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Abstract

Aggregating estimators using exponential weights depending on their risk ap-
pears optimal in expectation but not in probability. We use here a slight overpenal-
ization to obtain oracle inequality in probability for such an explicit aggregation
procedure. We focus on the fixed design regression framework and the aggregation
of affine estimators and obtain results for a large family of affine estimators under
a non necessarily independent sub-Gaussian noise assumptions.
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1 Introduction
We consider here a classical fixed design regression model

∀i ∈ {1, . . . ,n}, Yi = f0(xi)+Wi

with f0 an unknown function, xi the fixed design points and W =(Wi)i≤n a centered sub-
Gaussian noise. We assume that we have at hand a family of affine estimate { f̂t(Y ) =
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AtY + bt |At ∈S +
n (R),bt ∈ Rn, t ∈ T }, for instance a family of projection estimator,

of linear ordered smoother in a basis or in a family of basis. The most classical way
to use such a family is to select one of the estimate according to the observations, for
instance using a penalized empirical risk principle. A better way is to combine linearly
those estimates with weights depending of the observation. A simple strategy is the
Exponential Weighting Average in which all those estimate are averaged with a weight
proportional to exp

(
− r̃t

β

)
π(t) where r̃t is a (penalized) estimate of the risk of f̂t . This

strategy is not new nor optimal as explained below but is widely used in practice. In
this article, we analyze the performance of this simple EWA estimator by providing
oracle inequalities in probability under mild sub-Gaussian assumption on the noise.

Our aim is to obtain the best possible estimate of the function f0 at the grid points.
This setting is probably one of the most common in statistics and many regression esti-
mators are available in the literature. For non parametric estimation, Nadaraya-Watson
estimator [40, 53] and its fixed design counterpart [26] are widely used, just like pro-
jection estimators using trigonometric, wavelet [24] or spline [52] basis for example. In
the parametric framework, least squares or maximum likelihood estimators are com-
monly employed, sometimes with minimization constraints, leading to LASSO [48],
ridge [34], elastic net [61], AIC [1] or BIC [46] estimates.

Facing this variety, the statistician may wonder which procedure provides the best
estimation. Unfortunately, the answer depends on the data. For instance, a rectangular
function is well approximated by wavelets but not by trigonometric functions. Since
the best estimator is not known in advance, our aim is to mimic its performances in
term of risk. This is theoretically guaranteed by an oracle inequality:

R( f0, f̃ )≤Cn inf
t∈T

R( f0, f̂t)+ εn

comparing the risk of the constructed estimator f̃ to the risk of the best available pro-
cedure in the collection { f̂t , t ∈ T }. Our strategy is based on convex combination of
these preliminary estimators and relies on PAC-Bayesian aggregation to obtain a single
adaptive estimator. We focus on a wide family, commonly used in practice : affine
estimators { f̂t(Y ) = At(Y − b)+ b+ bt |At ∈ S +

n (R),bt ∈ Rn, t ∈ T } with b ∈ Rn a
common recentring.

Aggregation procedures have been introduced by Vovk [51], Littlestone and War-
muth [38], Cesa-Bianchi et al. [14], Cesa-Bianchi and Lugosi [13]. They are a central
ingredient of bagging [9], boosting [25, 45] or random forest (Amit and Geman [3] or
Breiman [10]; or more recently Biau et al. [8], Biau and Devroye [7], Biau [6], Genuer
[27]).

The general aggregation framework is detailed in Nemirovski [41] and studied in
Catoni [11, 12] through a PAC-Bayesian framework as well as in Yang [54, 55, 56,
57, 58, 59, 60]. See for instance Tsybakov [50] for a survey. Optimal rates of ag-
gregation in regression and density estimation are studied by Tsybakov [49], Lounici
[39], Rigollet and Tsybakov [43], Rigollet [42] and Lecué [36].

A way to translate the confidence of each preliminary estimate is to aggregate ac-
cording to a measure exponentially decreasing when the estimate’s risk rises. This
widely used strategy is called exponentially weighted aggregation. More precisely,
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as explained before, the weight of each element f̂t in the collection is proportional to
exp
(
− r̃t

β

)
π(t) where r̃t is a (penalized) estimate of the risk of f̂t , β is a positive pa-

rameter, called the temperature, that has to be calibrated and π is a prior measure over
T . The main interest of exponential weights resides in Lemma 1 [12] since they ex-
plicitly minimize the aggregated risk penalized by the Kullback-Leibler divergence to
the prior measure π . Our aim is to give sufficient conditions on the risk estimate r̃t and
the temperature β to obtain an oracle inequality for the risk of the aggregate. Note that
when the family T is countable, the exponentially weighted aggregate is a weighted
sum of the preliminary estimates.

This procedure has shown its efficiency, offering lower risk than model selection
because we bet on several estimators. Aggregation of projections has already been ad-
dressed by Leung and Barron [37]. They have proved by the mean of an oracle inequal-
ity, that in expectation, the aggregate performs almost as well as the best projection in
the collection. Those results have been extended to several settings and noise condi-
tions [20, 21, 22, 29, 23, 5, 18, 30, 47, 44] under a frozen estimator assumption: they
should not depend on the observed sample. This restriction, not present in the work
by Leung and Barron [37], has been removed by Dalalyan and Salmon [19] within the
context of affine estimator and exponentially weighted aggregation. Nevertheless, they
make additional assumptions on the matrices At and the Gaussian noise to obtain an
optimal oracle inequality in expectation for affine estimates. Very sharp results have
been obtained in Golubev [31], Chernousova et al. [15] and Golubev and Ostobski [32].
Those papers, except the last one, study a risk in expectation.

Indeed, the Exponential Weighting Aggregation is not optimal anymore in proba-
bility. Dai et al. [16] have indeed proved the sub-optimality in deviation of exponential
weighting, not allowing to obtain a sharp oracle inequality in probability. Under strong
assumptions and independent noise, Bellec [4] provides a sharp oracle inequality with
optimal rate for another aggregation procedure called Q-aggregation. It is similar to ex-
ponential weights but the criterion to minimize is modified and the weights no longer
are explicit. Results for the original EWA scheme exists nevertheless but with a con-
stant strictly larger than 1 in the oracle inequality. [17] obtain for instance a result
under a Gaussian white noise assumption by penalizing the risk in the weights and
taking a temperature at least 20 times greater than the noise variance. Golubev and
Ostobski [32] does not use an overpenalization but assume some ordered structure on
the estimate to obtain a result valid even for low temperature. An unpublished work,
by [28], provides also weak oracle inequality with high probability for projection es-
timates on non linear models. Alquier and Lounici [2] consider frozen and bounded
preliminary estimators and obtain a sharp oracle inequality in deviation for the excess
risk under a sparsity assumption, if the regression function is bounded, with again a
modified version of exponential weights.

