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Abstract

Estimating accurate high-dimensional transformations remains very challenging, especially in
a clinical setting. In this paper, we introduce a multiscale parameterization of deformations
to enhance registration and atlas estimation in the Large Deformation Diffeomorphic Metric
Mapping framework. Using the Haar wavelet transform, a multiscale representation of the
initial velocity fields is computed to optimize transformations in a coarse-to-fine fashion. This
additional layer of spatial regularization does not modify the underlying model of deformations.
As such, it preserves the original kernel Hilbert space structure of the velocity fields, enabling
the algorithm to perform efficient gradient descent. Numerical experiments on several datasets,
including abnormal fetal brain images, show that compared to the original algorithm, the
coarse-to-fine strategy reaches higher performance and yields template images that preserve
important details while avoiding unrealistic features. This highly versatile strategy can easily
be applied to other mathematical frameworks for almost no additional computational cost.

Keywords: Deformable template model, atlas estimation, diffeomorphic deformations, Haar Wavelet,
coarse-to-fine algorithm

1 Introduction

Although the quantitative analysis of anatom-
ical images is an old problem [1], to this day
it is still a challenging one, especially given
that datasets of clinical images are often small
in number and large in dimension. Estimating
the transformation that warps an object onto
another provides an efficient way of quantifying
shape differences, which is the cornerstone idea
of Computational Anatomy [2].

The choice of the function describing the
template-to-subject transformations is of prime
importance [3]. To account for the intra- and
inter-subject anatomical variability in clinical
images, non-linear deformations are mandatory.
The Large Deformation Diffeomorphic Metric
Mapping (LDDMM) setting [4; 5; 6] is a mathe-
matical framework in which objects are warped
through diffeomorphic transformations of the
ambient space, i.e. high-dimensional, smooth
and invertible functions with smooth inverse
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that preserve image topology. The group of pos-
sible transformations forms a Riemannian man-
ifold of infinite dimension and parameterizes a
flexible representation of deformations.

The main advantage of the LDDMM lies in
the fact that it constrains diffeomorphisms to be
geodesic flows, i.e. the shortest paths between
the objects according to a metric regularizing
transformations [4]. Therefore, one can compute
distances between shapes and perform mean-
ingful statistical analyses on populations of
shapes, such as Principal Component Analysis
[7], geodesic regression [8] and atlas estimation
[9].

In this paper, we are interested in atlas
estimation, a method to model the mean and
variability over a collection of images that are
instances of the same anatomical object. An
estimate of the average shape is given in the
form of a template image, which represents
the invariants across the population, i.e. shared
anatomical features, and the variability is given
by deformations from the template space to
each subject’s space, which express how these
common features vary within the population
[10].

Atlas estimation has many applications in
the field of medical image analysis. The tem-
plate image can be used as reference to describe
average anatomical structures or serve as a
tool to automatically segment new subjects.
Within the LDDMM framework, atlases have
been used to characterize pathological devia-
tions from normality [11], isolate subgroups in a
population [12], and in a spatio-temporal fash-
ion to characterize pathological changes, such as
hippocampal reduction in Alzheimer’s disease
[12].

In the LDDMM framework, diffeomor-
phisms are constructed by integrating time-
dependent velocity fields, which results in
high computational complexity. Conveniently,
the resulting flow of diffeomorphisms is fully
determined by the initial state of the system,
enabling us to only optimize the initial velocity
fields [13]. However, finding optimal diffeomor-
phisms involves solving expensive Partial Dif-
ferential Equations (the “geodesic equations”)
[14] and operating over infinite-dimensional
velocity fields. To further improve optimization
efficiency, a number of papers introduced sparse
finite-dimensional parameterizations of the ini-
tial vector fields [15; 16; 17; 18]. In this paper,
we will work within the framework of Durrleman

et al. [15], where velocity fields are parameter-
ized by the convolution of momentum vectors
attached to control points and regularized by a
Gaussian kernel defining a Reproducing Kernel
Hilbert Space (RKHS).

The choice of this regularizer is critical as it
restricts the range of transformations defined
by the model [19]. Specifically, it constrains
the deformations occurring on the images to
a single scale. A large kernel width is likely
to produce smooth but less accurate matches,
while a fine kernel will generate more accu-
rate yet unnatural deformations. As clinical
images often present high variability at sev-
eral scales, one might be tempted to increase
the number of parameters in the model, i.e. to
use many control points and a small kernel.
However, fine kernels make large displace-
ments more expensive than small ones, and
such over-parameterization will likely trap the
optimization procedure in a local minimum,
achieving a reasonable numerical solution that
is qualitatively bad. To overcome such prob-
lem, hierarchical algorithms have been widely
used in the field of image registration [3; 20]:
after solving the registration problem at coarse
scales, the solution is transferred to increasingly
fine scales to refine the transformation. These
strategies avoid more efficiently trapping the
algorithm in local minima related to unrealistic
transformations.

In this paper, we propose to enhance the
outcomes of the conventional RKHS-based
LDDMM algorithm by employing a coarse-
to-fine optimization procedure based on a
Haar-like wavelet representation of the initial
velocity fields. Our reparameterization can be
seen as an additional layer of regularization
which does not modify the underlying model of
deformation, making our algorithm highly ver-
satile and transferable to other mathematical
frameworks. We apply the multiscale strategy
to the atlas estimation algorithm of Durrleman
et al. [15], which uses a finite parameterization
of the velocity fields as a linear combination
of RKHS basis elements. This enables us to
rely on an efficient numerical scheme to com-
pute the gradients all the while controlling the
smoothness of the deformations with our multi-
scale scheme. We evaluate our algorithm on a
registration example and different atlas estima-
tion tasks and show that our strategy generates
more natural template images as well as higher
stability regarding the initialization.
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This paper is organized as follows. We first
explore works related to coarse-to-fine registra-
tion and atlas estimation in Section 2, then
we recall the LDDMM setting in the case of
the finite parameterization of the velocity fields
in Section 3 and introduce our coarse-to-fine
atlas estimation method in Section 4; then, we
conduct experiments on toy data and fetal brain
images in Section 5 and discuss our results
in Section 6.

2 Related work

Even though multiscale image registration has
been studied repeatedly in the literature, it has
rarely been evaluated in the setting of popula-
tion analysis. As registration is a special case
of atlas estimation with a fixed template image,
in the following we will review both registra-
tion and atlas estimation methods that have a
multiscale property.

Rooted in the idea of analyzing images
across different scales [21; 22], hierarchical
approaches have played a pivotal role in tasks
involving image motion. Traditional optical flow
algorithms [23; 24; 25; 26] were among the first
to perform image matching in a coarse-to-fine
manner, using pyramids of images of progres-
sively increasing resolution to circumvent the
difficulty of capturing large motions and speed
up computations. Concurrently, the develop-
ment of sophisticated tools like Spline pyramids
[27] and wavelet transforms [28] provided novel
methods for representing images and deforma-
tions at different scales. Many popular medical
image registration algorithms now use multires-
olution representations of deformations, most
of which are combined with Gaussian smooth-
ing of the images: the Demons algorithm [29]
applies Gaussian filters to the vector fields,
IRTK [30; 31] parameterized B-splines with
grids of increasing resolution, ROMEO [32] uses
an adaptive multigrid strategy to estimate opti-
cal flow, DARTEL [33] also uses a multigrid
method to estimate single-flow velocity fields
and Syn [34] estimates symmetric diffeomor-
phisms with Gaussian smoothing of velocity
fields and later on B-spline regularization [35].

In the following, we will only review multi-
scale strategies related to our method, i.e. that
are multiscale with regard to the deformation
field.

2.1 Multiscale representations of
deformations

Signal representation provides numerous math-
ematical tools to represent signals, and several
registration algorithms modelled deformations
using basis functions from the Fourier and
Wavelet transforms. These multiscale represen-
tations typically aim to improve computational
efficiency by playing on the relation between
a representation and a regularization, which
allows using lower dimensional parameteriza-
tion of the velocity fields along the trajectory.
Examples of this approach made use of the
Fourier transform [36; 18; 37], Galerkin method
[38], or orthogonal decomposition [39]. Our
work falls into a different category, which aims
to modify an initial method marginally, to
reach better local minima without changing the
considered representation or regularization of
the LDDMM. The solution is to construct a
sequence of nested problems: in our case, a mul-
tiscale representation of only the initial velocity
field. The inherent scale information within the
new parameters is leveraged to solve the opti-
mization problem in a coarse-to-fine manner.
This idea is already present in Christensen et al.
[40] who parameterized displacement fields by
a Fourier basis with an adapted regularization
term and estimated frequency coefficients in
a coarse-to-fine fashion. However, experiments
showed that modelling deformations using a
wavelet basis provides better spatial regulariza-
tion compared to using a Fourier basis [41]. This
advantage stems from the fact that wavelets
not only capture the frequency of the signal but
also its location and orientation, making them
a more natural fit for hierarchical optimization
strategies.

Wavelet-based deformation models cover
various wavelet types (e.g. Haar, Cai Wang and
(BV,L2)) and deformations (e.g. displacement
vectors, B-splines and elastic deformations).
Displacement vectors [42; 43] and later free
form deformations [44] were described and opti-
mized in a multi-resolution fashion through the
Cai Wang wavelet [45]. Gefen et al. [46] mod-
eled elastic deformations using finite-supported,
semi-orthogonal wavelet functions. Topology-
preserving displacement fields were modelled by
polynomial spline basis functions and control-
ling the Jacobian of the transformation [47; 48].
Recently, wavelets (BV,L2) were employed to
generate a hierarchical representation of dif-
feomorphisms in the hyperelasticity framework
and perform coarse-to-fine optimization [49].
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2.2 Multiscale registration in the
LDDMM framework

In the LDDMM framework, the choice of the
spatial regularizer restricts the range of possi-
ble deformations to those occurring at a single
scale, which often proves unrealistic [50]. Thus,
a variety of papers have focused on increas-
ing the flexibility of the deformation model.
These strategies can be broadly classified into
two categories: the first one simultaneously
estimates coexisting flows of different scales
[50; 51; 19; 52; 53], and the second one com-
poses multiple scale flows which are estimated
sequentially [54; 55].

Risser et al. [50; 51] first introduced a multi-
kernel extension of the LDDMM framework
in which the deformation flow is defined by
a weighted sum of Gaussian kernels whose
widths are specified by the user. Weights are
tuned in a semi-automatic manner during a pre-
registration step. In this framework, the RKHS
structure of the velocity fields is lost, and a new
definition of the norm is used to ensure efficient
computation of the flow. A spatially-varying ver-
sion of this framework, the kernel bundle, used
sparsity priors to allow the weights of the ker-
nel mixture to vary across spatial locations [19].
Even though this algorithm proved efficient on
the registration of landmark points, the increase
in computational cost restricts its application
to registration problems involving few parame-
ters. Using an algorithm for the multiresolution
decomposition of surfaces, the kernel bundle
framework was also combined with a coarse-to-
fine strategy wherein the resolution of cortical
surface meshes is progressively increased along
with that of the deformation field [53]. Multi-
kernel approaches were further combined with
deep learning optimization in order to learn a
local regularizer from the data [56; 57]. However,
these methods increase significantly the com-
plexity of the mathematical model, and several
optimization procedures are required to tune
the networks parameters, the kernel pre-weights
and the deformation parameters.

