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In this document, you will ultimately find all the proofs of the results given in the
lectures. For the time being, you will either find the proof or a pointer to a book where
you can find them.

Please inform me if there is a missing proof!
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1. Statistical Learning: Introduction,
Setting and Risk Estimation

1.1. Bayes Predictor

Claim 1.1.1
The minimizer of E [KO/I(Y, f(l))} is given by

+1 if P(Y =+41|X)>P(Y = -1|X)
(X)) = S PY =+1|X) >1/2
—1 otherwise

Proof. We start by noticing that

argmin E[((Y, f(X))] = argmin Ex [Ey x[((Y, f(X)]

so that we can focus on

Eyx[((Y, f(X))]

where f(X) is constant.
By definition,

)AL, f(X)) +P(Y = —1]X) £(-1, f(X))

which implies

+1 if P(Y =+4+1|X) >P(Y =-1|X)
—1 otherwise

-]

The last element of the theorem is obtained by noticing that P(Y = +1|X) > P(Y = -1|X) &
P(Y = +1|X) > 1/2. O



1. Statistical Learning: Introduction, Setting and Risk Estimation

Claim 1.1.2
The minimizer of E[(*(Y, f(X))] is given by

(X)) =E[Y]X]

Proof. We start by noticing that

argmin BIA(Y, /(X))] = argminEx [Ey x[(Y, £(X))]

so that we can focus on

Ey x[(Y, f(X))] = Eyx (Y — f(X))?]

where f(X) is constant.
Now using the definition of the conditional expectation, we obtain then

By x[((Y, F(X))] = By x[(Y = f(X))?]
:EY.X[< E[Y|X] +E[Y|X] - f(X))?]
= Eyjx |[(V — E[Y|X))?] +Eyx [(E[Y]X] - £(X))?]
+2EY|X[< E[Y\L})( V]X] - (Xm
= Eyix [(Y — E[Y|X]?] + (E[Y|X] - f(X))?

which is thus minimized by f*(X) = E[Y|X].

1.2. Training Risk Optimism

Let
1 n
Ralf) = =2 Ui, f(X3)
=1
and
fs = arg min Ro(f)
Claim 1.2.1

R(fs) < Ra(f5) and E[Ra(fs)] < R(f3)



1.3. Leave One Out Formula

Proof. The first part is nothing but the definition of fg combined with the fact that f3
also belongs to S.
The second part relies on the fact that for a non-random function

E[R,) = E [; S f@@))] — E[{(Y. f(X))] = R(/)

=1

1.3. Leave One Out Formula

Claim 1.3.1
For the least squares linear regression,
o (X3) = hitYs
"X.) = !

with h; the ith diagonal coefficient of the hat (projection) matrix.

Proof. By construction,

Frix) =Xr"p7" = XiT(X?n)—iTX?n)—i)71—((1)n)—iTY(n)*i

Now X ((I)n)—iTX((bn)—i = X(n)ﬂxa«b) - X7X,;" and an)—iTX(n)—z‘ =X Yy - X1V

Using (M +uv )t = M~ = MM wigh M = X! X0 u=—v = X, yields:

Mixex®T p—1
1- X M1X?

i) =xp" (M_l + ) (X" Y — X7Y5)

using hy; = X MT1X?

: hii 2 hi

= f(&X)+ _hiif(li) —haYi =
p_i F(X,) = haYs
X)) = L&)~ it

1.4. Weighted Loss and Bayes Estimator

We assume here that the loss £(Y, f(X)) = C(Y)£%1(Y, f(X)) in a multiclass setting.



1. Statistical Learning: Introduction, Setting and Risk Estimation

Claim 1.4.1
The minimizer of E[(Y, f(X))] is given by

f1(X) = argmax C(R)P(Y = k|X)

Proof. As in the binary ¢9/1 setting, we can condition with X

Eyx [(( ZC k) (k, f(X)P(Y = k|X)
Z C(k)P(Y = k| X)
k#£f(X)

= —cuww(y = F(O)IX) + Y kC(R)P(Y = k|X)

which is minimized by taking f(X) equal to the k with the largest C(k)P(Y = k|X). O

10



2. ML Methods: Probabilistic Point of
View

2.1. Classification Risk Analysis with a Probabilistic Point of
View

Claim 2.1.1
If f = sign(2p41 — 1) then

E[( (v, F(20)] - E[©*} (v, (X))

E|"
<E[|V[X - Y|X|h]

(IE [QKL(YyX Y\XD 2
Proof. Let us denote p1(X) =P(Y = 1|X).
Step 1: Let f(X) = sign(2p1(X) — 1)
E[C/1(y, f(X)) } x[p(X L =P X)) 0
[ 1—pi1(X)) + (2p1(X) — 1)1 f(g):d}

Step 2:
B[O (Y, F0)|  E[€7 (v, (X))
= Ex |(2p1(X) = )(1jx)= 1~ Lp-0)=1))
using the definition of f* = sign(2p(X — 1)
= Ex[1201(X) ~ 114. (x)47v)|

and using the fact that f*(X) # f(X) implies that p(X) and p(X) are not on the same
side with respect to 1/2

< 2Ex[lp1(X) = pr (X)) = Ex[llp(X) — p(X)|1]
using ||P — Q1 < v/2KL(P, Q) and Jensen

< B[\ 2KL((X). 5X) | < (ExZKLE).50))

11



2. ML Methods: Probabilistic Point of View

2.2. Logistic Likelihood and Convexity

Claim 2.2.1

The maximum likelihood estimate of the logistic model is given by
B = arg min 1 z”: log (1 + e—Yi(KiTﬂ))
fonia

and the minimized function is convex in 3.

Proof.
1 -
- z (1vi=1log(A(X; " B)) + 1y,=1log(1 — h(X;" §)))
1 eXi'h 1
e e )
=—— Z <1 lo +1 lo _ )
= Yi=1 g Xrﬁ Yi=-1 g1+e&'T5

fleog( Y; Tﬁ))

Now let g(8) = log(1 + V()8 ), a brute force computation yields

e_YXTﬁ
Vy(B) = Ym&
e YXTH 1
V29(8) = !

14+ e VX814 VX8

and thus V2g(3) is sdp which implies the convexity of g and hence of the likelihood of
the logistic. O

12



3. ML Methods: Optimization Point of
View

3.1. Classical Convexification

Claim 3.1.1
The following three losses

o Logistic loss: {(Y, f(X)) = logy(1 + e~ Y /X)) (Logistic / NN)
o Hinge loss: £(Y, f(X)) = (1 - Y f(X)); (SVM)
o Exponential loss: (Y, f(X)) = e~ YY) (Boosting. ..)
satisfy
(Y, f(X)) = U(Y (X))

with | a decreasing convex function, differentiable at 0 and such that I'(0) < 0.
Furthermore ((Y, f(X)) > ¢*/1(Y, (X))

Proof. For the logistic loss, [(z) = logy(1 4+ e~ #). So that [ is differentiable everywhere

1 —Z

I(z) = - o
log(2)1+e
1 e %

F(2) = log(2) (1 +e7)2°

Thus I'(z) < 0 and [ is decreasing with {(0) < 0. Now {”(z) > 0 and thus [ is convex.
For the hinge loss, I(z) = max(0,1—z). This is a decreasing function, [ is differentiable

at 0 with I/(0) = —1 and [ is convex as the maximum of two affine (thus convex) functions.
For the exponential loss, I(z) = e *. So that [ is differentiable everywhere
I'(z2)=—e*
"(z)=e".

Thus I'(z) < 0 and [ is decreasing with /'(0) < 0. Now ”(2) > 0 and thus [ is convex.
For the three losses, by construction, {(0) = 1 and I(z) > 0 thus /(Y, f(X)) =

— —

LY f((X))) > 1 when Yf((X)) < 0 and £(Y, f(X)) > 0 otherwise. We obtain thus

that £(Y, f(X)) > 7Y, f(X)).
O

13



3. ML Methods: Optimization Point of View

3.2. Classification Risk Analysis with an Optimization Point of
View

Claim 3.2.1

The minimizer of
E[A(Y. f(X))] = EN(Y f(X))]

is the Bayes classifier f* = sign(2n(X) — 1)
Furthermore it exists a convex function ¥ such that

w (B[00 (v, sign(£(X))] - B[ (v, (X))
<E[UY, f(X)] - E[AY, /(X))

Proof. By definition,
E[L(Y F)IX] = n(XOU(f) + (1 = n(X))I(-f)
Let H(f,n) = nl(f) + (1 — n)l(—f), the optimal value for f satisfies
SH(f,n) = ndl(f) — (1 =n)dl(—f) 3 0.

With a slight abuse of notation, we denote by dl(f) and 8l(—f) the two subgradients
such that

nol(f) — (L =n)sl(~f) =0
Now we discuss the sign of f:
o If f >0, 8l(—f) < 6l(f) and thus n > (1 —7), i.e. 27 —1> 0.

o Conversely, if f <0 then 27 —1<0

Thus sign(f) = sign(2n—1) i.e. the minimizer of E[l(y f)|X]is f*(X) = sign(2n(X)—1)

We define H(n) = inf; H(f,n) = inf; (ni(f) + (1 — n)l(—f)). By construction, H is a
concave function satisfying H(1/2+ z) = H(1/2 — ).

Furthermore, one verify that if we consider the minimum over the wrong sign classi-

fiers, inf ¢ ron_1y<0 H(f,n) = 1(0).
Indeed,

H(f,n) =nl(f) + (1 —n)l(—f)
n(1(0) +1'(0)f) 4 (1 = n)(1(0) = I'(0) f)

14



3.3. SVM, distance and norm of

so that

inf H(f, > 1(0) + inf (0 on — 1) = 1(0
. (2n-1)<0 (f2m) 2 H0) £,F(2n-1)<0 (0)f(2n—1) =1(0)

Furthermore,
E[{(Y. /(X)] = Ex[H(f,n(X)
E[{(Y, f(X))| = Ex[H (n(X)]
We define then

w(6) = 1(0) — H <1‘59)

which is thus a convex function satisfying ¥(0) = 0 and ¥(#) > 0 for 6 > 0.
Recall that

E [ (Y, sign(£(X)))| — E[¢/1 (Y. £(20))]
= E&[’QU( — 115 x #sgn(f(X))}
Using Jensen inequality, we derive
v (B[O (v,sign(£(X)))] - E[ (¥, (X)) )
< Ex ¥ (120(X) — 111 tsign(rx)) )|
Using ¥(0) = 0 and the symmetry of H,

v (B[, sn(£(X))] - VO“Yf )

1+ !277 —1
<Ex [(z (( >>> 1f*(X)7ésign(f(X))}

< Ex [(1(0) = H(n(X)) 1y )séSIgn(f(X))]
(1(0) = H((X))) 15(x)(2n(x)-1)<0]
Using the property of the wrong sign classifiers
U (B [V, sign(f (X)) ~ B[ (v, (X))
< Ex[(H(f,n(X)) = H(*0(X))) 15(x)(20(x)-1)<0]
<EX[( (f.n(X)) = H(F*n(X))
<E[(Y. £(X)| - E[AY, /(X))

SEX{

—

3.3. SVM, distance and norm of

15



3. ML Methods: Optimization Point of View

Claim 3.3.1

The distance between X"+ (0 =1 and X8 + 5 = —1 is given by
2
181

Proof. For any X', the distance between X’ and the hyperplane X3 4+~ = 0 is given
by

+
X' B -1l
18]l
Applying this result to the hyperplane transpXj3 + ) = 1 and any point in the
hyperplane transpX'S + 89 = —1 yields the result. O

3.4. SVM and Hinge Loss

Claim 3.4.1

The two problems

1 n
min §||,6’||2 + C'Zsi with

{w,mxm +80)>1—s;
=1

Vi,Si >0

and

1 n
min 28] + €'Y max(0,1 = Vi(X, 75+ 5))
=1

Hinge Loss

yields the same solution for (3.