In this article, we will play on both the temperature and the penalization. We will
be able to obtain oracle inequalities for the Exponential Weighting Aggregation under
a general sub-Gaussian noise assumption that does not require a coordinate indepen-
dent setting. We conduct an analysis of the relationship between the choice of the
penalty and the minimal temperature. In particular, we show that there is a continuum
between the usual noise based penalty and a sup norm type one allowing a sharp oracle

3



inequality.

2 Framework and estimate
Recall that we observe

∀i ∈ {1, . . . ,n}, Yi = f0(xi)+Wi

with f0 an unknown function and xi the fixed grid points. Our only assumption will be
on the noise. We do not assume any independence between the coordinates Wi but only
that W = (Wi)i≤n ∈Rn is a centered sub-Gaussian variable. More precisely, we assume
that E(W ) = 0 and there exists σ2 ∈ R+ such that

∀α ∈ Rn, E
[
exp
(

α
>W
)]
≤ exp

(
σ2

2
‖α‖2

2

)
,

where ‖.‖2 is the usual euclidean norm in Rn. If W is a centered Gaussian vector with
covariance matrix Σ then σ2 is nothing but the largest eigenvalue of Σ.

The quality of our estimate will be measured through its error at the design points.
More precisely, we will consider the classical euclidean loss, related to the squared
norm

‖g‖2
2 =

n

∑
i=1

g(xi)
2.

Thus, our unknown is the vector ( f0(xi))
n
i=1 rather than the function f0.

As announced, we will consider affine estimators f̂t(Y ) = At(Y −b)+b+bt corre-
sponding to affine smoothed projection.

We will assume that

f̂t(Y ) = At(Y −b)+b+bt =
n

∑
i=1

ρt,i〈Y −b,gt,i〉gt,i +b+bt

where (gt,i)
n
i=1 is an orthonormal basis, (ρt,i)

n
i=1 a sequence of non-negative real num-

bers and bt ∈ Rn. By construction, At is thus a symmetric positive semi-definite
real matrix. We assume furthermore that the matrix collection {At}t∈T is such that
supt∈T ‖At‖2 ≤ 1. For sake of simplicity, we only use the notation f̂t(Y ) = At(Y −
b)+b+bt in the following.

To define our estimate from the collection { f̂t(Y ) = AtY + bt |At ∈ S +
n (R),bt ∈

Rn, t ∈ T }, we specify the estimate r̃t of the (penalized) risk of the estimator f̂t(Y ),
choose a prior probability measure π over T and a temperature β > 0. We define the
exponentially weighted measure ρEWA, a probability measure over T , by

dρEWA(t) =
exp
(
− 1

β
r̃t

)
∫

exp
(
− 1

β
r̃t ′
)

dπ(t ′)
dπ(t)
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and the exponentially weighted aggregate fEWA by fEWA =
∫

f̂t dρEWA(t). If T is
countable then

fEWA = ∑
t∈T

e−r̃t/β πt

∑t ′∈T e−r̃t′/β πt ′
f̂t .

This construction naturally favors low risk estimates. When the temperature goes
to zero, this estimator becomes very similar to the one minimizing the risk estimate
while it becomes an indiscriminate average when β grows to infinity. The choice of
the temperature appears thus to be crucial and a low temperature seems to be desirable.

Our choice for the risk estimate r̃t is to use the classical Stein unbiased estimate,
which is sufficient to obtain optimal oracle inequalities in expectation,

rt = ‖Y − f̂t(Y )‖2
2 +2σ

2 Tr(At)−nσ
2

and add a penalty pen(t). We will consider simultaneously the case of a penalty inde-
pendent of f0 and the one where the penalty may depend on an upper bound of (kind
of) sup norm.

More precisely, we allow the use, at least in the analysis, of an upper bound
˜‖ f0−b‖

∞
which can be thought as the supremum of the sup norm of the coefficients

of f0 in any basis appearing in T . Indeed, we define ˜‖ f0−b‖
∞

as the smallest non-
negative real number C such that for any t ∈T ,

‖At( f0−b)‖2
2 ≤C2 Tr(A2

t ).

By construction, ˜‖ f0−b‖
∞

is smaller than the sup norm of any coefficients of f0− b

in any basis appearing in the collection of estimators. Note that ˜‖ f0−b‖
∞

can also be
upper bounded by ‖ f0−b‖1, ‖ f0−b‖2 or

√
n‖ f0−b‖∞ where the `1 and sup norm can

be taken in any basis.
Our aim is to obtain sufficient conditions on the penalty pen(t) and the temperature

β so that an oracle inequality of type

‖ f0− fEWA‖2
2 ≤ inf

µ∈M 1
+(T )

(1+ ε)
∫
‖ f0− f̂t‖2

2dµ(t)

+(1+ ε
′)

(∫
price(t)dµ(t)+2βKL(µ,π)+β ln

1
η

)
holds either in probability or in expectation. Here, ε and ε ′ are some small non-negative
numbers possibly equal to 0 and price(t) a loss depending on the choice of pen(t) and
β . When T is countable, such an oracle proves that the risk of our aggregate estimate
is of the same order as the one of the best estimate in the collection as it implies

‖ f0− fEWA‖2
2 ≤ inf

t∈T

{
(1+ ε)‖ f0− f̂t‖2

2 +(1+ ε
′)

(
price(t)+β ln

1
π(t)2η

)}
.

Before stating our more general result, which is in Section 4, we provide a compar-
ison with some similar results in the literature on the countable T setting.
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3 Penalization strategies and preliminary results
The most similar result in the literature is the one from Dai et al. [17] which holds
under a Gaussian white noise assumption and uses a penalty proportional to the known
variance σ2:

Proposition 1 (Dai et al. [17]). If pen(t) = 2σ2 Tr(At), and β ≥ 4σ216, then for all
η > 0, with probability at least 1−η ,

‖ f0− fEWA‖2 ≤min
t

{(
1+

128σ2

3β

)
‖ f0− f̂t‖2 +8σ

2 Tr(At)

+3β ln
1
πt

+3β ln
1
η

}
.