A related approach, based on modular defor-
mations, enables the user to impose spatially-
varying constraints on the deformation field [52].
Diffeomorphisms are built by superimposing
deformations modules that encode local geomet-
rical transformations.As in the kernel bundle
framework, the space of vector fields is equipped
with an adapted norm. The need for prior knowl-
edge about the deformation modules limits the
practical application of the algorithm.

A second and less explored axis of research
constructed a hierarchical representation of
deformations, based on non-coexisting vector
flows of increasing resolution, which are esti-
mated independently and then composed. In a
theoretical paper, Modin et al. [54] extended
(BV,L2) wavelets to express diffeomorphisms
as a composition of deformations of increas-
ingly fine scales, which can be seen as a series
of LDDMM steps. Despite the potential of
this approach, the authors did not perform
numerical experiments. A similar approach
[55] constructed diffeomorphisms by compos-
ing a series of multiscale vector fields, which
enables to progressively refine the deformation.
Contrary to multi-kernel approaches, such
strategies perform optimization in successive
RKHS of increasingly finer resolution, in the
spirit of coarse-to-fine strategies.

As we shall see in the following, our coarse-
to-fine approach is more closely related to the
one that composes multiple scale flows, in the
sense that we perform optimization sequentially
in sub-spaces of increasing resolution. However,
our algorithm differs from the previous ones by
the fact that our work brings changes to the
optimization procedure rather than the defor-
mation model: the multiscale structure is only
used for the initial velocity field and so that
the velocity fields are still defined, at core, by
a single-scale RKHS. This simplifies the imple-
mentation of our algorithm while preserving the
efficient optimization scheme of Durrleman et
al. [15].

3 Model of diffeomorphic
deformations

3.1 Large Deformation
Diffeomorphic Metric
Mapping

In the following, we consider a set of N images
(Ii)1≤i≤N of dimension d. We assume that each
image Ii is a smooth deformation of a template
Iref plus an additive random white noise ϵi:

Ii = Iref ◦ Φ−1
i + ϵi, ∀i ∈ [1, n] (1)

where Φi is the ith template-to-subject defor-
mation, and Iref ◦ Φ−1

i denotes the action of
the diffeomorphic deformation on the template.
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In atlas estimation, one seeks to estimate
the template image Iref and the N template-
to-subject deformations (Φi)1≤i≤N . Note that
registration is a specific case of atlas estimation
where the template image is fixed and N = 1.

We choose to work in the LDDMM set-
ting [4; 5], in which objects are deformed via
deformations of the whole ambient space. This
framework generalizes the linearized deforma-
tion setting in order to define diffeomorphic
deformations that are invertible and smooth.
Diffeomorphisms are constructed by integrating
linearized deformations over time, which are
considered as infinitesimal steps, according to
the differential flow equation:

dx(t)

dt
= vt(x(t))

x(0) = x0 .
(2)

where vt ∈ V is an instantaneous velocity field
belonging to a Hilbert space V and x can be
seen as a particle moving along the curve x(t)
in the domain of interest D.

This model builds a flow of diffeomorphisms
Φt : x0 −→ x(t) ∀t ∈ [0, 1]. The diffeomorphism
of interest Φ1 is defined as the end point of the
path x(t), i.e.:

∀x0 ∈ D, Φ1(x0) = x(1) .

Note that for any time t, Φt is indeed a dif-
feomorphism provided that the velocity field is
regular enough, i.e. that it is continuous squared
integrable.

3.2 Discrete parameterization of
diffeomorphisms

Finally, we need to define an appropriate norm
||.||V for the Hilbert space V . To this end, we
restrict ourselves to vector fields that belong
to a RKHS [58] V defined by a kernel Kg. We
also rely on the work of Durrleman et al. [15]
to introduce a discrete parameterization of the
velocity fields: we assume that the initial veloc-
ity field v0 can be decomposed as a finite linear
combination of the RKHS basis vector fields.
The weights of the decomposition of a given
deformation onto this basis are given by a set
of momentum vectors (αk(0))k attached to kg
control points (ck(0))k.

v0,i(x) =

kg∑
k=1

Kg(x, ck,i(0))αk,i(0).

In this work, Kg is the Gaussian kernel:

Kg(x, y) = exp(−∥x−y∥2

σg

2
)Id, with σg the kernel

width and Id the identity matrix.
The structure of the RKHS is such that

the vector fields are continuous and squared
integrable. As we shall see in Section 3.3, this
will turned out to be important for performing
optimization in a finite-dimensional setting.

It has been proved [13] that the vector
fields that define geodesic deformations with

respect to the norm
∫ 1

0
∥vt,i∥2V dt keep the same

structure along time and write according to:

vt,i(x) =

kg∑
k=1

Kg(x, ck,i(t))αk,i(t) , (3)

where for any time t, αk,i(t) is the k
th momen-

tum vector related to subject i and attached to
the control point ck,i(t).

Furthermore, the trajectory of the con-
trol points (ck,i(t))k and momentum vectors
(αk,i(t))k is described by the Hamiltonian
system equations [13]:


dck(t)

dt
=

kg∑
l=1

Kg(ck(t), cl(t))αl(t)

dαk(t)

dt
= −

kg∑
l=1

dck(t)(Kg(ck(t), cl(t))αl(t)
tαk(t)

(4)
with initial conditions ck(0) and αk(0) for all
1 ≤ k ≤ kg.

Finally, one verifies that the kinetic energy
along geodesic paths is preserved over time, i.e.
∀t ∈ [0, 1], ∥vt,i∥V = ∥v0,i∥V . This implies that
a geodesic transformation is fully parameterized
by the initial velocity field v0,i. Hence, estima-
tion of the diffeomorphism Φ1,i boils down to
a geodesic shooting problem. The system is
deterministic, and we only need to optimize
the initial conditions α0,i = (αk,i(0))k and
c0,i = (ck,i(0))k for each subject i along with
the template image Iref .

3.3 Optimization

In this work, the position of the control points
is fixed on a regular grid of spacing σg. We seek
to minimize a cost function expressing a trade-
off between matching accuracy and regularity
of the transformation(s). With the parameteri-
zation introduced in the previous section, the
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Fig. 1 Computing shape deformations from an initial image I(0) and a set of initial momentum vectors α(0). 1-
Given α(0) and the initial control points c0, integration of the Hamiltonian (Equation (4)) gives the trajectory of the
momentum vectors α(t). 2- The velocity field vt is computed by interpolating the momentum vectors with Equation (3).
3- Integration of the flow equation (Equation (2)) gives a flow of diffeomorphisms (Φt)t∈[0,1]. 4- Finally, Φt is applied to
the object I(0), giving the deformed image I(t) at any time t.

cost function E is a function of Iref and (α0,i)i:

E(Iref , (α0,i)1≤i≤N ) =

N∑
i=1

(
d(Ii, Iref ◦ Φ−1

1,i )
2

σ2
ϵ

+ ∥v0,i∥2V

)
, (5)

The regularity term is the total kinetic energy
along the geodesic path related to Φi. With
the discrete parameterization chosen for the
velocity fields (i.e. Equation (3)), the norm ∥.∥V
can easily be computed and thus

∥v0,i∥2V =

kg∑
j=1

kg∑
k=1

αj,i(0)Kg(cj,i, ck,i)αk,i(0) .

(6)
Optimization is performed through gradient
descent. Thus, we need to compute the gradient
with respect to all the parameters. This is not
a trivial task, but an efficient numerical scheme
has been proposed in Durrleman et al. [15]. This
algorithm relies heavily on the fact that the
norm of the vector fields is the one of the RKHS
and that the vector fields that are solutions to
the problem remain a finite sum of kernels at all
times (Equation (3)). This enables us to solve
a finite-dimensional problem even though the
functions we are looking for have infinite dimen-
sion. Given a set of momentum vectors α0, this
strong structural property allows to efficiently
deform shapes and compute the cost function
by performing the following steps, which are
illustrated in Figure 1: integrating Equation (4)
gives the evolution of the momenta over time,
the velocity field vt at any time t is computed
with Equation (3), the flow of diffeomorphisms
(Φt)t∈[0,1] is obtained by solving Equation (2),
and the template image Iref is deformed with

the flow: Φ1 ⋆ Iref . It is then straightforward to
infer the distance between the deformed tem-
plate and the target objects and to compute
the regularity term with Equation (6). Finally,
one can compute the gradient of the cost func-
tion with respect to the template, and use a
backward integration along time to compute
the gradient with respect to the momentum vec-
tors. These steps correspond to the lines 14-18
in Algorithm 1.

The algorithm is publicly available as part
of the open-source software Deformetrica [59].

3.4 Unrealistic local minima issue

There is a dependency between the scale of the
kernel and the number of parameters, as a con-
stant vector field has to be well approximated
by the finite sum: this imposes that the scale
σg should be related to the distance between
control points. Here, the kernel Kg not only
controls the regularity of the deformations, but
also the number of parameters to optimize.This
leaves the user to find the balance between a
large kernel, (i.e. few control points), which gen-
erates smooth but less accurate transformations,
and a smaller one, which penalizes large dis-
placements and increases the risk of converging
towards unrealistic solutions.

Further, as the optimization problem is not
convex, the gradient descent algorithm con-
verges towards a solution that depends on the
initialization. The more the numbers of subjects
and parameters are high, the more complex the
energy landscape of the problem becomes. In
the original approach of Durrleman et al. [15],
a first step towards the estimation of multiscale
deformations was taken by optimizing both the
number and position of the control points. In
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areas with low variability, points are inactivated
by a L1 sparsity prior on the momenta. Unfor-
tunately, the width of the kernel remains the
same and in practice, the vector fields can only
be set to zero in image areas of null intensity.
Another issue is that the position of the con-
trol points cannot change significantly if the
distance between points is low. Yet, it is exactly
when the number of parameters is high that the
risk of converging towards an unrealistic local
minimum is higher.

One idea would be to change locally the
scale of the kernel so that we can estimate
non evenly smooth vector fields, i.e. vector
fields with spatially varying scales. Even if such
parameterization can be written, one looses
the RKHS structure and thereby the ease of
computation.

In this paper, we wish to address these two
related issues: the dependency of the algorithm
on the initialization, which restrains the number
of parameters that can be properly optimized,
and the difficulty in estimating vector fields
that have locally varying regularity. In the next
section, we will describe a reparameterization
of the vector fields which enables us to impose
smoothness constraints on the deformations and
progressively relax them in a coarse-to-fine fash-
ion. In this way, the algorithm can cope with
non evenly smooth transformations while using
a small kernel and remaining in the original
RKHS setting.

4 Multiscale deformations

In this section, we propose a multiscale opti-
mization procedure based on a Haar-like wavelet
representation of the initial velocity fields. This
strategy has the advantage of making the algo-
rithm less dependent on the initialization while
favoring more multiscale deformations. We rely
on the finite parameterization of the veloc-
ity fields as a linear combination of RKHS
basis elements [15] within the LDDMM set-
ting. Importantly, our strategy enables us to
preserve this structural assumption and the effi-
cient numerical scheme that follows. We will
show that our algorithm generates more natu-
ral template images as well as higher stability
regarding the initialization.

