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Introduction

Signal Processing:

• signal: sound, image, seismic trace, prices,...

• classical processing: transmission, denoising, coding,...

• other processing: signal analysis (detection, pattern recognition, segmentation...), synthe-
sis,...

This course: Introduction to (classical) Signal Processing.

Mathematically correct but some (technical) details swept under the carpet.

Focus on selected real-life issues:

• FFT: Fast implementation of Discrete Fourier Transform, an ubiquitous algorithm in the
discrete world (JPEG, MPEG,...).

– Stress importance of the Fourier transform in (TI) Signal Processing,

– Explain the discretization effects using (a simplified) Distribution Theory,

– Analyze Discrete Filtering up to basic z transform.

• Voice processing: Vocoder (synthesis and compression)

– Justify the time-frequency analysis (and representation) by the non-stationarity

– Introduce stochastic (locally) stationary modeling

– Describe the LPC modeling for synthesis and basic compression

• Image compression: GIF, PNG and JPEG (no need for justification...)

– Lossless Image Coding: Shannon theory and predictive

– Lossy Image Coding: quantization and transform coding

• Trends in Signal Processing:

– Sparse modeling

– Inverse problem

– Segmentation
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– Learning and features



Part I

FFT: Analog Signal Processing,
Discretization and Digital Signal

Processing
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Chapter 1

Analog Signal, LTI and Fourier
transform

1.1 LTI and Analog signal

System: input an signal in a space I, process it and output another signal in a space O
(Operator)

Examples: Heat equation, radio communication, electrical circuit, optical lens, CD, TV...

Very general framework: We focus here on the case where the signals are analog (think of
continuous function) and the operators are Linear and Translation Invariant operators.

Linearity: L(λf + g) = λL(f) + L(g).

Translation Invariance: Denote by τ∆f(t) = f(t−∆) the ∆-shifted version of f , we assume
that L(τ∆f) = τ∆(Lf) (the image of a translated signal is the translation of the image of the
original signal).

Continuity: Require to specify the input set I, the output set ′ as well as their topology...
Much more complex that it may look like. All the interesting LTI operators we will see satisfy
this continuity assumption in a generalized sense (distribution).

Such a LTI operator is called a filter, we will see later why.

Examples: Heat equation, radio transmission, equalizer...
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Figure 1.1: LTI properties
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Figure 1.2: LTI examples



1.1. LTI AND ANALOG SIGNAL 9

h ? f = Lf
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Figure 1.3: Impulse response

Fundamental example: convolution with a function h

Lf = h ? f ⇔ Lf(t) =
∫
f(u)h(t− u)du.

h is called the impulse response of the operator. This case is very generic but this definition
supposed that the convolution is well defined...

Example: Local smoothing and low pass filter.

Proposition 1.1: a LTI operator commutes with the derivation operator.

Proof: L( τhf−fh ) = τhLf−Lf
h

Stability of a filter: continuity for specific norms. Most classical one is BIBO (Bounded
Input Bounded Output) which corresponds to the property

‖f‖∞ < +∞ =⇒ ‖Lf‖∞ < +∞

Proposition 1.2: If Lf = h ? f then this is equivalent to ‖h‖1 < +∞.

Causality: an important property for instance for a real-time process is that the output should
not depend on the future, this property is called causality.

Proposition 1.3: If Lf = h ? f then this equivalent to h(u) = 0 if u < 0.
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Figure 1.4: Exponential and LTI

Exponential input: Let eσ(t) = eσt with σ ∈ C, and assume eσ ∈ I,
Proposition 1.4: Leσ = H(σ)eσ where H(σ) = Leσ(0)
Proof:

L(τ∆eσ) = τ∆(Leσ)
= L(e−σ∆eσt) = e−σ∆Leσ

and thus

Leσ = eσ∆τ∆Leσ

which implies

e−σtLeσ = e−σ(t−∆)τ∆

or equivalently

e−σLeσ = τ∆(e−σLeσ).

e−σLeσ is thus constant and hence Leσ = H(σ)eσ where H(σ) = Leσ(0).

1.1.1 Formal Fourier analysis

Back to linearity: By definition, if

f =
∑
k∈I

ckeσk
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then
Lf =

∑
k∈I

ckH(σk)eσk .

For all such functions, the response is entirely specified by the eigenvalues of eσ with σ ∈ D.

Extension: It is then tempting to extend this result to functions

f =
∫
D
f̃(σ)eσdσ

for which one expects
Lf =

∫
D
f̃(σ)H(σ)eσdσ.

Formal Fourier transform: The most classical case, Fourier transform, corresponds to D =
iR. Indeed, formally, the inverse Fourier transform is given

f(t) = 1
2π

∫
R
f̂(ω)eiω(t)dω

with the Fourier transform defined by

f̂(ω) =
∫
R
f(t)e−iω(t)dt

so that one expects
Lf = 1

2π

∫
R
H(iω)f̂(ω)eiω(t)dω.

Laplace transform: Lf : σ 7→
∫
R f(t)e−σ(t)dt with similar inversion formula

t 7→ 1
2iπ

∫
σ∈a+iR

Lf(σ)eσtdσ

could also be considered.

Transfer function: A LTI can be seen in the Fourier domain as the multiplication of the
Fourier transform f̂(ω) by ω 7→ H(iω), a function called the transfer function. We are filtering
the frequencies by this function.

Again formally, if Lf = h ? f then

Leiω(t) =
∫
R
eiω(u)h(t− u)du

=
∫
R
h(u)e−iω(t− u)du = ĥ(ω)eiω

and thus

H(iω) = ĥ(ω).

We should work now to make those formal definitions mathematical ones... and as general as
possible.
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Figure 1.5: Frequential filtering

1.2 Fourier analysis

1.2.1 Simple Fourier transform

The Schwartz class S is the class of C∞ functions verifying

sup
αβ

sup
t∈R

∣∣∣∣tα ∂βfdtβ (t)
∣∣∣∣ < +∞

Within this space, we say that fN
S→ f if and only if

lim
N→∞

sup
αβ

∣∣∣∣tα ∂β(fN − f)
dtβ (t)

∣∣∣∣→ 0

Note, by definition, if f ∈ S then supt∈R |(1 + t2)f(t)| = C < +∞ and thus |f(t)| ≤ C/(1 + t2)
which implies that f ∈ L1.

Fourier transform: As F ⊂ L1, the Fourier transform of f ∈ S can be defined by

f̂(ω) =
∫
R
f(t)e−iω(t)dt

=
∫
R
f(t)e−iωtdt
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Beware: there are other definitions that differ either by a constant factor or a change of variable,
ω = 2πfr (angular frequency vs classical frequency).

Proposition 1.5 (Basic properties): If f ∈ S

• τ̂∆f(ω) = e−iω∆f̂(ω)

• êi∆tf(ω) = τ∆f̂(ω)

• f real implies f̂(−ω) = f̂(ω)

Proposition 1.6 (Regularity properties): If f ∈ S

• ∂̂pf
dtp (ω) = (iω)pf̂(ω)

• −̂iptpf(ω) = ∂pf̂
dωp (ω)

Stability of S: f ∈ S =⇒ f̂ ∈ S

Convolution:

• If h ∈ S and f ∈ S then h ? f ∈ S and ĥ ? f = ĥf̂ .

• If h ∈ S and f ∈ S then h× f ∈ S and ĥ× f = 1
2π ĥ ? f̂ .

Inversion: If f ∈ S then
f(t) = 1

2π

∫
R
f̂(ω)eiωdω

Remark: 2πf(t) = ̂̂
f(−t)

Impulse response and transfer function: If h ∈ S and f ∈ S then

h ? f(t) = 1
2π

∫
R
ĥ(ω)f̂(ω)eiωdω

A filter is nothing but the multiplication by a transfer function in the Fourier domain...

Plancherel: If f ∈ S and g ∈ S then∫
R
f(t)g(t)dt = 1

2π

∫
R
f̂(ω)ĝ(ω)dω

1.2.2 3 extensions

Need for extensions: Previous analysis is valid only under the strong assumption that f ∈ S,
h ∈ S. One would like to weaken this assumption... As a first step, we look at 3 extensions of
the Fourier transform.
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First extension is the extension to L1, which is unfortunately not stable under the Fourier
transform and leads to strong assumptions in order to obtain some results.

Second extension is the extension to L2 using Plancherel equaity. L2 is as S a stable class
for the Fourier transform which plays a very important role, in particular in numerical analysis
(Sobolev spaces).

Third extension is an extension to generalized functions S ′ (distributions) which is stable for
the Fourier transform and the most appropriate setting to understand LTI operators.

Note that the section dedicatd to this extension is not intended as a comprehensive course but
only as a (almost) mathematically correct introduction.

1.2.3 L1 Fourier transform

L1 Fourier transform: For f ∈ L1,

f̂(ω) =
∫
R
f(t)e−iω(t)dt

L1 continuity (in S): For any f ∈ L1 (or S)

‖f̂‖∞ ≤ |f |1

The density of S in L1 allows to see the Fourier transform in L1 as the extension by continuity
of the Fourier transform in S...

Proposition 1.7: If f ∈ L1 then f̂ is well defined and is a bounded continuous function which
vanishes at infinity.

Proposition 1.8 (Basic properties): If f ∈ L1,

• τ̂∆f(ω) = e−iω∆f̂(ω)

• êi∆tf(ω) = τ∆f̂(ω)

• f real implies f̂(−ω) = f̂(ω)

Proposition 1.9 (Regularity properties):

• If ∂
pf

dtp ∈ L
1 then ∂̂pf

dtp (ω) = (iω)pf̂(ω)

• If tpf ∈ L1 then −̂iptpf(ω) = ∂pf̂
dωp (ω)

Regularity is almost equivalent to fast decay of the Fourier transform.
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Proposition 1.10: If f ∈ L1 and f̂ ∈ L1 then

f(t) = 1
2π

∫
R
f̂(ω)eiωtdω.

This property could be rewritten as ̂̂f = 2πf(−.)

Proposition 1.11: If f ∈ L1 and h ∈ L1 then Lf = h ? f ∈ L1 and

L̂f(ω) = ĥ(ω)× f̂(ω).

Proposition 1.12: If f̂ ∈ L1, ĥ ∈ L1 and f × h ∈ L1 then

f̂ × h(ω) = 1
2π ĥ ? f̂(ω)

Impulse response and transfer function: If f ∈ L1, h ∈ L1 and ĥ × f̂ ∈ L1, we can thus
write

Lf(t) = 1
2π

∫
R
ĥ(ω)f̂(ω)eiω(t)dω

1.2.4 L2 extension

L2 continuity in S: By Plancherel equality, for all f ∈ S,

‖f‖22 = 1
2π ‖f̂‖

2
2.

The density of S in L2 allows to extend f 7→ f̂ to L2. Note that there is no explicit formula
for the Fourier transform. To stress this, we will use the notation Ff instead of f̂ when f /∈ L1.

Stability of L2: If f ∈ L2 then Ff ∈ L2.

Limit formula: If f ∈ L2,

Ff L2

= lim
M→∞

ω 7→
∫ M

−M
f(t)e−iωtdt.

Proposition 1.13 (Basic properties): If f ∈ L2,

• F(τ∆f) = e−iω∆Ff

• F(ei∆tf) = τ∆Ff

• f real implies Ff(−·) = Ff
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Proposition 1.14 (Regularity properties):

• If ∂
pf

dtp ∈ L
2 then F

(
∂pf
dtp

)
= (iω)pFf

• If tpf ∈ L2 then F(−iptpf) = ∂pFf
dωp

Again, regularity is almost equivalent to fast decay of the Fourier transform.

Proposition 1.15: If f ∈ L2, f = 1
2πFF(−·) or equivalently

f
L2

= lim
N→∞

ω 7→ 1
2π

∫ N

−N
Ff(ω)eiωtdω.

We denote by F−1 this application, by construction F−1(U) = 1
2πFU(−·).

Proposition 1.16: If f ∈ L2 and h ∈ L1 then Lf = h ? f ∈ L2 and

F(Lf) = ĥ×Ff.

Proposition 1.17: If f ∈ L2, h ∈ L2 and Ff ×Fh ∈ L2 then Lf = h ? f ∈ L2 and

F(Lf) = Fh×Ff

Using the stability of L2, we obtain

Proposition 1.18: If f ∈ L2, h ∈ L2 and Fh ? Ff ∈ L2 then

F(h× f) = Fh ? Ff

Impulse response and transfer function: If f ∈ L2, h ∈ L1, we can thus write Lf =
F−1(ĥ×Ff)

If f ∈ L2, h ∈ L2 and Fh×Ff ∈ L2, we obtain Lf = F−1(Fh×Ff)

1.2.5 Dirac delta function and distributions

Dirac delta function: Originally the distributions did not appear to extend the Fourier trans-
form but rather to give a proper framework to work with Dirac delta functions.

The Dirac delta function at 0 is the operator that associates to a continuous function f its value
at 0, f(0). Although this operator cannot be written as a scalar product with a function δ

f 7→
∫
R
f(t)δ(t)dt,

it can be written as a limit of such scalar product

f 7→
∫
R
f(t)Kn(t)dt
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where Kn is a sequence of approximate identity. In the distribution theory, one identify the
function Kn with the corresponding operator on continuous function. Its action on a function
f is denoted 〈Kn, f〉 to stress its resemblance with a scalar product. If we denote by 〈δ, f〉 the
action of δ on f , i.e. f(0), we observe that

∀fC0, 〈Kn, f〉 → 〈δ, f〉.

In the distribution theory such a property will correspond to the fact that Kn → δ...

Distributions: More precisely, a set of Distributions is defined as the set of Continuous Linear
Forms on a (very) regular function set. The classical distributions D′ are defined by their actions
on D the set of compactly supported C∞ functions while the tempered distribution S ′ are defined
by their actions on S. The continuity assumption means that if φn → φ in D (respectively in S)
and U belongs to D′ (respectively to S ′) then 〈U, φn〉 → 〈U, φ〉. The ′ in the notation stresses
that those spaces are topological dual (for which the topology is implicitely specified through
the previous sequential definition...).

One verify that S ′ ⊂ D′. One can verify that Lp ⊂ S ′. Finally C∞ 6⊂ S ′ but C∞ ⊂ D′.

By construction, δ = δ0 belongs to S ′ ⊂ D′.

Properties: Without any proofs, we give some important properties of distributions

• Translation invariance of S ′ and D′.

• Differentiation for U ∈ D′: U ′ always exists and is defined by 〈U ′, φ〉 = −〈U, φ′〉 (By parts
integration)

• Fourier transform for U ∈ S ′: the Fourier transform FU always exists and is defined by
〈FU, φ〉 = 〈U, φ̂〉 (Plancherel)

• Inverse Fourier transform for U ∈ S ′: F−1U = 1
2πFU(−·).

• Convolution: F(U ? V ) = FU × FV (if everything is well defined which is not always the
case...)

Fourier series: Let f be a T -periodic C1 function, f can be decomposed into its Fourier series

f =
∑
n∈Z

cne
in 2π

T

where the Fourier coefficients cn are defined by

cn = 1
T

∫ T/2

−T/2
f(t)e−in 2π

T tdt.

With our strong regularity assumption, the convergence is true pointiwse or in L2-loc for instance.
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Approximation of the identity: Let χ[0,T ] be a compactly supported non negative function
such that ∑

k∈Z
χ[0,T ](· − kT ) = 1,

cn = 1
T

∫
R
f(t)χ[0,T ](t)e−in

2π
T tdt.

Such functions χ[0,T ] exist and can even be chosen in C∞.

Fourier series for periodic distribution: Let U be a T -periodic distribution in D′.

U =
∑
n∈Z

cnein 2π
T

with
cn = 〈U,

χ[0,T ]

T
e−in 2π

T
〉.

Furthermore U belongs to S ′ and cn grows at most polynomialy with n. Its Fourier transform
exists and is given by

FU = 2π
∑
n

cnδn 2π
T
.

Examples:

• Box function and sinc function:

1̂[−∆,∆](ω) =
∫ ∆

−∆
e−iωtdt =

[
e−iωt

−iω

]∆

−∆

= −e
−iω∆ + eiω∆

iω
= ∆sin ∆ω

∆ω
= ∆ sinc(∆ω)

F sinc(∆·) = 1
∆FF1[−∆,∆]

= 2π
∆ 1[−∆,∆]

• Dirac and complex exponential:

〈Fδτ , φ〉 = 〈δτ , φ̂〉 = φ̂(τ) =
∫
R
φ(t)e−iτtdt

Fδτ = e−iτ

Feiω0 = FFδ−ω0

= 2πδω0
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• Dirac comb:
∑
n∈Z

δn∆

F

(∑
n∈Z

δn∆

)
=
∑
n∈Z
Fδn∆

=
∑
n∈Z

einδ

Proposition 1.19 (Poisson formula): F
(∑

n∈Z δn∆
)

= 2π
∆
∑
n∈Z δn2π/∆

Proof: As C =
∑
n∈Z δn∆ is a ∆ periodic distribution

C =
∑
n∈Z

cnein2π/∆

with cn = 〈C, 1
∆χ[0,∆]e−in2π/∆〉 = 1

∆ and thus

C = 1
∆
∑

ein2π/∆.

As Fein2π/∆ = 2πδn2π/∆,

FC = 2π
∆
∑
n∈Z

δn2π/∆

LTI and distributions: Most general definition of LTI operator as operator acting on distri-
butions...

Impulse response and transfer function: If LU = h ? U (and everything is well defined)
then

h = h ? δ = Lδ

hence the name impulse response and

〈LU, φ〉 = 〈LU, F̂−1φ〉 = 〈F(LU),F−1φ〉 = 〈F−1(Fh×FU), φ〉

where we recover the spectral representation of the filtering.

One can verify that this interpretation is thus coherent with the one of the previous section.

1.3 LTI, convolution systems and examples

1.3.1 LTI and convolution system

a LTI operator is not necessarily a convolution: A folk’s theorem states that every LTI
is a convolution system (this can be found in many courses). This not true!

BIBO counter-example: U 7→ (t 7→ lim∆→∞〈U, φ∆(· − t)〉) where φ∆ = 1
∆φ(t/∆) with

φ ∈ D, φ ≥ 0 verify Lδ = 0 while L1 =
∫
φ(f)dt1.

Issue lack of continuity in D′...
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Figure 1.6: Frequential filtering II

LTI and convolution: Most general results:

• If L is continuous from D into D′ then it exists an impulse response h ∈ D′ such that for
f ∈ D, Lf = h ? f

• If L is furthermore continuous from D′ (or S ′) into D′ then Lδ = h and L is entirely
specified by its impulse response h.

In practice, almost every LTI can be rewritten as a convolution...

1.3.2 Application to Amplitude Modulation multiplexing

AM multiplexing: To illustrate the power of those tools, we describe how to to use them to
analyze a classical example, the AM multiplexing system used in radio transmission. Assume we
have at hand K signals sk (radio shows) each having a Fourier transform supported in [−B,B],
we want to mix them into a single signal S to be transmitted in such a way that all those sigals
can be recovered from S.

Multiplexing: We start by the following observation, if Fsk is supported in [−B,B] then
F(sk× cos(ωkt)) = Fsk ?1/2(δ−ωk + δωk) is supported in [−ωk−B,−ωk +B]∪ [ωk−B,ωk +B].

Thus if we let ωk = 2(k− 1)B, all the signals sk × cos(ωkt) have disjoint frequency support. We
can hope thus to recover them from their sum S =

∑K
k=1 sk × cos(ωkt).
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Figure 1.7: Frequential filtering III

Demultiplexing: Indeed, if one multiplies S by cos(ωk′t), one obtains

S × cos(ωk′t) =
K∑
k=1

sk × cos(ωkt)× cos(ωk′t)

Now

F(sk × cos(ωkt)× cos(ωk′t)) = Fsk ? 1/2(δ−ωk + δωk) ? 1/2(δ−ωk′ + δωk′ )

= 1
4Fsk ? (δ−ωk−ω′k + δ−ωk+ω′

k
+ δωk−ω′k + δωk+ω′

k
)

is such that its support does not intersect [−B,B] as long as k 6= k′ and in this case

F(sk × cos(ωkt)× cos(ωkt)) = 1
4F(sk) ? (2δ + δ−2ωk + δ2ωk).

If we let h be the low pass filter such that FhB = 1[−B,B], we obtain thus that

F(S × cos(ωkt))×Fh = 1
2Fsk

or equivalently in the spatial domain

(S × cos(ωkt)) ? hB = 1
2sk.

Remark that our process is not LTI as the multiplication by cos(ωkt) is not a spatial LTI (but it
is a frequential one).
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Figure 1.8: AM Multiplexing/Demultiplexing

So far, we did not discuss the possibility to implement the filter used. In practice, this issue is
however very important as those analog system are implement using real hardware...

1.3.3 Causality and realizable filter

Causality: The first observation is that, as one cannot foresee the future, any physical system
should be a causal one. This turns out to be an issue as, for instance, the ideal pass-band filter
is not causal...

Electrical implementation: Classical implementation rely on electrical circuit made of Re-
sistor (R), Inductor (L), Capacitor (C) and Operator Amplifier (OA) or rather in integrated
circuit (SSI, MSI, LSI, VLSI, ULSI) only with R, C and OA for sake of space. As you may recall,
in an electrical circuit, the input f and the output Lf are relied through a linear differential
equation

Ka∑
k=0

akf
(k) =

Kb∑
k=0

bk(Lf)(k)

which can be conveniently rewritten in the Fourier domain as

Ka∑
k=0

ak(iω)kFf =
Kb∑
k=0

bk(iω)kF(Lf)

so that

F(Lf) =
∑Ka
k=0 ak(iω)k∑Kb
k=0 bk(iω)k

Ff
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and the transfer function is rational in iω.

BIBO stability implies that Kb ≥ Ka and that the poles of the rational fraction are in the
right hand side of the plane.

Proposition 1.20: If h is a rational function then there exist a electrical circuit implementing
a filter g such that |Fg| = |Fh| as soon as Kb ≥ Ka.

−

+

R1

i1
f

R2 i2

Lf

C
i3

Example of a low pass filter: An electrical circuit analysis yields:

f = R1i1, Lf = −R2i1, Lf ′ = −Ci3, and i1 = i2 + i3.

In the Fourier domain, we have thus

f̂ = R1î1, L̂f = −R2î2, ωL̂f = −Cî3, and î1 = î2 + î3.

A straightforward computation allows to obtain the transfer function H(iω) such that L̂f =
H(iω)f̂ :

H(iω) = −R2/R1

1 + R2
C iω

If R1 = R2,
|H(iω)| = 1√

1 +
(
R2
C ω

)2
this is a low pass filtering with cutoff frequency ωC ∼ C/R2!