Proof. We may write

1 = Vi, Yi(X, " ) >1-s
win S [|8* +C Y- s with {Z’ (L f+ T 21

i=1 Vi, s, >0
1 < Vi, Yi( X, T ) >1 g
cminmin B2+ CY s with (o0& AT =1k
pos 2 i=1 Vi, s; >0

Now for any S,

1 g :
min §||ﬁ||2 +CZ«9¢ with

{w,mxm +80) >1—s;
=1

\V/Z',Si > 0

=1

hence the result. O

16

1 n
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3.5. Constrained Optimization, Lagrangian and Dual

3.5. Constrained Optimization, Lagrangian and Dual

Claim 3.5.1

f(z) ifx is feasible

AERP, pe(R+)9 +o00  otherwise

max Lz, A\ p) = {

hj(.%'):(), j:L...p

min max L(x, A\, ;) =min f(z) with
(5,2 1) = e J ) {gi<w><o, i=1,.. .

T XeRpP, ue(Rt)9

Proof. See Appendix [A] O

Claim 3.5.2

QN ) < f(z), for all feasible x

Ap) < i
AeRpfnfeX(Rﬂq QA ) < x ir‘glslilb/ef<x)

Proof. See Appendix [A] O

3.5.1. Duality, weak, strong and Slater’s condition

Claim 3.5.3
Weak duality:

g <p*
max min L(z, A\, u) < min max Lz, A, )
AERP, pE(RY)a T T AeRP, pe(RH)
Proof. See Appendix [A] O

Claim 3.5.4

If f is convex, h; affine and g; convex then the Slater’s condition, it exists a feasible
point such that hj(xz) = 0 for all j and g;(x) < O for all i, is sufficient to imply the
strong duality:

e, D L(z, A, p) = min L L(x, A, 1)
Proof. See Appendix [A] O

17



3. ML Methods: Optimization Point of View

3.6. Karush-Kuhn-Tucker Claim

Claim 3.6.1

If f is convex, h; affine and g; convex, all are differentiable and strong duality holds then
x* is a solution of the primal problem if and only if the KKT condition

o Stationarity:

Vo L(z* A\, 1) =V f(x*)+ Z A Vh(z*) + ZMZ-Vg(x*) =0

J
e Primal admissibility:

hi(z*) =0 and gi(z*) <0

e Dual admissibility:

pi >0
o Complementary slackness:
pigi(z*) =0
holds.
Proof. See Appendix [A] O

3.7. SVM, KKT and Dual

Claim 3.7.1
For the SVM, the KKT conditions are given by

o Stationarity:
VBL(B B s ) = B =Y eiYiX; =0
Vo L£(B,89, s, a, 1) = — Zzaz =0
Ve, L(8, 89, s,a,p) = C ! o — i =0
e Primal and dual admissibility:
1-s-Yi(X,"8+89) <0, >0, >0, and y; >0

o Complementary slackness:

ai(l—s; = Yi(X; T8+ ) =0 and pis; =0

18



3.7. SVM, KKT and Dual

Proof. The Lagrangian of the SVM is given by
1 n
LB, 8,0 1) = SIBIP +C 3 si 3 il =i = Yi(Xi T8+ ) = 3 pusi
i=1 i i

We can compute the stationarity condition and obtain immediately:
VLB, 5,0,0) = = Y eiYiX,; =0
vﬁ(o)ﬁ(ﬁaﬁm)vsvaau) = —Ziai =0
Vo £(B, 89, s,0,p) = C Lo — =0

The remaining conditions are straightforward.

Claim 3.7.2
The SVM problem satisfy Slater’s constraints.

Proof. Tt suffices to verify that 8 =0, 8(0) = 0 and s = 2 is a feasible vector for which
the inequalities in the constraints are strict. ]

Claim 3.7.3
The solution of the SVM satisfy
o fr=2YiX;and0 < a; <C.

e Ifa; #0, X; is called a support vector and either
— 5 =0 and Y;(X;" B+ B©)) =1 (margin hyperplane),

— or a; = C (outliers).

o BO*—y; — X, " g for any support vector with 0 < oy < C.

Proof. As the SVM satisfies the Slater’s constraints. The optimal 8*, 8(0* s of the pri-
mal problem and the optimal o and p of the dual satisfy the KKT optimality condition.

The formula for 5* is thus a direct consequence of VgL(f3, BO s a, w) = 0.

If we use Vg, L£(6%, 8O 5,0, 1) = 0, we have a; = C — p; which leads to 0 < a; < C
as a; > 0 and p; > 0 by the dual admissibility condition.

By the complementary slackness condition, a; # 0 implies Y;(X iT 5+ 5(0)*) =1-g
thus

o cither s; = 0 and Y;(X, T 8* + g0*) =1,
e or s; # 0 which implies ¢; = 0 and thus a; = C (outliers).

For any support vector with 0 < o; < C, Xﬂ—ﬁ*+ﬁ(0)* =Y, hence f(0* = Yi—ii—rﬁ*.
O

19



3. ML Methods: Optimization Point of View

Claim 3.7.4
The dual of the SVM

Qa,p) = min £(8,Y, 5,0, p)
B,6,s

is given by
o ify;aiY; #0 or i, + p; #C,
Q(avﬂ) = =0

e if)y ;a;Y; =0 and Vi,oy + p; = C,

B =200 5 YoV X, X,
i i

Proof. The dual of the SVM is defined as

Q(Oé /J,) = min E(/B 6 saavlu)

8,80),s
=2 LB+ C Y s+ Y il — s — V(X T8+ BO) = sy
=1 7 7
" a2 SIB12 =3 a¥iX .75 — 3 aiip® + 3(C - s — p)si+ e

We obtain immediately that this minimum is equal to —oo as soon as ), a;Y; # 0 or
C—a;—p #0.
Assume now that ), a;Y; = 0 and C — o; — p; = 0, we obtain

Qe u)—ﬁr/r;(lor)l L1812 - S aiX, T+ Y o
% %

=min g llﬁ’ll2 Zaz X B+ a
i

The optimal 5 can be obtained by setting to 0 the derivative:
B- aiViX;T =0
i
Plugging this value in the formula yields immediately

Q(a, ) —fZalochYX TX. —1—2042
i,j

20



3.8. Mercer Representation Claim

3.8. Mercer Representation Claim

Claim 3.8.1
For any loss ¢ and any increasing function ®, the minimizer in 8 of

n

S0V X T8+ BO) + a(|8]l2)

=1

n
is a linear combination of the input points 3* = Z X
i=1

Proof. Assume [ is a minimizer of

n

S Uy, X, T8+ 89) + (]|8]l2)

i=1

and let Bx be the orthogonal projection of 5 on the finite dimensional space spanned by
the X ;. By construction 8 — fSx is orthogonal to all the X; and thus

X,"8+ 89 =X,T(Bx + B8~ Bx) + 87
= XiTﬁi + 80

and thus

n

Y0, X T8+ BY) + o(|Bll2) = Y 4(Yi, X, Bx + BY) + &(||B]l2)
i=1

=1 =

> Ui, X Bx + ) + @(||Bxl2)
i=1

where the inequality holds because 3] = ||8x|* + ||3 — Bx]|?>. The minimum is thus
reached by a # in the space spanned by the X, i.e.

n
B = Z a; X;.
i=1

3.9. Moore-Aronsajn Claim

Claim 3.9.1

For any PDS kernel k : X x X — R, it exists a Hilbert space H C RY with a scalar
product (-, )y such that

21



3. ML Methods: Optimization Point of View
o it exists a mapping ¢ : X — H satisfying
(X, X') = ((X), 6(X))g

e the reproducing property holds, i.e. for any h € H and any X € X

WMX) = (h, k(X ))g -

Proof. See Appendix [E] O

3.10. Kernel Construction Machinery

Claim 3.10.1
For any function ¥ : X — R, k(X,X’) = ¥(X)¥(X') is PDS.

Proof. See Appendix O

Claim 3.10.2
For any PDS kernels k1 and ko, and any A > 0 k1 + \ko and Ak1ky are PDS kernels.

Proof. See Appendix [E] O
Claim 3.10.3
For any sequence of PDS kernels k,, converging pointwise to a kernel k, k is a PDS
kernel.

Proof. See Appendix O
Claim 3.10.4

For any PDS kernel k such that |k| < r and any power series ¥, a,z" with a, > 0 and

a convergence radius larger than r, Z ank™ is a PDS kernel.
n

Proof. See Appendix [E] O
Claim 3.10.5
/
For any PDS kernel k, the renormalized kernel k'(X,X") = X X) is a
VEX, X)k(X', X')
PDS kernel.
Proof. See Appendix [E] O

22



3.11. Mercer Representation Claim

3.11. Mercer Representation Claim

Claim 3.11.1

Let k be a PDS kernel and H its corresponding RKHS,
for any increasing function ® and any function L : R™ — R, the optimization problem

argmin L(h(Xy), ..., h(X5,)) + ®([2[])
heH

admits only solutions of the form

Proof. See Appendix [E] O

3.12. SVM and VC dimension

See Mohri, Rostamizadeh, and Talwalkar 2018|as the VC dimension will only be defined
later.
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4. Optimization: Gradient Descent
Algorithms

Most of the results can be found in Beck [2017 or in Bubeck 2015

4.1. Linear Predictor, Gradient and Hessian

Claim 4.1.1 e Gradient:

oy, f)

with ((y, f) = o

e Hessian matrix:

3

V2F(w X, w) XX, T

S\H

Oy, f)

with Z/(y,f) = of2

4.2. Exhaustive Search

Claim 4.2.1 « If G is C-Lipschitz, evaluating G on a grid of precision ¢/(/dC) is
sufficient to find a e-minimizer of G.

e Required number of evaluation: N, = O ((C\/&/e)d)

4.3. . Smoothness

Claim 4.3.1
If G is twice differentiable, G is L-smooth if and only if for all x € RY,

Amax (V2G(2)) < L.