Our result generalizes this result to the non necessarily independent sub-Gaussian
noise. We obtain

Proposition 2. If β ≥ 20σ2, there exists γ ∈ [0,1/2), such that if
pen(t)≥ 4σ2

β−4σ2 Tr(A2
t )σ

2, for any η > 0, with probability at least 1−η ,

‖ f0− fEWA‖2 ≤ inf
t

{(
1+

4γ

1−2γ

)
‖ f0− f̂t‖2

+

(
1+

2γ

1−2γ

)(
pen(t)+2σ

2 Tr(At)+2β ln
1
πt

+β ln
1
η

)}
.

The parameter γ is explicit and satisfies ε = O(σ2

β
). We recover thus a similar weak

oracle inequality under a weaker assumption on the noise. It should be noted that [4]
obtains a sharp oracle inequality for a slightly different aggregation procedure but only
under the very strong assumption that Tr(At)≤ ln 1

π(t) .
Following Guedj and Alquier [33], a lower bound on the penalty, that involves the

sup norm of f0, can be given. In that case, the oracle inequality is sharp as ε = ε ′ = 0.
Furthermore, the parameter γ is not necessary and the minimum temperature is lower.

Proposition 3. If β > 4σ2, and

pen(t)≥ 4σ2

β −4σ2

(
σ

2 Tr(A2
t )+2

[
˜‖ f0−b‖

2

∞
Tr(A2

t )+‖bt‖2
2

])
,

then for any η > 0, with probability at least 1−η ,

‖ f0− fEWA‖2 ≤ inf
t

{
‖ f0− f̂t‖2 +2σ

2 Tr(At)

+
8σ2

β −4σ2

[
˜‖ f0−b‖

2

∞
Tr(A2

t )+‖bt‖2
2

]
+pen(t)+2β ln

1
πt

+β ln
1
η

}
.
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The two results can be combined in a single one. Indeed, to obtain the first oracle
inequality, we rely in the proof on bounds of type

‖(At −Au) f0 +bt −bu‖2
2 ≤C1‖ f̂t − f0‖2

2 +C2‖ f̂u− f0‖2
2,

with some constants C1 and C2 depending on γ which allows to link ‖At f0+bt−Au f0+
bu‖2

2 to ‖AtY +bt− f0‖2
2 and ‖AuY +bu− f0‖2

2. Whereas, for the second inequality we
rely on bounds of type

‖(At −Au) f0 +bt −bu‖2
2 ≤ 4(‖At f0‖2

2 +‖Au f0‖2
2 +‖bt‖2

2 +‖bu‖2
2)

≤ 4
[
‖̃ f0‖

2
∞
(Tr(A2

t )+Tr(A2
u))+‖bt‖2

2 +‖bu‖2
2

]
.

Combining these two upper bounds produce weak oracle inequalities for a wider range
of temperatures than Proposition 2, drawing a continuum between Proposition 2 and
Proposition 3. More precisely, one obtains

Proposition 4. For any δ ∈ [0,1], if β ≥ 4σ2V (1+ 4δ ) and β > 4σ2V , there exists
γ ≥ 0, such that if

pen(t)≥ 4σ2

β −4σ2V

(
σ

2 Tr(A2
t )+2(1−δ )(1+2γV )2

[
‖̃ f0‖

2
∞

Tr(A2
t )+‖bt‖2

2

])
,

then for any η > 0, with probability at least 1−η ,

‖ f0− fEWA‖2 ≤ inf
t

{
(1+ ε)‖ f0− f̂t‖2

+(1+ ε
′)

(
price(t)+2β ln

1
πt

+β ln
1
η

)}
.

with ε =
4V 2γ

(2V −1)(1−2V γ)
, ε
′ =

2V γ

1−2V γ
and

price(t) = pen(t)+2σ
2 Tr(At)+

8σ2(1−δ )(1+2γV )2

β −4σ2V

[
‖̃ f0‖

2
∞

Tr(A2
t )+‖bt‖2

2

]
.

The convex combination parameter δ measures the account for signal to noise ratio
in the penalty. We are now ready to state the central result of this paper, which gives
an explicit expression for γ and introduce an optimization parameter ν > 0.

4 A general oracle inequality
We consider now the general case for which T is not necessarily countable. Recall
that we have defined the exponentially weighted measure ρEWA, a probability measure
over T , by

dρEWA(t) =
exp
(
− 1

β
r̃t

)
∫

exp
(
− 1

β
r̃t ′
)

dπ(t ′)
dπ(t)
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and the exponentially weighted aggregate fEWA by fEWA =
∫

f̂t dρEWA(t). We will
directly consider a lower bound on the penalty of the same type than in Proposition 4
and propositions similar to Propositions 2 and 3 will be obtained as straightforward
corollaries.

Our main contribution is the following two similar theorems:

Theorem 4.1. For any β ≥ 20σ2, let

γ =
β −12σ2−

√
β −4σ2

√
β −20σ2

16σ2 .

If for any t ∈T ,

pen(t)≥ 4σ2

β −4σ2 σ
2 Tr(A2

t ),

then

• for any η ∈ (0,1], with probability at least 1−η ,

‖ f0− fEWA‖2
2 ≤ inf

µ∈M 1
+(T )

(
1+

4γ

1−2γ

)∫
‖ f0− f̂t‖2

2dµ(t)

+

(
1+

2γ

1−2γ

)∫
pen(t)+2σ

2 Tr(At)dµ(t)+β

(
1+

2γ

1−2γ

)(
2KL(µ,π)+ ln

1
η

)
.

• Furthermore

E‖ f0− fEWA‖2
2 ≤ inf

µ∈M 1
+(T )

(
1+

4γ

1−2γ

)∫
E‖ f0− f̂t‖2

2dµ(t)

+

(
1+

2γ

1−2γ

)∫
pen(t)+2σ

2 Tr(At)dµ(t)+2β

(
1+

2γ

1−2γ

)
KL(µ,π).

and

Theorem 4.2. For any δ ∈ [0,1], if β > 4σ2, If for any t ∈T ,

pen(t)≥ 4σ2

β −4σ2

(
σ

2 Tr(A2
t )+2

[
˜‖ f0−b‖

2

∞
Tr(A2

t )+‖bt‖2
2

])
,

then

• for any η ∈ (0,1], with probability at least 1−η ,

‖ f0− fEWA‖2
2 ≤ inf

µ∈M 1
+(T )

∫
‖ f0− f̂t‖2

2dµ(t)

+
∫

pen(t)+2σ
2 Tr(At)+

8σ2

β −4σ2

[
˜‖ f0−b‖

2

∞
Tr(A2

t )+‖bt‖2
2

]
dµ(t)

+β

(
2KL(µ,π)+ ln

1
η

)
.
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• Furthermore

E‖ f0− fEWA‖2
2 ≤ inf

µ∈M 1
+(T )

(
1+

4γ

1−2γ

)∫
E‖ f0− f̂t‖2

2dµ(t)

+
∫

pen(t)+2σ
2 Tr(At)+

8σ2

β −4σ2

[
˜‖ f0−b‖

2

∞
Tr(A2

t )+‖bt‖2
2

]
dµ(t)+2βKL(µ,π).

