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Review of the Methods seen
so far

Supervised Learning
Supervised Learning Framework

Input measurement X ∈ X
Output measurement Y ∈ Y.
(X , Y ) ∼ P with P unknown.
Training data : Dn = {(X 1, Y1), . . . , (Xn, Yn)} (i.i.d. ∼ P)

Often
X ∈ Rd and Y ∈ {−1, 1} (classification)
or X ∈ Rd and Y ∈ R (regression).

A predictor is a function in F = {f : X → Y meas.}

Goal
Construct a good predictor f̂ from the training data.

Need to specify the meaning of good.
Classification and regression are almost the same problem!

5



Review of the Methods seen
so far

Loss and Probabilistic Framework

Loss function for a generic predictor
Loss function: ℓ(Y , f (X )) measures the goodness of the prediction of Y by f (X )
Examples:

0/1 loss: ℓ(Y , f (X )) = 1Y ̸=f (X)
Quadratic loss: ℓ(Y , f (X )) = |Y − f (X )|2

Risk function
Risk measured as the average loss for a new couple:

R(f ) = E(X,Y )∼P[ℓ(Y , f (X))]
Examples:

0/1 loss: E[ℓ(Y , f (X ))] = P(Y ̸= f (X ))
Quadratic loss: E[ℓ(Y , f (X ))] = E

[
|Y − f (X )|2

]
Beware: As f̂ depends on Dn, R(f̂ ) is a random variable!
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Review of the Methods seen
so far

Best Solution

The best solution f ⋆ (which is independent of Dn) is
f ⋆ = arg min

f ∈F
R(f ) = arg min

f ∈F
E[ℓ(Y , f (X ))] = arg min

f ∈F
EX
[
EY |X [ℓ(Y , f (X ))]

]
Bayes Predictor (explicit solution)

In binary classification with 0− 1 loss:

f ⋆(X ) =


+1 if P(Y = +1|X ) ≥ P(Y = −1|X )

⇔ P(Y = +1|X ) ≥ 1/2
−1 otherwise

In regression with the quadratic loss
f ⋆(X ) = E[Y |X ]

Issue: Solution requires to know Y |X (or EspY |X ) for every value of X !

7



Review of the Methods seen
so far

Goal
Machine Learning

Learn a rule to construct a predictor f̂ ∈ F from the training data Dn s.t. the
risk R(f̂ ) is small on average or with high probability with respect to Dn.

In practice, the rule should be an algorithm!

Canonical example: Empirical Risk Minimizer
One restricts f to a subset of functions S = {fθ, θ ∈ Θ}
One replaces the minimization of the average loss by the minimization of the
empirical loss

f̂ = f
θ̂

= argmin
fθ,θ∈Θ

1
n

n∑
i=1

ℓ(Yi , fθ(X i))

Examples:
Linear regression
Linear classification with

S = {x 7→ sign{x⊤β + β(0)} /β ∈ Rd , β(0) ∈ R} 8
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Under-fitting / Over-fitting Issue

So
ur

ce
:

A
.N

gModel Complexity Dilemna
What is best a simple or a complex model?
Too simple to be good? Too complex to be learned?
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Review of the Methods seen
so far

Under-fitting / Over-fitting Issue

So
ur

ce
:

U
nk

no
w

nUnder-fitting / Over-fitting
Under-fitting: simple model are too simple.
Over-fitting: complex model are too specific to the training set.

10



Review of the Methods seen
so far

Bias-Variance Dilemma
General setting:

F = {measurable functions X → Y}
Best solution: f ⋆ = argminf ∈F R(f )
Class S ⊂ F of functions
Ideal target in S: f ⋆

S = argminf ∈S R(f )
Estimate in S: f̂S obtained with some procedure

Approximation error and estimation error (Bias-Variance)

R(f̂S)−R(f ⋆) = R(f ⋆
S )−R(f ⋆)︸ ︷︷ ︸

Approximation error

+R(f̂S)−R(f ⋆
S )︸ ︷︷ ︸

Estimation error

Approx. error can be large if the model S is not suitable.
Estimation error can be large if the model is complex.

Agnostic approach
No assumption (so far) on the law of (X , Y ).
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Under-fitting / Over-fitting Issue

So
ur

ce
:

U
nk

no
w

n

Different behavior for different model complexity
Low complexity model are easily learned but the approximation error (bias) may
be large (Under-fit).
High complexity model may contain a good ideal target but the estimation error
(variance) can be large (Over-fit)

Bias-variance trade-off ⇐⇒ avoid overfitting and underfitting

Rk: Better to think in term of method (including feature engineering and specific
algorithm) rather than only of model.
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Theoretical Analysis

Statistical Learning Analysis
Error decomposition:

R(f̂S)−R(f ⋆) = R(f ⋆
S )−R(f ⋆)︸ ︷︷ ︸

Approximation error

+R(f̂S)−R(f ⋆
S )︸ ︷︷ ︸

Estimation error

Bound on the approximation term: approximation theory.
Probabilistic bound on the estimation term: probability theory!
Goal: Agnostic bounds, i.e. bounds that do not require assumptions on P!
(Statistical Learning?)

Often need mild assumptions on P. . . (Nonparametric Statistics?)
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Binary Classification Loss Issue

Empirical Risk Minimizer

f̂ = argmin
f ∈S

1
n

n∑
i=1

ℓ0/1(Yi , f (X i))

Classification loss: ℓ0/1(y , f (x)) = 1y ̸=f (x)
Not convex and not smooth!
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Probabilistic Point of View
Estimation and Plugin

So
ur

ce
:

A
.F

er
m

in

The best solution f ⋆ (which is independent of Dn) is
f ⋆ = arg min

f ∈F
R(f ) = arg min

f ∈F
E[ℓ(Y , f (X ))] = arg min

f ∈F
EX
[
EY |X [ℓ(Y , f (x))]

]
Bayes Predictor (explicit solution)

In binary classification with 0− 1 loss:

f ⋆(X ) =
{

+1 if P(Y = +1|X ) ≥ P(Y = −1|X )
−1 otherwise

Issue: Solution requires to know Y |X for all values of X !
Solution: Replace it by an estimate and plug it in the Bayes predictor formula.
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Optimization Point of View
Loss Convexification and Optimization

Minimizer of the risk

f̂ = argmin
f ∈S

1
n

n∑
i=1

ℓ0/1(Yi , f (X i))

Issue: Classification loss is not convex or smooth.
Solution: Replace it by a convex majorant and find the best predictor for this
surrogate problem. 16
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Probabilistic and Optimization Framework
How to find a good function f with a small risk

R(f ) = E[ℓ(Y , f (X ))] ?
Canonical approach: f̂S = argminf ∈S

1
n
∑n

i=1 ℓ(Yi , f (X i))

Problems
How to choose S?
How to compute the minimization?

A Probabilistic Point of View
Solution: For X , estimate Y |X and plug it in any Bayes classifier: (Generalized)
Linear Models, Kernel methods, k-nn, Naive Bayes, Tree, Bagging. . .

An Optimization Point of View
Solution: Replace the loss ℓ by an upper bound ℓ and minimize directly the
corresponding emp. risk: Neural Network, SVR, SVM, Tree, Boosting. . .
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so far

Three Classical Methods in a Nutshell

Logistic Regression
Let fθ(X ) = X⊤β + β(0) with θ = (β, β(0)).
Let Pθ(Y = 1|X ) = efθ(X)/(1 + efθ(X))
Estimate θ by θ̂ using a Maximum Likelihood.
Classify using Pθ̂(Y = 1|X ) > 1/2

k Nearest Neighbors
For any X ′, define VX ′ as the k closest samples Xi from the dataset.
Compute a score gk =

∑
Xi ∈VX ′ 1Yi ==k

Classify using arg max gk (majority vote).
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Review of the Methods seen
so far

Three Classical Methods in a Nutshell

Quadratic Discrimant Analysis
For each class, estimate the mean µk and the covariance matrix Σk .
Estimate the proportion P(Y = k) of each class.
Compute a score ln(P(X |Y = k)) + ln(P(Y = k))

gk(X ) =− 1
2(X − µk)⊤Σ−1

k (X − µk)

− d
2 ln(2π)− 1

2 ln(|Σk |) + ln(P(Y = k))

Classify using arg max gk

Those three methods rely on a similar heuristic: the probabilistic point of view!
Focus on classification, but similar methods for regression: Gaussian Regression, k
Nearest Neighbors, Gaussian Processes. . .
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Best Solution

The best solution f ⋆ (which is independent of Dn) is
f ⋆ = arg min

f ∈F
R(f ) = arg min

f ∈F
E[ℓ(Y , f (X ))] = arg min

f ∈F
EX
[
EY |X [ℓ(Y , f (X ))]

]
Bayes Predictor (explicit solution)

In binary classification with 0− 1 loss:

f ⋆(X ) =


+1 if P(Y = +1|X ) ≥ P(Y = −1|X )

⇔ P(Y = +1|X ) ≥ 1/2
−1 otherwise

In regression with the quadratic loss
f ⋆(X ) = E[Y |X ]

Issue: Explicit solution requires to know Y |X for all values of X !
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Plugin Predictor

Idea: Estimate Y |X by Y |X
∧

and plug it the Bayes classifier.

Plugin Bayes Predictor
In binary classification with 0− 1 loss:

f̂ (X ) =


+1 if P(Y = +1|X )
∧

≥ P(Y = −1|X )
∧

⇔ P(Y = +1|X )
∧

≥ 1/2
−1 otherwise

In regression with the quadratic loss
f̂ (X ) = E

[
Y |X
∧]

Rk: Direct estimation of E[Y |X ] by E[Y |X ]
∧

also possible. . .
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Plugin Predictor

How to estimate Y |X?

Three main heuristics
Parametric Conditional modeling: Estimate the law of Y |X by a parametric
law Lθ(X ): (generalized) linear regression. . .
Non Parametric Conditional modeling: Estimate the law of Y |X by a non
parametric estimate: kernel methods, loess, nearest neighbors. . .
Fully Generative modeling: Estimate the law of (X , Y ) and use the Bayes
formula to deduce an estimate of Y |X : LDA/QDA, Naive Bayes, Gaussian
Processes. . .

More than one loss can be minimized for a given estimate of Y |X (quantiles, cost
based loss. . . )
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Parametric Conditional Density Models
Idea: Estimate directly Y |X by a parametric conditional density Pθ(Y |X ).

Maximum Likelihood Approach
Classical choice for θ:

θ̂ = argmin
θ
−

n∑
i=1

logPθ(Yi |X i)

Goal: Minimize the Kullback-Leibler divergence between the conditional law of
Y |X and Pθ(Y |X )

E[KL (Y |X ,Pθ(Y |X ))]

Rk: This is often not (exactly) the learning task!
Large choice for the family {Pθ(Y |X )} but depends on Y (and X ).
Regression: One can also model directly E[Y |X ] by fθ(X ) and estimate it with a
least-squares criterion. . .
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Linear Conditional Density Models

Linear Models
Classical choice: θ = (θ′, φ)

Pθ(Y |X ) = PX⊤β,φ(Y )
Very strong modeling assumption!

Classical examples:
Binary variable: logistic, probit. . .
Discrete variable: multinomial logistic regression. . .
Integer variable: Poisson regression. . .
Continuous variable: Gaussian regression. . .
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Binary Classifier
Plugin Linear Classification

Model P(Y = +1|X ) by h(X⊤β + β(0)) with h non decreasing.
h(X⊤β + β(0)) > 1/2⇔ X⊤β + β(0) − h−1(1/2) > 0
Linear Classifier: sign(X⊤β + β(0) − h−1(1/2))

Plugin Linear Classifier Estimation
Classical choice for h:

h(t) = et

1 + et logit or logistic

h(t) = FN(t) probit
h(t) = 1− e−et log-log

Choice of the best β from the data.

Extension to multi-class with multinomial parametric model.
27



Review of the Methods seen
so far

Maximum Likelihood Estimate

Probabilistic Model
By construction, Y |X follows B(P(Y = +1|X ))
Approximation of Y |X by B(h(x⊤β + β(0)))
Natural probabilistic choice for β: maximum likelihood estimate.
Natural probabilistic choice for β: β approximately minimizing a distance between
B(h(x⊤β)) and B(P(Y = 1|X )).

Maximum Likelihood Approach
Minimization of the negative log-likelihood:

−
n∑

i=1
log(P(Yi |X i)) = −

n∑
i=1

(
1Yi =1 log(h(X i

⊤β)) + 1Yi =−1 log(1− h(X i
⊤β))

)
Minimization possible if h is regular. . .
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Maximum Likelihood Estimate
KL Distance and negative log-likelihood

Natural probalistic distance: Kullback-Leibler divergence
KL(B(P(Y = 1|X )),B(h(X⊤β))

= EX

[
P(Y = 1|X ) log P(Y = 1|X )

h(X⊤β)

+P(Y = −1|X ) log 1− P(Y = 1|X )
1− h(X⊤β)

]
= EX

[
−P(Y = 1|X ) log(h(X⊤β))

−P(Y = −1|X ) log(1− h(X⊤β))
]

+ CX ,Y

Empirical counterpart = negative log-likelihood (up to 1/n factor):

− 1
n

n∑
i=1

(
1Yi =1 log(h(X i

⊤β)) + 1Yi =−1 log(1− h(X i
⊤β))

)
29
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Logistic Regression
Logistic Regression and Odd

Logistic model: h(t) = et

1+et (most natural choice. . . )
The Bernoulli law B(h(t)) satisfies then

P(Y = 1)
P(Y = −1) = et ⇔ log P(Y = 1)

P(Y = −1) = t

Interpretation in term of odd.
Logistic model: linear model on the logarithm of the odd

log P(Y = 1|X )
P(Y = −1|X ) = X⊤β

Associated Classifier
Plugin strategy:

fβ(X ) =

1 if eX⊤β

1+eX⊤β
> 1/2⇔ X⊤β > 0

−1 otherwise

30
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Logistic Regression and Minimization

Likelihood Rewriting
Negative log-likelihood:

− 1
n

n∑
i=1

(
1Yi =1 log(h(X i

⊤β)) + 1Yi =−1 log(1− h(X i
⊤β))

)

= −1
n

n∑
i=1

(
1Yi =1 log eX i

⊤β

1 + eX⊤
i β

+ 1Yi =−1 log 1
1 + eX i

⊤β

)

= 1
n

n∑
i=1

log
(
1 + e−Yi (X i

⊤β)
)

Convex and smooth function of β

Easy optimization.
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Feature Design

Transformed Representation
From X to Φ(X )!
New description of X leads to a different linear model:

fβ(X ) = Φ(X )⊤β

Feature Design
Art of choosing Φ.
Examples:

Renormalization, (domain specific) transform
Basis decomposition
Interaction between different variables. . .
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Gaussian Linear Regression

10
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30

30 40 50 60 70
circ

ht

Gaussian Linear Model
Model: Y |X ∼ N(X⊤β, σ2) plus independence
Probably the most classical model of all time!
Maximum Likelihood with explicit formulas for the two parameters.

In regression, estimation of E[Y |X ] is sufficient: other/no model for the noise
possible.
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Extension of Gaussian Linear Regression

Generalized Linear Model
Model entirely characterized by its mean (up to a scalar nuisance parameter)
(v(Eθ[Y ]) = θ with v invertible).
Exponential family: Probability law family Pθ such that the density can be written

f (y , θ, φ) = e
yθ−v(θ)

φ
+w(y ,φ)

where φ is a nuisance parameter and w a function independent of θ.
Examples:

Gaussian: f (y , θ, φ) = e− yθ−θ2/2
φ − y2/2

φ

Bernoulli: f (y , θ) = eyθ−ln(1+eθ) (θ = ln p/(1− p))
Poisson: f (y , θ) = e(yθ−eθ)+ln(y !) (θ = ln λ)

Linear Conditional model: Y |X ∼ Px⊤β. . .

Maximum likelihood fit of the parameters
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Non Parametric Conditional Estimation

Idea: Estimate Y |X directly without resorting to an explicit parametric model.

Non Parametric Conditional Estimation
Two heuristics:

Y |X is almost constant (or simple) in a neighborhood of X . (Kernel methods)
Y |X can be approximated by a model whose dimension depends on the complexity
and the number of observation. (Quite similar to parametric model plus model
selection. . . )

Focus on kernel methods!
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Kernel Methods

Idea: The behavior of Y |X is locally constant or simple!

Kernel
Choose a kernel K (think of a weighted neighborhood).
For each X̃ , compute a simple localized estimate of Y |X
Use this local estimate to take the decision

In regression, an estimate of E[Y |X ] is easily obtained from an estimate of Y |X .
Lazy learning: computation for a new point requires the full training dataset.
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Example: k Nearest-Neighbors (with k = 3)
1 2

3 4
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Example: k Nearest-Neighbors (with k = 4)
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k Nearest-Neighbors

Neighborhood Vx of x : k learning samples closest from x .

k-NN as local conditional density estimate

̂P(Y = 1|X ) =
∑

X i ∈VX
1{Yi =+1}

|VX |

KNN Classifier:

f̂KNN(X ) =

+1 if ̂P(Y = 1|X ) ≥ ̂P(Y = −1|X )
−1 otherwise

Lazy learning: all the computations have to be done at prediction time.
Easily extend to the multi-class setting.
Remark: You can also use your favorite kernel estimator. . .
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Regression and Local Averaging
A naive idea

E[Y |X ] can be approximated by a local average in a neighborhood N (X ) of X :

f̂ (X ) = 1
|{X i ∈ N (X )}|

∑
X i ∈N (X)

Yi
Heuristic:

If X → E[Y |X ] is regular then
E[Y |X ] ≃ E

[
E
[
Y |X ′] |X ′ ∈ N (X )

]
= E

[
Y |X ′ ∈ N (X )

]
Replace an expectation by an empirical average:

E
[
Y |X ′ ∈ N (X )

]
≃ 1
|{X i ∈ N (X )}|

∑
X i ∈N (X)

Yi

Conditional Density Interpretation
Amount to use as in classification,

Ŷ |X = 1
|{X i ∈ N (X )}|

∑
X i ∈N (X)

1Y =Yi
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Regression and Local Averaging

Neighborhood and Size
Most classical choice: N (X ) = {X ′, ∥X −X ′∥ ≤ h } where ∥.∥ is a (pseudo) norm
and h a size (bandwidth) parameter.
In principle, the norm and h could vary with X , and the norm can be replaced by
a (pseudo) distance.
Focus here on a fixed distance with a fixed bandwidth h cased.