4. Optimization: Gradient Descent Algorithms

Proof. Fix z,y € R and ¢ > 0. Let g(t) = VG(x + tey). Thus, ¢'(t) = [V2G(z +
tey)](cy). By the mean value theorem, there exists some constant t. € [0, 1] such that

VG(z +cy) — VG(z) = g(1) — 9(0) = ¢'(tc) = [V?C(x + teey))(cy). (4.1)

First implication
Taking the norm of both sides of eq. (4.1) and applying the smoothness condition, we
obtain

I[V*G(z + teey)ly|l < Liyl.-
By taking ¢ — 0 and using the fact that ¢. € [0,1] and G € C?, we have
I[V2G(@)]yll < Lyl-

Then, Aoz (V2G(2)) < L.
Second implication
Taking the norm of both sides of eq. (4.1), we have

IVG(z + cy) = VG(2)|2 = | [V2G(x + tecy)](cy) |2
Note that, for any real-valued symmetric matrix A and any vector u,
[ Aul3 = u" AT Au = (AT Au, u) < Apnao(4)?|Jul®
Thus,
IVG (@ + cy) = VG(@)]l2 < Anaa([V2G (@ + teey)]) [l (cy) |2 < Lyl

Claim 4.3.2

F'is L-smooth in the linear regression and the logistic regression cases.

4.4. Convergence of GD

Claim 4.4.1

Let G : R? — R be an L-smooth convex function. Let w* be the minimum of f on R%.
Then, Gradient Descent with step size o < 1/L satisfies

0] _ ,,x||2
(k]\ _ *) < Hw w ||2
G(w'™) — G(w*) < Sk .

Proof. This is a consequence of Corollary O
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4.4. Convergence of GD

Claim 4.4.2
In particular, for « = 1/L,

Ne = O(L|[w' — w*|3/(2€))

iterations are sufficient to get an e-approximation of the minimal value of G.

e e . . [0] _ |12 . [0] _apx 12
Proof. In order to have an e-minimizer, it suffices that W <eie k> W

which yields the result. O

Claim 4.4.3

If G is convex and L-smooth, then for any w,w'’ € R4

G(w) < G(w') + VG(w) " (w — w') + g |lw — w’||§.

Proof. Using the fact that
G(w') = G(w) + /01 (VG(w +t(w' —w)))' (w —w)dt
= G(w) + VG(w) " (w' — w)

1
+/Xvaw+ww—w»—vawWﬁu—mﬁ,
0

so that
Gw') — Gw) ~ (VG(w)) " (w' — w)|
! / T, 0
< [ VG + i —w) - V6(w) (! —w)d
< [ 196w + tw' ~ w) - VG|~ w] di
! / 2 4, £ ' w 2
< [ Lt —wlfdt = 3w —wl?.
O
Claim 4.4.4

Let G : RY — R be an L-smooth, i strongly convex function. Let w* be the minimum
of G on R%. Then, Gradient Descent with step size oz < 1 /L satisfies

Gl - Glw) < o (1 - an) 16 - Gl
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4. Optimization: Gradient Descent Algorithms

Proof. This is a consequence of Corollary O

Claim 4.4.5
Let G : R? — R be a convex function, C-Lipschitz in B(w*, R) where w* be the
minimizer of f on R®. Assume that

alfl > 0, alfl = 0, Za[k} = 400
k

< R Then, Subgradient Descent with step size o!¥! satisfies

and Hw[o] —w*

2 vk (o ])2
min G(w) — G(w*) < CR + z}f :O(Q, )
k 2 Ek’:o alk’]

Proof. This is a consequence of Theorem O

4.5. Proximal Descent

Claim 4.5.1  « R(w) = 1g(w): prox, R(w') = Po(w’)

o R(w) = i||wl|}: prox, R(w') = ﬁw.

s R(w) = |w|1: prox, R(w') = Ty (w') with T, (w); = sign(w;) max(0, [w;| — )
(soft thresholding).

Proof. If R(w) = 1g(w), then
prox., R(w') = arg min i||'w —w'||> + R(w')
8 w 27
1
= arg min — ||w — w'||?
weQ 2y
= PQ ('w’)
If R(w) = 3|wl||? then
prox, R(w') = arg min in —w'||? + R(w')
v w2
= arg min in —w'|]? + 1HwH2
2 2
The function minimized is smooth (and strongly convex) and its gradient is given by
(w—w')+w

1
v
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4.5. Proximal Descent

which is equal to 0 if and only if w = ——w’, hence the result.

Ty
If R(w) = ||wl|; then

1 d /1
ﬂHw —w'|]* + R(w) = Z <2’Y(wi —wh)? + ]wz\) .

i

We can analyze thus each coordinate independently. Let f(x) = o= (2 — 2/)? 4 |z|, this

2y
function is strongly convex and its subgradient is given by
%({L‘—l‘/)—l ifx <0
dr(x) = [%(—x’)—l,%(—x’)—i—l} ifz=0
%(x—:n’)—l—l ifz>0

One verify easily that
o if 2’ < —7y then 0 € 0¢(z) for z =2’ + 1~
o if 2’ >~ then 0 € d¢(x) for x =2’ — v
o if —y </ <~ then 0 € d7(0)
and thus
4y ifr < —y
prox, | - [|(z") = {0 if —y<x <~y
- ifa >y
or equivalently

prox, | - |(a') = sign(a’) max(0, |2'| - 7)

Claim 4.5.2 o F L-smooth and R simple:

_ w9 — w3

Glwl) - Glw') <

and N, = O(L|w!% — w*||3/2¢).
e F L-smooth and u-convex and R simple:
1 k
G(wl) - Gw*) < (1 - ap) |Gw!) - G(w?)|3,
2a
and N = O(—loge/(au)).
e I C-Lipschitz and R is the characteristic function of a convex set:

/ R% +r?log(k + 1)
ink’ < kG(w*) — G(w*) < C o
min k' < (w!™) (w) < T

and N. = O ((C(—loge)/e)?).
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4. Optimization: Gradient Descent Algorithms

Proof. Those are consequences of Theorem Theorem and Theorem
]

4.6. Coordinate Descent

Claim 4.6.1

If G is continuously differentiable and strictly convex, then exact coordinate descent
converges to a minimum.

Proof. The proof is quite technical and can be found in Saha and Tewari [2013. O

Claim 4.6.2

Assume that G is convex and smooth and that each G* is L;-smooth.
Consider a sequence {w!*} given by CGD with ¥} = 1/L;, and coordinates iy, is, . ..
chosen at random: i.i.d and uniform distribution in {1,...,d}. Then

E[G(w! ) - G(w")]

< (1= DG — G + 5 [wl - w

)
L ?

: 2 d
with |lw|7, = Y251 Ljw3.

Proof. The proof is quite technical and can be found in Nesterov [2012l 0

4.7. Gradient Descent Acceleration

Claim 4.7.1

Assume that G is an L-smooth, convex function whose minimum is reached at w*. Then,
if B = (k= 1)/(k+2),

2[|wl — w*|3
[k]y _ X 2T T 2
Glw) = Gw’) < alk+1)2

Proof. See Corollary O

Claim 4.7.2
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4.8. Stochastic Gradient Descent

Assume that G is an L-smooth, i strongly convex function whose minimum is reached

0] _ |2 k
K]y * |w w*|3 K
G(w'™) — G(w*) < — (1 L> .

Proof. The proof combines ideas of Theorem and Corollary It is left as an
exercise or can be found in Beck [2017. O

Claim 4.7.3  « For any w¥ € R? and any k satisfying 1 < k < (d — 1)/2, there
exists an L-smooth convex function f such that for any general first order method

3L||’w[0} — w*|]2
[k] _ * > 2
Glw™) - G(w™) 2 320k +1)2

e For any wl% € RY and any k < (d — 1)/2, there exists an L-smooth, j strongly
convex function f such that for any general first order method

* 1 - m 2k *
G(w) - G(w*) > ’;(w’;ﬁ) wl® — w* 3.

Proof. The proof is quite technical and can be found in Nesterov 2018 O

4.8. Stochastic Gradient Descent

Claim 4.8.1 « With ol® =2R/(bVE)

w
3
f—p

E — G(w*) <

RS
G(k;“’ )

S

o If G is p-strongly convex then with ol¥l = 2/(u(k + 1)),

E G(L f:jw[ﬂ) — G(w*) < L
k(k+1) = ~ u(k+1)
Proof. Those are consequences of Theorem O
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5. ML Methods: Neural Networks and
Deep Learning

5.1. Universal Approximation Theorem

Claim 5.1.1

A single hidden layer neural network with a linear output unit can approximate any
continuous function arbitrarily well, given enough hidden units.

Proof. This a consequence of Lemma Lemma and Lemma provided

we assume that the input space is compact. ]
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6. ML Methods: Trees and Ensemble
Methods

6.1. AdaBoost

Claim 6.1.1

The AdaBoost algorithm and the Exponential Stagewise Additive Modeling algoritm lead

to exactly the same steps.

Proof. Denoting f; = 341 aphy,
n
Ze*yi(ftq J)tah) _ Ze yife—1(z;) ,—owih(z;)
i=1
- Z wé’iefayih(zi)
6 —e Zwtzgo 1 yla ))

n

—Q /
+e Z th‘

i=1
The minimizer h; in h is independent of a and is also the minimizer of
n
> wi il (yis hlz))
i=1
The optimal oy is then given by

1 1—¢
=_1 t
at 20g €

with e = (7 wp 00 (yi, he(2))) /(i wh;)
One verify then by recursion that

n
Wt,i = wgz/(z w{‘z)
i=1

and thus the two procedures are equivalent!
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7. Unsupervised Learning: Dimension
Reduction

7.1. High Dimensional Geometry

Claim 7.1.1

If X4,...,X,, in the hypercube of dimension d such that their coordinates are i.i.d then

n

d

min |X; — X, logn
max X - X, O\

1
q-1/r (maX 1X; — X, — min || X, — gjup) —0+0p ( Ogn>

Proof. By construction,

d
l l
1 = Xl = Do - X0y
=1

As the coordinates are independent and bounded in [0, 1] so are the differences at the
power p.
Using Hoeffding inequality leads thus to

(|1 — X5~ E[16 ~ 1] > ) < 27
By a simple union bound,
P(30d 1% — Xl — B[1X - X1p]| > €) < 22
or

P (max |1 = 1l < (B[I1 — X,02] + 017 and min |1, — X, 2 max(0, E[|6; - X [] - 9'7) <12

We let € = )\dE[éHXz‘ - Xng} \/'%8™ so that denoting E, = IEE[%HXZ — XjH’g} which
is independent of d

1/p 1/p
1Xi — Xjllp 1/p logn X = Xl 1/p logn 2-\2E2
P n}ngSEp 14+ A 0 and H%EDTZEP max | 0,1 — A\ ] <1-2n P
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7.7

7. Unsupervised Learning: Dimension Reduction

Finally using (1 + )"/ < (1 + z/p) for £ > 0 and max(0,1 — )7 > 0 if > 1/2 and
max (0,1 — z)'/7 > (1 — 2z /p) si x < 1/2.

e A [logn
P maxM<El/p 1+)\\/@ mmM<E1/1’ 0 lfp\/7>1/2 <1
p d b d\/r 1— 2% logn  therwise

]P’( 1ax

d
This implies immediately that

,\ N
11X = Xillp min 11X — Xillp < EY/p + ogn it oy > 1/2 — o2 NE;
d1/p i d/p - P 3A 1°g" othervvlse
and thus

