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Sequential Decision Setting
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Sequential Decision Setting
In many (most?) settings, not a single decision but a sequence of decisions.
Need to take into account the (not necessarily immediate) consequences of the
sequence of decisions/actions rather than of each decisions.
Different framework than supervised learning (no immediate feedback here) and
unsupervised learning (well defined goal here).
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From Sequential Decision to Reinforcement Learning
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Sequential Decision

MDP Modeling Reinforcement Learning

Sequential Decision
Sequence of action At as a response of an environment defined by a state St

Feedback through a reward Rt

Actions?
Is my current way of choosing actions good?
How to make it better?
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Sequential Decision MDP Modeling

Reinforcement Learning

Markov Decision Process Modeling
Specific modeling of the environment.
Goal as as a (weighted) sum of a scalar reward.

Actions?
Is my current way of choosing actions good?
How to make it better?
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From Sequential Decision to Reinforcement Learning
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Sequential Decision MDP Modeling Reinforcement Learning

Reinforcement Learning
Same modeling. . .
But no direct knowledge of the MDP.

Actions?
Is my current way of choosing actions good?
How to make it better?
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Sequential Decision Settings
Sequential Decisions

MDP / Reinforcement Learning:

max
π

Eπ

[∑
t

Rt

]
Optimal Control:

min
u

E
[∑

t
C(xt , ut)

]

Related settings. . .
(Stochastic) Search:

max
θ

E[F (θ, W )]

Online Regret:
max

∑
k

E[F (θk , W )]
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Environnement

MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

Decision Process and Environment
At time step t ∈ N:

State St ∈ S: representation of the environment
Action At ∈ A(St): action chosen
Reward Rt+1 ∈ R: instantaneous reward
New state St+1

Focus on the discrete setting, i.e. S finite, A(s) finite and R finite.
Extension: Non finite bounded R: easy / Non finite S: hard / Non finite A:
harder. 10
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Environnement

MDP

Env.

Agent
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Stochastic Model
Dynamic defined by:

P
(
St+1 = s ′, Rt+1 = r

∣∣(St′ , At′ , Rt′), t ′ ≤ t
)

= P
(
St+1 = s ′, Rt+1 = r

∣∣St = s, At = a, Ht
)

where Ht = (Rt , St−1, At−1, Rt−1, St−2, . . . ) is the past and (St , At) the present.
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Markov Decision Process and Environment
MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

Markovian Environment
Markovian Dynamic Assumption: St+1 and Rt+1 are independent of the past
Ht = (Rt , St−1, At−1, Rt−1, St−2, . . . ) conditionally to the present (St , At).
Dynamic entirely defined by state-reward transition probabilities

P
(
St+1 = s ′, Rt+1 = r

∣∣St = s, At = a, Ht
)

= P
(
St+1 = s ′, Rt+1 = r

∣∣St = s, At = a
)

= p(s ′, r |s, a)
in the discrete setting.

Informally, this means that St encodes all the information related to the past.
11
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Markov Decision Process and State-Action
State-Reward transition probabilities for a given state-action:

P
(
St+1 = s ′, Rt+1 = r

∣∣St = s, At = a, Ht
)

= P
(
St+1 = s ′, Rt+1 = r

∣∣St = s, At = a
)

= p(s ′, r |s, a)

Induced State-action laws
State transition probabilities for a given state-action:

P
(
St+1 = s ′∣∣St = s, At = a, Ht

)
= P

(
St+1 = s ′∣∣St = s, At = a

)
= p(s ′|s, a) =

∑
r

p(s ′, r |s, a)

Expected reward for a given state-action:
E[Rt+1|St = s, At = a, Ht ] = E[Rt+1|St = s, At = a]

= r(s, a) =
∑

r
r
∑
s′

p(s ′, r |r , a)

From now on, we will always assume that the Markovian property holds for the
environment. 12
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Decision Process, Agent and Policy
MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

Agent
Interact with the environment by choose the action given the past.

Policy Π : specification of how to choose the action
General stochastic policy Π = (π0, π1, . . . , πt , . . .):

Πt(At = a) = πt(At = a|St = a, At = a, Ht)
General deterministic policy Π = (π0, π1, . . . , πt , . . .) (with as slight abuse of
notation):

Πt(At = a) = 1At==πt(St=a,At=a,Ht)

14
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Markov Decision Process, Agent and Policy

Agent
Interact with the environment by choose the action given the past.

Policy Π: specification of how to choose the action
History dependent stochastic policy Π = (π0, π1, . . . , πt , . . .):

Πt(At = a) = πt(At = a|St = s, Ht)
Markovian stochastic policy Π = (π0, π1, . . . , πt , . . .):

Πt(At = a) = πt(At = a|St = s) = πt(a|s)
Stationary Markovian stochastic policy Π = (π, π, . . . , π, . . .):

Πt(At = a) = π(At = a|St = s) = π(a|s)

Similar deterministic policy definition.
Partially Observed Markov Decision Process extension: the Agent has only access
to a partial observation Ot at each time step. . . (not the focus of the lectures)
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Sequential Decisions, MDP
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Decision Process and Trajectories

Trajectories
Trajectory (S0, A0, R1, S1, A1, . . .) defined by

an initial distribution P0 for S0,
a policy Π = (π0, π1, . . . , πt , . . .) specifying

Πt(At = a) = πt(At = a|St , Ht)
an environment specifying

P(St+1, Rt+1|St , At , Ht)
16
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Decision Process and Trajectories

Trajectories
Induced probability:

P(S0 = s0, A0 = a0, R1 = r1, S1 = s1, A1 = a1, . . . St = st , Rt = rt)
= P0(S0 = s0)
× π0(A0 = a0|S0)P(S1, R1|S0, A0) π1(A1 = a1|S1 = s1, H1)
× · · · × P(St = st , Rt = rt |St−1 = st−1, At−1 = an−1, Ht−1)
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Markov Decision Process and Trajectories

Trajectories
Trajectory (S0, A0, R1, S1, A1, . . .) defined by

an initial distribution P0 for S0,
a policy Π = (π0, π1, . . . , πt , . . .) specifying

Πt(At = a) = πt(At = a|St , Ht)
a Markovian environment specifying

P(St+1, Rt+1|St , At)
17
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Markov Decision Process and Trajectories

Trajectories
Induced probability:

P(S0 = s0, A0 = a0, R1 = r1, S1 = s1, A1 = a1, . . . St = st , Rt = rt)
= P0(S0 = s0)
× π0(A0 = a0|S0)P(S1, R1|S0, A0) π1(A1 = a1|S1 = s1, H1)
× · · · × P(St = st , Rt = rt |St−1 = st−1, At−1 = at−1)

17
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Markov Decision Process and Trajectories

Markovian Trajectories only if the policy is Markovian
P(Rt+1, St+1, At+1, Rt+2, St+2, . . . Rt+k , St+k |St , At , Ht)

= P(Rt+1, St+1, At+1, Rt+2, St+2, . . . Rt+k , St+k |St , At)
= P(St+1, Rt+1|St , At) πt+1(At+1|St+1)
× · · · × P(St+k , Rt+k |St+k−1, At+k−1)

Stationary if the policy is stationary. 17
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Rewards and Total Return
MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

Rewards and Total Returns
MDP: Rewards Rt encode all the feedbacks!
Quality of a policy Π measured from the remaining total return:

Gt =
∞∑

t′=t+1
Rt′

Expected total return following Π starting from s:

EΠ[Gt |St = s] =
∞∑

t′=t+1
EΠ[Rt′ |St = s]

19



Sequential Decisions, MDP
and Policies

Total Return: Issue and Fixes
Issues

Gt is a limiting process and thus may not be defined!
Can diverge to ±∞ and not converge at all.

Fixes?

Finite horizon: GT
t =

T∑
t′=t+1

Rt′

Episodic setting: it exists a random T such that ∀t ′ ≥ R, Rt′ = 0 and E[T ] <∞

so that Gt =
∞∑

t′=t+1
Rt′ is well defined.

Discounted setting: for 0 < γ < 1, Gγ
t =

∞∑
t′=t+1

γt′−(t+1)Rt′

Average return: G t = lim 1
T

t+T∑
t′=t+1

Rt′

20
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Finite Horizon

GT
t =

T∑
t ′=t+1

Rt ′

Finite Horizon Setting
Always well defined and easy to interpret.
Loss of Markovianity as we need to know the time step. . .

Can be put in a classical Markov framework!
Define an absorbing state sabs (a state that cannot be escaped and from which the
reward is always 0).
Extend the state space S to (S × {0, . . . , T}) ∪ {sabs}.
Define an state reward transition probability:

p (s̃ ′, r |s̃, a) =


p(s ′, t|s, a) if s̃ = (s, t), t < T and s̃ ′ = (s ′, t + 1)
1 if s̃ = (s, t), t = T , s̃ ′ = sabs and r = 0
1 if s̃ = sabs , s̃ ′ = sabs and r = 0
0 otherwise

Fi
ni

te
Ho

riz
on
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Episodic Setting

Gt =
∞∑

t ′=t+1
Rt ′

Episodic Setting
Assumption: for any policy Π, the average duration before Rt = 0 is smaller than
a finite horizon H: EΠ

[
min

t,Rt′ =0,∀t′≥t
t
]
≤ H < +∞

Strong assumption. . .
Easy to interpret.

Equivalent def.:
Replace all the states from which Rt remains equal to 0 whatever the policy by a
single absorbing state sabs,
Assumption: for any policy Π, the average duration to reach this state is smaller

than a finite horizon H: EΠ

[
min

t,St =sabs
t
]
≤ H < +∞
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Discounted

Gγ
t =

T∑
t ′=t+1

γt ′−(t+1)Rt ′

Discounted
Always defined but not that easy to interpret.
Easiest theoretical setting!

Equivalent to an episodic setting if one adds an absorbing state sabs and changes
all state-reward transition probabilities to:

p(s ′, r |s, a) =


γp(s ′, r |s, a) if s ′ ̸= sabs, s ̸= sabs

(1− γ) if s ′ = sabs, r = 0, s ̸= sabs

1 if s ′ = sabs, r = 0, s = sabs

0 otherwise
Horizon H = 1/(1− γ).

D
isc
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Average Return Setting

G t = lim 1
T

t+T∑
t ′=t+1

Rt ′

Average Return
Not always defined. (Cesaro Average)
Always equal to 0 in the episodic setting!
Natural definition in a stationary setting. . .
Complex theoretical analysis!

Under a strict stationarity assumption (Rt ∼ Rt′), link with discounted setting as

EΠ[Gγ
t ] =

∞∑
t=0

γtEΠ[Rt+1] = 1
1− γ

EΠ[Rt ] = 1
1− γ

EΠ
[
G t
]

Av
er

ag
e
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tu

rn
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State Value Functions
State Value Functions

Return expectation for a policy Π starting from s at time t
Finite horizon setting:

vT
t,Π(s) = EΠ

[
GT

t |St = s
]

=
T∑

t′=t+1
EΠ[Rt′ |St = s]

Episodic setting:
vt,Π(s) = EΠ[Gt |St = s] =

∞∑
t′=t+1

EΠ[Rt′ |St = s]

Discounted:
vγ

t,Π(s) = EΠ[Gγ
t |St = s] =

∞∑
t′=t+1

γt′−(t+1)EΠ[Rt′ |St = s]

Average return setting:

v t,Π(s) = EΠ
[
G t |St = s

]
= lim

T→∞

1
T

t+T∑
t′=t+1

EΠ[Rt′ |St = s]

Depends on t for a history dependent policy!
25
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Markovian Policy and State Value Functions
State Value Functions

Return expectation for a Markovian policy Π starting from s at time t.
Finite horizon setting (with time extended state space):

vT
t,Π(s) = EΠ

[
GT

t |St = s
]

=
T∑

t′=t+1
EΠ[Rt′ |St = s]

Episodic setting:
vt,Π(s) = EΠ[Gt |St = s] =

∞∑
t′=t+1

EΠ[Rt′ |St = s]

Discounted:
vγ

t,Π(s) = EΠ[Gγ
t |St = s] =

∞∑
t′=t+1

γt′−(t+1)EΠ[Rt′ |St = s]

Average return setting:

v t,Π(s) = EΠ
[
G t |St = s

]
= lim

T→∞

1
T

t+T∑
t′=t+1

EΠ[Rt′ |St = s]

Becomes independent on t if the policy is stationary and Markovian the generic
case (except in the finite horizon setting). 26
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State-Action Value Functions
State-Action Value Functions

Return expectation for a policy Π starting from s and an action a at time t.
Finite horizon setting:

qT
t,Π(s, a) = EΠ

[
GT

t |St = s, At = a
]

=
T∑

t′=t+1
EΠ[Rt′ |St = s, At = a]

Episodic setting:
qt,Π(s, a) = EΠ[Gt |St = s, At = a] =

∞∑
t′=t+1

EΠ[Rt′ |St = s, At = a]

Discounted:
qγ

t,Π(s, a) = EΠ[Gγ
t |St = s, At = a] =

∞∑
t′=t+1

γt′−(t+1)EΠ[Rt′ |St = s, At = a]

Average return setting:

qt,Π(s, a) = EΠ
[
G t |St = s, At = a

]
= lim

T→∞

1
T

t+T∑
t′=t+1

EΠ[Rt′ |St = s, At = a]

Different strategy for action at time t than after. . .
Independent of t for a Markovian policy except for the finite horizon setting! 27
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State Value Function vs State-Action Value Functions

vt,Π(s) = EΠ[Gt |St = s] qt,Π(s, a) = EΠ[Gt |St = s, At = a]

State vs State-Action
Performance measure of a policy Π:

starting from a state s for the state value function,
starting from a state s and an action a (not necessarily related to Π) for the
state-action value function.

State value function at time t from state-action value function:
vt,Π(s) =

∑
a

Πt(a)qt(s, a)

28



Sequential Decisions, MDP
and Policies

Do We Really Need The History Dependent Policies?

Equivalent Markovian policy in terms of value function
Thm: For any policy Π and any initial distribution P0(S0), it exists a Markovian
policy Π̃ such that

∀t,∀s, vt,Π(s) = vt,Π̃(s).

Relies on the Markovian environment.
Possible choice:

π̃t {At = at |St = st} = EP,P0 [πt(At = at |St = st , Ht)|St = st , S0]
No need to consider non Markovian policy if the goal is entirely defined in
terms of value functions.
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Prediction
What is the performance of a given
policy?

Planning
What is the best policy?

Planning is harder than predicting.
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Prediction
MDP
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Model MDP
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Prediction
What is the performance of a given policy?
Compute/Approximate/Estimate

vt,Π(s) = EΠ[Gt |St = s]
Well defined provided the expectation exists.
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Planning
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Planning
What is the best policy?
A possible definition: argmax

Π

∑
s,t

µ(s, t)vt,Π(s)

Not necessarily well defined. . .
Several choices for µ!
More realistic goal: find a good policy. . .
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What Do We Know?
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MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

Model
Able to use the MDP transition
probabilities.
Markov Decision Process / Operations
Research.
Probability world.

Only Observations
No access to the MDP transition
probabilities.
Reinforcement Learning.
Statistic world.

Reinforcement Learning is harder than Markov Decision Process / Operations
Research.
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MDP / OR
Stochastic setting in which the world is known.
MDP model assumption.
Probability world / Idealized setting. . .
Lots of insight for the RL problem.
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Reinforcement Learning
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RL
Stochastic setting in which the world is observed through interactions.
Still MDP model assumption.
More realistic setting?
More difficult theoretical analysis.

37



Sequential Decisions, MDP
and Policies

Outline

1 Sequential Decisions, MDP and Policies
Decision Process and Markov Decision
Process
Returns and Value Functions
Prediction and Planning
Operations Research and
Reinforcement Learning
Control
Survey

2 Operations Research: Prediction and
Planning

Prediction and Bellman Equation
Prediction by Dynamic Programming
and Contraction
Planning, Optimal Policies and
Bellman Equation
Linear Programming
Planning by Value Iteration
Planning by Policy Iteration
Optimization Interpretation
Approximation and Stability
Generalized Policy Iteration

Episodic and Infinite Setting
3 Reinforcement Learning: Prediction and

Planning in the Tabular Setting
Prediction with Monte Carlo
Planning with Monte Carlo
Prediction with Temporal Differencies
Link with Stochastic Approximation
Planning with Value Iteration
Planning with Policy Improvement
Exploration vs Exploitation

4 Reinforcement Learning: Advanced
Techniques in the Tabular Setting

n-step Algorithms
Eligibility Traces
Off-policy vs on-policy
Bandits
Model Based Approach
Replay Buffer and Prioritized Sweeping
Real-Time Planning

5 Reinforcement Learning: Approximation
of the Value Functions

Approximation Target(s)

Gradient and Pseudo-Gradient
Linear Approximation and LSTD
On-Policy Prediction and Control
Off-Policy and Deadly Triad
Two-Scales Algorithms
Deep Q Learning
Continuous Actions

6 Reinforcement Learning: Policy
Approach

Policy Gradient Theorems
Monte Carlo Based Policy Gradient
Actor / Critic Principle
3 SOTA Algorithms

7 Extensions
Total Reward
Average Return
Discount or No Discount?
POMDP
Imitation and Inverse Reinforcement
Learning
More

8 References

38



Sequential Decisions, MDP
and Policies

MDP vs Discrete Control

MDP
State s and action a
Dynamic model:

P
(
s ′|s, a

)
Reward r defined by P(r |s ′, s, a).
Policy Π: at = πt(St , Ht)
Goal:

maxEΠ

[∑
t

Rt

]

Discrete Control
State x and control u
Dynamic model:

x ′ = f (x , u, W )
with W a stochastic perturbation.
Cost: C(x , u, W ).
Control strategy U: ut = u(xt , Ht)
Goal:

min
U

EU

[∑
t

C(xt , ut , Wt)
]

Almost the same setting but with a different vocabulary!
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RL: What Are We Going To See?
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Outline
Operations Research and MDP.
Reinforcement learning and interactions.
More tabular reinforcement learning.
Reinforcement and approximation of value functions.
Actor/Critic: a Policy Point of View
Extensions
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Operations Research and MDP
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Ãt

Model InteractionModel Replay BufferReplay Buffer

Value Functions

Policy

Agent Policy

Final Policy

Behavior Policy Real-Time Policy

How to find the best policy knowing the MDP?
Is there an optimal policy?
How to estimate it numerically?

Finite states/actions space assumption (tabular setting).
Focus on interative methods using value functions (dynamic programming).
Policy deduced by a statewise optimization of the value function over the actions.
Focus on the discounted setting.
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Reinforcement Learning and Interactions
MDP
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At

Interaction Replay Buffer

Value Functions

Policy

Agent Policies

Final Policy

Behavior Policy

How to find the best policy not knowing the MDP?
How to interact with the environment to learn a good policy?
Can we use a Monte Carlo strategy outside the episodic setting?
How to update value functions after each interaction?

Focus on stochastic methods using tabular value functions (Q learning,
SARSA. . . )
Policy deduced by a statewise optimization of the value function over the actions.
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More Tabular Reinforcement Learning
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Can We Do Better?
Is there a gain to wait more than one step before updating?
Can we interact with a different policy than the one we are estimating?
Can we use an estimated model to plan?
Can we plan in real-time instead of having to do it beforehand?

Finite states/actions space setting (tabular setting).
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Reinforcement and Approximation of Value Functions
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Value Functions

Policy

Agent Policies

Final Policy

Behavior Policy

How to Deal with a Large/Infinite states/action space?
How to approximate value functions?
How to estimate good approximation of value functions?

Finite action space setting.
Stochastic algorithm (Deep Q Learning. . . ).
Policy deduced by a statewise optimization of the value function over the actions.
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Actor/Critic: a Policy Point of View
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Could We Directly Parameterized the Policy?
How to parameterize a policy?
How to optimize this policy?
Can we combine parametric policy and approximated value function?