When T is discrete, one can replace the minimization over all the probability mea-
sure M 1

+(T ) by the minimization overall Dirac measure δ ft with t ∈ T . Proposi-
tions 2 and 3 are then straightforward corollaries. Note that the result in expectation
is obtained with the same penalty, which is known not to be necessary, at least in the
Gaussian case, as shown by [19].

If we assume the penalty is given

pen(t) = κ Tr(A2
t )σ

2,

one can give rewrite the assumption in term of κ . The weak oracle inequality holds
for any temperature greater than 20σ2 as soon as κ ≥ 4σ2

β−4σ2 . while an exact oracle

inequality holds for any vector f0 and any temperature β greater than 4σ2 as soon as

β −4σ2

4σ2 κ−1≥
˜‖ f0−b‖

2

∞
+‖bt‖2/Tr(A2

t )

σ2 .

For fixed κ and β , this corresponds to a low peak signal to noise ratio
˜‖ f0−b‖

2
∞

σ2 up to the
‖bt‖2 term which vanishes when bt = 0. Note that similar results hold for a penalization
scheme but with much larger constants and some logarithmic factor in n.

Finally, the minimal temperature of 20σ2 can be replaced by some smaller values
if one further restrict the smoothed projections used. As it appears in the proof, the
temperature can be replaced by 8σ2 or even 6σ2 when the smoothed projections are
respectively classical projections and projections in the same basis. The question of
the minimality of such temperature is still open. Note that in this proof, there is no loss
due to the sub-Gaussianity assumption, since the same upper bound on the exponential
moment of the deviation as in the Gaussian case are found, providing the same penalty
and bound on temperature.

The two results can be combined in a single one producing weak oracle inequalities
for a wider range of temperatures than Theorem 4.1. in Apprendix, we prove that
a continuum between those two cases exists: a weak oracle inequality, with smaller
leading constant than the one of Theorem 4.1, holds as soon as there exists δ ∈ [0,1)
such that β ≥ 4σ2(1+4δ ) and

β −4σ2

4σ2 κ−1≥ (1−δ )(1+2γ)2
˜‖ f0−b‖

2

∞
+‖bt‖2/Tr(A2

t )

σ2 ,

where the signal to noise ratio guides the transition. The temperature required remains
nevertheless always above 4σ2. The convex combination parameter δ measures the
account for signal to noise ratio in the penalty.
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Note that in practice, the temperature can often be chosen smaller. It is an open
question whether the 4σ2 limit is an artifact of the proof or a real lower bound. In the
Gaussian case, [32] have been able to show that this is mainly technical. Extending
this result to our setting is still an open challenge.

A Proof of the oracle inequalities
The proof of this result is quite long and thus postponed in Appendix A.1. We provide
first the generic proof of the oracle inequalities, highlighting the role of Gibbs measure
and of some control in deviation. Then, we focus on the aggregation of projection
estimators in the Gaussian model. This example already conveys all the ideas used
in the complete proof of the deviation lemma : exponential moments inequalities for

Gaussian quadratic form and the control of the bias ‖ f0−At f0‖2
2 by ‖̃ f0‖

2
∞

on the one
hand, to obtain an exact oracle inequality, and by ‖ f0−AtY‖2

2 on the other hand, giving
a weak inequality.

The extension to the general case is obtained by showing that similar exponential
moments inequalities can be obtained for quadratic form of sub-Gaussian random vari-
ables, working along the fact that the systematic bias ‖ f0−At f0‖2

2 is no longer always
smaller than ‖ f0−AtY‖2

2 and providing a fine tuning optimization allowing the equality
in the constraint on β and an optimization on the parameters ε .

We provide in the next section the sketch of proof of Theorem A.1, an extended
version of the Theorems as well as its proof in the sub-Gaussian case and a simplified
case dealing with Gaussian noise and orthonormal projection meant to be compared
with the one of Dai et al. [17].

A.1 Extended result in the sub-Gaussian case
We will consider affine estimators f̂t(Y ) = At(Y − b)+ b+ bt corresponding to affine
smoothed projection. We will assume that

f̂t(Y ) = At(Y −b)+b+bt =
n

∑
i=1

ρt,i〈Y −b,gt,i〉gt,i +b+bt

where (gt,i)
n
i=1 is an orthonormal basis, (ρt,i)

n
i=1 a sequence of non-negative real num-

bers and bt ∈ Rn. By construction, At is thus a symmetric positive semi-definite real
matrix. We only assume here that the matrix collection {At}t∈T is such that there ex-
ists a finite V > 0 for which supt∈T ‖At‖2 ≤V . For sake of simplicity, we only use the
notation f̂t(Y ) = At(Y −b)+b+bt in the following.

We obtain a theorem in which V plays a role and in which a parameter ν can be
optimized.

Theorem A.1. For any δ ∈ [0,1], if β ≥ 4σ2V (1+4δ ), and β > 4σ2V , let

γ =
β −4σ2V (1+2δ )−

√
β −4σ2V

√
β −4σ2V (1+4δ )

16σ2δV 2 1δ>0.
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If for any t ∈T ,

pen(t)≥ 4σ2

β −4σ2V

(
σ

2 Tr(A2
t )+2(1−δ )(1+2γV )2

[
˜‖ f0−b‖

2

∞
Tr(A2

t )+‖bt‖2
2

])
,

then

• for any η ∈ (0,1], with probability at least 1−η ,

‖ f0− fEWA‖2
2 ≤ inf

ν∈N
inf

µ∈M 1
+(T )

(1+ ε(ν))
∫
‖ f0− f̂t‖2

2dµ(t)

+(1+ ε
′(ν))

∫
price(t)dµ(t)+β (1+ ε

′(ν))

(
2KL(µ,π)+ ln

1
η

)
.