4.1 Overview

For the sake of clarity, we provide the reader
with an overview of our multiscale strategy.
In the original algorithm for atlas estimation,

we optimize a cost function E. Two types
of parameters are optimized through gradient
descent: the template image Iref and N sets
of momentum vectors α0,i that parameterize
the template-to-subjects velocity fields v0,i. The
original optimization, summarized in Figure 2,
iterates between two classical steps (note that
the subscripts i have been dropped for clarity):
1. Computation of the gradients ∇Eα0 and
∇EIref (Section 3.3)

2. Parameters update: α0(j + 1)← α0(j)−
h×∇Eα0 and Iref (j+1)← Iref (j)−h×
∇EIref , with h the step size.

In the multiscale strategy, summarized in
Figure 2, we only modify the parameters update
step of the momentum vectors by replacing it
with the following steps:
(i) We use the wavelet transform to obtain a

multiscale representation of the gradient of
E with regard to the momenta: ∇Eβ0 ←
FWT (∇Eα0). (This reparameterization is
detailed in Section 4.2)

(ii) The coordinates of the initial velocity fields
v0 in the wavelet basis are updated: β0(j+
1)← β0(j)− h×∇Eβ0 .

(iii) The wavelet coefficients in β0(j+1) whose
scale is smaller than a current scale Sj are
set to zero.

(iv) The coordinates of v0 in the RKHS basis
are recovered with the Inverse Wavelet
Transform: α0(j + 1)← IWT (β0(j + 1));
Iref is updated as in the original step (2).
(The coarse-to-fine optimization steps are
detailed in Section 4.3.)

4.2 Reparameterization of the
initial velocity fields

In this section, we introduce a multiscale repa-
rameterization of the initial velocity fields based
on the Haar wavelet transform. The choice of
the Haar wavelet is motivated by its ease of
implementation and the orthogonality of its
transform. We introduce the definition and
properties of the continuous Haar Wavelet rep-
resentation, recall how this construction can be
extended to a representation of discrete signals
defined on a grid, and we demonstrate how this
can be used to obtain a Haar-like representation
of the initial velocity fields.

4.2.1 The continuous Haar wavelet
transform

Here, we describe the decomposition of a real
signal f defined on the d-dimensional space Rd
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(a) Classical LDDMM (b) LDDMM + multiscale optimization

Fig. 2 Overview of the original LDDMM algorithm [15] and the coarse-to-fine optimization strategy in dimension 2.
For the sake of clarity, only a single gradient descent iteration is presented in each panel. The original algorithm iterates
between two classical steps: computing the gradients (1) and updating the parameters (2). In the multiscale strategy, step
(1) is preserved and step (2) is replaced by another procedure involving updating the representation of the momentum
vectors in the wavelet basis. Red arrows denote the coordinates of the momentum vectors either in the RKHS basis (for
α0(j)) either in the wavelet basis (for β0(j)). Purple arrows denote the gradients of the cost function ∇Eα0 and ∇Eβ0

with regard to α0 and β0 (respectively).

Fig. 3 The 1D Haar wavelet. At scale 0, V0 is the space
of piecewise constant functions of size 1. A basis for V0, i.e.{
Φ0,k

}
k
, is obtained by translating the scaling function

Φ0,0 = ψL by factors k ∈ Z. A basis forW0, i.e.
{
ψ0,k

}
k
,

is obtained by translating the mother wavelet function
ψ0,0 = ψH by factors k ∈ Z. At scale s, a basis for the
space Vs, i.e.

{
Φs,k

}
k
, is obtained by dilating Φ0,0 by

2s, translating it by 2sk and normalizing it by 2−s/2. A
basis for Ws, i.e.

{
ψs,k

}
k
, is obtained by performing the

same operations on ψ0,0.

into a Haar Wavelet basis [28; 60]. The wavelet
representation decomposes f into a linear com-
bination of basis functions which have different
resolutions, locations and orientations. This rep-
resentation relies on a collection of embedded
spaces Vs that contain functions said of scale s.

In the case of the Haar Wavelet, Vs is the
space of piecewise constant functions on a reg-
ular grid of size 2s. Any function f can be
approximated in this space by computing a local
average: the mean value in each sub-square of
the grid.

We define the d-dimensional scaling function
ϕ by

ϕ(x) =
d∏

i=1

ψL(xi)

where x ∈ Rd and ψL is the 1D piecewise
constant function

ψL(z) =

1 for 0 ≤ z < 1

0 otherwise
.

As illustrated in Figure 3, approximating f at
scale s amounts to projecting f onto the space
spanned by the orthonormal family

{
ϕs,k(x) = 2−sd/2ϕ(2−sx− k)

}
k∈Z

where ϕs,k is the scaling function rescaled by 2s

and then translated by k2s. The factor 2−sd/2

is a normalization factor that ensures that the
ϕs,k have unit energy.

When transitioning from the approxima-
tion at scale s to the approximation at the
coarser scale s + 1, some details of f are lost.
These details belong to the orthogonal comple-
ment Ws+1 of the space Vs+1 in Vs. A basis
of this space can be obtained by defining the
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d-dimensional oriented wavelet functions

ψo(x) =
d∏

i=1

ψoi(xi)

where x ∈ Rd, o ∈ {H,L}d, ∃ i, oi = H and

ψH(z) =


1 for 0 ≤ z < 0.5

−1 for 0.5 ≤ z < 1

0 otherwise

.

As illustrated in Figure 3, an orthonormal basis
of Ws is given by{
ψo
s,k(x) = 2−sd/2ψo(2−sx− k)

}
k∈Z, ∃i oi=H

.

where ψo
s,k is the wavelet function of orientation

o rescaled by 2s and then translated by k2s.
Note that functions ψL and ψH act respectively
as low and high pass filters. Their combina-
tion yields oriented high pass filters, e.g., for
d = 2, there exist three wavelet functions ψHL,
ψLH and ψHH , that express details of the
signal along vertical, horizontal and diagonal
orientations (respectively).

We can thus decompose any function f in
Vs in the two following ways:

f =
∑
k

as,k ϕs,k

=
∑
k

as+1,k ϕs+1,k +
∑
o,k

dos+1,k ψ
o
s+1,k

As
∑

k as+1,kϕs+1,k belongs by construction to
the space Vs+1, we can further decompose it
into a projection onto Vs+2 and a projection
ontoWs+2. Repeating this scheme up to scale S
leads to the following multiscale decomposition
of f :

f =
∑
k

aS,k ϕS,k +

S∑
s′=s+1

∑
o,k

dos′,k ψ
o
s′,k.

The classical wavelet construction is concluded
by letting s go to −∞, enabling one to decom-
pose any measurable bounded function in such
bases.

More importantly, going from the decompo-
sition in Vs to the decomposition in the spaces
VS and (Ws′)s<s′≤S corresponds to a change
of basis and thus to a discrete operation going
from the coefficients (as,k)k to the coefficients

(aS,k)k and (dos′,k)s<s′≤S,k,o. This transforma-
tion is called the Forward wavelet transform
(FWT) and its inverse the Inverse wavelet trans-
form (IWT). Both can be computed directly
on the coefficients without relying on the
continuous basis functions.

4.2.2 Haar wavelet applied to grids

In our algorithm, rather than using the con-
tinuous Haar wavelet decomposition, we have
implemented the related discrete Haar wavelet
decomposition on a d-dimensional grid [[0,K1]]×
...× [[0,Kd]], illustrated in Figure 4 in 2D. This
transform corresponds to a discrete change of
basis related to the continuous Haar transform.

More precisely, to any discrete function
(a0,k)k on the grid, one can associate the
continuous function f of V0 defined by

f =
∑

k∈[[0,K1]]×...×[[0,Kd]]

a0,k ϕ0,k,

where the (a0,k)k are interpreted as the approx-
imation coefficients at scale 0 of function
f .

By construction, f is a piecewise constant
function on the related continuous grid. Using
the FWT algorithm up to scale S, this function
can be decomposed as follows:

f =
∑
k

aS,k ϕS,k +

S∑
s=1

∑
o,k

dos,k ψ
o
s,k.

One verifies that aS,k = 0 when ki < 0 or
ki2

S > Ki and ds,k = 0 when ki < 0 or
ki2

s > Ki. Thus, these sums have only a finite
number of coefficients. Further, when theKi are
powers of 2, i.e. Ki = 2ζi , we impose that the
decomposition cannot exceed a maximum scale
Smax = mini(ζi), so that the scaling function
support remains within

∏
i[0,Ki]. Thus, when

S ≤ Smax, the previous equation reduces to:

f =
∑

0≤ki<2ζi−S

aS,k ϕS,k

+

S∑
s=1

∑
o, 0≤ki<2ζi−s

dos,k ψ
o
s,k, (7)

which corresponds exactly to an orthonormal
change of basis.

To summarize, from the coeffi-
cients (a0,k)k, one can compute the
coefficients (aS,k)0≤k<2Smax−S and
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(a) Classical decomposition into unit functions

(b) Multiscale Haar wavelet basis

Fig. 4 Decomposition of a 4-by-4 grid in two bases. The letters a and d refer to approximation and detail coefficients,
respectively. Subscripts indicate the scale of the coefficient and the x-y position of the related wavelet function.
Superscripts indicate the orientation of the wavelet function. In the grids, empty cells denote null values.

(dos,k)1≤s≤S,0<k<2Smax−s,o with the FWT algo-
rithm and perform the inverse operation with
the IWT algorithm.

We denote by MFWT and MIWT the∏
iKi×

∏
iKi matrices associated to the trans-

formations FWT and IWT. MFWT and MIWT

are related to one another: we have obviously
MFWT ∗MIWT = Id and, as these are orthonor-
mal transforms, we also verify that MT

IWT =
MFWT . Furthermore, there exist fast imple-
mentations of these transforms that have a
linear complexity with respect to the number
of coefficients [60].

In this work, we have implemented the FWT
using the fast lifting scheme described in [28]
(Chapter 7.8). This scheme is strictly equiva-
lent to the previous description when the grid
size is a power of 2, with the difference that
it handles non-dyadic grids through improved
computations at the boundaries and that FWT
and IWT remain orthogonal transforms. The
pseudocode for the algorithms FWT and IWT
can be found in Appendix (Algorithms 5 and
6, respectively), along with a brief explanation
and an illustration of how the FWT algorithm
operates on a non-dyadic grid (Figure 1).

Note that these algorithms are available in
a public Git repository1.

1https://github.com/fleurgaudfernau/Deformetrica
multiscale/

4.2.3 Preservation of the RKHS
structure of the velocity fields

The previous subsection transposed the classical
Haar description of continuous functions to dis-
crete functions defined on a grid. To implement
a coarse-to-fine initialization approach for atlas
estimation, we will describe the initial momen-
tum vectors not through their values on the
grid but by the decomposition of these values
in the discrete Haar basis. The multiscale struc-
ture will be used to obtain a smooth initial field
by setting fine-scale coefficients to 0. As we will
show in this section, this does not change the
fact that the initial vector fields v0,i, and thus
all the vector fields vt,i, are by construction
finite combinations of the RKHS kernel Kg.