State Of The Art Algorithms (DPG,PPO, SAC. . . )
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Extensions
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Can We Do Something Different in This Setting?
How to deal with the total and average returns?
How to deal with partial observations?
How to learn a policy or an implicit reward by observing an actor?
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Markov Decision Process / Operations Research
MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

MDP / OR
Known MDP model
Focus on the finite horizon setting

GT
t =

T∑
t′=t+1

Rt′

and the discounted setting:

Gγ
t =

∞∑
t′=t+1

γt′−(t+1)Rt′

We will later consider the other settings.
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Operations Research:
Prediction and Planning

Policy

Policy
Finite horizon : emphasis on Markovian policies

Πt(At = at) = πt(At = at |St = st) = πt(at |st)
Discounted return: emphasis on stationary Markovian policies

Πt(At = at) = π(At = at |St = st) = π(at |st)
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Prediction
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Prediction
How to efficently evaluate the quality of a policy

vt,Π(s) = EΠ

 T∑
t′=t+1

γt′−(t+1)Rt′

∣∣∣∣∣∣St = s


when we can ensure that the sum is finite?

vt,Π independent of t in the discounted setting if the policy is stationary.
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Planning
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Policy
How to find a policy π such that∑

s,t
µ(s, t)vt,Π(s)

is as large as possible?
Emphasis on µ(s, t) = 0 if t ̸= 0 and µ(s, 0) = P0(S0 = s0).
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Bellman Equation

vt,Π(s) =
∑

a
πt(a|s)

∑
s′,r

p(s ′, r |s, a)
(
r + γvt+1,Π(s ′)

)
=
∑

a
πt(a|s)r(s, a) + γ

∑
s′

∑
a

p(s ′|s, a)πt(a|s)vt+1,Π(s ′)

Bellman Equation
Link between vt,Π and vt+1,Π.
Straightforward consequence of

Gt =
T∑

t′=t+1
γt′−(t+1)Rt′ = Rt+1 + γ

T∑
t′=t+2

γt′−(t+2)Rt′ = Rt+1 + γGt+1

and thus
E[Gt |St = s] = E[Rt+1|St = s] + γE[E[Gt+1|St+1]|St = s]
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Bellman Operator

T πt : R|S| → R|S|

T πt v(s) =
∑

a
πt(a|s)r(s, a)︸ ︷︷ ︸

rπt (s)

+γ
∑
s′

p(s ′|s, a)
∑

a
πt(a|s)︸ ︷︷ ︸

Pπt (s,s′)

v(s ′)

Bellman Operator
Affine operator from the space of state value functions to the space of state value
functions.
By construction,

vt,Π = T πt vt+1,Π

rπt is the vector of average immediate rewards using policy πt while Pπt is the one
step state transition matrix using policy πt .
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Finite Horizon: Naive Approach

vT
t,Π(s) =

∑
at ,rt+1,st+1,··· ,rT

 T∑
t′=t+1

rt′

PΠ(At = at . . . , RT = rT |St = s)

=
∑

at ,rt+1,st+1,··· ,rT

 T∑
t′=t+1

rt′

 πt(at |s)× · · · × p(sT , rT |sT−1, aT−1)

Finite Horizon: Naive Approach
Exhaustive exploration of the trajectories.
Complexity of order (|A| × |S| × |R|)T−t for the value function at time t.

Complexity can be reduced to (|A| × |S|)T−t by noticing that

vT
t,Π(s) =

∑
at ,st+1,··· ,st−1,at−1

 T∑
t′=t+1

r(st , at)

πt(at |s)× · · · × p(sT |sT−1, aT−1)
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Finite Horizon: Recursive Prediction

vT
T ,Π = 0

vT
t−1,Π = T πt−1vT

t,Π

Finite Horizon: Recursive Prediction
After time T , the finite horizon return GT

t = 0 hence vT
T ,Π = 0 whatever the

policy.
The Bellman equation yields second equation.
Equivalent rewriting

vT
t−1,Π(s) = rπt−1(s) +

∑
s′

Pπt−1(s, s ′)vT
t

Complexity of order only T × |S|2(|A|+ |S|) to compute all the value functions.
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Finite Horizon: Value Iteration

Finite Horizon: Prediction by Value Iteration
input: MDP model ⟨(S,A,R), P⟩ and policy Π
parameter: Horizon T
init: vT

T (s) = 0 ∀ s ∈ S, t = T
repeat

t ← t − 1
for ∀ s ∈ S do

vT
t (s)←

∑
a∈A

πt(a|s)

(
r(s, a) + γ

∑
s′∈S

p(s ′|s, a)vT
t+1(s ′)

)
end

until t = 0
output: Value functions vT

t

Most classical formulation
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Discounted: Naive Approach

vγ
t,Π(s) =

∞∑
t′=t+1

γt′−(t+1)EΠ[Rt′ |St = s] ≃
T∑

t′=t+1
γtEΠ[Rt′ |St = s] = vγ,T

t,Π (s)

vγ,T
t,Π (s) =

∑
at ,st+1,··· ,st−1,at−1

 T∑
t′=t+1

γt′−(t+1)r(st , at)

πt(at |s)× · · ·

× p(sT |st−1, at−1)

Naive approach
Exhaustive exploration of truncated trajectories.
Back to the finite horizon setting. . .

Prop: Control on the error as
∣∣∣vγ

Π − vγ,T
t,Π

∣∣∣
∞
≤ γT+1−t

1− γ
max
r∈R
|r |

Relation between the error ϵ ≃ γT−t and the numerical complexity
C = (|A| × |S|)T−t of order C ≃ ϵ−1.
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Discounted: Recursive Prediction with Naive
Initialization

vγ
T ,Π ≃ vγ,T ′

T ,Π = ṽT ,Π

vγ
t−1,Π = T πt−1vγ

t,Π ≃ ṽt−1,Π = T πt−1 ṽt,Π

Recursive Prediction
Requires an initialization at time T with a horizon T ′.
The Bellman equation yields the second equation.
Complexity of order only T × |S|2(|A|+ |S|) to compute all the value functions
after the initialization of cost (|A| × |S|)T ′−T .
Prop: If the approximation error between vγ

T ,Π and vγ,T ′

T ,Π is bounded by ϵ then
∥vγ

t,Π − ṽt,Π∥∞ ≤ γT−tϵ, ∀t ≤ T

D
isc

ou
nt

ed

61



Operations Research:
Prediction and Planning

Discounted and stationary: Bellman Equation

vΠ = T πvΠ

vΠ(s) =
∑
a

π(a|s)r(s, a) + γ
∑
s ′

∑
a

p(s ′|s, a)π(a|s)vΠ(s ′)

Bellman Equation
Time independent value function vΠ.
Prop: Unique solution of the linear equation vΠ = T πvΠ

Complexity of order (|A|+ |S|)× |S|2 to obtain the solution.
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Discounted and stationary: Recursive Implementation

vΠ = T πvΠ

vk+1 = T πvk with arbitrary v0

Bellman Iteration
Prop: Unique fixed point of the Bellman operator v 7→ T πv .
Prop: The iterates vk+1 = T πvk converges toward vΠ and

∥vk − vΠ∥∞ ≤ γk∥v0 − vΠ∥∞
Complexity of order (k + |A|)|S|2 to obtain the kth iterate.
Exponential decay of the error with respect to the complexity.

D
isc

ou
nt

ed

63



Operations Research:
Prediction and Planning

Bellman Operator and Contraction

∥T πv − T πv ′∥∞ ≤ γ∥v − v ′∥∞
Proof

By definition
∥T πv − T πv ′∥∞ = γ∥Pπ(v − v ′)∥∞

It suffices then to notice that Pπ is a transition matrix, so that∑
j

Pπ
i ,j = 1

and thus |
∑

j
Pπ

i ,jzj | ≤ max |zj |

Consequences
Unicity of the solution of T πv = v .
Linear decay γk of the error with the iterates.
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Bellman Operator and Bellman Equation Solution

vΠ =
 ∞∑

k=0
γk (Pπ)k

 rπ

A Closed Formula for the State Value Function
vΠ = T πvΠ ⇔ (I − γPπ) vΠ = rπ

As Pπ is a transition matrix, its eigenvalues are smaller than 1 and thus (I − γPπ)
is invertible of inverse

(I − γPπ)−1 =
∞∑

k=0
γk (Pπ)k

Could have been obtained without the Bellman equation as the
(
(Pπ)k

)
s,s′

is, by
construction, the probability of being at state s ′ at time k starting from s at time
0 and following Π. D
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Discounted and stationary: Value Iteration

Discounted: Prediction by Value Iteration
input: MDP model ⟨(S,A,R), P⟩, discount factor γ, and stationary policy π
init: ṽ(s) ∀ s ∈ S
repeat

ṽprev ← ṽ
for s ∈ S do

ṽ(s)←
∑
a∈A

π(a|s)

(
r(s, a) + γ

∑
s′∈S

p(s ′|s, a)ṽprev(s ′)

)
end

output: Value function ṽ

When to stop?
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Discounted and stationary: Value Iteration
Discounted: Prediction by Value Iteration
input: MDP model ⟨(S,A,R), P⟩, discount factor γ, and stationary policy π
parameter: δ > 0 as accuracy termination threshold
init: ṽ(s) ∀ s ∈ S
repeat

ṽprev ← ṽ
∆← 0
for s ∈ S do

ṽ(s)←
∑
a∈A

π(a|s)

(
r(s, a) + γ

∑
s′∈S

p(s ′|s, a)ṽprev(s ′)

)
∆← max (∆, |ṽ(s)− ṽprev(s)|)

end
until ∆ < δ
output: Value function ṽ

Prop: when the algorithms stops
∥ṽ − vΠ∥∞ ≤

γ

1− γ
δ
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Discounted and stationary: Value Iteration
Discounted: Prediction by Value Iteration - Gauss-Seidel Version
input: MDP model ⟨(S,A,R), P⟩, discount factor γ, and stationary policy π
parameter: δ > 0 as accuracy termination threshold
init: ṽ(s) ∀ s ∈ S
repeat

∆← 0
for s ∈ S do

ṽprev ← ṽ(s)

ṽ(s)←
∑
a∈A

π(a|s)

(
r(s, a) + γ

∑
s′∈S

p(s ′|s, a)ṽ(s ′)

)
∆← max (∆, |ṽ(s)− ṽprev|)

end
until ∆ < δ
output: Value function ṽ

Gauss-Seidel variation mostly used in practice.
No need to store the previous value function.
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Optimal Policy

Optimal Policy
An optimal policy Π⋆ should be better than any other policies:

∀s,∀t, vt,Π⋆(s) = sup
Π

vt,Π(s)

Several Questions
Do this policy exists?
Is it unique?
How to characterize it?
How to obtain it?

Even the sup above could be an issue if it is not attained!
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Finite Horizon and Optimal Policy
Explicit Recursive Solution

After horizon T , any policy leads to a 0 return.
At time T − 1,

the total return GT is the immediate return at time T and thus
vT ,Π⋆(s) = sup

π(a|s)

∑
a

π(a|s)r(a, s) = sup
a

r(a, s)

the optimal policy π⋆
T−1 exists and is determistic.

By recursion,
the total return at time t − 1 is the immediate return at time t plus the total return
at time t − 1 and thus

vt−1,Π⋆(s) = sup
π(a|s)

∑
a

π(a|s)
(

r(a, s) +
∑

s′

p(s ′|s, a)vt,Π⋆

)

= sup
a

(
r(a, s) +

∑
s′

p(s ′|s, a)vt,Π⋆

)
the optimal policy π⋆

t−1 exists and is determistic.

Fi
ni

te
Ho

riz
on

71



Operations Research:
Prediction and Planning

Discounted Setting and Optimal Stationary Policy

Heuristic
Optimal policy: vΠ⋆(s) = supπ vΠ(s)
Stationary solution:

vΠ⋆(s) = sup
π

(T πvΠ⋆) (s)

= sup
πt(···|s)

∑
a

π(a|s)
(

r(a, s) + γ
∑
s′

p(s ′|s, a)vΠ⋆(s ′)
)

= sup
a

(
r(a, s) + γ

∑
s′

p(s ′|s, a)vΠ⋆(s ′)
)

Optimal deterministic policy: π⋆(s) ∈ argmax (r(a, s) + γ
∑

s′ p(s ′|s, a)vΠ⋆(s ′)).

Is everything well defined? Yes but one has to be more cautious!
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Optimal Value Function and Bellman Operator

Optimal Value Function
Optimal value function: v⋆(s) = supΠ vΠ(s)
Defined state by state so that it is not necessarily attained by a single Π⋆

Optimal Bellman operator
Similar to the Bellman operator but do not depend on a policy:

T ⋆v(s) = sup
a

(
r(a, s) + γ

∑
s′

p(s ′|s, a)v(s ′)
)

Link between the two
v ≥ T ⋆v implies v ≥ v⋆.
v ≤ T ⋆v implies v ≤ v⋆.
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Optimal Value Function and Bellman Operator

Bellman Operator and Fixed Point
Prop: T ⋆ is a γ-contraction for the sup-norm and thus it exists a unique v⋆⋆ such
that v⋆⋆ = T ⋆v⋆⋆.

Fixed Point and Optimal Value Function
Prop: : v⋆ = v⋆⋆ and is thus the unique fixed point of T ⋆.
Proof: v⋆⋆ = T ⋆v⋆⋆ and thus v⋆⋆ = v⋆ according the link between the optimal
value function and the Bellman operator.

Does this mean something about policies?
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Optimal Policy and Bellman Operator

Bellman Operator and Policy
Prop: For any v , any policy πv satisfying

πv (s) ∈ argmax
a

(
r(a, s) + γ

∑
s′

p(s ′|s, a)v(s ′)
)

is such that T ⋆v(s) = supπ T πv(s) = T πv v(s)

Bellman Operator and Optimal Policy
Prop: Any stationary policy π⋆ satisfying

π⋆(s) ∈ argmax
a

(
r(a, s) + γ

∑
s′

p(s ′|s, a)v⋆(s ′)
)

is optimal.
Proof: Indeed by construction, T ⋆v⋆ = T π⋆v⋆ and thus, as T ⋆v⋆ = v⋆, vπ⋆ = v⋆.
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Optimal Policy and Bellman Operator

Summary
It exists a unique v⋆ such that T ⋆v⋆ = v⋆

∀s, v⋆(s) = supπ vπ(s)
Any policy π⋆ satisfying:

∀s, π⋆(s) ∈ argmax
a

(
r(a, s) + γ

∑
s′

p(s ′|s, a)v⋆(s ′)
)

is optimal as ∀s, vπ⋆(s) = v⋆(s) = supπ vπ(s)

Existence result but not (yet) a constructive algorithm!
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Linear System and Linear Programming

vπ = T πvπ v⋆ = T ⋆v⋆

Explicit Resolution of the Equations?
Prediction:

Simple linear system for vπ.
Already mentionned before. . .
Complexity of order (|A|+ |S|)|S|2.

Planning:
More complex linear programming system for v⋆ due to the max operator.
Optimal policy easily deduced from v⋆.
Complexity of order (|A||S|)3.
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Linear Programming

From ∀s, v(s) = sup
a

r(s, a) + γ
∑
s ′

p(s ′|s, a)v(s ′)

to minv
∑
s

µ(s)v(s)

such that ∀(s, a), v(s) ≥ r(s, a) + γ
∑
s ′

p(s ′|s, a)v(s ′)

Different formulations but same solution
Using v ≥ T ⋆v ⇔ v ≥ v⋆, the condition implies v ≥ v⋆

Now for any µ satisfying µ(s) > 0,
∑

s µ(s)v(s) ≥
∑

s µ(s)v⋆(s) as soon as the
condition is satisfied, hence v⋆ is a solution.
If for any state v(s) > v⋆(s) then

∑
s µ(s)v(s) >

∑
s µ(s)v⋆(s) and thus v⋆ is the

unique minimizer.
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Primal Problem

Primal: minv
∑
s

µ(s)v(s)

such that ∀(s, a), v(s) ≥ r(s, a) + γ
∑
s ′

p(s ′|s, a)v(s ′)

Some properties
Can be solved with a linear programming solver.
Unicity of solution (and thus independence with respect to µ) can be proved
without using v⋆.

Proof: let v1 a solution for µ1 and v2 a solution for µ2 then min(v1, v2) satifies the
constraints. Furthermore if exists v2(s) < v1(s) then min(v1, v2) is a strictly better
solution for µ2 which is impossible.
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Dual Problem

Primal: minv
∑
s

µ(s)v(s)

such that ∀(s, a), v(s) ≥ r(s, a) + γ
∑
s ′

p(s ′|s, a)v(s ′)

Dual: max
λ(s,a)≥0

∑
s,a

λ(s, a)r(s, a)

such that ∀s,
∑
a

λ(s, a) = µ(s) + γ
∑
s ′,a

p(s|s ′, a)λ(s ′, a)

Derivation
Usual derivation through the Lagrangian:

L(v , λ) =
∑

s
µ(s)v(s) +

∑
s,a

λ(s, a)

r(s, a) + γ
∑
s′,a

p(s|s ′, a)v(s ′)− v(s)


Strong duality as Slater condition holds when γ < 1 with v = 1+ϵ

1−γ maxs,a r(s, a).
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Dual and Interpretation

Dual: max
λ(s,a)≥0

∑
s,a

λ(s, a)r(s, a)

such that ∀s,
∑
a

λ(s, a) = µ(s) + γ
∑
s ′,a

p(s|s ′, a)λ(s ′, a)

Interpretation : max
π

∞∑
k=0

γk ∑
s,a

P(St = a, At = a|S0 ∼ µ, π) r(s, a)

Interpretation in terms of policy
For any feasible λ, define u(s) =

∑
a λ(s, a) and the policy π(a|s) = λ(s, a)/u(s).

Prop: u = (Id− γPπ)µ =
∑∞

k=0 γk (Pπ)k µ.
Prop: λ(s, a) = π(a|s)u(s) =

∑∞
k=0 γkP(St = a, At = a|S0 ∼ µ, π)

Conversely for any π they is a feasible λ.
Any optimal λ⋆ (and thus policy) satisfies λ⋆(s, a) = 0 if
v⋆(s) > r(s, a) + γ

∑
s′ p(s ′|s, a)v⋆(s ′) (optimal policy support)

D
isc

ou
nt

ed

82



Operations Research:
Prediction and Planning

Outline

1 Sequential Decisions, MDP and Policies
Decision Process and Markov Decision
Process
Returns and Value Functions
Prediction and Planning
Operations Research and
Reinforcement Learning
Control
Survey

2 Operations Research: Prediction and
Planning

Prediction and Bellman Equation
Prediction by Dynamic Programming
and Contraction
Planning, Optimal Policies and
Bellman Equation
Linear Programming
Planning by Value Iteration
Planning by Policy Iteration
Optimization Interpretation
Approximation and Stability
Generalized Policy Iteration

Episodic and Infinite Setting
3 Reinforcement Learning: Prediction and

Planning in the Tabular Setting
Prediction with Monte Carlo
Planning with Monte Carlo
Prediction with Temporal Differencies
Link with Stochastic Approximation
Planning with Value Iteration
Planning with Policy Improvement
Exploration vs Exploitation

4 Reinforcement Learning: Advanced
Techniques in the Tabular Setting

n-step Algorithms
Eligibility Traces
Off-policy vs on-policy
Bandits
Model Based Approach
Replay Buffer and Prioritized Sweeping
Real-Time Planning

5 Reinforcement Learning: Approximation
of the Value Functions

Approximation Target(s)

Gradient and Pseudo-Gradient
Linear Approximation and LSTD
On-Policy Prediction and Control
Off-Policy and Deadly Triad
Two-Scales Algorithms
Deep Q Learning
Continuous Actions

6 Reinforcement Learning: Policy
Approach

Policy Gradient Theorems
Monte Carlo Based Policy Gradient
Actor / Critic Principle
3 SOTA Algorithms

7 Extensions
Total Reward
Average Return
Discount or No Discount?
POMDP
Imitation and Inverse Reinforcement
Learning
More

8 References

83



Operations Research:
Prediction and Planning

Finite Horizon
Finite Horizon: Planning by Value Iteration
input: MDP model ⟨(S,A,R), P⟩
parameter: Horizon T
init: vT

T (s) = 0 ∀ s ∈ S, t = T
repeat

t ← t − 1
for s ∈ S do

vT
t (s)← max

a∈A

(
r(s, a) + γ

∑
s′∈S

p(s ′|s, a)vT
t+1(s ′)

)
end

until t = 0

output: Deterministic policy πt(s) ∈ argmax
a∈A

(
r(s, a) + γ

∑
s′∈S

p(s ′|s, a)vT
t+1(s ′)

)

Algorithm used to prove the existence of an optimal policy.
No necessarily unique as argmax may not be unique.
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Optimal Value Function, Fixed Point and Contraction

v⋆ = T ⋆v⋆ and ∥T ⋆v − T ⋆v ′∥∞ ≤ γ∥v − v ′∥∞
=⇒ vk+1 = T ⋆vk → v⋆

Bellman Operator
Properties of Optimal Bellman Operator:

v⋆ is a fixed point of T ⋆.
T ⋆ is a γ-contraction for the ∥ · ∥∞ norm.