Better (rational) approximation of the box function could be obtained with more complex cir-
cuits... (this is the subject of analog filter design theory)
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Chapter 2

Discrete Signal Processing

In the previous section, we have studied analog signal which are parts of our environment.
However, we are living in a more and more digital world and in this world signals are not
continuous but discrete, they are sequences of numbers. To be more accurate, as a computer can
only handle finite precision, those numbers are quantized so they belong to a finite set. In this
section, we should neglect this quantization.

2.1 Discretization and sampling

2.1.1 Discretization and Fourier transform

AD conversion: We consider here a canonical process of Analog to Digital and Digital to
Analog conversions from a theoretical point of view, that will lead to practical insight.

Sampling: We assume the AD conversion is the most simple one. Let ∆ ∈ R+ be a discretiza-
tion step, we assume we can acquire from a function f the sequence of samples

(f(n∆))n∈Z .

Band-limited functions: Note that we should assume that f is at least continuous in order
to define the samples. In order to derive our theory, we will require a much stronger regularity
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Figure 2.1: Digital world
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assumption. We will assume that the Fourier transform Ff of f exists (which implies that f is
at most polynomially increasing) and that has a compact support. We will call such a function
a band-limited function. This is a very strong assumption as one can show that this implies that
f is analytic.

The sequence (f(n∆))n∈Z is not the most interesting way to represent the discretized version of
f . Within the distribution setting, one can define a better representation

f∆ = ∆
∑
n

f(n∆)δn∆

which converge to f in D′ when ∆ goes to 0.

As soon as f(n∆) is at most polynomially increasing, f∆ belongs to S ′ and one can thus compute
its Fourier transform. It turns out that if f is band-limited then Ff∆ is the periodization of Ff
with period 2π/∆.

Theorem 2.1: if f is band-limited then

Ff∆ =
∑
n

Ff(· − n2π/∆)

Proof: A proof of this result can be obtained easily by noticing that

f∆ = ∆f ×
∑
n∈Z

δn∆

so that

Ff∆ = 1
2π∆F(

∑
n∈Z

δn∆) ? Ff

=
∑
n∈Z

δn2π/∆ ? Ff

=
∑
n

Ff(· − n2π/∆)

The band-limited assumption implies that Ff is a compactly supported distribution and then
that all the convolution make sense.

2.1.2 The Shannon sampling theorem

Formal derivation: If Ff is supported in (−π/∆, π/∆) then there is no overlapping in the
periodization process. Formally, we deduce

Ff = Ff∆ × 1(−π/∆,π/∆]

and then

f = f∆ ?
1
∆ sinc(·/∆)

=
∑
n∈Z

f(n∆) sinc
(
· − n∆

∆

)
which gives a reconstruction formula of f from its samples. There is however a subtle issue in
this reasoning: the object Ff∆ × 1(−π/∆,π/∆] is not defined in term of distribution due to the
lack of regularity of the characteristic function.
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Figure 2.2: Shannon Theorem

A first fix is to reinforce the support assumption into supported in [(−(1− ε)π/∆, (1− ε)π/∆]
and replacing the characteristic function by a regularized version h∆ with value 1 in [−(1 −
ε)π/∆, (1− ε)π/∆]. This will indeed lead to a reconstruction formula using the same derivation.

A second one: If we want to keep the assumption “supported in (−π/∆, π/∆)”, then we need
an additional assumption that could be either f ∈ L2 or f is a finite sum of complex exponential∑
k=1Kake

iωkt.

Theorem 2.2 (Shannon, Nyquist, . . . ): If f is a band-limited function supported in (−π/∆, π/∆)
and either f ∈ L2 or f is a finite sum of complex exponential (or a sum of two such functions)
then

f(t) =
∑
n∈Z

f(n∆) sinc
(
t− n∆

∆

)

The two proofs are very different...

2.1.3 Aliasing

A natural question is what is going on if one sample at rate ∆ a function f which is not
band-limited in (−π/∆, π/∆).
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Figure 2.3: Aliasing

Aliasing: If f is band-limited, one still has

Ff∆ =
∑
n

Ff(· − n2π/∆)

but there is an overlap between the different translation of the support [−B,B] of Ff so that
Ff cannot be recovered from Ff∆ × 1[−π/∆,π/∆]. Furthermore, the Fourier transform of the
reconstruction is different from Ff × 1[−π/∆,π/∆]. This phenomena is called aliasing.

The cos case: An interesting insight is obtained by studying the case f = cos(ω0t) = 1
2 (e−iω0t+

eiω0t) which is a finite sum of complex exponentials. One has thus

Ff = π(δ−ω0 + δω0)

and, as f is band-limited,

Ff∆ = π
∑
n∈Z

(δ−ω0+n2π/∆ + δω0+n2π/∆).

One verify then that
Ff∆ × 1[−π/∆,π/∆] = π(δ−ω′0 + δω′0)

where ω′0 is the unique translate ω0+n2π/∆ in [−π/∆, π/∆) (i.e. ω′0 = (ω0+π/∆) mod 2π/∆−
π/∆). As soon as, ω0 6∈ [−π/∆, π/∆), ω0 6= ω′0 and thus we do not recover f . For instance if
ω0 = π/∆+θ with 0 < θ < π/∆, ω′0 = −π/∆+θ so that the angular speed of the reconstruction
is π/∆− θ which is slower than the original speed.

This phenomenon can be observed in practice in movies in which wheels sometime appear to
rotate in the reverse way that they should. This is due to the time sampling of the movie.
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Figure 2.4: The cos case
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Shannon formula stability: If f is not band-limited but satisfies some structural assumption,
one can prove the stability of this sampling process, which is only mildly perturbed if there is
only a small component outside the set [−π/∆, π/∆]

Theorem 2.3 (Brown): If f ∈ L2 is continuous and such that Ff ∈ L1 then∣∣∣∣∣f(t)−
∑
n∈Z

f(n∆) sinc
(
t− n∆

∆

)∣∣∣∣∣ ≤ 2
∫
|ω|>π/∆

|Ff(ω)|dω

Note that essentially the same results holds for finite sum of exponential if we replace the right
hand side by

2
∑

k,|ωk|≥π/∆

|ak|

Optimized AD conversion: Note that whatever g

F

(∑
n∈Z

g(n∆) sinc
(
t− n∆

∆

))

is compactly supported in [−π/∆, π/∆] if it exists and if f ∈ L2 then

arg min
g∈L2,suppFg⊂[−π/∆,π/δ]

‖f − g‖2 = F−1 (Ff × 1[−π/∆,π/∆]
)
.

The best L2 AD strategy is thus to project f into the space of band-limited function supported
in [−π/∆, π/∆] by low pass filtering and to sample the resulting function.

Smoothing before sampling is the strategy always used in practice.

2.2 Discrete Signal and LTI

2.2.1 Discrete Signal and LTI

Discrete signals are nothing but sequences (f[n])n∈Z.

LTI operators are (continuous) Linear Translation Invariant operators on sequences.

Kronecker symbol: δ is the sequence δ[0] = 1 and δ[n] = 0 for n 6= 0 and, as for the Dirac
delta functions, let δk = δ[· − k].

Kronecker decomposition: f[n] =
∑
k f[k]δ[n− k] =

∑
k f[h]δk[n]

Impulse response: h = Lδ
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Figure 2.5: LTI

Convolution: Formally:

Lf = L(
∑
k

f[k]δk) =
∑
k

f[k]Lδ[· − k] = h ? f

As in the analog case, this holds under some mild continuity assumptions on L (and always holds
for finitely supported signals).

Stability: is again nothing but continuity for specific norm.

BIBO stability: `∞ → `∞ continuity is equivalent to h ∈ `1 if Lf = h ? f.

Causality: A LTI operator is causal if and only Lf[n] depends only on f[k] with k ≤ n.

Proposition 2.1: If Lf = h ? f then L is causal if and only if h[k] = 0 si k < 0.

Exponential: Exponential are eigenfunctions of L

Lτkes = τkLes
= Le−kses = e−ksLes
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Figure 2.6: LTI examples

h ? f = Lf
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Figure 2.7: Impulse response
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Figure 2.8: Exponential and LTI

which implies

τk(e−sLes) = τke−s × τkLes
= ekse−s × e−ksLes = e−sLes

i.e. e−sLes is constant and thus Les = H(s)es as in the analog case.

Note that as es is valued only at integer values es = es+i2π.

2.2.2 Distribution and Fourier transform of discrete signals

The simp`1 case: Assume that (f[n]) belongs to `1, we can define a Fourier transform of f by
letting

F f(ω) =
∑
n∈Z

f[n]e−inω

which is a continuous 2π-periodic function. To stress this periodicity, one often uses the notation
f̂(eiω) instead of F f(ω). By construction,

f[n] = 1
2π

∫ π

−π
f̂(e−iω)enωdω

that is an inverse Fourier transform.

We show now how to extend this construction to sequences that do not belong to `1 using the
distribution theory.
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Figure 2.9: Discrete signal and periodic spectrum

Distribution representation: Let f[n] be a at most polynomially increasing sequence, in
analogy with our discretization study, we can represent the sequence by the tempered distribution

f∆ = ∆
∑
n∈Z

f[n]δn∆

where the f[n]s play the role of f(n∆) of the discretization case. ∆ is either naturally defined if
indeed the sequence is the result of a discretization or can be chosen arbitrarily, with a classical
choice of ∆ = 1.

Direct Fourier transform is defined through the Fourier transform of f∆:

F∆f = Ff∆ = ∆
∑
n

f [n]e−in∆ = ∆F1f(·/∆)

which is a 2π/∆ periodic (generalized) function in S ′ as soon as f grows at most polynomially.
Note that, for ∆ = 1, this definition is consistant with the one for `1 sequences.

Inverse Fourier transform is defined through the tempered distribution theory. As F∆f is
a 2π/∆ periodic distribution and thus can be decomposed in Fourier series

F∆f =
∑
n∈Z
〈F∆f, ∆

2πχ[−π/∆,π/∆]e−in∆〉ein∆
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and thus using F−1ein∆ = δ−n∆

f∆ =
∑
n∈Z
〈F∆f, ∆

2πχ[−π/∆,π/∆]e−in∆〉δ−n∆

=
∑
n∈Z

∆
2π 〈F∆f, χ[−π/∆,π/∆]ein∆〉δn∆.

This implies

f[n] = 1
2π 〈F∆f, χ[−π/∆,π/∆]ein∆〉

which becomes

f[n] = 1
2π

∫ π/∆

−π/∆
F∆f(ω)ein∆ωdω

as soon as F∆f belongs to L1-loc, which is the case for instance if f ∈ `1

Link with Fourier series: ∆f[−n] is nothing but the nth Fourier coefficient of the 2π/∆
periodic (generalized) function F∆f.

Proposition 2.2 (Parseval): If f ∈ `2 or equivalently F∆f ∈ L2-loc then

∆2
∑
n∈Z
|f [n]|2 = ∆

2π

∫
[−π/∆,π/∆]

|F∆f(ω)|2 dω

Duality:

• If f is discrete with step ∆ then Ff is periodic of period 2π/∆

• If f is periodic of period T then Ff is discrete with step 2π/T

which is an instance of Fourier global/local duality (cf regularity properties).

DTFT (Discrete-Time Fourier Transform) corresponds to the choice ∆ = 1 and, denoting
F f = F1f, leads to the formulas

F f =
∑
n∈Z

f[n]e−in

and

f[n] = 1
2π 〈F f, χ[−π,π]ein〉

which can be rewritten if F f ∈ L1-loc as

f[n] = 1
2π

∫ π

−π
F f(ω)einωdω
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Figure 2.10: Periodic signal and discrete spectrum

More classical notation:

f̂(eiω) =
∑
n∈Z

f[n]e−iωn and f[n] = 1
2π

∫ π

−π
f̂(eiω)einωdω

2.2.3 Convolution and transfer function

Proposition 2.3: F(h ? g) = Fh × F f provided the convolution is well defined and all the
sequences h, f and h ? g grow at most polynomially.

Transfer function: If Lf = h ? f then provided all the sequences involved grow at most
polynomially

FLf = Fh×F f
Lf[n] = 〈Fh×F f, χ[−π,π]ein〉

which can be rewritten if Fh×F f ∈ L1-loc as

Lf[n] = 1
2π

∫ π

−π
Fh(ω)F f(ω)einωdω.

Convolution corresponds to the multiplication by the transfer function Fh(ω) in the Fourier
domain.
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2.2.4 Filtering examples

Delay: Lf[n] = f[n−∆]
h[n] = δ∆ and Fh = e−i∆

Moving average: Lf = 1
2∆+11[−∆,∆] ? f

h = 1
2∆ + 11[−∆,∆] and Fh = sin(∆ + 1/2)ω

(2δ + 1) sin(ω/2)

Low pass filter: FLf = F f ×
∑
n∈Z 1[−ω0,ω0]+n2π (0 < ω0 < π)

Fh =
∑
n∈Z

1[−ω0,ω0]+n2π and h[n] = ω0 sincω0n

Derivation: Lf[n] = (f[n+ 1]− f[n− 1])/2

h = (δ1 − δ−1)/2 and Fh = (e−i − ei)/2 = i sin(·)

Rational fraction and recursive filtering If Fh is rational in e−iω:

Fh =
∑Ka
k=0 ake

−ikω∑Kb
k=0 bke

−ikω

then, provided everything is well defined, Lf = h ? f and f

FLf =
∑Ka
k=0 ake

−ikω∑Kb
k=0 bke

−ikω
F f

Equivalently

Ka∑
k=0

ake
−ikωFLf =

Kb∑
k=0

bke
−ikωF f ⇔

Ka∑
k=0

akLf[n− k] =
Kb∑
k=0

bkf[n− k]

We derive thus the following formula

a0Lf[n] = −
Ka∑
k=1

akLf[n− k] +
Kb∑
k=0

bkf[n− k]

which corresponds to a recursive implementation of the filter. Note that there is an initialization
issue as the past of Lf should be known...

If the filter is causal and f[n] is assumed to be 0 for n < 0 then Lf[n] = 0 for n < 0 and thus this
implementation can be used...
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2.2.5 z-transform to analyze causality and stability

Extension of Fourier analysis: From the unit circle

F f : ω 7→
∑
n∈Z

f[n]e−inω (= f̂(eiw))

to the complex plane

Ff : z 7→
∑
n∈Z

f[n]z−n (= f̂(z)).

This extension shares similarity with the Laplace transform.

Laurent series (at 0) are expressions of the form∑
n∈Z

f[n]z−n.

Their domain of convergence is a possibly empty annulus (ring).

Inversion formula through analytic function theory:

f[n] = 1
2πi

∫
γ

Ff(z)
zn+1 dz

with γ is counterclockwise around a closed, rectifiable path containing no self-intersections, en-
closing 0 and lying in the annulus of convergence.

Classical examples:

Fδ∆ = z−∆ (z ∈ C)
Fanh = Fh(·/a)
Fnh = −z(Fh)′

F(1n≥0) = 1
1− z−1 (|z| > |1|)

F(−1n<0) = 1
1− z−1 (|z| < |1|)

F(an1n≥0) = 1
1− az−1 (|z| > |a|)

F(−an1n<0) = 1
1− az−1 (|z| < |a|)

F(n1n≥0) = z−1

(1− z−1)2 (|z| > |1|)

F(n21n≥0) = z−1(1 + z−1)
(1− z−1)3 (|z| > |1|)

Proposition 2.4: A filter is stable (∈ `1) iff the unit circle lies in its dom. of conv.
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Recursive filtering and pole: A recursive filter h has a z-transform Fh(z) = P (z−1)/Q(z−1)
where we assume that P and Q have no common roots. If it is stable then Q has no root of
modulus 1 and it is furthermore causal then Q has no root of modulus < 1. For Fh(z) this
correspond to having no pole of modulus > 1.

2.3 Finite Signal Processing

2.3.1 Finite Signal and periodization

Finite (Discrete) signal: is a finite sequence {f[n]}0≤n<N .

Boundary issues: What is going on before 0 and after N − 1?

• Nothing (zero-padding): f[n] = 0 if n < 0 or n ≥ N ,

• The same thing (periodization): f[n] = f[n mod N ],

• Almost the same thing (symmetrization and periodization): different choices for the sym-
metrization operator...

Periodization and distributions:

f =
∑
n

f[n mod N ]δn∆

is a discrete (of step ∆) and periodic (of period N∆) distribution whose Fourier transform is
thus a periodic (of period 2π/∆) and discrete (of step 2π/(N∆) distribution

Ff =
∑
n

f̂∆[n mod N ]δ2π/(N∆)

where a simple computation (using Poisson formula) shows that

f̂∆[k] =
N−1∑
n=0

f[n]e−i2πkn/N .

which is thus specified by N values, i.e. a finite signal.

Finite Fourier Transform a.k.a. Discrete Fourier Transform is defined in CN by

f̂ [k] =
N−1∑
n=0

f[n]e−i2πkn/N

whose inverse is given by

f[n] = 1
N

N∑
n=0

f[k]ei2πkn/N .
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Figure 2.12: DFT

This could be reinterpreted in term of the orthonormality in CN of

{ 1√
N
ei2πk·/N}0≤k<N

but fails to convey all the subtleties of the DFT...

2.3.2 LTI, Circular convolution and Fourier filtering

LTI: Linear and Translation Invariant for finite signals means Linear and Translation Invariant
for periodized signals.

Convolution: If Lf = h ? f then

Lf[n] =
∑
k∈Z

h[k]h[n− k]

=
∑
k∈Z

h[k]h[n− k mod N ]

=
N−1∑
k=0

(∑
l∈Z

h[k + lN ]
)

h[n− k mod N ]

=
N−1∑
k=0

h̃[k]h[n− k mod N ]

where h̃ is a periodized version of h

h̃[k] =
∑
l∈Z

h[k + lN ].

This convolution is often called circular convolution and is denoted �? .
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Proposition 2.5 (Fourier and convolution):

ĥ�? f = ĥf̂

2.3.3 FFT

Naive implementation: In order to compute

f̂ [k] =
N−1∑
n=0

f[n]e−i2πkn/N

for 0 ≤ k < N , the easiest way is to compute those N scalar products, each requiring N
multiplications and N − 1 additions. The total number of operations is thus N2 multiplications
and N2 −N additions. As soon as N is large, this may prevent the use of such a transform in
real life situation.

The even N trick: If N is even then

f̂ [2k′] =
N/2−1∑
n=0

(f[n] + f[N/2 + n]) e−i2πk
′n/(N/2)

f̂ [2k′ + 1] =
N/2−1∑
n=0

(f[n]− f[N/2 + n]) e−i2π/Ne−i2πk
′n/(N/2)

and thus the DFT of size N can be computed from 2 DFT of 2 signals of size N/2 obtained by
N additions and N/2 multiplications. Using the naive previous implementation for those DFT
yields thus N/2 + 2(N/2)2 multiplications and 2(N/2)2 additions. There is thus a gain of almost
a factor 2!

The N = 2p case: In this case, this idea can be reused p times (the DFT of a signal of size 1
being trivial). Analyzing its complexity yields

Nb mult(2p) = 2Nb mult(2p−1) + 2p/2
Nb add(2p) = 2Nb add(2p−1) + 2p

and thus

Nb mult(2p)
2p = Nb mult(2p−1)

2p−1 + 1/2

Nb add(2p)
2p = Nb add(2p−1)

2p−1 + 1

so that

Nb mult(2p) = p/2× 2p

Nb add(2p) = p× 2p.

In term of N , one obtains thus a complexity of order N logN which is much smaller than N2!
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FFT (Fast Fourier Transform): This algorithm has been proposed in 1965 by Cookey and
Tuckey when N = 2p and is a crucial step in Discrete Signal Processing. Variations are possible
when N 6= 2p using factorization in prime factors.

2.3.4 What is really computing the FFT algorithm?

Naive interpretation: It computes the Fourier transform of a function f ...

Not so naive interpretation: It computes the Fourier transform of

f∆,per = ∆
∑
n

f((n mod N)∆)δn∆

or more accurately the N -periodic coefficients of the Dirac comb

Ff∆,per =
∑
n

f̂ [n]δn2π/(N∆).

Relationship between the two transforms: As

f∆,per =
(

(f × χ[0,N∆))×
∑
n

δn∆

)
?∆

∑
k

δkN∆

and thus at least formally

Ff∆,per = 1/2π
(

(Ff ? F(χ[0,N∆))) ? 2π
∑
n

δn2π/∆

)
×
∑
k

δ2π/(N∆)

which implies

f̂ [n] =
∑
k∈Z

(Ff ? F(χ[0,N∆)))(2π(n+ kN)/(N∆)).

We compute thus the discretized version of the periodization of the convolution of the Fourier
transform of f with a sinc function!

Remark: This analysis holds only if Ff is compactly supported. Imagine for instance that f
is equal to 0 in [0, N ], then there is no chance to recover something different than 0 from the
samples in [0, N ]... but if Ff is compactly supported then f is analytic and thus equal to 0 if it
vanishes on an interval.

Windowing: As the sinc decays slowly, the convolution may yields a significant modification
of the Fourier transform. To mitigate this effect, one can replace the multiplication by 1[0,N∆)]
by the multiplication by a smoother function W[0,N∆] which is equal to 1 in the middle of the
interval and decays to 0 at the boundaries.
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Figure 2.13: From Fourier to FFT
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Chapter 3

Time-Frequency Analysis

In the previous part, we have studied the Fourier transform of a signal which gives a frequency
view of it. In particular, it is hard to read the time behavior which was obvious is the time
representation. We should show here there is an intermediate way in which one can analyze the
signal simultaneously in time and frequency.

Assume one wants to analyze the sound of a women saying Greasy. So far we have two views of
the correspond signal: the temporal one and the spectral one using its Fourier transform.

Although those representation convey all the information cotained in the signal, they do not
correspond to the intuition that a sound is made of notes having a certain frequency and a
certain location, as they are described in a musical score. In this chapter, we will show how to
obtain a score in the time-frequency plane.
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Figure 3.1: Spatial or spectral view of a signal
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Figure 3.2: Time-Frequency score

3.1 Time frequency atoms and Windowed Fourier Trans-
form

3.1.1 Localized Fourier transform

The Fourier transform and localization: When f belongs to L1, one can write

f̂(ω) =
∫
R
f(t)e−iωtdt.

If one wants to study the behavior of f around 0 a natural idea is to multiply f by a bounded
real window w equal to 1 around 0 and vanishing away from 0 and to compute∫

R
f(t)w(t)e−iωtdt.