• Furthermore

E‖ f0− fEWA‖2
2 ≤ inf

ν∈N
inf

µ∈M 1
+(T )

(1+ ε(ν))
∫

E‖ f0− f̂t‖2
2dµ(t)

+(1+ ε
′(ν))

∫
price(t)dµ(t)+2β (1+ ε

′(ν))KL(µ,π),

with ε(ν) =
1+ν

ν

(1+ν)γ

1− (1+ν)γ
, ε
′(ν) =

(1+ν)γ

1− (1+ν)γ
,

price(t) = pen(t)+2σ
2 Tr(At)+

8σ2(1−δ )

β −4σ2V
(1+2γV )2

[
˜‖ f0−b‖

2

∞
Tr(A2

t )+‖bt‖2
2

]
and N = {ν > 0|(1+ν)γ < 1}.

The parameter ν is a technical parameter that can be optimized, provided N is non
empty. If δ > 0, then for any β ≥ 4σ2V (1+4δ ), 0< 2γV ≤ 1. Thus (0,2V−1)⊆N as
soon as V > 1/2 with 2V −1 ∈ N if we assume that β > 4σ2V (1+4δ ). If we assume
V ∈ (0,1/2), we have to impose β > 4σ2V + 2σ2δ (1+ 2V )2 in order to have a non
empty N. Finally, if δ = 0 then γ = 0 and ε ′(ν) = 0,ε(ν) = 0, and no optimization
is required. Theorems 4.1 and 4.2 correspond to the case V = 1 and the choice ν =
2V −1 = 1.

A.2 General sketch of proof
Theorem A.1 relies on the characterization of Gibbs measure (Lemma 1) and a control
of deviation of the empirical risk of any aggregate around its true risk.

ρ is a Gibbs measure. Therefore it maximizes the entropy for a given expected
energy. That is the subject of Lemma 1.1.3 in Catoni [12]:

Lemma 1. For any bounded measurable function h : T → R, and any probability
distribution ρ ∈M 1

+ (T ) such that KL(ρ,π)< ∞,

log
(∫

exp(h)dπ

)
=
∫

hdρ−KL(ρ,π)+KL(ρ,πexp(h)),

11



where by definition
dπexp(h)

dπ
= exp[h(t)]∫

exp(h)dπ
. Consequently,

log
(∫

exp(h)dπ

)
= sup

ρ∈M 1
+(T )

∫
hdρ−KL(ρ,π).

With h(t) =− 1
β
[rt +pen(t)], this lemma states that for any probability distribution

µ ∈M 1
+ (T ) such that KL(µ,π)< ∞,∫

hdρ−KL(ρ,π)≥
∫

hdµ−KL(µ,π).

Equivalently,∫
‖ f0− f̂t‖2

2dρ(t)+
∫ (

rt −‖ f0− f̂t‖2
2 +pen(t)

)
dρ(t)+βKL(ρ,π)

≤
∫
‖ f0− f̂t‖2

2dµ(t)+
∫ (

rt −‖ f0− f̂t‖2
2 +pen(t)

)
dµ(t)+βKL(µ,π)

⇔
∫
‖ f0− f̂t‖2

2dρ(t)−
∫
‖ f0− f̂t‖2

2dµ(t)≤
∫ (
‖ f0− f̂t‖2

2− rt
)

dρ(t)

−βKL(ρ,π)−
∫ (
‖ f0− f̂t‖2

2− rt
)

dµ(t)−
∫

pen(t)dρ(t)

+
∫

pen(t)dµ(t)+βKL(µ,π).

The key is to upper bound the right-hand side with terms that may depend on ρ,
but only through

∫
‖ f0− f̂t‖2

2dρ(t) and Kullback-Leibler distance. We will obtain two
different controls in the sub-Gaussian case and the Gaussian one that provide upper
bounds in probability (and in expectation) of type:∫ (

‖ f0− f̂t‖2
2− rt

)
dρ(t)−

∫ (
‖ f0− f̂u‖2

2− ru
)

dµ(u)

≤C1

∫
‖ f0− f̂t‖2

2dρ(t)+C2

∫
‖ f0− f̂u‖2

2dµ(u)

+
∫ (

C3 Tr(A2
t )+C4‖bt‖2

2
)

dρ(t)

+C5

∫
Tr(Au)dµ(u)+

∫ (
C6 Tr(A2

u)+C7‖bu‖2
2
)

dµ(u)

+β

(
KL(ρ,π)+KL(µ,π)+ ln

1
η

)
where C1 to C7 are known functions. Combining with the previous inequality and
taking pen(t)≥C3 Tr(A2

t )+C4‖bt‖2
2 gives

(1−C1)
∫
‖ f0− f̂t‖2

2dρ(t)− (1+C2)
∫
‖ f0− f̂t‖2

2dµ(t)

≤C5

∫
Tr(Au)dµ(u)+

∫ (
C6 Tr(A2

u)+C7‖bu‖2
2
)

dµ(u)+
∫

pen(u)dµ(u)

+β

(
2KL(µ,π)+ ln

1
η

)
.

12



The additional condition C1 < 1 allows to conclude. It is now clear that the whole work
lies in the proof of the lemma.

A.3 Proof of Theorem A.1
The proof follows from the scheme described in section A.2. The main point is to
control ∫ (

‖ f0− f̂t‖2
2− rt

)
dρ(t)−

∫ (
‖ f0− f̂t‖2

2− rt
)

dµ(t).

We recall that At is a symmetric positive semi-definite matrix, there exists V > 0 such
that supt∈T ‖At‖2 ≤ V and W is a centered sub-Gaussian noise. For any t,u ∈ T , we
denote ∆t,u = ‖ f0− f̂t‖2

2− rt −‖ f0− f̂u‖2
2 + ru.

The exponential moment of ∆t,u is easily controlled by a term involving ‖(At −
Au)( f0−b)+bt −bu‖2

2 (see Equation (A.2)). In the projection case, we used a bound

‖(At −Au)( f0−b)‖2
2 ≤ 2

(
‖At( f0−b)− ( f0−b)‖2 +‖Au( f0−b)− ( f0−b)‖2)

≤ 2
(
‖AtY − ( f0−b)‖2 +‖AuY − ( f0−b)‖2)

whose last inequalities is not applicable here. To overcome this difficulty, a term ‖(At−
Au)Y‖2

2 is introduced and for an arbitrary γ ≥ 0, we try to control ∆t,u−γ‖(At−Au)Y‖2
2.