Hxi - Xj”p . sz‘ - Xj”p 1/ A [logn 2-\2E2
e S JAF mt CJAP < p <
P (m@gx p Hiljn p 3E, 1—-2n P

which corresponds to the first result.
Along the same line, using (1 — 2x)/(1 + ) > 1 — 3z for < 1/3, we deduce

. A [l
P<mmi,j 1Xi — X;llp > { if o/ = > 1/3> <1— o2 VE

max; j || X; — Xjllp — 3)‘\/ logn  therwise

and thus
P mlnz] ”X — X ”p _ 3)\\/@ <1-— 2n2—)\2Eg
max; ; [| X; — X Hp B p\ a |~
O
7.2. PCA
Claim 7.2.1
The inertia satisfies
= Ly |x xirelsx 2
= 5 LK X0 = 03X
(2¥) =1
Proof.
QQZHX — X,|1” = 22ZHX —m+mX,|?
7]
= ﬁz (1X; = ml? + |1, — ml? _2@ —m X+ m))
A
1
= %ZIIL-—WLII2 ZHX —m|?— < —m X, +m>
Z’ ’]

38

_y\272
_ 92~ NE}



7.3. SVD

and thus as >, X; —m =0

1
== |IX; —m|?
n -
K2
O
Claim 7.2.2
The solution of rank d' of
maxz 5% IPX; — PX|* = max— Z |PX; —ml|?
is given by the projection on the d’ largest eigenvalues of X.
Claim 7.2.3
The solution of rank d' of
mmZ*HL —m)+m)H2—mm*ZH (I = P)(X; —m)|?
is given by the projection on the d' largest eigenvalues of ¥..
Proof. By Pythagora’s theorem,
2K —ml? =3 (IPX; = m)|2 + (|1 = P)(X,; = m)|?)
O

Claim 7.2.4

The solution of rank d' of

m}_i/nz (X —m) T (X, —m) = ((X;) —m) (D(X;) —m)|?

is given by the projection on the d' largest eigenvalues of ¥..

7.3. SVD

I claim7.3.1
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7. Unsupervised Learning: Dimension Reduction

Any matrix n X d matrix A can de decomposed as

Al=l U© D ||[WT

(dxd)

(nxd) (nxn)  (nxd)

with U and W two orthonormal matrices and D a diagonal matrix with decreasing values.

Claim 7.3.2

The best low rank approximation or rank r is obtained by restriction of the matrices to
the first r dimensions:

A

1

U, D, W,
(rxr) (rxd)

(nxd) (nxr)

for both the operator norm and the Frobenius norm!

7.4. Multiple Factor Analysis

See Husson, Le, and Pages [2017 for instance.

Claim 7.4.1

The proposed coding corresponds to a x> type distance.

7.5. Random Projection

Claim 7.5.1

If X' is obtained by a random projection on a space of dimension d’ then if X lives in a
space of dimension d", and as soon as d' ~ d"log(d")

d
1 — X51* ~ 11X - X5

Proof. This is the Johnson-Lindenstrauss Lemma proved for instance in Shalev-Shwartz
and Ben-David 2014l O

7.6. Graph Based Approach
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7.7. Word Vectors

Claim 7.6.1
To the points X, € RY minimizing

1 1 n n
== > wigllXi - X512
nmn 4

i=1j=1

it suffices to find the d’ eigenvectors with smallest eigenvalues of the Laplacian of the
graph D — W, where D is a diagonal matrix with D;; = 3 ; w; ;.

7.7. Word Vectors

Claim 7.7.1

The supervised approach of Word2vec yields a representation similar to the one obtained
by the explicit factorization of —log(P(w,c) /(P(w)P(c)))

Proof. See Levy and Goldberg [2014. O
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8. Unsupervised Learning: Clustering

8.1. k-means

Claim 8.1.1

The k-means algorithm converges in a finite number of steps.

8.2. EM Algorithm
8.3. GAN
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9. Statistical Learning: PAC-Bayesian
Approach and Complexity Theory

9.1. Hoeffding and Finite Class

Claim 9.1.1

Let Z; be a sequence of independent centered r.v. supported in [a;,b;] then

2¢2

n — <€
v (Z Zi > 6) <e 2uima i)
=1

Proof. This is Theorem proved using

Claim 9.1.2
n AZYT(bi—ap)?
B[ 2] < i tme”
proved itself as Lemma [[.1.2] O
Claim 9.1.3

If S is finite of cardinality |S]|,

P (sup (R(f) — Ralf)) < V log |51+ log(1/ ‘”) S 14

¥ 2n
P (sup Ru(f) = R(f)| < \/log 51 ;log(l/é)) >1-25
f n

Proof. Using Hoeffding, Vf € S,

P ((R(f) —Rn(f)) = \/log 151+ log(l/(S)) < 6_%(%) o

2n :@
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9. Statistical Learning: PAC-Bayesian Approach and Complexity Theory

We also have

P((Rn<f§> ~R(fD) 2 logél/ ‘”) _ ()

Using a union bound strategy

P (S“p (RU) = Ra(f) 2 ¢ log|51 + log<1/a>)

log S| + 10g(1/5))

Now

P (Sup (R(f) = Ru(f)) + (Ra(f5) — R(f5)) = \/ g5 ;:Log(l/&) + \/ log;/é))

f
<P (m}p (R(f) = Rulf)) = ¢ Log|3] ;rllogﬂ/é))

log(1/6
+P ((Rn<f:§> ~R(f3)) 2 "gén/)) <640=25
The second bound can be obtained directly by bounding 2sup; [R(f) — Rn(f)]. O
9.2. McDiarmid and Rademacher Complexity
Claim 9.2.1
If g is a bounded difference function and X, are independent random variables then
—262
P(g(Xys-- X)) —Elg(X s, X)) 2 ) S e
—2¢2
PE[Xy, ... X))~ g(Xy,. 0, Xp) 2 0) S edum ™

Proof. See Theorem
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9.2. McDiarmid and Rademacher Complexity

Claim 9.2.2
Let o; be a sequence of i.i.d. random symmetric Bernoulli variables (Rademacher vari-
ables):
E |sup (R(f) ~ Ru(f))| < 2B |sup - 5" (¥, F(X,)
fes fesn .=
Proof. See Theorem with hi(Z;) = €01 (Y;, f(X;)). O

Claim 9.2.3
If B is finite and such that Vb € B, 2||b||3 < M?, then

[2M?2log | B|
R,.(B) su oibi| <\ ————
B) Legn; ] n

Proof. See Theorem [[.2.3] O
Claim 9.2.4  « With probability greater than 1 — 24,
_ log | B,, 2log(1/5
R(P)— R(E) <E \/8 0g|B.(S)] +\/ 0g(1/9)
n n
o With probability greater than 1 — §, simultaneously Vf' € S
8log | B, (S log(1/4§
R(F) < Ro(f) 4 E ¢ o8 15:(5) *Wgén/ )

Proof. The second bound is straightforward.
For the first one,

P (sl;p (R(f) — Ru(f)) + Ralf3) — R(fE) > E [\/ Slog BnlS)]

+\/210g(1/5))
gP(sup(R(f) >E[ /81og|B log )
f
log

+P(( n(f3) = R(£3)) = o )<5+5—25
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9. Statistical Learning: PAC-Bayesian Approach and Complexity Theory

Claim 9.2.5 « IfS is finite then with probability greater than 1 — 2§

R(f)—R(fg)S\/810g‘8|+\/210g(1/6)

n n

o If S is finite then with probability greater than 1 — &, simultaneously Vf' € S

R(f) < Ra(f) + \/8105 SI wog(l/é)

2n

Proof. It suffices to notice that

|Bu(S)| = {7 (Y, f(X)))iey, | € SH IS

9.3. VC Dimension

Claim 9.3.1

If span(S) corresponds to the sign of functions in a linear space of dimension d then
dye < d.

Claim 9.3.2
If the VC dimension dy ¢ of S is finite

2m ifn <dyc
d
()" i dve

dvc

s(S,n) < {

Proof (adapted from Shalev-Shwartz and Ben-David |2014).
Let B(S7 C= (clv T ,Cn)) = {(f(cl)v T 7f(cn))7 IS S}’

B(S,O) = H( (Y, f(ei)))iey, Yi € (=11}, f € S}
so that s(S,n) = sup |B(S,C)|.

C,|C|=n
We say that S shatters B if and only if |B(S, B)| = 2F or B = 0.

Claim 9.3.3
|B(S,C)| < |{A C C, S shatters A}|
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9.3. VC Dimension

The VC dimension d is the largest size of a shattered set so that

min(n,d)
{A C C, S shatters A}| < Z (n)

i—0  \"’
Ifn <d, Y0, (") = 2"
If n > d,

Proof of Claim[9.5.3, The lemma will be proved by induction on the size of C'.
If |C] =1 then

o either S shatters {c1} and |B(S,C)| =2 < |{0,C}| = |{A C C, S shatters A},
o or S does not shatter {c;} and |B(S,C)| =1 < [{0}| = |[{A C C, S shatters A}

Now assume the property is true for all C’ of size smaller than n — 1.
Let C = {c1,...,cn}, by definition,
1B(S,0)| = [{(f(c1),---, flen)), [ € S}
= (=1, fle2);-- -, flen)), f €S, fler) = =1}
+ A, fle2); -  flen)), f €S, fler) =1}
=H{(fle2),..., fen)), f € S}
+{(fle2), - flen)), £ € S,3f, fer) = = f(er), flei) = f(ei),i # 1}

Now by construction and induction,
{(f(ca), .., flen)), f € SH =[B(S,C\{e1})l
<|{AcC C\{a},S shatters A}|
<|{AC C,eq ¢ A, S shatters A}

Now let 8" = {f € S,3f", f(e1) = —f'(c1), f(e:) = f'(ci),i # 1}

{(F(e2)s- o Fe)s £ € 8,37 F(er) = —f(ex), fles) = £(ei),i £ 1]
=|B(S,C\{a})| < {AcC C\ {c1},S shatters A}
<|{Ac C\{c},S shatters AU{c1}}| by definition of &’
<|{ACC,c; € A, 8 shatters A}| < |[{A C C,c; € A, S shatters A}

Summing those two bounds yields the lemma property for C":

|B(S,C)| < [{A C C,c1 ¢ A, S shatters A} +[{A C C,c; € A, S shatters A}|
< |{A C C, S shatters A}|
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9. Statistical Learning: PAC-Bayesian Approach and Complexity Theory

Claim 9.3.4
log s(S,n) < dvolog (2 ) if n > dyo.

Proof. Straightforward. ..