Windows: The most simple example of such a window is the characteristic set of [−h, h]. As
we have seen in the previous part, if f is band-limited, the resulting transform is the Fourier
transform of f convolved by a sinc function.

We will use more regular window w and define for f ∈ L1 its windowed Fourier transform at 0
by

Sf(0, ω) =
∫
R
f(t)w(t)e−iωtdt

and more generally its windowed Fourier transform at u by

Sf(u, ω) =
∫
R
f(t)w(t− u)e−iωtdt.
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ξ

t

Figure 3.3: Time-Frequency atom

The L2case: If we assume that w belongs to L2 then for any f ∈ L2

Sf(u, ω) =
∫
R
f(t)w(t− u)e−iωtdt

is well defined and equal to

= 〈f, w(· − u)eiω〉

where the scalar product is now the hermitian scalar product.

Time-Frequency atoms: From now on, we assume that f ∈ L2 and w ∈ L2. We do not
assume anymore that w is real valued and define

Sf(u, ω) =
∫
R
f(t)w(t− u)e−iωtdt

that the windowed Fourier transform can be interpreted as the collection of all scalar products
of f with the probes wu,ω = w(· − u)eiω which are called time-frequency atoms.

3.1.2 Time-frequency atoms position

Fourier domain probes: Using Parseval equality, we deduce immediately that

Sf(u, ω) = 〈f, wu,ω〉

= 1
2π 〈f̂ , ŵu,ω〉

where f̂ denotes Ff and thus the Windowed Fourier transform can also be interpreted as the
collection of all scalar products of f̂ with the probes 1

2π ŵu,ω.

Atoms centers: As wu,ω = w(· − u)eiωt and thus ŵu,ω(ξ) = eiuξŵ(· − ω), if we assume than
w is centered on 0 and ŵ is centered on 0 then wu,ω is centered on u and ŵu,ω is centered on ω.
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Spatial and spectral densities and means: More precisely, to any g ∈ L2 \ {0}, we can
associate its spatial density |g|2/‖g‖22 and its spectral density |ĝ|2/‖ĝ‖22. We define then its spatial
mean by

µt(g) =
∫
t
|g(t)|2

‖g‖22
dt

and its spectral mean by

µω(g) =
∫
ω
|ĝ(ω)|2

‖ĝ(ω)‖22
dω.

Remark that those definitions are coherent with the idea that if g is symmetric around 0 then
its mean should be 0.

Atoms means: If we apply those definitions to wu,ω one obtains that

µt(wu,ω) = µt(wu,ω′) = u+ µt(w) and µω(wu,ω) = µω(wu′,ω) = ω + µω(w).

If we impose that µt(w) = µω(w) = 0, that is w is centered spatially and spectrally then

µt(wu,ω) = µt(wu,ω′) = u and µω(wu,ω) = µω(wu′,ω) = ω

3.1.3 Time-frequency atoms localization

3.1.4 Densities and dispersion

We can also measure the dispersion of a function around its spatial and spectral mean by defining
its spatial standard deviation σt and its spectral standard deviation σω:

σ2
t (g) =

∫
(t− µt(g))2 |g(t)|2

‖g‖22
dt and σ2

ω(g) =
∫

(ω − µω(g))2 |ĝ(ω)|2

‖ĝ‖22
dt
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Figure 3.5: Heisenber boxes

3.1.5 Atoms localization:

If we apply those definitions to wu,ω one obtains that

σt(wu,ω) = σt(w) and σω(wu,ω) = σω(w)

so that all atoms have the same localization properties.

3.1.6 Heisenberg incertitude theorem

Heisenberg boxes: In a Time-Frequency plane, each atom wu,ω can be represented by a
Heisenberg box of size 2σt(w)× 2σω(w) centered on (u, ω). For a given w, all those boxes have
the same size. Intuitively, the smaller the box the better.

Heinseberg box and scaling: A first attempt is to replace w by w(./s), and thus ŵ by sŵ(s·),
a straightforward computation shows that

µt (w(·/s)) = µt(w)/s and µω (w(·/s)) = sµω(w)

while
σt (w(·/s)) = σt(w)/

√
s and σω (w(·/s)) =

√
sσω(w)

So that any gain is one domain is exactly compensated by a loss in the other one.

Heisenberg box and w: The only solution seems to be a clever choice of w. Unfortunately,
there is a lower limit on the product σt × σω.

Theorem 3.1: If w ∈ L2 \ {0} then

σ2
t (g)σ2

w(g) ≥ 1
4

with equality if and only if there exist a ∈ C, b > 0, (u, ω) ∈ R2 such that

g(t) = ae−b((t−u)2
eiωt
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Proof: Remark that σt(g) is equal to 0 if and only if g is supported on a singleton, which is
impossible if g ∈ L2 \ {0}. Now if σt(g) = +∞ or σω(g) = +∞ the result is trivial and thus we
assume from now on that σt(g) < +∞ or σω(g) < +∞.

Without loss of generality, we may assume further that

µt(g) = 0 and µω(g) = 0.

Indeed we have seen that for (u, ω), σt(gu,ω) = σt(g) and σω(gu,ω) = σω(g) so we can replace g
by gu,ω with u = −µt(g) and ω = −µω(g) which satisfies those assumptions.

Assume for the moment that σt(g) < +∞ and σω(g) < +∞ implies g continuous, lim|t|→∞ t|g(t)|2 =
0 and g′ ∈ L2

We have thus

σ2
t (g)σ2

w(g) =
∫
t2
|g(t)|2

‖g‖22
dt×

∫
ω2 |ĝ(ω)|2

‖ĝ‖22
dω

= 1
‖g‖42

∫
t2|g(t)|2dt× 1

2π

∫
|iωĝ(ω)|2dω

as −iωĝ = ĝ′, using Parseval equality we deduce

= 1
‖g‖42

∫
t2|g(t)|2dt×

∫
|g′(t)|2dt

By Cauchy-Schwarz, we obtain

≥ 1
‖g‖42

(
1
2

∣∣∣∣∫ tg(t)(g′(t))dt
∣∣∣∣+ 1

2

∣∣∣∣∫ tg(t)g′(t)dt
∣∣∣∣)2

By triangular inequality

≥ 1
4‖g‖42

∣∣∣∣∫ t
(
g(t)(g′(t)) + g(t)g′(t)

)
dt

∣∣∣∣2
Let L be this quantity

L = 1
4‖g‖42

∣∣∣∣∫ t
(
g(t)(g′(t)) + g(t)g′(t)

)
dt

∣∣∣∣2
= 1

4‖g‖42

∣∣∣∣∫ t(|g(t)|′)2dt
∣∣∣∣2

as g is continuous a by part integration yields

= 1
4‖g‖42

∣∣∣∣[t|g(t)|2
]+∞
∞ −

∫
|g(t)|2dt

∣∣∣∣2
and as lim|t|→∞ t|g(t)|2 = 0

L = 1
4 .
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The Cauchy-Schwarz inequality is an equality if it exists (λ, γ) ∈ C2 such that

λtg(t) = g′(t), γtg(t) = g′(t).

We have thus here λ = γ. Now the triangular inequality is an equality if it exists ν ≥ 0 such
that ∫

tg(t)g′(t)dt = ν

∫
tg(t)g′(t)dt

λ

∫
|t|2|g(t)|2dt = νλ

∫
|t|g(t)2|g(t)|2dt

which implies λ ∈ R. Now λtg(t) = g′(t) implies g(t) = aeλt
2/2 with a ∈ C. Let b = −λ/2, as

g ∈ L2, we have b = −λ/2 > 0 which concludes the proof as every function g = ae−b(t−u)2
eeiωt

satisfies the equality constraints.

We should now go back to the proof that σt(g) < +∞ and σω(g) < +∞ implies g continuous,
lim|t|→∞ t|g(t)|2 = 0 and g′ ∈ L2.

As g ∈ L2, g ∈ S ′ and thus g′ ∈ S ′. Now Fg′ = iωFg = iωĝ and thus, as σ2
ω(g) =

∫
ω2 |̂g(ω)|2

‖ĝ‖2
dω,

σω(g) <∞ implies Fg′ ∈ L2 which in turns implies g′ ∈ L2.

The continuity of g is more involved. Let φn be a sequence of function in S such that ‖g −
φn‖22 + ‖g′ − φ′n‖22 converge to 0. The sequence φn is thus a Cauchy sequence for the norm
φ 7→ ‖φ‖22 + ‖φ′‖22. Now for any φ ∈ S,

|φ(t)| =
∣∣∣∣ 1
2π

∫
φ̂(ω)eiωtdω

∣∣∣∣
≤ 1

2π

∫ ∣∣∣φ̂(ω)
∣∣∣dω

≤ 1
2π

(∫ 1
1 + ω2 dω

)1/2(∫
(1 + ω2)|φ̂(ω)|2dω

)1/2

≤ 1√
2π

(∫ 1
1 + ω2 dω

)1/2 (
‖φ‖22 + ‖φ′‖22

)1/2
.

Thus φn is also a Cauchy sequence for the norm ‖ · ‖∞ which implies that φn converges toward
a continuous function and thus by unicity of the limit g is continuous.

Now for any m ≤M , ∫ M

m

t(|g(t)|2)′dt =
[
t|g(t)|2

]M
m
−
∫ M

m

|g(t)|2dt

and, as both integral have a finite limit when either m or M goes to respectively −∞ and +∞,
so has t|g(t)|2. Let l+ be the limit at +∞, |g(t)|2 is equivalent to l+/t and thus, as g ∈ L2, l+
cannot be anything but 0. A similar reasoning for −∞ concludes the proof.

Examples:

• w = 1[−a,a]: µt(w) = µω(w) = 0, σt = a/
√

3 and σω = +∞,

• w = e−bt
2 : µt(w) = µω(w) = 0, σt =

√
2/
√
b and σω =

√
b/(2
√

2).
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Figure 3.6: STFT representation of Greasy

3.2 Windowed Fourier transform or STFT

3.2.1 Definition

To simplify the computations, we assume from now on that ‖w‖22 = 1.

The Windowed Fourier transform, or Short Time Fourier Transform , of f ∈ L2 is
then defined as

(u, ω) 7→ Sf(u, ω) =
∫
f(t)w(t− u)e−iωtdt = 〈f, wu,ω〉.

As we are working in a L2 setting, we define the Spectrogram of f which measure the local energy
of f as

(u, ω) 7→ |Sf(u, ω)|2.

3.2.2 Completeness and stability of the STFT representation

Theorem 3.2: If w ∈ L2 ∩ L1 and ‖w‖2 = 1, then for any f ∈ L2:

f(t) L
2

=
∫ ∫

Sf(u, ω)w(t− u)eiωtdudω∫
|f(t)|2dt = 1

2π

∫ ∫
|Sf(u, ω)|2 dudω

Note that this is similar to an orthogonal basis decomposition as it can be rewritten as

f(t) L
2

=
∫ ∫

〈f, wu,ω〉wu,ωdudω∫
|f(t)|2dt = 1

2π

∫ ∫
|〈f, wu,ω〉|2 dudω

but with a lot of redundancy!
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Lapped transform interpretation: Assume f×w(·−u) ∈ L2 so that Sf(u, ω) = f̂ × w(ω) ∈
L2. Assume further that ω 7→ Sf(u, ω) belongs to L1, then

f(t)w(t− u) = 1
2π

∫
Sfu,ωe

iωtdω

and thus multiplying by w(t− u)

f(t) |w(t− u)|2 = 1
2π

∫
Sfu,ωw(t− u)eiωtdω

while ∫
|f(t)|2|w(t− u)|2dt = 1

2π

∫
|Sfu,ω|2dω

and thus ∫
|f(t)|2|w(t− u)|2dt = 1

2π

∫
|Sfu,ω|2dω.

Integrating those equalities along u yields the result as
∫
|w(t− u)|2du = 1.

Discretization of u: Note that following this (formal) analysis hints that one could discretize
the position u and obtains

f(t) L
2

=
∑
u∈Γu

∫
〈f, wu,ω〉wu,ωdudω∫

|f(t)|2dt = 1
2π

∑
u∈Γu

∫
|〈f, wu,ω〉|2 dω

as soon as
∀t,

∑
u∈Γu

|w(t− u)|2 = 1.

Discretization of ω: If w is compactly supported in [−∆,∆] then f(t)wu,ω(t) is compactly
supported in [u−∆, u+ ∆]. One can thus use a Fourier series decomposition to show that

f(t)w(t− u) = 1
2∆

∑
k∈Z

Sf(u, k2π/∆)wu,k2π/∆(t)

while ∫
|f(t)w(t− u)|2 = 1

4∆2

∑
k∈Z
|Sf(u, k2π/∆)|2.

This amounts to a discretization of ω of step 2π/∆.

Proof: We start by rewriting Sf as a convolution

Sf(u, ω) =
∫
f(t)w(t− u)e−iωtdt

= e−iωu
∫
f(t)w(−(u− t)eiω(u−t)dt

= e−iωuf ? (w(−·)× eiω)(u).
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As f ∈ L2 and w ∈ L1, for any ω, u 7→ f ? (w(−·)× eiω) ∈ L2 and thus u 7→ Sf(u, ω) ∈ L2. Let
Sfω(u) = Sf(u, ω) = e−iωuf ? (w(−·)× eiω)(u). As

̂w(−·)× eiω(ξ) =
∫
w(−t)eiωte−iξtdt

=
∫
w(t)ei(ξ−ω)tdt

=
∫
w(t)e−i(ξ−ω)tdt

= ŵ(ξ − ω),

one derives

FSfω = Ff(·+ ω)× ŵ.

By Parseval, one has thus for any ω,∫
|Sfω(u)|2du = 1

2π

∫
|Ff(ξ + ω)|2

∣∣∣ŵ(ξ)
∣∣∣2 dξ

= 1
2π

∫
|Ff(ξ)|2

∣∣∣ŵ(ξ − ω)
∣∣∣2 dξ

and thus ∫ ∫
|Sf(u, ω)|2dudω = 1

2π

∫ ∫
|Ff(ξ)|2

∣∣∣ŵ(ξ − ω)
∣∣∣2 dξdω

as everything is positive one can apply Fubini∫ ∫
|Sf(u, ω)|2dudω = 1

2π

∫ ∫
|Ff(ξ)|2

∣∣∣ŵ(ξ − ω)
∣∣∣2 dωdξ

= 1
2π

∫
|Ff(ξ)|2

∫ ∣∣∣ŵ(ξ − ω)
∣∣∣2 dωdξ

and using again Parseval

= 2π‖f‖22‖w‖22
which yields the energy conservation result.

Along the same lines,∫
Sfω(u)w(t− u)eiωtdu = 1

2π

∫
Ŝfω(ξ)ŵ(t− ·)(ξ)dξeiωt.

Now as

ŵ(t− ·)(ξ) =
∫
w(t− u)e−iξudu

=
∫
w(−u)e−iξ(u+t)du

=
∫
w(u)eiξ(u−t)du

= e−iξtŵ(ξ)
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we obtain ∫
Sfω(u)w(t− u)eiωtdu = 1

2π

∫
F(ξ + ω)ŵ(ξ)eiξtŵ(ξ)dξeiωt

= 1
2π

∫
F(ξ + ω)|ŵ(ξ)|2ei(ξ+ω)tdξ

= 1
2π

∫
F(ξ)|ŵ(ξ − ω)|2eiξtdξ

Thus ∫ A

−A

∫
Sf(u, ω)w(t− u)eiωtdudω =

∫ A

−A

1
2π

∫
Ff(ξ)|ŵ(ξ − ω)|2eiξtdξdω

Now∫ A

−A

1
2π

∫ ∣∣F(ξ)|ŵ(ξ − ω)|2eiξt
∣∣ dξdω = 1

2π

∫ A

−A

∫
|F(ξ)| |ŵ(ξ − ω)|2dξdω

≤ 1
2π

∫ A

−A

(∫
|F(ξ)ŵ(ξ − ω)|2 dξ

)1/2(∫
|ŵ(ξ − ω)|2 dξ

)1/2
dω

using ‖w‖2 = 1

≤ 1√
2π

∫ A

−A

(∫
|F(ξ)ŵ(ξ − ω)|2 dξ

)1/2
dω

≤
√

2A√
2π

(∫ A

−A

∫
|F(ξ)ŵ(ξ − ω)|2 dξdω

)1/2

≤
√

2A√
2π

(∫ ∫
|F(ξ)ŵ(ξ − ω)|2 dξdω

)1/2

≤
√

2A
√

2π‖f‖22 < +∞

So we can apply Fubini and obtain:∫ A

−A

∫
Sf(u, ω)w(t− u)eiωtdudω = 1

2π

∫
Ff(ξ)

∫ A

−A
|ŵ(ξ − ω)|2dωeiξtdξ

Let gA(ξ) =
∫ A
−A |ŵ(ξ−ω)|2dω, by construction gA ≤ 1 and limA→∞ gA(ξ) = 1. Thus Ff(ξ)

∫ A
−A |ŵ(ξ−

ω)|2dω = Ff(ξ)× gA(ξ) is in L2 for any A. Furthermore by dominated convergence Ff × gA is
a Cauchy sequence which converges in L2 toward Ff . Now∫ A

−A

∫
Sf(u, ω)w(t− u)eiωtdudω = F−1(Ff × gA)

and thus converges in L2 toward F−1Ff = f .

Discretization: Given two discretization steps ∆t and ∆w, one can consider the countable
family of atoms

(wk∆t,l∆w
)(k,l)∈Z2
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and define the discretized windowed Fourier transform of f ∈ L2 by

(〈f, wk∆t,l∆w
〉)(k,l)∈Z2 .

A natural question is whether similar energy conservation property and reconstruction formula
hold.

It turns out that a necessary (but not sufficient) condition is ∆t×∆w ≥ 2π, that is a sufficiently
dense sampling. We refer to Daubechies book for more details...

Finite Setting In this case, atoms are defined by

wm,l[n] = w[n−m mod N ]ei2π lnN

where w is supported in {0, . . . , N − 1} such that
∑N
n=0 |w[n]|2 = 1. Their Fourier transform are

thus
ŵm,l[k] = ŵ[k − l]ei2π

m(k−l)
N

The discrete Windowed Fourier Transform is then defined by

Sf [m, l] =
n−1∑
n=0

f [n]w[n−m]e−i2π lnN = 〈f, wm,l〉 = 1
N
〈f̂ , ŵm,l〉 = ̂fw[· −m][l]

Note that using the FFT algorithm to compute ̂fw[· −m] at each position n yields an algorithm
of complexity O(N2 logN).

Using the same proof technique than the one used in the lapped transform interpretation, one
obtains

f = 1
N

N−1∑
m=0

N−1∑
l=0

Sf [m, l]wm,l

N−1∑
n=0
|f [n]|2 = 1

N

N−1∑
m=0
|
N−1∑
l=0

Sf [m, l]|2

which remains true if one subsamples the position on a grid of step ∆ as soon as one imposes

k<N
∆∑

k=0
|w[k∆ + n mod N ]|2 = 1,∀n

3.3 Instantaneous Frequency

In a musical score, one can see several frequencies that vary along time. To formalize this idea,
one need first to define the notion on Instantaneous frequency.
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3.3.1 Definition

The cos cas: Let f be a modulated cosine

f(t) = a cos(ω0t+ φ0) = a cosφ(t)

its frequency ω0 measures the speed of rotation of the angle in the cos, which in nothing but the
derivative of the angle φ.

A first (attempt of) generalization: Let f be a real valued signal

f(t) = a(t) cosφ(t)

with a(t) ≥ 0 and φ′(t) ≥ 0, one could define its instantaneous frequency ω(t) by

ω(t) = φ′(t).

This definition is not satisfying because the decomposition f(t) = a(t) cosφ(t) is not unique and
thus there is no unique way of defining this instantaneous frequency.

An analytic fix: Let f be a real valued signal, as its spectrum has an hermitian symmetry,
it is entirely characterized by its Fourier transform restricted to the positive axis. We define the
analytic part fa of f has the function whose Fourier transform is defined by

f̂a(ω) =
{

2f(ω) if ω ≥ 0
0 otherwise

.

By construction,
f̂(ω) = 1

2

(
f̂a(ω) + f̂a(−ω)

)
and thus

f = 1
2
(
fa + fa

)
= <(fa).

The signal fa is called analytic because it has an analytic extension in the upper half plane.
Now, as

fa(t) = |fa(t)|eiArg fa(t)

we obtain

f(t) = |fa(t)| cosArg fa(t).

One says that a(t) = |fa(t)| is the analytic amplitude of f(t) while ω(t) = (Arg fa)′(t) is its
analytic instantaneous frequency. Both are defined now in a unique way.

Example: If f(t) = a(t) cos(ω0t+ φ0) then

f̂(ω) = 1
2
(
eiφ0 â(ω − ω0) + e−iφ0 â(ω + ω0)

)
.

Assume that â is supported in [−ω0, ω0], i.e.that a varies slowly with respect to the period 2π/ω0
of the cos, then

f̂a(ω) = eiφ0 â(ω − ω0)
and thus fa(t) = a(t) ei(ω0t+φ0).
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Frequency Modulation: In order to transmit a band limited signal m(t), one transmits

f(t) = a cos(ω0t+ k

∫ t

0
m(u)du).

If ω0/k is large with respect to the Nyquist frequency of m, then the instantaneous frequency of
f is very close from being equal to ω0 +km(t). The signal m can thus be recovered from f . This
methodology is more noise resistant and power efficient than AM.

Limit of the instantaneous frequency: If f is the sum of two cosines:

f(t) = a cosω1t+ a cosω2t

then

fa(t) = aeiω1t + aeiω2t

= a cos
(
ω1 − ω2

2 t

)
ei
ω1+ω2

2 t.

The definition is thus interesting only if there is one single frequency (or they are well separated...)

3.3.2 Instantaneous frequency and Windowed Fourier transform

It turns out that the instantaneous frequency can be read in the Windowed Fourier Transform or
in its spectogram. Let w be a window in L1∩L2, with ‖w‖2 = 1, centered in time and frequency
and such that ŵ(ω)� 1 as soon as |ω| ≥ ∆. We define its scaled version by

ws(t) = 1√
s
w(t/s)

and let the Windowed Fourier Transform depends on s:

Sf(s, u, ω) =
∫ +∞

−∞
a(t) cosφ(t)ws(t− u) e−iωtdt = 〈f, ws,u,ω〉.