Classical fixed point theorem setting.
Practical algorithm to approximate v⋆.
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Value Iteration Algorithm
Discounted: Value Iteration Planning
input: MDP model ⟨(S,A,R), P⟩, and discount factor γ
parameter: δ > 0 as accuracy termination threshold
init: ṽ(s) ∀ s ∈ S
repeat

ṽprev ← ṽ
∆← 0
for s ∈ S do

ṽ(s)← max
a∈A

r(s, a) + γ
∑
s′∈S

p(s ′|s, a)ṽprev(s ′)

∆← max (∆, |ṽ(s)− ṽprev(s)|)
end

until ∆ < δ
output: Value function ṽ

Same convergence criterion (and similar proof) than in the planning case.
Which policy? D
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Value Iteration Algorithm
Discounted: Value Iteration Planning
input: MDP model ⟨(S,A,R), P⟩, and discount factor γ
parameter: δ > 0 as accuracy termination threshold
init: ṽ(s) ∀ s ∈ S
repeat

ṽprev ← ṽ
∆← 0
for s ∈ S do

ṽ(s)← max
a∈A

r(s, a) + γ
∑
s′∈S

p(s ′|s, a)ṽprev(s ′)

∆← max (∆, |ṽ(s)− ṽprev(s)|)
end

until ∆ < δ

output: Deterministic policy π̃(s) ∈ argmax
a

r(s, a) + γ
∑
s′∈S

p(s ′|s, a)ṽ(s ′)

Natural idea: define a policy using the argmax of the existence proof.
Do we have a convergence guarantee on the resulting policy?
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Value and argmax Policy

π̃(s) ∈ argmax
a

r(s, a) + γ
∑
s ′

p(s ′|s, a)ṽ(s ′)

=⇒ ∥vπ̃ − v⋆∥∞ ≤
2γ

1− γ
∥ṽ − v⋆∥∞

Value and argmax Policy
Bound on the loss of the final policy!
Rely on the fact that, by construction, T π̃ ṽ = T ⋆ṽ
Proof:

∥vπ̃ − v⋆∥∞ = ∥T π̃vπ̃ − T π̃ ṽ + T ⋆ṽ − T ⋆v⋆∥∞
≤ ∥T π̃vπ̃ − T π̃ ṽ∥∞ + ∥T ⋆ṽ − T ⋆v⋆∥∞
≤ γ∥vπ̃ − ṽ∥∞ + γ∥ṽ − v⋆∥∞
≤ γ∥vπ̃ − v⋆∥∞ + 2γ∥ṽ − v⋆∥∞
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Value Iteration Algorithm
Discounted: Value Iteration Planning
input: MDP model ⟨(S,A,R), P⟩, and discount factor γ
parameter: δ > 0 as accuracy termination threshold
init: ṽ(s) ∀ s ∈ S
repeat

ṽprev ← ṽ
∆← 0
for s ∈ S do

ṽ(s)← max
a∈A

r(s, a) + γ
∑
s′∈S

p(s ′|s, a)ṽprev(s ′)

∆← max (∆, |ṽ(s)− ṽprev(s)|)
end

until ∆ < δ

output: Deterministic policy π̃(s) ∈ argmax
a

r(s, a) + γ
∑
s′∈S

p(s ′|s, a)ṽ(s ′)

Prop: ∥vπ̃ − v⋆∥∞ ≤
2γ

1− γ
δ
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From State Value to State-Action Value Functions

vπ(s) = Eπ

[∑
k

γkRt |S0 = s

]

T πv(s) =
∑

a

π(a|s)

(
r(s, a) + γ

∑
s′

p(s ′|s, a)v(s ′)

)
T ⋆v(s) = max

a
r(s, a) + γ

∑
s′

p(s ′|s, a)v(s ′)

qπ(s, a) = Eπ

[∑
k

γkRt |S0 = s, A0 = a

]

T πq(s, a) = r(s, a) +
∑

s′

p(s ′|s, a)
∑

a

π(a|s ′)q(s ′, a)

T ⋆q(s, a) = r(s, a) + γ
∑

s′

p(s ′|s, a) max
a

q(s ′, a)

Two equivalent point of view?
Everything could have been defined using the state-action point of view.
Knowing vπ is equivalent to knowing qπ as

vπ(s) =
∑

a
π(s|a)qπ(s, a) and qπ(s, a) = r(s, a) + γ

∑
s′

p(s ′|s, a)vπ(s ′).
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State-Action Bellman Operators

T πq(s, a) = r(s, a) + γ
∑
s′

p(s ′|s, a)
∑

a
π(a|s ′)q(s ′, a)

T ⋆q(s, a) = r(s, a) + γ
∑
s′

p(s ′|s, a) max
a

q(s ′, a)

Properties
Prop: T π and T ⋆ are γ contractions for the ∥ · ∥∞ norm.
Prop: qπ is the unique solution of T πq = q
Prop: q⋆ defined q⋆(s, a) = supπ qπ(s, a) is the unique solution of q = T ⋆q and is
attained for any policy π⋆ satisfying π⋆(s) ∈ argmax q⋆(s, a).
Prop: Any such policy satisfies: vπ⋆(s) = qπ⋆(s, π⋆(s)) = v⋆(s). D
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State-Action Value Iteration Algorithm
Discounted: Planning by State-Action Value Iteration
input: MDP model ⟨(S,A,R), P⟩, and discount factor γ
parameter: δ > 0 as accuracy termination threshold
init: q̃(s, a)∀ (s, a) ∈ S ×A
repeat

q̃prev ← q̃
∆← 0
for s ∈ S do

for a ∈ A do

q̃(s, a)←

(
r(s, a) + γ

∑
s′∈S

p(s ′|s, a) max
a′

q̃prev(s ′, a′)

)
∆← max (∆, |q̃(s, a)− q̃prev(s, a)|)

end
end

until ∆ < δ
output: Deterministic policy π̃(s) ∈ argmax

a
q̃(s, a)

Same complexity but more storage than with state value function. . .
but will be useful later!
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Value Fonction vs Policy Point of View

v , q −→ Π or Π −→ v , q?

Planning
Focus so far on value-fonction point of view!
Heuristic: find a good approximation of the optimal value function and deduce a
good policy.
Can we work directly on the policy itself?

For prediction, only the policy point of view makes sense!
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Toward Policy Improvement

∀s, π+(s) ∈ argmax
a

qπ(s, a) =⇒ ∀vπ+(s) ≥ vπ(s)

Classical Policy Improvement Lemma
Prop: Given a policy π and its q value-function, one can obtain a better policy
with the argmax operator.
Prop: If no improvement is possible, it means that π is already optimal.
Proof: Use T π+vπ = T ⋆vπ ≥ T πvπ = vπ to prove (T π+)k vπ ≥ vπ which implies
the result by letting k goes to +∞.

Leads to a sequential improvement algorith. . .
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Policy Improvement Lemma

E[vπ′(S0)]− E[vπ(S0)] =
∞∑

k=0
γkEπ′

[∑
a

π′(a|St) (qπ(St , a)− vπ(St))
]

=
∞∑

k=0
γkEπ′

[∑
a

(π′(a|St)− π(a|St)) qπ(St , a)
]

A Generic Improvement Lemma
No assumptions on π and π′!
Easy proof.
Imply the previous lemma as maxa Qπ(s, a)− vπ(s) ≥ 0.
Show that improvement choices are possible.

Will prove to be useful later. . . Ep
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Policy Iteration
Discounted: Planning by Policy Iteration
input: MDP model ⟨(S,A,R), P⟩, and discount factor γ
parameter: Initial policy π̃
repeat

Compute qπ̃.
for s ∈ S do

for a ∈ A do
p̃ol(s)← argmax qπ̃(s, a)

end
end

output: Deterministic policy π̃.

Some issues
How to obtain qπ?
When to stop?
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Policy Iteration
Discounted: Planning by Policy Iteration
input: MDP model ⟨(S,A,R), P⟩, and discount factor γ
parameter: Initial policy π̃
repeat

stable ← 0
Compute qπ̃.
for s ∈ S do

old − action← π̃(s)
π̃(s)← argmax qπ̃(s, a)
if π̃(s) ̸= old − action then

stable ← 0
end

end
until stable ==1
output: Deterministic policy π̃.

Finite Setting
Finite set of action-states implies a finite set of policy.
Convergence of the algorithm in finite time!
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Policy Iteration
Convergence Rate

Crude analysis:
Bound after k steps of the algorithm

∥vπk − v⋆∥∞ ≤ γ∥vπk−1 − v⋆∥∞ ≤ γk∥vπ0 − v⋆∥∞

∥vπk − v⋆∥∞ ≤
γ

1− γ
∥vπk − vπk−1∥∞

Not much better than value iteration but much higher complexity as qπk is obtained
by solving the Bellman equation!

Much faster in practice. . .
Clever analysis (Putterman):

Under some mild assumptions and provided ∥Pπk − P⋆∥ ≤ K∥vπk − v⋆∥∞ then

∥vπk − v⋆∥∞ ≤
Kγ

1− γ
∥vπk−1 − v⋆∥2

∞

May explain the better convergence in practice!
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Value Iteration: (Relaxed) First Order Method

Value Iteration
Iteration:

vk = T ⋆vk−1

= vk−1 + (T ⋆ − Id) vk−1

Relaxation
vk = vk−1 − α (Id− T ⋆) vk−1

can be proved to converge for any α < 2
1+γ .

Can be interpreted as a first order method with pseudo-gradient (T ⋆ − Id) vk−1.
No function corresponding to this gradient!

Is there a better choice for α than α = 1?
No as the resulting operator is a contraction of constant

|1− α|+ αγ ≥ γ
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Policy Iteration: Newton-Raphson Method
Policy Iteration

Explicit iteration:
Solve vπk−1 = T πk vπk−1

Let πk such that T πk vπk−1 = T ⋆vπk−1

Implicit iteration on vπk :
vπk = (Id− γPπk )−1rπk

= (Id− γPπk )−1 (rπk + (γPπk − Id)vπk−1 + (Id− γPπk )vπk−1

)
= vπk−1 − (Id− γPπk )−1(Id− T πk )vπk−1

Can be interpreted as a second order method with pseudo-gradient
(Id− T πk )vπk−1 = (Id− T ⋆)vπk−1 and pseudo-Hessian (Id− γPπk ).

Not a formal analysis but give a good insight on the better convergence of policy
iteration. D
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Stability of Value and Policy Iteration

Ideal Value and Policy Iteration?
Iterative algorithms.
Convergence proofs assume perfect computation.
What happens if we make a (small) error at each step?

Particularly important for Policy Iteration in which one resolves a linear system at
each step!
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Value Iteration Stability

vk = T ⋆vk−1 + ϵk−1

=⇒ ∥vk − v⋆∥∞ ≤ γk∥v0 − v⋆∥∞ +
max

0≤k′<k
∥ϵk′∥∞

1− γ

=⇒ ∥vπk − v⋆∥∞ ≤
2γk+1

1− γ
∥v0 − v⋆∥∞ +

2γ max
0≤k′<k

∥ϵk′∥∞

(1− γ)2

Stability with respect to the error
Proof relies on the contraction property of T ⋆ (hence similar results for T π).

Error term
max

0≤k′<k
∥ϵk′∥∞

1−γ can be replaced by
k−1∑
k′=0

γk−k′∥ϵk′∥∞

Convergence if ∥ϵk∥∞ tends to 0.
Remains in a neighborhood of the optimal solution if ∥ϵk∥∞ is bounded.
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Policy Iteration

vk−1 = vπk−1 + ϵk−1 and T πk vk−1 = T ⋆vk−1

=⇒ ∥vπk − v⋆∥∞ ≤ γk∥vπ0 − v⋆∥∞ +
γ(2− γ) max

0≤k′<k
∥ϵk′∥∞

(1− γ)2

Stability with respect to the error
Quite involved proof but crude results.

Error term
max

0≤k′<k
∥ϵk′∥∞

1−γ can be replaced by
k−1∑
k′=0

γk−k′∥ϵk′∥∞

Convergence if ∥ϵk∥∞ tends to 0.
Remains in a neighborhood of the optimal solution if ∥ϵk∥∞ is bounded.

Policy Iteration only requires an approximate estimate of vπk−1 , for instance
obtained by Bellman iteration. . .
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Modified Policy Iteration
Discounted: Planning by Generalized Policy Iteration
input: MDP model ⟨(S,A,R), P⟩, and discount factor γ
parameter: Initial q
repeat

for s ∈ S do
π̃(s)← argmax

a
q(s, a)

end
repeat

qprev → q
for (s, a) ∈ S ×A do

q(s, a)← r(s, a) + γ
∑
s,a′

p(s ′|s, a)π̃(a′|s)qprev(s, a)

end
output: Deterministic policy π̃.

Algorithm driven by q.
Flexibility in the number of prediction steps after each policy improvement steps.
Special cases:

Large number: Policy Iteration with (small) error.
One: Value Iteration!
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MPI Analysis

T πk vk = T ⋆vk and vk+1 = (T πk )mk vk

=⇒ ∥vk+1 − v⋆∥∞ ≤ γ

(
1− γmk

1− γ
∥Pπk − P⋆∥+ γmk

)
∥vk − v⋆∥∞

Convergence Results
Quite technical proof.
Valid only under the mild assumption T ⋆v0 ≥ v0.
Very fast decay provided ∥Pπk − P⋆∥ is small.

No stability with arbitrary errors. . .
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Generalized Policy Iteration
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General Policy Iteration
Two simultaneous interacting processes:

One forcing the policy to correspond to the current value function (Policy
Improvement)
One trying to male the current value function coherent with the current policy
(Policy Evaluation)

Several variations possible on the two processes.

In GPI, the policy is driven by the value function.
Typically, stabilizes only if one reaches the optimal value/policy pair.
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State Update Order
Discounted: Prediction by Value Iteration - State Update Order
input: MDP model ⟨(S,A,R), P⟩, discount factor γ, and stationary policy π
init: ṽ(s)∀ s ∈ S
repeat

ṽprev ← ṽ
for s ∈ S ′ ⊂ S do

ṽ(s)←
∑
a∈A

π(a|s)

(
r(s, a) + γ

∑
s′∈S

p(s ′|s, a)ṽprev(s ′)

)
end

output: Value function ṽ

Classical strategies
S ′ = S: classical iteration
S ′ = {s}: Gauss-Seidel
S ′ = {s, |T π ṽ(s)− ṽ(s)| > ϵ}: Prioritized sweeping

Converges provided all states are visited infinitely often. . .
Gain in term of storage or focus on most interesting states. . .
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Policy Improvement Variation
Greedy : π(s) ∈ argmax

a
q(s, a)⇐⇒ π(·|s) ∈ argmax

π̃

∑
a

π̃(a)q(s, a)

Restricted : π(·|s) ∈ argmax
π̃∈Π̃ϵ

∑
a

π̃(a)q(s, a)

Regularized : π(·|s) ∈ argmax
π̃

∑
a

π̃(a)q(s, a) + ϵP(π̃)

Classical Variations
ϵ-greedy: Restrict π̃ to the set of policy s.t. π̃(a) ≥ ϵ

Explicit solution: π(a|s) = ϵ + (1− ϵ) argmax q(s, a)
Policy improvement property if ϵ decreases.

Soft-max: Regularize by ϵH(π̃) where H is the entropy.
Explicit solution: π(a|s) ∝ exp(q(s, a)/ϵ)
No classical policy improvement. . .

Tends to greedy when ϵ goes to 0.
Turn out to be interesting later...
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Episodic Setting

Eπ

[
min

t
{t,∀t ′ ≥ t, Rt′ = 0}

]
< H ⇒ ∥T v − T v ′∥ξ ≤

H − 1
H ∥v − v ′∥ξ

Proper Policy
A policy π is said to be H-proper if Eπ

[
min

t
{t,∀t ′ ≥ t, Rt′ = 0}

]
≤ H <∞

⇔ average duration of an episode using this policy less than a finite horizon H!

Bellman operators
If a policy π is H-proper, the Bellman operator T π is a (H − 1)/H- contraction
for a weighted sup-norm.
If all the policies are H-propers, the optimal Bellman operator T ⋆ is a
(H − 1)/H-contraction for a weighted sup-norm.

Under those strong assumptions, episodic setting ≃ discounted setting with
γ = (H − 1)/H.
Some results can be obtained under the much milder assumption that there is one proper policy
and that any non-proper policy has at least one state for which vπ(s) = −∞.
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Infinite Setting
No issue with the rewards, as only the expectation is used.
All the theory remains valid if the states are countable, but there is an issue in the
algorithms, as we need to store/update an infinite number of states.
The proof of existence of an optimal policy requires the max to be attained, which
cannot be ensured in an infinite (even countable setting).

Some results. . .
Thm: If S is countable, there exists an ϵ-optimal (stationary) policy for any ϵ > 0.
Thm: If S is a Polish space (completely metrizable topological space),

there exists a (P, ϵ)-optimal (stationary policy) for any ϵ > 0.
if each As is countable, there exists an ϵ-optimal (stationary) policy for any ϵ > 0.
if each As is finite, there exists an optimal (stationary) policy.
if each As is a compact metric space, r(s, a) is a bounded u.s.c. function on As and
p(B|s, a) is continuous in a for each Borel subset B and any s, there exists an
optimal (stationary) policy.

Mainly technical difficulties. . .
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Reinforcement Learning

From
MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction
to

MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

From Probability to Statistics?
What to do if one has no knowledge of the underlying MDP?
Only information through interactions!
Prediction? Planning?
Focus on the discounted setting
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Monte Carlo, i.e. Just Play!

Most simple way to evaluate a policy.

Just Play Following Policy Π
Play N episodes following the policy.
During each episode, compute the (discounted) gain.
Compute the average gain.

What is computed?
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Average Gain or Value Function

E[G0] vs vt,Π(s) = E[Gt |St = s]

Prediction as Value Function Evaluation
Not the same goal.
By construction,

E[G0] =
∑

s
µ0(s)vt,Π(s)

Much easier to compute the average gain than the value function (even if we use
a stationary policy)

Average gain is nevertheless the most classical way to evaluate a policy (with a
single number).
Implicit episodic setting if we do not want to use approximated gain.
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Average Gain Estimation

Episodic: Evaluation by MC
input: MDP environment, initial state distribution µ0, policy Π and discount factor γ
parameter: Number of episodes N
init: V = 0 ,n = 0
repeat

n← n + 1
t ← 0
G ← 0
Pick initial state S0 following µ0
repeat

Pick action At according to π(·|St)
G → G + γtRt+1
t ← t + 1

until episod ends at time T
V ← V + G

until n == N
V ← V /N
output: Average gain V
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Monte Carlo Prediction

How to estimate vt,Π?

Just Play Following Policy Π
Play N episodes following the policy.
During episode, record St and Rt .
After each episode, compute recursively for each time t the gain Gt .
Estimate vt,Π(s) by the average Gt over all trajectories such that St = s

May require a lot of game to have a non empty set for each state s at
each time t
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Monte Carlo Prediction

How to estimate vΠ for a stationary policy?

Just Play Following Policy Π
Play N episodes following the policy.
During each episode, record St and Rt .
After each episode, compute recursively for each time t the gain Gt .
Estimate vΠ(s) by the average over all trajectories of all Gt such that St = s,
whatever t.

The same state may be reached several time during a single episode. . .
First-visit variant: Use only the first visit of s for each episode.
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Monte Carlo Prediction
Episodic: Prediction by MC
input: MDP environment, initial state distribution µ0, policy Π and discount factor γ
parameter: Number of episodes N
init: ∀s, V (s), n = 0, N(s) = 0
repeat

n← n + 1
t ← 0
Pick initial state S0 following µ0
repeat

(If First-visit) N(St)← N(St) + 1
Pick action At according to π(·|St)
Record Rt+1, St+1
t ← t + 1

until episod ends at time T
GT+1 = 0
t → T + 1
repeat

t ← t − 1
Compute Gt = Rt+1 + γGt+1
(If First-visit) V (St) = V (St) + Gt

until t = 0
until n == N
for s ∈ S do

V (s)← V (s)/N(s)
end
output: Value function V
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Monte Carlo Prediction Analysis

First-Visit Variant Analysis
Straightforward analysis as all the used values for a given state s are independent.
Variance of order 1/N(s) where N(s) is the number of episod where s is visited.
Convergence if the number of visit goes to ∞.
Strong assumption is practice as some states may not be visited by a given policy
(if we cannot play on the initial state).

Every-visit works. . . but not necessarily better!
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Monte Carlo Planning

Can we use a MC approach to find a good policy?

A First Attempt
Estimate vπ(s) by Vπ(s) using MC.
Compute Qπ(s, a) = r(s, a) + γ

∑
s′ p(s ′|s, a)Vπ(s)

Enhance the current policy by setting π(s) = argmaxa Qπ(s, a)

Inspired by the Operations Research results. . .
But unusable as r and p are unknown!
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Monte Carlo Planning

A Second Attempt
Estimate qπ(s, a) by Qπ(s, a) using MC.
Enhance the current policy by setting π(s) = argmaxa Qπ(s, a)

Requires that N(s, a) the number of times that an episode contains the state s
followed by action a goes to ∞.
Impossible with a deterministic policy!
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Monte Carlo Planning
Classical Exploratory Policies. . .

Stochastic policies ensuring that any action can occurs at any state.
ϵ-exploratory policy: use a determistic policy and replace it with a random action
with probability ϵ.
Gibbs policy: use a policy where π(a|s) ∝ eG(a,s) > 0.

A Final Attempt
Start from an exploratory policy.
Estimate qπ(s, a) by Qπ(s, a) using MC.
Enhance the current policy while remaining a exploratory policy.

Last step is not straightforward. . .
except for ϵ-deterministic policy for which the ϵ-exploratory policy with base
policy π(s) = argmaxa Qπ(s, a) works.
No convergence proof.