Claim 9.3.5 e If S is of VC dimension dy ¢ then if n > dy ¢

o With probability greater than 1 — 20,

8dvclog (2 L [2loa(1/9)
n n

R(f) = R(f3) < \l

o With probability greater than 1 — &, simultaneously Vf' € S,

Sdvolog (%) fos(1/9)

n 2n

R(f') < Ra(f) + J

0.4. Structural Risk Minimization

Claim 9.4.1 o Let 7wy >0 such that } pcsmp =1

o With probability greater than 1 — 29,

2n n

R(F) - R(E) < V log(L/my) Wloga/é)

o With probability greater than 1 — §, simultaneously Vf' € S,

log(1/my) | [log(1/9)
2n +\/ 2n

R(f) < Ru(f) + \/

Claim 9.4.2
With probability 1 — 6, simultaneously for allm € M and all f € S,,,

R(f) S Ra(f) +E

flogwn(smn +woga/wm)+ \/1og<1/6>
2n 2n

n
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9.4. Structural Risk Minimization

Claim 9.4.3
/ff is the SRM minimizer then with probability 1 — 20,

¢81og|3n<sm>|

n

~

R(f) < inf inf (R(f)—i—E

meM feSm

. \/log(;:rm))

21log(1/9)

Proof. Let fgm* be the minimizer over m € M and f € &, of

\/8log|Bn<sm>r‘ . \/logu/wm)
n n

The previous bound is thus equivalent to the fact that with probability greater than

R(f)+E

12,
R(F) < R(f5,.) +E ¢ Slog Bn(Sn )l V P
2loa(1/0)

We use then that with probability 1 — ¢

\/8log|Bn<sm>r‘ . \/logu/wm) . wogu/a)
n 2n 2n

< Ral(fh )+E[\/WM‘ +\/10g(1/7rm)+\/1og(1/5)

R(f) < Ru(f) +E

2n 2n

Combining this with the fact that with probability 1 — §

log(1/9)
2n

R(f5,.) < Ra(f5,.) +

yields the result. O
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B. Convex Optimization: Lagrangian

B.1. Constrained Optimization, Lagrangian and Dual

Theorem B.1.1

f(z) ifx is feasible

+00  otherwise

max Lz, A\ p) = {

AERP, pe(R+)e

hj(x)=0, j=1,...p

gilz) <0, i=1,...q

min )\GRPI,H/?EX(R‘*‘)’I Lz, A\ p) = min f(z) with {

Proof. The second part is a direct consequence of the first one.
For the first part,

o if x is feasible h;(z) = 0 and g;(z) < 0 thus
p
£(CU A M + Z )\]hj + Z l’L’LgZ

Jj=1 =
f(x) = L(x,0,0)

and thus maxcgp, pem+ye £(@, A, 1) = f(2).

e if x is not feasible either

— i, hi(x) # 0 and thus using \; = ksign(h;(x)), Ay =0 for i’ #iand p=0
Lz, A, p) = f(x) + rsign(hi(x))hi(z)

goes to +0o0 when k goes to oo

— or 37,¢gj(x) > 0 and thus using A =0, p; = £ and py =0 for j' # j

L(x,\, 1) = f(z) + kgj(z)
goes to +0o0 when K goes to oo

which implies maxycpp, pe(R+)a L(z, A\, p) = +o0.
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B. Convex Optimization: Lagrangian

Theorem B.1.2

QN n) < f(z), for all feasible x

A < i
rer s, QA ) < i f(x)

Proof. The second part is a direct consequence of the first one.
By definition,
QA p) = min L(z, A, )
< in L(x,A
<, B LA

e
<, hin J(@)

where we have used that for x feasible L£(z, A, 1) < f(x). O

B.2. Duality, weak, strong and Slater’s condition

Theorem B.2.1
Weak duality:

¢ <p*
max min L(z, A < min max Lz, A
aerr P g, (z, A, p) < mi L (z, A, 1)
Proof. This is a direct consequence of Theorem O

Theorem B.2.2

If f is convex, h; affine and g; convex then the Slater’s condition, it exists a feasible

point such that h;(xz) = 0 for all j and g;(x) < 0 for all i is sufficient to imply the strong
duality:

in £(x, A\, ) = mi Lz, A
ACRP, pe(Rb) & (22 4) = min ACRP, e (B+)a (A1)
Proof. The simplest proof can be found in Boyd and Vandenberghe [2004. O

B.3. Karush-Kuhn-Tucker
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B.3. Karush-Kuhn-Tucker

Theorem B.3.1

If f is convex, h; affine and g; convex, all are differentiable and strong duality holds then
x* is a solution of the primal problem if and only if the KKT condition

e Stationarity:

Vo L(z* A\, u) =V f(x*)+ Z N Vh(z*) + Z wiVg(x*) =0
] i

e Primal admissibility:

hj(z*) =0 and g;(z*) <0

o Dual admissibility:

o Complementary slackness:

pigi(x*) =0

holds.
Proof. Assume first that all the KKT conditions are satisfied then
f@®) = L™, A, p)
= min £(z", A, )
< maxQ(\, ) < f(=")
e
and thus f(2*) = maxy ,Q(\, 1) < ming feasible f(2). Thus 2* is a minimizer of the
primal problem.

Let x* is a solution of the primal problem and (A*, u*) be a solution of the dual. If
the strong duality holds:

f(@") = QN ")
= min L(z, \*, 1*) < L(z*, X\, 1)
< fla)

where we have used the property that the minimizer of a convex corresponds to a 0
of the (sub)differential. Hence all the inequalities are equalities. In particular, z* is a
minimizer of L(z, \*, u*). We obtain thus the stationarity condition:

Vo L(z* A\, u) =V f(x*)+ Z AjVh;(z*) + Zungi(x*) =0
j i
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B. Convex Optimization: Lagrangian

By construction, z* is admissible and g > 0. This implies the admissibility conditions:

hj(z*) =0 and g;(z*) <0
pi > 0.

The complementary slackness condition is obtained by noticing that
L N pw) = f(2¥)
which implies

Z pigi(z*) =0

hence the result. O
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D. Gradient Descent Algorithm

Here we let G = F' 4+ R with R simple.
The proximal gradient descent algorithm is given by

wlkFtl = ProX, [k ('w[k] - a[k}ép(w[k]))
where dp(w!*) is a subgradient of F at wl¥l. If F is differentiable then §p(w!*) =

VF(w).
Most of the proofs are adaptation from the ones of Beck 2017

D.1. A Key Lemma

Lemma D.1.1
For any differentiable function F' and w, if we let

w? = prox, p(w — aVF(w))
then as soon as « satisfy
F(w") < F(w) + <VF(w),ufr - w> + %Huﬁ — w]||?
then for any z

G(2) = G(w") = 5|2 - wh|? ~ %Hz —w|? + F(2) - F(w) = (VF(w), 2 — w).

Proof. We introduce the function
1
¢(z) = F(w) + (VF(w),z — w) + R(z) + %Hx —w|?
By construction,

¢(z) = R(z) + %Ilw —w — aF(w)|]* + F(w) - of|VF(w)|

and thus wt = prox, rp(w — aVF(w)) is the minimizer of the 1/a strongly convex
function ¢. This implies that for any z,

B(2) — (w®) > 5|z —w* |
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D. Gradient Descent Algorithm

Now

p(w") = F(w) + (VE(w), w* —w) + Rw") + %Huﬁ —wl?

and thus using the assumption on «
$(w") > F(w") + R(w") = G(w")
while
¢(2) = F(w) + (VF(w), z — w) + R(z) + %HZ —wl?
adding and subtracting F(z) yields
$(2) = G(2) + %Ilz —w|* + F(w) = F(2) + (VF(w), z — w)

and thus

GE) + 52—l + Flw) — F() + (VF(w), 2~ w) ~ Glaw®) > 5o — w?

which is equivalent to the inequality in the lemma.

Corollary D.1.2

For any convex function F' and w, if we let
w” = prox, p(w — aVF(w))
then as soon as « satisfy
Flw*) < Fw) + (V)0 —w) + o w* — wl?
then for any z

1 1
o + > o +12 _ - . . 2
G(z) - Gw™") > QO[HZ w™ || 2a(1 ap)|lz —wl|

Proof. This is an immediate consequence of the previous lemma as

F(2) = F(w) = (VE(w), 2 = w) > 5z — w|]
which yields the bounds.
Furthermore, as
Fw*) > F(w) + (VF(w), w" —w) + %Huﬁ —w|?

we deduce p < é and thus au < 1.
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where > 0 if F' is u strongly convex and i = 0 otherwise. Furthermore, ap < 1.
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D.2. Gradient Descent for L-smooth Function

Corollary D.1.3

If F' is convex, and we use the Gradient Descent algorithm with al® such that

1
FwlF1y < pwl*) + <VF(w[k]),w[k“] - w[k}> + m\\w[kﬂ} — wll)?
then
1
Gw* ) — Gwlt) < —mﬂw[kﬂ] — w2
1 X 1
GwFHh — Gw*) < m(l — alfl ) |w® — w*|? — m“w[kﬂ] — w*||?

where 11 > 0 if F' is ju strongly convex and p = 0 otherwise. Furthermore, o/Fly < 1.
Proof. As
wlFH = proxa’R('w[k] — aVF(w))
we can apply the previous lemma with z = w* and z = w* as soon as
F(w!Ft < P(wl*) + <VF(w[k]),w[k+1] — w[k]> + ﬁ”w[kﬂ} — w2,
This leads to

G(w[k]) _ G(wk+1) > [k+1] _ w[k]H2

= m”w
and
* 1 1 *
Glw") = Gl = el — P = (1=l ! — w?

D.2. Gradient Descent for /.-smooth Function

Theorem D.2.1
If F is L-smooth and we use the Gradient Descent algorithm with ¥} satisfying

Fwy < P(w) + <VF(w[k]),w[k+1] - 'w[k}> - ﬁH'w[kH} — wll|?
oY

then

0 2
2t (} T o)
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D. Gradient Descent Algorithm

Proof. Corollary [D.1.3] yields

1
G(,w[k-i-l}) o G(,w[k]) < _m|’w[k+1] _ w[k}HQ

1 1
[k+1]\ * o e [k+1] _ ,,,%(12
G(w ) — G(w*) < oG [lw w*| G ||w w*||

The first inequality implies that the G(w[k]) are decreasing. For the second one, we
multiply first the inequality by a/* and sum them over k

k—1
> ol (Gl ) — Gt < Sl | — ful) w?
k'=0

and thus as G(w!*) are decreasing
k—1
1
>~ arGwh) — Gw") < Sw —w*|?
k'=0

which implies

1
2k (% '127:10 O‘[k]>

G(w) - G(w") <

lwl® —w*|?

O
Lemma D.2.2
if ' is I, smooth then if alFl < % then
1
FwlFy < F(w) + <VF(w[k]),w[k+” _ w[k}> + mnw[kﬂ] — w2
Proof. if F'is L-smooth then
L
Fw* 1y < Fwl*) + <VF(w[k]),w[k+1] _ w[k]> + §Hw[k+l] — wlk)?
and thus
1
< F(w) + <vp(w[k’])7 w1 w[k]> + muw[kﬂ] — w2
[
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D.2. Gradient Descent for L-smooth Function

Lemma D.2.3
In the backtracking algorithm, at each step

Fw* 1y < pwl* + <VF(w[k]),w[k+” _ w[k]> + ﬁnw[kﬂ] — w2,
(6]

and

|
v
~]
\5)
S
Q.
—_
o
=
=
Q.
o
=
A

= 1 B L Brkn
Z @ 20l 26(1 L )
k=0 o

Proof. First point is satisfied by construction as alfl is equal to Slag where  is the
smallest integer such that Slag satisfies

Fw™) < P(w®) + <VF(w[k]), w1 — w[k]> + w}an[kH} — w2,
0

Note that such an [ exists as the condition is satisfied for any I such that S'ay < 1/L.
In particular, one always has that o > /L. Furthermore, as a/fly <1 and Ly < 1, we
obtain 0 <1 —alflpy <1 —Bu /L this implies immediately

1 < /8 i L Bi kg1
- = (1— ~ (==
k Z =p o za[k kHO olf )< o507

Corollary D.2.4
If F is L-smooth, and we use the Gradient Descent algorithm with o/l = o < 1/L then
1w — w|”

(Kly _ *) <
Gl - Gl < 127

Proof. We combine Theorem and Lemma to obtain

e — w]?

k <% Elli/_:lo O‘)

*HQ

G(wh) - G(w") <

w9 —w
- 2ka
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D. Gradient Descent Algorithm

Corollary D.2.5

If Fis L-smooth, and we use the Gradient Descent algorithm with o obtained by
backtracking then

el — w*||?