Theorem 3.3: Let f(t) = a(t) cosφ(t). If the variations of a(t) and φ′(t) are small on the
support [u− s, u+ s] of ws(· − u)∫ +∞

−∞

∣∣∣a(t+ u)eiφ(t+u) − a(u)ei(φ(u)+φ′(u)t)
∣∣∣ |ws(t)|dt� a(u)

√
s‖w‖1

and if φ′(u) ≥ s−1 ∆ then for all ω ≥ 0,

Sf(s, u, ω) ≈
√
s

2 a(u)ei(φ(u)−ωu)ŵ
(
s[ω − φ′(u)]

)
.

Proof: As

Sf(s, u, ω) = 〈f, ws,u,ω〉

=
∫ +∞

−∞
a(t) cosφ(t)ws(t− u) e−iωtdt

= 1
2

∫ +∞

−∞
a(t)

(
eiφ(t) + e−iφ(t)

)
ws(t− u)e−iωtdt

= 1
2 (I(φ) + I(−φ)) .
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cos(ω0t) cos(ω1t) cos(ω0t) with ω1 � ω0
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Figure 3.7: STFT

Now

I(φ) =
∫ +∞

−∞
a(t)eiφ(t) ws(t− u) e−iωtdt

=
∫ +∞

−∞
a(t+ u)eiφ(t+u) ws(t) e−iω(t+u)dt

=
∫ +∞

−∞
a(u)ei(φ(u)+φ′(u)t) ws(t) e−iω(t+u)dt

+
∫ +∞

−∞

(
a(t+ u)eiφ(t+u) − a(u)ei(φ(u)+φ′(u)t)

)
ws(t) e−iω(t+u)du

≈
∫ +∞

−∞
a(u)ws(t)ei(φ(u)−ωu)e−i(ω−φ

′(u))tdt

≈ a(u)ei(φ(u)−ωu)ŵs(ω − φ′(u))
≈ a(u)ei(φ(u)−ωu)√sŵ(s(φ′(u)− ω))

Now using the same computation

I(−φ) ≈ a(u)ei(φ(u)−ωu)√sĝ(s(−φ′(u)− ω))

As ω ≥ 0, s|ω + φ′(u)| > ∆ and thus |ĝ(s(−φ′(u)− ω))| � 1 and I(−φ)� |a(u)|.
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Ridges: Under the local assumptions of the previous theorem, the spectrogram

Pf(s, u, ω) = |Sf(s, u, ω)|2 = |〈f, ws,u,ω〉|2

of f(t) = a(t) cosφ(t) is approximately

Pf(s, u, ω) ≈ s

4 |a(u)|2 |ŵ (s[ω − φ′(u)])|2 .

Under the mild assumption that |ŵ| is maximal at 0, the spectrogram is thus maximum at
ω(u) = φ′(u), the instantaneous frequency. The points (u, ω(u)) are called ridges.

At those points,

Sf(u, ξ(u)) ≈
√
s

2 a(u)ei(φ(u)−ξu)ŵ(0)

so that

a(u) ≈ 2√
s |ŵ(0])|

|Sf(s, u, ω(u)|.

Furthermore,

∂

du (φ(u)− ξu)(u, ξ(u)) = φ′(u)− ξ(u) ≈ 0

and thus the phase is approximately constant along the ridges.

3.3.3 Multiple frequencies:

If a function is a finite sum of terms ak(t) cosφk(t)

f =
K∑
k=1

ak(t) cosφk(t)

then the Windowed Fourier Transform will allow to separate those terms, provided their instan-
taneous frequencies are sufficiently separated. More precisely, assume the assumption of the
previous theorem holds for all couples (ak, φk) then

Sf(s, u, ω) ≈
√
s

2

K∑
k=1

ak(u)ei(φk(u)−ωu)ŵ
(
s[ω − φ′k(u)]

)
.

Separated ridges: As soon as mink′ 6=k |φ′k(u) − φ′k′(u)| ≥ ∆
s then in the neighborhood of

φ′k(u),

Sf(s, u, ω) ≈
√
s

2 ak(u)ei(φk(u)−ωu)ŵ
(
s[ω − φ′k(u)]

)
and thus a ridge corresponding to ak cosφk(t) exists.
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Figure 3.8: Ridges

Interferences: When mink′ 6=k |φ′k(u) − φ′k′(u)| < ∆
s , the previous analysis cannot be used.

The two ridges are not separated anymore, and interference patterns may be observed.

Window scale choice: The scale s of the window is a crucial parameter: on the one hand it
has to be small so that the local approximation of a(t) cosφ(t) by a(u) cos(φ(u) + φ′(u)(t − u))
is valid on the neighborhood of u of size O(s), on the other hand it has to be large so that the
frequencies could be resolved, as the separation limit is given by ∆/s.

Additive synthesis: Assume we analyze a sound f and that one detects K ridges, the sound
f is then naturally modeled by

K∑
k=1

ak(t) cosφk(t).

This representation is particularly well suited to scale the duration of a sound without modi-
fying its tone or the other way around. Indeed, the ear is sensitive to the amplitude and the
instantaneous frequency, which are quantities that should be preserved.

A sound time scaled by a factor α can thus be defined by

K∑
k=1

ak(t/α) cos (αφk(t/α))
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Figure 3.9: STFT and ridges for various window sizes (in samples)
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Figure 3.10: Ridge detection for Greasy sound

while a sound frequency scaled by a factor α can be defined by

K∑
k=1

ak(t) cos (αφk(t)) .

Note that more advanced modeling of the amplitude and the phase is possible.
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Chapter 4

Discrete Stationary Random
Process

In the previous figure, a chaotic part seems to exist. In order to model such a behavior, we will
go to random modeling.

We consider here discrete sequences in a random process setting. This is the natural setting
when there is uncertainty in the measures or when one wants to model the variability of a signal
class.

We will restrict ourself to some simple processes: the wide-sense stationary processes.

4.1 Wide sense stationary processes

4.1.1 Definition

A discrete random process X is a sequence of random variables X[n] with n ∈ Z. We restrict
ourself to real or complex random variables. Such a process is entirely characterized by the joint
laws of finite random vectors extracted from X: it suffices to know ∀k > 0, ∀(n1, . . . , nk) ∈ Zk,
∀(A1, . . . , Ak) ∈ Bk,

P (X[n1] ∈ A1, . . . X[nk] ∈ Ak),
where B is the set of Borel sets.

Stationarity: A random process is said to be strictly stationary if, ∀(n1, . . . , nk) ∈ Zk and
any δ ∈ Z the law of (X[n1 + δ], . . . , X[nk + δ]) is the law of (X[n1], . . . , X[nk])

We restrict ourself to the important class of random processes having finite moments of order 2,

∀n,E
(
|X[n]|2

)
< +∞.

Those processes are such that E(X[n]) exists and is finite as

|E(X[n])| ≤ E(|X[n]|2)1/2E(1)1/2 = E(|X[n]|2)1/2.

67
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Definition: Let X be a process having finite moment of order 2, the discrete function RX
defined by

∀(n,m) ∈ Z2, RX [n,m] = Cov(X[n], X[m]) = E
(

(X[n]− EX[n]) (X[m]− EX[m])
)

is called the autocovariance function of X.

The finite moment of order 2 assumption ensures that this function is well defined.

Definition: A discrete wide-sense stationary process (WSSP) is a discrete process X such that
∀n ∈ Z X[n] has a finite moment of order 2 and satisfies

• ∀n ∈ Z, EX[n] = EX[0],

• ∀(n,m) ∈ Z, RX [n,m] = RX [n−m, 0].

If X is a WSSP, with a slight abuse of notation, the autocovariance RX is seen as discrete
function of a single variable: RX [n] = RX [n, 0].

Gaussian case: If a discrete process is Gaussian then its wide-sense stationarity implies its
strict-sense stationarity!

Proposition 4.1 (WSSP):

i) Let X0 be a random process having a finite moment of order 2, the random process X
defined ∀n ∈ ZX[n] = X0 is a WSSP.

ii) Let (Y [n]) be an i.i.d. random variables sequence having finite moment of order 2, the
process Y is a WSSP.

iii) Let (Z[n]) be a sequence of decorrelated random variables having the same mean and the
same variance, the process Z is a WSSP.

Proof: i) X is a process such that ∀n ∈ Z, X[n] has a finite moment of order 2, EX[n] =
EX0 = EX[0] and ∀(n,m) ∈ Z2

RX [n,m] = Cov(X[n], X[m]) = Cov(X0, X0) = RX [n−m, 0].

ii) Y is a process such that ∀n ∈ Z, Y [n] has a finite moment of order 2, and such that, using
the i.i.d. property, ∀n ∈ Z; EY [n] = EY [0] and ∀(n,m) ∈ Z2

RY [n,m] = Cov(Y [n], Y [m]) = Cov(Y [0], Y [0])δ[n−m] = RY [n−m].

iii) The result is obtain with the same computations than for case ii)

White noise: A zero mean WSSP with autocovariance function σ2δ is called a white noise.
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Figure 4.1: Some examples of WSSP
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4.1.2 Autocovariance function properties

Proposition 4.2: The autocovariance function RX of a WSSL X satisfies

• RX [0] ∈ R+,

• ∀n ∈ Z, RX [−n] = RX [n]

• ∀n ∈ Z, |RX [n]| ≤ RX [0]

Proof: The proof of the first item is immediate: RX [0] = Cov(X[0], X[0]) ≥ 0 as a variance is
non negative.

The proof of the second item is obtained from the definition of the autocovariance and the
stationarity of the process

RX [−n] = Cov(X[−n], X[0]) = Cov(X[0], X[−n]) = Cov(X[n], X[0]) = RX [n]

The last item is proved in a similar way that the Cauchy-Schwartz inequality to which it corre-
sponds.If RX [n] = 0 then the property holds. Otherwise, ∀λ ∈ C,

Cov(X[0] + λX[n], X[0] + λX[n]) = Cov(X[0], X[0) + λCov(X[0], X[n])
+ λCov(X[n], X[0]) + |λ|2 Cov(X[n], X[n])

= (1 + |λ|2)RX [0] + (λRX [n] + λRX [n] ≥ 0.

Applying this result to λ = µ RX [n]
|RX [n]| with µ real yields ∀µ ∈ R, (1 + µ2)RX [0] + 2µ|RX [n]| ≥ 0.

The discriminant of this real polynomial of degree 2 is non positive, that is |RX [n]|2 ≤ RX [0]2.

Theorem 4.1: The autocovariance function RX of a WSSP is a discrete function of positive
type, i.e. ∀k ∈ N∗,∀(n1 . . . , nk) ∈ Z,

[
RX [ni − nj ]

]
1≤i,j≤k in a positive semi definite hermitian

matrix:

∀k ∈ N∗,∀(n1 . . . , nk) ∈ Z,∀(ξ1, . . . , ξk) ∈ Ck,
∑

1≤i,j≤k
ξiRX [ni − nj ]ξj ∈ R+.

Proof: It suffices to notice that∑
1≤i,j≤k

ξiRX [ni − nj ]ξj =
∑

1≤i,j≤k
ξiCov(X[ni], X[nj ]ξj)

= Cov

 ∑
1≤i≤k

ξiX[ni],
∑

1≤i≤k
ξiX[ni]


is a variance and thus non negative.

4.1.3 Ergodicity, mean and covariance estimation

Setting: Assume we observe a sample of N succesives values X[0], . . . , X[N − 1] of a WSSP
X. One may be interested in estimating its mean µ and its covariance function RX from those
observation.
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Figure 4.2: Autocovariance functions (with some zoom around 0)

Mean estimation: The most natural estimate is the empirical mean of the process

µ̃ = 1
N

N∑
k=0

X[k].

While unbiased (Eµ̃ = µ), it is not necessarily consistent when N goes to +∞. For instance, if
X[k] = X[0] then µ̃ = X[0]...

Consistency and ergodicity: If µ̃ is consistent for the quadratic loss, the process is said to
be ergodic for the mean.

Proposition 4.3: the process is ergodic for the mean if only if

lim
N→∞

1
N

N−1∑
l=−N+1

(
1− l

N

)
RX [l] = 0
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Figure 4.3: Mean estimation

Proof:

E
(
|µ̃N − µ|2

)
= 1
N2E

 ∑
0≤n,m

N − 1(X[n]− µ)(X[m]− µ)


= 1
N2

∑
0≤n,m≤N−1

RX [n−m]

= 1
N2

∑
−N+1≤l≤N−1

(N − |l|)RX [l]

E
(
|µ̃N − µ|2

)
= 1
N

N−1∑
n=−N+1

(
1− |n|

N

)
RX [n]

Corollary 4.1: The process is ergodic for the mean if lim|k|→∞RX [k] = 0.

Classical covariance estimate: ∀0 ≤ k ≤ N − 1

R̃X [k] = 1
N

N−1−k∑
l=0

(X[n]− µ̃)(X[n− k]− µ̃

Although this estimate is biased, it is a positive type function and thus very useful in practice.
Proving its consistency is more challenging and require some technical assumtions on the process.
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Figure 4.4: Covariance estimate

4.1.4 Autocovariance function and spectral measure

Theorem 4.2 (Herglotz): If R is a discrete function of positive type, then it exists a unique
positive measure µ on [−π, π] such that

∀n ∈ Z, R[n] = 1
2π

∫ π

−π
einωdµ(ω).

Remark: This is nothing but a specific Fourier transform representation.

Corollary 4.2: If R ∈ `1, µ = R̂(eiω)dω where

R̂(eiω) =
∑
n∈Z

R[n]e−inω.

Remark: In `1, one can verify that ĥ ? g = ĥĝ.

Proof: Let

∀N ≥ 0, R̂N (eiω) = 1
N

∑
0≤m,n≤N−1

e−inωeimωR[n−m] ≥ 0 by assumption.

=
N−1∑

n=−N+1
(1− |n|/N)RX [n]e−inω
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Figure 4.5: Power spectral density

The measure dµN (eiω) = R̂N (eiω)dω is then non negative and satisfies ∀n ∈ Z,

(1− |n|/N)+R[n] = 1
2π

∫ π

−π
einωdµN (ω).

It suffices then to let N goes to infinity and to extract from µN ([−π, π]) = 2πRX [0] a sub-
sequence converging tightly to a positive measure µ which satisfies the equality of the theorem.

Uniqueness is obtained by observing that the family (einω)n∈Z is dense into the bounded contin-
uous functions of [−π, π] and thus a measure is entirely defined by its action on this family.

Definition: Let X be a WSSP, the measure µX associated to the autocovariance function RX
is called the spectral measure of the process. If Rx ∈ `1, the Fourier transform of RX R̂X(eiω)
is called the spectral density, or the power spectral density, of X.

Remark: The use of the word power will be justified later.

4.1.5 Process filtering

Theorem 4.3: Let X be a WSSP and h ∈ `1, the process Y = h ? X defined by, ∀n ∈ Z,

Y [n] =
∑
k∈Z

h[k]X[n− k]
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is a WSSP of autocovariance function

RY = h ? h̃ ? RX ,

where h̃ is defined ∀n ∈ Z, h̃[n] = h[−n]. Moreover, the spectral measure µY of Y is given by
dµY (ω) = |ĥ(eiω)|2dµX(ω).

Remark: If E(X[0]) = 0 and RX ∈ `1 then h ∈ `2 is sufficient for the well definition of h ? X.

Proof: For sake of simplicity, we denote for any random variable Z having a finite moment of
order 2 ‖Z‖2 = E(|Z|2) this moment and talk of L2 convergence for a convergence in this norm..

Given n ∈ Z, for any k ∈ Z, the random variables h[k]X[n− k] in the sum defining Y [n] satisfy

‖h[k]X[n− k]‖1 ≤ |h[k]|‖X[n− k]‖2 = |h(k)|
√
|EX[0]|2 +RX [0]

because X is a WSSP. So∑
k∈Z
‖h[k]X[n− k]‖1 ≤

∑
k∈Z
‖h[k]X[n− k]‖2 = ‖h‖`1

√
|EX[0]|2 +RX [0] < +∞.

This implies the almost everywhere convergence of
∑
k∈Z |h|[k]|X|[n − k] and thus the one of∑

k∈Z h[k]X[n− k]. The random variable Y [n] is thus well defined.

The bound
∑
k∈Z ‖h[k]X[n− k]‖1 implies that E|Y [n]| = ‖Y ‖1 is finite and that a

EY [n] =
∑
k∈Z

h[k]EX[n− k] = EX[0]
∑
k∈Z

h[k].

The mean of Y [n] is thus independent of n.

In a similar way, the bound on
∑
k∈Z ‖h[k]X[n − k]‖2 implies that E|Y [n]|2 < +∞. It remains

to prove the formula for the variance. For any N ∈ N?, we define

YN [n] =
N∑

k=−N
h[k]X[n− k]

which converges to Y in L2 when N goes to infinity,

Cov(YN [n], YN [m]) = Cov
(

N∑
k=−N

h[k]X[n− k],
N∑

k=−N
h[k]X[m− k]

)

=
N∑

k=−N

N∑
l=−N

h[k]h[l]Cov(X[n− k], X[m− l])

=
N∑

k=−N
h[k]

N∑
l=−N

h̃[l]RX [(n−m)− k − l]

thus letting hN [k′] = h[k′]1|k′|≤N

Cov(YN [n], YN [m]) = (hN ? h̃N ? RX)[n−m].

By L2 continuity of the covariance operator Cov(YN [n], YN [m]) tends to Cov(Y [n], Y [m]). For
the convolution result, it suffices to notice that
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• RX is in `∞,

• hN tends to h in `1

• and the convolution of a `∞ discrete function by a `1 discrete function is `∞ discrete
function and this application is continuous with respect to the two variables

to obtain (hN ? h̃N ? RX)[n−m] −−−−−→
N→+∞

(h ? h̃ ? RX)[n−m]. This concludes the proof that Y
is a WSSP and that the covariance formula holds.

The spectral measure associated to YN can be obtained from the previous formula:

RYN [n] =
N∑

k=−N

N∑
l=−N

h[k]h[l]RX [n− k + l]

which yields by inserting the spectral measure µX of X

=
N∑

k=−N

N∑
l=−N

h[k]h[l] 1
2π

∫ π

−π
ei(n−k+l)ωdµX(ω)

= 1
2π

∫ π

−π
einω

N∑
k=−N

N∑
l=−N

h[k]e−ikωh[l]e−ilωdµX(ω)

RYN [n] = 1
2π

∫ π

−π
einω|ĥN (eiω)|2dµX(ω).

By L2 continuity of the covariance, RYN [n] tends to RY [0]. The sequence hN tends to h in
`1, which implies that ĥN tends uniformly to ĥ which is a bounded continuous function. The
spectral measure formula is thus obtained, using the continuity of the action of a measure on
bounded continuous function and the unicity of the spectral measure, by going to the limit in
the previous equality.

The h ∈ `2 case: If we assume that EX[0] = 0 and RX ∈ `1 then Y = h ? X exists even if
h ∈ `2 and is a WSSP of autocovariance function

RY = h ? h̃ ? RX ,

where h̃ is defined ∀n ∈ Z, h̃[n] = h[−n]. Moreover, the spectral measure µY of Y is given by
dµY (ω) = |ĥ(eiω)|2dµX(ω) = |ĥ(eiω)|2R̂X(eiω)dω.

Proof: The proof is again based on YN = hN ? X which is a well defined zero mean stationary
process. Now YN − YM = (hN − hM ) ? X is also well defined and satisfies

RYN−YM = (hN − hM ) ? ˜(hN − hM ) ? RX .

If we use the property that ‖g ? g′‖∞ ≤ min(‖g‖2‖g‖2, ‖g‖∞‖g′‖1, one obtains thus

‖RYN−YM ‖∞ ≤ ‖hN − hM‖2‖ ˜(hN − hM )‖2‖RX‖1
≤ ‖RX‖1‖hN − hM‖22.
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Figure 4.6: Process filtering
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As h ∈ L2, hN is a Cauchy sequence in L2 and thus ∀ε > 0 it exists N0 such that N ≥ N0 and
M ≥ N0 implies ‖RYN−YM ‖∞ ≤ ε. As EYN [n] = 0, this implies that YN [n] has a limit Y [n] for
the convergence in L2 and that this limits satisfies EY [n] = 0. Now using the continuity of the
convolution with respect to the `2 norm of the filter on verify that

RYN = hN ? h̃N ? RX → h ? h̃ ? RX = RY .

Finally,

RYN [n] = 1
2π

∫ π

−π
einω

∣∣∣ĥN (eiω)
∣∣∣2 R̂X(eiω)dω

which converge to

1
2π

∫ π

−π
einω

∣∣∣ĥ(eiω)
∣∣∣2 R̂X(eiω)dω

because RX ∈ `1 implies R̂X ∈ L∞ and h ∈ `2 implies that

1
2π

∫ π

−π

∣∣∣ĥN (eiω)
∣∣∣2 dω → 1

2π

∫ π

−π

∣∣∣ĥ(eiω)
∣∣∣2 dω.

Remark: If X has a spectral measure of density R̂(eiω) with respect to the Lebesgue measure
which is continuous, the filtering of X by the filter hε,ω0 whose Fourier transform is given by

ĥω0,ε(eiω) = 1√
ε
1{|ω0−ω|<ε/2}

yields a centered random process Yε,ω0 whose variance tends to R̂(eiω0) when ε tends to 0. The
name of spectral density (or power spectral density) is due to this.

4.2 Wiener filtering

4.2.1 Filter to estimate?

In many applications, instead of observing a WSSP X, one observes a WSSP D linked to X
through its covariance and one wishes to estimate X from D. This model is rather general and
includes for instance the cases of

• denoising: D = X +B where B is a independent WSSP of noise,

• deconvolution: D = g ? X +B where g is a know filter.

All signals being WSSP, it is natural to use a translation invariant method. If one further imposes
that the method is linear, one imposes to estimate X from D by a LTI system and thus by the
convolution of D with a filter h.
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4.2.2 Wiener filtering

Theorem 4.4: Let X be a WSSP of zero mean and D another WSSP of zero mean such that
the covariance function

RXD[n,m] = Cov(X[n], D[m])

depends only on n−m. If it exists h ∈ `1 such that

RXD = h ? RD

then the best linear prediction of X in the space generated by D in term of quadratic error is
given by

X̃ = h ? D

and
E
(
|X̃[n]−X[n]|2

)
= RX [0]−

∑
k∈Z

h[k]RXD[k]

Proof: Let n ∈ Z, the best prediction X̃[n], in term of quadratic error, of X[n] in the space
generated by all D[k] with k ∈ Z is by the hermitian structure of the L2 space, the projection of
X[n] onto this subspace. This projection is entirely characterized by the projection theorem:

• X̃[n] ∈ Vect(D)

• and ∀k ∈ Z,Cov(X[n]− X̃[n], D[k]) = 0.