Ep
iso

di
c

129



Reinforcement Learning:
Prediction and Planning in
the Tabular Setting

Outline

1 Sequential Decisions, MDP and Policies
Decision Process and Markov Decision
Process
Returns and Value Functions
Prediction and Planning
Operations Research and
Reinforcement Learning
Control
Survey

2 Operations Research: Prediction and
Planning

Prediction and Bellman Equation
Prediction by Dynamic Programming
and Contraction
Planning, Optimal Policies and
Bellman Equation
Linear Programming
Planning by Value Iteration
Planning by Policy Iteration
Optimization Interpretation
Approximation and Stability
Generalized Policy Iteration

Episodic and Infinite Setting
3 Reinforcement Learning: Prediction and

Planning in the Tabular Setting
Prediction with Monte Carlo
Planning with Monte Carlo
Prediction with Temporal Differencies
Link with Stochastic Approximation
Planning with Value Iteration
Planning with Policy Improvement
Exploration vs Exploitation

4 Reinforcement Learning: Advanced
Techniques in the Tabular Setting

n-step Algorithms
Eligibility Traces
Off-policy vs on-policy
Bandits
Model Based Approach
Replay Buffer and Prioritized Sweeping
Real-Time Planning

5 Reinforcement Learning: Approximation
of the Value Functions

Approximation Target(s)

Gradient and Pseudo-Gradient
Linear Approximation and LSTD
On-Policy Prediction and Control
Off-Policy and Deadly Triad
Two-Scales Algorithms
Deep Q Learning
Continuous Actions

6 Reinforcement Learning: Policy
Approach

Policy Gradient Theorems
Monte Carlo Based Policy Gradient
Actor / Critic Principle
3 SOTA Algorithms

7 Extensions
Total Reward
Average Return
Discount or No Discount?
POMDP
Imitation and Inverse Reinforcement
Learning
More

8 References

130



Reinforcement Learning:
Prediction and Planning in
the Tabular Setting

Advanced Implementation of Monte Carlo Prediction

Vπ(St)← Vπ(St) + α(N(St))(Gt − Vπ(St))

On-Line Monte Carlo
Average for a given state can be updated each time we have the gain Gt for a
state St .
Just use α(N) = 1/N and increment N(St).
No need to record the values between episodes. . .

We still need to wait until the end of each episode to compute Gt .
Can we do better?
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Advanced MC Prediction
Episodic: Prediction by MC
input: MDP environment, initial state distribution µ0, policy Π and discount factor γ
parameter: Number of episodes N
init: ∀s, V (s), n = 0, N(s) = 0
repeat

n← n + 1
t ← 0
Pick initial state S0 following µ0
repeat

(If First-visit) N(St)← N(St) + 1
Pick action At according to π(·|St)
Record Rt+1, St+1
t ← t + 1

until episod ends at time T
GT+1 = 0
t → T + 1
repeat

t ← t − 1
Compute Gt = Rt+1 + γGt+1
(If First-visit) V (St) = V (St) + 1

N(St ) (Gt − V (St))
until t = 0

until n == N
output: Value function V

We still need to wait until the end of each episode to compute Gt .
Can we do better?
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Prediction with Temporal Differencies

From Vπ(St)← Vπ(St) + α(N(St))(Gt − Vπ(St))
to Vπ(St)← Vπ(St) + α(N(St)) (Rt+1 + γVπ(St+1)− Vπ(St))︸ ︷︷ ︸

δt

Bootstrap Strategy
Replace Gt by an instantaneous estimate Rt+1 + γVπ(St+1).
Amounts to replace γRt+2 + γ2Rt+1 by an approximation of its expectation given
St+1: vπ(St+1).
Bootstrap as we use the current estimate Vπ(St+1) instead of the true value.
δt = Rt+1 + γVπ(St+1)− Vπ(St) is called a temporal difference.

No need to wait until the end of the episodes!
Can be used in the discounted setting. D
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TD Prediction

Discounted: Prediction by TD
input: MDP environment, initial state distribution µ0, policy Π and discount factor γ
parameter: Number of step T
init: ∀s, V (s), n = 0, N(s) = 0, t ′ = 0
repeat

t ← 0
Pick initial state S0 following µ0
repeat

N(St)← N(St) + 1
Pick action At according to π(·|St)
V (St)← V (St) + α(N(St)) (Rt+1 + γV (St+1)− V (St))
t ← t + 1

until episod ends at time T ′ or t ′ == T
until t ′ == T
output: Value function V

But does this work? D
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Prediction with Temporal Differencies

E[δt |St ]E[Rt+1 + γVπ(St+1)− Vπ(St)|St ] = (T π − Id) Vπ(St)

TD and Bellman Operator
TD as an approximate Policy Iteration:

E[Vπ] (St)← Vπ + α(N(St)) (T π − Id) Vπ(St)
Proof of convergence of this algorithm to a zero of T π − Id, i.e. the fixed point of
T π!
Proof requires a mild assumption of α (satisfied by α(N) = 1/N) and the strong
assumption that N(s) goes to ∞.

MC could be interpreted in a similar way (stochastic approximation) by noticing
that E[Gt − Vπ(St)|St ] = vπ(St)− Vπ(St).
Often use with a constant α
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MC vs TD
Vπ(St)← Vπ(St) + α(N(St))(Gt − Vπ(St))

or Vπ(St)← Vπ(St) + α(N(St)) (Rt+1 + γVπ(St+1)− Vπ(St))︸ ︷︷ ︸
δt

MC vs TD
Both are based on stochastic approximation.
Both converges (under similar assumptions) to the correct value function.
TD does not require to wait until the end of the episode.
No theorical difference in the speed of convergence but often TD is better. . .
Solve different approximate problems when used with a finite set of episodes:

MC compute the empirical gain from any state.
TD compute the value function of the empirical Bellman operator (the one obtained
by using the empirical transition probabilities)

If Vπ is kept constant during an episode
Gt − Vπ(St) =

∑
t′≥T

γt′−tδt
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Stochastic Approximation

θk+1 = θk + αkhk(θk) with hk(θ) = H(θ) + ϵk + ηk

=⇒ θk → {θ, H(θ) = 0}
Stochastic Approximation

Family of sequential stochastic algorithm converging to a zero of a function.
Classical assumptions:

E[ϵk ] = 0, Var [ϵk ] < σ2, and E[∥ηk∥]→ 0,∑
k αk →∞ and

∑
k α2

k <∞,
the algorithm converges if we replace hk by H.

Convergence toward a neighborhood if α is kept constant (as often in practice).
Most famous example are probably Robbins-Monro and SGD.
Proof quite technical in general.
The convergence with H is easy to obtain for a contraction.
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Stochastic Approximation and ODE

From θk+1 = θk + αkhk(θk) with hk(θ) = H(θ) + ϵk + ηk

to d θ̃

dt = H(θ̃)

ODE Approach
General proof showing that the algorithm converges provided the ODE converges.
Rely on the rewriting the equation

θk+1 − θk
αk

= hk(θk) = H(θk) + ϵk + ηk

αk can be interpreted as a time difference allowing to define a time tk =
∑

t′≤t αk .
θ(t) is piecewise affine and defined through its derivative at time t ∈ (tk , tk+1).
This piecewise function remains close to any solution of the ODE starting from θk
for an arbitrary amount of time provided k is large enough.

More general proofs based on martingale. 139
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Asynchronous Update

From θk+1 = θk + αkhk(θk) with hk(θ) = H(θ) + ϵk + ηk

to ∀i , θk+1(i) = θk(i) + αk(i)hk(θk)(i)

Asynchronous Update
Componentwise action on θ.
Not necessarily the same stepsize αk(i) for all components.
αk(i) = 0 is permitted!
Previous results hold provided for every component i ,

∑
k αk(i)→∞ and∑

k α2
k(i) <∞,

Exact setting of TD approximation!
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Planning with Temporal Differencies
A State Value Function Attempt

V⋆ is the fixed point of T ⋆.
Approximate it as the zero of T ⋆ − Id.
By construction

T ⋆v(St) = max
a

E[RT+1 + γv(St+1)|St , a]
Not an expectation!

A State-Action Value Function Attempt
q⋆ is the fixed point of T ⋆.
Approximate it as the zero of T ⋆ − Id.
By construction

T ⋆q(St , At) = E
[
Rt+1 + γ max

a
q(St+1, a)

∣∣∣St , At
]

An expectation! D
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Q Learning

Discounted: Planning by Q-Learning
input: MDP environment, initial state distribution µ0, policy Π and discount factor γ
parameter: Number of step T
init: ∀s, a, Q(s, a), N(s, a) = 0, n=0, t ′ = 0
repeat

t ← 0
Pick initial state S0 following µ0
repeat

N(St)← N(St) + 1
Pick action At according to π(·|St)
Q(St , At)← Q(St , At) + α(N(St , At))

(
Rt+1 + γ max

a
Q(St+1, a)− Q(St , At)

)
t ← t + 1
t ′ ← t ′ + 1

until episod ends at time T ′ or t ′ == T
until t ′ == T
output: Deterministic policy π̃(s) = argmaxa Q(s, a) D
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Planning with Q Learning

Q(St , At) = Q(St , At) + α(N(St , At))

Rt+1 + γ max
a

Q(St+1, a)− Q(St , At)︸ ︷︷ ︸
δt


Q-Learning

Update is independent of the policy Π.
Convergence of the Q-value function provided the policy is such that N(s, a)
tends to ∞ for any state and any action.
Implies a convergence of the policy.
Relies on temporal difference.

Most classical (tabular) planning algorithm!
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Planning with Policy Improvement

from Q(St , At) = Q(St , At) + α(N(St , At))

Rt+1 + γ max
a

Q(St+1, a)− Q(St , At)︸ ︷︷ ︸
δt


to Q(St , At) = Q(St , At) + α(N(St , At))

Rt+1 + γQ(St+1, At+1)− Q(St , At)︸ ︷︷ ︸
δt


Π(St) = argmax

a
Q(St , a)(plus exploration)

Policy Improvement
More emphasis on the policy with a link between the policy used to play and the
optimized policy.
Almost equivalent to use the current policy in the Q-Learning algorithm. D
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SARSA

Discounted: Planning by SARSA
input: MDP environment, initial state distribution µ0, policy Π and discount factor γ
parameter: Number of step T
init: ∀s, a, Q(s, a), N(s, a) = 0, n=0, t ′ = 0
repeat

t ← 0 Pick initial state S0 following µ0
repeat

N(St)← N(St) + 1
Pick action At according to π(·|St)
Q(St−1, At−1)← Q(St−1, At−1) + α(N(St−1, At−1)) (Rt + γQ(St , At)− Q(St−1, At−1))
Π(St−1) = argmaxa Q(St−1, a) (plus exploration)
t ← t + 1
t ′ ← t ′ + 1

until episod ends at time T ′ or t ′ == T
until t ′ == T
output: Deterministic policy π̃(s) = argmaxa Q(s, a)

Does this work?
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SARSA and exploration

Π(St) = argmax
a

Q(St , a)(plus exploration)

SARSA and Exploration
No hope of convergence if we do not explore all possible actions (and states).
Impossible if the policy used is deterministic.
Exploration is required!
Most classical choice: ϵ-greedy policy with a decaying ϵ.

Convergence proof is harder than for Q-Learning.
Relies on the similarity in the limit (when ϵ goes to 0) with the Q-Learning
algorithm.
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Q-Learning vs SARSA

How different are they?
In Q-learning, the exploratory policy used is decoupled from the optimized policy.
This exploratory policy may yield low rewards on average.
In SARSA, the two policies are linked with the hope on having higher rewards
during the learning step.
Subtle different behavior even if we modify the exploratory policy in Q-Learning.
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Exploration vs Exploitation

Exploration vs Exploitation
Exploration: explore new policies to be able to discover the best ones.
Exploitation: use good policies to obtain a good return.
Exploration is a requirement.

No tradeoff if we optimize only the final result!
Tradeoff between the two if we consider that the returns during training matters!
Q-learning use the first approach and SARSA try to tackle the second.
Tradeoff if we study a regret: ∑

t
EΠ⋆ [Rt ]− EΠt [Rt ]

which forces us to be good as fast as possible.
No natural definition in the discounted setting.
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Advanced Tabular Reinforcemcent Learning
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Policy
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Final Policy

Behavior Policy

to

MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

Model MDP

Model Env.

Model Agent
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Model InteractionModel Replay BufferReplay Buffer

Value Functions

Policy

Agent Policies

Final Policy

Behavior Policy Real-Time Policy

Core idea: Approximate Bellman Operators with Stochastic Approximation. . .

Advanced Ideas?
Between MC and TD?
Off-policy vs on-policy?
Exploration vs Exploitation?
Model? Replay?
Real-Time Planning?
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n-steps

or or

How many steps before backup?
One step: TD.
As many steps as required to end the episod: MC.
n-steps: n-steps TD.(

T Π
)n

v(s) = EΠ

Rt+1 + γRt+2 + γn−1Rt+n + γnv(St+n︸ ︷︷ ︸
Gt:t+n

)

∣∣∣∣∣∣∣St = s


Family of stochastic approximation algorithms:

V (St)← V (St) + α(N(St)) (Gt:t+n − V (St))
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n-steps TD

or or

V (St)← V (St) + α(N(St)) (Gt:t+n − V (St))

n-steps TD
Convergence for prediction.
Need to be combined with Policy Improvement for planning: n-steps SARSA.
n-steps Q-learning could be an extension of API. . . but this means following the
optimized policy Π. . . i.e. SARSA!

Best convergence often for intermediate n.
No proof beside TD for n > 1! D
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n-steps TD
Discounted: Prediction by n-steps TD
input: MDP environment, initial state distribution µ0, policy Π and discount factor γ
parameter: Number of step T
init: ∀s, a, Q(s, a), N(s, a) = 0, n=0, t ′ = 0
repeat

t ← 0
Pick initial state S0 following µ0
repeat

N(St)← N(St) + 1
Pick action At according to π(·|St)
Q(St−n, At−n)← Q(St−n, At−n) + α(N(St , At)) (Gt−n:t − Q(St , At))
t ← t + 1
t ′ ← t ′ + 1

until episod ends at time T ′ or t ′ == T
until t ′ == T
output: State-Action value function Q
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Expected SARSA

or

Expected SARSA
The policy Π is known so that we can use it in a formula:

Rt + γQ(St , At) −→ Rt + γ
∑

a
π(a|St)Q(St , a)

Make the update independent of the action chosen (and thus of the policy used to
play).
Reduce the variance for a computational cost.
Amount to use the current estimate for V (St). . .
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Expected SARSA
Discounted: Prediction by Expected SARSA
input: MDP environment, initial state distribution µ0, policy Π and discount factor γ
parameter: Number of step T
init: ∀s, a, Q(s, a), N(s, a) = 0, n=0, t ′ = 0
repeat

t ← 0
Pick initial state S0 following µ0
repeat

N(St)← N(St) + 1
Pick action At according to π(·|St)
Q(St , At)← Q(St , At) + α(N(St , At))

(
Rt+1 + γ

∑
a π(a|St)Q(St+1, a)− Q(St , At)

)
t ← t + 1
t ′ ← t ′ + 1

until episod ends at time T ′ or t ′ == T
until t == T
output: State-Action value function Q
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n-steps Tree Backup

n-steps Tree Backup
At each time step, use the expected SARSA average over the action while
replacing the Q value for the picked action by a deeper estimate.
1-step return (Expected Sarsa)

Gt:t+1 = Rt+1 + γ
∑

a
π(a|St+1)Q(St+1, a)

2-step return:
Gt:t+2 = Rt+1 + γ

∑
a ̸=At+1

π(a|St+1)Qt+1(St+1, a)

+ γπ(At+1|St+1)
(

Rt+2 + γ
∑

a
π(a|St+2)Q(St+2, a)

)
= Rt+1 + γ

∑
a ̸=At+1

π(a|St+1)Q(St+1, a) + γπ(At+1|St+1)Gt+1:t+2
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n-steps Tree Backup
1-step return (Expected Sarsa)

Gt:t+1 = Rt+1 + γ
∑

a
π(a|St+1)Q(St+1, a)

2-step return:
Gt:t+2 = Rt+1 + γ

∑
a ̸=At+1

π(a|St+1)Q(St+1, a) + γπ(At+1|St+1)Gt+1:t+2

= Rt+1 + γ
∑

a
π(a|St+1)Q(St+1, a) + γπ(At+1|St+1) (Gt+1:t+2 − Q(St+1, At+1))

Recursive definition of n-step return:
Gt:t+n = Rt+1 + γ

∑
a

π(a|St+1)Q(St+1, a)

+ γπ(At+1|St+1) (Gt+1:t+n − Q(St+1, At+1))
TD update

Q(St−n, At−n) = Q(St−n, At−n) + α(N(St−n, Qt−n)) (Gt−n:t − Q(St−n, At−n))
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Q(σ)

Between and

Sampling or Averaging
Unifying algorithm!
Recursive definition of n-step return:

Gt:t+n = Rt+1 + σGt+1:t+n

+ (1− σ)
(
γ
∑

a
π(a|St+1)Q(St+1, a)

+ γπ(At+1|St+1) (Gt+1:t+n − Q(St+1, At+1))
)
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λ-Return
Averaged n-steps return?

n-step return:
Gt:t+n = Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnV (St+n)

Averaged n-step return: (compound update)

Gω
t =

∞∑
n=1

ωnGt:t+n with
∞∑

i=1
ωn = 1

TD(λ): specific averaging

Gλ
t = (1− λ)

∞∑
n=1

λn−1Gt:t+n

= (1− λ)
T−t∑
n=1

λn−1Gt:t+n + λT−tGt (Episodic)

interpolating between TD (a.k.a TD(0)) and MC for λ = 1.
Can be mixed with tree backup strategies (TB(λ)) D
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λ-return and Temporality

True λ-return
Require to wait until the end of an episode before we can update.
Unusable in a non episodic setting!

Truncated λ-return
Truncated λ-return:

Gλ
t = (1− λ)

H−t∑
n=1

λn−1Gt:t+n + λH−tGt:H

The virtual horizon H may vary during the algorithm.
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λ-return and Temporality

Temporality
n-step return

Gt:t+n = Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnV (St+n)
depends on a current estimate V (or Q)!
In Gλ should we use

an estimate available at time t?
an estimate available at time t + n?
an estimate available at time H?

Off-Line vs On-Line!
Off-line: keep V constant during the episodes.
On-line: Used updated V when available.
True on-line (Sutton and Barto): restart algorithm with a growing horizon.
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Forward and Backward Point of View

From a forward view

To a backward one:

So
ur

ce
:

Su
tt

on
an

d
B

ar
to

167



Reinforcement Learning:
Advanced Techniques in the
Tabular Setting

Returns and Temporal Differencies
Returns and Temporal Differencies

n-step returns:
Gt:t+n − Q(St , At) = Rt+1 + γRt+2 + · · ·+ γn−1Rt+n

+ γnQ(St+n, At+n)− Q(St , At)

=
n∑

l=1
γ l−1(Rt+l + γQ(St+l , At+l)− Q(St+l−1, At+l−1))

=
n−1∑
l=0

γ l−1δt+l

λ return:
Gλ

t − Q(St , At) = (1− λ)
∑

n
λn(Gt:t+n − Q(St , At))

=
∑
n=0

λnγnδt+n
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Forward View and Backward View

Forward View
Updates:

Qt(s, a) = Qt−1(s, a) + 1(s,a)==(St ,At)αt(s, a)

∑
t′′≥t

λt′′−tγt′′−tδt′′


Cumulative updates:

Qt(s, a) = Q0(s, a) +
∑
t′≤t

1(s,a)==(St′ ,At′ )αt′(s, a)

 ∑
t′′≥t′

λt′′−t′
γt′′−t′

δt′′


Limit:

Q∞(s, a) = Q0(s, a) +
∑
t′

1(s,a)==(St′ ,At′ )αt′(s, a)

 ∑
t′′≥t′

λt′′−t′
γt′′−t′

δt′′


Focus on the update place.
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Forward View and Backward View

Limit(s)
Limit:

Q∞(s, a) = Q0(s, a) +
∑
t′

1(s,a)==(St′ ,At′ )αt′(s, a)

 ∑
t′′≥t′

λt′′−t′
γt′′−t′

δt′′


= Q0(s, a) +

∑
t′′

δt′′
∑

t′≤t′′

1(s,a)==(St′ ,At′ )αt′(s, a)λt′′−t′
γt′′−t′

Focus on the update place or and the temporal differencies. . .
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Forward View and Backward View
Backward View

Same limit with cumulative udpates over temporal differencies
Qt(s, a) = Q0(s, a) +

∑
t′′≤t

δt′′
∑

t′≤t′′

1(s,a)==(St′ ,At′ )αt′(s, a)λt′′−t′
γt′′−t′

Updates
Qt(s, a) = Qt−1(s, a) + δt

∑
t′≤t

1(s,a)==(St′ ,At′ )αt′(s, a)λt−t′
γt−t′

︸ ︷︷ ︸
zt(s,a)

Pseudo Eligibility trace:
zt(s, a) =

∑
t′≤t

1(s,a)==(St′ ,At′ )αt′(s, a)λt−t′
γt−t′

= λγzt−1(s, a) + αt(s, a)1(s,a)==(St ,At)

Proof of convergence toward the same target. D
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Eligibility Trace

Qt(s, a) = Qt−1(s, a) + αtδtzt(s, a)

Eligibility Trace
Focus on temporal differencies with simultaneous update on all states.
TD(λ) eligibility trace: zt(s, a) = λγzt−1(s, a) + 1(s,a)==(St ,At)

Strictly equivalent to the previous scheme for constant stepsize
Other eligibility trace:

Replacing trace:

zt(s, a) =
{

1 if (s, a) = (St , At)
λγzt−1(s, a) otherwise

Time dependent trace:
zt(s, a) = ctγzt−1(s, a) + 1(s,a)==(St ,At )

where ct is defined in a appropriate way to ensure the convergence of the algorithm.

