∥∥∥(I − γP π

0 )
−1

(P0 − P̂ )
(
V̂ π̂ − V̂ ⋆

)∥∥∥
∞

+
2γβ|S|1/q
1− γ

∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

(c)

≤ γ

∥∥∥∥
(
I − γP π̂

0

)−1

(P0 − P̂ )V̂ ⋆

∥∥∥∥
∞

+
2γǫopt
1− γ

+
2γβ|S|1/q
1− γ

∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

(d)

≤ γ

∥∥∥∥
(
I − γP π̂

0

)−1 ∣∣∣(P0 − P̂ )V̂ ⋆
∣∣∣
∥∥∥∥
∞

+
2γǫopt
1− γ

+
2γβ|S|1/q
1− γ

∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

(e)

≤ γ

√
8L

N

∥∥∥∥∥
(
I − γP π̂

0

)−1
√
VarP0

(
V̂ ⋆
)∥∥∥∥∥

∞
+ 2

γ∆′
δ,N

1− γ
+

2γǫopt
1− γ

+
2γβ|S|1/q
1− γ

∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

(f)

≤ γ

√
8L

N

∥∥∥∥∥
(
I − γP π̂

0

)−1
(√

VarP0 (V
π̂) +

√
VarP0

(
V π̂ − V̂ π̂

)
+

√
VarP0

(
V̂ π̂ − V̂ ⋆

))∥∥∥∥∥
∞

+
γ∆′

δ,N

1− γ
+

2γǫopt
1− γ

+
2γβ

1− γ

∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

(g)

≤ γ

√
8L

N




√
2

(1 − γ)3
+

√∥∥∥V π̂ − V̂ π̂
∥∥∥
2

∞
1− γ

+
2ǫopt
1− γ


+

γ∆′
δ,N

1− γ
+

2γǫopt
1− γ

+
2γβ

1− γ

∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

(h)

≤ γ

√
8L

N



√

2

(1− γ)3
+

∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

1− γ
+

2ǫopt
1− γ


+

γ∆′
δ,N

1− γ
+

2γǫopt
1− γ

+
2γβ|S|1/q
1− γ

∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

= γ

√
8L

N



√

2

(1− γ)3
+

∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

1− γ


+

γ∆′
δ,N

1− γ
+

γǫopt
1− γ

(
2 +

√
8L

N

)
+

2γβ|S|1/q
1− γ

∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

= (CN + Cβ)
∥∥∥Qπ̂ − Q̂π̂

∥∥∥
∞

+ 4γ

√
L

N(1− γ)3
+

γ∆′
δ,N

1− γ
+

γǫopt
1− γ

(
2 +

√
8L

N

)

with CN = γ
1−γ

√
8L
N and Cβ = 2γβ|S|1/q

1−γ .

We have that (a) is true by Lemma C.2, (b) is by the triangular inequality using V̂ π̂ = V̂ π̂ + V̂ ⋆ − V̂ ⋆,
(c) is from the definition of ǫopt and Eq. (12), (d) is by positivity of the classic horizon inverse matrix, that
is (I − γP )−1 =

∑
t>0 γ

tP t > 0, (e) is by Lemma C.3, (f) is by the triangular inequality for the variance

(which is, in fact, a seminorm) and decomposing V̂ ⋆ = V̂ ⋆ + V̂ π̂ − V̂ π̂ +V π̂ −V π̂, (g) is by Lemma C.4, uses
the definition of ǫopt and takes the sup over (s, a) of the variance in the second term, and eventually (h) is

because we have that ‖V π − V̂ π‖∞ ≤ ‖Qπ − Q̂π‖∞ for any π.

Lemma C.6. The following upper bound holds with probability 1− δ:

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

< (CN + Cβ)
∥∥∥Q∗ − Q̂π∗

∥∥∥
∞

+ γ4

√
L

N(1− γ)3
+

γ∆′
δ,N

1− γ
. (35)

with CN = γ
1−γ

√
8L
N and Cβ = 2γβ|S|1/q

1−γ .
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Proof.