If we consider two spaces Vs and Vs′ with
s ≥ s′, we observe that any function ϕs,k ∈ Vs
or ψo

s,k ∈ Vs is also in the finer space Vs′ . In
particular, if we take s′ = 0, ϕs,k and ψo

s,k can
be decomposed as a linear combination of ϕ0,k′ :

ϕs,k =
∑
k′

γs,k,k′ ϕ0,k′ (8)

ψo
s,k =

∑
k′

γos,k,k′ ϕ0,k′ (9)

where γs,k,k′ and γos,k,k′ are some fixed real
numbers.

Thus, for a function v =
∑

k a0,k ϕ0,k,
its wavelet coefficients ((aS,k)k, (d

o
s,k)1≤s≤S,o,k)
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can be computed as

aS,k =
∑
k′

γS,k,k′ a0,k′

dos,k =
∑
k′

γos,k,k′ a0,k′

Further, we recall that we optimize shape
transformations by using the parameterization
of Durrleman et al. [15], i.e. the initial geodesic
vector field of a given subject i is defined as a
finite linear combination of identical Gaussian
kernels that are evaluated at an initial set of
points (ck,i(0))k. In our scheme, we set the ini-
tial points on a grid so that this initial velocity
field writes as

v0,i(x) =
∑

k∈[[0,K1]]×...×[[0,Kd]]

Kg(x, ck,i(0)) αk,i(0),

(10)

where αk,i(0) is a momentum vector attached
to ck,i(0).

Instead of optimizing v0,i by optimizing its
momentum vectors αk,i(0), we will optimize
them in the wavelet domain under the con-
straints that the finer-scale coefficients are equal
to 0.

More precisely, we define

((aS,k,i)k, (d
o
s,k,i)1≤s≤S,o,k) = FWT ((αk,i)k)

where the Wavelet Transform has been applied
to the momentum vectors component by com-
ponent. Note that by construction,

(αk,i)k = IWT ((aS,k,i)k, (d
o
s,k,i)1≤s≤S,o,k).

Performing optimization with the wavelet
coefficients (aS,k,i)k and (dos,k,i)1≤s≤S,o,k

instead of the momentum vectors (αk,i)k
amounts to switch from the description of
Equation (10) to

v0,i(x) =
∑
k

aS,k,i ϕ̃S,k(x)

+

S∑
s=1

∑
o,k

dos,k,i ψ̃
o
s,k(x)

where ϕ̃s,k and ψ̃o
s,k are functions defined by

replacing ϕ0,k′ by Kg(·, ck′(0)) in Equations 8
and 9:

ϕ̃s,k =
∑
k′

γs,k,k′ Kg(·, ck′(0))

ψ̃o
s,k =

∑
k′

γos,k,k′ Kg(·, ck′(0)).

Even if v0,i is now defined through the vecto-
rial wavelet coefficients (aS,k,i)k and (dos,k,i)s,o,k
instead of the momentum vectors (αk,i)k, it
remains a linear combination of theKg(x, ck(0))
so that we are still in the setting of Durrleman
et al. [15] and can rely on

vt,i(x) =
∑
k

Kg(x, ck,i(t)) αk,i(t).

Note that we do not use the Haar parame-
terization outside the initialization. Indeed, the
initial grid is deformed under the action of the
diffeomorphism Φt,i when the time evolves, so
that our Haar coefficients would be hard to
interpret for t > 0.

4.3 Coarse-to-fine atlas estimation

4.3.1 Reparameterization of the
initial velocity fields

The key difference between our scheme and the
one of Durrleman et al. [15] is the use of the
Haar parameterization in a fixed grid for the
initial velocity fields. Thus, we want to optimize
the following cost function:

E(Iref , (β0,i)1≤i≤N ) =

N∑
i=1

(
d(Ii, Iref ◦ Φ−1

1,i )
2

2σ2
+ ∥v0,i∥2V

)
,

(11)

where β0,i is a set of wavelet coefficients
(aS,k,i)k and (dos,k,i)s,k,o, related to the momen-
tum vectors α0,i by α0,i = IWT (β0,i) =
MIWTβ0,i.

Since α0,i =MIWTβ0,i, there is a relation-
ship between the gradient of the cost function
with respect to the wavelet coefficients ∇β0,iE
and the gradient with respect to the momenta
∇α0,iE:

∇β0,iE =MT
IWT∇α0,iE

=MFWT∇α0,iE

= FWT (∇α0,iE)

where we have used the fact that
MT

IWT=MFWT because the transform is
orthonormal.

Therefore, if we compute the gradient
∇α0,iE with Durrleman et al. numerical scheme
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(a) Source and target images

(b) Classical LDDMM algorithm (c) LDDMM + Multiscale algorithm

Fig. 5 Original LDDMM and LDDMM combined with multiscale optimization applied to a registration example. The
source and target images (panel (a)) present feature differences at a large scale (character translation) and at a finer scale
(orientation of the arms and legs). Registration was performed with σg = 4 (kg = 49 control points). For each algorithm,
we display the source-to-target vector fields (orange arrows, scaling factor = 5), the corresponding deformation field
L2 norm in RGB, the deformation grid and the transformed source image every 20 iterations until convergence. Sj is
the scale constraining the momentum vectors at iteration j. Notice how the multiscale strategy first estimates coarse
displacements to move the character to the top right, then finer transformations to adjust the position of the arms. The
original LDDMM algorithm applies fine-scale deformations to the entire image (except the borders), while the multiscale
algorithm estimates fine deformations around the character’s right leg, and smoother deformations elsewhere.

[15], we can then easily obtain the values of
∇β0,iE for almost the same cost as the one of
this latter gradient. As illustrated in Fig. 2,
this means that optimization can now be per-
formed in the wavelet domain: we can compute
∇α0,iE using the original LDDMM algorithm,
and, instead of updating the α0,ii, compute
∇β0,iE and update the (β0,i)i. Without further
changes, such algorithm would lead to exactly
the same results as the original algorithm.

To obtain different and hopefully better
results, we enforce some constraints on the
wavelet coefficients of the initial velocity fields.
Namely, we use a coarse-to-fine initialization
strategy by optimizing first the initial velocity
fields whose wavelets coefficients are null at the
finest scales and adding progressively these fine
scale coefficients. In the following, we describe
in detail our procedure which is summarized in
Algorithm 1 and illustrated on a simple regis-
tration example in Figure 5. We chose a source
and a target image presenting both large and

small scale differences to illustrate clearly how
the original and coarse-to-fine algorithms cope
with multiscale deformations.

4.3.2 Coarse-to-fine initialization

The coarse-to-fine optimization can be seen as
an initialization of each new scale with the opti-
mal template-to-subject deformations of the
previous coarser scale. More precisely, at itera-
tion j, we only optimize the wavelet coefficients
of the vector fields whose scales are above or
equal to a current decreasing scale Sj . Since the
original RKHS setting is preserved, this can eas-
ily be done by computing the gradient ∇α0,iE
with the efficient numerical scheme of Durrle-
man et al. [15] (lines 14-18 in Algorithm 1),
applying FWT to ∇α0,iE to derive the gradient
with respect to β0,i (line 19) and then setting to
0 the wavelet coefficients whose scale is strictly
smaller than Sj (line 22). We then update the
coefficients β0,i with the modified gradient and

12



Algorithm 1 Multiscale optimization.

1: Input
2: Set of images (Ii)1≤i≤N , template image Iref ,

kernel width σg, step size h, initial scale S0

3: Initialization
4: j ← 0
5: c0 ← Grid of control points with spacing σg
6: Template image Iref (j)← Iref
7: Momentum vectors α0,i(j)← 0 ∀i ∈ [1, N ]
8: Initialize the gradients∇α0,i

E ← 0 ∀i ∈ [1, N ]
and ∇Iref

E ← 0
9: β0,i(j)← FWT (α0,i(j)) ∀i ∈ [1, N ]

10: Current scale Sj ←S0

11: repeat
12: j ← j + 1
13: for each subject i do
14: Compute the evolution of αi(t) using

Equation (4) {Gradients computation}
15: Compute Φi by solving the flow equation

(Equation (2))
16: Deform the template Iref with Φi

17: Compute the energy E (Equation (5))
18: Compute the gradients ∇α0,i

E & ∇Iref
E

19: Wavelet transform ∇α0,i
E with Algo-

rithm 5: ∇β0,i
E ← FWT (∇α0,i

E) =

(aiSmax,k
)k ∪ (di,os,k)1≤s≤Smax,k,o

20: for each detail coefficient di,os,k do
21: if s < Sj then

22: di,os,k ← 0 {Finer scale silencing}
23: end if
24: end for
25: end for
26: β0,i(j)← β0,i(j − 1)− h×∇β0,i

E for all
subjects i {Parameter update}

27: α0,i(j)← IWT (β0,i(j))∀i ∈ [1, N ] for all
subjects i {Algorithm 6}

28: Iref (j)← Iref (j − 1)− h×∇Iref
E

29: Compute the mean residuals ∇j according
to Equation (12)

30: if ∇j−1−∇j

∇j−1

< 0.01 and Sj > 1 then

31: Sj ← Sj−1 − 1 {Scale refinement step}
32: end if
33: until Convergence
34: return Template image Iref and momentum

vectors α0,i

recover the updated α0,i using the IWT func-
tion (line 26). If we iterate without modifying
the current scale, we optimize the cost function
in a subspace of functions that are simpler than
in the original algorithm, the wavelet transform
scale limitation acting as a regularizer.

As we want to optimize on the full set of
functions defined by the momentum vectors,
we progressively decrease the current scale Sj .
We propose to decrease the scale when we are
close to convergence at the current scale (line

31). This is measured by computing the mean
residual value over subjects at iteration j:

∆j(x) =
1

N

∑
i

∥Ij,0 ◦ Φ−1
j,i − Ii∥

2
2, (12)

where j denotes the current iteration.
If the residual decrease with respect to the

previous iteration is below a threshold of 1%,
we decide that the algorithm is close to conver-
gence. In the case of Figure 5, the algorithm
starts at S0 = 3, performs optimization until
(almost) convergence at this scale, goes to scale
2 and performs the subsequent scale transitions
in the same manner.

Our optimization procedure ensures that
the momenta belonging to the same area are
updated with identical values. At a given scale
Sj , the velocity fields can vary spatially only at
scales coarser than Sj − 1. In other words, at
scale Sj , the i

th initial velocity field implicitly
writes as follows:

v0,i(x) =
∑
k

aSmax,k,iϕ̃Smax,k(x)

+

Smax∑
s=Sj

∑
k,o

dos,k,iψ̃
o
s,k(x)

where ϕ̃Smax,k and ψ̃o
s,k are linear combinations

of localized Gaussian kernels Kg(x, ck(0)).
When the algorithm reaches scale 1, the

momenta are updated independently of each
other. Importantly, unlike previous approaches
that represented deformations in a wavelet basis
[41; 61; 42; 44; 46], when the algorithm reaches
this finest scale, the momentum vectors are free
of constraints and the parameterization of the
velocity fields is equivalent to its original def-
inition, i.e. a sum of localized small Gaussian
kernels. Thus, in theory, our coarse-to-fine algo-
rithm could reach the same solutions as the
original one, but as we will see in Section 5,
the coarse-to-fine numerical scheme converges
to better solutions.