Bandwidth Heuristic
A large bandwidth ensures that the average is taken on many samples and thus
the variance is small. . .
A small bandwidth is thus that the approximation E[Y |X ] ≃ E

[
Y |X ′ ∈ N (X )

]
is more accurate (small bias).
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Weighted Local Averaging
Weighted Local Average

Replace the neighborhood N (X ) by a decaying window function w(X , X ′).
E[Y |X ] can be approximated by a weighted local average:

f̂ (X ) =
∑

i w(X , X ′
i)Yi∑

i w(X , X ′
i)

.

Kernel
Most classical choice: w(X , X ′) = K

(
X−X ′

h

)
where h the bandwidth is a scale

parameter.
Examples:

Box kernel: K (t) = 1∥t∥≤1 (Neighborhood)
Triangular kernel: K (t) = max(1− ∥t∥, 0).
Gaussian kernel: K (t) = e−t2/2

Rk: K and λK yields the same estimate.
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A Density Estimation Point of View?

Nadaraya-Watson Heuristic
Provided all the densities exist

Y |X ∼ p(X , Y )
p(X ) dY and E[Y |X ] =

∫
Yp(X , Y )dY

(X )
Replace the unknown densities by their kernel estimates:

p̂(X ) = 1
n

n∑
i=1

K (X − X i)

p̂(X , Y ) = 1
n

n∑
i=1

K (X − X i)K ′(Y − Yi)

Now if K ′ is a kernel such that
∫

YK ′(Y )dY = 0 then∫
Y p̂(X , Y )dY = 1

n

n∑
i=1

K (X − X i)Yi
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A Density Estimation Point of View?

Nadaraya-Watson
Resulting estimator of E[Y |X ]

f̂ (X ) =
∑n

i=1 YiKh(X − X i)∑n
i=1 Kh(X − X i)

Same local weighted average estimator!

Bandwidth Choice
Bandwidth h of K allows to balance between bias and variance.
Theoretical analysis of the error is possible.
The smoother the densities the easier the estimation but the optimal bandwidth
depends on the unknown regularity!

Probabilistic approach POV!
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Local Linear Estimation
Another Point of View on Kernel

Nadaraya-Watson estimator:

f̂ (X ) =
∑n

i=1 YiKh(X − X i)∑n
i=1 Kh(X − X i)

Can be view as a minimizer of
n∑

i=1
|Yi − β|2Kh(X − X i)

Local regression of order 0.

Local Linear Model
Estimate E[Y |X ] by f̂ (X ) = ϕ(X )⊤β̂(X ) where ϕ is any function of X and β̂(X )
is the minimizer of

n∑
i=1
|Yi − ϕ(X i)⊤β|2Kh(X − X i).

Very similar to a piecewise modeling approach. 46
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LOESS: LOcal polynomial regrESSion
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1D Nonparametric Regression
Assume that X ∈ R and let ϕ(X ) = (1, X , . . . , Xd).
LOESS estimate: f̂ (X ) =

∑d
j=0 β̂(X (j))X j with β̂(X ) minimizing

n∑
i=1
|Yi −

d∑
j=0

β(j)X j
i |

2Kh(X − X i).

Most classical kernel used: Tricubic kernel
K (t) = max(1− |t|3, 0)3

Most classical degree: 2. . .
Local bandwidth choice such that a proportion of points belongs to the window.
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Fully Generative Modeling
Idea: If one knows the law of (X , Y ) everything is easy!

Bayes formula
With a slight abuse of notation,

P(Y |X ) = P((X , Y ))
P(X )

= P(X |Y )P(Y )
P(X )

Generative Modeling:
Propose a model for (X , Y ) (or equivalently X |Y and Y ),
Estimate it as a density estimation problem,
Plug the estimate in the Bayes formula
Plug the conditional estimate in the Bayes classifier.

Rk: Require to estimate (X , Y ) rather than only Y |X !
Great flexibility in the model design but may lead to complex computation.
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Fully Generative Modeling

Simpler setting in classification!

Bayes formula

P(Y = k|X ) = P(X |Y = k)P(Y = k)
P(X )

Binary Bayes classifier (the best solution)

f ⋆(X ) =
{

+1 if P(Y = 1|X ) ≥ P(Y = −1|X )
−1 otherwise

Heuristic: Estimate those quantities and plug the estimations.
By using different models/estimators for P(X |Y ), we get different classifiers.
Rk: No need to renormalize by P(X ) to take the decision!
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Discriminant Analysis

Discriminant Analysis (Gaussian model)
The densities are modeled as multivariate normal, i.e.,

P(X |Y = k) ∼ Nµk ,Σk

Discriminant functions: gk(X) = ln(P(X|Y = k)) + ln(P(Y = k))

gk(X ) =− 1
2(X − µk)⊤Σ−1

k (X − µk)

− d
2 ln(2π)− 1

2 ln(|Σk |) + ln(P(Y = k))

QDA (different Σk in each class) and LDA (Σk = Σ for all k)

Beware: this model can be false but the methodology remains valid!
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Discriminant Analysis
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Quadratic Discriminant Analysis
The probability densities are Gaussian
The effect of any decision rule is to divide the feature space into some decision
regions R1,R2

, . . . ,Rc

The regions are separated by decision boundaries
52
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Discriminant Analysis
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Quadratic Discriminant Analysis
The probability densities are Gaussian
The effect of any decision rule is to divide the feature space into some decision
regions R1,R2, . . . ,Rc

The regions are separated by decision boundaries
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Discriminant Analysis

Estimation
In practice, we will need to estimate µk , Σk and Pk := P(Y = k)

The estimate proportion ̂P(Y = k) = nk
n = 1

n
∑n

i=1 1{Yi =k}

Maximum likelihood estimate of µ̂k and Σ̂k (explicit formulas)

DA classifier

f̂G(X ) =
{

+1 if ĝ+1(X ) ≥ ĝ−1(X )
−1 otherwise

Decision boundaries: quadratic = degree 2 polynomials.
If one imposes Σ−1 = Σ1 = Σ then the decision boundaries is a linear hyperplane.
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Discriminant Analysis
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inLinear Discriminant Analysis
Σω1 = Σω2 = Σ
The decision boundaries are linear hyperplanes
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Discriminant Analysis
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:
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inQuadratic Discriminant Analysis
Σω1 ̸= Σω2

Arbitrary Gaussian distributions lead to Bayes decision boundaries that are general
quadratics.
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Naive Bayes

Naive Bayes
Classical algorithm using a crude modeling for P(X |Y ):

Feature independence assumption:

P(X |Y ) =
d∏

l=1
P
(

X (l)
∣∣∣Y)

Simple featurewise model: binomial if binary, multinomial if finite and Gaussian if
continuous

If all features are continuous, similar to the previous Gaussian but with a diagonal
covariance matrix!
Very simple learning even in very high dimension!
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Other Models

Other models of the world!

Bayesian Approach
Generative Model plus prior on the parameters
Inference thanks to the Bayes formula

Graphical Models
Markov type models on Graphs

Gaussian Processes
Multivariate Gaussian models

. . .
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Training Risk Issue

So
ur
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:
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Risk behaviour
Learning/training risk (empirical risk on the learning/training set) decays when
the complexity of the method increases.
Quite different behavior when the risk is computed on new observations
(generalization risk).
Overfit for complex methods: parameters learned are too specific to the learning
set!
General situation! (Think of polynomial fit. . . )
Need to use a different criterion than the training risk!
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Risk Estimation vs Method Selection
Predictor Risk Estimation

Goal: Given a predictor f assess its quality.
Method: Hold-out risk computation (/ Empirical risk correction).
Usage: Compute an estimate of the risk of a selected f using a test set to be
used to monitor it in the future.

Basic block very well understood.

Method Selection
Goal: Given a ML method assess its quality.
Method: Cross Validation (/ Empirical risk correction)
Usage: Compute risk estimates for several ML methods using
training/validation sets to choose the most promising one.

Estimates can be pointwise or better intervals.
Multiple test issues in method selection. 60
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Cross Validation and Empirical Risk Correction

Two Approaches
Cross validation: Use empirical risk criterion but on independent data, very
efficient (and almost always used in practice!) but slightly biased as its target uses
only a fraction of the data.
Correction approach: use empirical risk criterion but correct it with a term
increasing with the complexity of S

Rn(f̂S)→ Rn(f̂S) + cor(S)
and choose the method with the smallest corrected risk.

Which loss is use?
The loss used in the risk!
Not the loss used in the training!

Other performance measure can be used.
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Cross Validation
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Very simple idea: use a second learning/verification set to compute a verification
risk.
Sufficient to remove the dependency issue!
Implicit random design setting. . .

Cross Validation
Use (1− ϵ)× n observations to train and ϵ× n to verify!
Possible issues:

Validation for a learning set of size (1− ϵ)× n instead of n ?
Unstable risk estimate if ϵn is too small ?

Most classical variations:
Hold Out,
Leave One Out,
V -fold cross validation.
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Hold Out
Principle

Split the dataset D in 2 sets Dtrain and Dtest of size n × (1− ϵ) and n × ϵ.
Learn f̂ HO from the subset Dtrain.
Compute the empirical risk on the subset Dtest:

RHO
n (f̂ HO) = 1

nϵ

∑
(X i ,Yi )∈Dtest

ℓ(Yi , f̂ HO(X i))

Predictor Risk Estimation
Use f̂ HO as predictor.
Use RHO

n (f̂ HO) as an estimate of the risk of this estimator.

Method Selection by Cross Validation
Compute RHO

n (f̂ HO
S ) for all the considered methods,

Select the method with the smallest CV risk,
Reestimate the f̂S with all the data. 63
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Hold Out
Principle

Split the dataset D in 2 sets Dtrain and Dtest of size n × (1− ϵ) and n × ϵ.
Learn f̂ HO from the subset Dtrain.
Compute the empirical risk on the subset Dtest:

RHO
n (f̂ HO) = 1

nϵ

∑
(X i ,Yi )∈Dtest

ℓ(Yi , f̂ HO(X i))

Only possible setting for risk estimation.

Hold Out Limitation for Method Selection
Biased toward simpler method as the estimation does not use all the data initially.
Learning variability of RHO

n (f̂ HO) not taken into account.
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V -fold Cross Validation
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Principle
Split the dataset D in V sets Dv of almost equals size.
For v ∈ {1, .., V }:

Learn f̂ −v from the dataset D minus the set Dv .
Compute the empirical risk:

R−v
n (f̂ −v ) = 1

nv

∑
(X i ,Yi )∈Dv

ℓ(Yi , f̂ −v (X i))

Compute the average empirical risk:

RCV
n (f̂ ) = 1

V

V∑
v=1
R−v

n (f̂ −v )

Estimation of the quality of a method not of a given predictor.
Leave One Out : V = n.
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V -fold Cross Validation

Analysis (when n is a multiple of V )
The R−v

n (f̂ −v ) are identically distributed variables but are not independent!
Consequence:

E
[
RCV

n (f̂ )
]

= E
[
R−v

n (f̂ −v )
]

Var
[
RCV

n (f̂ )
]

= 1
V Var

[
R−v

n (f̂ −v )
]

+ (1− 1
V )Cov

[
R−v

n (f̂ −v ),R−v ′
n (f̂ −v ′)

]
Average risk for a sample of size (1− 1

V )n.
Variance term much more complex to analyze!
Fine analysis shows that the larger V the better. . .

Accuracy/Speed tradeoff: V = 5 or V = 10. . .
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Linear Regression and Leave One Out

Leave One Out = V fold for V = n: very expensive in general.

A fast LOO formula for the linear regression
Prop: for the least squares linear regression,

f̂ −i(X i) = f̂ (X i)− hiiYi
1− hii

with hii the ith diagonal coefficient of the hat (projection) matrix.
Proof based on linear algebra!
Leads to a fast formula for LOO:

RLOO
n (f̂ ) = 1

n

n∑
i=1

|Yi − f̂ (X i)|2
(1− hii)2

66



Review of the Methods seen
so far

Cross Validation and Confidence Interval
How to replace pointwise estimation by a confidence interval?
Can we use the variability of the CV estimates?
Negative result: No unbiased estimate of the variance!

Gaussian Interval (Comparison of the means and ∼ indep.)
Compute the empirical variance and divide it by the number of folds to construct
an asymptotic Gaussian confidence interval,
Select the simplest model whose value falls into the confidence interval of the
model having the smallest CV risk.

PAC approach (Quantile, ∼ indep. and small risk estim. error)
Compute the raw medians (or a larger raw quantiles)
Select the model having the smallest quantiles to ensure a small risk with high
probability.

Always reestimate the chosen model with all the data.
To obtain an unbiased risk estimate of the final predictor: hold out risk on
untouched test data. 67
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Train/Validation/Test
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Selection Bias Issue:
After method selection, the cross validation is biased.
Furthermore, it qualifies the method and not the final predictor.

Need to (re)estimate the risk of the final predictor.
(Train/Validation)/Test strategy

Split the dataset in two a (Train/Validation) and Test.
Use CV with the (Train/Validation) to select a method.
Train this method on (Train/Validation) to obtain a single predictor.
Estimate the performance of this predictor on Test.

Every choice made from the data is part of the method! 68
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Risk Correction

Empirical loss of an estimator computed on the dataset used to chose it is biased!
Empirical loss is an optimistic estimate of the true loss.

Risk Correction Heuristic
Estimate an upper bound of this optimism for a given family.
Correct the empirical loss by adding this upper bound.

Rk: Finding such an upper bound can be complicated!
Correction often called a penalty.
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Penalization
Penalized Loss

Minimization over a collection of models (Θm)

min
θ∈Θm

1
n

n∑
i=1

ℓ(Yi , fθ(X i)) + pen(Θm)

where pen(Θ) is a risk correction (penalty) depending on the model.

Penalties
Upper bound of the optimism of the empirical loss
Depends on the loss and the framework!

Instantiation
Mallows Cp: Least Squares with pen(Θ) = 2d

n σ2.
AIC Heuristics: Maximum Likelihood with pen(Θ) = d

n .
BIC Heuristics: Maximum Likelihood with pen(Θ) = log(n)d

n .
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Unbiased Risk Estimation
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AIC Heuristics
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BIC Heuristics
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Probabilistic and Optimization Framework
How to find a good function f with a small risk

R(f ) = E[ℓ(Y , f (X ))] ?
Canonical approach: f̂S = argminf ∈S

1
n
∑n

i=1 ℓ(Yi , f (X i))

Problems
How to choose S?
How to compute the minimization?

A Probabilistic Point of View
Solution: For X , estimate Y |X and plug it in any Bayes classifier: (Generalized)
Linear Models, Kernel methods, k-nn, Naive Bayes, Tree, Bagging. . .

An Optimization Point of View
Solution: Replace the loss ℓ by an upper bound ℓ and minimize directly the
corresponding emp. risk: Neural Network, SVR, SVM, Tree, Boosting. . .
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Three Classical Methods in a Nutshell

Deep Learning
Let fθ(X ) with f a feed forward neural network outputing two values with a
softmax layer as a last layer.

Optimize by gradient descent the cross-entropy −1
n

n∑
i=1

log
(
fθ(X i)(Yi )

)
Classify using sign(fθ̂)

Regularized Logistic Regression
Let fθ(X ) = X⊤β + β(0) with θ = (β, β(0)).

Find θ̂ = arg min 1
n

n∑
i=1

log
(
1 + e−Yi fθ(X i )

)
+ λ∥β∥1

Classify using sign(fθ̂)
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Three Classical Methods in a Nutshell

Support Vector Machine
Let fθ(X ) = X⊤β + β(0) with θ = (β, β(0)).

Find θ̂ = arg min 1
n

n∑
i=1

max (1− Yi fθ(X i), 0) + λ∥β∥22

Classify using sign(fθ̂)

Those three methods rely on a similar heuristic: the optimization point of view!
Focus on classification, but similar methods for regression: Deep Learning,
Regularized Regrssion, Support Vector Regression. . .
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Empirical Risk Minimization

The best solution f ⋆ is the one minimizing
f ⋆ = arg min R(f ) = arg minE[ℓ(Y , f (X ))]

Empirical Risk Minimization
One restricts f to a subset of functions S = {fθ, θ ∈ Θ}
One replaces the minimization of the average loss by the minimization of the
average empirical loss

f̂ = f
θ̂

= argmin
fθ,θ∈Θ

1
n

n∑
i=1

ℓ(Yi , fθ(X i))

Often tractable for the quadratic loss in regression.
Intractable for the 0/1 loss in classification!
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Convexification Strategy
Risk Convexification

Replace the loss ℓ(Y , fθ(X )) by a convex upperbound ℓ(Y , fθ(X )) (surrogate loss).
Minimize the average of the surrogate empirical loss

f̃ = f
θ̂

= argmin
fθ,θ∈Θ

1
n

n∑
i=1

ℓ(Yi , fθ(X i))

Use f̂ = sign(f̃ )

Much easier optimization.