A simple calculation yields

∆t,u− γ‖ f̂t − f̂u‖2
2 =W>(2I− γ(At −Au)

>)(At −Au)W

+2W>(I− γ(At −Au)
>) [(At −Au)( f0−b)+bt −bu]

−2σ
2 Tr(At −Au)− γ‖(At −Au)( f0−b)+bt −bu‖2

2.

Using W>(2I − γ(At − Au)
>)(At − Au)W ≤ 2W>(At − Au)W and since (At)t∈T are

positive semi-definite matrices, 2W>(At −Au)W ≤ 2W>AtW . Thus, for any β > 0,
any γ ≥ 0,

Eexp
(

∆t,u

β
− γ

β
‖ f̂t − f̂u‖2

2

)
≤ E

[
exp

2
β

(
W>AtW +W>(I− γ(At −Au)) [(At −Au)( f0−b)+bt −bu]

)]
× exp

−1
β

(
2σ

2 Tr(At −Au)+ γ‖(At −Au)( f0−b)+bt −bu‖2
2
)
.

The first step is to bring us back to the Gaussian case, using W ’s sub-Gaussianity
and an idea of Hsu et al. [35]. Let Z be a standard Gaussian random variable, indepen-
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dent of W . Then,

Eexp

(
2√
β

W>
√

AtZ +
2
β

W>(I− γ(At −Au)) [(At −Au)( f0−b)+bt −bu]

)

= E

[
E

[
exp

(
2√
β

W>
√

AtZ +
2
β

W>(I− γ(At −Au)) [(At −Au)( f0−b)+bt −bu]

)∣∣W]]

= E

[
E

[
exp

(
2√
β

W>
√

AtZ

)∣∣W]

×exp
(

2
β

W>(I− γ(At −Au)) [(At −Au)( f0−b)+bt −bu]

)]
= Eexp

2
β

(
W>AtW +W>(I− γ(At −Au)) [(At −Au)( f0−b)+bt −bu]

)
.

On the other hand,

E
[

exp
2
β

(
W>AtW +W>(I− γ(At −Au)) [(At −Au)( f0−b)+bt −bu]

)]
=E

[
E

[
exp

(
2√
β

W>
√

AtZ +
2
β

W>(I− γ(At −Au)) [(At −Au)( f0−b)+bt −bu]

)∣∣Z]] .
Since W is sub-Gaussian with parameter σ ,

E
[

exp
2
β

(
W>AtW +W>(I− γ(At −Au)) [(At −Au)( f0−b)+bt −bu]

)]

≤Eexp

σ2

2

∥∥∥∥∥ 2√
β

(√
AtZ +

1√
β
(I− γ(At −Au)) [(At −Au)( f0−b)+bt −bu]

)∥∥∥∥∥
2

2


Hence,

Eexp
(

∆t,u

β
− γ

β
‖ f̂t − f̂u‖2

2

)
≤E

[
exp

2σ2

β

(
Z>AtZ +

2√
β

Z>
√

At(I− γ(At −Au)) [(At −Au)( f0−b)+bt −bu]

)]

× exp
(

2σ2

β 2 ‖(I− γ(At −Au)) [(At −Au) f0 +bt −bu]‖2
2−

2σ2

β
Tr(At −Au)

)
× exp

(
− γ

β
‖(At −Au)( f0−b)+bt −bu‖2

2

)
.

The expectation is the one of the exponential of some quadratic form and we will use
the ideas of Hsu et al. [35]. Since At is positive semi-definite, there exist an orthogonal
matrix U and a diagonal matrix D such that At = U>DU. Note that UZ is a standard
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Gaussian variable. This diagonalization step and the non-negativity of the eigenvalues
allow to apply Lemma 2.4 of Hsu et al. [35]. Then, for any β > 4σ2V , any γ ≥ 0,

Eexp
(

∆t,u

β
− γ

β
‖ f̂t − f̂u‖2

2

)
≤ exp

(
2σ2

β
Tr(At)+

4σ4

β (β −4σ2V )
Tr(A2

t )

)
× exp

(
8σ4

β 2(β −4σ2V )

∥∥∥√At(I− γ(At −Au)) [(At −Au)( f0−b)+bt −bu]
∥∥∥2

2

)
× exp

(
2σ2

β 2 ‖(I− γ(At −Au)) [(At −Au)( f0−b)+bt −bu]‖2
2−

2σ2

β
Tr(At −Au)

)
× exp

(
− γ

β
‖(At −Au)( f0−b)+bt −bu‖2

2

)
.

Consequently,

Eexp
(

∆t,u

β
+

γ

β

(
‖(At −Au)( f0−b)+bt −bu‖2

2−‖ f̂t − f̂u‖2
2
))

≤ exp
2σ2

β

(
Tr(Au)+

2σ2

β −4σ2V
Tr(A2

t )

)
× exp

(
2σ2

β 2

(
4σ2V

β −4σ2V
(1+2γV )2 +(1+2γV )2

)
‖(At −Au)( f0−b)+bt −bu‖2

2

)
≤ exp

2σ2

β

(
Tr(Au)+

2σ2

β −4σ2V
Tr(A2

t )+
(1+2γV )2

β −4σ2V
‖(At −Au)( f0−b)+bt −bu‖2

2

)
.