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

(a)

≤ γ

∥∥∥∥
(
I − γP π∗

0

)−1

(P0 − P̂ )V̂ π∗
∥∥∥∥
∞

+
2γβ|S|1/q
1− γ

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

(b)

≤ γ

∥∥∥∥
(
I − γP π∗

0

)−1 ∣∣∣(P0 − P̂ )V̂ π∗
∣∣∣
∥∥∥∥
∞

+
2γβ|S|1/q
1− γ

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

(c)

≤ γ

√
8L

N

∥∥∥∥∥
(
I − γP π∗

0

)−1
√
VarP0

(
V̂ π∗

)∥∥∥∥∥
∞

+ 2
γ∆′

δ,N

1− γ
+

2γβ|S|1/q
1− γ

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

(d)

≤ γ

√
8L

N

∥∥∥∥∥
(
I − γP π∗

0

)−1
(
√
VarP0 (V

∗) +

√
VarP0

(
V ∗ − V̂ π∗

))∥∥∥∥∥
∞

+
γ∆′

δ,N

1− γ
+

2γβ|S|1/q
1− γ

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

(e)

≤ γ

√
8L

N




√
2

(1− γ)3
+

√∥∥∥V ∗ − V̂ π∗
∥∥∥
2

∞
1− γ


+

γ∆′
δ,N

1− γ
+

2γβ|S|1/q
1− γ

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

≤ γ

√
8L

N



√

2

(1 − γ)3
+

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

1− γ


+

γ∆′
δ,N

1− γ
+

2γβ|S|1/q
1− γ

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

= (CN + Cβ)
∥∥∥Q∗ − Q̂π∗

∥∥∥
∞

+ 4γ

√
L

N(1− γ)3
+

γ∆′
δ,N

1− γ

with CN = γ
1−γ

√
8L
N and Cβ = 2γβ|S|1/q

1−γ .

We have that (a) is true by Lemma C.2, (b) is by the positivity of the classic horizon inverse matrix,
(c) is by Lemma (C.3), (d) is by the triangular inequality for the variance (which is a seminorm), (e) is by
Lemma C.4 and taking the sup over (s, a) of the variance in the second term, and eventually (h) is because

‖V π − V̂ π‖∞ ≤ ‖Qπ − Q̂π‖∞ for any π.

As the event on which ∆′
δ,N is the same in the two previous Lemma C.5 and Lemma C.6, we can obtain

the following.

Theorem C.7. For 0 < Cβ ≤ 1/2 and 0 < CN + Cβ < 1, with probability 1− δ, we get:

∥∥Q∗ −Qπ̂
∥∥
∞ <

1

1− (CN + Cβ)

(
8γ

√
L

N(1− γ)3
+

2γ∆′
δ,N

1− γ
+

γǫopt
1− γ

(
2 +

√
8L

N

))
+ ǫopt.

Proof. This result is obtained by combining the two previous Lemmas C.5 and C.6 and passing the term in
(CN + Cβ) to the left-hand side.

Note that Cβ + CN < 1 implies Cβ = 2γβ|S|1/q
1−γ < 1 and hence β < 1−γ

2γ|S|1/q . Now we need to pick

CN < 1− Cβ . Let CN ≤ 1− Cβ − η, for any 0 < η < 1− Cβ the previous inequality becomes

∥∥Q∗ −Qπ̂
∥∥
∞ <

8

η
γ

√
L

N(1− γ)3
+

2γ∆′
δ,N

η(1 − γ)
+

γǫopt
η(1− γ)

(
2 +

√
8L

N

)
+ ǫopt.

34



As ∆′
δ,N =

√
cL
N + cL

(1−γ)N , the term in 1/
√
N is given by 8γ

√
LH3/2

η
√
N

(
1 + 1/4

√
c/H

)
and is smaller than

ǫ whenever

N ≥ 64γ2LH3(1 + 1/4
√
c/H)2

η2ǫ2
.

We will use c < 16 and H ≥ 1 and use the stronger constraint

N ≥ 256γ2LH3

η2ǫ2
.

Along the same line, the term in 1/N is 2γcLH2

ηN which is smaller than ǫ whenever

N ≥ 2γcLH2

ǫ
.