Instantiation
Logistic (Revisited)
(Deep) Neural Network
Support Vector Machine
Boosting
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Classification Loss and Convexification

Convexification
Replace the loss ℓ0/1(Y , f (X )) by

ℓ(Y , f (X )) = l(Yf (X ))
with l a convex function.
Further mild assumption: l is decreasing, differentiable at 0 and l ′(0) < 0.
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Classification Loss and Convexification

Classical convexification
Logistic loss: ℓ(Y , f (X )) = log2(1 + e−Yf (X)) (Logistic / NN)
Hinge loss: ℓ(Y , f (X )) = (1− Yf (X ))+ (SVM)
Exponential loss: ℓ(Y , f (X )) = e−Yf (X) (Boosting. . . )
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Logistic Revisited

Ideal solution:

f̂ = argmin
f ∈S

1
n

n∑
i=1

ℓ0/1(Yi , f (X i))

Logistic regression
Use f (X ) = X⊤β + β(0).
Use the logistic loss ℓ(y , f ) = log2(1 + e−yf ), i.e. the negative log-likelihood.

Different vision than the statistician but same algorithm!
In regression, a similar approach will be to minimize the least square criterion
without making the Gaussian noise assumption.
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Perceptron

So
ur

ce
:

T
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z

Perceptron (Rosenblatt 1957)
Inspired from biology.
Very simple (linear) model!
Physical implementation and proof of concept.
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Perceptron

So
ur

ce
:

Av
in

Ca
lsp

an
Ad

va
nc

ed
Te

ch
no

lo
gy

Ce
nt

er

Perceptron (Rosenblatt 1957)
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Artificial Neuron and Logistic Regression

So
ur

ce
:

U
nk

no
w

n

Artificial neuron
Structure:

Mix inputs with a weighted sum,
Apply a (non linear) activation
function to this sum,
Possibly threshold the result to make
a decision.

Weights learned by minimizing a loss
function.

Logistic unit
Structure:

Mix inputs with a weighted sum,
Apply the logistic function
σ(t) = et/(1 + et),
Threshold at 1/2 to make a decision!

Logistic weights learned by minimizing
the -log-likelihood.

Equivalent to linear regression when using a linear activation function!
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Multilayer Perceptron

So
ur

ce
:
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MLP (Rumelhart, McClelland, Hinton - 1986)
Multilayer Perceptron: cascade of layers of artificial neuron units.
Optimization through a gradient descent algorithm with a clever implementation
(Backprop).

Construction of a function by composing simple units.
MLP corresponds to a specific direct acyclic graph structure.
Minimized loss chosen among the classical losses in both classification and
regression.
Non convex optimization problem! 85
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Deep Neural Network

So
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Deep Neural Network structure
Deep cascade of layers!

No conceptual novelty. . .
But a lot of tricks allowing to obtain a good solution: clever initialization, better
activation function, weight regularization, accelerated stochastic gradient descent,
early stopping. . .
Use of GPU and a lot of data. . .
Very impressive results!
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Deep Learning

So
ur

ce
:

J.
H

ay
s

Family of Machine Learning algorithm combining:
a (deep) multilayered structure,
a clever optimization including initialization and regularization.

Examples: Deep NN, AutoEncoder, Recursive NN, GAN, Transformer. . .
Interpretation as a Representation Learning.
Transfer learning: use a pretrained net as initialization.
Very efficient and still evolving!
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Simplified Models

So
ur

ce
:
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Bias-Variance Issue
Most complex models may not be the best ones due to the variability of the
estimate.

Naive idea: can we simplify our model without loosing too much?
by using only a subset of the variables?
by forcing the coefficients to be small?

Can we do better than exploring all possibilities?
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Linear Models
Setting: Gen. linear model = prediction of Y by h(x⊤β).

Model coefficients
Model entirely specified by β.
Coefficientwise:

β(i) = 0 means that the ith covariate is not used.
β(i) ∼ 0 means that the ith covariate as a low influence. . .

If some covariates are useless, better use a simpler model. . .

Submodels
Simplify (Regularize) the model through a constraint on β!
Examples:

Support: Impose that β(i) = 0 for i ̸∈ I.
Support size: Impose that ∥β∥0 =

∑d
i=1 1β(i) ̸=0 < C

Norm: Impose that ∥β∥p < C with 1 ≤ p (Often p = 2 or p = 1)
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Norms and Sparsity

So
ur

ce
:
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Sparsity
β is sparse if its number of non-zero coefficients (ℓ0) is small. . .
Easy interpretation in terms of dimension/complexity.

Norm Constraint and Sparsity
Sparsest solution obtained by definition with the ℓ0 norm.
No induced sparsity with the ℓ2 norm. . .
Sparsity with the ℓ1 norm (can even be proved to be the same as with the ℓ0
norm under some assumptions).
Geometric explanation.
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Constraint and Lagrangian Relaxation
Constrained Optimization

Choose a constant C .
Compute β as

argmin
β∈Rd ,∥β∥p≤C

1
n

n∑
i=1

ℓ(Yi , h(x i
⊤β))

Lagrangian Relaxation
Choose λ and compute β as

argmin
β∈Rd

1
n

n∑
i=1

ℓ(Yi , h(x i
⊤β)) + λ∥β∥p′

p

with p′ = p except if p = 0 where p′ = 1.
Easier calibration. . . but no explicit model S.

Rk: ∥β∥p is not scaling invariant if p ̸= 0. . .
Initial rescaling issue. 92
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Regularization
Regularized Linear Model

Minimization of

argmin
β∈Rd

1
n

n∑
i=1

ℓ(Yi , h(x i
⊤β)) + reg(β)

where reg(β) is a (sparsity promoting) regularisation term (regularization penalty).
Variable selection if β is sparse.

Classical Regularization Penalties
AIC: reg(β) = λ∥β∥0 (non-convex / sparsity)
Ridge: reg(β) = λ∥β∥22 (convex / no sparsity)
Lasso: reg(β) = λ∥β∥1 (convex / sparsity)
Elastic net: reg(β) = λ1∥β∥1 + λ2∥β∥22 (convex / sparsity)

Easy optimization if reg (and the loss) is convex. . .
Need to specify λ to define an ML method! 93
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Regularized Gen. Linear Models

Classical Examples
Regularized Least Squares
Regularized Logistic Regression
Regularized Maximum Likelihood
SVM
Tree pruning

Sometimes used even if the parameterization is not linear. . .
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Regularization and Cross-Validation
Practical Selection Methodology

Choose a regularization penalty family regλ.
Compute a CV risk for the regularization penalty regλ for all λ ∈ Λ.
Determine λ̂ the λ minimizing the CV risk.
Compute the final model with the regularization penalty reg

λ̂
.

CV allows to select a ML method, penalized estimation with a regularization
penalty reg

λ̂
, not a single predictor hence the need of a final reestimation.

Why not using directly a parameter grid?
Grid size scales exponentially with the dimension!
If the regularized minimization is easy, much cheaper to compute the CV risk
for all λ ∈ Λ. . .
CV performs best when the set of candidates is not too big (or is structured. . . )
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Support Vector Machine

fθ(X ) = X ⊤β + β(0) with θ = (β, β(0))

θ̂ = arg min 1
n

n∑
i=1

max (1− Yi fθ(X i), 0) + λ∥β∥2
2

Support Vector Machine
Convexification of the 0/1-loss with the hinge loss:

1Yi fθ(X i )<0 ≤ max (1− Yi fθ(X i), 0)
Regularization by the quadratic norm (Ridge/Tikhonov).
Solution can be approximated by gradient descent algorithms.

Revisit of the original point of view.
Original point of view leads to a different optimization algorithm and to some
extensions.

97



Review of the Methods seen
so far

Ideal Separable Case

So
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ce
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Linear classifier: sign(X⊤β + β(0))
Separable case: ∃(β, β(0)),∀i , Yi(X i

⊤β + β(0)) > 0

How to choose (β, β(0)) so that the separation is maximal?
Strict separation: ∃(β, β(0)), ∀i , Yi(X i

⊤β + β(0)) ≥ 1
Distance between X⊤β + β(0) = 1 and X⊤β + β(0) = −1:

2
∥β∥

Maximizing this distance is equivalent to minimizing 1
2∥β∥

2.
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Separable SVM
Constrained optimization formulation:

min 1
2∥β∥

2 with ∀i , Yi(X i
⊤β + β(0)) ≥ 1

Quadratic Programming setting.
Efficient solver available. . .
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Non Separable Case

So
ur

ce
:

M
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What about the non separable case?

SVM relaxation
Relax the assumptions

∀i , Yi(X i
⊤β + β(0)) ≥ 1 to ∀i , Yi(X i

⊤β + β(0)) ≥ 1− si
with the slack variables si ≥ 0
Keep those slack variables as small as possible by minimizing

1
2∥β∥

2 + C
n∑

i=1
si

where C > 0 is the goodness-of-fit strength
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Non Separable Case
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SVM
Constrained optimization formulation:

min 1
2∥β∥

2 + C
n∑

i=1
si with

{
∀i , Yi(X i

⊤β + β(0)) ≥ 1− si

∀i , si ≥ 0
Hinge Loss reformulation:

min 1
2∥β∥

2 + C
n∑

i=1
max(0, 1− Yi(X i

⊤β + β(0)))︸ ︷︷ ︸
Hinge Loss

Constrained convex optimization algorithms vs gradient descent algorithms. 99
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SVM as a Regularized Convex Relaxation
Convex relaxation:

argmin 1
2∥β∥

2 + C
n∑

i=1
max(1− Yi(X i

⊤β + β(0)), 0)

= argmin 1
n

n∑
i=1

max(1− Yi(X i
⊤β + β(0)), 0) + 1

Cn
1
2∥β∥

2

Prop: ℓ0/1(Yi , sign(X i
⊤β + β(0))) ≤ max(1− Yi(X i

⊤β + β(0)), 0)

Regularized convex relaxation (Tikhonov!)

1
n

n∑
i=1

ℓ0/1(Yi , sign(X i
⊤β + β(0))) + 1

Cn
1
2∥β∥

2

≤ 1
n

n∑
i=1

max(1− Yi(X i
⊤β + β(0)), 0) + 1

Cn
1
2∥β∥

2

No straightforward extension to multi-class classification.
Extension to regression using ℓ(f (X ), Y ) = |Y − X |. 100
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Constrained Minimization
Constrained Minimization

Goal:
min

x
f (x)

with
{

hj(x) = 0, j = 1, . . . p
gi(x) ≤ 0, i = 1, . . . q

or rather with argmin!

Different Setting
f , hj , gi differentiable
f convex, hj affine and gi convex.

Feasibility
x is feasible if hj(x) = 0 and gi(x) ≤ 0.
Rk: The set of feasible points may be empty 101
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Lagrangian
Constrained Minimization

Goal:

p⋆ = min
x

f (x) with
{

hj(x) = 0, j = 1, . . . p
gi(x) ≤ 0, i = 1, . . . q

Lagrangian
Def:

L(x , λ, µ) = f (x) +
p∑

j=1
λjhj(x) +

q∑
i=1

µigi(x)

with λ ∈ Rp and µ ∈ (R+)q.
The λj and µi are called the dual (or Lagrange) variables.
Prop:

max
λ∈Rp , µ∈(R+)q

L(x , λ, µ) =
{

f (x) if x is feasible
+∞ otherwise

min
x

max
λ∈Rp , µ∈(R+)q

L(x , λ, µ) = p⋆
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Lagrangial Dual

Lagrangian
Def:

L(x , λ, µ) = f (x) +
p∑

j=1
λjhj(x) +

q∑
i=1

µigi(x)

with λ ∈ Rp and µ ∈ (R+)q.

Lagrangian Dual
Lagrangian dual function:

Q(λ, µ) = min
x
L(x , λ, µ)

Prop:
Q(λ, µ) ≤ f (x), for all feasible x

max
λ∈Rp , µ∈(R+)q

Q(λ, µ) ≤ min
x feasible

f (x)
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Duality
Primal

Primal:

p⋆ = min
x∈X

f (x) with
{

hj(x) = 0, j = 1, . . . p
gi(x) ≤ 0, i = 1, . . . q

Dual
Dual:

q⋆ = max
λ∈Rp , µ∈(R+)q

Q(λ, µ) = max
λ∈Rp , µ∈(R+)q

min
x
L(x , λ, µ)

Duality
Always weak duality:

q⋆ ≤ p⋆

max
λ∈Rp , µ∈(R+)q

min
x
L(x , λ, µ) ≤ min

x
max

λ∈Rp , µ∈(R+)q
L(x , λ, µ)

Not always strong duality q⋆ = p⋆. 104
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Strong Duality
Strong Duality

Strong duality:
q⋆ = p⋆

max
λ∈Rp , µ∈(R+)q

min
x
L(x , λ, µ) = min

x
max

λ∈Rp , µ∈(R+)q
L(x , λ, µ)

Allow to compute the solution of one problem from the other.
Requires some assumptions!

Strong Duality under Convexity and Slater’s Condition
f convex, hj affine and gi convex.
Slater’s condition: it exists a feasible point such that hj(x) = 0 for all j and
gi(x) < 0 for all i .
Sufficient to prove strong duality.
Rk: If the gi are affine, it suffices to have hj(x) = 0 for all j and gi(x) ≤ 0 for all
i . 105
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KKT
Karush-Kuhn-Tucker Condition

Stationarity:
∇xL(x⋆, λ, µ) = ∇f (x⋆) +

∑
j

λj∇hj(x⋆) +
∑

i
µi∇gi(x⋆) = 0

Primal admissibility:
hj(x⋆) = 0 and gi(x⋆) ≤ 0

Dual admissibility:
µi ≥ 0

Complementary slackness:
µigi(x⋆) = 0

KKT Theorem
If f convex, hj affine and gi convex, all are differentiable and strong duality
holds then x⋆ is a solution of the primal problem if and only if the KKT
condition holds

Same result without differentiability using the sub-gradient. . .
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SVM and Lagrangian

SVM
Constrained optimization formulation:

min 1
2∥β∥

2 + C
n∑

i=1
si with

{
∀i , Yi(X i

⊤β + β(0)) ≥ 1− si

∀i , si ≥ 0

SVM Lagrangian
Lagrangian:

L(β, β(0), s, α, µ) = 1
2∥β∥

2 + C
n∑

i=1
si

+
∑

i
αi(1− si − Yi(X i

⊤β + β(0)))−
∑

i
µisi
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SVM and KKT
KKT Optimality Conditions

Stationarity:
∇βL(β, β(0), s, α, µ) = β −

∑
i

αiYiX i = 0

∇β(0)L(β, β(0), s, α, µ) = −
∑

i
αi = 0

∇siL(β, β(0), s, α, µ) = C − αi − µi = 0
Primal and dual admissibility:

(1− si − Yi(X i
⊤β + β(0))) ≤ 0, si ≥ 0, αi ≥ 0, and µi ≥ 0

Complementary slackness:
αi(1− si − Yi(X i

⊤β + β(0))) = 0 and µisi = 0

Consequence
β⋆ =

∑
i αiYiX i and 0 ≤ αi ≤ C .

If αi ̸= 0, X i is called a support vector and either
si = 0 and Yi(X i

⊤β⋆ + β(0)∗) = 1 (margin hyperplane),
or αi = C (outliers).

β(0)∗ = Yi − X i
⊤β⋆ for any support vector with 0 < αi < C .
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SVM Dual
SVM Lagrangian Dual

Lagrangian Dual:
Q(α, µ) = min

β,β(0),s
L(β, β(0), s, α, µ)

Prop:
if
∑

i αiYi ̸= 0 or ∃i , αi + µi ̸= C ,
Q(α, µ) = −∞

if
∑

i αiYi = 0 and ∀i , αi + µi = C ,

Q(α, µ) =
∑

i
αi −

1
2
∑
i,j

αiαjYiYjX i
⊤X j

SVM Dual problem
Dual problem is a Quadratic Programming problem:

max
α≥0,µ≥0

Q(α, µ)⇔ max
0≤α≤C

∑
i

αi −
1
2
∑
i ,j

αiαjYiYjX i
⊤X j

Involves the X i only through their scalar products. 109
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Mercer Theorem
Mercer Representation Theorem

For any loss ℓ and any increasing function Φ, the minimizer in β of
n∑

i=1
ℓ(Yi , X i

⊤β + β(0)) + Φ(∥β∥2)

is a linear combination of the input points β⋆ =
n∑

i=1
α′

iX i .

Minimization problem in α′:
n∑

i=1
ℓ(Yi ,

∑
j

α′
jX i

⊤X j + β(0)) + Φ(∥β∥2)

involving only the scalar product of the data.

Optimal predictor requires only to compute scalar products.
f̂ ⋆(X ) = X⊤β⋆ + β(0),∗ =

∑
i

α′
iX i

⊤X

Transform a problem in dimension dim(X ) in a problem in dimension n.
Direct minimization in β can be more efficient. . . 110
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Feature Map
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Feature Engineering
Art of creating new features from the existing one X .
Example: add monomials (X (j))2, X (j)X (j′). . .
Adding feature increases the dimension.

Feature Map
Application ϕ : X → H with H an Hilbert space.
Linear decision boundary in H: ϕ(X )⊤β + β(0) = 0 is not an hyperplane
anymore in X .

Heuristic: Increasing dimension allows to make data almost linearly separable.
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Polynomial Mapping

So
ur
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:
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Polynomial Mapping of order 2
ϕ : R2 → R6

ϕ(X ) =
(
(X (1))2, (X (2))2,

√
2X (1)X (2),

√
2X (1),

√
2X (2), 1

)
Allow to solve the XOR classification problem with the hyperplane X (1)X (2) = 0.