Need to store (and update) this information. . .
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Temporal Differencies

δt?
Temporal Differencies

Basic temporal differencies:
δt = Rt+1 + γQ(St+1, At+1)− Q(St , At)

Expected temporal differencies:
δt = Rt+1 + γV (St+1)− Q(St , At)

= Rt+1 + γ
∑

a
π(a|St+1)Q(St+1, a)− Q(St , At)

Average of both:
δt = Rt+1 + γσQ(St+1, At+1) + γ(1− σ)V (St+1)− Q(St , At)

= Rt+1 + γV (St+1) + γσ (Q(St+1, At+1)− V (St+1))− Q(St , At)

Only expected temporal average is independent of the next action.
No generic proof of convergence. . .
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On-Policy vs Off-Policy
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Ãt

Model InteractionModel Replay BufferReplay Buffer

Value Functions

Policy

Agent Policies

Final Policy

Behavior Policy Real-Time Policy

On-Policy vs Off-Policy
On-Policy: the policy b used to interact is the same than the policy Π evaluated
or optimized.
Off-Policy: the policy b used to interact may be different from the policy Π
evaluated or optimized.

Off-Policy allows in particular to (re)use interactions from previous experiments.
Q-learning was possible in off-policy setting.
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Importance Sampling

ρt:t′ = PΠ(St , At , Rt+1, St+1, . . . , Rt′ , St′ , At′ |St)
Pb(St , At , Rt+1, St+1, . . . , Rt′ , St′ , At′|St)

= π(At |St) . . . π(At′ |St′)
b(At |St) . . . b(At′ |St′)

Importance Sampling
For any law p and q, and any function g

Ep[g(x)] = Eq

[p(x)
q(x)g(x)

]
provided q(x) = 0 implies p(x) = 0.
Varq

[
p(x)
q(x)g(x)

]
may be large with respect to Varp [g(x)] if the ratio p(x)/q(x) is

large. . .

Importance Sampling for Trajectories
For any trajectory τt:t′ = St , At , Rt+1, St+1, . . . , Rt′ , St′ , At′(, Rt′+1, St′+1),,
PΠ(St , At , Rt+1, St+1, . . . , Rt′ , St′ , At′(, Rt′+1, St′+1)|St)
Pb(St , At , Rt+1, St+1, . . . , Rt′ , St′ , At′(, Rt′+1, St′+1)|St)

= π(At |St) . . . π(At′ |St′)
b(At |St) . . . b(At′ |St′) 176
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Importance Sampling and Returns

EΠ[g(τt:t′)|St = s] = Eb[ρt:t′g(τt:t′)|St = s] with ρt:t′ = π(At |St) . . . π(At′|St′)
b(At |St) . . . b(At′ |St′)

From b to Π
Returns:

Eπ[Gt:t′ |St = s] = Eπ

 t′∑
t′′=t+1

γt′′−t−1Rt′′ + γt′−tV (St′)

∣∣∣∣∣∣St = s


= Eb

ρt:(t′−1)

 t′∑
t′′=t+1

γt′′−t−1Rt′′ + γt′−tV (St′)

∣∣∣∣∣∣St = s


= Eb

 t′∑
t′′=t+1

ρt:(t′′−1)γ
t′′−t−1Rt′′ + ρt:(t′−1)γ

t′−tV (St′)

∣∣∣∣∣∣St = s


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Importance Sampling and Returns

EΠ[g(τt:t′)|St , At ] = Eb
[
ρ(t+1):t′g(τt:t′)

∣∣∣St , At
]

with ρt:t′ = π(At |St) . . . π(At′|St′)
b(At |St) . . . b(At′|St′)

From b to Π
Returns:

Eπ[Gt:t′ |St , At ] = Eπ

 t′∑
t′′=t+1

γt′′−t−1Rt′′ + γt′−tQ(St′ , At′)

∣∣∣∣∣∣St , At


= Eb

ρ(t+1):(t′−1)

 t′∑
t′′=t+1

γt′′−t−1Rt′′ + γt′−tQ(St′ , At′)

∣∣∣∣∣∣St , At


= Eb

 t′∑
t′′=t+1

γt′′−t−1ρ(t+1):(t′′−1)Rt′′ + ρ(t+1):t′γt′−tQ(St′ , At′)

∣∣∣∣∣∣St , At


No correction if t ′ = t + 1
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λ-return
λ-return

Recursive definition of the λ-return:
Gλ

t |St = Rt+1 + γ
(
(1− λ)V (St+1) + λGλ

t+1

)
Gλ

t |St , At = Rt+1 + γ
(
(1− λ)

(
σQ(St+1, At+1) + (1− σ)(

∑
a

π(a|St+1)Q(St+1, a)

+ π(At+1|St+1)
(
Gλ

t+1 − Q(St+1, At+1)
)
)
)

+ λGλ
t+1

)
Off-line correction

Gλ
t |St = ρt:t

(
Rt+1 + γ

(
(1− λ)V (St+1) + λGλ

t+1

))
Gλ

t |St , At = Rt+1 + γ
(
(1− λ)

(
σQ(St+1, A′

t+1) + (1− σ)(
∑

a
π(a|St+1)Q(St+1, a)

+ π(At+1|St+1)
(
Gλ

t+1 − Q(St+1, At+1)
)
)
)

+ λρt+1:t+1Gλ
t+1

)
where A′

t+1 is drawn following π (or multiply by ρt+1:t+1 to use At+1). D
isc

ou
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ed
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Temporal Differencies

δt?
Temporal Differencies

Basic temporal differencies:
δt = Rt+1 + γQ(St+1, A′

t+1)− Q(St , At)
with A′

t+1 drawn using π.
Expected temporal differencies:

δt = Rt+1 + γV (St+1)− Q(St , At)
= Rt+1 + γ

∑
a

π(a|St+1)Q(St+1, a)− Q(St , At)

without any correction.
Average of both:

δt = Rt+1 + γσQ(St+1, At+1) + γ(1− σ)V (St+1)− Q(St , At)
= Rt+1 + γV (St+1) + γσ

(
Q(St+1, A′

t+1)− V (St+1)
)
− Q(St , At)

with A′
t+1 drawn using π.
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Off-Policy Algorithm
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Ãt
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Agent Policies
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Off-Policy Correction
Replace any estimate of the gain by an importance-sampling corrected one.
Works well for prediction.
Can be combined with policy improvement (a la SARSA) but less (no?)
theoretical guarantees.
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Retrace(λ)
T̃ Q(s, a) = Q(s, a) + Eb

∑
t≥0

γt
( t∏

t′=1
ct′

)
δt

∣∣∣∣∣∣S0 = s, A0 = a


ct = c(At , St , At−1, St−1, · · · , A0, S0)
Eb[δt |St , At ] = E[Rt+1 + γEπ[Q(St+1, ·)]− Q(St , At)|St , At ]

Generic Off-Policy Algorithm
Generic off-line algorithm including

Importance sampling: ct = ρt:t = π(At |St)/b(At |St)
TB(λ): ct = λπ(At |St)
Retrace(λ): ct = λ min(1, π(At |St)/b(At/St))

Prop: Qπ is a fixed point as Eb[δt |St , At ] = E[T πQ(St , At)− Q(St , At)|St , At ].
Prop: T̃ is a contraction provided ct ≤ ρt = π(At |St)/b(At |St).
Convergence for Importance sampling, TB(λ) and Retrace(λ) for any b.
Partial results for policy improvement under more assumptions.

For Q(λ), ct = λ, convergence if ∥π(|s)− b(|s)∥1 ≤ ϵ and λ ≤ (1− γ)/(γϵ).
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Q-Learning vs SARSA

How different are they?
In Q-learning, the exploratory policy used is decoupled from the optimized policy.
This exploratory policy may yield low rewards on average.
In SARSA, the two policies are linked with the hope on having higher rewards
during the learning step.
Subtle different behavior even if we modify the exploratory policy in Q-Learning.
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Exploration vs Exploitation

Exploration vs Exploitation
Exploration: explore new policies to be able to discover the best ones.
Exploitation: use good policies to obtain a good return.
Exploration is a requirement.

No tradeoff if we optimize only the final result!
Tradeoff between the two if we consider that the returns during training matters!
Q-learning use the first approach and SARSA try to tackle the second.
Tradeoff if we study a regret: ∑

t
EΠ⋆ [Rt ]− EΠt [Rt ]

which forces us to be good as fast as possible.
No natural definition in the discounted setting.
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Bandits

S = {0} and A = {1, . . . k} and r(s, a) = ra

Bandits
Very simple toy model where there is only one state!
Optimal policy: pick a⋆ ∈ argmax ra.
Q estimation: estimate ra by playing action a.
Strategy:

Every arm has to be played until we are sure they are bad.
Best arm should be played as often as possible to maximime the rewards during the
learnig phase.

Simple enough setting to obtain result on the regret
rT =

∑
t≤T

(ra⋆ − Rt)

We will use ∆a = ra⋆ − ra and assume that R|a is 1-subgaussian. 186
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Explore Then Commit

Explore Then Commit (Random Exploration)
Play the arm successively during Km steps and then play the optimal one during
T − Km steps.
Prop:

rT ≤ min(m, T/K )
k∑

a=1
∆(a) + max(T −mK , 0)

k∑
a=1

∆(a) exp(−m∆(a)2/4)

Furthermore,
P(aT = a∗) ≥ 1−

∑
a ̸=a∗

exp(−m∆(a)2/4)

RT ≤ O(log T ) for m ∝ log T ,
but RT = O(T ) for any fixed m.
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ϵ-greedy Strategy

ϵ-greedy Strategy
Estimate Q(a) = ra by MC:

Qt(a) =
∑t−1

t′=1 1At′ ==aRt′∑t−1
i=1 1At′ ==a

Pick arm a at time t using

π(a) =
{

ϵt/k + (1− ϵ) if a = argmaxa′ Qt(a′) (only the smallest if necessary)
ϵt/k otherwise

Prop:

rT ≥
T∑

t=1

ϵt
k

k∑
a=1

∆(a)
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ϵ-greedy Strategy
ϵ-greedy Strategy

Prop:
P(AT = a∗) ≥ 1− ϵT − Σt exp(−ΣT /(6k))−

∑
a ̸=a∗

4
∆(a)2 e−∆(a)2ΣT /(4k)

with ΣT =
∑T

s=1 ϵs .
Furthermore,

P(a∗ = argmax QT ,a) ≥ 1− Σt exp(−ΣT /(6k))−
∑

a ̸=a∗

4
∆(a)2 e−∆(a)2ΣT /(4k)

If ϵt = c/t,

rT ≤
∑

a ̸=a∗

(
∆(a)

(
c log(T ) + 1

k + C
)

+ 4
∆(a)C ′

)
as soon as c/(6k) > 1 and c mina ̸=a∗ ∆(a)/4k < 1.
If ϵt = c log(t)/t then

rT ≤
∑

a ̸=a∗

(
∆(a)

(
c log(T )(log(T ) + 1)

k + C
)

+ 4
∆(a)C ′

)
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UCB Strategy

Upper Confidence Bound
Use an optimistic strategy to pick the best arm

At = argmax Qt(a) +
√

c log t
Nt(a)

Prop:

rn(t) ≤ Cc
∑

a
∆(a) +

∑
a

4c ln t
∆(a) .

with Cc < +∞ as soon as c > 3/2
Furthermore

P(At = a∗) ≥ 1− 2kt−2c+2

as soon as t ≥ maxa
4c ln t
∆(a)2 .

Optimal regret!
Hard to extend to RL setting but shows that ϵ-greedy may not be optimal.
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Model Based Approach
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Model Based Approach
Use the interactions to learn a model. . .
that can be used to learn a good policy.
This model can be:

a MDP,
a simulator.

Often easier to obtain a simulator. 192
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Model based and MDP
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Ãt

Model InteractionModel Replay BufferReplay Buffer

Value Functions

Policy

Agent Policies

Final Policy

Behavior Policy Real-Time Policy

Estimated MDP: back to OR
MDP can be estimated from trajectories.
Simple (but maybe slow) even in an off-line setting.
Once we have an estimated MDP, prediction and planning can be done using OR.

Implicitely done by TD(0) when doing several passes.
Model should be checked/improved as much as possible when new trajectories
arrive.
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Model based and RL
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Estimated Simulator: back to RL
Simulator can be estimated from trajectories.
Simple (but maybe slow) even in an off-line setting.
Once we have an estimated simulator, prediction and planning can be done using
RL.

Model should be checked/improved as much as possible when new trajectories
arrive.
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Model Free and Model Based Approach
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Dyna
Combine true interactions with simulated ones.
Simultaneous acting, model learning, OR learning and RL learning.
Search for a tradeoff between the (slow) learning RL algorithm and the (wrong)
model OR algorithm.
Need to deal with schedule!
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Replay Buffer and Prioritized Sweeping
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Replay Buffer and Prioritized Sweeping
Can we reuse previous interactions?
In which order?
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Replay Buffer
MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

Model MDP

Model Env.

Model Agent

P̃

R̃t+1, S̃t+1S̃t

Ãt
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Replay Buffer
Store previous interactions (trajectories) in a first-in first-out buffer.
Draw a subsequence from those interactions (trajectories) and use it in a RL
algorithm:

On-line: if the trajectory comes from the same policy.
Off-line: if the trajectory comes from a different policy.

Similar to a simulator but no arbitrary choice of state or action.
Often use with on-line algorithm if the policy has only mildy evolved. . .
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Prioritized Sweeping
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Prioritized Sweeping
Plain Replay Buffer: subsequence drawn uniformly.
Prioritized Sweeping: subsequence drawn favoring states with large temporal
differencies.

Can be combined with a model approach.
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Real-Time Planning

Real-Time Planning
Can we optimize the policy at the current state?
Do we need to optimize it everywhere?
What is required?

Planning at decision time. . .
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Real-Time Dynamic Programming

Warmup in Dynamic Programming. . .

RT DP
Use trajectories to sample the states to update.
Convergence holds with exploratory policy.
Optimal policy does not require to specify the action in irrelevant states.
Convergence holds even without full exploration in some specific cases!

In practice, seems to be computationaly efficient.
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Planning At Decision Time

Planning At Decision Time
Can we find a good action At at St . . . without having it precomputed?
Policy Improvement

At = argmax Qt(St , ·)
can be seen as a first step.
How to go deeper?

A model or a simulator will be required!
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Heuristic Search

Heuristic Search
Requires the knowledge of the MDP and of a heuristic based value function V .
Strategy:

Build a limited depth tree by stopping after a few steps and at some specific states.
Backup the heuristic based value function using Dynamic Programming (Optimal
Bellman operator).
Pick the action having the hight value.

The deeper the better. . . but the more expensive due to branching!
Requires a suitable heuristic. . .
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Rollout Algorithm

Rollout Policy
Use a MC estimate with a default policy instead of a heuristic.
Backup those estimates using Dynamic Programming.
Simulation can even start after the first action (as in Policy Improvement).

The values are (most of the time) discarded for the next state.
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Monte Carlo Tree Search

Monte Carlo Tree Search
Simultaneour tree growing, rollout and backup by DP.
Repeat 4 steps:

Selection of a sequence of actions according to the current values with a tree policy.
Expansion of the tree at the last node without values.
Simulation with a rollout policy to estimate the values at this node.
Backup of the value by relaxed Dynamic Programming.

MCTS focuses on promising paths using a UCB approach.

206



Reinforcement Learning:
Advanced Techniques in the
Tabular Setting

Monte Carlo Tree Search

Monte Carlo Tree Search
Simultaneour tree growing, rollout and backup by DP.
Repeat 4 steps:

Selection of a sequence of actions according to the current values with a tree policy.
Expansion of the tree at the last node without values.
Simulation with a rollout policy to estimate the values at this node.
Backup of the value by relaxed Dynamic Programming.

MCTS focuses on promising paths using a UCB approach.

206



Reinforcement Learning:
Advanced Techniques in the
Tabular Setting

Monte Carlo Tree Search

Monte Carlo Tree Search
Simultaneour tree growing, rollout and backup by DP.
Repeat 4 steps:

Selection of a sequence of actions according to the current values with a tree policy.
Expansion of the tree at the last node without values.
Simulation with a rollout policy to estimate the values at this node.
Backup of the value by relaxed Dynamic Programming.

MCTS focuses on promising paths using a UCB approach.

206



Reinforcement Learning:
Advanced Techniques in the
Tabular Setting

Monte Carlo Tree Search

Monte Carlo Tree Search
Simultaneour tree growing, rollout and backup by DP.
Repeat 4 steps:

Selection of a sequence of actions according to the current values with a tree policy.
Expansion of the tree at the last node without values.
Simulation with a rollout policy to estimate the values at this node.
Backup of the value by relaxed Dynamic Programming.

MCTS focuses on promising paths using a UCB approach.

206



Reinforcement Learning:
Advanced Techniques in the
Tabular Setting

Monte Carlo Tree Search

Monte Carlo Tree Search
Simultaneour tree growing, rollout and backup by DP.
Repeat 4 steps:

Selection of a sequence of actions according to the current values with a tree policy.
Expansion of the tree at the last node without values.
Simulation with a rollout policy to estimate the values at this node.
Backup of the value by relaxed Dynamic Programming.

MCTS focuses on promising paths using a UCB approach.

206



Reinforcement Learning:
Advanced Techniques in the
Tabular Setting

Monte Carlo Tree Search

Monte Carlo Tree Search
Simultaneour tree growing, rollout and backup by DP.
Repeat 4 steps:

Selection of a sequence of actions according to the current values with a tree policy.
Expansion of the tree at the last node without values.
Simulation with a rollout policy to estimate the values at this node.
Backup of the value by relaxed Dynamic Programming.

MCTS focuses on promising paths using a UCB approach.

206



Reinforcement Learning:
Advanced Techniques in the
Tabular Setting

Monte Carlo Tree Search

Monte Carlo Tree Search
Simultaneour tree growing, rollout and backup by DP.
Repeat 4 steps:

Selection of a sequence of actions according to the current values with a tree policy.
Expansion of the tree at the last node without values.
Simulation with a rollout policy to estimate the values at this node.
Backup of the value by relaxed Dynamic Programming.

MCTS focuses on promising paths using a UCB approach.

206



Reinforcement Learning:
Advanced Techniques in the
Tabular Setting

Monte Carlo Tree Search

Monte Carlo Tree Search
Simultaneour tree growing, rollout and backup by DP.
Repeat 4 steps:

Selection of a sequence of actions according to the current values with a tree policy.
Expansion of the tree at the last node without values.
Simulation with a rollout policy to estimate the values at this node.
Backup of the value by relaxed Dynamic Programming.

MCTS focuses on promising paths using a UCB approach.

206



Reinforcement Learning:
Advanced Techniques in the
Tabular Setting

Monte Carlo Tree Search

Monte Carlo Tree Search
Simultaneour tree growing, rollout and backup by DP.
Repeat 4 steps:

Selection of a sequence of actions according to the current values with a tree policy.
Expansion of the tree at the last node without values.
Simulation with a rollout policy to estimate the values at this node.
Backup of the value by relaxed Dynamic Programming.

MCTS focuses on promising paths using a UCB approach.

206



Reinforcement Learning:
Advanced Techniques in the
Tabular Setting

Model Predictive Control?

Model Predictive Control
Open loop optimization:

max
at ,at+1,...,at+h

E
[ t+h∑

t′=t
Rt

]
using a predictive model (simulator).
Do not take into account state uncertainties in the control choice. . .
But much simpler optimization. . .
and equivalence for a linear Gaussian model.

Extensively used for short-term planning in Control.
May be combined with value functions after t + h. 207
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Functions

Approximation?

Tabular Setting
Require to store the state(-action) values (a table).
Requirement in both OR and RL.

Approximation!
Use instead approximated value functions.
What is a good approximation?
How to use them?

Focus on value-functions. . . 209
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Functions

Approximated Value Functions

V (s) =⇒ Vw(s)
Q(s, a) =⇒ Qw(s, a)

Parametric Model
Reduce dimensionality by storing w instead of all the values.
Linear: Vw(s) = ⟨Φ(s), w⟩ and Qw(s, a) = ⟨Φ(s, a), w⟩

Φ(s) and Φ(s, a) are features associated to the states(-actions).
Tabular setting corresponds to (Φ)s′(,a′)(s(, a)) = 1s′==s(,a′==a).
Often used in theoretical analysis.

Deep Learning: Vw(s) = NNw(Φ(s)) and Qw(s, a) = NNw(Φ(s, a))
NN is any (deep) learning network.
Often used in practice.

Other parametrization (or even non parametric coding) could be used (at least in
theory. . . ). 211
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Approximated Value Functions Usage

vπ(s) ≃ Vwπ(s) v⋆(s) ≃ Vw⋆(s)
qπ(s, a) ≃ Qwπ(s, a) q⋆(s, a) ≃ Qw⋆(s, a)

argmax
a

qπ(s, a) ≃ argmax
a

Qwπ(s, a) argmax
a

q⋆(s, a) ≃ argmax
a

Qw⋆(s, a)

Approximated Value Functions Usage
Drop-in replacements for all the value functions?
Prediction and Planning?
Quality and Stability?
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Functions

Approximation Quality

vπ(s) ≃ Vwπ(s) v⋆(s) ≃ Vw⋆(s)
qπ(s, a) ≃ Qwπ(s, a) q⋆(s, a) ≃ Qw⋆(s, a)

argmax
a

qπ(s, a) ≃ argmax
a

Qwπ(s, a) argmax
a

q⋆(s, a) ≃ argmax
a

Qw⋆(s, a)

Approximation Quality Norm
Ideal loss:

∥v − Vw∥∞ or ∥q − Qw∥∞
as this is the error used in all the previous analysis.
Practical loss:

∥v − Vw∥pµ,p =
∑

s
µ(s)|v(s)− Vw(s)|p

or ∥q − Qw∥pµ,p =
∑
s,a

µ(s, a)|q(s, a)− Qw(s, a)|p

often with p = 2 and µ related to the behavior policy.
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Approximation Target(s)

q(s, a) = T q(s, a) ∼ Qw(s, a) −→

∥q − Qw∥µ,p small
∥T Qw − Qw∥µ,p small

Approximation Targets(s)
Direct measurement.
Bellman residual error.