Now, CN < 1− η − Cβ means

γ

1− γ

√
8L

N
< 1− η − Cβ

hence

N >
8Lγ2H2

(1 − η − Cβ)2
.

We deduce that whenever

N ≥ max

(
256γ2LH3

η2ǫ2
,
2γcLH2

ǫ
,

8Lγ2H2

(1 − η − Cβ)2

)

=
256γ2LH3

η2
max

(
1

ǫ2
,

cη

128Hγǫ
,

η2

64H(1− η − Cβ)2

)

the error is smaller than 2ǫ up to the ǫopt terms.
This bounds reduces to

N ≥ Cγ2LH3

ǫ2

with C = 256/η2 if

ǫ ≤ min

(
128H

η
,
√
64H

1− η − Cβ

η

)
.

Note that ǫ ∈ [0, H) and η < 1 so that the previous condition simplifies to

ǫ ≤
√
64H

1− η − Cβ

η
= ǫ0.

If we want to obtain an arbitrary ǫ0, it suffices thus to take η arbitrarily small leading to the constant
C = 256/η2 to be arbitrarily large.

Note that if ǫ0 ≥ O(H1/2+δ) then 1/η > O(Hδ) which add a H2δ factor to the bound on N .

However, for any κ
√
H and for any Cβ , it exists an η independent of H so that ǫ0 = 8

√
H

1−η−Cβ

η = κ
√
H,

hence the result stated in Theorem 5.1.
Now, as L = log(8|S||A|/((1 − γ)δ)), the previous condition can be summarized by

Ntotal = N |S||A| = Õ
(
H3|S||A|

ǫ2

)

provided ǫ < ǫ0.
Finally, taking β0 = 1−γ

8γ which gives Cβ = 1/4 and η = 1/2 so that CN ≤ 1/4, we obtain C = 1024 and

ǫ0 =
√
16H.
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D Time Complexity

D.1 sa-rectangular case.

In this section, we discuss the time complexity of our algorithm compared to non -robust algorithm and the
one of Kumar et al. (2022).

In sa-rectangular case, optimal Bellman operator is:

(T ∗V )(s) = max
a︸︷︷︸

action cost

max
α︸︷︷︸

α opt

[R(s, a)− αs,a − βs,aγ spq([V ]α)︸ ︷︷ ︸
reward penalty/cost

+γ
∑

s′

P (s′ | s, a) [V ]α (s′)

︸ ︷︷ ︸
sweep

].

First the ’sweep’ requires O(S) iterations and the ’action cost’ requires O(A) iterations. We can notice that
the span semi norm depends on state and action and is computed only once for value iteration for all states.
Then the update requires:

O((α opt )(S( action cost )( sweep cost ) + reward cost )) = O
(
(α opt )(S2A+ reward cost )

)
.

Since the value iteration is a contraction map, we get ǫ-close to the optimal value and it requires O
(
log
(
1
ǫ

))

full value update. An additional O
(
log
(
1
ǫ

))
is required also for binary search in α, so the complexity is:

O

(
log

(
1

ǫ

)2 (
S2A+ reward cost

)
)
.

In non robust MDPs, the complexity is:

O

(
log

(
1

ǫ

)(
S2A

))

as there is no optimisation in α or reward cost. Reward cost is of the order O
(
S log

(
S
ǫ

))
according to

Kumar et al. (2022) in the general case and O(S) when there is an analytic form for it. So in sa-rectangular,
the complexity is :

O(log

(
1

ǫ

)2

S2A+ S

(
log

(
1

ǫ

))3

)

when the span-seminorm is not known and only

O(log

(
1

ǫ

)2

S2A)

otherwise, when there is an analytic form of the span seminorm.

D.2 s-rectangular case

According to lemma 4 of Kumar et al. (2022), the complexity of s- rectangular algorithm with no analytic
form of the span seminorm and without optimisation in α is:

O

(
log

(
1

ǫ

)(
S2A+ SA log

(
A

ǫ

)))
.

In our case, an additional optimisation. in α is required which adds a factor O
(
log
(
1
ǫ

))
and then requires

a total cost of :

O

(
log

(
1

ǫ

)2(
S2A+ SA log

(
A

ǫ

)))
.
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