Polynomial Mapping and Scalar Product
Prop:

ϕ(X )⊤ϕ(X ′) = (1 + X⊤X ′)2
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SVM Primal and Dual
Primal, Lagrandian and Dual

Primal:

min ∥β∥2 + C
n∑

i=1
si with

{
∀i , Yi(ϕ(X i)⊤β + β(0)) ≥ 1− si

∀i , si ≥ 0
Lagrangian:

L(β, β(0), s, α, µ) = 1
2∥β∥

2 + C
n∑

i=1
si

+
∑

i
αi(1− si − Yi(ϕ(X i)⊤β + β(0)))−

∑
i

µisi

Dual:
max

α≥0,µ≥0
Q(α, µ)⇔ max

0≤α≤C

∑
i

αi −
1
2
∑
i ,j

αiαjYiYjϕ(X i)⊤ϕ(X j)

Optimal ϕ(X )⊤β⋆ + β(0),∗ =
∑

i αiYiϕ(X )⊤ϕ(X i)

Only need to know to compute ϕ(X )⊤ϕ(X ′) to obtain the solution. 113
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From Map to Kernel

Many algorithms (e.g. SVM) require only to be able to compute the scalar
product ϕ(X )⊤ϕ(X ′).

Kernel
Any application

k : X × X → R
is called a kernel over X .

Kernel Trick
Computing directly the kernel k(X , X ′) = ϕ(X )⊤ϕ(X ′) may be easier than
computing ϕ(X ), ϕ(X ′) and then the scalar product.

Here k is defined from ϕ.
Under some assumption on k, ϕ can be implicitly defined from k!
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PDS Kernel

Positive Definite Symmetric Kernels
A kernel k is PDS if and only if

k is symmetric, i.e.
k(X , X ′) = k(X ′, X )

for any N ∈ N and any (X 1, . . . , XN) ∈ XN ,
K = [k(X i , X j)]1≤i,j≤N

is positive semi-definite, i.e. ∀u ∈ RN

u⊤Ku =
∑

1≤i,j≤N
u(i)u(j)k(X i , X j) ≥ 0

or equivalently all the eigenvalues of K are non-negative.

The matrix K is called the Gram matrix associated to (X 1, . . . , XN).
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Reproducing Kernel Hilbert Space

Moore-Aronsajn Theorem
For any PDS kernel k : X × X → R, it exists a Hilbert space H ⊂ RX with a
scalar product ⟨·, ·⟩H such that

it exists a mapping ϕ : X → H satisfying
k(X , X ′) =

〈
ϕ(X ), ϕ(X ′)

〉
H

the reproducing property holds, i.e. for any h ∈ H and any X ∈ X
h(X ) = ⟨h, k(X , ·)⟩H .

By def., H is a reproducing kernel Hilbert space (RKHS).
H is called the feature space associated to k and ϕ the feature mapping.
No unicity in general.
Rk: if k(X , X ′) = ϕ′(X )⊤ϕ′(X ′) with ϕ′ : X → Rp then

H can be chosen as {X 7→ ϕ′(X )⊤
β, β ∈ Rp} and ∥X 7→ ϕ′(X )⊤

β∥2
H = ∥β∥2

2.
ϕ(X ′) : X 7→ ϕ′(X )⊤

ϕ′(X ′).
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Kernel Construction Machinery
Separable Kernel

For any function Ψ : X → R, k(X , X ′) = Ψ(X )Ψ(X ′) is PDS.

Kernel Stability
For any PDS kernels k1 and k2, k1 + k2 and k1k2 are PDS kernels.
For any sequence of PDS kernels kn converging pointwise to a kernel k, k is a
PDS kernel.
For any PDS kernel k such that |k| ≤ r and any power series

∑
n anzn with an ≥ 0

and a convergence radius larger than r ,
∑

n
ankn is a PDS kernel.

For any PDS kernel k, the renormalized kernel k ′(X , X ′) = k(X , X ′)√
k(X , X )k(X ′, X ′)

is

a PDS kernel.
Cauchy-Schwartz for k PDS: k(X , X ′)2 ≤ k(X , X )k(X ′, X ′)
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Classical Kernels

PDS Kernels
Vanilla kernel:

k(X , X ′) = X⊤X ′

Polynomial kernel:
k(X , X ′) = (1 + X⊤X ′)k

Gaussian RBF kernel:
k(X , X ′) = exp

(
−γ∥X − X ′∥2

)
Tanh kernel:

k(X , X ′) = tanh(aX⊤X ′ + b)

Most classical is the Gaussian RBF kernel. . .
Lots of freedom to construct kernel for non classical data.
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Representer Theorem

Representer Theorem
Let k be a PDS kernel and H its corresponding RKHS,
for any increasing function Φ and any function L : Rn → R, the optimization
problem

argmin
h∈H

L(h(X 1), . . . , h(Xn)) + Φ(∥h∥)

admits only solutions of the form
n∑

i=1
α′

ik(X i , ·).

Examples:
(kernelized) SVM
(kernelized) Regularized Logistic Regression (Ridge)
(kernelized) Regularized Regression (Ridge)
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Kernelized SVM
Primal

Constrained Optimization:

min
f ∈H,β(0),s

∥f ∥2H + C
n∑

i=1
si with

{
∀i , Yi(f (X i) + β(0)) ≥ 1− si

∀i , si ≥ 0
Hinge loss:

min
f ∈H,β(0)

∥f ∥2H + C
n∑

i=1
max(0, 1− Yi(f (X i) + β(0)))

Representer:
min

α′,β(0)

∑
i ,j

α′
iα

′
jk(X i , X j)

+ C
n∑

i=1
max(0, 1− Yi(

∑
j

α′
jk(X j , X i) + β(0)))

Dual
Dual: max

α≥0,µ≥0
Q(α, µ)⇔ max

0≤α≤C

∑
i

αi −
1
2
∑
i ,j

αiαjYiYjk(X i , X j)
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Classification And Regression Trees

Tree principle (CART by Breiman (85) / ID3 by Quinlan (86))
Construction of a recursive partition through a tree structured set of questions
(splits around a given value of a variable)
For a given partition, probabilistic approach and optimization approach yield the
same predictor!
A simple majority vote/averaging in each leaf
Quality of the prediction depends on the tree (the partition).
Intuitively:

small leaves lead to low bias, but large variance
large leaves lead to large bias, but low variance. . .

Issue: Minim. of the (penalized) empirical risk is NP hard!
Practical tree construction are all based on two steps:

a top-down step in which branches are created (branching)
a bottom-up in which branches are removed (pruning) 122
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Branching

X1 < .5?

X1 < .2? X2 < .7?

Yes No

Yes NoYes No

Greedy top-bottom approach
Start from a single region containing all the data
Recursively split those regions along a certain variable and a certain value

No regret strategy on the choice of the splits!
Heuristic: choose a split so that the two new regions are as homogeneous
possible. . .
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Branching
Various definition of inhomogeneous

CART: empirical loss based criterion (least squares/prediction error)
C(R, R) =

∑
x i ∈R

ℓ(yi , y(R)) +
∑
x i ∈R

ℓ(yi , y(R))

CART: Gini index (Classification)
C(R, R) =

∑
x i ∈R

p(R)(1− p(R)) +
∑
x i ∈R

p(R)(1− p(R))

C4.5: entropy based criterion (Information Theory)
C(R, R) =

∑
x i ∈R

H(R) +
∑
x i ∈R

H(R)

CART with Gini is probably the most used technique. . . even in the multi-class
setting where the entropy may be more natural.
Other criterion based on χ2 homogeneity or based on different local predictors
(generalized linear models. . . )
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Branching

Choice of the split in a given region
Compute the criterion for all features and all possible splitting points
(necessarily among the data values in the region)
Choose the split minimizing the criterion

Variations: split at all categories of a categorical variable using a clever category
ordering (ID3), split at a restricted set of points (quantiles or fixed grid)
Stopping rules:

when a leaf/region contains less than a prescribed number of observations,
when the depth is equal to a prescribed maximum depth,
when the region is sufficiently homogeneous. . .

May lead to a quite complex tree: over-fitting possible!
Additional pruning often used.
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Pruning

→

Model selection within the (rooted) subtrees of previous tree!
Number of subtrees can be quite large, but the tree structure allows to find the
best model efficiently.

Key idea
The predictor in a leaf depends only on the values in this leaf.
Efficient bottom-up (dynamic programming) algorithm if the criterion used
satisfies an additive property

C(T ) =
∑
L∈T

c(L)

Example: AIC / CV.
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Pruning

Examples of criterion satisfying this assumptions
AIC type criterion:

n∑
i=1

ℓ(yi , fL(x i )(x i)) + λ|T | =
∑
L∈T

∑
x i ∈L

ℓ(yi , fL(x i)) + λ


Simple cross-Validation (with (x ′

i , y ′
i ) a different dataset):

n′∑
i=1

ℓ(y ′
i , fL(x ′

i)) =
∑
L∈T

∑
x ′

i ∈L
ℓ(y ′

i , fL(x ′
i))


Limit over-fitting for a single tree.
Rk: almost never used when combining several trees. . .
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CART: Pros and Cons

Pros
Leads to an easily interpretable model
Fast computation of the prediction
Easily deals with categorical features
(and missing values)

Cons
Greedy optimization
Hard decision boundaries
Lack of stability
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Ensemble methods

Lack of robustness for single trees.
How to combine trees?

Parallel construction
Construct several trees from bootstrapped samples and average the responses
(Bagging)
Add more randomness in the tree construction (Random Forests)

Sequential construction
Construct a sequence of trees by reweighting sequentially the samples according
to their difficulties (AdaBoost)
Reinterpretation as a stagewise additive model (Boosting)
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Trees and Ensemble MethodsGuess Who?

A game of questions
Game invented in 1979 in the UK.
Goal: discover the character chosen by your opponent before he discovers yours.
Optimal strategy: choose at each step the question that splits the remaining
characters in two groups with the least possible difference in size.
Information Theory!

Adaptive construction of a tree of questions!
Optimal tree of questions can be constructed without knowing the answers. . . but
during a game only a path of the tree is used. . .
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Trees and Ensemble MethodsClassification And Regression Trees

Tree principle (CART by Breiman (85) / ID3 by Quinlan (86))
Construction of a recursive partition through a tree structured set of questions
(splits around a given value of a variable)
For a given partition, probabilistic approach and optimization approach yield the
same predictor!
A simple majority vote/averaging in each leaf
Quality of the prediction depends on the tree (the partition).
Intuitively:

small leaves lead to low bias, but large variance
large leaves lead to large bias, but low variance. . .

Issue: Minim. of the (penalized) empirical risk is NP hard!
Practical tree construction are all based on two steps:

a top-down step in which branches are created (branching)
a bottom-up in which branches are removed (pruning) 135
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Trees and Ensemble MethodsBranching

X1 < .5?

X1 < .2? X2 < .7?

Yes No

Yes NoYes No

Greedy top-bottom approach
Start from a single region containing all the data
Recursively split those regions along a certain variable and a certain value

No regret strategy on the choice of the splits!
Heuristic: choose a split so that the two new regions are as homogeneous
possible. . .
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No regret strategy on the choice of the splits!
Heuristic: choose a split so that the two new regions are as homogeneous
possible. . .
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X1 < .2? X2 < .7?
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Yes NoYes No

Greedy top-bottom approach
Start from a single region containing all the data
Recursively split those regions along a certain variable and a certain value

No regret strategy on the choice of the splits!
Heuristic: choose a split so that the two new regions are as homogeneous
possible. . .
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Trees and Ensemble MethodsBranching
Various definition of inhomogeneous

CART: empirical loss based criterion (least squares/prediction error)
C(R, R) =

∑
x i ∈R

ℓ(yi , y(R)) +
∑
x i ∈R

ℓ(yi , y(R))

CART: Gini index (Classification)
C(R, R) =

∑
x i ∈R

p(R)(1− p(R)) +
∑
x i ∈R

p(R)(1− p(R))

C4.5: entropy based criterion (Information Theory)
C(R, R) =

∑
x i ∈R

H(R) +
∑
x i ∈R

H(R)

CART with Gini is probably the most used technique. . . even in the multi-class
setting where the entropy may be more natural.
Other criterion based on χ2 homogeneity or based on different local predictors
(generalized linear models. . . )
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Choice of the split in a given region
Compute the criterion for all features and all possible splitting points
(necessarily among the data values in the region)
Choose the split minimizing the criterion

Variations: split at all categories of a categorical variable using a clever category
ordering (ID3), split at a restricted set of points (quantiles or fixed grid)
Stopping rules:

when a leaf/region contains less than a prescribed number of observations,
when the depth is equal to a prescribed maximum depth,
when the region is sufficiently homogeneous. . .

May lead to a quite complex tree: over-fitting possible!
Additional pruning often used.
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→

Model selection within the (rooted) subtrees of previous tree!
Number of subtrees can be quite large, but the tree structure allows to find the
best model efficiently.

Key idea
The predictor in a leaf depends only on the values in this leaf.
Efficient bottom-up (dynamic programming) algorithm if the criterion used
satisfies an additive property

C(T ) =
∑
L∈T

c(L)

Example: AIC / CV.
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Examples of criterion satisfying this assumptions
AIC type criterion:

n∑
i=1

ℓ(yi , fL(x i )(x i)) + λ|T | =
∑
L∈T

∑
x i ∈L

ℓ(yi , fL(x i)) + λ


Simple cross-Validation (with (x ′

i , y ′
i ) a different dataset):

n′∑
i=1

ℓ(y ′
i , fL(x ′

i)) =
∑
L∈T

∑
x ′

i ∈L
ℓ(y ′

i , fL(x ′
i))


Limit over-fitting for a single tree.
Rk: almost never used when combining several trees. . .
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Trees and Ensemble MethodsPruning and Dynamic Algorithm

Key observation: at a given node, the best subtree is either the current node or
the union of the best subtrees of its child.

Dynamic programming algorithm
Compute the individual cost c(L) of each node (including the leaves)
Scan all the nodes in reverse order of depth:

If the node L has no child, set its best subtree T (L) to {L} and its current best
cost c ′(L) to c(L)
If the children L1 and L2 are such that c ′(L1) + c ′(L2) ≥ c(L), then prune the child
by setting T (L) = {L} and c ′(L) = c(L)
Otherwise, set T (L) = T (L1) ∪ T (L2) and c ′(L) = c ′(L1) + c ′(L2)

The best subtree is the best subtree T (R) of the root R.

Optimization cost proportional to the number of nodes and not the number of
subtrees!
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Trees and Ensemble MethodsExtensions

Local estimation of the proportions or of the conditional mean.
Recursive Partitioning methods:

Recursive construction of a partition
Use of simple local model on each part of the partition

Examples:
CART, ID3, C4.5, C5
MARS (local linear regression models)
Piecewise polynomial model with a dyadic partition. . .

Book: Recursive Partitioning and Applications by Zhang and Singer
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144



Trees and Ensemble MethodsCART: Pros and Cons

Pros
Leads to an easily interpretable model
Fast computation of the prediction
Easily deals with categorical features
(and missing values)

Cons
Greedy optimization
Hard decision boundaries
Lack of stability
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Trees and Ensemble MethodsEnsemble methods

Lack of robustness for single trees.
How to combine trees?

Parallel construction
Construct several trees from bootstrapped samples and average the responses
(Bagging)
Add more randomness in the tree construction (Random Forests)

Sequential construction
Construct a sequence of trees by reweighting sequentially the samples according
to their difficulties (AdaBoost)
Reinterpretation as a stagewise additive model (Boosting)
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Trees and Ensemble MethodsIndependent Average

Stability through averaging
Very simple idea to obtain a more stable estimator.
Vote/average of B predictors f1, . . . , fB obtained with independent datasets of
size n!

fagr = sign
(

1
B

B∑
b=1

fb

)
or fagr = 1

B

B∑
i=1

fb

Regression: E[fagr(x)] = E[fb(x)] and Var [fagr(x)] = Var[fb(x)]
B

Prediction: slightly more complex analysis
Averaging leads to variance reduction, i.e. stability!

Issue: cost of obtaining B independent datasets of size n!
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Trees and Ensemble MethodsBagging and Bootstrap
Strategy proposed by Breiman in 1994.

Stability through bootstrapping
Instead of using B independent datasets of size n, draw B datasets from a single
one using a uniform with replacement scheme (Bootstrap).
Rk: On average, a fraction of (1− 1/e) ≃ .63 examples are unique among each
drawn dataset. . .
The fb are still identically distributed but not independent anymore.
Price for the non independence: E[fagr(x)] = E[fb(x)] and

Var [fagr(x)] = Var [fb(x)]
B +

(
1− 1

B

)
ρ(x)

with ρ(x) = Cov [fb(x), fb′(x)] ≤ Var [fb(x)] with b ̸= b′.
Bagging: Bootstrap Aggregation

Better aggregation scheme exists. . .
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Trees and Ensemble MethodsRandomized Predictors

Correlation leads to less variance reduction:
Var [fagr(x)] = Var [fb(x)]

B +
(

1− 1
B

)
ρ(x)

with ρ(x) = Cov [fb(x), fb′(x)] with b ̸= b′.
Idea: Reduce the correlation by adding more randomness in the predictor.

Randomized Predictors
Construct predictors that depend on a randomness source R that may be chosen
independently for all bootstrap samples.
This reduces the correlation between the estimates and thus the variance. . .
But may modify heavily the estimates themselves!