If an exact oracle inequality is wished, ‖(At −Au)( f0− b)+ bt − bu‖2
2 should be

upper bounded by some constant and γ should be set to zero. Else, γ is used to replace
the terms in ‖(At−Au)( f0−b)+bt−bu‖2

2 by ‖(At−Au)(Y −b)+bt−bu‖2
2. Thus, the

terms depending on f0 will be upper bounded in two ways:

• on the one hand, using ˜‖ f0−b‖
2

∞

‖(At−Au)( f0−b)+bt−bu‖2
2≤ 4

(
‖At( f0−b)‖2

2 +‖Au( f0−b)‖2
2 +‖bt‖2

2 +‖bu‖2
2
)

≤ 4
((

Tr(A2
t )+Tr(A2

u)
) ˜‖ f0−b‖

2

∞
+‖bt‖2

2 +‖bu‖2
2

)
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For any δ ∈ [0,1],

Eexp
(

∆t,u

β
+

γ

β

(
‖(At −Au)( f0−b)+bt −bu‖2

2−‖ f̂t − f̂u‖2
2
))

≤ exp
2σ2

β

(
Tr(Au)+

2σ2

β −4σ2V
Tr(A2

t )

)
× exp

(
2σ2

β

(1+2γV )2(1−δ )

β −4σ2V
‖(At −Au)( f0−b)+bt −bu‖2

2

)
× exp

(
2σ2(1+2γV )2δ

β (β −4σ2V )
‖(At −Au)( f0−b)+bt −bu‖2

2

)
≤ exp

2σ2

β

(
Tr(Au)+

2σ2

β −4σ2V
Tr(A2

t )+
(1+2γV )2δ

β −4σ2V
‖(At −Au)( f0−b)+bt −bu‖2

2

)
× exp

(
8σ2(1+2γV )2(1−δ )

β (β −4σ2V )

[(
Tr(A2

t )+Tr(A2
u)
) ˜‖ f0−b‖

2

∞
+‖bt‖2

2 +‖bu‖2
2

])
.

• on the other hand, introducing ‖ f̂t − f0‖2
2 to obtain a weak oracle inequality:

conditions should be found on γ such that

2σ2(1+2γV )2δ

β −4σ2V
‖(At −Au)( f0−b)+bt −bu‖2

2

− γ
(
‖(At −Au)( f0−b)+bt −bu‖2

2−‖ f̂t − f̂u‖2
2
)

≤C1‖ f̂t − f0‖2
2 +C2‖ f̂u− f0‖2

2

for some non-negative constants C1 and C2 and with δ > 0. Since for any ν > 0,
‖ f̂t − f̂u‖2

2 ≤ (1+ν)‖ f̂t − f0‖2
2 +
(
1+ 1

ν

)
‖ f̂u− f0‖2

2, it suffices that

2σ2(1+2γV )2δ

β −4σ2V
‖(At−Au)( f0−b)+bt−bu‖2

2−γ‖(At−Au)( f0−b)+bt−bu‖2
2≤ 0.

This condition may be fulfilled if β ≥ 4σ2V (1+4δ ). The smallest γ ≥ 0 among
all the possible ones is chosen :

γ =
1

16σ2δV 2

(
β −4σ

2V (1+2δ )−
√

β −4σ2V
√

β −4σ2V (1+4δ )

)
1δ>0.

This leads to the following inequality : for any δ ∈ [0,1], for any β > 4σ2V and
β ≥ 4σ2V (1+4δ ), with γ previously defined, for any ν > 0,

Eexp
(

∆t,u

β
− γ

β

(
(1+ν)‖ f̂t − f0‖2

2 +

(
1+

1
ν

)
‖ f̂u− f0‖2

2

))
≤ exp

(
8σ2(1+2γV )2(1−δ )

β (β −4σ2V )

[(
Tr(A2

t )+Tr(A2
u)
) ˜‖ f0−b‖

2

∞
+‖bt‖2

2 +‖bu‖2
2

])
× exp

2σ2

β

(
Tr(Au)+

2σ2

β −4σ2V
Tr(A2

t )

)
.
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Along the same lines as Alquier and Lounici [2], we first integrate according to the
prior π , use Fubini’s theorem, introduce the probability measures ρ and µ and apply
Jensen’s inequality to obtain that for any η ∈ (0,1],

Eexp
1
β

[∫ ∫
∆t,udρ(t)dµ(u)− (1+ν)γ

∫
‖ f̂t − f0‖2

2dρ(t)

− 4σ2

β −4σ2V

∫ (
σ

2 Tr(A2
t )+2(1−δ )(1+2γV )2

[
˜‖ f0−b‖

2

∞
Tr(A2

t )+‖bt‖2
2

])
dρ(t)

−2σ
2
(∫

Tr(Au)dµ(u)+
4(1−δ )(1+2γV )2

β −4σ2V

∫ [
˜‖ f0−b‖

2

∞
Tr(A2

u)+‖bu‖2
2

]
dµ(u)

)
−
(

1+
1
ν

)
γ

∫
‖ f̂u− f0‖2

2dµ(u)−β

(
KL(ρ,π)+KL(µ,π)+ ln

1
η

)]
≤ η . (A.1)

Finally, using exp(x) ≥ 1R+(x), for any δ ∈ [0,1], any β > 4σ2V and β ≥ 4σ2V (1+
4δ ), with γ previously defined, for any η ∈ (0,1], for any ν > 0,

P
[∫ ∫

∆t,udρ(t)dµ(u)≤ (1+ν)γ
∫
‖ f̂t − f0‖2

2dρ(t)

+
4σ2

β −4σ2V

∫ (
σ

2 Tr(A2
t )+2(1−δ )(1+2γV )2

[
˜‖ f0−b‖

2

∞
Tr(A2

t )+‖bt‖2
2

])
dρ(t)

+2σ
2
(∫

Tr(Au)dµ(u)+
4(1−δ )(1+2γV )2

β −4σ2V

∫ [
˜‖ f0−b‖

2

∞
Tr(A2

u)+‖bu‖2
2

]
dµ(u)

)
+

(
1+

1
ν

)
γ

∫
‖ f̂u− f0‖2

2dµ(u)+β

(
KL(ρ,π)+KL(µ,π)+ ln

1
η

)]
≥ 1−η .

Combining Equation (A.1) with η = 1 and the inequality t ≤ exp(t)−1 leads to

E
[∫ ∫

∆t,udρ(t)dµ(u)
]
≤ E

[
(1+ν)γ

∫
‖ f̂t − f0‖2

2dρ(t)

+
8σ2

β −4σ2V
(1−δ )(1+2γV )2

∫ [
˜‖ f0−b‖

2

∞
Tr(A2

t )+‖bt‖2
2

]
dρ(t)

+
4σ4

β −4σ2V

∫
Tr(A2

t )dρ(t)+2σ
2
∫

Tr(Au)dµ(u)

+
8σ2

β −4σ2V
(1−δ )(1+2γV )2

∫ [
˜‖ f0−b‖

2

∞
Tr(A2

u)+‖bu‖2
2

]
dµ(u)

+

(
1+

1
ν

)
γ

∫
‖ f̂u− f0‖2

2dµ(u)+β (KL(ρ,π)+KL(µ,π))
]
.
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We deduce thus that with probability at least 1−η ,∫
‖ f0− f̂t‖2

2dρ(t)−
∫
‖ f0− f̂t‖2

2dµ(t)≤ (1+ν)γ
∫
‖ f̂t − f0‖2

2dρ(t)

+
4σ2

β −4σ2V

∫ (
σ

2 Tr(A2
t )+2(1−δ )(1+2γV )2

[
˜‖ f0−b‖

2

∞
Tr(A2

t )+‖bt‖2
2

])
dρ(t)

+2σ
2
(∫

Tr(At)dµ(t)+
4(1−δ )(1+2γV )2

β −4σ2V

∫ [
˜‖ f0−b‖

2

∞
Tr(A2

t )+‖bt‖2
2

]
dµ(t)

)
−
∫

pen(t)dρ(t)+
∫

pen(t)dµ(t)+
(

1+
1
ν

)
γ

∫
‖ f̂t − f0‖2

2dµ(t)

+β

(
2KL(µ,π)+ ln

1
η

)
.