Moreover

E(|X[n]− X̃[n]|2) = Cov(X[n]− X̃[n], X[n]− X̃[n]) = Cov(X[n], X[n]− X̃[n])
= Cov(X[n], X[n])− Cov(X[n], X̃[n]).

Let h ∈ `1 such that
RXD = h ? RD,

the process Z = h ? D is a WSSP defined ∀n ∈ Z by

Z[n] =
∑
k∈Z

h[k]D[n− k].

By construction, Z[n] ∈ Vect(D). Furthermore, ∀(n, k) ∈ Z,

Cov(Z[n], D[k]) =
∑
l∈Z

h[l]Cov(D[n− l], D[k]) =
∑
l∈Z

h[l]RD[n− l − k]

= (h ? RD)[n− k].

We have thus

Cov(X[n]− Z[n], D[k]) = Cov(X[n], D[k])− Cov(Z[n], D[k])
= RXD[n− k]− (h ? RD)[n− k]
= 0.

This implies that Z[n] is the projection of X[n] on Vect(D) and thus X̃[n] = Z[n] = (h ? D)[n].
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The last item of the theorem comes from

E(|X[n]− X̃[n]|2) = Cov(X[n], X[n])− Cov(X[n], X̃[n])

= Cov(X[n], X[n])− Cov(X[n],
∑
k∈Z

h[k]D[n− k])

= Cov(X[n], X[n])−
∑
k∈Z

h[k]Cov(X[n], D[n− k])

E(|X[n]− X̃[n]|2) = RX [0]−
∑
k∈Z

h[k]RXD[k].

Corollary 4.3: Under the assumptions of the previous theorem, if RX ∈ `1, RD ∈ `1 and
RXD ∈ `1, ĥ satisfies

ĥ(eiω) = R̂XD(eiω)
R̂D(eiω)

and

E
(
|X[n]− X̃[n]|2

)
= 1

2π

∫ π

−π

(
R̂X(eiω)− |R̂XD(eiω)|2

R̂D(eiω)

)
dω.

If R̂D(eiω) in non zero when R̂X(eiω) is non zero

E
(
|X[n]− X̃[n]|2

)
= 1

2π

∫ π

−π

R̂X(eiω)R̂D(eiω)− |R̂XD(eiω)|2

R̂D(eiω)
dω.

Proof: The first item is obtained by computing the Fourier transform of the equality RXD =
h ? RD which involves `1 discrete functions and thus yields almost surely

R̂XD(eiω) = ĥ(eiω)R̂D(eiω).

This implies that one can define ĥ = R̂XD(eiω)/R̂D(eiω) when RD(eiω) 6= 0 and otherwise
arbitrarily because if R̂D(eiω) = 0 then R̂XD(eiω) = 0.

The second item is obtained from

E
(
|X̃[n]−X[n]|2

)
= RX [0]−

∑
k∈Z

h[k]RXD[k]

which becomes using the spectral density of RX et RXD which are both `1, the reconstruction
formula and Parseval equality

= 1
2π

∫ π

−π
R̂X(eiω)dω − 1

2π

∫ π

−π
ĥ(eiω)R̂XD(eiω)dω

= 1
2π

∫ π

−π

(
R̂X(eiω)− |R̂XD(eiω)|2

R̂D(eiω)

)
dω

and thus because R̂D(eiω) does not vanish where R̂X(eiω) is non zero

= 1
2π

∫ π

−π

R̂X(eiω)R̂D(eiω)− |R̂XD(eiω)|2

R̂D(eiω)
dω.



4.2. WIENER FILTERING 81

S +B

100 200 300 400 500 600 700 800 900 1000
−1.5

−1

−0.5

0

0.5

1

1.5

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

R̂X+B

R̂S

Wiener h

−500 0 500

−0.05

0

0.05

0.1

0.15

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

ĥ
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Figure 4.7: Wiener filtering

Examples: Let X and B be two independent zero mean WSSP with known spectral densities.

• Denoising: one observes D = X +B, then

R̂D(eiω) = R̂X(eiω) + R̂B(eiω) and R̂XD(eiω) = R̂X(eiω)

and if ∃h ∈ `1 such that RD = h ? RXD then

ĥ = R̂X(eiω)
R̂(eiω)X + R̂B(eiω)

and E
(
|X[n]− X̃[n]|2

)
= 1

2π

∫ π

−π

R̂B(eiω)
R̂X(eiω) + R̂B(eiω)

R̂X(eiω)dω.

• Deconvolution: on observes D = g ? X +B with g ∈ `1 known, then

R̂D(eiω) = |ĝ(eiω)|2R̂X(eiω) + R̂B(eiω) and R̂XD(eiω) = ĝ(eiω)R̂X(eiω)

and if ∃h ∈ `1 such that RD = h ? RXD then

ĥ = ĝ(eiω)R̂X(eiω)
|ĝ(eiω)|2R̂(eiω)X + R̂B(eiω)

and E
(
|X[n]− X̃[n]|2

)
= 1

2π

∫ π

−π

R̂B(eiω)
|ĝ(eiω)|2R̂X(eiω) + R̂B(eiω)

R̂X(eiω)dω.

In practice, Wiener filtering method consists in computing the inverse Fourier transform of
ĥ = R̂XD(eiω)

R̂D(eiω) and checking that it belongs to `1. If it is the case, the theorem applies otherwise

one has to try to adapt the proof. For instance, if ĥ ∈ L2([−π, π]) then h ∈ `2 and one can still
use this filter if RX , RXD and RD are in `1.
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Figure 4.8: AR example

4.3 ARMA process

4.3.1 AR process and canonical decomposition

The AR processes are simple processes corresponding to recursive sequence in the deterministic
case. They are frequently used in random modeling because they are both simple and versatile.

Definition: A WSSP X is autoregessive (AR) if it exists a non zero polynomial P and a
normalized white noise B such that

p ? X = B

where p is the filter associated to P (p̂(eiω) = P (e−iω)).

Provided P0 = P (0) 6= 0, we have thus a recursive definition of X[n]

p0X[n] = −
K∑
k=1

pkX[n− k] +B[n]

P cannot be arbitrary.

Proposition 4.4: P has no roots of modulus 1.

Proof: By the filtering theorem, |p̂(eiω)|2dµX(ω) = dµB(ω) i.e. |P (e−iw)|dµX(ω) = dω.
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Mean: In particular, as Ep ? X = P (1)EX = E(B) = 0, this implies that EX[0] = 0.

Inverse filter: If p has an inverse p−1 ∈ `1 then X = p−1 ? B .
Proposition 4.5: If P is a polynomial without roots of modulus 1 such that P (0) 6= 0 then its
associated filter p admits a stable inverse p−1. Furthermore, this filter is causal if and only if the
roots of P are of modulus strictly greater than 1. Lastly, p1[0] = P (0)−1.
Proof: The proof is similar to the one of the recursive filter inversion and is based on the partial
fraction decomposition of 1/P (X).

Stable and causal inverse: as it was the case for recursive filtering, one can always assume
this is the case by modifying P .
Proposition 4.6: Let P be a polynomial without roots of modulus 1 and such that P (0) 6= 0,
it exists a unique polynomial P0 and a unique positive real σ0 such that

• ∀z ∈ C|z| = 1 =⇒ σ0|P (z)| = |P0(z)|

• every root of P0 has a modulus strictly greater than 1

• P0(0) = 1

Canonical couple: The couple (P0, σ0) associated to P is called the canonical couple associ-
ated to P .
Proof: Existence:

|P (z)| =

∣∣∣∣∣c
N∏
i=1

(z − ξi)

∣∣∣∣∣
where the ξi are the roots of P

= |c|
N∏
i=1
|z − ξi|.

One verify easily that for all z ∈ C of modulus 1 and all ξ ∈ C,

|z − ξ| = |z||z − ξ| = |1− ξz| = |ξz − 1| = |ξ|
∣∣∣∣z − 1

ξ

∣∣∣∣ .
One can thus replace every occurrence of |z−ξ| by |ξi|

∣∣∣z − 1
ξi

∣∣∣ for all roots ξi of modulus strictly
smaller than 1. Up to a reordering of the roots, this require to modify only the N ′ first roots, so
that

|P (z)| = |c|
N ′∏
i=1
|ξi|
∣∣∣∣z − 1

ξi

∣∣∣∣ ∏
i=N ′+1

N |z − ξi|

=

|c| N ′∏
i=1
|ξi|

∣∣∣∣∣∣
N ′∏
i=1

(
z − 1

ξi

) N∏
i=N ′+1

(z − ξi)

∣∣∣∣∣∣
= 1
σ0
|P0(z)|
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Uniqueness: Let A and B two polynomials such that |A(z)| = c|B(z)| on the unit circle, A(0) =
B(0) = 1 and such that their roots have a modulus > 1.

Let ξk be the roots of A andηk the ones of B: for z of modulus 1,

N∏
i=1

(z − ξi)(z − ξi) = c2
M∏
i=1

(z − ηi)(z − ηi)

Multiplying on the left and on the right by zN+M and using zz = 1 yields

zM
N∏
i=1

(z − ξi)(1− ξiz) = c2zN
M∏
i=1

(z − ηi)(1− ηiz).

Those two polynomials are equal on the unit circle and thus equals. The set of their roots are
thus identical and

{ξk,
1
ξk
, 1 ≤ k ≤ N} = {ηk,

1
ηk
, 1 ≤ k ≤M}

This implies that N = M and the assumptions |ξk| > 1 and ηk| > 1 ensure that

{ξk, 1 ≤ k ≤ N} = {ηk, 1 ≤ k ≤M}.

The two polynomials A and B are thus proportional and as A(0) = B(0) are identical.

Theorem 4.5: Let X be an AR WSSP, it exists a unique couple (P0, σ0) such that

• the filter p0 associated to P0 satisfiesp0 ? X = σ0B0 where B0 is a normalized white noise.

• P0(0) = 1 and all the roots of P0 have a modulus > 1.

Such a couple is called the canonical decomposition of the AR WSSP X.

Corollary 4.4: if X is an AR WSSP, it exist a unique stable causal filter p−1
0 , a unique standard

deviation σ0 and a normalize white noise B0 such that

X = σ0p
−1
0 ? B0

Proof: X is an AR WSSP and thus it exists a polynomial P such that the filter p associated
to X satisfies p ? X = B with B a normalized white noise. Let (P0, σ0) be the canonical couple
associated to P . The process p0 ? X is a WSSP process of power spectral density

|p̂0(eiω)|2dµX(ω) = σ2|p̂(eiω)|2dµX(ω) = σ2
0dω.

and thus 1
σ0
p0 ? X is a normalized white noise.

Let (P1, σ1) be a couple satisfying the same constraints, we have thus

1
σ2 |p̂0(eiω)|2dµX(ω) = 1

σ2
1
|p̂1(eiω)|2dµX(ω)

which implies

|P0(e−iω)|2dµX(ω) = σ2
0
σ2

1
|P1(e−iω)|2dµX(ω).

This implies thus that P0 = P1 and σ0 = σ1.
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4.3.2 Prediction and coefficient estimation

Prediction: How to predict X[n + 1] from the already observed values of X: X[n − k] for
k ∈ N?

Projection: If one restricts ourself to linear prediction, the very same analysis than the one
conducted to study Wiener filtering shows that the best prediction X̃[n+ 1] is the projection of
X[n+ 1] onto the space Vectn(X) = Vect(X[n− k], k ∈ N) that we denote PVectn(X)(X[n+ 1]).

Theorem 4.6: Let X be AR WSSP of canonical decomposition p0 ? X = σ0B0 then

PVectn(X)(X[n+ 1]) = −
∑
k>0

p0[k + 1]X[n− k]

and
E
(∣∣X[n+ 1]− PVectn(X)(X[n+ 1])

∣∣2) = σ2
0 .

The proof relies heavily on the following proposition:

Proposition 4.7: If X is an AR WSSP with canonical decomposition p0 ? X = σ0B0 then

• the filter p−1
0 is a stable causal filter such that

– X = σ0p
−1
0 ? B0 where B0 is a normalized white noise

– p−1
0 [0] = 1.

• Vectn(X) = Vectn(B0).

Proof: The first part is a restatement of a previous proposition.

The second part is obtained by noticing that the canonical decomposition yields

B0[n] = 1
σ0

(p0 ? X)[n] = 1
σ0

∑
k≥0

p0n[k]X[n− k]

because p0 is a stable causal filter. This implies that Vectn(B0) ⊂ Vectn(X). Along the same
line,

X[n] = σ0(p−1
0 ? B0)[n] = σ0

∑
k≥0

p−1
0 [k]B0[n− k]

because p−1
0 is also a stable causal filter. This implies that Vectn(X) ⊂ Vectn(B0).

Proof (of the theorem): As Vectn(X) = Vectn(B0) and B0 is a white noise B0[n + 1] is
uncorelated with Vectn(X). This can be rewritten as

PVectn(X)(B0[n+ 1]) = 0.

The canonical decomposition of X at n+ 1 yields

σ0B0[n+ 1] = X[n+ 1] +
∑
k>0

p0[k + 1]X[n− k]
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and thus if we project this equality

σ0PVectn(X)(B0[n+ 1]) = PVectn(X)(X[n+ 1]) +
∑
k≥0

p0[k + 1]PVectn(X)(X[n− k])

which yields

0 = PVectn(X)(X[n+ 1]) +
∑
k>0

p0[k + 1]X[n− k]

which is the first item.

The second one is immediate once we notice that X[n+ 1]− PVectn(X)(X[n− k]) = σ0B0.

Corollary 4.5: The best linear prediction of X[n+ k] fromy Vectn(X), PVectn(X)(X[n+ k]) is
obtained by applying the previous formula recursively

PVectn(X)(X[n+ k]) = PVectn+k−1(X) · PVectn(X)(X[n+ k])

and

E
(∣∣X[n+ k]− PVectn(X)(X[n+ k])

∣∣2) = σ2
0

k−1∑
l=0
|p−1

0 [l]|2.

Proof: The first item is immediate as Vectn′(X) ⊂ Vectn′+1(X). For the second one, starting from
the decomposition

X[n+ l] = σ0
∑
l≥0

p−1
0 [l]B0[n+ k − l]

and projecting it on Vectn(X) = Vectn(B0) yields

PVectn(X)(X[n+ l]) = σ0
∑
l≥k

p−1
0 [l]B0[n+ k − l]

which implies

X[n+ l]− PVectn(X)(X[n+ l]) = σ0

k−1∑
l=0

p−1
0 [l]B0[n+ k − l]

which yields the result because B0 is normalized white noise.

Estimation: In practice, the parameters of the AR WSSP are often not known and need to
be estimated.

Using the representation X = σ0p
−1
0 ? B0 one can show that both the covariance estimates

∀0 ≤ k ≤ N − 1

R̃X [k] = 1
N

N−1−k∑
l=0

(X[n]− µ̃)(X[n− k]− µ̃

are consistant for an AR process.

Now as

p0 ? X[N ] = σB0[N ]
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we have for all k′

K∑
k=0

p0[k]Cov(X[N − k], X[N − k′]) = σCov(B0[N ], X[N − k′])

and thus
K∑
k=0

p0[k]RX [k′ − k] = σ2δk′=0

Pluging our estimate of RX for 0 ≤ k′ ≤ K allows to estimate p0 and σ2 from this set of linear
equation, called the Yule-Walker system.

An efficient implementation of the resolution of this system known as the Levinson-Durbin is
often used in practice instead of a brute force inversion.

Yule-Walker as a least square:

Theorem 4.7: The minimizer in p0 of

N−1∑
n=K

∣∣∣∣∣X[n] +
K∑
k=1

p0[k]X[n− k]

∣∣∣∣∣
2

is the solution of the Yule-Walker system.

Proof: A necessary condition to minimize the convex function

N−1∑
n=K

∣∣∣∣∣X[n] +
K∑
k=1

p0[k]X[n− k]

∣∣∣∣∣
2

,

is that the gradient at that point is 0 and thus that for all 1 ≤ k′ ≤ K

2
N−1∑
n=K

∑
k = 0Kp0[k]X[n− k]X[n− k′] = 0

K∑
k=0

p0[k]
N+1∑
n=K

X[n− k]X[n− k′] = 0

K∑
k=0

p0[k]NR̃X [k′ − k] = 0.

4.3.3 Generalization to ARMA process

Definition: A WSSP X is an ARMA (Auto Regressive Moving Average) if there exist a non
zero polynomial P , a non zero polynomial Q without roots of modulus 1 and a normalized white
noise B such that

p ? X = q ? B

where p (respectively q) is the filter associated to P (respectively Q).
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Figure 4.9: AR parameter estimation

Theorem 4.8: Let X be an ARMA WSSP, it exist a unique triplet (P0, Q0, σ0) such that

• p0 ? X = σ0q0 ? B0 where B0 is a normalized white noise.

• P0(0) = Q0(0) = 1 and the roots of P0 and Q0 have a modulus > 1.

• P0 and Q0 no common roots.

• p0 admit a stable causal inverse p−1
0 verifying p−1

0 [0] = 1 such that X = σ0p
−1
0 ? q0 ? B0.

• q0 admit a stable causal inverse q−1
0 verifying q−1

0 [0] = 1 such that σB0 = q−1
0 ? p0 ? X.

Theorem 4.9: If X is a ARMA WSSP with canonical decomposition p0 ? X = σ0q0 ? B0 then
Vectn(X) = Vectn(B0),

PVectn(X)(X[n+ 1]) = −
∑
k≥0

(q−1
0 ? p0)[k + 1]X[n− k]

and
E
(∣∣X[n+ 1]− PVectn(X)(X[n+ 1])

∣∣2) = σ2
0

Corollary 4.6: The best linear prediction of X[n+ k] from Vectn(X), is obtained by applying
the previous formula recursively

PVectn(X)(X[n+ k]) = PVectn+k−1(X) · PVectn(X)(X[n+ k])
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and

E
(∣∣X[n+ k]− PVectn(X)(X[n+ k])

∣∣2) = σ2
0

k−1∑
l=0
|(p−1

0 ? q0)[l]|2.

Coefficient estimation: For ARMA process, using the representation X = σ0p
−1
0 ? q0 ? B0

one can show that all the covariance estimates ∀0 ≤ k ≤ N − 1

R̃X [k] = 1
N

N−1−k∑
l=0

(X[n]− µ̃)(X[n+ k]− µ̃

are consistent. This is the basis of most methods of estimation of the parameters.
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Chapter 5

Voice modeling

In this chapter, we study the voice production mechanism. We start by a physiological description
that leads to a physical model. We show how to compute solutions from this model using Fourier
technique and how this modeling can be used to synthesize efficiently voices.

5.1 Anatomy and physics

5.1.1 Anatomical description

The voice production mechanism can be divided in three phases:

• Respiration: Air goes from the lungs to the trachea

• Phonation: In the larynx, with the help of the vocals cords, an excitation signal is
produced.

• Articulation: This signal is deformed by the vocal tract to produce an articulated sound.

In the phonation step, the vocal cords can either vibrate to produce a quasi periodic signal
(voiced sound) or let the air go through to produce a turbulent signal that can be modeled by a
white noise (unvoiced sound). The frequency of vibration of the vocal cords is called the pitch
and gives the fundamental frequency of the sound. This pitch is typically between 100 Hz and
300 Hz, but can be as high as 3000 Hz for a soprano.

In the articulation phase, the signal produced by the vocal folds in filtered by the vocal
tract to produce articulated sound. Playing with the shape of the mouth, pharynx and nasal
cavities, one obtains different sounds.

5.1.2 Physical modeling

Physics of tube: we focus on the effect of the vocal tract which one models by a simple 1D
tube. The physical behavior will be described by four quantities:

91
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X-ray view scheme

Figure 5.1: Voice anatomy

Figure 5.2: Vocal cords

Figure 5.3: Vocal tract for different vowels
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Phoneme

Consonants

Whisper

H

Affricates

Unvoiced

CH

Voiced

JH

Fricatives

Unvoiced

F
TH
S
SH

Voiced

V
DH
Z
ZH

Stops

Unvoiced

P
T
K

Voiced

B
D
G

Nasals

M
N
NX

Semivowels

W
L
R
Y

Diphtongs

AY
OY
AW
EY

Vowels

Back

UW
UH
OW

Mid

AA
ER

AH/AX
AO

Front

IY
IH
EH
AE

Figure 5.4: Phoneme classification
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Vocal folds

Larynx Pharynx Mouth
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Velum
Nostrils

Lips

Figure 5.5: Speech production system

x

A(x, t)

v(x, t)

Figure 5.6: Tube model
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x

Figure 5.7: Mass conservation

• the tube area A(x, t)

• the air velocity: v(x, t)

• the Pressure: P (x, t)

• and the air density: ρ(x, t).

Pressure and density: in an adiabatic gas, one has PV γ = cst or equivalently Pρ−γ = cst′.
We will assume here the more general relationship P = f(ρ) where f increases with ρ. Physical
consideration shows that the air density can not vary drastically from the ambient air density
so that ρ = ρ0 + ρe with ρe � ρ0 (Ambient air density). We can thus use a Taylor expansion to
obtain (at least approximately) that

P = f(ρ0) + κ2ρe

with κ2 = ∂f
∂ρ (ρ0). In particular

dP = κ2dρ

Mass conservation: one of the most fundamental principle of physics is mass conservation.
The mass of an infinitesimal slide at (x, t) is given by

ρ(x, t)A(x, t)dx

while the mass of the same slide at time t+ dt is given by

ρ(x+ v(x, t)dt, t+ dt)A(x+ v(x, t)dt, t+ dt)
× [x+ dx+ v(x+ dx, t)dt− (x+ v(x, t)dt)]

So gathering ρ and A, we obtain

ρAdx =
(
ρA+ ∂ρA

∂x
vdt+ ∂ρA

∂t
dt
)(

dx+ ∂v

∂x
dxdt

)
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x

Figure 5.8: Momentum

which leads to the equation
∂ρA

∂x
v + ∂ρA

∂t
+ ρA

∂v

∂x
= 0

Momentum: The momentum conservation principle says that F = m∂v
∂t . Here, the only force

is the pressure force:

P (x, t)A(x, t)− P (x+ dx, t)A(x+ dx, t) = −∂PA
∂x

dx

while the momentum derivative is given by

m
∂v

∂t
= ρAdx∂v

∂t
.