Extended Measurement
Projection (with linear parametrization): ∥PΦ (T Qw − Qw) ∥µ,p small
Probes Z :

EZ [| ⟨T Qw − Qw , Z ⟩ |p]

Lots of freedom but hard to link with optimality of derived policy!
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Functions

Prediction, Approximation and Gradient Descent

min
w

∑
s,a

µπ(s, a) |qπ(s, a)− Qw(s, a)|2

Prediction, Approximation and Gradient Descent
Prediction objective:

VE(w) =
∑

q
µπ(s, a) |qπ(s, a)− Qw(s, a)|2

Gradient:
∇VE(w) = −2

∑
s,a

µπ(s, a) (qπ(s, a)− Qw(s, a))∇Qw(s, a)

Stochastic gradient:
∇̂VE(w) = −2 (qπ(St , At)− Qw(St , At))∇Qw(St , At)

Not a practical algorithm as qπ is unknown.
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Prediction, Approximation and MC

wt+1 = wt + 2αt (Gt − Qwt (St , At))∇Qwt (St , At)

Monte Carlo Approach
Replace qπ(St , At) by its Monte Carlo estimate Gt .
Still a Stochastic Gradient of the original problem with limit (if it exists) satisfying

Eπ[(Gt − Qw∞(St , At))∇Qw∞(St , At)]
= E[(qπ(St , At)− Qw∞(St , At))∇Qw∞(St , At)] = 0

Convergence ensured for the linear parametrization as it is a convex problem.

Correspond exactly to the tabular MC prediction algorithm for the tabular
parametrization.
For the linear parametrization:

Limiting equation: Eπ[qπ(St , At)Φ(St , At)] = Eπ

[
Φ(St , At)Φ(St , At)⊤

]
w∞
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Approximation of the Value
Functions

Prediction, Approximation and TD

wt+1 = wt + 2αt (Rt+1 + γQwt (St+1, At+1)− Qwt (St , At))∇Qwt (St , At)

Temporal Differencies Approach
Replace qπ(St , At) by Rt+1 + γQwt (St+1, At+1).
Not a Stochastic Gradient of the original problem but a Stochastic Approximation
algorithm with limit (if it exists) satisfying

Eπ[(Rt + γQw∞(St+1, At+1)− Qw∞(St , At))∇Qw∞(St , At)]
= Eπ[((T πQw∞ − Qw∞)(St , At))∇Qw∞(St , At)] = 0

No simple argument to justify the convergence. . .

In general, no straightforward relation with Bellman operator.
Correspond exactly to the tabular TD prediction algorithm for the tabular
parametrization.
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Prediction, Approximation and Advanced TD

wt+1 = wt + 2αt
(
G̃t − Qwt (St , At)

)
∇Qwt (St , At)

Temporal Differencies Approach
Replace qπ(St , At) by any advanced return G̃t .
Not a Stochastic Gradient of the original problem but a Stochastic Approximation
algorithm with limit (if it exists) satisfying

Eπ

[(
G̃t − Qwt (St , At)

)
∇Qw∞(St , At)

]
= Eπ

[(
(T̃ πQw∞ − Qw∞)(St , At)

)
∇Qw∞(St , At)

]
= 0

No simple argument to justify the convergence. . .

In general, no straightforward relation with Bellman operator.
Correspond exactly to the tabular TD prediction algorithm for the tabular
parametrization.
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Prediction, Approximation and Eligibility Trace

zt = γλzt−1 +∇Qwt (St , At)
δt = Rt+1 + γQwt (St+1, At+1)− Qwt (St , At)

wt+1 = wt + αtδtzt

Eligibility Trace
Rewrite the TD(λ) updates using the backward point of view.
No strict equivalence due to time evolution of the parameterization.
Stochastic Approximation with limit (if it exists) satisfying

Eπ[(Rt+1 + γQw∞(St+1, At+1)− Qw∞(St , At)) zt ]
= Eπ[(T πQw∞ − Qw∞) (St , At)zt ] = 0

No simple argument to justify the convergence.
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Linear Parametrization

Qw(St , At) = Φ(St , At)⊤w and ∇Qw(St , At) = Φ(St , At)

Linear Parametrization
Extension of the tabular setting.
Derivative is independent of w .
Analysis of Stochastic Approximation often possible!

More than a toy model as an algorithm not converging in the linear case will
almost certainly not converge in a more general setting.
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Reinforcement Learning:
Approximation of the Value
Functions

Linear Parametrization and MC

Iteration:wt+1 = wt + αt(Gt − Φ(St , At)⊤wt)Φ(St , At)
Limiting equation: Eπ[qπ(St , At)Φ(St , At)] = Eπ

[
Φ(St , At)Φ(St , At)⊤

]
w∞

ODE: dw
dt = −Eπ

[
Φ(St , At)Φ(St , At)⊤

]
(w −w∞)

Linear Parametrization and MC
Limiting equation is a linear equation.
Under asymptotic stationarity assumption, convergence of ODE as
Eπ

[
Φ(St , At)Φ(St , At)⊤

]
is a Gram Matrix with positive eigenvalues (provided Φ

is not redundant and under an ergodicity assumption).
Need to explore all state-action pairs!

Ep
iso

di
c
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Reinforcement Learning:
Approximation of the Value
Functions

Linear Parametrization and TD
Iteration: wt+1 = wt + αt(Rt+1 + γΦ(St+1, At+1)⊤wt − Φ(St , At)⊤wt)Φ(St , At)

Lim. eq.: Eπ[r(ST , At)Φ(St , At)] = Eπ

[
Φ(St , At)

(
Φ(St , At)⊤ − γΦ(St+1, At+1)⊤

)]
w∞

ODE: dw
dt = −Eπ

[
Φ(St , At)

(
Φ(St , At)⊤ − γΦ(St+1, At+1)⊤

)]
(w −w∞)

Linear Parametrization and TD
Convergence of ODE if Eπ

[
Φ(St , At)

(
Φ(St , At)⊤ − γΦ(St+1, At+1)⊤

)]
has

complex eigenvalues with positive real parts. . .
which can be proved to be true under an ergodicity assumption!
Need to explore all state-action pairs!
Different solution than MC! Minimization of the Projected Bellman Residual. . .
Prop:

VE (wTD) ≤ 1
1− γ

VE (wMC) = 1
1− γ

min
w

VE (w) D
isc

ou
nt

ed
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Functions

Least-Squares TD

b = Eπ[r(ST , At)Φ(St , At)] ∼
1
t

t−1∑
t′=0

Rt′+1ϕ(St′ , At′)

A = Eπ

[
Φ(St , At)

(
Φ(St , At)⊤ − γΦ(St+1, At+1)⊤

)]
∼ 1

t

t−1∑
t′=0

Φ(St′ , At′)
(
Φ(St′ , At′)⊤ − γΦ(St′+1, At′+1)⊤

)
Least-Squares TD

Bypass the Stochastic Approximation scheme by estimating directly its limit:
w∞ = A−1b

Much more sample efficient.
Recursive implementation possible.
Recursive implementation maintaining an estimate of A−1 is also possible. D

isc
ou

nt
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Advanced Returns

Return: G̃t = R̃t+1 + Φ̃⊤
t w (affine formula)

Iteration: wt+1 = wt + αt(R̃t + Φ̃⊤
t wt − Φ(St , At)⊤wt)Φ(St , At)

Lim. eq.: Eπ

[
R̃tΦ(St , At)

]
= Eπ

[
Φ(St , At)

(
Φ(St , At)⊤ − Φt

⊤
)]

w∞

ODE: dw
dt = −Eπ

[
Φ(St , At)

(
Φ(St , At)⊤ − Φ̃⊤

t

)]
(w −w∞)

Linear Parametrization and TD
Convergence of ODE if Eπ

[
Φ(St , At)

(
Φ(St , At)⊤ − Φ̃⊤

t

)]
has complex

eigenvalues with positive real parts. . .
which can be proved to be true for the advanced returns under an ergodicity
assumption!
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On-Policy Prediction

wt+1 = wt + 2αt
(
G̃t − Qwt (St , At)

)
∇Qwt (St , At)

On-line TD Algorithm
Use the policy Π to obtain the interactions StAtRt+1St+1At+1. . .
Convergence. . . for linear parametrization under stationarity and coverage
assumptions!
Appear to converge even with more complex parametrization.

Monte Carlo can be used for short episodes.
Similar observations for elegibility trace.
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Reinforcement Learning:
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On-Policy Control

wt+1 = wt + 2αt
(
G̃t − Qwt (St , At)

)
∇Qwt (St , At)

πt+(s) = argmax Qwt (s, ·) (plus exploration)

On-Policy Control
SARSA type algorithm: update Q values and policy π while using policy π.
Not a Stochastic Approximation algorithm anymore. . .
Not approximate policy improvement as no sup-norm control. . .
No proof of convergence... but appear to work well in practice.

Non trivial scheduling issue in the definition of G̃t .
More constraints with eligibility trace.
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On-Policy vs Off-Policy

From

MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

Model MDP

Model Env.

Model Agent

P̃

R̃t+1, S̃t+1S̃t

Ãt

Model InteractionModel Replay BufferReplay Buffer

Value Functions

Policy

Agent Policies

Final Policy

Behavior Policy Real-Time Policy

to

MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

Model MDP

Model Env.

Model Agent

P̃

R̃t+1, S̃t+1S̃t

Ãt

Model InteractionModel Replay BufferReplay Buffer

Value Functions

Policy

Agent Policies

Final Policy

Behavior Policy Real-Time Policy

On-Policy vs Off-Policy
On-Policy: the policy b used to interact is the same than the policy Π evaluated
or optimized.
Off-Policy: the policy b used to interact may be different from the policy Π
evaluated or optimized.

Off-Policy correction available for the return.
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Off-Policy Prediction

wt+1 = wt + αt
(
G̃t − Qwt (St , At)

)
∇Qwt (St , At)

Off-policy TD Algorithm
Use a policy b to obtain the interactions StAtRt+1St+1At+1. . .
Compute an (importance-sampling based) corrected return.
Use it in the algorithm.

Can fail spectacularly!
Monte Carlo will work.
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Off-Policy Divergence

Simplest Example?
Simple transition with a reward 0.
TD error:

δt = Rt+1 + γVwt (St+1)− Vwt (St)
= 0 + γ2wt −wt = (2γ − 1)wt

Off-policy semi-gradient TD(0) update:
wt+1 = wt + αtρtδt∇V (St+1, wt)

= wt + αt × 1× (2γ − 1)wt = (1 + αt(2γ − 1))wt

Explosion if this transition is explored without w being update on other
transitions as soon as γ > 1/2. D
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Off-Policy Divergence

So
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ce
:

Su
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d
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Baird’s Counterexample
Divergence of off-policy algorithm even without sampling, i.e. in Dynamic
Programming. D
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Off-Policy Divergence

Tsistiklis and Van Roy’s Counterexample
Exact minimization of bootstrapped VE at each step:

wt+1 = argmin
w

∑
s

(Vwt (s)− Eπ[Rt+1 + γVwt (St+1)|St = s])2

= argmin
w

(w − γ2wt)2 + (2w − (1− ϵ)γ2wt)2

= 6− 4ϵ

5 γwt

Divergence if γ > 5/(6− 4ϵ).
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Linear Parametrization and TD
Iteration: wt+1 = wt + αt(Rt+1 + γ

∑
a

π(a|St+1)Φ(St+1, a)⊤wt − Φ(St , At)⊤wt)Φ(St , At)

Lim. eq.:Eb[r(ST , At)Φ(St , At)] = Eb

[
Φ(St , At)

(
Φ(St , At)⊤ − γ

∑
a

π(a|St+1)Φ(St+1, a)⊤

)]
w∞

ODE: dw
dt = −Eb

[
Φ(St , At)

(
Φ(St , At)⊤ − γ

∑
a

π(a|St+1)Φ(St+1, q⊤

)]
(w −w∞)

Linear Parametrization and TD
Convergence of ODE if

Eb

[
Φ(St , At)

(
Φ(St , At)⊤ − γ

∑
a

π(a|St+1)Φ(St+1, q⊤
)]

= ΦΞ(I − γPπ)Φ⊤

(with Φ = (Φ(s, a)), Ξ = diag(µ(s, a))) and Pπ the transition matrix associated
to π) has complex eigenvalues with positive real parts. . .
Proof for on-policy relies on µ = µπ which satisfies µπ

⊤Pπ = µπ
⊤.

Not true anymore with an arbitrary behavior policy!
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Deadly Triad

Deadly Triad
Function approximation
Bootstrapping
Off-policy training

Instabilities as soon as the three are present!

Issue
Function approximation is unavoidable.
Bootstrap is much more computational and data efficient.
Off-policy may be avoided. . . but essential when dealing with extended setting
(learn from others or learn several tasks)

Dead End?
237
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Objective?

Linear Parametrization Target?
Prediction objective VE :

∥qπ − Qw∥2µ
Bellman Error BE :

∥T πQw − Qw∥2µ
Projected Bellman Error PBE :

∥Proj T πQw − Qw∥2µ
with Proj = Φ(Φ⊤ΞΦ)Φ (Φ) Ξ.

238



Reinforcement Learning:
Approximation of the Value
Functions

Prediction Objective

Prediction Objective
Two MRP with the same outputs (because of approximation).
but different VE .
Impossibility to learn VE .
Minimizer however is learnable:

RE (w) = E
[
(Gt − Vwt (St))2

]
= VE (w) + E

[
(Gt − vπ(St))2

]
MC method target.
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Bellman Error

Bellman Error
Two MRP with the same outputs (because of approximation).
Different BE .
Different minimizer!
BE is not learnable!
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TD Error

TDE (w) = ∥Eπ

[
δ2

t |St , At
]
∥µ

Mean-Squares TD Error
TDE (w) = Eb

[
ρtδ

2]
Gradient: ∇TDE (w) =
Eb[ρt (Rt + γQw(St+1, At+1))− Qwt (St , At)) (γ∇Qwt (St+1, At+1)−∇Qwt (St , At))]
SGD algorithm. . .
but solutions often converge to not to a desirable place even without approximation!

D
isc

ou
nt

ed

241



Reinforcement Learning:
Approximation of the Value
Functions

Projected Bellman Error
∥Proj T πQw − Qw∥2

µ with Proj = Φ(Φ⊤ΞΦ)−1Φ⊤Ξ.

Projected Bellman Error
Rewriting

PBE (w) = ∥Proj T πqw − qw∥2µ = ∥Proj δw∥2µ

= (Proj δw)⊤Ξ (Proj δw) = (Φ⊤Ξδw)⊤ (Φ⊤ΞΦ
)−1

(Φ⊤Ξδw)
Gradient:

∇PBE (w) = 2∇(Φ⊤Ξδw)⊤ (Φ⊤ΞΦ
)−1

(Φ⊤Ξδw)
Expectations:

Φ⊤Ξδw = Eb[ρtδtΦ(St , At)]

∇(Φ⊤Ξδw)⊤ = Eb
[
ρt(γΦ(St+1, At+1)− Φ(St , At))Φ(St , At)⊤

]
Φ⊤ΞΦ = Eb

[
Φ(St , At)Φ(St , At)⊤

]
Not yet a SGD/SA as the gradient is a product of several terms. . .
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Projected Bellman Error
Gradient and Stochastic Approximation

Gradient:
∇PBE (w) = 2Eb

[
ρt(γΦ(St+1, At+1)− Φ(St , At))Φ(St , At)⊤

]
(
Eb
[
Φ(St , At)Φ(St , At)⊤

])−1
Eb[ρtδtΦ(St , At)]

Least-squares inside:
v =

(
Eb
[
Φ(St , At)Φ(St , At)⊤

])−1
Eb
[
ρtδtΦ(St , At)⊤

]
⇔ v = argmin

v
Eb

[(
Φ(St , At)⊤vt − ρtδt

)2
]

which can be estimated by
vt+1 = vt + βtΦ(St , At)(δt − ρtΦ(St , At)⊤vt)

Plugin pseudo gradient (SA):
wt+1 = wt − 2αtρt(γΦ(St+1, At+1)− Φ(St , At))Φ(St , At)⊤vt

Same target than Pseudo Gradient but converging algorithm provided αt ≪ βt .
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Gradient TD Algorithm
GTD

Simultaneous update:
vt+1 = vt + βtΦ(St , At)(δt − ρtΦ(St , At)⊤vt)

wt+1 = wt − 2αtρt(γΦ(St+1, At+1)− Φ(St , At))Φ(St , At)⊤vt

As αt ≪ βt , w is seen as constant by v . . .

TDC
Simultaneous update:

vt+1 = vt + βtΦ(St , At)(δt − ρtΦ(St , At)⊤vt)
wt+1 = wt − 2αtρt(δtΦ(St , At)− γΦ(St+1, At+1))Φ(St , At)⊤vt

Obtained by a similar derivation but faster in practice. . .
As αt ≪ βt , w is seen as constant by v . . .

Restricted to the linear setting but interesting insight. D
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Stochastic Approximation

θk+1 = θk + αkhk(θk) with hk(θ) = H(θ) + ϵk + ηk

=⇒ θk → {θ, H(θ) = 0}
Stochastic Approximation

Family of sequential stochastic algorithm converging to a zero of a function.
Classical assumptions:

E[ϵk ] = 0, Var [ϵk ] < σ2, and E[∥ηk∥]→ 0,∑
k αk →∞ and

∑
k α2

k <∞,
the algorithm converges if we replace hk by H.

Convergence toward a neighborhood if α is kept constant (as often in practice).
Most famous example are probably Robbins-Monro and SGD.
Proof quite technical in general.
The convergence with H is easy to obtain for a contraction.
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Stochastic Approximation and ODE

From θk+1 = θk + αkhk(θk) with hk(θ) = H(θ) + ϵk + ηk

to d θ̃

dt = H(θ̃)

ODE Approach
General proof showing that the algorithm converges provided the ODE converges.
Rely on the rewriting the equation

θk+1 − θk
αk

= hk(θk) = H(θk) + ϵk + ηk

αk can be interpreted as a time difference allowing to define a time tk =
∑

t′≤t αk .
θ(t) is piecewise affine and defined through its derivative at time t ∈ (tk , tk+1).
This piecewise function remains close to any solution of the ODE starting from θk
for an arbitrary amount of time provided k is large enough.

More general proofs based on martingale. 247
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Stochastic Approximationθk+1 = θk + αkhk(θk , νk)
νk+1 = νk + βkgk(θk , νk)

with
hk(θ, ν) = H(θ, ν) + ϵk + ηk

gk(θ, ν) = G(θ, ν) + ϵ′k + η′k

=⇒ θk → {θ, H(θ, ν(θ)) = 0, ν(θ) ∈ {ν, G(θ, ν) = 0}}
Stochastic Approximation

Family of sequential stochastic algorithm converging to a zero of a function.
Classical assumptions:

E[ϵk ] = 0, Var [ϵk ] < σ2, and E[∥ηk∥]→ 0,∑
k αk →∞ and

∑
k α2

k <∞,∑
k βk →∞ and

∑
k β2

k <∞,
αk/βk → 0 (two-scales assumption),
the algorithm converges if we replace hk and gk by H and G .

Convergence toward a neighborhood if α≪ β are kept constant (as often in
practice). 248
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Stochastic Approximation and ODE

From

θk+1 = θk + αkhk(θk , νk)
νk+1 = νk + βk + gk(θk , νk)

with

hk(θ, ν) = H(θ, ν) + ϵk + ηk

gk(θ, ν) = G(θ, ν) + ϵ′
k + η′

k

to d θ̃

dt = H(θ̃, ν̃(θ̃)) with ν̃(θ) the limit of d ν̃

dt = G(θ, ν̃)

ODE Approach
General proof showing that the algorithm converges provided the two ODE
converge.
Quite generic setting and source of new algorithm or insight on existing ones.
Importance of having two scales. . .

Can be used to prove the convergence of GTD and TDC!
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Simplified Deep Q-Learning

wt+1 = wt + βt(Rt+1 + γ maxa Qνt (St+1, a)− Qwt (St , At))∇Qwt (St , At)
νt = w⌈t/T ⌉T

Simplified Deep Q-Learning
Stochastic Approximation for a fixed ν:

Limiting equation:
Eb[(T ⋆Qν(St , At)− Qw∞(St , At))∇Qw∞(St , At)] = 0

Stochastic Gradient Descent of
Eb

[
(T ⋆Qν(St , At)− Qw(St , At))2

]
Qw → T ⋆Qν

Approximate Value Iteration Scheme!