The initial scale S0 takes values between
1 and Smax, i.e. the maximum scale of the
wavelet coefficients β0, i(0). If S0 = 1, the clas-
sical single-scale optimization is performed. By
default, S0 = Smax so that coarse-to-fine opti-
mization is performed from scale Smax to scale
1.
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Our code is available in a public Git reposi-
tory2.

4.3.3 Complexity

Contrary to the previous coarse-to-fine algo-
rithms developed in the LDDMM framework,
our strategy does not add any complexity to
the mathematical model. The parameterization
of the velocity fields remains identical to that of
Durrleman et al. [15]. Computation of the gradi-
ents and subsequent cost also remains identical.
The only additional complexity arises from the
algorithms FWT and IWT, which are of linear
complexity.

5 Experiments

In this section, we evaluate the benefits of the
wavelet reparameterization of the initial veloc-
ity fields on different tasks and datasets. In
Section 5.1, we use a registration experiment
on toy data to illustrate the way our coarse-to-
fine algorithm operates and we compare it to
the multi-kernel algorithm [50]. Then, we com-
pare the performance of our algorithm to that
of the original, single-scale LDDMM version
[15] on three atlas estimation tasks of increas-
ing complexity. The training phase consists in
atlas estimation and the test phase consists in
registering the estimated template image to a
set of new images.

Experiments are run on an Ubuntu 18.04.5
machine equipped with a NVIDIA GPU driver
with 12 GB memory. The original version of
the algorithm is available in Deformetrica Ver-
sion 4.3.0 [59]. Optimization for the classical
LDDMM and LDDMM-multiscale algorithms
relies on a gradient descent algorithm in which
the step sizes h are first scaled by the squared
norm of the gradients and then diminished
by a backtracking algorithm to guaranty a
descent. Unless stated otherwise, the following
parameters are used in all experiments: σ = 0.1
in the cost criterion; initial step size h = 0.01;
convergence threshold = 0.0001. The minimum
number of iterations between successive coarse-
to-fine steps is set to 5. The initial template
image for atlas estimation is given by the mean
of the intensities of the training images.

(a) Source image Is (b) Target image It

Fig. 6 Registration experiment from Risser et al. [50]

5.1 Toy experiment

In this experiment, we propose to assess the
effect of the parameter S0 on the performance
of the multiscale algorithm and compare its
behaviour to that of the multi-kernel framework
[50]. To this end, we reproduce a toy experi-
ment presented in Risser et al.: the goal is to
register a source image Is onto a target image
It. Both images, visible in Fig. 6, contain a
small (4 by 4 pixels) and a large (20 by 20 pix-
els) square. From Is to It, the large square is
translated to the top-right and a small indenta-
tion (4 by 2 pixels) appears on the top of the
square. The small square remains at the same
location. Thus, the registration task requires a
coarse scale deformation (displacement of the
large square), a small scale deformation (cre-
ation of the indentation), all the while ensuring
that the small square is not deformed.

Performance is assessed by using the same
metrics as the original experiment:

• Total residuals ∆J , i.e. sum of squared
differences in the source image domain at
convergence

• Total residuals in a region of interest
covering the indentation, denoted by
∆J(ROI)

• Standard deviation of the Jacobian
determinant (SD(J)) [62], quantifying
the amount of local volume differences
between the template and target images to
assess the smoothness of transformations.

In addition, we also compute the algorithms
runtimes.

5.1.1 Effect of the initial scale

In the first part of this experiment, we assess
the effect of the initial scale S0 on the perfor-
mance of the multiscale algorithm. Registration

2https://github.com/fleurgaudfernau/Deformetrica
multiscale/
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(a) Residuals ∆J and ∆J(ROI) (b) Jacobian standard deviation (c) Runtime

Fig. 7 Registration quality depending on the initial scale S0 for different kernel widths σg .

Fig. 8 Registration between Is and It with the LDDMM algorithm combined with multiscale optimization using σg = 2
and different initial scales S0. Top row: deformed source images at t = 1. The red lines represent the borders of the shapes
in It. Middle row: corresponding deformation grids, zoomed in on the large square area. The yellow squares represent the
support of the wavelet functions of the initial scale S0, i.e. the size of the areas in which the vector fields are constant at
the beginning of optimization: 32 × 32 for S0 = 5; 16 × 16 for S0 = 4, 8 × 8 for S0 = 3, 4 × 4 for S0 = 2, and 2 × 2
pixels for S0 = 1. Bottom row: corresponding deformation fields L2 norm in RGB, zoomed in on the large square area.

between Is and It is performed with the mul-
tiscale algorithm using kernels sizes σg ∈
{1.7, 2, 2.5, 3}, corresponding to a number of
control points kg ∈ {841, 625, 400, 289, }. For
each parameter σg, we run the multiscale algo-
rithms with all the possible initial scales S0 ∈
{1, 2, ..., Smax}. Note that S0 = 1 corresponds
to the original LDDMM algorithm.

Fig. 7 presents the total residuals ∆J and
∆J(ROI) , the standard deviation of the Jaco-
bian SD(J) and the runtimes after registration
as functions of the initial scale S0. Fig. 8 dis-
plays the registration results obtained with
σg = 2. Compared to our baseline (i.e. S0 = 1),
the use of our coarse-to-fine strategy decreases
the total residuals value after registration. The
highest performance improvement is reached
for the smallest kernel σg = 1.7: displacing the
large square using fine kernels is very costly,

a problem which the multiscale strategy alle-
viates by imposing first large transformations.
The indentation area also benefits from the
multiscale strategy, as indicated by values of
∆J (ROI) inferior to 1 pixel when S0 > 2. For all
parameters σg, the minimum of ∆J is reached
when optimization starts at the second coars-
est scale S0 = 4. The lower performance of
S0 = 5 indicates that very coarse deformations
may not benefit the optimization. At S0 = 5,
the algorithm starts by optimizing only wavelet
coefficients linked to functions whose support is
[0, 24]d control points. With a spacing of 2 pix-
els between control points, the estimated vector
fields are constant on areas of 32 × 32 pixels,
which is very above the size of the large square.
This effect is illustrated in Fig. 8: with S0 = 5,
the deformation grid shows a transformation
affecting a larger part of the image domain than
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necessary. We also notice that the final deforma-
tion fields estimated with S0 = 3 are strongly
influenced by the initial scale, again demonstra-
tion the strong impact of S0 on the rest of the
initialization.

Interestingly, the multiscale strategy also
seems to improve the smoothness of the final
transformation when the initial scale is S0 = 4
(Fig. 7, panel (b)). In Fig. 8, the deformation
grid obtained with S0 = 1 displays some irregu-
larities, whereas the deformation grid and field
of S0 = 4 are distinctively smoother.

Finally, we observe in Fig. 7, panel (c) that
the algorithm runtime increases linearly with
S0: for S0 = 5, it is 3 to 4 times higher than for
the original LDDMM.

This experiment shows the importance of
performing our coarse-to-fine procedure starting
from a reasonably coarse scale. It can effectively
enhance the outcome of the classical LDDMM
when both large and fine scale transformations
are needed.

5.1.2 Comparison to the
multi-kernel algorithm

In the second part of this experiment, we com-
pare the behaviour and performance of our
multiscale optimization vs the multi-kernel algo-
rithm [50]. Direct comparison between the two
multiscale algorithms is not possible as 1) our
implementation of the classical LDDMM dif-
fers from that of Risser et al. 2) experiments
in Risser et al. were performed with a fixed
(unknown) number of iterations, which is not
possible in our setting since our multiscale
strategy has an effect on the total number of
iterations. It is however possible to compare
how the multi-kernel LDDMM improves the
classical LDDMM versus how our multiscale
optimization improves the classical LDDMM.
To this end, we perform registration between
Is and It using the same trade-off between reg-
ularity and data attachment (i.e. 0.5) and the
same kernel widths as in the original experi-
ment, i.e. σg ∈ {2, 3, 7}, plus the intermediary
kernels σg ∈ {1.7, 2.5}. Contrary to Risser
et al. we do not present results obtained with
σg > 7 as the related kernels are too large for
our multiscale algorithm to be of use; nor do
we present results obtained with σg = 1, which
has a low performance on this experiment with
our LDDMM implementation. In Table 1, we
report the performance of the algorithms for the
different values of σg: classical LDDMM (Defor-
metrica version [15]), LDDMM combined with

Table 1 Performance of different algorithms on
the toy experiment: original LDDMM
(Deformetrica version), LDDMM combined with
multiscale optimization (with S0 =3 for σg = 7 and
S0 = 4 for σg < 7), original LDDMM (Risser et al.
version and results [50]) and multi-kernel LDDMM
(Risser et al. results). The multi-kernel algorithm
was tested with different combinations MKn, with
MKn a sum of n weighted Gaussian kernels with
standard deviations linearly sampled between 1
and 10. The reported values are the total residuals
values between Is and It in the image domain and
a ROI covering the indentation and standard
deviation of the Jacobian determinant.

LDDMM
(Deformetrica)

LDDMM
+ Multiscale

σg kg ∆J ∆J(ROI) SD(J) ∆J ∆J(ROI) SD(J)

7 64 11.52 6.67 0.09 11.06 6.45 0.10

3 289 1.30 0.31 0.19 0.52 0.03 0.16

2.5 400 1.49 0.11 0.24 0.37 0.05 0.23

2 625 0.37 0.09 0.27 0.20 0.02 0.21

1.7 841 9.36 0.03 0.23 1.21 0.0 0.24

LDDMM
(Risser et al.)

σg ∆J ∆J(ROI) SD(J)

7 8.3 7.2 0.01

3 3.0 2.5 0.02

1 0.39 0.07 0.07

Multi-kernel LDDMM

σg ∆J ∆J(ROI) SD(J)

MK3 0.88 0.34 0.02

MK4 1.0 0.35 0.02

MK5 0.81 0.34 0.02

MK6 0.94 0.37 0.02

MK7 0.94 0.37 0.02

our multiscale algorithm (with S0 = Smax − 1),
classical LDDMM (Risser et al. version and
results [50]), and multi-kernel LDDMM (Risser
et al. results). As detailed in Section 2.2, flows
in the multi-kernel framework are defined by a
weighted sum of Gaussian kernels of different
sizes: in Table 1, we report performance val-
ues obtained using MKn, n ∈ {3, 4, 5, 6, 7} [50],
where MKn denotes a sum of weighted Gaus-
sian kernels with standard deviations linearly
sampled between 1 and 10.

The classical LDDMM (Risser et al. ver-
sion) reaches its best performance (in terms
of residuals decrease) for the smallest kernel
of size σg = 1. Compared to this baseline, the
multi-kernel LDDMM has slightly lower perfor-
mance whichever combination MKn is used. If
we compare our classical LDDMM (Deformet-
rica version) with our multiscale strategy, the
latter yields significantly lower values of ∆J

and ∆J(ROI) for all values of σg. Three cases
are discernible:

• When a large kernel is used, i.e. σg = 7, the
original LDDMM has poor performance
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and the improvement yielded by our coarse-
to-fine strategy is only marginal as it is
constrained, at core, by the scale σg.