Performance gain not obvious from theory. . .
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Trees and Ensemble MethodsRandom Forest
Example of randomized predictors based on trees proposed by Breiman in 2001. . .

Random Forest
Draw B resampled datasets from a single one using a uniform with replacement
scheme (Bootstrap)
For each resampled dataset, construct a tree using a different randomly drawn
subset of variables at each split.

Most important parameter is the subset size:
if it is too large then we are back to bagging
if it is too small the mean of the predictors is probably not a good predictor. . .

Recommendation:
Classification: use a proportion of 1/

√p
Regression: use a proportion of 1/3

Sloppier stopping rules and pruning than in CART. . .
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Trees and Ensemble MethodsExtra Trees

Extremely randomized trees!

Extra Trees
Variation of random forests.
Instead of trying all possible cuts, try only K cuts at random for each variable.
No bootstrap in the original article.

Cuts are defined by a threshold drawn uniformly in the feature range.
Much faster than the original forest and similar performance.

Theoretical performance analysis very challenging!
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Trees and Ensemble MethodsError Estimate and Variable Ranking

Out Of the Box Estimate
For each sample xi , a prediction can be made using only the resampled datasets
not containing xi . . .
The corresponding empirical prediction error is not prone to overfitting but does
not correspond to the final estimate. . .
Good proxy nevertheless.

Forests and Variable Ranking
Importance: Number of time used or criterion gain at each split can be used to
rank the variables.
Permutation tests: Difference between OOB estimate using the true value of
the jth feature and a value drawn a random from the list of possible values.

Up to OOB error, the permutation technique is not specific to trees.
158



Trees and Ensemble MethodsOutline
1 Review of the Methods seen so far

Supervised Learning
A Probabilistic Point of View

Conditional Density Modeling
Non Parametric Conditional Density Modeling
Generative Modeling

Cross Validation and Risk Correction
Optimization Point of View

(Deep) Neural Networks
Regularization
SVM
Tree Based Methods

References
2 Trees and Ensemble Methods

Trees
Bagging and Random Forests

Bootstrap and Bagging
Randomized Rules and Random Forests

Boosting
AdaBoost as a Greedy Scheme
Boosting

Ensemble Methods
A Revisited Bias-Variance Tradeoff
References

3 Unsupervised Learning: Beyond PCA and k-means
Unsupervised Learning?
A First Glimpse

Clustering
Dimensionality Curse
Dimension Reduction
Generative Modeling

Dimension Reduction
Simplification
Reconstruction Error
Relationship Preservation
Comparing Methods?

Clustering
Prototype Approaches
Contiguity Approaches
Agglomerative Approaches
Other Approaches

Generative Modeling
(Plain) Parametric Density Estimation
Latent Variables
Approximate Simulation
Diffusion Model
Generative Adversarial Network

References
4 Recommender System and Matrix

Factorization,. . . and Text Representation and
ChatGPT

Recommender Systems
Collaborative Filtering
Matrix Factorization and Model Based
Recommender Systems
Hybrid Recommender Systems and Evaluation Issue
References
Text, Words and Vectors

Text and Bag of Words
Words and Word Vectors
Text, Words, RNN and Transformers

ChatGPT
ChatGPT?

How Does it Works?
Limits
Challenges

5 Introduction to Reinforcement Learning. . . and Time
Series

Machine Learning
Sequential Decisions
Markov Decision Processes
Dynamic Programing
Reinforcement Setting
Reinforcement and Approximation
Reinforcement and Policies
AlphaGo
LLM and RLHF
References
Time Series

6 At Scale Machine Learning and Deployment
Motivation(s)
Code and Computer

Code Optimization
Locality of Reference
Parallelization

Data and Computers
Database Backend
Distribution
Hardware

Deployment
Challenges
Tools
ML Ops

References
7 References

159



Trees and Ensemble MethodsOutline
1 Review of the Methods seen so far

Supervised Learning
A Probabilistic Point of View

Conditional Density Modeling
Non Parametric Conditional Density Modeling
Generative Modeling

Cross Validation and Risk Correction
Optimization Point of View

(Deep) Neural Networks
Regularization
SVM
Tree Based Methods

References
2 Trees and Ensemble Methods

Trees
Bagging and Random Forests

Bootstrap and Bagging
Randomized Rules and Random Forests

Boosting
AdaBoost as a Greedy Scheme
Boosting

Ensemble Methods
A Revisited Bias-Variance Tradeoff
References

3 Unsupervised Learning: Beyond PCA and k-means
Unsupervised Learning?
A First Glimpse

Clustering
Dimensionality Curse
Dimension Reduction
Generative Modeling

Dimension Reduction
Simplification
Reconstruction Error
Relationship Preservation
Comparing Methods?

Clustering
Prototype Approaches
Contiguity Approaches
Agglomerative Approaches
Other Approaches

Generative Modeling
(Plain) Parametric Density Estimation
Latent Variables
Approximate Simulation
Diffusion Model
Generative Adversarial Network

References
4 Recommender System and Matrix Factorization,. . . and Text Representation and

ChatGPT
Recommender Systems
Collaborative Filtering
Matrix Factorization and Model Based Recommender Systems
Hybrid Recommender Systems and Evaluation Issue
References
Text, Words and Vectors

Text and Bag of Words
Words and Word Vectors
Text, Words, RNN and Transformers

ChatGPT
ChatGPT?
How Does it Works?
Limits
Challenges

5 Introduction to Reinforcement Learning. . . and Time Series
Machine Learning
Sequential Decisions
Markov Decision Processes
Dynamic Programing
Reinforcement Setting
Reinforcement and Approximation
Reinforcement and Policies
AlphaGo
LLM and RLHF
References
Time Series

6 At Scale Machine Learning and Deployment
Motivation(s)
Code and Computer

Code Optimization
Locality of Reference
Parallelization

Data and Computers
Database Backend
Distribution
Hardware

Deployment
Challenges
Tools
ML Ops

References
7 References

160



Trees and Ensemble MethodsBoosting

Boosting
Construct a sequence of predictors ht and weights αt so that the weighted sum

ft = ft−1 + αtht
is better and better (at least on the training set!).

Simple idea but no straightforward instanciation!
First boosting algorithm: AdaBoost by Schapire and Freund in 1997.
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Trees and Ensemble MethodsAdaBoost
Idea: learn a predictor in a sequential manner by training a correction term at
each step with weighted dataset with weights depending on the error so far.

Iterative scheme proposed by Schapire and Freud
Set w1,i = 1/n; t = 0 and f = 0
For t = 1 to t = T

ht = argminh∈H
∑n

i=1 wt,iℓ
0/1(yi , h(xi))

Set ϵt =
∑n

i=1 wt,iℓ
0/1(yi , ht(xi)) and αt = 1

2 log 1−ϵt
ϵt

let wt+1,i = wt,i e−αt yi ht (xi )

Zt+1
where Zt+1 is a renormalization constant such that∑n

i=1 wt+1,i = 1
f = f + αtht

Use f =
∑T

i=1 αtht or rather its sign.
Intuition: wt,i measures the difficulty of learning the sample i up to step t and
thus the importance of being good at this step. . .
Prop: The resulting predictor can be proved to have a training risk of at most
2T ∏T

t=1
√

ϵt(1− ϵt). 162



Trees and Ensemble MethodsAdaBoost

AdaBoost Intuition
ht obtained by minimizing a weighted loss

ht = argmin
h∈H

n∑
i=1

wt,iℓ
0/1(yi , h(x i))

Update the current estimate with
ft = ft−1 + αtht
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Trees and Ensemble MethodsAdaBoost

AdaBoost Intuition
Weight wt,i should be large if x i is not well-fitted at step t − 1 and small
otherwise.
Use a weight proportional to e−yi ft−1(x i ) so that it can be recursively updated by

wt+1,i = wt,i ×
e−αtyi ht(x i )

Zt
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Trees and Ensemble MethodsAdaBoost

AdaBoost Intuition
Set αt such that ∑

yi ht(xi)=1
wt+1,i =

∑
yi ht(xi)=−1

wt+1,i

or equivalently  ∑
yi ht(xi)=1

wt,i

 e−αt =

 ∑
yi ht(xi)=−1

wt,i

 eαt
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Trees and Ensemble MethodsAdaBoost

AdaBoost Intuition
Using

ϵt =
∑

yi ht(xi)=−1
wt,i

leads to
αt = 1

2 log 1− ϵt
ϵt

and Zt = 2
√

ϵt(1− ϵt)
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Trees and Ensemble MethodsAdaBoost

Exponential Stagewise Additive Modeling
Set t = 0 and f = 0.
For t = 1 to T ,

(ht , αt) = argminh,α

∑n
i=1 e−yi (f (x i )+αh(x i ))

f = f + αtht

Use f =
∑T

t=1 αtht or rather its sign.

Greedy optimization of a classifier as a linear combination of T classifiers for the
exponential loss.
Additive Modeling can be traced back to the 70’s.
AdaBoost and Exponential Stagewise Additive Modeling are exactly the same!
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Trees and Ensemble MethodsRevisited AdaBoost

AdaBoost
Set t = 0 and f = 0.
For t = 1 to T ,

(ht , αt) = argminh,α

∑n
i=1 e−yi (f (x i )+αh(x i ))

f = f + αtht

Use f =
∑T

t=1 αtht or rather its sign.

Greedy iterative scheme with only two parameters: the class H of weak
classifiers and the number of steps T .
In the literature, one can read that Adaboost does not overfit! This is not true
and T should be chosen with care. . .
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Trees and Ensemble MethodsWeak Learners
Weak Learner

Simple predictor belonging to a set H.
Easy to learn.
Need to be only slightly better than a constant predictor.

Weak Learner Examples
Decision Tree with few splits.
Stump decision tree with one split.
(Generalized) Linear Regression with few variables.

Boosting
Sequential Linear Combination of Weak Learner
Attempt to minimize a loss.

Example of ensemble method.
Link with Generalized Additive Modeling. 167



Trees and Ensemble MethodsGeneric Boosting
Greedy optim. yielding a linear combination of weak learners.

Generic Boosting
Algorithm:

Set t = 0 and f = 0.
For t = 1 to T ,

(ht , αt) = argminh,α

∑n
i=1 ℓ(yi , f (xi ) + αh(xi ))

f = f + αtht

Use f =
∑T

t=1 αtht

AKA as Forward Stagewise Additive Modeling
AdaBoost with ℓ(y , h) = e−yh

LogitBoost with ℓ(y , h) = log2(1 + e−yh)
L2Boost with ℓ(y , h) = (y − h)2 (Matching pursuit)
L1Boost with ℓ(y , h) = |y − h|
HuberBoost with ℓ(y , h) = |y − h|21|y−h|<ϵ + (2ϵ|y − h| − ϵ2)1|y−h|≥ϵ

Extension to multi-class classification through surrogate losses.
No easy numerical scheme except for AdaBoost and L2Boost. . . 168



Trees and Ensemble MethodsGradient Boosting

Issue: At each boosting step, one need to solve

(ht , αt) = argmin
h,α

n∑
i=1

ℓ(yi , f (xi) + αh(xi)) = L(y , f + αh)

Idea: Replace the function by a first order approximation
L(y , f + αh) ∼ L(y , f ) + α⟨∇L(y , f ), h⟩

Gradient Boosting
Replace the minimization step by a gradient descent step:

Choose ht as the best possible descent direction in H according to the approximation
Choose αt that minimizes L(y , f + αht) (line search)

Rk: Exact gradient direction often not possible!
Need to find efficiently this best possible direction. . .
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Trees and Ensemble MethodsBest Direction
Gradient direction:

∇L(y , f ) with ∇iL(y , f ) = ∂

df (xi)

( n∑
i ′=1

ℓ(yi ′ , f (xi ′))
)

= ∂

df (xi)
ℓ(yi , f (xi))

Best Direction within H
Direct formulation:

ht ∈ argmin
h∈H

∑n
i=1∇iL(y , f )h(xi)√∑n

i=1 |h(xi)|2

(
= ⟨∇L(y , f ), h⟩

∥h∥

)
Equivalent (least-squares) formulation: ht = −βth′

t with

(βt , h′
t) ∈ argmin

(β,h)∈R×H

n∑
i=1
|∇iL(y , f )− βh(xi)|2

(
= ∥∇L− βh∥2

)
Choice of the formulation will depend on H. . .
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Trees and Ensemble MethodsGradient Boosting of Classifiers
Assumptions:

h is a binary classifier, h(x) = ±1 and thus ∥h∥2 = n.
ℓ(y , f (x)) = l(yf (x)) so that ∇iL(y , f ) = yi l ′(yi f (xi)).

Best direction ht in H using the first formulation
ht = argmin

h∈H

∑
i
∇iL(y , f )h(xi)

AdaBoost Type Minimization
Best direction rewriting

ht = argmin
h∈H

∑
i

l ′(yi f (xi))yih(xi)

= argmin
h∈H

∑
i

(−l ′)(yi f (xi))(2ℓ0/1(yi , h(xi))− 1)

AdaBoost type weighted loss minimization as soon as (−l ′)(yi f (xi) ≥ 0:
ht = argmin

∑
i

(−l ′)(yi f (xi))ℓ0/1(yi , h(xi))
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Gradient Boosting
(Gradient) AdaBoost: ℓ(y , f ) = exp(−yf )

l(x) = exp(−x) and thus (−l ′)(yi f (xi)) = e−yi f (xi ) ≥ 0
ht is the same as in AdaBoost
αt also. . . (explicit computation)

LogitBoost: ℓ(y , f ) = log2(1 + e−yf )
l(x) = log2(1 + e−x ) and thus (−l ′)(yi f (xi)) = e−yi f (xi )

log(2)(1+e−yi f (xi )) ≥ 0
Less weight on misclassified samples than in AdaBoost. . .
No explicit formula for αt (line search)
Different path than with the (non-computable) classical boosting!

SoftBoost: ℓ(y , f ) = max(1− yf , 0)
l(x) = max(1− x , 0) and (−l ′)(yi f (xi)) = 1yi f (xi )≤1 ≥ 0
Do not use the samples that are sufficiently well classified!

172



Trees and Ensemble MethodsGradient Boosting and Least Squares

Least squares formulation is preferred when |h| ≠ 1.

Least Squares Gradient Boosting
Find ht = −βth′

t with

(βt , h′
t) ∈ argmin

(β,h)∈R×H

n∑
i=1
|∇iL(y , f )− βh(xi)|2

Classical least squares if H is a finite dimensional vector space!
Not a usual least squares in general but a classical regression problem!

Numerical scheme depends on the loss. . .
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Examples

Gradient L2Boost:
ℓ(y , f ) = |y − f |2 and ∇iL(yi , f (xi)) = −2(yi − f (xi)):

(βt , h′
t) ∈ argmin

(β,h)∈R×H

n∑
i=1
|2yi − 2(f (xi)− β/2h(xi))|2

αt = −βt/2
Equivalent to classical L2-Boosting

Gradient L1Boost:
ℓ(y , f ) = |y − f | and ∇iL(yi , f (xi)) = −sign(yi − f (xi)):

(βt , h′
t) ∈ argmin

(β,h)∈R×H

n∑
i=1
| − sign(yi − f (xi))− βh(xi)|2

Robust to outliers. . .

Classical choice for H: Linear Model in which each h depends on a small subset of
variables.
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Least squares formulation can also be used in classification!
Assumption:

ℓ(y , f (x)) = l(yf (x)) so that ∇iL(yi , f (xi)) = yi l ′(yi f (xi))

Least Squares Gradient Boosting for Classifiers
Least Squares formulation:

(βt , h′
t) ∈ argmin

(β,h)∈R×H

n∑
i=1
|yi l ′(yi f (xi))− βh(xi)|2

Intuition: Modify misclassified examples without modifying too much the
well-classified ones. . .
Most classical optimization choice nowadays!
Also true for the extensions to multi-class classification.
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Stochastic Boosting
Idea: change the learning set at each step.
Two possible reasons:

Optimization over all examples too costly
Add variability to use an averaged solution

Two different samplings:
Use sub-sampling, if you need to reduce the complexity
Use re-sampling, if you add variability. . .

Stochastic Gradient name mainly used for the first case. . .

Second Order Boosting
Replace the first order approximation by a second order one and avoid the line
search. . .
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Trees and Ensemble MethodsXGBoost

Very efficient boosting algorithm proposed by Chen and Guestrin in 2014.

eXtreme Gradient Boosting
Gradient boosting for a (regularized) smooth loss using a second order
approximation and the least squares approximation.
Reduced stepsize with a shrinkage of the optimal parameter.
Feature subsampling.
Weak learners:

Trees: limited depth, penalized size and parameters, fast approximate best split.
Linear model: elastic-net regularization.

Excellent baseline for tabular data (and time series)!
Lightgbm, CatBoost, and Histogram Gradient Boosting from scikit-learn are
also excellent similar choices!
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Ensemble Methods
Averaging: combine several models by averaging (bagging, random forests,. . . )
Boosting: construct a sequence of (weak) classifiers (XGBoost, LightGBM,
CatBoost, Histogram Gradient Boosting from scikit-learn)
Stacking: use the outputs of several models as features (tpot. . . )

Loss of interpretability but gain in performance
Beware of overfitting with stacking: the second learning step should be done with
fresh data.
No end to end optimization as in deep learning!
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Traditional view NN reality
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No Bias-Variance Tradeoff in NN ?
Simultaneous decay of the variance and the bias!
Contradiction with the bias-variance tradeoff intuition ?
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Trees and Ensemble MethodsBias-Variance Dilemma

General setting:
F = {measurable functions X → Y}
Best solution: f ⋆ = argminf ∈F R(f )
Class S ⊂ F of functions
Ideal target in S: f ⋆

S = argminf ∈S R(f )
Estimate in S: f̂S obtained with some procedure

Approximation error and estimation error (Bias-Variance)

R(f̂S)−R(f ⋆) = R(f ⋆
S )−R(f ⋆)︸ ︷︷ ︸

Approximation error

+R(f̂S)−R(f ⋆
S )︸ ︷︷ ︸

Estimation error

Approx. error can be large if the model S is not suitable.
Estimation error can be large if the model is complex.
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Approximation error and estimation error (̸= predictor bias-variance)

R(f̂S)−R(f ⋆) = R(f ⋆
S )−R(f ⋆)︸ ︷︷ ︸

Approximation error

+R(f̂S)−R(f ⋆
S )︸ ︷︷ ︸

Estimation error

Approx. error can be large if the model S is not suitable.
Estimation error

can be large if the model is complex,
but may be small for complex model if it is easy to find a model having a
performance similar to the best one!