This leads to
∂PA

∂x
+ ρA

∂v

∂t
= 0

Physical equations: We have thus{
ρ = ρ0 + ρe and P = f(ρ0) + κ2ρe
∂ρA
∂x v + ∂ρA

∂t + ρA ∂v
∂x = 0 and ∂PA

∂x + ρA∂v
∂t = 0

A classical approximation consists in neglecting some spatial deformation if front of temporal
ones: ∂ρA

∂x v �
∂ρA
∂t . {

ρ = ρ0 + ρe and P = f(ρ0) + κ2ρe
∂ρA
∂t + ρA ∂v

∂x = 0 and ∂PA
∂x + ρA∂v

∂t = 0

Rewriting this system in ρe yields{
ρ0

∂A
∂t + ∂ρeA

∂t + ρ0A
∂v
∂x + ρeA

∂v
∂x = 0

f(ρ0)∂A∂x + κ2 ∂ρeA
∂x + ρ0A

∂v
∂x + ρeA

∂v
∂t = 0
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x

A

v(x, t)

Figure 5.9: Cylinder model

x

A

v+v−

Figure 5.10: Two waves

Now neglecting ρe in front of ρ0 yields{
ρ0

∂A
∂t + ∂ρeA

∂t + ρ0A
∂v
∂x = 0

f(ρ0)∂A∂x + κ2 ∂ρeA
∂x + ρ0A

∂v
∂t = 0

which is a complex model for which no explicit solution exists.

Cylinder model: in order to be able to compute explicit solution, we will assume that A is
constant along the tube spatially and temporally. In that case, the equation system becomes{

A∂ρe
∂t + ρ0A

∂v
∂x = 0

κ2A∂ρe
∂x + ρ0A

∂v
∂t = 0

which implies the wave equation:

∂2v

∂x2 −
1
κ2
∂2v

∂t2
= 0.

Note that the application which assign a solution to an initial condition is Linear (time) Trans-
lation Invariant...

Resolution: One computes first the Fourier transform of the system along the time:

∂2v̂

∂x2 (x, ω) + 1
κ2ω

2v̂(x, ω) = 0

It leads to a second order linear differential equation of solution:

v̂(x, ω) = v̂+(ω)e−iωx/κ − v̂−(ω)e+iωx/κ

v(x, t) =
∫
R
v̂+(ω)eiω(t−x/κ)dω −

∫
R
v̂−(ω)eiω(t+x/κ)dω

= v+(t− x/κ)− v−(t+ x/κ)
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x

v+
0

v−
0

v+
l

v−
l

Figure 5.11: Boundary conditions

The solution can be obtained as the sum of two waves, a forward wave v+ and a backward wave
v−, both going at speed κ.

For the air density (and the pressure), we use

v = v+(t− x/κ)− v−(t+ x/κ)
∂ρe
∂t

+ ρ0
∂v

∂x
= 0

which yields

∂ρe
∂t

(x, t) = ρ0

κ

(
∂v+

∂t
(t− x/κ) + ∂v−

∂t
(t+ x/κ)

)
ρe(x, t) = ρ0

κ

(
v+(t− x/κ) + v−(t+ x/κ)

)
The pressure is thus given by

P (x, t)− f(ρ0) = ρ0
(
v+(t− x/κ) + v−(t+ x/κ)

)
Continuous physical quantities: before we consider boundary condition, we may notice that
two physical quantities should remain continuous in the system:

• the air flow:

ρ0Av(x, t) = ρ0Av
+(t− x/κ)− ρ0Av

−(t+ x/κ)

• the pressure:

P (x, t)− f(ρ0) = ρ0
(
v+(t− x/κ) + v−(t+ x/κ)

)

Boundary conditions: We focus here on two very simple boundary conditions: open end and
close end. In an open end, the pressure remains constant, equal to the ambient pressure so that

v+(t− x/κ) = −v−(t+ x/κ)

v̂+(ω)eiωx/κ = −v̂−(ω)e−iωx/κ

In a closed end, no air flows across the boundary so that

v+(t− x/κ) = v−(t+ x/κ)

v̂+(ω)eiωx/κ = v̂−(ω)e−iωx/κ
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Figure 5.12: Tube as a system

More general boundary conditions can be obtained by assuming the existence of a complex
impedance Zx such that

v̂+(ω)eiωx/κ = Zx(ω)v̂−(ω)e−iωx/κ

.

5.2 Modeling and Estimating

5.2.1 System modeling

Tube as a system: Our physical modeling gives a relationship between v+
x (t) = v+(t− x/κ)

and v−x (t) = v+(t+ x/κ) for different position. In term of (v+
0 , v

−
0 )t and (v+

l , v
−
l )t, one has(

v+
l (t)
v−l (t)

)
=
(
v+(t− l/κ)
v−(t+ l/κ)

)
=
(
v+

0 (t− l/κ)
v−0 (t+ l/κ)

)
or equivalently in the Fourier domain(

v̂+
l (ω)
v̂−l (ω)

)
=
(
eiωl/κ 0

0 e−iωl/κ

)(
v̂+

0 (ω)
v̂−0 (ω)

)
We would rather look at this system the other way:(

v̂+
0 (ω)
v̂−0 (ω)

)
=
(
e−iωl/κ 0

0 eiωl/κ

)(
v̂+
l (ω)
v̂−l (ω)

)
If we want to obtain a system in term of input and output velocity, one should specify some
boundary conditions.

Simple open end model: We assume that the mouth can be modeled by an open end:
v+(t− l/κ) = −v−(t+ l/κ) = v(l, t)/2 or equivalently if the Fourier domain v̂+

l (ω) = −v̂−l (ω) =
1
2 v̂l(ω). A forced velocity v0 at 0 is thus related to vl by:

v̂0 =
(
1 −1

)(û+
0

û−0

)
=
(
1 −1

)(e−iωl/κ 0
0 eiωl/κ

)(
v̂+
l (ω)
v̂−l (ω)

)

=
(
1 −1

)(e−iωl/κ 0
0 eiωl/κ

)(
1/2
−1/2

)
v̂l

= 1 + e2iωl/κ

2eiωl/κ
v̂l

v̂0 = cos(ωl/κ)v̂l
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This corresponds to a transfer function:

v̂l
v̂0

= 2eiωl/κ

1 + e2iωl/κ = 1
cos(ωl/κ)

in which resonance occurs for ωk = πκ/l(1/2 + k)!

Attenuation: In practice, attenuation of the waves by a factor 0 ≤ α < 1 when traveling from
one side to the other so that the transfer matrix becomes(

v̂+
0 (ω)
v̂−0 (ω)

)
=
( 1
αe
−iωl/κ 0
0 αeiωl/κ

)(
v̂+
l (ω)
v̂−l (ω)

)

Thus

v̂0 =
(
1 −1

)( 1
αe
−iωl/κ 0
0 αeiωl/κ

)(
1/2
−1/2

)
v̂l

v̂0 =
−α+ 1

αe
i2ωl/κ

2e−iωl/κ
v̂lv̂0 = [(α+ 1/α) cos(ωl/κ) + i(α− 1/α) sin(ωl/κ)] v̂l

so that the transfer function is

v̂l
v̂0

2e−iωl/κ

−α+ 1
αe
−i2ωl/κ

= 2
(α+ 1/α) cos(ωl/κ) + i(α− 1/α) sin(ωl/κ)∣∣∣∣ v̂lv̂0

∣∣∣∣2 = 1
1/α−α

4 + cos2(ωl/κ)
≤ 4

1/α− α < +∞ if α < 1.

Note that the transfer function can be written as

e−iωl/κ

P (e−i2ωl/κ)

with P a polynomial of degree 1. This is thus compatible with a discretization with time step
l/(Nκ) with N ∈ N. Indeed, assume v̂0 is compactly supported in (−πNκ/l, πNκ/l) then so is
v̂l. This implies that both v0 and vl can be recovered from their sampled version

v0,l/(Nκ) = l/(Nκ)
∑
n∈Z

v0(nl/(Nκ))δnl/(Nκ)

vl,l/(Nκ) = l/(Nκ)
∑
n∈Z

vl(nl/(Nκ))δnl/(Nκ)

which are related by

Fvl,l/(Nκ) = e−iωKl/κ

P (e−iω2Nl/(Nκ))
Fv0,l/(Nκ).
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Figure 5.13: Sequences of tubes
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Figure 5.14: Interface

Sequence of tubes: we will model our vocal tract by a sequence of tubes of constant width. We
denote by Ak the surface of the kth tube lying between Lk−1 =

∑
k′≤(k−1) lk′ and Lk =

∑
k′≤k lk′ .

Its velocity is parameterized by : for x ∈ (Lk−1, Lk)

v(x, t) = vk(x− Lk−1, t) = v+
k

(
t− x− Lk−1

κ

)
− v−k

(
t+ x− Lk−1

κ

)
and its pressure by

P (x, t)− f(ρ0) = ρ0

(
v+
k

(
t− x− Lk−1

κ

)
+ v−

(
t+ x− Lk−1

κ

))
Inside the kth tube, (

v̂+
k,0(ω)
v̂−k,0(ω)

)
= eiωlk/κ

( 1
αk
e−iω2lk/κ 0

0 αk

)(
v̂+
k,lk

(ω)
v̂−k,lk(ω)

)

Looking at the continuity of the air flow and of the pressure, we deduce

Akρ0

(
v̂+
k,lk
− v̂−k,lk

)
= Ak+1ρ0

(
v̂+
k+1,0 − v̂

−
k+1,0

)
ρ0

(
v̂+
k,lk

+ v̂−k,lk

)
= ρ0

(
v̂+
k+1,0 + v̂−k+1,0

)
Solving this system in v+

k,lk
and v−k,lk yields

v̂+
k,lk

=
(
Ak +Ak+1

2Ak

)
v̂+
k+1,0 + Ak −Ak+1

2Ak
v̂−k+1,0

v̂−k,lk = Ak −Ak+1

2Ak
v̂+
k+1,0 +

(
Ak +Ak+1

2Ak

)
v̂−k+1,0
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x

v1,0 vK,lK

Figure 5.15: Sequence of tubes

Denoting −1 ≤ rk = Ak−Ak+1
Ak+Ak+1

≤ 1 the reflection coefficient, one has thus(
v̂+
k,lk

v̂−k,lk

)
= 1

1 + rk

(
1 rk
rk 1

)(
v̂+
k+1,0

v̂−k+1,0

)
One has thus (

v̂+
k,lk

v̂−k,lk

)
= 1

1 + rk

(
1 rk
rk 1

)(
v̂+
k+1,0

v̂−k+1,0

)
(
v̂+
k,0

v̂−k,0

)
= eiωlk/κ

1 + rk

( 1
αk
e−iω2lk/κ 0

0 αk

)(
1 rk
rk 1

)(
v̂+
k+1,0

v̂−k+1,0

)
(
v̂+
k,0

v̂−k,0

)
= eiωlk/κ

1 + rk

( 1
αk
e−iω2lk/κ rk

αk
e−iω2lk/κ

αkrk αk

)(
v̂+
k+1,0

v̂−k+1,0

)
Cascading this structure yields:(

v̂+
1,0

v̂−1,0

)
= eiωLK−1/κ∏K−1

k′=1(1 + rk′)

K−1∏
k′=1

( 1
αk′

eiω2lk′/κ rk′
αk′

eiω2lk′/κ

αk′rk′ αk′

)(
v̂+
K−1,0

v̂−K−1,0

)
As (

v̂+
K,0

v̂−K,0

)
= eiωlK/κ

( 1
αK
e−iω2lK/κ 0

0 αK

)(
v̂+
K,lK

v̂−K,lK

)
One has (

v̂+
1,0

v̂−1,0

)
= eiωLK/κ∏K−1

k′=1(1 + rk′)

K−1∏
k′=1

(
1
αk′

e−iω2lk′/κ rk′
αk′

αk′rk′e
−iω2lk′/κ αk′

)(
v̂+
K,lK

v̂−K,lK

)
where we have set rK = 0. Finally using the open end boundary condition at the end

v̂1,0

v̂K,lK
=
(
1 −1

) eiωLK/κ∏K
k′=1(1 + rk′)

K∏
k′=1

( 1
αk′

e−iω2lk′/κ rk′
αk′

e−iω2lk′/κ

αk′rk′ αk′

)(
1/2
−1/2

)

The resulting transfer function is thus

e−iωLK/κ/
∏K
k′=1(1 + rk′)(

1 1
)∏K

k′=1

( 1
αk′

e−iω2lk′/κ rk′
αk′

e−iω2lk′/κ

αk′rk′ αk′

)(
1/2
−1/2

)
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Figure 5.16: Constant length tubes

Extending to complex impedance at the end:

e−iωLK/κ/
∏K
k′=1(1 + rk′)(

1 1
)∏K

k′=1

( 1
αk′

e−iω2lk′/κ rk′
αk′

e−iω2lk′/κ

αk′rk′ αk′

)(
ZK,lK (ω)/(ZK,lK (ω)− 1)

1/(ZK,lK (ω)− 1)

)

Constant length tubes: A very interesting case is the one of constant length tubes lk = l:

e−iωKl/κ/
∏K
k′=1(1 + rk′)(

1 −1
)∏K

k′=1

( 1
αk′

e−iω2l/κ rk′
αk′

e−iω2l/κ

αk′rk′ αk′

)(
1/2
−1/2

)
= e−iωKl/κ

PK(e−iωZl/κ)

where PK is a polynomial of degree at most K.

Time discretization: By construction

e−iωKl/κ

PK(e−iω2l/κ)

is a 2πκ/l periodic function which is thus compatible with a discrete signal with sample l/(Nκ)
with N ∈ N. Such a compatibility is ensured in the complex impedance case if ZK,l(ω) =
WK,l(e−iωl/(Nκ)) (at least approximately for |ω| ≤ πNκ/l). Assume v̂1,0 is compactly supported
in (−πNκ/l, πNκ/l) then so is v̂K,l. Both v1,0 and vK,l can be recovered from their sampled
version

v1,0,l/(Nκ) = l/(Nκ)
∑
n∈Z

v1,0(nl/(Nκ))δnl/(Nκ)

vK,l,l/(Nκ) = l/(Nκ)
∑
n∈Z

vK,l(nl/(Nκ))δnl/(Nκ)

which are related by

FvK,lK ,l/(Nκ) = e−iωKl/κ

PK(e−iω2Nl/(Nκ))
Fv1,0,l/(Nκ)



5.2. MODELING AND ESTIMATING 103

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5
0

0.005

0.01

0.015

0.02

0.025

Figure 5.17: Typical AR filter with poles and squared modulus

If we denote v1,0[n] = v1,0(nl/(Nκ)) and vK,l[n] = v1,0(nl/(Nκ)), one deduces

v̂K,l(e−iω)
v̂1,0(e−iω) = e−iωKN

PK(e−iω2N )

which, up to a fixed delay of KN , corresponds to an AR filter of size 2KN with value separated
by 2N . Such a filter can be implemented by an AR filter with K parameters!

Finally, in the case of complex impedance Z for the boundary condition:

v̂K,l(e−iω)
v̂1,0(e−iω) = e−iωKNZK,l(eiω

P 1
K(e−iω2N ) + P 2

K(e−iω2N )ZK,l(eiω)

which is an AR filter up to a know FIR if ZK,l is a polynomial in eiω (or better in eiω2N )!

5.2.2 Voiced and unvoiced case modeling and estimation

Unvoiced case modeling: The vocals folds are not oscillating: the excitation v1,0 is a random
noise whose power spectrum is supported in (−πNκ/l, πNκ/l). Its discretization v1,0 with step
l/(Nκ) is thus a discrete random noise (a zero mean WSSP) whose power spectrum density
R̂v1,0(e−iω)) is supported in (−π, π). By construction, vK,l is thus a WSSP whose power spectrum
density is given by

R̂vK,l(e−iω)) = 1
|PK(e−i2Nω)|2 R̂v1,0(e−iω))

If we do a further approximation, the one that v1,0 is a noise whose spectrum is the inverse of a
polynomial

R̂v1,0(e−iω)) = 1
|Q(e−i2Nω)|2 ⇒ R̂vK,l(e−iω)) = 1

|PK(e−i2Nω)Q(e−i2Nω)|2

then vK,l is an AR process!

Unvoiced case synthesis: As it is sufficient to reproduce a random signal having the same
frequential behavior, it suffices to generate a white noise of the right variance and to apply the
AR filter to this noise.

Unvoiced case estimation: We are exactly in the setting of the estimation of the parameters
of an AR so that the Least Square method of the previous chapter can be used.
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Figure 5.18: Windowing principle

Voiced case modeling: Now the vocal folds are oscillating: the excitation v1,0 is a periodic
signal of period Pv � l/(Nκ) and band-limited in (−πNκ/l, πNκ/l) If we assume that Pv =
Pl/(Nκ) with P ∈ N, this periodicity corresponds to a periodicity of P � 1 samples compatible
with the time discretization of l/(Nκ) The Fourier transform of v1,0 is thus discrete of step 2π/P .
vK,l has thus the same properties and its Fourier transform satisfies

v̂K,l(e−in2π/P ) = e−inKN2π/P

PK(e−in4Nπ/P )
v̂1,0(e−in2π/P )

Again if we assume that v̂1,0(e−in2π/P ) is the inverse of a polynomial:

v̂1,0(e−in2π/P ) = 1
Q(e−in4π/P )

⇒ v̂K,l(e−in2π/P ) = e−inKN2π/P

PK(e−in4Nπ/P )Q(e−in4Nπ/P )
vK,L is, up to a delay, approximately the convolution of an AR filter with a Dirac train of period
P !

Voiced case synthesis: It suffices to generate a Dirac train of period P and correct amplitude
and to apply the AR filter to this train.

Voiced case estimation: Both the period and the AR parameters should be estimated. Sev-
eral methods have been proposed to estimate the period, the easiest one is based on the compu-
tation of

∆(p) = 1
M

∑
n

|vK,l[n]− vK,l[n− p]|.

If the minimum is small and attained at P , the sound is voiced with a period P otherwise it is
unvoiced... AR filter parameter estimation by the same least square method used for random
process! The theoretical justification is complex. Heuristically, in

P [1]vK,l[n] = −
∑

k = 1LP [k]vK,l[n− 1] + summδmP

the part −
∑
k = 1LP [k]vK,l[n− 1] is much bigger than 1 due to the resonance phenomena and

thus the least square fit is only mildly perturbed by neglecting this part!

Windowing: the stationarity assumption does not hold in practice but it holds approximately
locally. Using the same windowing technique than the one used if the Short Time Fourier
Transform, one can split the signal in overlapping piece in which the signal is multiplied by a
suitable window. The LPC model is used on each piece, called a frame, and the reconstruction
is obtained by combining those reconstruction using the same window.
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5.3 Linear Predictive Coding

This model can be used to compress a speech signal. Instead of sending the values of v, one can
send the parameters of the model (the AR coefficients, the power and the pitch) and use those
parameters to synthesize an approximated version of the speech. This compression algorithm
principle has been introduced in the late 60’s and popularized in the 70’s. It is still used for
speech coding for instance in VoIP products.

The most classical version is called LPC10 and used a 10 order model with windows of size 180.
It transmits 2400 b/s for a signal sampled at 8 kHz and produces a reconstruction of good quality.
An important issue is the quantization of the AR parameters. For stability reason, it turns out
that it is much better to quantize not the coefficients themselves but a reparameterization based
on the reflectivity coefficients seen in the tube model.

The residual, the error between the reconstruction and the original signal, can be further reduced
by selecting the excitation signal in a dictionary instead of either a Dirac train or a purely random
noise. This technique called CELP (Code Excited Linear Predicting) is the one used in speech
codec today. If one wants to compress other types of sound, the model is not accurate anymore
and one has to resort to the information theory technique presented in the next chapter.
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Part III

Image compression: Information
Theory and Transform Coding
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In this last part, we will study how to compress images. We will consider two forms of com-
pression: the lossless coding in which no information loss occurs and the lossy ones in which one
trades more compression with a loss of quality.
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Chapter 6

Lossless coding

6.1 Coding

Symbols and words: More generally, we consider objects that can be described by words, i.e.
finite sequences of symbols. We let A = {ak}1≤k≤K be a dictionary of K symbols and denote w
a word of size |w|, i.e. a finite sequence w1w2 . . . w|w| with wi ∈ A.

Set of words: Objects of interest belong to subsets W of |W| words:

• Words of 1 symbol: W = A with |W| = |A|.

• Words of n symbols: W = An with |W| = |A|n.

• Words of less than n symbols: W = ∪nk=1An = A∗n with |W| = |A|n+1−|A|
|A|−1 .

• Words of arbitrary size: W = ∪+∞
k=1An = A∗ with |W| = +∞

Code: a code C assign a finite length binary sequence to any word of the subset W:

W → {0, 1}∗

w 7→ C(w)

Lossless coding means perfect reconstruction, i.e. that C should be injective:

C(w1) = C(w2) =⇒ w1 = w2.

Such a code is said to be non-singular.

Fundamental list example: the simplest code is obtained by an enumeration principle

• Chose l such that 2l ≥ |W|.

• List all words of W in an arbitrary order.

111
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• List all binary words of {0, 1}l in an arbitrary order.

• Assign to the ith word in the list of W the ith in the list of {0, 1}l

Proposition 6.1: This code is non singular.

Code length: For any code C, the length of the codeword C(w) is denoted by l(w). For
instance, for the fundamental list example

• ∀w ∈ W, l(w) = l.

• Smallest size obtained for l, l = dlog2 |W|e

Code efficiency: a good code will be one whose length is small.

Proposition 6.2 (Pigeonghole principle): If C is a code from {0, 1}∗,n into {0, 1}∗ such that
∃w, l(w) < |w| then ∃w′, l(w′) > |w′|

To compress some strings, one should expand other ones!

Shannon approach: Assume there is a (known) probability law P on the words and mesure
the efficiency of a code by its average length:∑

w∈W
P (w)l(w).

6.2 Compression limit and entropy

Entropy as a lower bound: the entropy H(P ) of P is defined by

H(P ) = −
∑
w∈W

P (w) log2 P (w)

appears as a lower bound on the efficiency of a code.

Proposition 6.3: For any non singular code C∑
w∈W

P (w)l(w) ≥ H(P )− log2dlog2 |W|e

Later, we will show that if one is restricted to interesting code,∑
w∈W

P (w)l(w) ≥ H(P )

and that among those interesting code there is one such that∑
w∈W

P (w)l(w) ≤ H(P ) + 1
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Entropy and complexity: Let P be any law defined on a discrete set Ω, its entropy H(P ) is
defined by

H(P ) = −
∑
ω∈Ω

P (ω) log2 P (ω).