• As observed in Section 5.1.1, when a fine
kernel is used, i.e. σg = 1.7, the origi-
nal LDDMM has poor performance. Its
outcome is dramatically enhanced by the
multiscale algorithm, indicating that it can
successfully avoid unrealistic local minima.

• When an adequate kernel is used, e.g.
σg = 2, the original LDDMM has good
performance (with residual values simi-
lar to that of Risser et al. baseline), and
the multiscale algorithm is still capable of
improving its outcome marginally, reach-
ing the best performance out of all the
compared algorithms.

In terms of deformation smoothness, the
multi-kernel LDDMM algorithm attains values
of SD(J) similar to that of Risser et al. original
LDDMM for σg = 3, while reaching better per-
formance. Compared to their baseline (σg = 1),
the multi-kernel LDDMM decreases SD(J) by a
factor of 3. In contrast, our multiscale algorithm
only marginally improves smoothness.

This experiment shows that our multiscale
strategy can enhance the outcome of the classi-
cal LDDMM in a variety of situations, especially
when using fine kernels, and can be competitive
with another multiscale algorithm that builds
true multiscale flows. In the following experi-
ments, we will compare the performance of the
classical, single-scale LDDMM algorithm with
that of our multiscale algorithm on three dif-
ferent atlas estimation tasks. We will evaluate
their ability to estimate high quality, stable
template images as well as natural template-
to-subjects deformations in different settings.
The multiscale algorithm will be initialized with
S0 = Smax − 1.

5.2 Handwritten digits

In this section as well as the following experi-
ments, we evaluate the ability of our multiscale
scheme to enhance the outcome of the classi-
cal LDDMM on an atlas estimation task. We
test the original LDDMM algorithm against
the coarse-to-fine strategy using an experimen-
tal procedure similar to that of Durrleman et
al. [15]: atlas estimation is performed using
20 randomly-chosen training images and the
estimated template image is registered to 10
randomly chosen test images with the same
parameters as those used during training. The

Table 2 Performance (mean and standard deviation) of
the classical LDDMM and the LDDMM combined with
multiscale optimization over five folds of cross-validation
after atlas estimation and registration on the dataset of
handwritten digits. The relative residual errors and
SSIM are computed between each train/test image and
the deformed template. Bold style indicates statistically
significant differences between the algorithms (p < 0.05).

R SSIM

σg kg LDDMM
LDDMM+
Multiscale

LDDMM
LDDMM+
Multiscale

Atlas estimation

3 100 10.2 (3.1) 7.9 (1.9) 0.74 (0.10) 0.79 (0.05)

2 196 10.1 (1.7) 5.3 (0.5) 0.74 (0.05) 0.79 (0.01)

1.5 361 7.3 (1.7) 4.3 (1.4) 0.75 (0.05) 0.79 (0.05)

Registration

3 100 10.0 (6.1) 7.5 (6.0) 0.74 (0.04) 0.79 (0.03)

2 196 8.5 (5.2) 6.5 (6.3) 0.72 (0.03) 0.78 (0.03)

1.5 361 9.0 (5.1) 5.3 (7.0) 0.71 (0.04) 0.78 (0.03)

experiment is repeated five times with differ-
ent training and test sets, with no intersection
between any of the training and test sets. This
procedure is reproduced with different ker-
nel widths σg. Since the five experiments are
performed on independent datasets, we use
paired Student t-tests to compare performance
between the two algorithms.

The performance of the algorithms is
assessed with the following metrics:

• Relative residual error: R = ∆J

∆0

with ∆0 and ∆J and the mean residual
value over subjects at iteration 0 and at
convergence, respectively.

• Structural Similarity Index Metric
[63] (SSIM) after training and test:
SSIM(I1, I2) = l(I1, I2) × c(I1, I2) ×
s(I1, I2)
where I1 and I2 are the compared images,
l is a function comparing the luminance
(i.e. the mean pixel/voxel intensity) of
the images, c compares the contrast (i.e.
the standard deviation of the image inten-
sities), and s quantifies the structural
similarity between I1 and I2 (i.e. the cor-
relation between luminance- and contrast-
normalized intensities). SSIM values range
between −1 (dissimilarity) and 1 (near-
perfect similarity).

• Standard deviation of the Jacobian
determinant (SD(J)) of the displacement
fields linked to the deformations (ϕi)i
to assess the regularity of the estimated
transformations.
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(a) σg = 3; kg = 100 (8 pixels per point)

(b) σg = 2; kg = 196 (4 pixels per point)

(c) σg = 1.5; kg = 361 (2 pixels per point)

Fig. 9 Estimation of the template image by the original LDDMM and the LDDMM combined with multiscale
optimization on the dataset of handwritten digits with different values of σg . For each experiment, five template images
(estimated with non-intersecting training sets) and their standard deviation image are presented on the left, along with
the template image from the first training set warped to the first five training images on the right. σg : width of the
Gaussian kernel; kg : corresponding number of control points.

• Runtimes
In this section, we use images of the digit 2

extracted from the well-known United States
postal database of handwritten digits [64]. The
size of the images is 28 by 28 pixels. Table 2
shows the mean relative residual error and
similarity yielded by the algorithms over the
experiments. Standard deviation of Jacobian
values and runtime can be seen in Appendix
Table B1. Figure 9 presents the five template
images estimated by each algorithm with three
different sets of parameters, along with the tem-
plate image estimated from the first training
set warped to five of the training images.

Table 2 shows that the coarse-to-fine algo-
rithm reaches lower residual error and higher
similarity than the original LDDMM algorithm
during both atlas estimation and registration,
with differences that reach significance for σg =
2 and σg = 1.5. Consistent with these results,
we observe in Figure 9 that the original algo-
rithm yields highly irregular template images,

a trend which worsens when the number of con-
trol points increases, indicating overfitting. The
first template image warped towards the train-
ing images yields images that are close to the
original ones for σg = 3. However, for lower
values of σg, the reconstructed training images
are less realistic. These observations belie the
quantitative evaluation, which shows that the
performance of the original algorithm increases
with the number of parameters. This discrep-
ancy demonstrates that residual error alone is
not sufficient to evaluate the accuracy of the
algorithms.

Unlike the original LDDMM algorithm, the
coarse-to-fine procedure produces realistic tem-
plate images that are stable across folds and
whose quality is preserved when σg is decreased.
Moreover, all reconstructed images are very
close to the original ones. Their quality slightly
increases with the number of control points: this
is most evident for the third and fifth recon-
structed subjects, which become more accurate
for lower values of σg.
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Expectedly, in Appendix Table B1, standard
deviations of Jacobian values increase with the
number of control points for both algorithms.
The multiscale algorithm reaches slightly higher
SD(J) values than the original algorithm, indi-
cating more stretching of the deformed source
images. In average, the multiscale algorithm has
higher runtime, reflecting the time spent per-
forming optimization at each scale (as shown
in Section 5.1).

5.3 Artificial characters

In the previous experiment, one can remark
that the performance of the algorithms diverge
most when a high number of parameters is
used. Therefore, one might simply be tempted
to employ the original LDDMM algorithm
with a lower number of parameters, as in Dur-
rleman et al. [15] whose experiments were
performed with 36 control points. However,
datasets that present a higher amount of details
and inter-subject variability may benefit from
our coarse-to-fine strategy even when a lower
number of control points is used. To confront
our algorithm with a more difficult task, we
manually designed a dataset of 30 characters.
The size of the images is 28 by 28 pixels.

We compare our algorithm to the original
LDDMM using cross-validation: the dataset is
randomly split into a training set (24 images)
and a test set (6 images). Each algorithm inde-
pendently estimates a template image from

Table 3 Performance (mean and standard deviation)
of the classical LDDMM and the LDDMM combined
with multiscale optimization over five folds of
cross-validation after atlas estimation and registration
on the dataset of artificial characters. The relative
residual errors and SSIM are computed between each
train/test image and the deformed template.

R SSIM

σg kg LDDMM
LDDMM+
Multiscale

LDDMM
LDDMM+
Multiscale

Atlas estimation

5 36 14.0 (4.5) 5.5 (0.8) 0.76 (0.04) 0.82 (0.01)

4 49 16.4 (3.8) 4.4 (0.4) 0.74 (0.03) 0.84 (0.00)

3 100 18.4 (4.5) 3.3 (0.5) 0.68 (0.03) 0.83 (0.00)

Registration

5 36 9.8 (6.2) 6.0 (6.3) 0.75 (0.02) 0.78 (0.03)

4 49 10.7 (6.0) 4.6 (4.2) 0.73 (0.02) 0.82 (0.01)

3 100 13.4 (7.5) 3.6 (3.8) 0.64 (0.05) 0.80 (0.00)

the training set, and then registers the tem-
plate to each image in the test set with the
same parameters as those used during train-
ing. This procedure is repeated five times, and
reproduced with different values of σg. No
statistical tests are performed because of the
overlap between the training sets and between
the test sets. Performance is assessed using
the same metrics as in Section 5.2. Table 3
displays the mean relative residual error and
SSIM after atlas estimation and registration
and Figure 10 shows the five template images
estimated by each algorithm with three different
sets of parameters, along with five reconstructed
training images.

Table 3 shows that the coarse-to-fine algo-
rithm reaches lower residual error than the
original LDDMM algorithm. The performance
of the coarse-to-fine strategy increases with
the number of control points during training
and test, while the original LDDMM algo-
rithm demonstrates the opposite trend. These
results are supported by the qualitative evalua-
tion of the template images. In Figure 10, for
σg = 5, the two algorithms generate template
images that present discrete but noticeable dif-
ferences. With the original LDDMM version,
the arms and legs of the characters appear
slightly fuzzier, and the second template image
is noisy. The reconstructed images yielded by
the original algorithm are blurry (and even erro-
neous in case of the third subject), while the
template and reconstructed images yielded by
the coarse-to-fine algorithm seem sharp and
accurate.

As in the previous experiment, the quality
of the template images estimated by the origi-
nal LDDMM algorithm deteriorates when the
number of control points increases: with σg = 4
and σg = 3, images become fuzzier and display
erroneous features inherited from the initial
templates (mean intensity images), indicating
high dependency on the initialization. The mor-
phology of all but one reconstructed characters
is also completely erroneous. In contrast, the
multiscale algorithm is able to produce sta-
ble, sharp and correct template images for all
parameters. Similar observations can be made
regarding the transformation of the template
image towards the five training images: the mul-
tiscale strategy succeeds in generating images
that are nearly identical to the original ones.

These differences have a simple explanation:
the original version simultaneously estimates
the overall shape of the characters and details
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(a) σg = 5, kg = 36 (22 pixels per point)

(b) σg = 4, kg = 49 (16 pixels per point)

(c) σg = 3, kg = 100 (8 pixels per point)

Fig. 10 Estimation of the template image by the original LDDMM and the LDDMM combined with multiscale
optimization on the toy dataset with different parameters σg . For each experiment, five estimated template images (for
each fold of cross-validation) and their standard deviation image are presented on the left, along with the template image
estimated from the first training set warped to the first five training images on the right.

such as the location and orientation of the arms
and legs, making it more dependent on the ini-
tial template image and leading to the selection
of erroneous features, while the coarse-to-fine
strategy first focuses on estimating the charac-
ters main features, which are then refined when
the finer scales are optimized. This phenomenon
is illustrated by movies showing template opti-
mization across iterations, available at the first
author’s webpage3.