5 (o)

with + S5 alFl > g/L.
Proof. This is the result of Theorem and Lemma O
D.3. Gradient Descent for Strongly Convex Function

Theorem D.3.1

If F' is L-smooth and i strongly convex, and we use the Gradient Descent algorithm with
al¥l satisfying

FwlFy < F(wM) + <VF(w[k]),w[kH] — 'w[k}> + 5 1[k [|wlE ] — k]2

then

1 i
G — G(w < oo ]:[ (1 — al¥p) || 2.

Proof. According to Corollary we have

G(w ) — Gwlt) <

< —m\!w[’”” —wl* I?

Gl ) = G < 5 (1= ol ool — w0t = o a1
alkl 201kl
The second inequality implies immediately

ol —w*|? < (1 - al¥p) el —w*|?

so that

k
w1 — | < TT (1 = o) | — w*||?.
k'=0
Plugging this bound in the same inequality we have used yields
1
Gl - Gwt) < (1 - all ) - w|?
1 k
P I (= aMp) [l — w1,

<
2 Py
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D.4. Accelerated Gradient Descent

O
Corollary D.3.2
If F' is L-smooth and p strongly convex, and we use the Gradient Descent algorithm with
ol¥l obtained by backtracking then
[k+1] - 2
*
Gl - G < o TL (1= o - w
k'=0
with
L B k+1
1 - 282
Qa[kl H - 2,6’( L )
Proof. This is a direct consequence of Lemma and Theorem O

Corollary D.3.3

If F' is L-smooth and 1 strongly convex, and we use the Gradient Descent algorithm with
ol = o < 1/L then

1 £ -
G w1y - <5 H (1 — ap)|lw 2.

Proof. This is a direct consequence of Lemma [D.2.2] and Theorem [D.3-1] O

D.4. Accelerated Gradient Descent

Theorem D.4.1

If F' is convex, and we use the Accelerated Gradient Descent algorithm with al¥ decreas-
ing such that

Fw*) < Pwk+1/2) 4 <VF(w[k:+1/2])’w[k+1] B w[k+1/2]> n : 1[k] w1 — k1722
(6%

then provided ¥ = (t=1 — 1) /tlH with t1¥ satisfying tl0] = 1, ti¥ > 1 and (¢lF+11)2 —
tle +1] < (¢F1)? then

Gy — Gw*) <

1 *||2
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D. Gradient Descent Algorithm

Proof. As
w[k+1} — pI‘OXa7R(’lU[k+1/2] o aVF(,w[kJrl/Q}))
with

w172 — o) 4 gk (qplk] _ gplk-1)

we can apply Corollary with w = wktY2 and wt = w1, As soon as alf is
such that

Plwh1) < Fwlkl/2) 4 <VF(w[k+1/2])7,w[k+1] B w[k+1/2]> n ﬁnw[ml] — wlt /22
«

we have
1
_ 1y ~ % 1o anlkH12 2 o [R1/2])2
G(2) — Gwl*l) > 2 — w2 — 2 [
Using 2z = 0Flw* + (1 — 0wk yields
GOMw* + (1 — 0wy — GwlF+1) > ] [0Faw* 4 (1 — gFDaplFl — qplk+11))2

_ WHQ w* + (1 — 0kl — qpll+1/2])2
By convexity of G,
G(0Ww* + (1 — 0™ wlk]) — w1y < o Gw*) + (1 — 09)Gwk]) — Glwk+)
< (1- M) (G(wl) - Gw") — (Gl - Gw))

Now
10 w* + (1 — M)l — qplE+1/2)12 = ||gM gp* 4 (1 — gl])qulH) — o[k — gIK] (wk _ wk—l) 2
= ¥ 4 Il (3 )
o\ R T L i R e[k k] )

if we let gkl = plkl ee[k 17, we obtain provided 0 < gkl <

okl \? k—1],, % k—1]\, (k1] _ ...[k])12

Combining the two previous bounds yields

o (G(wlk]) - G(w*)) — ol (Glwl1) - G(w"))

k 2
6% + (1 — 0 yult) — ol 412 — 2 ( ﬂﬂ» 61 4+ (1 — 61 1yapli1) — ¥
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D.4. Accelerated Gradient Descent

and equivalently

@9[;)2 (a[k] (G(wmﬂ) - G(w*>) - %He[k]w* + (1 — ok)glkl — ,w[k+1]H2>
1 glk—11N2(1 — glkl . 1 o . )
N CIG)E <( ()9[151)2 Lalt (G(w[k}) - G(w )) + 5”9[’“ Uap* 4 (1 — glF—1)qplk=1] _w[k]H2>
1 B . 1 o ) .
< (9[16—1})2 (a[k’ 1] (G(w[k}) — G('w )) + 5“9[’6 1],w + (1 - e[k 1])w[k 1 w[k]H2>
provided

(o1 (1 - g¥)

k k—1
e olf < b1,

If this holds, one has

1 1
(02 (a[k} (G('w[k+ﬂ) - G(w*)) + iuemw* 4 (1 — Mgkl qplk+1] ‘2>
= (9;1)2 (0‘[0] (Glwl) — ) + %HH[O]w* (1= 0 qpl0) _ ot Hz)

Using the result obtained with Corollary at k = 0 and using wl'/? = wl% we
obtain

e (0 (G — Glw) + o+ (10t —ales )
1 1 [0] * 1 1] a2 1 (0], 0l\...[0] a2
< (61072 5”“’ —w H—§H’w —w”| +§H9 w* + (1 — 0w — )|

and thus if we assume that 00 = 1

X 1 .
(02 (oz[k‘} (G('w[k+ﬂ) - G(w )) + iuemw 4 (1 — Oyl w[k+1}‘2>

1
< Sl — w?
We deduce thus the following bound

G(w[k+1]) _ G(w*) < (e[k])Q

< apr e —wl?

Defining everything in terms of ¥l = 1/6¥ yields

gl — 0[’“](1 _ g[k’—l})
- glk—1]
=11 — 1
— M
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D. Gradient Descent Algorithm

we have obtained

provided 19 = 1,

and
((t[k])2 _ t[k]) alfl < k=1 (t[k’—l]>2_

As we assume that the al¥! are decreasing, it is enough to verify that

(t[k])2 - < (t[k—l])Q

Corollary D.4.2

If F' is convex, L-smooth and we use the Accelerated Gradient Descent algorithm with
either olFl < 1/L or al*¥! obtain by the decreasing backtracking algorithm then for
Bl = (¢k=1) — 1)/l defined with either Nesterov choice of ti* or tlFl = % with
ko > 2 then

k
[k+1]y _ *\ < 0 0] _ .2
Gl ) - Gl < gl - w

with v = 1 for the constant step size and ko = 2 for Nesterov's choice.

Proof. The bound
(t1F1)2 — glk] < (glk=1y2

is equivalent to

[k—1])2
ﬂﬂ<1+dl+qt )

- 2

Nesterov parameters is obtained by optimizing this later bound and defining ¢/ =

w starting from ¢l = 1. Note that if t¥ > (k + 2)/2 then

ﬂmu_1+V1+“W
B 2
1+ VIi+(B+2)?

= 2
1+k+2 (k+1)+2
2 - 2

Y
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D.5. Subgradient Descent

and thus this property is satisfied for any k.
One verify easily that the choice ¢l = k;—fo is suitable as ¢ = 1 and

oy e e — (B Rkt Lok (o)’

ko ko

1

= 5 (b + 1+ ko) = ok + 14 ko) — (k + k3) )

ki

1

:?((k—i-ko)—l—l—ko(k—l—l—i-ko))

0

1

k2 ((2 — ko)k +1-— ko(l + ko)) <0

0

as soon as kg > 2. It leads to

_ k—1+k
ﬁ[k]:t[k 1}—1: kg_o_l:k—l
t[¥] ’%ﬂo k+ ko

D.5. Subgradient Descent

Theorem D.5.1
If F' is convex such that the sub gradient 6 can be bounded, ||6p||? < B?, |[w*! —w*|| <
72 then

, 2p?
min  F(wl) - Pt < Zrz@ ,)
0<k’'<k—1 2350 a[k

1 & / r +Zk 1(a[k )2 B2
- T — *
F(kZ'w ) F(w*) <

—1 2k m1n1<k/<k O[[k ]

Proof. As R is the characteristic function of a convex set C and thus the proximal
operator is a projection, one verify immediately that provided that w* € €,

Hw[k-ﬁ-l} - ,w*HQ < ”w[k] . a[k}éF(w[k]) B ,w*”Q
< Jleo — 2w |* — 20 (8 (w™), wl —w*) 4 (@l)? 16 ()
< Jlwh — w*|2 + 20l (F(w*) = F(w)) + (al)?||6p (w!) 2

this implies

. k)2
o (o) — F(aw)) < 3 (ol — a0t Jaol ) —aw|2) + O 5l 2

N =
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D. Gradient Descent Algorithm

Summing those bounds along k yields

k—1 "
’ , N 1 *

> ol (Fl)) - Fw) < Sl — w2+ Z H<5 (w2

k'=0
We deduce thus that
SIS ] i =1 () .