Small estimation errors scenario seem the most probable scenario in deep learning. 183
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Traditional View
Single good target
Difficulty to be close grows with
complexity.
Bias-Variance analysis in the predictor
space.

Refined View
Many good targets
Difficulty to be close from one may
decrease with complexity.
Bias-Variance analysis in the loss
space.

Importance of (cross) validation! 184
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Learning without Labels?
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What is possible with data without labels?
To group them?
To visualize them in a 2 dimensional space?
To generate more data?
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Marketing and Groups
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To group them?
Data: Base of customer data containing their properties and past buying records
Goal: Use the customers similarities to find groups.
Clustering: propose an explicit grouping of the customers
Visualization: propose a representation of the customers so that the groups are
visible. (Bonus)
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Image and Visualization
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To visualize them?
Data: Images of a single object
Goal: Visualize the similarities between images.
Visualization: propose a representation of the images so that similar images are
close.
Clustering: use this representation to cluster the images. (Bonus)
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Images and Generation
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To generate more data?
Data: Images.
Goal: Generate images similar to the ones in the dataset.
Generative Modeling: propose (and train) a generator.

193



Unsupervised Learning:
Beyond PCA and k-means

Machine Learning

So
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eThe classical definition of Tom Mitchell

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E.
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Supervised Learning

Experience, Task and Performance measure
Training data : D = {(X 1, Y1), . . . , (Xn, Yn)} (i.i.d. ∼ P)
Predictor: f : X → Y measurable
Cost/Loss function: ℓ(f (X ), Y ) measure how well f (X ) predicts Y
Risk:

R(f ) = E[ℓ(Y , f (X ))] = EX
[
EY |X [ℓ(Y , f (X ))]

]
Often ℓ(f (X ), Y ) = ∥f (X )− Y ∥2 or ℓ(f (X ), Y ) = 1Y ̸=f (X)

Goal
Learn a rule to construct a predictor f̂ ∈ F from the training data Dn s.t. the
risk R(f̂ ) is small on average or with high probability with respect to Dn.
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Unsupervised Learning

Experience, Task and Performance measure
Training data : D = {X 1, . . . , Xn} (i.i.d. ∼ P)
Task: ???
Performance measure: ???

No obvious task definition!

Tasks for this lecture
Dimension reduction: construct a map of the data in a low dimensional space
without distorting it too much.
Clustering (or unsupervised classification): construct a grouping of the data
in homogeneous classes.
Generative modeling: generate new samples.
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Dimension Reduction

Training data : D = {X 1, . . . , Xn} ∈ X n (i.i.d. ∼ P)
Space X of possibly high dimension.

Dimension Reduction Map
Construct a map Φ from the space X into a space X ′ of smaller dimension:

Φ : X → X ′

X 7→ Φ(X )

Map can be defined only on the dataset.

Motivations
Visualization of the data
Dimension reduction (or embedding) before further processing

197



Unsupervised Learning:
Beyond PCA and k-means

Dimension Reduction

Need to control the distortion between D and Φ(D) = {Φ(X 1), . . . , Φ(Xn)}

Distortion(s)
Reconstruction error:

Construct Φ̃ from X ′ to X
Control the error between X and its reconstruction Φ̃(Φ(X ))

Relationship preservation:
Compute a relation X i and X j and a relation between Φ(X i) and Φ(X j)
Control the difference between those two relations.

Lead to different constructions. . . .
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Clustering
Training data : D = {X 1, . . . , Xn} ∈ X n (i.i.d. ∼ P)
Latent groups?

Clustering
Construct a map f from D to {1, . . . , K} where K is a number of classes to be
fixed:

f : X i 7→ ki

Similar to classification except:
no ground truth (no given labels)
label only elements of the dataset!

Motivations
Interpretation of the groups
Use of the groups in further processing
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Clustering

Need to define the quality of the cluster.
No obvious measure!

Clustering quality
Inner homogeneity: samples in the same group should be similar.
Outer inhomogeneity: samples in two different groups should be different.

Several possible definitions of similar and different.
Often based on the distance between the samples.
Example based on the Euclidean distance:

Inner homogeneity = intra-class variance,
Outer inhomogeneity = inter-class variance.

Beware: choice of the number of clusters K often complex!
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Generative Modeling

Training data : D = {X 1, . . . , Xn} ∈ X n (i.i.d. ∼ P).

Generative Modeling
Construct a map G from a randomness source Ω to X

G :Ω→ X
ω 7→ X

Motivation
Generate plausible novel conditional samples based on a given dataset.

Sample Quality
Related to the proximity between the law of G(ω) and the law of X .

Most classical choice is the Kullback-Leibler divergence.
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Generative Modeling

Ingredients
Generator Gθ(ω) and density prob. Pθ(X ) (Explicit vs implicit link)
Simple / Complex / Approximate estimation. . .

Some Possible Choices
Probabilistic model Generator Estimation

Base Simple (parametric) Explicit Simple (ML)
Flow Image of simple model Explicit Simple (ML)

Factorization Factorization of simple model Explicit Simple (ML)
VAE Simple model with latent var. Explicit Approximate (ML)
EBM Arbitrary Implicit (MCMC) Complex (ML/score/discrim.)

Diffusion Continuous noise Implicit (MCMC) Complex (score)
Discrete Noise with latent var. Explicit Approximate (ML)

GAN Implicit Explicit Complex (Discrimination)

SOTA: Diffusion based approach!

ML: Maximum Likelihood/VAE: Variational AutoEncoder/EBM: Energy Based Model/MCMC: Monte Carlo Markov Chain/GAN: Generative Aversarial
Network 202
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What’s a group?

So
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No simple or unanimous definition!
Require a notion of similarity/difference. . .

Three main approaches
A group is a set of samples similar to a prototype.
A group is a set of samples that can be linked by contiguity.
A group can be obtained by fusing some smaller groups. . .
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Prototype Approach
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Prototype Approach
A group is a set of samples similar to a prototype.
Most classical instance: k-means algorithm.
Principle: alternate prototype choice for the current groups and group update
based on those prototypes.

Number of groups fixed at the beginning
No need to compare the samples between them! 206
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Contiguity Approach
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Contiguity Approach
A group is the set of samples that can be linked by contiguity.
Most classical instance: DBScan
Principle: group samples by contiguity if possible (proximity and density)

Some samples may remain isolated.
Number of groups controlled by the scale parameter.

DBSCAN: Density-Based Spatial Clustering of Applications with Noise 207
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Agglomerative Approach
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Agglomerative Approach
A group can be obtained by fusing some smaller groups. . .
Hierachical clustering principle: sequential merging of groups according to a best
merge criterion

Numerous variations on the merging criterion. . .
Number of groups chosen afterward.
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Choice of the method and of the number of groups

So
ur

ce
:

Sc
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nNo method or number of groups is better than the others. . .

Criterion not necessarily explicit!
No cross validation possible
Choice of the number of groups: a priori, heuristic, based on the final usage. . .
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Dimensionality Curse
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DISCLAIMER: Even if they are used everywhere beware of the usual
distances in high dimension!

Dimensionality Curse
Previous approaches based on distances.
Surprising behavior in high dimension: everything is ((often) as) far away.
Beware of categories. . .
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Dimensionality Curse
DISCLAIMER: Even if they are used everywhere beware of the usual
distances in high dimension!

High Dimensional Geometry Curse
Folks theorem: In high dimension, everyone is alone.
Theorem: If X 1, . . . , Xn in the hypercube of dimension d such that their
coordinates are i.i.d then

d−1/p
(
max ∥X i − X j∥p −min ∥X i − X j∥p

)
= 0 + OP

√ log n
d


min ∥X i − X j∥p
max ∥X i − X j∥p

= 1 + OP

√ log n
d

 .

When d is large, all the points are almost equidistant. . .
Nearest neighbors are meaningless!
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Visualization and Dimension Reduction
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Visualization and Dimension Reduction
How to view a dataset in high dimension !
High dimension: dimension larger than 2!
Projection onto a 2D space.
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Principal Component Analysis
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Simple formula: X̃ = P(X −m)

How to chose P?
Maximising the dispersion of the points?
Allowing to well reconstruct X from X̃?
Preserving the relationship between the X through those between the X̃?

The 3 approaches yield the same solution!

215



Unsupervised Learning:
Beyond PCA and k-means

Principal Component Analysis

So
ur

ce
:

J.
Si

lg
e

Simple formula: X̃ = P(X −m)

How to chose P?
Maximising the dispersion of the points?
Allowing to well reconstruct X from X̃?
Preserving the relationship between the X through those between the X̃?

The 3 approaches yield the same solution!
215



Unsupervised Learning:
Beyond PCA and k-means

Reconstruction Approaches

Reconstruction Approaches
Learn a formula to encode and one formula to decode.
Auto-encoder structure

Yields a formula for new points.
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Relationship Preservation Approaches

Relationship Preservation Approaches
Based on the definition of the relationship notion (in both worlds).
Huge flexibility

Not always yields a formula for new points.
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Choices of Methods and Dimension
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No Better Choice?
Different criterion for different methods: impossible to use cross-validation.
The larger the dimension the easier is to be faithful!
In visualization, dimension 2 is the only choice.
Heuristic criterion for the dimension choice: elbow criterion (no more gain),
stability. . .

Dimension Reduction is rarely used standalone but rather as a step in a
predictive/prescriptive method.
The dimension becomes an hyper-parameter of this method. 218
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Representation Learning
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Representation Learning
How to transform arbitrary objects into numerical vectors?
Objects: Categorical variables, Words, Images/Sounds. . .

The two previous dimension reduction approaches can be used (given possibly a
first simple high dimensional representation)
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Generative Modeling
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Generative Modeling
Generate new samples similar to the ones in an original dataset.
Generation may be conditioned by an input.

Key for image generation. . . and chatbot! 221
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Density Estimation and Simulation
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Heuristic: If we can estimate the (conditional) law P of the data and can
simulate it, we can obtain new samples similar to the input ones.

Estimation and Simulation
How to estimate the density?
How to simulate the estimate density?

Other possibilities?
222
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Simple Estimation and Simple Simulation

So
ur

ce
:

Re
ze

nd
e

et
al

.

Parametric Model, Image and Factorization
Use

a simple parametric model,. . .
or the image of a parametric model (flow),. . .
or a factorization of a parametric model (recurrent model)

as they are simple to estimate and to simulate.

Estimation by Maximum Likelihood principle.
Recurrent models are used in Large Language Models! 223
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Complex Estimation and Simple Simulation
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Latent Variable
Generate first a (low dimensional) latent variable Z from which the result is easy
to sample.
Estimation based on approximate Maximum Likelihood (VAE/ELBO)

The latent variable can be generated by a simple method (or a more complex
one. . . ).
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Complex Estimation and Complex Simulation
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Monte Carlo Markov Chain
Rely on much more complex probability model. . .
which can only be simulated numerically.
Often combined with noise injection to stabilizes the numerical scheme
(Diffusion).

Much more expensive to simulate than with Latent Variable approaches.
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Complex (non)Estimation and Simple Simulation
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Generative Adversarial Network
Bypass the density estimation problem, by transforming the problem into a
competition between the generator and a discriminator.
The better the generator, the harder it is for the generator to distinguish true
samples from synthetic ones.
No explicit density!

Fast simulator but unstable training. . . 226
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Dimension Reduction

Training data : D = {X 1, . . . , Xn} ∈ X n (i.i.d. ∼ P)
Space X of possibly high dimension.

Dimension Reduction Map
Construct a map Φ from the space X into a space X ′ of smaller dimension:

Φ : X → X ′

X 7→ Φ(X )

Criterion
Reconstruction error
Relationship preservation
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How to Simplify?
A Projection Based Approach

Observations: X 1, . . . , Xn ∈ Rd

Simplified version: Φ(X 1), . . . , Φ(Xn) ∈ Rd with Φ an affine projection preserving
the mean Φ(X ) = P(X −m) + m with P⊤ = P = P2 and m = 1

n
∑

i X i .

How to choose P?
Inertia criterion: max

P

∑
i ,j
∥Φ(X i)− Φ(X j)∥2?

Reconstruction criterion:
min

P

∑
i
∥X i − Φ(X i)∥2?

Relationship criterion:
min

P

∑
i ,j
|(X i −m)⊤(X j −m)− (Φ(X i)−m)⊤(Φ(X j)−m)|2?

Rk: Best solution is P = I! Need to reduce the rank of the projection to
d ′ < d . . . 230
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Inertia criterion
Heuristic: a good representation is such that the projected points are far apart.

Two views on inertia
Inertia:

I = 1
2n2

∑
i ,j
∥X i − X j∥2 = 1

n

n∑
i=1
∥X i −m∥2

2 times the mean squared distance to the mean = Mean squared distance
between individual

Inertia criterion (Principal Component Analysis)

Criterion: max
P

∑
i ,j

1
2n2 ∥PX i − PX j∥2 = max

P

1
n
∑

i
∥PX i −m∥2

Solution: Choose P as a projection matrix on the space spanned by the d ′ first
eigenvectors of Σ = 1

n
∑

i(X i −m)(X i −m)⊤
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First Component of the PCA
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X̃ = m + a⊤(X −m)a with ∥a∥ = 1

Inertia: 1
n

n∑
i=1

a⊤(X i −m)(X i −m)⊤a

Principal Component Analysis: optimization of the projection

Maximization of Ĩ = 1
n

n∑
i=1

a⊤(X i −m)(X i −m)⊤a = a⊤Σa with

Σ = 1
n

n∑
i=1

(X i −m)(X i −m)⊤ the empirical covariance matrix.

Explicit optimal choice given by the eigenvector of the largest eigenvalue of Σ.
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PCA
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Principal Component Analysis : sequential optimization of the projection
Explicit optimal solution obtain by the projection on the eigenvectors of the
largest eigenvalues of Σ.
Projected inertia given by the sum of those eigenvalues.

Often fast decay of the eigenvalues: some dimensions are much more important
than others.
Not exactly the curse of dimensionality setting. . .
Yet a lot of small dimension can drive the distance!
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Reconstruction Criterion

Heuristic: a good representation is such that the projected points are close to the
original ones.

Reconstruction Criterion

Criterion: min
P

∑
i

1
n∥X i − (P(X i −m) + m)∥2 = min

P

1
n
∑

i
∥(I − P)(X i −m)∥2

Solution: Choose P as a projection matrix on the space spanned by the d ′ first
eigenvectors of Σ = 1

n
∑

i(X i −m)(X i −m)⊤

Same solution with a different heuristic!
Proof (Pythagora):∑

i
∥X i −m∥2 =

∑
i

(
∥P(X i −m)∥2 + ∥(I − P)(X i −m)∥2

)
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PCA, Reconstruction and Distances
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Close projection doesn’t mean close individuals!
Same projections but different situations.
Quality of the reconstruction measured by the angle with the projection space!
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Relationship Criterion

Heuristic: a good representation is such that the projected points scalar products
are similar to the original ones.

Relationship Criterion (Multi Dimensional Scaling)
Criterion: min

P

∑
i ,j
|(X i −m)⊤(X j −m)− (Φ(X i)−m)⊤(Φ(X j)−m)|2

Solution: Choose P as a projection matrix on the space spanned by the d ′ first
eigenvectors of Σ = 1

n
∑

i(X i −m)(X i −m)⊤

Same solution with a different heuristic!
Much more involved justification!
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Link with SVD
PCA model: X −m ≃ P(X −m)
Prop: P = VV ⊤ with V an orthormal family in dimension d of size d ′.
PCA model with V : X −m ≃ VV ⊤(X −m) where X̃ = V ⊤(X −m) ∈ Rd ′

Row vector rewriting: X⊤ −m⊤ ≃ X̃⊤V ⊤

Matrix Rewriting and Low Rank Factorization
Matrix rewriting

X 1
⊤ −m⊤

...

...
Xn

⊤ −m⊤

(n×d)

≃

X̃ 1
⊤

...

...
X̃n

⊤

(n×d ′)

V⊤

(d ′×d)

Low rank matrix factorization! (Truncated SVD solution. . . )

237



Unsupervised Learning:
Beyond PCA and k-means

SVD

SVD Decomposition
Any matrix n × d matrix A can be decomposed as

A

(n×d)

= U

(n×n)

D

(n×d)

W⊤

(d×d)

with U and W two orthonormal matrices and D a diagonal matrix with decreasing
values.
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SVD
Low Rank Approximation

The best low rank approximation or rank r is obtained by restriction of the
matrices to the first r dimensions:

A

(n×d)

≃ Ur

(n×r)

Dr ,r
(r×r)

Wr
⊤

(r×d)

for both the operator norm and the Frobenius norm!
PCA: Low rank approximation with Frobenius norm, d ′ = r and

X 1
⊤ −m⊤

...