Two-scales algorithm flavour as ν is kept constant.
Explicit two scales with νt+1 = νt + αt(wt − νt) variation.
Could be used for prediction with Rt+1 + γ

∑
a π(a|St+1)Qνt (St+1, a)
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Deep Q-Learning
wt+1 = wt + βt(Rt + γ max

a
Qνt (St+1, a)− Qw(St , At))∇Qw(St , At)

νt = w⌈t/T⌉T

Who are St , At , Rt+1, St+1? and thus to what corresponds Eb?

Simplified Deep Q-Learning
Use a behaviour policy b.
The current greedy plus exploration Q-policy can be used.

Neural Fitted-Q
Instead of a policy b, use a fix dataset D of St , At , Rt+1, St+1.
Several pass on the data can be made.

Deep Q-Learning
Use the current greedy plus exploration Q-policy to populate a FIFO buffer D.
Use random samples of the buffer Dt (more than one per interaction is OK).
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Deep Q-Learning
wt+1 = wt + βt(Rt + γ max

a
Qνt (St+1, a)− Qw(St , At))∇Qw(St , At)

νt = w⌈t/T⌉T

Plus tricks

Deep Q-Learning Tricks
Replay buffer
Double Q-Learning
Better Exploration
Advanced Return and Distributional
Network Architecture

Rainbow paper. . .
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Replay Buffer

Replay Buffer
Replace an expectation over real trajectories by an empirical average over past
(short) sub-trajectories stored in a replay buffer.
The empirical average corresponds to uniform sampling.
If the policy is changing across time, we should use a importance sampling
correction to be faithful with the theory. . .
Not necessary for one-step Q learning but required for most of the other methods
where replay buffer is used.
Often no correction in practice if the policies used in the buffer are closed to the
current one.
Prioritized sweeping variant possible. . .

Buffer can be constructed in parallel of the learning part.
Only requires to transmit the current greedy plus exploration Q-policy.
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Double Q-Learning
Q-Learning and overestimation

Target: Rs,a + γ maxa′ Qw(s ′, a′)
Approximation issue: Qw(s ′, a′) ∼ Q(s, a) + ϵ(s, a)
Consequence: E[maxa Qw(St , a)] ≥ max (Q(s, a) + E[ϵ(s, a)])

Double Q-Learning with two Q functions: Qw1 and Qw2

Used in a crossed way for the target of Qwi :
Rs,a + γQwi′ (s

′, argmax
a′

Qwi (s ′, a′))

Mitigates the bias.

Clipped Q-Learning with several Q functions: Qwi

Used in a pessimistic way for the target of Qwi :
Rs,a + γ min

i ′
Qwi′ (s

′, argmax
a′

Qwi (s ′, a′))

Seems even more efficient. 255
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Continuous Action
Case (almost) not yet covered in the lectures.
Most complex theoretical extension.

Prediction
No algorithmic issue if one can sample π.
Off-policy can be considered under a domination assumption.

Planning
Main issue is the argmax of the greedy policy (or the sampling of Gibbs policy).
May be impossible to compute.
Possible if the parametrization of Q with respect to a is simple (e.g. explicit
quadratic dependency in a).
An alternative could be to approximate the argmax operator, or to learn how to
approximate the argmax directly, which is very close to approximating directly the
policy itself. . .
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Policy Point of View

From

MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction Replay Buffer

Value Functions

Policy

Agent Policies

Final Policy

Behavior Policy

to

MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction Replay Buffer

Value Functions

Policy

Agent Policies

Final Policy

Behavior Policy

Policy Point of View
Optimize policy directely instead of deriving it from a value function.
Avoid the argmax operator.
Most natural POV?

Pontryagin vs Hamilton-Jacobi(-Bellman) in control!
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Policy and Goal

Jµ(π) =
∑
s

µ(s)vπ(s)

Goal: average expected return over the states
Target used to define the linear programming formulation of an optimal policy in
the tabular setting.
µ can be the initial distribution of the states (independent of π). . .
but may also depends on π (for instance the associated stationary measure)
Other choices will appear.

Goal: optimize Jµ(π) in π!
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Parametric Policy

πθ(a|s) =


ehθ(a,s)∑
a′ ehθ(a,s′) (softmax)

Phθ(s)(a) (parametric conditional model)
1a==hθ(s) (deterministic)

Parametric Policy
Restriction of the set of policy to a parametrized one.
Most classical parametrizations:

Soft-max with a preference function hθ(a, s),
Parametric conditional model with parameter hθ(s)

To be useful need to be able to sample the distribution.
hθ: from linear model to deep learning. . .
Most of our result will assume that πθ(a|s) is differentiable with respect to θ.

Deterministic policies will be considered with a different analysis. 262
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Episodic Setting: Gradient of Expected Returns

vπθ
(s) = Eπθ

[G0|S0 = s]

∇θvπθ
(s) = Eπθ

Tτ −1∑
t=0
∇ log πθ(At |St)

G0

∣∣∣∣∣∣S0 = s


Expected Returns
Rely on vπθ

(s) =
∑

τ

Pπθ
(τ |S0 = s) G0(τ) and

∇Pπθ
(τ |S0 = s) = Pπθ

(τ |S0 = s)∇ logPπθ
(τ |S0 = s)

= Pπθ
(τ |S0 = s)

∑
t

(∇ log πθ(At |St) +∇p(Rt+1, St+1|St , At))

= Pπθ
(τ |S0 = s)

∑
t
∇ log πθ(At |St)

In an episodic setting, any trajectory τ ends at a finite time Tτ . Ep
iso

di
c

263



Reinforcement Learning:
Policy Approach

Episodic Setting: Policy Gradient Theorem

Jµ0(πθ) =
∑

s
P(S0 = s) vπθ

(s)

∇Jµ0(πθ) = Eπθ

Tτ −1∑
t=0
∇ log πθ(At |St)

G0


Policy Gradient Theorem

Natural µ: initial state distribution.
Gradient is an expectation: MC type algorithm. . .

Can be interpreted as the gradient of a the maximum likelihood of the actions
weighted by the return.
Favors good actions over bad ones.
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Baseline and Variance Reduction

Jµ0(πθ) =
∑

s
P(S0 = s) vπθ

(s)

∇Jµ0(πθ) = Eπθ

Tτ −1∑
t=0
∇ log πθ(At |St)

 (G0 − b)


Variance Reduction and Baseline
The previous formulae are valid if one replace G0 by any function of τ .
For any constant b, this leads to

∇Eπθ
[b] = 0 = Eπθ

Tτ −1∑
t=0
∇ log πθ(At |St)

 b


Optimal value for
b = Eπθ

[(∑Tτ −1
t=0 ∇ log πθ(At |St)

)2
G0

]
/Eπθ

[(∑Tτ −1
t=0 ∇ log πθ(At |St)

)2
]

Most used value b = Eπθ
[G0].
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Gradient(s) of Expected Return

vπθ
(s) = Eπθ

[∑
γtRt

∣∣∣S0 = s
]

∇vπθ
(s) =

∑
t

γtEπθ

[( t−1∑
t′=0
∇ log πθ(At′ |St′)

)
Rt

∣∣∣∣∣S0 = s
]

=
∑
t′

Eπθ

∇ log πθ(At′ |St′)
∑

t≥t′
γtRt

 |S0 = s


=
∑
t′

γt′Eπθ
[∇ log πθ(At′ |St′)qπθ

(St′ , At′)|S0 = s]

=
∑
t′

γt′Eπθ

∇ log πθ(At′|St′) (qπθ
(St′ , At′)− vπθ

(St′))︸ ︷︷ ︸
aπθ

(St′ ,At′ )

|S0 = s


From Returns to Value Functions

Action point of view and use of value functions.
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More Gradient(s)

∇vπθ
(s) =

∑
t′

γt′
Eπθ

[∇ log πθ(At′ |St′)qπθ
(St′ , At′)|S0 = s]

=
∑
t′

γt′
Eπθ

[∇ log πθ(At′ |St′)aπθ
(St′ , At′)|S0 = s]

=
∑
s′

(∑
t

γtPπθ

(
St = s ′|S0 = s

))(∑
a

πθ(a|s ′)∇ log πθ(a|s ′)qπθ
(s ′, a)

)

=
∑
s′

(∑
t

γtPπθ

(
St = s ′|S0 = s

))(∑
a

πθ(a|s ′)∇ log πθ(a|s ′)aπθ
(s ′, a)

)

Focus on states
Even more stochastic gradients!
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Policy Gradient(s)

Jµ0(πθ) =
∑

s
µ0(s)vπθ

(s)

∇Jµ0(πθ) =
∑

s

(∑
t

γtPπθ
(St = s)

)(∑
a

πθ(a|s)∇ log πθ(a|s)qπθ
(s, a)

)

=
∑

s

(∑
t

γtPπθ
(St = s)

)(∑
a

πθ(a|s)∇ log πθ(a|s)(qπθ
(s, a)− vπθ

(s, a))
)

Discounted Setting
Average (discounted) return from the beginning.
Focus on early steps in discounted setting. . .
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Policy Improvement Lemma

Jµ0(π′)− Jµ0(π) =
∑

s

∑
t

γtPπ′(St = s)
(∑

a
(π′(a|s)− π(a|s)) qπ(s, a)

)

=
∑

s

∑
t

γtPπ′(St = s)
(∑

a
(π′(a|s)− π(a|s)) aπ(s, a)

)

Proof
By construction, if St is a trajectory using policy π′:

vπ′(St)− vπ(St) =
∑

a
(π′(a|St)− π(a|St)) qπ(St , a) +

∑
a

π′(a|st) (qπ′(St , a)− qπ(St , a))

=
∑

a
(π′(a|st)− π(a|St)) vπ(St , a) + Eπ′ [vπ′(St+1)− vπ(St+1)|St ]

Discounted setting shortcut
vπ′ − vπ = rπ′ + γPπ′

vπ′ − rπ − γPπvπ = rπ′ − rπ + γ
(

Pπ′
− Pπ

)
vπ + γPπ′

(vπ′ − vπ)

vπ′ − vπ = (I − γPπ′
)−1

(
rπ′ − rπ + γ

(
Pπ′
− Pπ

)
vπ

) Ep
iso

di
c

/
D

isc
ou

nt
ed

269
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Approximate Policy Improvement Lemma
∣∣∣∣∣Jµ0(π′)− Jµ0(π)−

∑
s

∑
t

γtPπ(St = s)
(∑

a

(
π′(a|s)− π(a|s)

)
aπ(s, a)

)∣∣∣∣∣
=
∣∣∣∣∣∑s

∑
t

γt (Pπ′(St = s)− Pπ(St = s))
(∑

a

(
π′(a|s)− π(a|s)

)
aπ(s, a)

)∣∣∣∣∣
≤ 2γ

(1− γ)2 max
s
∥π′(·|s)− π(·|s)∥21 max

s,a
|aπ(s, a)|

Approximate Policy Improvement Lemma
If maxs ∥π′(·|s)− π(·|s)∥1 ≤ ϵ

Pπ′(St = s) = (1− ϵ)tPπ(St = s) + (1− (1− ϵ)t)Pmistake(St = s)
→ |Pπ′(St = s)− Pπ(St = s)| ≤ 2(1− (1− ϵ)t) ≤ 2ϵt∑

t 2γtt = 2γ
(1−γ)2
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Approximate Policy Improvement Lemma
∣∣∣∣∣Jµ0(π′)− Jµ0(π)−

∑
s

∑
t

γtPπ(St = s)
(∑

a

(
π′(a|s)− π(a|s)

)
aπ(s, a)

)∣∣∣∣∣
≤ 2γ

(1− γ)2 max
s
∥π′(·|s)− π(·|s)∥21 max

s,a
|aπ(s, a)|

Approximate Policy Improvement Lemma and Policy Gradient Theorem
Let π′ = πθ+h and πθ

πθ+h(a|s)− πθ(a|s) = πθ(a|s)⟨∇ log πθ(a|s), h⟩+ O(∥h∥2)
∥πθ+h(·|s)− πθ(·|s)∥1 ≤ ∥h∥maxa ∥∇ log πθ(a|s)∥+ O(∥h∥2)

Implies Policy Gradient Theorem:
Jµ0(πθ+h)

= Jµ0(πθ) +
∑

s

∑
t

γtPπθ
(St = s)

(∑
a

πθ(a|s)⟨∇ log πθ(s, a), h⟩aπ(s, a)
)

+ O(∥h∥2)
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Monte Carlo Approach
MDP

Env.

Agent

P

St+1, Rt+1St

At
Interaction

Model MDP

Model Env.

Model Agent

P̃

R̃t+1, S̃t+1S̃t

Ãt
Model InteractionModel Replay BufferReplay Buffer

Value Functions

Policy

Agent Policies

Final Policy

Behavior Policy Real-Time Policy

Gt =
∑
t ′≥t

Rt+1

Qt,πθ
(s, a) = E[Gt |St = s, At = a]

Monte Carlo
Replace every return by an empirical estimate along episodes.
Need to wait until the end of the episods.
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REINFORCE: Monte Carlo Based Policy Gradient

Jµ0(πθ) =
∑

s
P(S0 = s) vπθ

(s)

∇Jµ0(πθ) = Eπθ

Tτ −1∑
t=0
∇ log πθ(At |St)

G0


=
∑

s

(∑
t
Pπθ

(St = s)
)(∑

a
πθ(a|s)∇ log πθ(a|s)qπθ

(s, a)
)

∇̂Jµ0(πθ) =
Tτ −1∑

t=0
∇ log πθ(At |St)

G0 or ∇̂Jµ0(πθ) =
∑

t
∇ log πθ(At |St)Gt

REINFORCE
Plain MC (SGD) algorithm.
Need to wait until the end of the episods.
Convergence guarantees (even in off-line setting with importance sampling).
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REINFORCE with Baseline

∇Jµ0(πθ) = Eπθ

Tτ −1∑
t=0
∇ log πθ(At |St)

 (G0 − b)


=
∑

s

(∑
t
Pπθ

(St = s)
)(∑

a
πθ(a|s)∇ log πθ(a|s) (qπθ

(s, a)− b(s))
)

∇̂Jµ0(πθ) =
Tτ −1∑

t=0
∇ log πθ(At |St)

 (G0 − b)

or ∇̂Jµ0(πθ) =
∑

t
∇ log πθ(At |St) (Gt − b(St))

REINFORCE with baseline
Several choices for b. . .
and for b(s) which can be any function (a crude estimate of Vt,π(s) for instance)!
Convergence guarantees (even in off-line setting with importance sampling). Ep

iso
di
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Discounted REINFORCE?

∇Jµ0(πθ) = Eπθ

Tτ −1∑
t=0
∇ log πθ(At |St)

 (G0 − b)


=
∑

s

(∑
t

γtPπθ
(St = s)

)(∑
a

πθ(a|s)∇ log πθ(a|s) (qπθ
(s, a)− b(s))

)

∇̂Jµ0(πθ) =
Tτ −1∑

t=0
∇ log πθ(At |St)

 (G0 − b)

or ∇̂Jµ0(πθ) =
∑

t
γt∇ log πθ(At |St) (Gt − b(St))

Discounted REINFORCE
Can be defined. . .
but still requires an episodic setting for the discounted return Gt to be computed.
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Discounted Measure?

∇̂Jµ0(πθ) =
∑

t
γt∇ log πθ(At |St) (Gt − b(St))

−→ ∇̂Jµπθ
(πθ) = 1

1− γ
∇ log πθ(At |St) (Gt − b(St))?

Discounted Measure?
Much less weights for later states if µ corresponds to the initial state distribution!
Equal weights corresponds to an averaged probability independent t, which is well
defined if the initial distribution is the stationary distribution µπθ

corresponding to
πθ (it it exists).
Approximately true after a burning stage if we reach stationarity. . .
Better handled by the average return!

More on this later. . .
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Actor/Critic
MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

Model MDP

Model Env.

Model Agent

P̃

R̃t+1, S̃t+1S̃t

Ãt

Model InteractionModel Replay BufferReplay Buffer

Value Functions

Policy

Agent Policies

Final Policy

Behavior Policy Real-Time Policy

Actor/Critic
Actor: Parametric policy πθ used.
Critic: Q-value function Qw(·, ·) approximating Qπθ

.
Critic follows the Actor, which is optimized using the Critic.

In Value Approximation, the Actor follows the Critic (through the argmax
operator).
In on-line methods, the Actor is used to interact with the environment.
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Actor/Critic
J(µ0)(πθ) =

∑
s

µ0(s)vπθ
(s)

∇Jµ0(πθ) =
∑

s

(∑
t

γtPπθ
(St = s)

)(∑
a

πθ(a|s)∇ log πθ(a|s)(qπθ
(s, a)− vπθ

(s, a))
)

∇̂Jµ0(πθ) =
∑

t
γtπθ(At |St)∇ log πθ(At |St)

(
qπθ

(St , At)−
∑

a
π(a|St)qπθ

(St , At)
)

≃
∑

t
γtπθ(At |St)∇ log πθ(At |St)

(
Qw(St , At)−

∑
a

π(a|St)Qw(St , At)
)

Actor/Critic
Critic update: Stochastic Policy Gradient with plugin.
Actor update: any Q-value methods estimating qπθ

.
Requires a two-scales algorithm so that Qw is always a good estimate of qπθ

.

Is this a real algorithm in a non-episodic setting?
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Actor/Critic
Jµπθ

(πθ) =
∑

s
µπθ

(s)vπθ
(s)

∇Jµπθ
(πθ) =

∑
s

1
1− γ

Pπθ
(St = s)

(∑
a

πθ(a|s)∇ log πθ(a|s)(qπθ
(s, a)− vπθ

(s, a))
)

∇̂Jµπθ
(πθ) ≃

1
1− γ

πθ(At |St)∇ log πθ(At |St)
(

Qw(St , At)−
∑

a
π(a|St)Qw(St , At)

)

Actor/Critic
Critic update: Stochastic Policy Gradient with plugin.
Actor update: any Q-value methods estimating qπθ

.
Requires a two-scales algorithm so that Qw is always a good estimate of qπθ

.

Require the existence of a stationary measure. . . and that this stationary measure
is reached quickly.
Much harder to do off-policy algorithm as the stationary measure is not known!
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Critic in Actor/Critic

Qw ≃ qπθ

Critic
On-line TD learning with interaction following πθ.
Off-Policy TD learning is possible if the policy used for any action is stored.
Approximate off-policy TD learning is possible using a replay buffer providing πθ is
changing slowly.

May lead to 3 scales algorithm (Actor/Critic Target/Critic)
As mentionned in the previous slide, much harder to do off-line update for the
actor.
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Off-Line Actor

J ′
µ(π) =

∑
s

µ(s)vπ(s)

Off-Line Actor
Idea proposed in 2012.
Key lemma in the paper

∇J ′
µ(πθ) ≃

∑
s

µ(s)
∑

a
πθ(a|s)∇πθ(a|s)qπθ

(s, a)

turns out to be wrong!
Still used as a heuristic justification of many algorithms!
Explicit formula for ∇J ′

µ(πθ) can be obtained but much harder to use. . .
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PPO: Minorize-Majorization Algorithm

Jµ0(π′) ≥ Jµ0(π) +
∑

t
γtPπ(St = s)

(∑
a

(
π′(s|a)− π(s|a)

)
aπ(s, a)

)

− 2γ

(1− γ)2 max
s
∥π′(·|s)− π(·|s)∥21 max

s,a
|aπ(s, a)|

Ideal Minorize-Majorization Algorithm
At step k, find θk+1 maximizing

Jµ0(πθ|πθk ) =
∑

s

∑
t

γtPπθk
(St = s)

(∑
a

(πθ(s|a)− πθk (s|a)) aπθk
(s, a)

)

− 2γ

(1− γ)2 max
s
∥πθ(·|s)− πθk (·|s)∥21 max

s,a
|aπθk

(s, a)|

By construction, Jµ0(πθk+1) ≥ Jµ0(πθk )

Sample efficient algorithm as the same trajectory can be (re)used in the
optimization.
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PPO: Optimization

Jµ0(πθ) ≥ Jµ0(πθk ) +
∑

s

∑
t

γtPπθk
(St = s)

(∑
a

(πθ(s|a)− πθk (s|a)) aπθk
(s, a)

)

− 2γ

(1− γ)2 max
s
∥πθ(·|s)− πθk (·|s)∥21 max

s,a
|aπθk

(s, a)|

Optimization
Gradient descent is possible.
Gradient of the first term can be approximated using a critic by∑

s

∑
t

γtPπ(St = s)
(∑

a
πθ∇πθ(s|a)Aπθk

(s, a)
)

Gradient of the second term more involved.

Simpler (TRPO like) strategy: optimize∑
s

∑
t

γtPπθk
(St = s)

(∑
a

(πθ(s|a)− πθk (s|a)) aπθk
(s, a)

)
under maxs ∥πθ(·|s)− πθk (·|s)∥21 ≤ ϵ and reduce ϵ there is no gain.