! . ’ _ « 1 9 ,
k,zzoa <0s£r'1§é—1F(w )= F(w )> < 5llw®™ —w*|" + Z ||5 1l
that is

min F('w[k/]) —F('w*) - Hw[O} *H2+Zk 1 (a[k ) HéF(w[k/])HQ
0<k! <k—1 = 251 ¥

Along the same line, we have simultaneously

k
/ / 1
; k'] Ky _ * - 1] _ w*1? k] 2
o 32 (Pl = Flw) < glhwt! - + Z E 5wl
and thus
3> (Fw)) = F(w")) < ! — | + S (@) )6r (w2
kk, | - kamlgklgka[k]

and thus using the convexity of F'

( wa[k]> wy < 1 = w2 4 o (@) 2 6p (wl D

2k mlnlgklgk Oé[k ]

k=1
If we assume that |w*] — w*||?> <72 and ||6x(w*'1)||? < B? then this yields

, k=1 (K12 B2
min F(wl) - Fut) < i 8
0<k/ <k—1 235, al¥]

(i) T s

prd] 2k ming <<k alk]

Theorem D.5.2

If F' is convex such that the sub gradient 6 can be bounded, ||6p||? < B?, ||w* —w*|| <
2 then for al*! = ag/v'k with ag = 1/(v/2B), we have

1 k / * \/§T’B
F(ka[k]> — F(w") < =

k'=1

and

. [k/] _ * \/§TB
iy P - Fw) < 35
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D.5. Subgradient Descent

Proof. We start from the first bound obtain in the proof of the previous theorem

* 1 * * a[k] 2
o (F(wh) — F(aw)) < & (ol w2 ol - a2) O ol

or rather

(K] 1 (K] 2 (k+1] a2y, oM LNE
Flwl) — Fw*) < o ([l —w? | = [w Y =) + S5 ()]

We are going to use that the al¥! are decreasing we have

k k ¥
’ * * / % « ’
Ei@ﬁﬂﬁ—F@w)SEIQ[WMw wn%wwwm—wuﬂ+fgwmewﬁ
k'

k'=1

lwl! — w21 1 Cag— (&]y12
<P+ Y (s - o) 4> O e

2ol k=2 k=1
||w[1} _ w*||2 k—1 1 1 ) k/ 2
= 22 +kz: (204““'1 B 2a[k/_1}) H'w[ —w”|| -l-kz: —Hé ])H
/:2 ; 1

If we assume that ||wl¥ — w*||? < r? and ||0p(w*1)||2 < B? then this yields

) a2 g2
min F(w[k])—F(UJ*)—T +Zk 1( ,)B
0<k/<k—1 230 a[k

1 & RS Y ()B2
F(ka[k]>F(w)_

E—1 2k m1n1<k/<k Oé[k ]

and if the al¥ are decreasing

, + ;. k/]BQ
min  F(w*) - F(w )<°‘ T o

0<k/<k—1 2k

1 k / +Ek’ 1Oék]B2
Fl= K1) - F < ol

(£ w) e o

Plugging o!* = ag/v/k and using Zﬁ,zl # < 2vk and Zﬁ,zl 1/K <In(k) +1 yields

1 & / 72
Fl- K1) — FP(w*) < + 20 p2
(F X ) - ren= g

Optimizing in o yields ag = r/(v/2B) and

w* V2rB
( Z w[k]> ) < A

k'=1
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D. Gradient Descent Algorithm

Theorem D.5.3
If F is ju strongly convex and |V F||> < B? then for al*l = P2 with ag >

=

Oé()B2

1 o +] «
F(k(k+1)k,§::1kwk > — P = 507

and

: B2
. K]\ ) < (&%)
PoET) = P = 565

Proof. Using the strong convexity of F

w1 — w*)? < ! — a1V F(wlH) - w2
< [l — w*|2 — 2ol (VF (), wh] - w*) + ()25 ()2

< ) —w*? + 201 (F(w*) — Fwl)) — a¥ulwl —w* | + @) [5p(w)

which implies

(]
F(w[k}) ~F(w') < —— <(1 _ a[k],u)Hw[k] — w2 — H,w[k+1] _ w*||2> + %HVF”Q
a

We can now sum those inequalities

Iy K’ S K 2 k41 2 L K alk]
S K (Pl = Fw) < 30 = (0= oIl —w*? = lw™ ) —w*)?) + 37 =5V
k=1 iz 20 k=1
1= allly K (1 — ot K —1 ) )
> 20 [1 Hw —w H2 + Z < 20 (k'] ) - 20[[]?/71} Hw[k] w ||2
k ’
k' olF']
+ IVE|?
k'=1

One verify easily that for al*l = ag/k this yields

1—agp aou)k — 1 K] Qg
< T” W —w*|? + Z —H w*||* + Z IVE|
0 k=1
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D.6. Stochastic Gradient Descent

so that for any g > %
L —aop ap <
< 1«2 @0 ol
< gl = T 3DV E
(7)) k
<%0 S| vF?
k=1
< kOéoB2
- 2
By convexity of F'
1 u , 1 k ,
Fl—— Y KFwh | - Fw*) < —— Y ¥ =1"F (F(w*) — F(w*
<k(k+1)k,z:1 w (w)—k(k+1)z ( (w!) (w))
OéQB2
—2(k+1)
Note that using
Ly 4
F(w" 'F(w®
min F(w') < 7= k;’f (w™)
leads to
2
. K] ) < Oé()B
P ™) = Pt < 50

D.6. Stochastic Gradient Descent

Theorem D.6.1
Assume we have access to dp(w) which verify E{gg(w)} = dp(w) where dp(w) is a

subgradient of F' at w andE{H&?(w)Hﬂw} < B.

o if Fis convex and |w!¥! — w*|| < 72 then for ol = ag/vk with ag = r/(v/2B),

we have
1 V2rB
— (] — ) <
E[F <l<: E w )1 F(w®) < k

k'=1

e if F' is u strongly convex then for alkl = 2 with ag > %

Elp(—1 s i w!k Fw) < 208
k(k:+1)k,z::1 wi | = Fw) < 557
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D. Gradient Descent Algorithm

Proof. In this stochastic setting, we have, if we let = 0 if F' is not strongly convex:
B[ w ) — w*? ] < E[Jwh - al¥5r(w) - w*|wl]
<E [”w[k] _ w*‘|2|w[lﬂ} _ ga[k}EKg;(w[k])’ wlk — w*> ,w[k]}
+ ()?E [[|3p (w!) |2 w!*]
k] _ w* )12 — 2l 1Y aol®l — ap* [k\2 g2
< |Jw w*||* — 2™ (0p(w!™), w w*) + (a")°B

< (1=l el —wt|? — 208 (F @) - F(w")) + (al)*B?

which implies

1 (K]
Flwh) — Fw?) < o (1= el ol —w? — E[Jlwl ™ - w*?ho]) + =B
e
and thus
1 alF]
kN * [k k] .oxn2| [k+1] . %2 A >Y
B|F )]~ F) < oo (0= oWk lw - w!’] —E[w w|?]) + 5B
We can now repeat the proof of the previous lemmas to obtain the results. ]
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F. RKHS

F.1. Reproducing Kernel Hilbert Space

We propose a short introduction to RKHS, more details can be found in Berlinet and
Thomas-Agnan 2004 for instance.

Definition F.1.1
A RKHS H is defined as a Hilbert space of real valued function defined on X in which
the evaluation operator at X, dx,

H—->R: f— f(X)

is continuous for all X.

Remark F.1.2
The continuity of §, means that for any X, it exists a constant C', < oo such that

f(X)] < Cx|If I

We can now define the kernel associated to the RKHS

Theorem F.1.3
IfH is a RKHS then it exists a unique kernel k : X x X — R such that

o foranyz e X, k(X,)eH
e and for any x € X and any f € H
F(X) = (f, k(X )y

Proof. By definition, if H is a RKHS then 4, is linear and continuous and thus, thanks
to the Riesz theorem, it exists a unique k(X -) € H such that

FX) = {f; k(X ))m

By construction, k is thus the unique function from X x X — R satisfying this. O
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F. RKHS
We define now the notion of Positive Definite Symmetric kernel:

Definition F.1.4
A kernel k is PDS if and only if

e k is symmetric, i.e.

kX, X') = k(X' X)

o forany N € N and any (X;,...,Xy) € &Y,
K = [k(X;, Xj)h<ij<n
is positive semi-definite, i.e. Yu € R

u' Ku = Z u(i)u(j)k(liaﬁj) >0
1<ij<N

or equivalently all the eigenvalues of K are non-negative.

Property F.1.5
The kernel k of a RKHS is a Positive Definite Symmetric kernel satisfying

<k(l’ ')7 k(il’ )>H = k(l’ Xl)

Proof. By construction, as k(X,-) € H,
<k(&, ‘)7 k(ll7 )>H = k(X,X/).

This implies immediately that k is symmetric.
Now for N € N and any (X;,...,Xy) € XY and any u € RY:

S k(X X)) = Y uu) (kX ), KX, edot)

1<ij<N 1<ij<N
= < Z uDk(X;, ), Z u(j)k(Xj,')>
1<i<N 1<j<N H

2
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F.2. Moore-Aronsajn Theorem

F.2. Moore-Aronsajn Theorem

Theorem F.2.1

For any PDS kernel k : X x X — R, it exists a Hilbert space H C RY with a scalar
product (-, )y such that

e it exists a mapping ¢ : X — H satisfying
(X, X') = (3(X), ¢(X))m

e the reproducing property holds, i.e. for any h € H and any X € X

h(K) = <h7 k(Xv )>1HI :

Proof. For any x, we define ®(X) = k(X ), ®(X) is thus a function from X — R. Now
denote H the set of finite linear combination of ¢(X). We can define a scalar product
between the function by:

<(I)(X)v (I)(Z»H = k(iv X)

Indeed because k is a PDS kernel, all the properties of a scalar product are satisfied.
Now let f € H, by definition f = >""", a;k(X};,-) and thus

FX) = 3 auk(X,, X)
=1

‘H is not a Hilbert space but only a pre-Hilbert space. It has to be completed by
the Cauchy sequence process to obtain an Hilbert space H satisfying all the required
properties. ]

F.3. Kernel Construction Machinery

See Schoélkopf and Smola 2002 for instance for more details.

Theorem F.3.1
For any function ¥ : X — R, k(X,X'") = ¥(X)¥(X') is PDS.
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F. RKHS

Proof. k is symmetric by construction. Now for any N, and any X, and wu;
> uiuh(Xg, Xj) = S uinjo(X)o(X,)
(2 1,J

= (X uwid(X:)* > 0.

Theorem F.3.2
For any PDS kernels k1 and ko, and any A > 0 k1 + \ko and Ak1ko are PDS kernels.

Proof. The symmetry is a direct consequence of the symmetry of k1 and ko.
Now for any N, and any X, and w;, we have

Zuiuj(kl + Ak?)(&iaij) = Zuiuj (h(&m&j) + )\kQ(Xi,Xj))
Y] ]
= wuik (X5, X5) + A usuika (X, X;) >0
Y] Y]
as a sum of two non negative term.
Now for the product

Z uiuj(Akik2) (X, Xj) = A Z wiujky (X, Xj)ke (X5, X )
i3 1,J

As ky is a PDS the matrix K1 = (k1(X;, X)) is sdp and thus can be expressed as a
product K7 = MM?" so that k; (X, Xj) = >2 M; 1My, ;. We can plug this expression in
the previous sum

= A wiuy Yy MMy, ko (X, X))
i?j k

=ADY uiM; pui My ko (X, X ;) >0
kg

as each term in the sum in & is non negative.

Theorem F.3.3

For any sequence of PDS kernels k, converging pointwise to a kernel k, k is a PDS
kernel.

Proof. The symmetry is preserved by the pointwise convergence as well as the positivity.
O
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F.4. Mercer Representation

Theorem F.3.4

For any PDS kernel k such that |k| < r and any power series Y, a,z" with a, > 0 and

a convergence radius larger than r, Z ank™ is a PDS kernel.
n

Proof. This a direct consequence of the previous claim. ]

Theorem F.3.5
For any PDS kernel k, the renormalized kernel k'(X,X') = is a

PDS kernel.