In Appendix Table B2, it can be seen that
the multiscale algorithm has slightly lower
SD(J) values during registration with σg = 3
compared to the original LDDMM algorithm.
This suggests a better ability of our multiscale
strategy to regularize deformations with a high
number of parameters.

This experiment shows that on a dataset
with high variability, the original LDDMM algo-
rithm is unable to estimate templates that

3https://fleurgaudfernau.github.io/Multiscale atlas
estimation

are satisfying with respect to quantitative and
qualitative criteria. The coarse-to-fine algo-
rithm outperforms the former in both criteria,
regardless of the number of parameters.

5.4 Fetal brain images

To evaluate the performance of our coarse-to-
fine approach on a dataset of clinical images,
we use 30 fetal brain MRIs with agenesis of the
corpus callosum acquired in Hopital Trousseau,
France [11]. Gestational ages are comprised
between 32 and 34 weeks of gestation (mean =
32.9 ± 0.6).

Agenesis of the corpus callosum is a devel-
opmental anomaly characterized by the total
or partial absence of the corpus callosum. It
is often associated to anatomical features such
as widening of the lateral ventricles. Atlas esti-
mation can help better understand congenital
anomalies by providing an insight into how
these anatomical characteristics vary together
[11]. However, as abnormal fetal brains may
present a wide range of defects, this makes atlas
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(a) σg = 7; kg = 4, 050 (311 voxels per point)

(b) σg = 5; kg = 10, 080 (125 voxels per point)

(c) σg = 4; kg = 20, 250 (63 voxels per point)

Fig. 11 Atlas estimation by the original LDDMM and the LDDMM combined with multiscale optimization on the
dataset of fetal brain images. For each experiment, the estimated template volume from the first fold of cross-validation
is presented in the left column. The first column displays the standard deviation of the template intensities over five
folds of cross-validation. The first row displays four different training images in axial or sagittal view; the four rightmost
columns display the corresponding reconstructed images (i.e. the template image warped to the training images). Salient
differences between images are zoomed in with a factor 2. Red square: superior temporal sulcus. Green arrows: cingulate
sulcus. Orange square: temporal cortex. Blue square: interhemispheric fissure. Yellow square: interhemispheric sulci. Pink
square: pericallosal area.

estimation more difficult and prone to errors
than with datasets of healthy fetuses. Thus, it
is crucial to develop algorithms that are able
to estimate realistic templates on both healthy
and abnormal subjects.

The brain MRIs are preprocessed, volume
reconstructed and rigidly aligned according to
the procedure described in Gaudfernau et al.
[11]. The final images have size 105x100x120
voxels. Cross-validation is performed in the
same manner as in Section 5.3, with 24 images
used for atlas estimation and 6 images used

for testing. Figure 11 presents an example of
estimated template image during cross valida-
tion along with 4 reconstructed training images
for different parameters σg, and Table 4 dis-
plays the mean relative residual error and SSIM
after atlas estimation (training) and registra-
tion (test). Visual examination of the templates
is performed by an expert radiologist.

Table 4 shows that the coarse-to-fine algo-
rithm achieves lower residual error and higher
SSIM values than the original algorithm dur-
ing atlas estimation and registration for all
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Table 4 Performance (mean and standard deviation) of
the classical LDDMM and the LDDMM combined with
multiscale optimization over five folds of cross-validation
after atlas estimation and registration on the dataset of
fetal brains images. The relative residual error (R) and
the SSIM are computed between each train/test image
and the deformed template.

R SSIM

σg kg LDDMM
LDDMM+
Multiscale

LDDMM
LDDMM+
Multiscale

Atlas estimation

7 4, 050 43.6 (3.7) 37.8 (0.9) 0.73 (0.01) 0.74 (0.02)

5 10, 080 38.5 (4.0) 32.5 (1.6) 0.74 (0.02) 0.77 (0.0)

4 20, 250 34.5 (3.8) 31.9 (3.8) 0.76 (0.02) 0.78 (0.02)

Registration

7 4, 050 35.0 (6.2) 31.1 (5.7) 0.71 (0.01) 0.72 (0.0)

5 10, 080 31.4 (5.0) 25.6 (5.2) 0.74 (0.01) 0.76 (0.01)

4 20, 250 26.7 (1.4) 22.8 (1.1) 0.75 (0.01) 0.78 (0.01)

values of σg. In Appendix Table B3, both algo-
rithms show similar values of SD(J), though
slightly higher for the multiscale algorithm,
suggesting a better ability to capture some of
the volume changes characterizing abnormal
subjects, e.g. shrunk corpus callosum. The tem-
plate images in Figure 11 present subtle but
noticeable differences: the brain volumes esti-
mated with the multiscale optimization display
sharper features and enhanced contrast between
structures, especially for higher values of σg.
The template images estimated by the original
LDDMM algorithm display more fuzzy areas,
especially at the boundary between cortical gray
matter and white matter (see for example the
superior temporal sulcus, red squares) and the
medial surface of the brain (e.g. the cingulate
sulcus, green arrows). Compared to the original
algorithm, the multiscale strategy yields tem-
plate images that are more stable across folds,
especially in regions with high inter-subjects
variability, e.g. cortical folds, lateral ventricles
and corpus callosum area.

The multiscale template-to-subject transfor-
mations also build more accurate anatomical
structures: see for example the more pro-
nounced gyration patterns (orange squares)
and clearly delineated interhemispheric fissure
and lateral ventricle (blue squares). Interest-
ingly, the multiscale template image warped
to the training subjects reveals more abnormal
features associated to corpus callosum agene-
sis, such as the typical radiating sulci (yellow

squares) and missing corpus callosum (pink
squares).

As in the previous experiments, the mul-
tiscale algorithm has higher runtimes than
the original LDDMM algorithm in Appendix
Table B3.

Altogether, these results indicate that our
coarse-to-fine strategy can successfully enhance
the results of atlas estimation applied to real-
world, complex clinical data.

6 Discussion

In this paper, we took advantage of the hier-
archical property of the wavelet decomposition
to develop a coarse-to-fine optimization proce-
dure in the LDDMM framework. Specifically,
we proposed a Haar-like wavelet representation
of the initial velocity fields to enhance the out-
comes of the classical RKHS-based LDDMM
algorithm. The transfer of information from
coarse to fine scales ensures smarter initializa-
tion of the deformations at each level, leading
the algorithm to favor more accurate solutions
and avoid unrealistic local minima. Contrary
to previous coarse-to-fine algorithms introduced
in the LDDMM framework [19; 52; 54; 55], our
approach adds no complexity to the mathemat-
ical model. Specifically, the reparameterization
of the velocity fields can be seen as an additional
layer of spatial regularization, which preserves
the RKHS structure of the vector fields and the
efficient numerical scheme used to compute the
gradients. This reparameterization can easily be
translated to other mathematical frameworks
which model deformations using vector fields.
For example, our multiscale strategy could be
combined with models that express diffeomor-
phisms as a composition of deformations of
increasingly fine scales [54; 55].

We first performed a registration experi-
ment to assess the influence of the initial scale
parameter and compare our algorithm to the
multi-kernel strategy [50]. Results suggest that
our multiscale algorithm can be competitive
with the multi-kernel framework and lead to
more accurate matching. While the focus of
the multi-kernel framework is the design of an
explicitly multiscale deformation model, our
strategy’s primary goal is efficiency, in the spirit
of classical coarse-to-fine strategies. A clear
advantage of our multiscale optimization is its
convenience: we only need to identify one rel-
atively well-performing kernel and apply our
multiscale scheme, while in the multi-kernel
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framework, one needs to identify several rele-
vant kernels, combine them, and optimize their
weights, with no guarantee to converge to a bet-
ter local minima [50]. However, our method does
not improve deformation smoothness, which
reflects the different bases upon which the two
algorithms are built: our strategy is multiscale
in the sense that it solves the optimization
problem in spaces of increasing resolution; the
multi-kernel framework is multiscale in the way
deformations are defined as coexisting flows.
Thus, it would be interesting to adapt our mul-
tiscale scheme to enhance optimization in the
multi-kernel framework in order to estimate
true multiscale flows and favor deformation
smoothness.

We then evaluated the performance of our
multiscale algorithm on three atlas estimation
tasks of increasing difficulty. Compared to the
original LDDMM algorithm, the coarse-to-fine
algorithm yields higher quality templates with
better stability (estimated by the variability of
the template intensities across cross-validation
folds), that are able to generalize to unseen
images. Not only does our strategy produce
images that have a realistic anatomy, but it
leads to enhanced preservation of anatomical
details, including unusual or abnormal ones.
This makes it particularly appropriate for tasks
involving high inter-subject variability, specifi-
cally clinical images. Our results suggest that
the multiscale LDDMM algorithm can estimate
a more diverse range of transformations all the
while preserving reasonable smoothness.

Some limitations of this algorithm have to
be highlighted. Unlike approaches based on
a mixture of kernels, our deformation model
relies on a single Gaussian kernel. While this
provides the advantage of introducing no addi-
tional parameters, the results of our algorithm
depend on the choice of the kernel width σg
- but to a lesser extent than the original ver-
sion. As shown in Section 5.2, the multiscale
LDDMM algorithm fails to avoid irregular
deformations when using a very small ker-
nel. In such scenarios, a solution could reside
in local adaptation, i.e. maintain smoothness
constraints in areas where the matching is
near-perfect and constrain the velocity fields
to be unevenly smooth, in line with strategies
based on simultaneously coexisting flows [50].
As illustrated in Section 5.1, the runtime of
our multiscale optimization increases with the
number of scales of the coarse-to-fine procedure.
This can be prohibitive when working with a

high number of parameters, which increases the
number of scales, or, as shown in Section 5.4,
when performing atlas estimation on clinical
images. Methodological improvements could
be made to our multiscale algorithm. The
Haar wavelet, which produces sharp transitions
between nearby areas of the vector fields, could
be replaced with smoother wavelet functions
such as the Daubechies wavelet to favor more
regular vector fields.

The properties of the wavelet transform offer
interesting avenues to explore. Notably, the
wavelet functions ϕs,k and ψo

s,k are normalized
depending on their scale s. By modifying the
weights attributed to the fine and coarse scales
in this normalization, one can change the rel-
ative importance attributed to high and low
frequency coefficients during optimization. It
would be interesting to refine our wavelet-based
spatial regularizer in this way and observe how
it impacts the results.

The simplicity of our algorithm makes it
easy to implement, which opens up interesting
perspectives. The coarse-to-fine strategy could
be applied to other types of atlases such as
spatio-temporal ones [12], or to other statis-
tical frameworks such as the Bayesian Mixed
Effect Model [9]. In regard to the latter point,
a significant advance would be to integrate our
reparameterization of the velocity fields into
this Bayesian framework by introducing pri-
ors on the wavelet coefficients, in the spirit of
Downie et al. [61] who decomposed deforma-
tions into a Haar wavelet basis and modelled the
coefficients as independent random variables
with a mixture distribution.