Proposition 6.4: • 0 ≤ H(P ) ≤ log2 |W|

• H(P ) = 0 =⇒ ∃w,P (w) = 1

• H(P ) = log2 |W| =⇒ ∀w,P (w) = 1/|W|

H is a measures of the complexity of P , which is maximal when all events are equiprobale and
minimal when on is certain.

Entropy and information content: Let I be a function measuring the information content
of A ⊂ P(Ω).

Proposition 6.5: If we assume that

• I is a non increasing continuous function of P (A)

• I(A1 ∪A2) = I(A1) + I(A2) as soon as A1 and A2 are independent

then I(A) = −κ log2 P (A) with κ > 0.

Corollary 6.1: H(P ) is the average information content in the atomic event of Ω for the choice
κ = 1.

Compression limite and entropy: For any code C onW, we denote by Σ(C) =
∑
w∈W 2−l(w) ≤

|W| and for any set C of codes, Σ(C) = supC∈C Σ(C)

Theorem 6.1 (Shannon):

min
C∈C

∑
w∈W

P (w)l(w) ≥ H(P )− log2(Σ(C)).

Proof: Let Σ(C) =
∑
w∈W 2−l(w). By construction, q(w) = 2−l(w)/Σ(C) define a probability

law of w.

Now, recall that the Kullback-Leibler divergence KL(p, q) = −
∑
w∈W p(w) log2 q(w)/p(w) sat-

isfies KL(p, q) ≥ 0 and thus with our choice of q

KL(p, q) =
∑
w∈W

p(w)l(w) + log2 Σ(C)−H(X) ≥ 0

Proof (Kullback-Leibler positivity): By convexity of − log2(x) and Jensen inequality

KL(p, q) = −
∑
w∈W

p(w) log2 (q(w)/p(w)) = −
∑

w,p(w)>0

p(w) log2 (q(w)/p(w))

≤ − log2

 ∑
w,p(w)>0

p(w) (q(w)/p(w))

 ≥ − log2

 ∑
w,p(w)

q(w)

 ≥ 0
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Proposition 6.6: If a code is non singular then Σ(C) ≤ dlog2 |W|e.
Proof: Let C be a non singular code forW and lmax its maximal length, Let N(l) be the number
of words whose codelength is equal to l so that

Σ(C) =
∑
w∈W

2−l(w) =
lmax∑
l=1

2−lN(l)

By construction
∑+∞
l=1 N(l) = |W| and as all codes should be different 0 ≤ N(l) ≤ 2l

Let l′ be the smallest integer such that N(l′) < 2l′

• if l′ < lmax then one can construct a new non singular code C ′ such by replacing a code of
length > l′ by a code of length l′ so that Σ(C ′) > Σ(C)

• if l′ ≥ lmax then

Σ(C) =
lmax∑
l=1

2−lN(l) ≤ lmax

We have thus for the optimal bound
lmax−1∑
l=1

2l
′
+N(lmax) = |W|

If l′ = lmax then 1 ≤ N(lmax) < 2lmax thus
lmax−1∑
l=1

2l
′
≤ |W| − 1⇔ 2lmax − 1 ≤ |W| − 1

which implies lmax ≤ log2 |W|.

If l′ = lmax + 1 then |W| = 2lmax+1 − 1 which implies

lmax ≤ log2(|W|+ 1)− 1 ≤ log2 |W|.

Corollary 6.2: If C is a set of non singular code

min
C∈C

∑
w∈W

P (w)l(w) ≥ H(P )− log2dlog2 |W|e

A natural question is whether those lower bound can be attained.

6.3 Typical set and typical coding

i.i.d. setting: We focus on the case where W = An with Pn(w) =
∏
i=1 P (wi).

Proposition 6.7: H(Pn) = nP (H)
Proposition 6.8: Thanks to the Large Number Law

1
n

n∑
i=1
−log2P (wi)→ H(P )



6.3. TYPICAL SET AND TYPICAL CODING 115

ε-typical set: the ε-typical set

Anε = {w ∈ An, | 1
n

n∑
i=1
− log2 P (wi)−H(P )| ≤ ε}

satisfies P (Anε )→ 1.

For any ε > 0, it exists n0 such that for n ≥ n0, with probability larger than 1 − ε, a random
word of size n belongs to this set...

Asymptotic Equipartition Principle: more precisely

Theorem 6.2: ∀ε > 0,∃n0 such that ∀n ≥ n0,

• ∀w ∈ Anε , 2−n(H(X)+ε) ≤ Pn(w) ≤ 2−n(H(P )−ε)

• P (Anε ) ≥ 1− ε

• (1− ε)2n(H(P )−ε) ≤ |Anε | ≤ 2n(H(P )+ε)

With probability close to 1, a random sequence w belongs to a set of size of order 2nH(P ) where
all sequences have probability of order 2−nH(P ). In other words, An behaves similarly to a set
of size 2nH(P ) of equiprobable words!

Basic list code:

• List all words of An and list all binary words of {0, 1}dn log |A|e.

• Assign to the ith word in the list of An the ith in the list of {0, 1}dn log |A|e

• Each word is coded by those dn log |A|e bits and thus whatever P

1
n

∑
w∈An

Pn(w)l(w) = dn log |A|e
n

≤ log |A|+ 1

Typical code:

• List all words of An, list all binary words of {0, 1}dn log |A|e, list of all words of Anε and list
all words of {0, 1}dn(H(P )+ε)e.

• For any word w, if it belongs to Anε assign it the code 0 followed by the corresponding
word of {0, 1}dn(H(P )+ε)e. Otherwise assign it 1 followed by the corresponding word in
{0, 1}dn log |A|e

• The code is non singular and

1
n

∑
w∈An

Pn(w)l(w) = 1
n

((1− ε)(1 + dn(H(P ) + ε)e) + ε(1 + dn log |A|))

≤ H(P ) + ε(log |A| −H(P )) + 1− ε
n

= H(P ) + o(1)

With this simple strategy, the average length per symbol can be arbitrarily close to the lower
bound given by the average entropy.
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Typical coding turns out to be complex to use as it requires the use of two very long lists
and is rarely used in practice.

6.4 Extension code and prefix code

Extension code: a much more practical coding scheme would be one such that if w =
w1 . . . w|w| then

C(w) = C(w1) · · ·C(w|w|).

Indeed, in that case, it suffices to specify a code for the indivudual symbols to know the code for
the words. Such a code is called an extension code.

Proposition 6.9: If Pn =
∏n

P then

1
n

∑
w∈An

P (w)l(w) =
K∑
k=1

P (ak)l(ak)

Proof: ∑
w∈An

P (w)l(w) =
∑
w1∈A

·
∑
wn∈A

 n∏
i=1

P (wi)×
n∑
j=1

l(wj)


=

n∑
j=1

∑
wj∈A

P (wj)l(wj) = n

K∑
k=1

P (ak)l(ak)

Uniquely decodale code: any non singular extension code is called a uniquely decodable
code. Those code are easy to use in the coding part but may require to read the whole binary
sequence in the decoding part.

Prefix code: A code such that for any symbol ak there is no other symbol ak′ such that C(ak)
is the prefix (the beginning) of C(ak′) is called a prefix code.

Proposition 6.10: A prefix code is uniquely decodable.

Furthermore, the decoding of a sequence is easy as one always knows when reading whether a
symbol should be output or not.

Prefix code, tree and intervals: there is a correspondence between prefix code, subset leaves
of binary trees and specific subsets of dyadic intervals.

Proposition 6.11: The following sets are in bijection:

• Prefix codes of size K: set of sets of K binary string ck of length lk such that no ck is a
strict prefix of c′k
• Set of subsets of K leaves of a finite binary tree (ck is the leaf label and lk is the depth)

• Set of sets of K disjoint intervals [γk2−lk , (γk + 1)2−lk) with γk ∈ {0, . . . 2lk − 1} (ck is the
binary decomposition of γk prefixed by sufficiently 0 to be of length lk)
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Kraft: a fundamental result on prefix code is

Theorem 6.3: If C is a prefix code then

K∑
k=1

2−l(ak) ≤ 1

and conversely if

K∑
k=1

2−lk ≤ 1

then there is a prefix code C such that |C(ak)| = lk.

Proof: Let Ik = [C(ak)2−l(ak), (C(ak) + 1)2−l(ak)), as C is a prefix code those intervals are
disjoint and included in [0, 1]. Thus, denoting by |I| the width of an interval I,

K∑
k=1

2−l(ak) =
K∑
k=1
|Ik| ≤ 1.

Conversely, assume lk are such that
∑K
k=1 2−lk ≤ 1, we may assume without loss of generality

that l1 ≤ l2 ≤ · · · lK . Denote Lk =
∑k
k′=1 2−lk′ and L0 = 0 and let Ik = [Lk−1, Lk). By

construction, those intervals are disjoint, included in [0, 1) and of length 2−lk . Now

γk = 2lkLk−1 = 2lk
k−1∑
k′=1

2−lk′ =
k−1∑
k′=1

2l(k)−l(k′) ∈ N

and, as k′ ≤ k, l(k) − l(k′) ∈ N so that Ik = [γk2−lk , (γk + 1)2−lk). The set of intervals Ik has
thus a corresponding prefix code.

Theorem 6.4 (Shannon): If C is a prefix code then

1
n

∑
w∈An

Pn(w)l(w) ≥ H(P )

and it exists a prefix code C such that

1
n

∑
w∈An

Pn(w)l(w) ≤ H(P ) + 1

Proof: We start first by recalling that by construction

1
n

∑
w∈An

Pn(w)l(w) =
K∑
k=1

P (ak)l(ak).

Now, let C be the set of prefix codes, using notation of Theorem 6.1,

Σ(C) = sup
C∈C

K∑
k=1

2−l(ak) ≤ 1
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and thus

inf
C∈C

K∑
k=1

P (ak)l(ak) ≥ H(P )− log2(Σ(C)) = H(P )

By construction, if we let lk = d− log2 p(ak)e then
K∑
k=1

2−lk =
K∑
k=1

2−d− log2 p(ak)e ≤
K∑
k=1

2log2 p(ak) =
K∑
k=1

p(ak) = 1

thus it exists a prefix code C such that l(ak) = lk = d− log2 p(ak)e ≤ − log2 p(ak) + 1. Using
this code, one obtains immediately

K∑
k=1

p(ak)l(ak) ≤
K∑
k=1

P (ak)(− log2 P (ak) + 1)

≤ H(P ) + 1

Optimality of the bound: The only code for A = {0, 1} is a code of constant length 1 but

H(P ) = P (0) log2 P (0) + (1− P (0)) log2(1− P (0)) P (0)→0→ 0.

Theorem 6.5 (Mc-Millan): If C is a uniquely decodable code then

1
n

∑
w∈An

Pn(w)l(w) ≥ H(P )

Not much loss by considering only prefix code!

The proof is a direct consequence of

Proposition 6.12: If C is a uniquely decodable code then
K∑
k=1

2−l(ak) ≤ 1

Proof: As C is a uniquely decodable code, by definition C(w) = C(w1) · · ·C(wn) is a non-
singular code for W = An. We have seen that this implies∑

w∈W
2−l(w) ≤ log2 |W| = n log2 |A|.

As C is an extension code∑
w∈An

2−l(w) =
∑
w1∈A

∑
w2∈A

· · ·
∑
wn∈A

2−
∑n

i=1
l(wi) =

(
K∑
k=1

2−l(ak)

)n
This implies

K∑
k=1

2−l(ak) ≤ (n log2 |A|)
1/n = 2(log2 n+log2 log2 |A|)/n n→∞→ 1
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6.5 Practical codes

We assume first (without loss of generality) that p(a1) ≥ · · · ≥ p(ak).

Rounded code: let lk = d− log2 p(ak)e so that l1 ≤ · · · ≤ lK . We can rely on the construction
of the previous section to obtain a good code. It suffices to let L0 = 0 and Lk =

∑k
k′=1 2−lk′

and define C(ak) as 2lkLk−1 prefixed by sufficiently 0 to be of length lk.

Shannon code: Shannon proposes a similar construction relying on the cumulative probability
function. Let lk = d− log2 p(ak)e and define R0 = 0 and Rk =

∑k
k′=1 p(ak′), the cumulative

probability functions evaluated at the jumps. We can then define C(ak) as b2lkRk−1c prefixed
by sufficiently 0 to be of length lk ( i.e. the lk first binary digits of Rk−1)
Proof: We will prove that the intervals Ik = [C(ak)2−lk , (C(ak) + 1)2−lk) are disjoint as this
suffices here to obtain the prefix property of the code. Notice that (C(ak) + 1)2−lk ≤ Rk−1 +
2−lk ≤ Rk. Furthermore as lk+1 ≥ lk, C(ak+1)2−lk+1 ≥ (C(ak) + 1)2−lk which concludes the
proof
Proposition 6.13: For both code:

H(P ) ≤ 1
n

∑
w∈An

Pn(w)l(w) < H(P ) + 1

Assuming that the probability are sorted is not an issue in theory but may becomes a practical
one if the number of symbols is large.

Shannon-Fano code: Fano proposes a variation of Shannon code that do not requires p(a1) ≥
· · · ≥ p(ak) at the price of a large code. Let lk = d− log2 p(ak)e + 1, R0 = 0 and Rk =∑k
k′=1 p(ak′), one defines C(ak) = d2lkRk−1e prefixed with sufficiently 0 to be of length lk.

Proof: We will prove that the intervals Ik = [C(ak)2−lk , (C(ak) + 1)2−lk) are disjoint as this
suffices here to obtain the prefix property of the code. Note that Rk + 2−lk ≤ C(ak)2−lk and
thus m Rk ≤ C(ak)2−lk ≤ (C(ak) + 1)2−lk ≤ Rk + 22lk ≤ Rk+1 which concludes the proof.
Proposition 6.14: For this code

H(P ) ≤ 1
n

∑
w∈An

Pn(w)l(w) < H(P ) + 2

Shannon code yields an average length smaller than H(P ) + 1 but are not necessarily the most
efficient one.

Huffman code: Huffman propose an explicit construction of an optimal code construction of
an optimal prefix code CH , i.e. a code such thay for any prefix code C:

K∑
k=1

P (ak)l(ak) ≥
K∑
k=1

P (ak)lH(ak).

Not that there is no unicity of such a code. For instance, the roles of 0 and 1 in the binary
sequences can be exchanged.
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Huffman tree: Huffman code is obtained through the recursive construction of a dyadic tree
associated to the dictionary A of size K.

• Start from the dictionary made of all symbols

• At each step,

– search for the two least probable symbols in the current dictionary

– remove those two symbols from the dictionary and add a new symbol corresponding
to their union

– represent this operation by drawing two branches going from this new symbol to the
two removed ones

• In K steps, the dictionary is empty and thus all the original symbols are the leaves of a
dyadic tree.

The proof of the optimality is also obtained by recursion.

Average loss and grouping: Shannon proof gives the existence of a prefix code C for the
dictionary A such that

H(P ) ≤ 1
n

∑
w∈An

Pn(w)l(w) ≤ H(P ) + 1.

Assume we define the dictionary as An, the very same theorem yields the existence of a prefix
code for the dictionary An such that

H(Pn) = nH(P ) ≤
∑
w∈An

Pn(w)l(w) ≤ H(Pn) + 1 = nH(P ) + 1.

Dividing the previous inequalities by n shows the upper bound of the coding loss goes from 1 bit
per symbol in the first case to 1/n in the second case. This later strategy is nevertheless rarely
used in practice as the cardinality of An can be very large making the code construction hardly
feasible.

Block coding: If one code a word of An as a word of n/B symbols in AB (assuming for sake
of simplicity that B divides n) using a good prefix code CB for AB

H(P ) ≤ 1
n

∑
w∈An

Pn(w)lB(w) ≤ H(P ) + 1
B
.

The larger B the closer we are from the optimal bound!

6.5.1 Non i.i.d. case, arithmetic coding and dictionary approach

Non i.i.d case: Our asymptotic analysis has been base on the assumption that Pn(w) =∏n
i=1 P (wi) (i.i.d assumption) but using An as a dictionary, as in the previous section, always

yields that the best uniquely decodable code is such that

H(Pn) ≤
∑
w∈An

Pn(w)l(w) ≤ H(Pn) + 1.
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Asymptotic behavior: If 1
nH(Pn)→ H, the best uniquely decodable codes are such that

1
n

∑
w∈An

Pn(w)l(w)→ H

For instance, this properties holds if we assume that (wi)i is a Markovian process.

Markovian modeling: to illustrate the importance of going beyong the i.i.d. case, we give
here some typical sequence obtained by Shannon using different Markovian model of the English
language:

• i.i.d modeling:
OCRO HLO RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA
NAH BRL

• Second orderd markov modeling on character:
IN NO IST LATWHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMON-
STURES OF THE REPTAGIN IS REGOACTIONA OF CRE

• Second order Markov modeling on words:
THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE
CHARACTER OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE
LETTERS THAT THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UN-
EXPECTED

Better modeling yields a better comprehension because less sequences of the typical set are
useless...

Practical? optimal codes: a natural question is how to construct a uniquely decodale code
optimal up to 1/n bit as such a code exists. We already know to way of constructing such a
code using Shannon coding of Kraft coding. However as explain before, the construction of such
codes requires sorting the symbols and thus becomes hardly tractable when n is large and thus
cannot be used in practice.

Individual coding: using Pn(w) =
∏n
k=1 P (wk|w1, . . . , wk−1), one can try to code each letter

wk of the word w using the law P (·|w1, . . . , wk−1). Both Shannon and Kraft strategies require
to sort the letter at each step and thus are still computationaly heavy. Furthermore, the loss is
up to 1 bit per symbol. Note that using the block coding strategy, with blocks of size B, reduces
this loss to 1/B bit per symbol at a larger computational price.

Arithmetic coding: the most used strategy in this setting is to use a clever implementation
of the Shannon-Fano coding scheme. The code obtained guarantees only a loss of up to 2/n
bits with respect to the optimal one but its implementation is much more simple than the one
of Shannon code or Kraft code. This clever strategy is based on a recursive construction of the
interval

In(w) =

 ∑
w′<w

Pn(w′),
∑
w′≤w

Pn(w′)
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used in Shannon-Fano. This construction is based on the observation that

Ik(w1 · wk) =
k∑

k′=1

k′−1∏
k′′=1

Pk′′(wk
′′
|w1 · · ·wk

′′−1)
∑
a<wk′

Pk′(a|w1 · · ·wk
′−1)

+
k−1∏
k′=1

Pk′(wk
′
|w1 · · ·wk

′−1)
[
0, Pk(wk|w1 · wk−1)

)
.

One can thus compute sequentially I1 ⊃ I2 ⊃ · · · ⊃ In without having to compute Pn(w) for all
words. Furthermore, b bits can already be output as soon as Ik belongs to a dyadic interval of
size 2−b. Arithmetic coding is a clever implementation of this idea that avoid precision issues
and do not require to read all the data to start encoding. It is particularily well adapted to

Markovian modeling in which P (w) =
|w|∏
i=1

P (wi|w1 · · ·wi−m).

Adaptive approach: In practice, the law P is not necessarily known and should be estimated
from the data. The most natural way is probably to estimate the law P by reading first all the
data and to use this estimated law to encode the data. However this approach, called offline
approach, suffers from two drawbacks: it requires to read first all the data, which leads to a delay,
and to transmit the law, which leads to an overhead. A much better approach is to learn the law
online, i.e. to estimate a law for each character using the ones previously seen. This strategy
avoids the drawbacks of the offline one to the price of a law that can be less well estimated.
Two major implementations of this stragegy exist: the first one is base on a straightforward
modification of the arithmetic coding scheme and the second on a dictionary approach. For the
arithmetic coding strategy, it suffices to notice that we use the law P (wk|w1 · · ·wk−1) which is
naturally learnt in an online way.

The dictionary approach differs from the explicit code strategy described so far. It is based
on the online construction of a dictionary that is used to code new sequences of character using
their position in the current dictionary. Numerous variations on the dictionary construction and
its use exist (LZW,ZIP,. . . ). Proofs of the asymptotic optimality of this strategy for stationary
law exist.

6.5.2 GIF and PNG

GIF: This lossless image compression algorithm has been introduced by Compuserve in 1987.
It is dedicated to 8 bits images seen as a list of pixels values (grayscale or colormap). A universal
dictionary entropy encoder of the LZW family is used to encode those values.

PNG: This algorithm has been introduced in 1995 as replacement of GIF which was hindered
by a patent complain. It is not meant to used for colormap images and can thus interpret
pixel values as color intensities. Instead of coding the raw pixel values, it codes, using a (non
patented) variant of universal dictionary coder, the difference between the pixel values and their
predictions from previous values. It also adds some new functionality such as true color images
and transparency.



Chapter 7

Lossy coding

7.1 Continuous signal and Distortion-Rate

Continuous dictionary and approximation: While the finite dictionary case can be easily
extended to a countable setting, no direct extension can be made to a continuous dictionary C:
specifying a value requires an infinite amount of information. The only solution in such a setting
is to allow error, i.e. code some approximation of the original values with a countable dictionary.

Quantifier and quantization error: a quantifier is an application QC → A where A is a
finite (or countable dictionary) of elements of C. We measure the error between the value x and
its quantized version Q(x) by a loss ` so that the quantization error for x is given by `(x,Q(x).
To obtain a lossy code for C, it suffices to provide a lossless code for A.

Simplest case: the simplest quantifier for real values is the uniform scalar quantifier Q : R→
∆Z

x 7→ ∆round(x/∆)

and the simplest loss is `(x,Q(x)) = (x−Q(x))2. Note that A = ∆Z can be identified with Z.

Remark: the same strategy can be used if C is countable but very large...

Distortion-Rate: two different measures of the quality of such a coding scheme are used. The
first one, the distortion, measure the average error

D =
∫
`(x,Q(x))p(x)dx

123
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while the second one, the (entropy) rate, measure the average of bits per symbol

R =
∑
ak∈A

lk

∫
x,Q(x)=ak

p(x)dx

∼ −
∑
ak∈A

∫
x,Q(x)=ak

p(x)dx log2

∫
x,Q(x)=ak

p(x)dx.

Those two quantities are expected to be small for a good quantifier but, obviously, a smaller
distortion comes at a price of a larger rate and, conversely, a smaller rate implies a larger
distortion. A good quantifier is one yielding a good tradeoff between those two quantities.