Taking

pen(t)≥ 4σ2

β −4σ2V

(
σ

2 Tr(A2
t )+2(1−δ )(1+2γV )2

[
˜‖ f0−b‖

2

∞
Tr(A2

t )+‖bt‖2
2

])
,

and ν ∈ N = {ν > 0|(1+ν)γ < 1}, such that the inequality stays informative,

(1− (1+ν)γ)
∫
‖ f0− f̂t‖2

2dρ(t)≤
(

1+
(

1+
1
ν

)
γ

)∫
‖ f0− f̂t‖2

2dµ(t)

+2σ
2
(∫

Tr(At)dµ(t)+
4(1−δ )(1+2γV )2

β −4σ2V

∫ [
˜‖ f0−b‖

2

∞
Tr(A2

t )+‖bt‖2
2

]
dµ(t)

)
+
∫

pen(t)dµ(t)+β

(
2KL(µ,π)+ ln

1
η

)
.

Finally, since ‖ f0− fEWA‖2
2 ≤

∫
‖ f0− f̂t‖2

2dρ(t),

‖ f0− fEWA‖2
2 ≤

(
1+

(1+ν)2γ

ν(1− (1+ν)γ)

)∫
‖ f0− f̂t‖2

2dµ(t)

+
2σ2

1− (1+ν)γ

(∫
Tr(At)dµ(t)

+
4(1−δ )(1+2γV )2

β −4σ2V

∫ [
˜‖ f0−b‖

2

∞
Tr(A2

t )+‖bt‖2
2

]
dµ(t)

)
+

1
1− (1+ν)γ

(∫
pen(t)dµ(t)+β

(
2KL(µ,π)+ ln

1
η

))
.

The result in expectation is obtained in the same fashion.

A.4 Gaussian noise case and projection estimates
In this subsection, we assume that At are the matrices of orthogonal projections, bt =
0, and the noise W is a centered Gaussian random variable with variance σ2I. The
constants in the previous theorem can be enhanced:
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Theorem A.2. Let π be an arbitrary prior measure over T . For any δ ∈ [0,1], any
β > 4σ2(δ +1), the aggregate estimator fEWA defined with

pen(t)≥ 2σ4

β −4σ2

1+2(1−δ )
˜‖ f0−b‖

2

∞

σ2

Tr(At)

satisfies the oracle inequalities of Theorem A.1 with ε = 2ε
′ =

8σ2δ

β −4σ2(δ +1)
and

price(t) = pen(t)+2

1+
2(1−δ )σ2

β −4σ2

˜‖ f0−b‖
2

∞

σ2

Tr(At)σ
2

Note that the result may be further simplified using price(t)≤ 2
(
pen(t)+σ2 Tr(At)

)
.

Again, the key is a control of the deviation of the empirical risk of any aggregate
around its true risk. We focus now on the proof of such a control obtaied by mixing
control of exponential moments of a quadratic form of a Gaussian random variable with
basic inequalities like Jensen, Fubini, and the important link between ‖ f0−At f0‖2

2 and
‖ f0−AtY‖2

2. For the sake of clarity, for any t,u ∈T , let

∆t,u = ‖ f0− f̂t‖2
2− rt −‖ f0− f̂u‖2

2 + ru.

A simple calculation yields

∆t,u = 2
(

W>(At −Au)W +W>(At −Au)( f0−b)−σ
2 Tr(At −Au)

)
.

Since (At)t∈T are positive semi-definite matrices, W>(At−Au)W ≤W>AtW, and there
exist an orthogonal matrix U and a diagonal matrix D such that At =U>DU.

For any β > 0,

E
[

exp
∆t,u

β

]
≤ E

[
exp

2
β

(
(UW )>D(UW )+(UW )>U(At −Au)( f0−b)

−σ
2 Tr(At −Au)

)]
.

Following lemma 2.4 of Hsu et al. [35], if β > 4σ2,

E
[

exp
∆t,u

β

]
≤ exp

2σ2

β

(
Tr(Au)+

2σ2 Tr(At)+‖(At −Au)( f0−b)‖2
2

β −4σ2

)
. (A.2)

Note that

‖(At −Au)( f0−b)‖2
2 ≤ 2

(
‖( f0−b)−At( f0−b)‖2

2 +‖( f0−b)−Au( f0−b)‖2
2
)

≤ 2
(
‖( f0−b)−At(Y −b)‖2

2 +‖( f0−b)−Au(Y −b)‖2
2
)

≤ 2
(
‖ f0− f̂t‖2 +‖ f0− f̂u‖2)
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and

‖(At−Au)( f0−b)‖2
2≤ 2

(
‖At( f0−b)‖2

2 +‖Au( f0−b)‖2
2
)
≤ 2 ˜‖ f0−b‖

2

∞
(Tr(At)+Tr(Au)) .

Thus, for any β > 4σ2, for any δ ∈ [0,1],

Eexp
[

∆t,u

β
− 2σ2

β

(
Tr(Au)+

2σ2 Tr(At)

β −4σ2

)
− 4σ2δ

β (β −4σ2)

(
‖ f0− f̂t‖2

2 +‖ f0− f̂u‖2
2
)

− 4σ2

β (β −4σ2)
(1−δ ) ˜‖ f0−b‖

2

∞
(Tr(At)+Tr(Au))

]
≤ 1.

The proof can be concluded, along the same lines as Alquier and Lounici [2], by
first integrating according to the prior π , using Fubini’s theorem, introducing the prob-
ability measures ρ and µ and applying Jensen’s inequality.
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