In addition, we will focus on developing
a dual coarse-to-fine strategy, by applying a
hierarchical representation to the images, as
already attempted in other mathematical mod-
els, e.g. with B-spline deformations [30; 65; 66]
and in the hyperelasticity framework [49].
Alternating both coarse-to-fine strategies
would very likely provide template images of
even higher quality. Ultimately, we will also
apply our multiscale strategies to other models
available in the LDDMM framework, namely
geodesic regression [8] and its variant piecewise
geodesic regression [67] and evaluate their
usefulness on complex clinical challenges such
as the modelling of the fetal brain growth in
a continuous manner [68], a well-knowingly
challenging task in Computational Anatomy.
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Appendix A Algorithms
FWT and IWT

To compute the Forward and Inverse Wavelet
Transforms, explicit computation of the related
matrices MFWT and MIWT is not necessary
since the algorithms rely on local operations
on basis coefficients. To compute the wavelet
coefficients of an array X of dimension d, the
FWT algorithm (Algorithm 5) relies on a 1D
Haar Forward algorithm (Algorithm 2), which
computes local means and differences along
one axis. Uneven numbers of rows/columns are
handled by computing weighted averages and
differences so that the boundaries are given the
same importance as the rest of the array. Fig. 1
illustrates how the FWT algorithm operates on
a 2-dimensional array, corresponding to lines
4-12 in Algorithm 5.

Finally, the output wavelet coefficients have
to be normalized to preserve the input signal
energy: this is done by computing the matrix
MFWT in Algorithm 4 and computing the
renormalization matrix R from MFWT:

R[i] =
1

∥MFWT[i, :]∥2

where ∥MFWT[i, :]∥2 is the L2 norm of the ith
row of MFWT.

The IWT algorithm (Algorithm 6) runs in
a manner that is symmetrical to the FWT
algorithm, by using the 1D Haar Backward
algorithm (Algorithm 3) to compute finer-scale
coefficients from coarse scale coefficients one
axis at a time.

Algorithm 2 1D Haar Forward step

1: Input
2: β: array of shape (k1, ..., kD), d: axis along

which to compute the transform,Kd: size of the
original array along axis d, s: current scale, ws:
list of scales for each axis [1, ..., D] in ascending
order

3: Initialization
4: Swap axes in β to put axis d in position 0
5: if kd > 1 then
6: if kd is even then
7: βa ← (β[0 :: 2]+β[1 :: 2])/2 {Average the

consecutive rows of β}
8: if Kd ̸= 2× kd

s then
9: δ ← Kd/2

s − (kd − 1) {Weighting of
the border}

10: βa[−1]← (β[−2] + δ ∗ β[−1])/(1 + δ)
11: end if
12: βd ← β[0 :: 2] − βa {Difference between

the consecutive rows of β}
13: else
14: βa ← (β[0 : −1 : 2]+β[1 :: 2])/2 {Average

the consecutive rows of β}
15: βd ← β[0 : −1 : 2] − βa {Difference

between the consecutive rows of β}
16: βa ← concatenate([βa, β[−1]]) {Add the

last unpaired row}
17: end if
18: β ← concatenate([βa, βd])
19: end if
20: ws[d]← [⌈kd/2⌉] + ws[d]
21: return β,ws
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Fig. 1 The FWT Algorithm (Algorithm 5) applied to a 3-by-4 array. Steps in grey squares illustrate the 1D Haar
Forward step (Algorithm 2). Running the IWT Algorithm (Algorithm 6) amounts to running the illustrated steps
backward. For the sake of simplicity, the renormalization step (line 16 in Algorithm 5) is not featured.

Algorithm 3 1D Haar Backward step

1: Input
2: β: array of wavelet coefficients of shape

(k1, ..., kD), d: axis of β along which to apply
the backward transform, Kd: size of the origi-
nal array along axis d, s: current scale, ws: list
of scales for each axis [1, ..., D] in ascending
order

3: Initialization
4: β ← Swap axes in β to put axis d in position 0
5: X ← zero array of the shape of β
6: nlow ← ws[d][0]
7: βa ← β[: nlow] {Low-frequency coefficients}
8: βd ← β[nlow :] {High-frequency coefficients}
9: if ws[d][1] > 1 then

10: if ws[d][1] is even then
11: X[0 :: 2]← βa + βd
12: X[1 :: 2]← 2× βa −X[0 :: 2]
13: if Kd ̸= 2× kd

s then
14: δ ← Kd/2

s − (kd − 1)
15: X[−1]← ((1 + δ)× βa[−1]−X[−2])/δ
16: end if
17: else
18: X[0 : −1 : 2]← βa[: −1] + βd
19: X[−1]← βa[−1]
20: X[1 :: 2]← 2× βa[: −1]−X[0 : −1 : 2]
21: end if
22: end if
23: ws[d]← ws[d][1 :]
24: return X,ws

Algorithm 4 Renormalization

1: {Compute the Haar Forward Matrix MFWT

and the renormalization matrix R}
2: Input
3: (K1, ...,KD): shape of the array to wavelet

transform
4: Initialization

5: n←
D∏
i=1

Ki

6: MFWT ← zero array of shape (n, n)
7: for i in range(n) do
8: Z ← zero array of shape (K1, ...,KD)
9: ith element of Z ← 1

10: β,ws, R ← Haar Forward(Z, ρ = 0)
{Algorithm 5}

11: MFWT [:, i]← flatten(β)
12: end for
13: R← zero array of shape (K1, ...,KD)
14: for i in range(n) do
15: ith element of R← 1

∥MFWT [i,:]∥2

16: end for
17: return R
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Algorithm 5 Forward Haar Wavelet Transform
(FWT algorithm)

1: {Compute the wavelet coefficients β of an array
X}

2: Input
3: X: array of shape (K1, ...,KD), ρ: renormal-

ization factor (default: 1)
4: Initialization
5: β ← X {Array to store the wavelet coeffi-

cients}
6: ws ← [[K1], ..., [KD]] {For each axis, store the

scales for which the wavelet coefficients have
been computed in ascending order}

7: Smax ← ⌈log2(max(K1, ...,KD)⌉
8: for s in range(Smax) do
9: βcurrent ← β[: ws[0][0], ..., : ws[D][0], ]

{Low-frequency coefficients at scale s− 1}
10: for d in range(D) do
11: βcurrent, ws, R ←

Haar forward 1d step(βcurrent,d, Kd,
s, ws) {Algorithm 2}

12: β[: ws[0][0], ..., : ws[D][0], ]← βcurrent
13: end for
14: end for
15: if ρ ̸= 0 then
16: R ← renormalize((K1, ...,KD))

{Algorithm 4}
17: β ← β ×Rρ

18: end if
19: return β,ws, R

Algorithm 6 Inverse Haar Wavelet Transform
(IWT algorithm)

1: {Given its wavelet coefficients β, compute array
X (i.e. coefficients of scale 0)}

2: Input
3: β: array of wavelet coefficients of shape

(K1, ...,KD), ρ: renormalization factor (default:
1), ws: list of scales for each axis [1, ..., D],
stored in ascending order

4: Initialization
5: X ← β
6: Smax ← ⌈log2(max(K1, ...,KD)⌉
7: if ρ ̸= 0 then
8: R ← renormalize((K1, ...,KD))

{Algorithm 4}
9: X ← X/Rρ

10: end if
11: for s in range(Smax − 1,−1,−1) do
12: Xcurrent ← X[: ws[0][1], ..., : ws[D][1]]
13: for d in range(D) do
14: Xcurrent ←

Haar Backward 1d step(Xcurrent,d,
Kd, s, ws) {Algorithm 3}

15: X[: ws[0][1], ..., : ws[D][1]]← Xcurrent

16: end for
17: end for
18: return X

Appendix B Algorithms
smoothness
and runtime

Table B1 Standard deviation of the Jacobian determinant
(SD(J)) and runtimes (RT) (mean and standard deviation)
of the classical LDDMM and the LDDMM combined with
multiscale optimization over five folds of cross-validation
after atlas estimation and registration on the dataset of
handwritten digits. Bold style indicate statistically
significant differences between the algorithms (p < 0.05).

SD(J) RT (min.)

σg kg LDDMM
LDDMM+
Multiscale

LDDMM
LDDMM+
Multiscale

Atlas estimation

3 100 0.15 (0.02) 0.19 (0.01) 8.50 (3.26) 13.22 (2.88)

2 196 0.18 (0.01) 0.21 (0.01) 8.61 (1.29) 12.29 (1.13)

1.5 361 0.20 (0.01) 0.22 (0.01) 7.0 (1.44) 12.34 (1.12)

Registration

3 100 0.20 (0.01) 0.20 (0.01) 0.31 (0.05) 0.52 (0.03)

2 196 0.22 (0.01) 0.24 (0.02) 0.38 (0.05) 0.56 (0.02)

1.5 361 0.23 (0.02) 0.26 (0.03) 0.32 (0.03) 0.58 (0.08)
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Table B2 Standard deviation of the Jacobian
determinant (SD(J)) and runtimes (RT) (mean and
standard deviation) of the classical LDDMM and the
LDDMM combined with multiscale optimization over five
folds of cross-validation after atlas estimation and
registration on the dataset of artificial characters.

SD(J) RT (min.)

σg kg LDDMM
LDDMM+
Multiscale

LDDMM
LDDMM+
Multiscale

Atlas estimation

5 36 0.10 (0.01) 0.11 (0.01) 9.51 (3.04) 13.65 (2.52)

4 49 0.12 (0.01) 0.13 (0.01) 9.43 (2.19) 13.78 (2.62)

3 100 0.13 (0.01) 0.12 (0.01) 11.10 (3.77) 13.21 (1.77)

Registration

5 36 0.13 (0.02) 0.12 (0.01) 0.37 (0.04) 0.56 (0.05)

4 49 0.14 (0.01) 0.14 (0.01) 0.38 (0.03) 0.51 (0.05)

3 100 0.17 (0.02) 0.14 (0.01) 0.39 (0.03) 0.47 (0.02)

Table B3 Standard deviation of the Jacobian determinant
(SD(J)) and runtimes (RT) (mean and standard deviation) of the
classical LDDMM and the LDDMM combined with multiscale
optimization over five folds of cross-validation after atlas
estimation and registration on the dataset of fetal brains images.

SD(J) RT (min.)

σg kg LDDMM
LDDMM+
Multiscale

LDDMM
LDDMM+
Multiscale

Atlas estimation

7 4, 050 0.02 (0.01) 0.03 (0.01) 134.40 (20.67) 189.97 (67.39)

5 10, 080 0.02 (0.01) 0.03 (0.01) 95.80 (34.61) 191.37 (89.82)

4 20, 250 0.03 (0.01) 0.05 (0.01) 111.38 (37.24) 189.74 (77.0)

Registration

7 4, 050 0.03 (0.01) 0.03 (0.01) 4.12 (0.53) 6.66 (0.62)

5 10, 080 0.03 (0.01) 0.03 (0.01) 4.27 (0.48) 7.22 (0.42)

4 20, 250 0.04 (0.01) 0.05 (0.01) 3.68 (0.70) 7.84 (0.14)
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