Proof. As before, the symmetry is not an issue. For the positivity,

Z uiujk‘/(xiv Xj) = Z Ui k(Xi’Kj)
i, i \/

k:(XZ?KZ)k(XJ7X]>

U; L]

F.4. Mercer Representation

Theorem F.4.1

Let k be a PDS kernel and H its corresponding RKHS,
for any increasing function ® and any function L : R™ — R, the optimization problem

argmin L(h(Xy), ..., h(X5,)) + @([2[])
heH

admits only solutions of the form

Proof. The proof is similar to the one for the non kernel setting. Assume h is a minimizer
of

argmin L(h(X,),...,h(X,,)) + ®(||h]]).
heH

Let hx be the orthogonal projection of i on the finite dimensional space spanned by the
k(X;,-). By construction, h — hy is orthogonal to all the k(X},-) and thus

hXi) = (h, k(X;,-)) = (hx + h— hx, k(X;, ")) = (hx, k(X;, ) = hx (X;).

83



F. RKHS

This implies that

L(h(Xy),. .., MXy)) + @([|B]l2) = L(A(X,),

> L(h(X,),

s hx (X)) + @(18]2)

- hx (Xy)) + (]| 2)

where the inequality holds because ||h||?> = ||hx|* + ||h — hx]|/?>. The minimum is thus
reached by a h in the space spanned by the k(X;, ), i.e.

n

B=> aik(X;,).

=1
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G. Neural Networks

G.1. Perceptron

Theorem G.1.1

The perceptron algorithm converges in a finite number of steps under the linear separa-
bility assumption.

Proof. By linear separability, it exists w* such that Y;(w*, X;) > 0.

Let C' = maxy; ||C;i|| and p = min Y;(w*, X;) > 0.

Let w; be the weight at step ¢. If min Y;(wy, X;) > 0 then we are done.

Otherwise, let (X;,Y;) be the first example such that Y;({(w¢, X;)) < 0 and let weyq =
wy + aY; X;. By construction,

(W, wip1) = (W*,we) + Yi(w*, Wi)
> (W, w) + Yi(w*, W)
> (w*,we) + p > (w*, wo) +tp

while

lwesall* = llwel® + [ Xll* + 2wy, YiX3)
< JJwe]? + 1 X)) < JJwe])? + €2 < |Jwol)? + tC2.

Now (w*, wy1) < ||w*||||wit1]| so that we have
1/2
(w*, wo) + tp < [|w]| (Jlwo||* + ¢C?)

which implies that such a t is upperbounded and hence the algorithm converges. O

G.2. Universal Approximation Theorem
We follow here the proof of Cybenko [1989]

Definition G.2.1

An activation function o is said to be discriminatory if for any signed regular Borel
measure y on [0, 1]¢

Yw, b/a(wtx +b)dp(r) =0 = pu=0
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G. Neural Networks

Lemma G.2.2

If o is discriminatory then the set of single hidden layer neural networks is dense in the
set of continuous function of [0, 1]¢.

Proof. We first notice that the set N of single hidden layer neural network is stable by
multiplication by a constant and addition and thus a sub-space of the set of continuous
function, provided ¢ is continuous.

Assume that A is not dense then it exists a continuous linear function L defined on
the set of continuous functions such that L(f) = 0 if f € A/ and L # 0. By the Rietz
representation theorem, this function L can be represented as

L(f) = inf f(x)dp(x)

with u a signed regular Borel measure. Applying this definition to a single sigmoid, one
deduces

Yw, b/a(wta: +b)du(x) =0

and thus p = 0 contradicting L # 0.

Lemma G.2.3

Any bounded continuous activation function satisfying

o(oco) ifwlz+b>0
,\ET oc(Mw'z +b) +¢) = { o(c) ifwlx +b=0
o(—o0) ifwlz+b>0

with o(o0) and o(—o0) two different finite real numbers is discriminatory.

Proof. Fix w,b and ¢ and let y(x) = limy ;o oc(AM(w'z + b) + ¢), By the dominated
convergence theorem, if

V', b”/a(w'tm +b)du(z) =0
then
/v(w)du(x) =0.
By hypothesis, one also have

/’Y(x)d/i(l’) = o(o0)u({y; w'y + b > 0}) + o(b)u({y; w'y + b = 0}) + o(—oo)u({y; w'y + b < 0}).
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G.2. Universal Approximation Theorem

One verify easily that this implies
p({y;w'y +0>0}) = p({y;w'y +b=0}) = p({y; w'y +b < 0}) = 0.
This implies in particular that
n({y; 0" > wy < b}) = 0.

Using the fact that the set of one dimensional piecewise constant function is dense in
the set of continuous function, one deduces immediately that any continuous function

9(y) = f(w'y) verify

/g(y)du(y) =0.

This is true in particular for any function of the Fourier basis. This implies thus the
result for any function as the space spanned by the Fourier basis is dense in the set of
continuous function of [0, 1]¢. O

Lemma G.2.4
The RELU function is discriminatory.

Proof. An easy way to obtain the result is to notice that
o(t)=RELU(t) — RELU(t —1)

satisfy the assumptions of Lemma and thus we can use the previous result (with
twice the number of neurons). O
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. Concentration Inequalities

I.1. Hoeffding

Theorem 1.1.1

Let Z; be a sequence of ind. centered r.v. supported in [a;, b;] then

2¢2

n - <€
g (Z Zi > 6) <e 2 i bima?
i=1

Proof adapted from Shalev-Shwartz and Ben-David|2014. We rely on the following lemma
Lemma 1.1.2

23" (b0
é 8

E {eA Z?:l Zi} <

then an optimization in A leads to

" E [6>‘Z1} 2
L < e% ,L':l(bi_a’i)Q_Ae
eNe -

is minimal for A = 4¢/(>>";(b; — a;)?) for which

\2 2%
n n
es i1 (bi—ai)?=Ae _ e i= (bimai)?
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I. Concentration Inequalities

Proof of Lemma[l.1.3 Exponential moment function:

Uz (A) =1logE {e’\Z}
o < B2 ,
z(A) = B4 (0) =
o EZe7](B[ze])
AT T g
—F [de,\z—qp(x)} _E [ZeAZ—zp()\)}

= Var [Z']

with Z’ a random variable with density e} %) with respect to dZ.

Now as Z' € [a, ],
Var [2'] = E|(Z' - E[2])?]
<E[(Z' —(a+0)/2] < (b-a)*/4
As Uz(0) = 0, ¥,(0) = 0 and ¥%(\) < (b — a)?/4, Taylor formula ensures that
30 € [0, \] such that

1 b—a)?
Ty(\) = ixpg(ew < (SG)AQ
This yields
—a)?
B[] < 40
O
1.2. McDiarmid Inequality
Theorem 1.2.1
If g is a bounded difference function and X, are independent random variables then
—2¢2
P(9(Xy.- -, Xp) ~ Elg(Xy, X)) 2 ) S et
—262
PE[g(X,.-, X,)] — 9(Xy,. ., X,) > €) S edoim
alnﬂlb oo alz] so that gy = E[g(ila s 7Xn)] and gn, =

Proof. Let g; = E[g(X4,...
Q(Klw"axn)'
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I1.2. McDiarmid Inequality
By construction,
n—1
g(&l’ R 7&71) - E[g(&la R 7&11,)] = Z 9n—i — Gn—i—1-
i=0

Now

E [ex(g@l,...,xn)—ﬂi[g(&,...,Xn)b}

—E [eMZ;;; gmgn“)]

n—1
— E [H eA(gnignil)]
i=0
by conditioning we have

~&e

n—1
H eA(gn—i_gn—i—1)|X2, . Xn]]
=0

and using the fact that, for ¢ > 1, g; is constant conditionally to X,,... X,

=F [E [eA(glfgo) 1X,, .. Xn] nl:[l eA(gi+1gi)‘|
=1

Now g1 — go is by construction a centered random variable bounded in absolute value by
¢, and thus

<e

2202 n—1
) H eAMgi—git1)
=1

Reusing the same technique recursively, we obtain

2 n CQ
E [ex(g(&,...,L%E[g(&,..-,zn)])] < e—@%”

Optimizing the corresponding Chernov bound in A as in Hoeffding proof yields the
result. O

Theorem 1.2.2

Let H be a set of n-tuple of functions of Z; = (&Yl) and let o; be a sequence of i.i.d.
random symmetric Bernoulli variables (Rademacher variables)

n

<2E

sup 1 z”: Jihi(Zi)]

heH T ;5
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I. Concentration Inequalities
Proof. Let H be a set of n-tuple of functions of Z; = (X Y;), we will prove that

E lsup LS (hi(2)) - Elhi(20))| < 2E

heH T i=1

sup l zn: O'th(Zl)‘|

heH T i=1

Now, the doubling trick consists in introducing a second set of samples Z/ with the
same distribution:

1 1 ,
E [2161711 - ;(hi(zi) - E[hi(zi)])] =E [2272 - izzl(hi(zi) -E [hi(Zz)])]

=Eyz [sup Ez [:L Xn:(hz(zz) - hz(Zz,))H
i=1

heH

We may now now upperbound this term by exchanging the sup and the expectation
to obtain

1 n
E [222 - izzl(hi(zi) — E[hi(Z;)])

<Ezz lsup 1 i(hz(zz) - hZ(Zé))]

heH N i=1
By construction h;(Z;) — hi(Z]) is a symmetric random variable and has thus the same
law than o;(hi(Z;) — hi(Z])) where o; is a sequence of i.i.d. Rademacher variable.

Thus

n

sup ~ " (hi(Z:) — E[hi(Z)

1 n
<Ezz.o — i (hi(Zi) — hi(Z]
<Ezyz, [sggnga( (Z:) (z))]

Now we can split the sum in two and obtain

E [Sup l Xn: h@(ZZ) — ]E[hZ(ZZ)]] S EZ,Z’,J [Sup l Xn: Ulhl(ZZ)‘|

heH M i=1

1 n
E, - - i(—hi(Z!
+Ez2 0 :lelgn;:lm( i( Z))]
1 n
<E - E ihi (Z;
S Eze 216172”¢:102 1( z)]
1 n
E - — )V hi (Z:
+Ez, lszlelfln;:l( oi)hi( z)]
which yields by symmetry of o;
1& 1&
E —Eh-Z-—]EhZ- < 2E —E ihi (Z;
216171_)[711:1 i(Zi) [hi(Z;)]| < Zo :g%niZIUz i z)]
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I1.2. McDiarmid Inequality

Theorem 1.2.3
If B is finite and such that Vb € B, 1||b||3 < M?, then

[2M?2log | B|
R, (B) su oibi| <\ ———
( Leg n Zz; ] n

Proof. By Jensen inequality

eA]E[SupbeB n Zz 1 ] E |: AsuprB n Z?:l Jibi]

Sel ]

| A

We can now use Hoeffding inequality with ¢; = 2b;/n to obtain

2
eME[SuPbeB n Zz 1 oib 1 < Z 64)\ 25;7:;2 L
beB
M2Z\2 M222
S Z e 2n = |B|e 2n
beB

Thus

[Sup Z oib;

logB N M2\
beB M =4 B

2n

The optimal value is given by A = /22 logB yielding

[sup Zaz Z]_ 2log |Bn(S)|

beB M n
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