...
Xn

⊤ −m⊤

↔ A,


X̃ 1

⊤

...

...
X̃n

⊤

↔ UrDr ,r , V⊤ ↔W⊤
r
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SVD

SVD Decompositions
Recentered data:

R =


X 1

⊤ −m⊤

...
Xn

⊤ −m⊤

 = UDW ⊤

Covariance matrix:
Σ = R⊤R = WD⊤DW

with D⊤D diagonal.
Gram matrix (matrix of scalar products):

G = RR⊤ = UDD⊤U
with DD⊤ diagonal.

Those are the same U, W and D, hence the link between all the approaches.
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Reconstruction Error Approach

Goal
Construct a map Φ from the space X into a space X ′ of smaller dimension:

Φ : X → X ′

X 7→ Φ(X )
Construct Φ̃ from X ′ to X
Control the error between X and its reconstruction Φ̃(Φ(X ))

Canonical example for X ∈ Rd : find Φ and Φ̃ in a parametric family that minimize
1
n

n∑
i=1
∥X i − Φ̃(Φ(X i))∥2
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Principal Component Analysis

X ∈ Rd and X ′ = Rd ′

Affine model X ∼ m +
∑d ′

l=1 X ′(l)V (l) with (V (l)) an orthonormal family.
Equivalent to:

Φ(X ) = V ⊤(X −m) and Φ̃(X ′) = m + V X ′

Reconstruction error criterion:
1
n

n∑
i=1
∥X i − (m + VV ⊤(X i −m)∥2

Explicit solution: m is the empirical mean and V is any orthonormal basis of the
space spanned by the d ′ first eigenvectors (the one with largest eigenvalues) of
the empirical covariance matrix 1

n
∑n

i=1(X i −m)(X i −m)⊤.
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Principal Component Analysis

PCA Algorithm
Compute the empirical mean m = 1

n
∑n

i=1 X i

Compute the empirical covariance matrix 1
n
∑n

i=1(X i −m)(X i −m)⊤.
Compute the d ′ first eigenvectors of this matrix: V (1), . . . , V (d ′)

Set Φ(X ) = V ⊤(X −m)

Complexity: O(n(d + d2) + d ′d2)
Interpretation:

Φ(X ) = V ⊤(X −m): coordinates in the restricted space.
V (i): influence of each original coordinates in the ith new one.

Scaling: This method is not invariant to a scaling of the variables! It is custom to
normalize the variables (at least within groups) before applying PCA.
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Decathlon
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Swiss Roll
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Principal Component Analysis

Decathlon Decathlon Swiss Roll
Renormalized

247



Unsupervised Learning:
Beyond PCA and k-means

Multiple Factor Analysis
PCA assumes X = Rd !
How to deal with categorical values?
MFA = PCA with clever coding strategy for categorical values.

Categorical value code for a single variable
Classical redundant dummy coding:

X ∈ {1, . . . , V } 7→ P(X ) =
(
1X=1, . . . , 1X=V

)⊤
Compute the mean (i.e. the empirical proportions): P = 1

n
∑n

i=1 P(X i)

Renormalize P(X ) by 1/
√

(V − 1)P:

P(X ) =
(
1X=1, . . . 1X=V

)
7→

 1X=1√
(V − 1)P1

, . . . ,
1X=V√

(V − 1)PV
= Pr (X )


χ2 type distance!
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Multiple Factor Analysis

PCA becomes the minimization of
1
n

n∑
i=1
∥Pr (X i)− (m + VV ⊤(Pr (X i)−m))∥2

= 1
n

n∑
i=1

V∑
v=1

∣∣∣1X i =v − (m′ +
∑d ′

l=1 V (l)⊤(P(X i)−m′)V (l ,v))
∣∣∣2

(V − 1)Pv

Interpretation:
m′ = P
Φ(X ) = V ⊤(P r (X )−m): coordinates in the restricted space.
V (l) can be interpreted s as a probability profile.

Complexity: O(n(V + V 2) + d ′V 2)
Link with Correspondence Analysis (CA)
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Multiple Factor Analysis

MFA Algorithm
Redundant dummy coding of each categorical variable.
Renormalization of each block of dummy variable.
Classical PCA algorithm on the resulting variables

Interpretation as a reconstruction error with a rescaled/χ2 metric.
Interpretation:

Φ(X ) = V ⊤(P r (X )−m): coordinates in the restricted space.
V (l): influence of each modality/variable in the ith new coordinates.

Scaling: This method is not invariant to a scaling of the continuous variables! It
is custom to normalize the variables (at least within groups) before applying PCA.
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Multiple Factor Analysis
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Non Linear PCA

PCA Model
PCA: Linear model assumption

X ≃ m +
d ′∑

l=1
X ′,(l)V (l) = m + V X ′

with
V (l) orthonormal
X ′,(l) without constraints.

Two directions of extension:
Other constraints on V (or the coordinates in the restricted space): ICA, NMF,
Dictionary approach
PCA on a non-linear image of X : kernel-PCA

Much more complex algorithm!
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Non Linear PCA

ICA (Independent Component Analysis)
Linear model assumption

X ≃ m +
d ′∑

l=1
X ′,(l)V (l) = m + V X ′

with
V (l) without constraints.
X ′,(l) independent

NMF (Non Negative Matrix Factorization)
(Linear) Model assumption

X ≃
d ′∑

l=1
X ′,(l)V (l) = V X ′

with
V (l) non-negative
X ′,(l) non-negative.
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Non Linear PCA
Dictionary

(Linear) Model assumption

X ≃ m +
d ′∑

l=1
X ′,(l)V (l) = m + V X ′

with
V (l) without constraints
X ′ sparse (with a lot of 0)

kernel PCA
Linear model assumption

Ψ(X −m) ≃
d ′∑

l=1
X ′,(l)V (l) = V X ′

with
V (l) orthonormal
X ′

l without constraints.
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Non Linear PCA

Decathlon

Swiss Roll

ICA NMF Kernel PCA
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Auto Encoder

Deep Auto Encoder
Construct a map Φ with a NN from the space X into a space X ′ of smaller
dimension:

Φ : X → X ′

X 7→ Φ(X )
Construct Φ̃ with a NN from X ′ to X
Control the error between X and its reconstruction Φ̃(Φ(X )):

1
n

n∑
i=1
∥X i − Φ̃(Φ(X i))∥2

Optimization by gradient descent.
NN can be replaced by another parametric function. . .
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Deep Auto Encoder

Shallow Auto Encoder Deep Auto Encoder
(PCA)
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Pairwise Relation
Different point of view!
Focus on pairwise relation R(X i , X j).

Distance Preservation
Construct a map Φ from the space X into a space X ′ of smaller dimension:

Φ : X → X ′

X 7→ Φ(X ) = X ′

such that
R(X i , X j) ∼ R′(X ′

i , X ′
j)

Most classical version (MDS):
Scalar product relation: R(X i , X j) = (X i −m)⊤(X j −m)
Linear mapping X ′ = Φ(X ) = V ⊤(X −m).
Euclidean scalar product matching:

1
n2

n∑
i=1

n∑
j=1

∣∣∣(X i −m)⊤(X j −m)− X ′
i
⊤X ′

j

∣∣∣2
Φ often defined only on D. . . 259
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MultiDimensional Scaling

MDS Heuristic
Match the scalar products:

1
n2

n∑
i=1

n∑
j=1

∣∣∣(X i −m)⊤(X j −m)− X i
′⊤X ′

j

∣∣∣2
Linear method: X ′ = U⊤(X −m) with U orthonormal

Beware: X can be unknown, only the scalar products are required!
Resulting criterion: minimization in U⊤(X i −m) of

1
n2

n∑
i=1

n∑
j=1

∣∣∣(X i −m)⊤(X j −m)− (X i −m)⊤UU⊤(X j −m)
∣∣∣2

without using explicitly X in the algorithm. . .
Explicit solution obtained through the eigendecomposition of the know Gram
matrix (X i −m)⊤(X j −m) by keeping only the d ′ largest eigenvalues.
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MultiDimensional Scaling

In this case, MDS yields the same result as the PCA (but with different inputs,
distance between observation vs correlations)!
Explanation: Same SVD problem up to a transposition:

MDS
X (n)

⊤X (n) ∼ X (n)
⊤UU⊤X (n)

PCA
X (n)X (n)

⊤ ∼ U⊤X (n)X (n)
⊤U

Complexity: PCA O((n + d ′)d2) vs MDS O((d + d ′)n2). . .
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MultiDimensional Scaling

Decathlon

Swiss Roll

PCA MDS
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Generalized MDS

Preserving the scalar products amounts to preserve the Euclidean distance.
Easier generalization if we work in terms of distance!

Generalized MDS
Generalized MDS:

Distance relation: R(X i , X j) = d(X i , X j)
Linear mapping X ′ = Φ(X ) = V ⊤(X −m).
Euclidean matching:

1
n2

n∑
i=1

n∑
j=1

∣∣d(X i , X j)− d ′(X ′
i , X ′

j)
∣∣2

Strong connection (but no equivalence) with MDS when d(x , y) = ∥x − y∥2!
Minimization: Simple gradient descent can be used (can be stuck in local
minima).
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ISOMAP

MDS: equivalent to PCA (but more expensive) if d(x , y) = ∥x − y∥2!
ISOMAP: use a localized distance instead to limit the influence of very far point.

ISOMAP
For each point X i , define a neighborhood Ni (either by a distance or a number of
points) and let

d0(X i , X j) =
{

+∞ if X j /∈ Ni

∥X i − X j∥2 otherwise
Compute the shortest path distance for each pair.
Use the MDS algorithm with this distance
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ISOMAP

Decathlon Swiss Roll
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Random Projection

Random Projection Heuristic
Draw at random d ′ unit vector (direction) Ui .
Use X ′ = U⊤(X −m) with m = 1

n
∑n

i=1 X i

Property: If X lives in a space of dimension d ′′, then, as soon as, d ′ ∼ d ′′ log(d ′′),

∥X i − X j∥2 ∼
d
d ′ ∥X

′
i − X ′

j∥2

Do not really use the data!
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Random Projection

Decathlon Swiss Roll
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t-Stochastic Neighbor Embedding
SNE heuristic

From X i ∈ X , construct a set of conditional probability:

Pj|i = e−∥X i −X j ∥2/2σ2
i∑

k ̸=i e−∥X i −Xk∥2/2σ2
i

Pi |i = 0

Find X ′
i in Rd ′ such that the set of conditional probability:

Qj|i = e−∥X ′
i −X ′

j ∥2/2σ2
i∑

k ̸=i e−∥X ′
i −X ′

k∥2/2σ2
i

Qi |i = 0

is close from P.

t-SNE: use a Student-t term (1 + ∥X ′
i − X ′

j∥2)−1 for X ′
i

Minimize the Kullback-Leibler divergence (
∑
i ,j

Pj|i log
Pj|i
Qj|i

) by a simple gradient

descent (can be stuck in local minima).
Parameters σi such that H(Pi) = −

∑n
j=1 Pj|i log Pj|i = cst.
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t-Stochastic Neighbor Embedding

Decathlon Swiss Roll
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t-Stochastic Neighbor Embedding

Very successful/ powerful technique in practice
Convergence may be long, unstable, or strongly depending on parameters.
See this distill post for many impressive examples
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Representation depending on t-SNE parameters
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UMAP
Topological Data Analysis inspired.

Uniform Manifold Approximation and Projection
Define a notion of asymmetric scaled local proximity between neighbors:

Compute the k-neighborhood of X i , its diameter σi and the distance ρi between X i
and its nearest neighbor.
Define

wi(X i , X j) =
{

e−(d(X i ,X j )−ρi )/σi for X j in the k-neighborhood
0 otherwise

Symmetrize into a fuzzy nearest neighbor criterion
w(X i , X j) = wi(X i , X j) + wj(X j , X i)− wi(X i , X j)wj(X j , X i)

Determine the points X ′
i in a low dimensional space such that∑

i ̸=j
w(X i , X j) log

(
w(X i , X j)
w ′(X ′

i , X ′
j)

)
+ (1− w(X i , X j)) log

(
(1− w(X i , X j))
(1− w ′(X ′

i , X ′
j))

)

Can be performed by local gradient descent. 271
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UMAP

Decathlon Swiss Roll
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Graph based

Graph heuristic
Construct a graph with weighted edges wi ,j measuring the proximity of X i and X j
(wi ,j large if close and 0 if there is no information).
Find the points X ′

i ∈ Rd ′ minimizing
1
n

1
n

n∑
i=1

n∑
j=1

wi ,j∥X ′
i − X ′

j∥2

Need of a constraint on the size of X ′
i . . .

Explicit solution through linear algebra: d ′ eigenvectors with smallest eigenvalues
of the Laplacian of the graph D −W , where D is a diagonal matrix with
Di ,i =

∑
j wi ,j .

Variation on the definition of the Laplacian. . .
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Graph

Decathlon Swiss Roll
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How to Compare Different Dimensionality Reduction
Methods ?

Difficult! Once again, the metric is very subjective.

However, a few possible attempts
Did we preserve a lot of inertia with only a few directions?
Do those directions make sense from an expert point of view?
Do the low dimension representation preserve some important information?
Are we better on subsequent task?
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A Challenging Example: MNIST

PCA autoencoder t-SNE UMAP

MNIST Dataset
Images of 28× 28 pixels.
No label used!
4 different embeddings.

Quality evaluated by visualizing the true labels not used to obtain the
embeddings.
Only a few labels could have been used.
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MNIST Dataset
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A Challenging Example: MNIST

PCA autoencoder t-SNE UMAP

MNIST Dataset
Images of 28× 28 pixels.
No label used!
4 different embeddings.

Quality evaluated by visualizing the true labels not used to obtain the
embeddings.
Only a few labels could have been used. 277
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A Simpler Example: A 2D Set

Original

PCA t-SNE UMAP

Cluster Dataset
Set of points in 2D.
No label used!
3 different embeddings.

Quality evaluated by stability. . .
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A Simpler Example: A 2D Set

Original

PCA t-SNE UMAP

Cluster Dataset
Set of points in 2D.
No label used!
3 different embeddings.

Quality evaluated by stability. . .
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A Simpler Example: A 2D Set

Original PCA t-SNE UMAP

Cluster Dataset
Set of points in 2D.
No label used!
3 different embeddings.

Quality evaluated by stability. . .
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Clustering
Training data : D = {X 1, . . . , Xn} ∈ X n (i.i.d. ∼ P)
Latent groups?

Clustering
Construct a map f from D to {1, . . . , K} where K is a number of classes to be
fixed:

f : X i 7→ ki

Motivations
Interpretation of the groups
Use of the groups in further processing

Several strategies possible!
Can use dimension reduction as a preprocessing.
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Partition Based
Partition Heuristic

Clustering is defined by a partition in K classes. . .
that minimizes a homogeneity criterion.

K- Means
Cluster k defined by a center µk .
Each sample is associated to the closest center.

Centers defined as the minimizer of
n∑

i=1
min

k
∥X i − µk∥2

Iterative scheme (Loyd):
Start by a (pseudo) random choice for the centers µk
Assign each samples to its nearby center
Replace the center of a cluster by the mean of its assigned samples.
Repeat the last two steps until convergence.
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Partition based

Other schemes:
McQueen: modify the mean each time a sample is assigned to a new cluster.
Hartigan: modify the mean by removing the considered sample, assign it to the
nearby center and recompute the new mean after assignment.

A good initialization is crucial!
Initialize by samples.
k-Mean++: try to take them as separated as possible.
No guarantee to converge to a global optimum: repeat and keep the best result!

Complexity : O(n × K × T ) where T is the number of steps in the algorithm.
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Partition based

k-Medoid: use a sample as a center
PAM: for a given cluster, use the sample that minimizes the intra distance (sum of
the squared distance to the other points)
Approximate medoid: for a given cluster, assign the point that is the closest to the
mean.

Complexity
PAM: O(n2 × T ) in the worst case!
Approximate medoid: O(n × K × T ) where T is the number of steps in the
algorithm.

Remark: Any distance can be used. . . but the complexity of computing the
centers can be very different.
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K-Means

k = 4 k = 10 k = 10
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Model Based

Model Heuristic
Use a generative model of the data:

P(X ) =
K∑

k=1
πkPθk (X |k)

where πk are proportions and Pθ(X |k) are parametric probability models.
Estimate those parameters (often by a ML principle).
Assign each observation to the class maximizing the a posteriori probability
(obtained by Bayes formula)

π̂kPθ̂k
(X |k)∑K

k′=1 π̂k′P
θ̂k′

(X |k ′)

Link with Generative model in supervised classification!
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Model Based

Large choice of parametric models.

Gaussian Mixture Model
Use

Pθk

(
X⃗ |k

)
∼ N(µk , Σk)

with N(µ, Σ) the Gaussian law of mean µ and covariance matrix Σ.

Efficient optimization algorithm available (EM)
Often some constraints on the covariance matrices: identical, with a similar
structure. . .
Strong connection with K -means when the covariance matrices are assumed to be
the same multiple of the identity.
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Model Based

Probabilistic latent semantic analysis (PLSA)
Documents described by their word counts w
Model:

P(w) =
K∑

k=1
πkPθk (w |k)

with k the (hidden) topic, πk a topic probability and Pθk (w |k) a multinomial law
for a given topic.
Clustering according to

P(k|w) =
π̂kPθ̂k

(w |k)∑
k′ π̂k′P

θ̂k′
(w |k ′)

Same idea than GMM!
Bayesian variant called LDA.