D
isc

ou
nt

ed

286



Reinforcement Learning:
Policy Approach

PPO: KL Relaxation

Jµ0(πθ) ≥ Jµ0(πθk ) +
∑

s

∑
t

γtPπθk
(St = s)

(∑
a

(πθ(s|a)− πθk (s|a)) aπθk
(s, a))

)

− 2γRmax
(1− γ)2 max

s
KL(πθk (·|s), πθ(·|s))

TRPO/PPO Optimization
Replace the ℓ1 norm by a KL divergence.
In practice, replace the max by an average and replace 2γRmax

(1−γ)3 by parameter β and
replace the aπk by an estimate Aπk .
PPO: Gradient descent of the relaxed goal.
TRPO: Constrained optimization.

Adaptive scheme to set β.
Can be used with continuous action.
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PPO: Clipped Objective∑
s

∑
t

γtPπθk
(St = s)

(∑
a

πθk (s|a) min
(

πθ(s|a)
πθk (s, a)aπθk

(s, a), clip(1− ϵ,
πθ(s|a)
πθk (s, a) , 1 + ϵ)aπθk

(s, a)
))

Clipped Objective
Insight by (re)substracting

∑
a πθk (s|a)aθk (s, a) = 0:∑

a
min

(
(πθ(s|a)− πθk (s, a)) aπθk

(s, a), clip(−ϵ, πθ(s|a)− πθk (s, a), ϵ)aπθk
(s, a)

)
=
∑

a
clip(−ϵπθk (s, a), πθ(s|a)− πθk (s, a), ϵπθk (s, a))aπθk

(s, a)

−max
(
0,−(πθ(s|a)− πθk (s, a))aπθk

(s, a)− ϵπθk (s, a)|aπθk
(s, a)|

)
First term amount to replace πθ by a policy

π̃θ(a|s) = clip(πθk (a|s)(1− ϵ), πθ(a|s), πθk (a|s)(1 + ϵ)) + ηsπθk (a|s)
where η is so that π̃ is a probability for all s and ∥π̃θ(·, s)− πθk (·, s)∥1 ≤ ϵ

Second term: hinge loss type penalization of policy πθ penalizing bad actions.

Very efficient for discrete actions.
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Reinforcement Learning:
Policy Approach

PPO: Stationary Objective

∑
s,t

Pπθk
(St = s)

(∑
a

(πθ(s|a)− πθk (s|a)) aπθk
(s, a)

)
− β max

s
KL(πθk (·|s), πθ(·|s))

∑
s,t

Pπθk
(St = s)

(∑
a

πθk (s|a) min
(

πθ(s|a)
πθk (s, a)aπθk

(s, a), clip(1− ϵ,
πθ(s|a)
πθk (s, a) , 1 + ϵ)aπθk

(s, a)
))

Stationary Objective
Amount to replace Jµ0(π) by Jµπ (π)
Most common implementation of PPO. . .
But no way to justify it mathematically!
May explain the (possible) instabilities of PPO.

More on this later. . .
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Reinforcement Learning:
Policy Approach

DPG: Deterministic Policy Gradient

Jµ0(πθ) =
∑

s
µ0(s)vπθ

(s) with deterministic policy πθ(a|s) = 1a==hθ(s)

∇Jµ0(πθ) =
∑

s

∑
t

γtPπθ
(St = s)∇aq(St , hθ(St))∇hθ(St)

Deterministic Policy Gradient
Deterministic policy replaced by a randomized one centered on hθ(s) in the
interactions!.
Critic trained with a TD variant of DQN.
Same formula by using a policy πθ = N(hθ(s), σ2Id) and letting σ goes to 0.
Off-Policy as claimed?
Yes for the actor but no theoretical justification for the critic!
In practice, the buffer contains only samples using a policy close to the current
one. . . D
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Reinforcement Learning:
Policy Approach

SAC: A New Goal

Rt → Rt + λH(π(St))

A Modified Reward
Modification of the reward to favor high entropy policy:

Rt → Rt + λH(π(St))
Goal:

J(π) = Eπ

[∑
t

γt (Rt + λH(π(St)))
]

Soft value function implicitly defined as the fixed point of
T πqπ(s, a) = rπ(s, a) + γ

∑
s′

p(s ′|s, a)vπ(s ′)

where vπ(s, a) =
∑

a
π(a|s) (qπ(s, a)− log π(a|s))
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Reinforcement Learning:
Policy Approach

SAC: Policy Improvement and Optimal Policy

Rt → Rt + λH(π(St))

A Modified Policy Improvement Lemma
Policy improvement rule:

π+(·|s) = argmax
π(·|s)

∑
a

π(a|s) (q(s, a)− λ log(π(a|s)))

π+(a|s) ∝ exp(− 1
λ

q(s, a))
implies Gπ+(s, a) ≥ Gπ(s, a).
At convergence, J(π⋆) is optimal!
Convergence in the finite setting.
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Reinforcement Learning:
Policy Approach

SAC: Parametrization

π ∼ πθ and q(s, a) ∼ Qw

SAC Choices
Fitted TD learning for Q:

w ≃ argmin
∑

(S,A,R,S′)∈B

(
R + Eπθ

[
γQw(S ′, a)− λ log πθ(a|S ′)

]
− Qw(S, A)

)2
where the trajectory pieces are samples from a replay buffer and w is a slowdown
version of w (two-scales algorithm).
Online version rather than batch. . .
Fitted KL for π:

θ ≃ argmin
∑

(S,A,R,S′)∈B
KL(πθ(·|S)| exp−λQ[w ](S, )̇/Zw(S))

≃
∑

(S,A,R,S′)∈B
Eπθ

[ 1
λ

log πθ(a|S)− Qθ(a|s)
]

Plus tricks: double Q learning, adaptation of λ. . .
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ExtensionsTotal Reward

vΠ(s) = EΠ

[+∞∑
t′=1

Rt+1

∣∣∣∣∣S0 = s
]

= EΠ

[+∞∑
t′=1

max(0, Rt+1)
∣∣∣∣∣St = s

]
︸ ︷︷ ︸

v+,Π(s)

−EΠ

 +∞∑
t′=t+1

max(0,−Rt+1)

∣∣∣∣∣∣St = s


︸ ︷︷ ︸
v−,Π(s)

Total reward not necessarily well defined!
Need to assume this is the case!

Classical Assumptions
Episodic model: ∀Π, s, EΠ

[
mint,∀t′≥t,Rt′ =0 t

∣∣∣S0 = s
]
≤ H < +∞

Stochastic Shortest Path: ∃Π, ∀s, EΠ
[
mint,∀t′≥t,Rt′ =0 t

∣∣∣S0 = s
]
≤ H < +∞.

More general assumption: ∀Π, s either v+,Π(s) or vΠ(s) is finite.

To
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ExtensionsBellman Operator and Optimality Equation

sup
Π

vΠ(s) = v⋆(s) = max
a

r(s, a) +
∑
s′

p(s ′|s, a)v⋆(s ′)︸ ︷︷ ︸
T ⋆(v⋆)(s)

Similar to the discounted setting as:
We can focus on Markovian policy.
The optimal value v⋆ satisfies the Bellman optimality equation.

But. . .
T ⋆ is not a contraction and thus there may be several solutions of the equation.
If π is such that T πv⋆ = T ⋆v⋆, we need to assume that lim sup(Pπ)nv⋆(s) ≤ 0 to
prove that Π = (π, π, . . .) is optimal.
There may not exist an optimal policy!

Existence of optimal policies in the finite state-action setting by defining the total
reward to the limit of discounted setting when γ → 1 and using the finiteness of
the policy set. . .
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ExtensionsStochastic Shortest Path

∀s, EΠ

[
min

t,∀t ′≥t,Rt′=0
t
∣∣∣∣∣S0 = s

]
≤ H < +∞

A policy is said to be H-proper if it satisfies this property.

Extended Stochastic Shortest Path
Assumptions:

It exists a proper policy.
For any improper policy, it exists s such that vΠ(s) = −∞.

Results:
v⋆ is the unique solution of v = T ⋆v .
Value Iteration converges and Policy Iteration converges provided v0 ≤ T ⋆v0 (or
finite setting).
If all stationary policies are proper then T ⋆ is a contraction for a weighted sup-norm.

Any discounted model can be put in this framework by adding an absorbing state
reached at random at each step with probability 1− γ and H = 1/(1− γ).
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ExtensionsStochastic Shortest Path and Reinforcement Learning

δt = Rt + Q(St+1, At+1)− Q(St , At)

Prediction
Convergence of TD-learning algorithms for any proper policy.

δt = Rt + max
Q

(St+1, a)− Q(St , At)

Planning
Convergence of Q-learning algorithms is the Stochastic Shortest Path setting (It
exists a proper policy and for any improper policy, it exists s such that
vΠ(s) = −∞) if the Q estimates remain bounded.

See Neuro-Dynamic Programming from Bertsekas and Tsitsiklis!
May be very slow in practice!
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ExtensionsStochastic Shortest Path and Policy Gradient

∇vπθ
(s) =

∑
t′

Eπθ
[∇ log πθ(At′ |St′)aπθ

(St′ , At′)|S0 = s]

=
∑

s

(∑
t
Pπθ

(St = s|S0 = s)
)(∑

a
πθ(a|s)∇ log πθ(a|s)qπθ

(s, a)
)

Policy Gradient
Formula valid in the Stochastic Shortest Path Assumption (if the current policy is
proper).
Approximate Policy Improvement Lemma with a H2 multiplicative constant
(instead of O(H)).

Actor-Critic
Valid approach provided all the policies considered remain propers.
Main difficulty is to maintain a good estimate of qπθ

. . .
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ExtensionsPositive Bounded and Negative Models
Positive Bounded Models

∀Π, s, v+,Π(s) <∞
∀s, ∃a, r(s, a) ≥ 0

Often stronger assumption: r(s, a) ≥ 0.
Any discounted model can be put in this framework by adding an absorbing state
reached at random at each step with probability 1− γ.

Negative Models
∀Π, s, v+,Π(s) = 0 and v−,Π(s) <∞
There exists a policy Π such that ∀s, vΠ(s) > −∞

Maximization of vΠ amounts to the minimization of v−,Π and the negative reward
can be interpreted as the opposite of costs.
Classical Stochastic Shortest Path within this framework.
See Markov Decision Processes. Discrete Stochastic Dynamic Programming from
Puterman.
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ExtensionsPositive Bounded and Negative Models Results
Result Positive Bounded Models Negative Models
Optimality equation v⋆ is a minimal solution within

v ≤ T ⋆v
v⋆ is a maximal solution within
v ≥ T ⋆v

T πv⋆ = T ⋆v⋆ ⇒ π optimal Only if
lim sup(Pπ)nv⋆(s) = 0

Always

Existence of optimal stationary
policy

S and A finite or existence of
optimal policy and r ≥ 0

As finite or As compact, r and
p continuous with respect to a.

Existence of stationary ϵ-
optimal policy

If v⋆ is bounded Not always (Always for non sta-
tionary policy)

Value Iteration converges 0 ≤ v0 ≤ v⋆ 0 ≥ v0 ≥ v⋆ and As finite or S
finite if v⋆ > −∞

Policy Iteration converges Yes Not always
Modified Policy Iteration con-
verges

0 ≤ v0 ≤ v⋆ and v0 ≤ T ⋆v0 Not always

Solution by linear programming Yes No

No RL analysis? To
ta

l

302



ExtensionsOutline

1 Sequential Decisions, MDP and Policies
Decision Process and Markov Decision
Process
Returns and Value Functions
Prediction and Planning
Operations Research and
Reinforcement Learning
Control
Survey

2 Operations Research: Prediction and
Planning

Prediction and Bellman Equation
Prediction by Dynamic Programming
and Contraction
Planning, Optimal Policies and
Bellman Equation
Linear Programming
Planning by Value Iteration
Planning by Policy Iteration
Optimization Interpretation
Approximation and Stability
Generalized Policy Iteration

Episodic and Infinite Setting
3 Reinforcement Learning: Prediction and

Planning in the Tabular Setting
Prediction with Monte Carlo
Planning with Monte Carlo
Prediction with Temporal Differencies
Link with Stochastic Approximation
Planning with Value Iteration
Planning with Policy Improvement
Exploration vs Exploitation

4 Reinforcement Learning: Advanced
Techniques in the Tabular Setting

n-step Algorithms
Eligibility Traces
Off-policy vs on-policy
Bandits
Model Based Approach
Replay Buffer and Prioritized Sweeping
Real-Time Planning

5 Reinforcement Learning: Approximation
of the Value Functions

Approximation Target(s)

Gradient and Pseudo-Gradient
Linear Approximation and LSTD
On-Policy Prediction and Control
Off-Policy and Deadly Triad
Two-Scales Algorithms
Deep Q Learning
Continuous Actions

6 Reinforcement Learning: Policy
Approach

Policy Gradient Theorems
Monte Carlo Based Policy Gradient
Actor / Critic Principle
3 SOTA Algorithms

7 Extensions
Total Reward
Average Return
Discount or No Discount?
POMDP
Imitation and Inverse Reinforcement
Learning
More

8 References

303



ExtensionsAverage Return

vΠ(s) = lim
T→∞

1
T vT ,Π(s) = lim

T→∞

1
T EΠ

[ T∑
t=1

Rt

∣∣∣∣∣S0 = s
]

−→ v+,Π(s) = lim sup
T→∞

1
T vT ,Π(s)

v−,Π(s) = lim inf
T→∞

1
T vT ,Π(s)

Average Return(s)
Limit vΠ may not be defined!
Prop: vΠ is well defined if Π is stationary and 1

T
∑T

t=1(Pπ)t−1 tends to a
stochastic matrix.
Limits v+,Π and v−,Π always defined! Av
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ExtensionsAverage Returns and Optimality

v+,⋆(s) = sup
Π

v+,Π(s) and v−,⋆(s) = sup
Π

v−,Π(s)

Optimality of Π⋆

Average optimal:
v−,Π⋆ ≥ v+,⋆(s)

Lim-sup average optimal (best case analysis):
v+,Π⋆ ≥ v+,⋆(s)

Lim-inf average optimal (worst case analysis):
v−,Π⋆ ≥ v−,⋆(s)

More complex setting!
Let’s start with Prediction. . .
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ExtensionsPrediction for a Stationary Markov Policy

vΠ(s) = lim
T→∞

1
T

T∑
t=1

P t−1
π rπ =

(
lim

T→∞

1
T

T∑
t=1

P t−1
π

)
rπ = P∞

π rπ

Stochastic Matrix P∞
π

Measures the average amount of time spend on a state s ′ starting from state s at
t = 0 when using policy π.
Structure linked to the properties of the resulting Markov chain:

If aperiodic, P∞
π = limT PT

π i.e. P∞
π is close to the probability of reaching s ′ from s

at any large T .
If unichain, then P∞

π has identical rows and corresponds to the stationary
distribution.
If multichhain, then P∞

π has a diagonal block structure with rows equal withing each
block corresponding to the stationary distribution in each chain.

Implies that vΠ(s) = vΠ(s ′) in the Markov process is unichain.
Limit P∞

π may be hard to compute. . .
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ExtensionsAverage Reward and Relative Value Functions

Uπ(s) = Eπ

[ ∞∑
t=1

(Rt − vπ(St))
∣∣∣∣∣S0 = s

]
⇔ Uπ = (Id− Pπ + P∞

π )−1(Id− P∞
π )︸ ︷︷ ︸

Hπ

rπ

Link between Uπ and vπ

(Id− Pπ)vπ = 0
vπ + (I − Pπ)Uπ = rπ

Characterization by a system
If (Id− Pπ)v = 0 and v + (I − Pπ)U = rπ then

v = vπ,
U = Uπ + u with (I − Pπ)u = 0,
If P∞

π U = 0 then u = 0.

Prediction possible by solving this system as we do not need Uπ. Av
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ExtensionsOptimality Equations

v(s) = max
a

∑
s′

p(s ′|s, a)v(s ′)

U(s) + v(s) = max
a∈Bs

r(s, a) +
∑
s′

p(s ′|s, a)U(s)with Bs = {a|
∑
s′

p(s ′|s, a)v(s ′) = v(s)}

π⋆(s) ∈ argmax
a∈Bs

r(s, a) +
∑
s′

p(s ′|s, a)U(s)

Existence
If there is a solution (v , U) of the system then v = v⋆ and π⋆ is an optimal policy.
There may exist other optimal policies not satisfying the argmax property.
There may not exist solutions to the system.

Associated relative value iteration and modified policy iteration can be defined.
Convergence under strong assumptions. . . Av
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ExtensionsAverage Return and Relative Value Functions

r(π) = lim
T

Eπ

[
1
T

T−1∑
t=0

Rt

]
=
∑

s
µπ(s)

∑
a

π(a|s)
∑
s′,r

p(s ′, r |s, a)r

Gt =
∑
t′≥t

(Rt − r(π))

vπ(s) = Eπ[Gt |St = s] and qπ(s, a) = Eπ[Gt |St = s, At = a]

Connection with Stochastic Shortest Path
Provided there is a state s that is visited with positive probability in the first m
steps for any starting state and any policy.
r(π) is the average cost between a visit s and the next one. . .

Reinforcement Learning Algorithms
Simultaneous estimation of q and r . . .
Much less theory as there is no contraction!
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ExtensionsAlgorithm(s)
Average: Planning by SARSA
input: MDP environment, initial state distribution µ0, policy Π and discount factor γ
parameter: Number of step T
init: ∀s, a, Q(s, a), N(s, a) = 0, n=0, t = 0, r = 0
Pick initial state S0 following µ0
repeat

N(St)← N(St) + 1
Pick action At according to π(·|St)
Q(St−1, At−1)← Q(St−1, At−1) + α(N(St−1, At−1)) (Rt − rt−1 + γQ(St , At)− Q(St−1, At−1))
r ← r + αt(Rt − r)
Π(St−1) = argmaxa Q(St−1, a) (plus exploration)
t ← t + 1

until t == T
output: Deterministic policy π̃(s) = argmaxa Q(s, a)

Q-learning variant (known as R-learning) and other estimations of r exist.
No convergence proof.
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ExtensionsPolicy Gradient

∇r(π) = lim
T

1
T Eπ

[ T∑
i=1
∇ log π(At |St)qπ(St , At)

]

∇r(π) = lim
T

1
T Eπ

[ T∑
i=1
∇ log π(At |St)aπ(St , At)

]

Policy Gradient
REINFORCE type algorithms, using MC estimate of q and a are possible,
but q and a are the relative ones, not the classical ones, and are much harder to
estimate.

Actor/Critic algorithms combining parametric estimation of q (or a) and gradient
exist.
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ExtensionsTo Discount or Not?

To Discount: J(π) = Eπ

[∑
t

ρtRt

]
Qπ(s, a) = Eπ

[∑
t

ρtRt

∣∣∣∣∣s0 = s, a0 = a
]

or Not (SSP): J(π) = Eπ

[∑
t

Rt

]
Qπ(s, a) = Eπ

[∑
t

Rt

∣∣∣∣∣s0 = s, a0 = a
]

To Discount or Not? Open Question!
Discount is (quite) artificial.
No discount in the evaluation part most of the time.
Discount often used in training due to better convergence for value
functions. . . toward a (quite) artificial policy target!

In practice, often hybrid scheme with no discount for the policy gradient part, but
discount for the value functions part! No strong justification but often better
numerical performance!
Average reward much less used! 313
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ExtensionsPOMDP

o ∼ P(·|s, a)

Partially Observed Markov Decision Process
MDP strongest assumption is that s is observed!
POMDP replaces this assumption by the observation of o with a known law of
P(o|s, a).
Can be recasted as a MDP where the state is the probability of being in a state s
given the current observation!
Much higher dimensional setting!

Policy gradient algorithms remain valid in the POMDP setting when replacing s
with o.
Difficult part is to obtain a good value function estimate.
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ExtensionsImitation Learning

Good St , At , (Rt+1, )St+1, At+1 → π

argmin
θ

t∑
i=1

log πθ(At |St)

Imitation Learning
Learn policy from demonstrations (observations).
Most classical approach: maximum likelihood.
Need to cover all states (possibly through the approximation)
Reward is not used.

DAGGER: Sequential approach to add feedback from trajectory with an estimated
policy through the decision that would have been made.
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ExtensionsInverse Reinforcement Learning

Good St , At , St+1, At+1 or π → R → π⋆

Inverse Reinforcement Learning
Heuristic: Learn a reward which explains the observed policy and used it to
obtain a better policy (or to generalize to different models).
No clear mathematical formulation:

Reward so that the observed policy is optimal (with a margin).
Expected return/optimal value function linked to observed policy (trajectories)
probability (with entropic regularization)
Most generic formulation?

min
π′

max
R

Eπ[R]− Eπ′ [[] R] + K (π′)− C(R)

Exact problem considered not always clear for a given algorithm (and different
from one algorithm to another)!

Very hard problem!
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ExtensionsLearning from Preferences

St , At , St+1, At+1 vs St , A′
t , S ′

t+1, A′
t+1 → R → π⋆

Learning from Preferences
Often easier to compare trajectories than to make a demonstration.
Reinforcement Learning from Human Feedback: Learn a reward from the
demonstration using a preference model (Bradley-Terry?) and use it to find a
policy.
Direct Policy Optimization: shortcut to optimize directly the policy thanks to
the explicit preference model used.
Proximity constrains are often added to avoid moving too fast from a current
policy.

Key to the performances of current LLMs.
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ExtensionsMore!

Regrets
Sample optimality
Robustness
Multi-agents (Games. . . )
LLM and world models. . .
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