Scalar quantizer: We focus now on the case of a scalar quantifier Q : R → A = {ak}Nk=1
with ak ∈ R and N ∈ N∗ (extension to N = +∞ possible). The set Qk = {x,Q(x) = ak} is
called the cell associated to ak. For sake of simplicity, we assume the error is measured with the
quadratic loss l(x, y) = (x− y)2. The distortion is then

D =
∫

(x−Q(x))2p(x)dx =
N∑
k=1

∫
x∈Qk

(x− ak)2p(x)dx

while the rate is

R = −
N∑
k=1

∫
x∈Qk

p(x)dx log2

∫
x∈Qk

p(x)dx = −
N∑
k=1

pQ,k log2 pQ,k

if we let pQ,k =
∫
x∈Qk p(x)dx (which depends only on Qk).

Remarks:

• For a fixed set of cells (and thus a fixed R), the choice ak =
∫
x∈Qk xp(x)dx leads to the

minimal distortion D.

• For a fixed set of quantizer (but no fixed R), the choice Qk = {x, arg mink′(x− ak′)2 = k}
minimizes the distortion.

Optimal quantization for a uniform source: we focus now on a simple case, the one of a
uniform source belonging to [0, 1], i.e. whose law has a density p(x) = 1[0,1] and study the choice
of a quantifier Q with N cells. For any Q,

D =
N∑
k=1

∫
x∈Qk

(x−
∫
u∈Qk

udu)2dx

R = −
∑
k=1

∫
x∈Qk

dx log2

∫
x∈Qk

dx = −
N∑
k=1
|Qk| log2 |Qk|

where |Qk| is the measure of the cell Qk.
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Cell shape: Let N be fixed, assume |Q1|, . . . , |Qk| are fixed, then

D =
N∑
k=1

∫
x∈Qk

(x−
∫
u∈Qk

udu)2dx

≥
N∑
k=1
|Qk|
|Qk|2

12 dx

with equality if and only if the cells are intervals. If we do not use entropy coding so that
R = − log2N then the best choice is |Qk| = 1/N leading to D = 1

12N2 .

Entropy coding: Let N be fixed

R = −
N∑
k=1
|Qk| log2 |Qk|

= −1
2

N∑
k=1
|Qk| log2 |Qk|2

= −1
2 log2

N∑
k=1
|Qk||Qk|2

≥ −1
2 log2 12

N∑
k=1
|Qk|
|Qk|2

12

≥ −1
2 log2 12D

with equality if |Qk| = 1/N and Qk are intervals, so that the best choice is the same than the
one without entropy coding.

Coding an uniform source: If p(x) = 1[0,1],

R ≥ −1
2 log2 12D ⇔ D ≥ 1

122−2R

with equality if the quantizer is uniform of step 1/N . In that case, i.e. uniform and equiprobable
bins, we obtain the same result than with and without entropy coding:

R = logN and D = 1
12N2 .

Note that no explicit rules are given to attains intermediate rates or distortion...

High resolution assumption: to go beyond the uniform source case, we will rely on a
classical approximation, the high resolution assumption. It is based on the observation that,
locally, a pdf p can be approximated a constant p(x0) and thus, according to the previous
analysis, locally the best choice is a uniform quantifier of size ∆(x0)... The high resolution
assumption is a formalization of this idea as a limit property on a family of quantifier.
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Limit quantifier width: More precisely, let ∆N (x) be the width of the quantifier with N bins
of this family, we assume that

N∆N (x)→ ∆(x).

Proposition 7.1: 1
∆ is a density function.

Proof: By construction, ∆N (x) ≥ 0 so that ∆(x) ≥ 0, now

1
N

N−1∑
k=2

∫
Qk

1
∆N (x) = N − 2

N

so that going to the limit yields the result.

N
∆(x) can thus be interpreted as the local number of cells by units!

The high resolution assumption holds if

N2DN →
∫
p(x)∆2(x)

12 dx = D∞

RN − logN → −
∫
p(x) log2 (p(x)∆(x)) dx = R∞.

Note that this is an assumption on both the quantifier family and the density law.

Practical use: replaceDN byD∞/N2 and Rn by logN+R∞ and optimize in ∆. The resulting
optimum should give an idea of the best possible quantifier...

Heuristic of high resolution assumption: We provide here without any justification a
sequence of computation showing why the high resolution assumption may hold:

N2DN = N2
∫
|x−Q(x)|2p(x)

∼
N−1∑
k=2

∫
Qk

|x− ak|2p(x)dx ∼
N−1∑
k=2

p(ak)N
2∆N (x)3

12

∼
N−1∑
k=2

p(ak)∆N (x)N
2∆N (x)2

12 ∼
∫
p(x)∆(x)2

12

RN = −
N∑
k=1

(∫
Qk

p(x)dx
)

log2

(∫
Qk

p(x)dx
)

∼ −
N−1∑
k=2

∫
Qk

p(x) log2

(∫
Qk

p(x′)dx′
)
∼ −

N−1∑
k=2

∫
Qk

p(x) log2
(
p(x)∆N (x))

)
∼ −

N−1∑
k=2

∫
Qk

p(x) (log2 (p(x)∆(x))− log2N)

∼ logN −
∫
p(x) log2 (p(x)∆(x))
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Best quantization without entropy coding: we use here aN cell quantifier without entropy
coding so that RN = log2N and try to optimize in ∆ the approximate distortion D∞N2 =∫
p(x)∆(x)2

12N2 dx instead of the true one DN . As
∫ 1

∆(x)dx = 1, the Lagrangian formulation implies
the existence of λ such that

∂

d∆

(∫
p(x)∆(x)2

12N2 dx+ λ

(∫ 1
∆(x)dx− 1

))
= 0.

This yields

∆(x) =
∫
p(x)1/3dx
p(x)1/3 ⇔ 1

∆(x) = p(x)1/3∫
p(x)1/3dx

.

This can be interpreted as a recommandation for smaller cell (or denser cell) where there is a
high density of the source.

Summarizing the result in thid case yields

R = log2N

D = 1
12N2

(∫
p(x)1/3dx

)3
=
(∫
p(x)1/3dx

)3
12 2−2R

Best quantization with entropy coding: we assume now that we use an entropy coding
scheme for the symbols so that we need to optimize R∞+ logN and D∞/N (instead of RN and
DN ). Some simple computations shows that

R∞ = −
∫
p(x) log2 (p(x)∆(x)) dx

= H(p)−
∫
p(x) log2 ∆(x)dx = H(p)− 1

2

∫
p(x) log2 ∆(x)2dx

≥ H(p)− 1
2 log2

∫
p(x)∆(x)2dx ∼ H(p)− 1

2 log2 12D∞

where H(p) = −
∫
p(x) log2 p(x)dx. The inequality becomes an equality if and only if ∆(x)

is constant (which is possible only if p is close to be compactly supported). This asymptotic
distortion-rate analysis can be summarized by

R∞ ≥ H(p)− 1
2 log2 12D∞ ⇔ D∞ ≥ e2H(p)

12 2−2R∞

If we go back to RN ∼ logN +R∞ and DN ∼ D∞

N2 , we obtain

RN & H(p)− 1
2 log2 12DN ⇔ DN &

e2H(p)

12 2−2RN

with equality when ∆(x) is constant. This leads to a gain with respect to the strategy without
entropy coding because e2H(p) ≤

(∫
p(x)1/3dx

)3.
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Uniform quantization strategy: In practice, this suggests to use a uniform scalar quantifier
with step ∆ with an entropy coding scheme. If the high resolution assumption holds for this
quanfifier then

DN ∼ DHR = ∆2

12
RN ∼ RHR = H(p)− 1

2 log2 12DHR = H(p)− log2 ∆.

Note that

RHR = H(p)− 1
2 log2 12DHR ⇔ DHR = e2H(p)

12 2−2RHR

means

RN ∼ H(p)− 1
2 log2 12DN ⇔ DN ∼ e2H(p)

12 2−2RN

One has to remember that the assumption may not hold!

7.1.1 Sub-band allocation

Sub-band allocation: we consider x = (x1, . . . , xB) ∈ RB and let pi be the marginal law of
xi. We do not assume independence but will code those components independently. We want to
study the optimal allocation in each of the different sub-bands. Namely, we assume we spend Ri
bits to encode xi (sub-band i) resulting in a distortion Di so that the total distortion and the
total rate are

D =
B∑
i=1

Di and R =
B∑
i=1

Ri.

The question on how to allocates those bits to reach a given rate R or a given distortion D in
an optimal way?

High-resolution analysis: We assume the high-resolution holds on all sub-bands so that the
best choice is a uniform quantifier of bin length ∆i

DHR
i = ∆2

i

12 and RHRi = H(pi)− log2 ∆i.

The resulting total high resolution distortion and total high resolution rate are thus

DHR =
B∑
i=1

∆2
i

12 and RHR =
B∑
i=1

H(pi)− log2 ∆i.

Assume we want to optimize ∆i for a given (high resolution) rate RHR then, using a Lagrangian
formulation, it exists λ ≥ 0 such that the optimal solutions satisfies

∂

d∆i

(
B∑
i=1

∆2
i

12 + λ

B∑
i=1

H(pi)− log2 ∆i

)
= 0

⇔ ∆i

6 − λ
1

∆i log 2 = 0.
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This yields ∆i = ∆ and thus

RHR =
B∑
i=1

H(pi)−B log2 ∆.

We deduce

∆ =
√

12D
B

= 2
1
B

(∑B

i=1
H(pi)−RHR

)
.

Plugging this into the expression of DHR and RHR yields

DHR = Be
2
B

∑B

i=1
H(pi)

12 2−2RHRB and RHR =
B∑
i=1

H(pi)−
B

2 log2
12DHR

B
.

Provided the high resolution assumption holds for the uniform quantifier, we deduce that the
optimal choice is use the same bin width ∆ for all sub-band and that the resulting quantifier
satisfies

D ∼ DHR = B
∆2

12 and R ∼ RHR =
B∑
i=1

H(pi)−B log2 ∆

so that

D ∼ Be
2
B

∑B

i=1
H(pi)

12 2−2RB and R ∼
B∑
i=1

H(pi)−
B

2 log2
12D
B

.

Weighted Distortion optimization: when the distortion is measured with different weights
for each sub-band, the previous analysis is only slightly modified. If we define the weighted high
resolution distorsion and the high distortion rate by

DHR
W =

B∑
i=1

Wi
∆2
i

12 and RHR =
B∑
i=1

H(pi)− log2 ∆i,

then, again using the Lagragangian formulation, we obtain that the optimal choice satifies ∆i =
∆√
Wi

and thus

DHR
W = B

∆2

12 and RHR =
B∑
i=1

(H(pi)−
1
2 log2Wi)−B log2 ∆

for a suitable ∆. One obtains thus

DHR
W = Be

2
B

∑B

i=1
(H(pi)− 1

2 log2 Wi)

12 2−2RHRB

and R =
B∑
i=1

(H(pi)−
1
2 log2Wi)−

B

2 log2
12DHR

W

B
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Provided the high resolution assumption holds for the uniform quantifier in all sub-bands, this
implies that the best choice is to use a uniform quantifier of size ∆√

Wi
in each sub-band and that

DW ∼ DHR
W = B

∆2

12 and R ∼ RHR =
B∑
i=1

(H(pi)−
1
2 log2Wi)−B log2 ∆

so that

DW ∼
Be

2
B

∑B

i=1
(H(pi)− 1

2 log2 Wi)

12 2−2RB and R ∼
B∑
i=1

H(pi)−
B

2 log2
12DW

B
.

7.1.2 Transform coding

Basis and transform coding: assume now, we observe f ∈ V , a (hilbertian) space of dimen-
sion B. In any basis (bi)Bi=1,

f =
B∑
i=1
〈f, b̃i〉bi

where (̃bi)Bi=1 is the dual basis. f can thus be described by the finite sequence of coefficients
(〈f, bi〉)1≤i≤B . In a transform coding scheme, those coefficients are then coded in a lossy scheme
consisting of a quantization step followed by an entropy coding step.

Example: f is an image described in the canonical basis and the quantization step amount to
a reduction of the number of color used.

Independent quantification: For sake of simplicity, we assume we use B independent quan-
tifiers (Qi)Bi=1 for the B coefficients and let

fQ =
B∑
i=1

Qi(〈f, b̃i〉)bi.

Distortion/Quantization error: For sake of simplicity, we assume that the quantization
error for f is measured in term of the l2 error of the coefficients so that

`(f, fQ) =
B∑
i=1

Wi

∣∣∣〈f, b̃i〉 −Qi(〈f, b̃i〉)∣∣∣2 .
Note that if (bi)Bi=1 is an orthonormal basis then b̃i = bi and for Wi = 1 `(f, fQ) = ‖f − fQ‖2.

Basis and high resolution assumption: If we assume that the high resolution assumption
holds for the uniform quantifier for all coefficients then the best strategy is to use a uniform
quantifier of step ∆√

Wi
. The previous rate/distortion analysis yields then

DW ∼ B
∆2

12 and R ∼
B∑
i=1

(
H(〈f, b̃i〉)−

1
2 log2Wi

)
−B log2 ∆
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which implies

DW ∼
Be

2
B

∑B

i=1

(
H(〈f,̃bi〉)− 1

2 log2 Wi

)
12 e−2RB

and R ∼
B∑
i=1

(
H(〈f, b̃i〉)−

1
2 log2Wi

)
− B

2 log2
12DW

B
.

Orthonormal bases: for any orthonormal basis (bi)Bi=1 and the choice Wi = 1, the distortion
is measured with respect to the same L2 norm. The best strategy is to use the same bin width
∆ for all coefficients and leads to the relationships

D ∼ B∆2

12 and R ∼
B∑
i=1

H(〈f, bi〉)−B log2 ∆

which implies

D ∼ Be
2
B

∑B

i=1
H(〈f,bi〉)

12 e−2RB and R =
B∑
i=1

H(〈f, bi〉)−
B

2 log2
12D
B

.

As the loss is the same whatever the orthonormal basis, the question of the basis choice in such
a coding scheme has a sense. A straightforward observation shows that the best basis is the one
minimizing

B∑
i=1

H(〈f, bi〉).

Best basis for Gaussian process: in this paragraph, we assume that f is a centered Gaussian
process: f ∈ RB ∼ N (0,Γ) and study the best orthornormal basis.

Theorem 7.1: As long as the high-resolution assumption holds, the best orthonormal basis is
the one that diagonalizes Γ.

Proof: The proof is based on an explicit formula for
∑B
i=1H(〈f, bi〉)

Note that this result can be understand intuitively. The diagonalization basis is the one that
decorrelates the coefficients and thus they are independent. There is thus no loss by coding them
independently as we are doing here. Finally, this theorem justify the use of Fourier type basis
for locally stationary process as we know that such a basis diagonalizes the covariance matrix...

Sparse coding: For sake of simplicity, we assume now that the bi are orthonormal basis and
that we use an independent lossy coding scheme for each coefficient. We have thus

f =
B∑
i=1
〈f, bi〉bi

fQ =
B∑
i=1

Q(〈f, bi〉)bi
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and the quantization error is given by

‖f − fQ‖2 =
B∑
i=1
|〈f, bi〉 −Q(〈f, bi〉)|2.

In practice, one observe that, for suitable bases and for interesting signal, a lot of coefficients are
very small, much smaller than ∆/2 for reasonable ∆ and thus quantized to 0. Such signals are
called sparse and require a different coding analysis as the high resolution assumption does not
hold for the 0 bin.

Sparse quantification error: we focus first on a deterministic upper bound of the quantifi-
cation error

D(∆) = ‖f − fQ‖2 =
B∑
i=1
|〈f, bi〉 −Q(〈f, bi〉)|2

=
∑

1≤i≤B,|〈f,bi〉|≤∆/2

|〈f, bi〉|2 +
∑

1≤i≤B,|〈f,bi〉|>∆/2

|〈f, bi〉|2

≤
∑

1≤i≤B,|〈f,bi〉|≤∆/2

|〈f, bi〉|2︸ ︷︷ ︸
approximation error

+ ∆2

4 |{1 ≤ i ≤ B, |〈f, bi〉| > ∆/2}|

︸ ︷︷ ︸
quantization error

≤ A(∆) + ∆2

4 M(∆)

The approximation error A(∆) can be much smaller than ∆2

4 |{1 ≤ i ≤ B, |〈f, bi〉| ≤ ∆/2}| =
∆2

4 (B −M(∆)) and thus ‖f − fQ‖2 can be much smaller than B∆2

4 .

Sparse rate: we describe now a two step sparse coding strategy: first code for each coefficient
if it is quantified to 0 or not, second code the M(∆) non zero coefficients. For sake of simplicity,
we assume first that we don’t use a entropy coder. To code the position, we can code M(∆)
using at most log2B bits and then the position of the M(∆) coefficients by log2

(
B

M(∆)
)
bits. It

remains then to code the M(∆) values with log2(2 max)− log2 ∆. The total length of this code
is thus

R(∆) = logB + log2

(
B

M(∆)

)
+M(∆) (log2(2 max)− log2 ∆) .

Using now
(

B
M(∆)

)
≤ 2BH(M(∆)/B), we deduce

R(∆) ≤ logB +BH(M(∆)/B) +M(∆) (log2(2 max)− log2 ∆) .

We have thus

D(∆) = ‖f − fQ‖2 ≤ A(∆) + ∆2

4 M(∆)

R ≤ logB +BH(M(∆)/B) +M(∆) (log2(2 max)− log2 ∆) .
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Assume now that ∆ is large (at least larger than ∆min), so that M(∆) is small with respect to
B, we can provide a simpler estimate of R:

R(∆) ≤ logB −B (M(∆)/B log2(M(∆)/B) + (1−M(∆)/B) log2(1−M(∆/B)))
+M(∆) (log2(2 max)− log2 ∆)

.M(∆) (1− log2(M(∆)/B) + log2(2 max /∆min))

.M(∆) (1 + log2B + log2(2 max /∆min)) .

Proof: As

nn = (k + (n− k))n ≥
(
n

k

)
kk(n− k)n−k,

we deduce (
n

k

)
≤ nn

kk(n− k)n−k =
(

1
(k/n)k/n(1− k/n)1−k/n

)n
=
(

1
2−H(k/n)

)n
(
n

k

)
≤ 2nH(k/n)

Compressibility: If there exist γ ∈ [0, 1] such that

A(∆) +M(∆)∆2

4 ≤ CB∆2γ � B
∆2

4

for ∆ ≥ ∆min, we say that the signal is compressible.

In that case,

M(∆) ≤ 4CB∆2(γ−1)

which implies

R(∆) . 4CB (1 + log2B + log2(2 max /∆min)) 1
∆2(1−γ)

. 4CB (1 + log2B + log2(2 max /∆min))
(
CB

D(∆)

) 1−γ
γ

R(∆) . 4(CB)
1
γ (1 + log2B + log2(2 max /∆min))D(∆)−

1−γ
γ

and thus

D(∆) . (4 (1 + log2B + log2(2 max /∆min)))
γ

1−γ (CB)
1

1−γR(∆)−
γ

1−γ .

We do not obtain the exponential decay of the high resolution analysis D(∆) ∼ 2−R(∆) which
seems less attractive but, we are interested in low bit rate, that is the behavior for small R (but
not too small as R can barely go to 0 here). In that case, one observes that the decay of the
error is much faster with the sparse coding strategy than with the high resolution one.
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7.2 JPEG, block transform and MP3

JPEG: this image compression standard has been proposed in 1990 by an expert committee
whose members were coming from both industry and academy. It relies on a transform coding
strategy. The image is split into 8× 8 blocks that are further transformed by a 2D Fourier type
basis (Discrete Cosine Transform). The resulting coefficients are then quantized and entropy
coded using a different strategy for the means of the blocks than for the other coefficients. The
first ones are first predicted by the value of the mean of the previous block and then encoded
by an Huffman code. The second ones are encoded block by block through a combination of
Run Length Encoding and Laplacian model. The quantification strategy is adapted to the eye
perceptual properties: the high frequencies are more roughly quantized than the low ones.

Block transforms: more generaly, the block strategy can be used to generate basis of l2(Z)
from finite basis of `2({0, . . . , N}). It suffices to notice that for any increasing sequence ak
such that limk→−∞ ak = −∞ and limk→∞ ak = ∞ we have Z = ∪k∈Z{ak, . . . , ak+1 − 1}. We
deduced immediately that if (bk,l)0≤l<ak+1−ak is an orthonormal basis of `2({ak, . . . , ak+1 − 1})
then (bk,l)k∈Z,0≤l<ak+1−ak is an orthonormal basis of `2(Z). Given a family {{eNl }0≤l<N}N∈N of
local orthonormal basis of `2({0, . . . , N}), we obtain that⋃

k∈Z

{
e
ak+1−ak
l [· − ak]

}
0≤l<ak+1−ak

is a valid block by block basis of `2(Z).

Note that a similar construction can be performed in the continuous domain.

Local basis family: a classical choice of local orthonormal basis is to used a local Fourier type
basis. The easiest choice is to use the Discrete Fourier Transform

eNl [n] = 1√
N
ei

2π
N ln.

This solution implies an implicit periodization and thus suffer from strong discontinuity artifact
at the boundaries of the block. A better solution is to used a local Cosine basis in which the
periodization is preceded by a symmetrization, so that only derivative are discontinuous at the
boundaries. The most classical choice is the Discrete Cosine Transform I:

eNl [n] = λl

√
2
N

cos
(
π

N
l(n+ 1

2)
)

for which a Fast transform is available. This is the one used in the JPEG standard.

Overlapped block transform: the previous local basis strategy still suffers from discontinuity
artefacts, as the reconstruction may be discontinuous at boundaries. The overlapped block
strategy is an overlapping windowing strategy proposed to reduce this issue. It relies on a clever
orthonormal projection operator, defined from a suitable window family, the signal in a direct
sum of spaces Vk space of size ak+1 − ak located in a neighborhood of {ak . . . , ak+1 − 1}. Those
projections are specified by their coefficients in a suitable basis of the Vk, with a systematic
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construction from any basis of {ak . . . , ak+1 − 1}. The most used choice is the Discrete Cosine
Transform IV

bl,k[n] = gk[n]

√
2

ak+1 − ak
cos
(
π(l + 1/2)n− ak + 1/2

ak+1 − ak

)
with gk the window of space Vk. A fast transform is available and is used in the MP3 standard.

MP3: the compression method relies on all the tools seen so far. It decomposes the sound
in projection in spaces of adapted sizes, compute the cosine type transform coefficients for each
window, use a psychoaccoustic model to quantify the coefficients, capitalizing on the different
sensitivities for different frequencies and on the masking effect of a strong frequency, and then
encode the coefficients with an entropy coder.
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