289



Unsupervised Learning:
Beyond PCA and k-means

Model Based

Parametric Density Estimation Principle
Assign a probability of membership.
Lots of theoretical studies. . .
Model selection principle can be used to select K the number of classes (or rather
to avoid using a nonsensical K . . . ):

AIC / BIC / MDL penalization
Cross Validation is also possible!

Complexity: O(n × K × T )
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Gaussian Mixture Models

k = 4 k = 10 k = 10
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(Non Parametric) Density Based

Density Heuristic
Cluster are connected dense zone separated by low density zone.
Not all points belong to a cluster.

Basic bricks:
Estimate the density.
Find points with high densities.
Gather those points according to the density.

Density estimation:
Classical kernel density estimators. . .

Gathering:
Link points of high density and use the resulted component.
Move them toward top of density hill by following the gradient and gather all the
points arriving at the same summit.
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(Non Parametric) Density Based

Concepts

2 paramètres:
� Eps: rayon maximum de voisinage

� MinPts: nb minimum de pts pour que V(p) soit un voisinage de taille Eps du pts p

Exemple avec MinPts = 4 et Eps = 1cm

x
y objet de coeur car V(y) existe (au moins MinPts objets dans le voisinage

de y de rayon Eps)x

y

de y de rayon Eps)

x objet de bord (d’une classe) car V(x) n’existe pas (moins de MinPts dans

son voisinnage de rayon eps)

x est directement densité atteignable depuis y car V(y) existe et x  

appartient à V(y); y n’est pas directement atteignable depuis x car V(x) 

n’existe pas

Concepts

x est densité-atteignable depuis y s’il existe une chaîne de points (de 

longueur quelconque) partant de y et allant jusqu’à x et telle que le 

point pi+1 est densité atteignable depuis pi. 

p1 appartient à V(y), p2 appartient à V(p1),  x appartient à V(p2)

x

p2

X et y sont densité-connectés s’il existe un point z tel que x soit atteignable

depuis z et y soit atteignable depuis z (sur ce schéma, on voit que sans 

x

p1
y

le point)

Une classe C doit vérifier les 2 conditions suivantes :

1) Si un point x appartient à C alors tout point atteignable depuis x 

appartient à C. 

2) Tous les points d’une classe sont densité-connectés. 

Les points pleins appartiennent à une même classe, les points vides a une

autre classe. Le point z appartient à deux classes. Par convention, on 

l’affecte à la première classe à laquelle il est affecté.

x

y

z

Concepts

x est densité-atteignable depuis y s’il existe une chaîne de points (de 

longueur quelconque) partant de y et allant jusqu’à x et telle que le 

point pi+1 est densité atteignable depuis pi. 

p1 appartient à V(y), p2 appartient à V(p1),  x appartient à V(p2)

x

p2

X et y sont densité-connectés s’il existe un point z tel que x soit atteignable

depuis z et y soit atteignable depuis z (sur ce schéma, on voit que sans 

x

p1
y

le point)

Une classe C doit vérifier les 2 conditions suivantes :

1) Si un point x appartient à C alors tout point atteignable depuis x 

appartient à C. 

2) Tous les points d’une classe sont densité-connectés. 

Les points pleins appartiennent à une même classe, les points vides a une

autre classe. Le point z appartient à deux classes. Par convention, on 

l’affecte à la première classe à laquelle il est affecté.

x

y

z

Examples
DBSCAN: link point of high densities using a very simple kernel.

PdfCLuster: find connected zone of high density.

Mean-shift: move points toward top of density hill following an evolving kernel density
estimate.

Complexity: O(n2 × T ) in the worst case.
Can be reduced to O(n log(n)T ) if samples can be encoded in a tree structure
(n-body problem type approximation).
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DBSCAN

ϵ = .45 ϵ = .2 ϵ = .1
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Agglomerative Clustering

Agglomerative Clustering Heuristic
Start with very small clusters (a sample by cluster?)
Sequential merging of the most similar clusters. . .
according to some greedy criterion ∆.

Generates a hierarchy of clustering instead of a single one.
Need to select the number of cluster afterwards.
Several choices for the merging criterion. . .
Examples:

Minimum Linkage: merge the closest cluster in term of the usual distance
Ward’s criterion: merge the two clusters yielding the less inner inertia loss (k-means
criterion)
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Agglomerative Clustering
Algorithm

Start with (C(0)
i ) = ({X i}) the collection of all singletons.

At step s, we have n − s clusters (C(s)
i ):

Find the two most similar clusters according to a criterion ∆:
(i , i ′) = argmin

(j,j′)
∆(C(s)

j , C(s)
j′ )

Merge C(s)
i and C(s)

i′ into C(s+1)
i

Keep the n − s − 2 other clusters C(s+1)
i′′ = C(s)

i′′

Repeat until there is only one cluster.

Complexity: O(n3) in general.
Can be reduced to O(n2)

if only a bounded number of merging is possible for a given cluster,
for the most classical distances by maintaining a nearest neighbors list.

298



Unsupervised Learning:
Beyond PCA and k-means

Agglomerative Clustering
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Merging criterion based on the distance between points
Minimum linkage:

∆(Ci , Cj) = min
X i ∈Ci

min
X∈Cj

d(X i , X j)

Maximum linkage:
∆(Ci , Cj) = max

X i ∈Ci
max
X∈Cj

d(X i , X j)

Average linkage:
∆(Ci , Cj) = 1

|Ci ||Cj |
∑

X i ∈Ci

∑
X∈Cj

d(X i , X j)

Clustering based on the proximity. . .
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Agglomerative Clustering

Merging criterion based on the inertia (distance to the mean)
Ward’s criterion:

∆(Ci , Cj) =
∑

X i ∈Ci

(
d2(X i , µCi ∪Cj )− d2(X i , µCi )

)
+
∑

X j ∈Cj

(
d2(X j , µCi ∪Cj )− d2(X j , µCj )

)
If d is the Euclidean distance:

∆(Ci , Cj) = 2|Ci ||Cj |
|Ci |+ |Cj |

d2(µCi , µCj )

Same criterion than in the k-means algorithm but greedy optimization.
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Agglomerative Clustering

Single

Complete

Ward

Dendogram k = 4 k = 10 k = 20 301
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Grid based

Grid heuristic
Split the space in pieces
Group those of high density according to their proximity

Similar to density based estimate (with partition based initial clustering)
Space splitting can be fixed or adaptive to the data.
Examples:

STING (Statistical Information Grid): Hierarchical tree construction plus DBSCAN
type algorithm
AMR (Adaptive Mesh Refinement): Adaptive tree refinement plus k-means type
assignment from high density leaves.
CLIQUE: Tensorial grid and 1D detection.

Linked to Divisive clustering (DIANA)
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Others

Graph based
Spectral clustering: dimension reduction + k-means.
Message passing: iterative local algorithm.
Graph cut: min/max flow.

Kohonen Map,
. . .
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Generative Modeling
Training data : D = {(X 1, Y 1), . . . , (Xn, Y n)} ∈ (X × Y)n (i.i.d. ∼ P).
Same kind of data than for supervised learning if X ̸= ∅.

Generative Modeling
Construct a map G from the product of X and a randomness source Ω to Y

G :X × Ω→ Y
(X , ω) 7→ Y

Unconditional model if Y = ∅. . .

Motivation
Generate plausible novel conditional samples based on a given dataset.

Sample Quality
Related to the proximity between the law of G(X , ω) and the law of Y |X .

Most classical choice is the Kullback-Leibler divergence.
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Generative Modeling

Ingredients
Generator Gθ(X , ω) and cond. density prob. Pθ(Y |X ) (Explicit vs implicit link)
Simple / Complex / Approximate estimation. . .

Some Possible Choices
Probabilistic model Generator Estimation

Base Simple (parametric) Explicit Simple (ML)
Flow Image of simple model Explicit Simple (ML)

Factorization Factorization of simple model Explicit Simple (ML)
VAE Simple model with latent var. Explicit Approximate (ML)
EBM Arbitrary Implicit (MCMC) Complex (ML/score/discrim.)

Diffusion Continuous noise Implicit (MCMC) Complex (score)
Discrete Noise with latent var. Explicit Approximate (ML)

GAN Implicit Explicit Complex (Discrimination)

SOTA: Diffusion based approach!

ML: Maximum Likelihood/VAE: Variational AutoEncoder/EBM: Energy Based Model/MCMC: Monte Carlo Markov Chain/GAN: Generative Aversarial
Network 307
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Generators

Ỹ = G(X , ω) ?

Small abuse of notations. . .
More an algorithm than a map!

Generators
One step: ω ∼ Q̃(·|X ) and Ỹ = G(X , ω).
Several steps:

ω0 ∼ Q̃0(·|X ) and X̃0 = G0(X , ω0)
ωt+1 ∼ Q̃t+1(·|X , Ỹt) and Ỹt+1 = Gt+1(X , Ỹy , ωt+1)

Fixed or variable number of steps.
Fixed or variable dimension for Ỹt and ωt . . .

Q̃ (or Q̃t) should be easy to sample.
Most of the time, parametric representations for Q̃ (or Q̃t) and G (or Gt). 308
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Warmup: Density Estimation and Generative
Modeling

X ∼ P with dP(x) = p(x)dλ −→ X̃ ∼ P̃ with dP̃(x) = p̃(x)dλ

Heuristic
Estimate p by p̃ from an i.i.d. sample X1, . . . , Xn.
Simulate X̃ having a law P̃.

By construction, if p̃ is close from p, the law of X̃ will be close from the law of X .

Issue: How to do it?
How to estimate p̃? Parametric, non-parametric? Maximum likelihood? Other
criteria?
How to simulate P̃? Parametric? One-step? Multi-step? Iterative?
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Warmup: Parametric Density Estimation

X ∼ P(·) with dP(x) = p(x)dλ −→ X̃ ∼ P̃θ̃ with dP̃θ̃(x) = p̃θ̃(x)dλ

Maximum Likelihood Approach
Select a family P̃ and estimate p by p̃

θ̃
from an i.i.d. sample X1, . . . , Xn.

Simulate X̃ having a law P̃
θ̃
.

By construction, if p̃
θ̃

is close from p, the law of X̃ will be close from the law of X .

Issue: How to do it?
Which family P̃?
How to simulate P̃

θ̃
? Parametric? Iterative?

Corresponds to ω ∼ P̃
θ̃

and X̃ = G(ω) = ω
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Conditional Density Est. and Generative Modeling

Y |X ∼ P(·|X ) with dP(y |X ) = p(y |X )dλ

−→ Ỹ |X ∼ P̃(·|X ) with dP̃(y |X ) = p̃(y |X )dλ

Heuristic
Estimate p by p̃ from an i.i.d. sample (X1, Y1), . . . , (Xn, Yn).
Simulate Ỹ |X having a law P̃(·|X ).

By construction, if p̃ is close from p, the law of Ỹ |X will be close from the law of
Y |X .

Issue: How to do it?
How to estimate p̃? Parametric, non-parametric? Maximum likelihood? Other
criteria?
How to simulate P̃? Parametric? One-step? Multi-step? Iterative?
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Parametric Conditional Density Estimation
Y |X ∼ P(·|X ) with dP(y |X ) = p(y |X )dλ

−→ Ỹ |X ∼ P̃
θ̃(X) with dP̃θ(X)(y) = p̃θ(X)(y)dλ

Maximum Likelihood Approach
Select a family P̃ and estimate p by p̃

θ̃
from an i.i.d. sample

(X1, Y1), . . . , (Xn, Yn) where θ̃ is now a function of X .
Simulate Ỹ |X having a law P̃

θ̃(X)

If p̃
θ̃

is close from p, the law of Ỹ |X will be close from the law of Y |X .

Issue: How to do it?
Which family P̃? Which function family for θ̃?
How to simulate P̃

θ̃(Y )? Parametric? Iterative?

Corresponds to ω ∼ Q̃(·|X ) = P̃
θ̃(X) and Ỹ = G(X , ω) = ω 313
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Direct Parametric Conditional Density Estimation

ω ∼ Q̃θ̃(X ) ∼ q̃θ̃(X )(y)dλ and Ỹ |X = G(X , ω) = ω

Estimation
By construction,

dP(Ỹ |X ) = q̃θ̃(X)(y)dλ

Maximum Likelihood approach:

θ̃ = argmax
θ

n∑
i=1

log q̃θ̃(Xi )(Yi)

Simulation
P̃ has been chosen so that this distribution is easy to sample. . .

Possible families: Gaussian, Multinomial, Exponential model. . .
Possible parametrizations for θ̃: linear, neural network. . .
Limited expressivity! 314
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Invertible Transform

ω ∼ Q̃
θ̃(X) ∼ q̃

θ̃(X)(y)dλ and Ỹ |X = G(ω) with G invertible.

Estimation
By construction,

dP̃
(
G−1(Ỹ )|X

)
= q̃θ̃(X)(G

−1(y))dλ

Maximum Likelihood approach:

θ̃ = argmax
θ

n∑
i=1

log q̃θ̃(Xi )(G
−1(Yi))

Simulation
Q̃ has been chosen so that this distribution is easy to sample. . .

Possible transform G : Change of basis, known transform. . .
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Flow
ω ∼ Q̃

θ̃(X) = q̃
θ̃(X)(y)dλ and Ỹ |X = G

θ̃G (X)(ω) with Gθ invertible.

Estimation
By construction,

dP̃
(
Ỹ |X

)
= |JacG−1

θ̃G (X)
(y)|q̃θ̃(X)(G

−1
θ̃G (X)

(y))dλ

where JacG−1
θG (X)(y) is the Jacobian of G−1

θG (X) at y
Maximum Likelihood approach:

θ̃, θ̃G = argmax
θ,θG

n∑
i=1

(
log |JacG−1

θG (Xi )(Yi)|+ log q̃θ(Xi )(G
−1
θG (Xi )(Yi))

)

Simulation
Q̃ has been chosen so that this distribution is easy to sample. . .

Often, in practice, θ̃(X ) is independent of X . . .
Main issue: Gθ, its inverse and its Jacobian should be easy to compute.
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Possible Flows
Gθ?

Main issue: Gθ, its inverse and its Jacobian should be easy to compute.

Flow Models
Composition

Gθ = GθT ◦ GθT−1 ◦ Gθ1 ◦ Gθ0

|JacG−1
θ | =

∏
|JacG−1

θi
|

Real NVP

Gθ(y) =



y1
...

yd ′

yd ′+1esd′+1(y1,...,d′ ) + td(y1,...,d ′)
...

ydesd (y1,...,d′ + td(y1,...,d ′)


→ G−1

θ (y) =



y1
...

yd ′

(yd ′+1 − td(y1,...,d ′))e−sd′+1(y1,...,d′ )+
...

(yd − td(y1,...,d ′))e−sd (y1,...,d′ )


→ |JacG(y)−1| =

d∏
d ′′=d ′+1

e−sd′′ (y1,...,d′ )

Combined with permutation along dimension or invertible transform across
dimension.

Not that much flexibility. . . 317
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Factorization
ω0 ∼ Q̃0(·|X ) and Ỹ0 = G0(ω0)
ωt+1 ∼ Q̃t+1

(
·|X , (Ỹl)l≤t

)
and Ỹt+1 = Gt+1(X , (Ỹl)l≤t , ωt+1)

Ỹ = (Ỹ0, . . . , Ỹd−1)

Factorization
Amounts to use a factorized representation

P̃
(
Ỹ |X

)
=

∏
0≤t<d

P̃
(
Ỹt |X , (Ỹl)l<t

)
Q̃t and Gt can be chosen as in the plain conditional density estimation case as the
Yt,i are observed.

Estimation
d generative models to estimate instead of one.

Simple generator by construction.
Can be combined with a final transform. 318
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Sequence and Markov Model

ωt+1 ∼ Q̃
(
·|X , (Ỹl)t≥l≥t−o

)
and Ỹt+1 = G(X , (Ỹl)t≥l≥t−o, ωt+1)

Ỹ = (Ỹ0, . . . , Ỹd−1)

Sequence and Markov Models
Sequence: sequence of similar objects with a translation invariant structure.
Translation invariant probability model of finite order (memory) o.
Requires an initial padding of the sequence.

Faster training as the parameters are shared for all t.
Model used in Text Generation!
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Large Language Model

Large Language Model (Encoder Only)
Sequence Model for tokens (rather than words) using a finite order (context).
Huge deep learning model (using transformers).
Trained on a huge corpus (dataset) to predict the next token. . .

Plain vanilla generative model?

Alignement
Stochastic parrot issue:

Pure imitation is not necessarily the best choice to generate good text.
Need also to avoid problematic prediction (even if they are the most probable given
the corpus)

Further finetuning on the model based on the quality of the output measured by
human through comparison of version on tailored input (RLHF).
Key for better quality.

RLHF: Reinforcement Learning by Human Feedback 320
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Latent Variable

ω0 ∼ Q̃0(·|X ) and Ỹ0 = G0(X , ω0)
ω1 ∼ Q̃1

(
·|X , Ỹ0

)
and Ỹ1 = G1(X , ω0)

Ỹ = Ỹ1
Most classical example:

Gaussian Mixture Model with Ỹ0 = ω0 ∼M(π) and Ỹ = ω1 ∼ N(µỸ0
, ΣỸ0

).

Estimation
Still a factorized representation

P̃
(
Ỹ1, Ỹ0|X

)
= P̃0

(
Ỹ0|X

)
P̃1
(
Ỹ1|X , Ỹ0

)
but only Ỹ1 is observed.
Much more complex estimation!

Simple generator by construction provided that the Q̃t are easy to simulate.
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Log Likelihood and ELBO

log p̃(Ỹ |X ) = logEP̃
(

Ỹ0|X ,Ỹ
)[p̃(Ỹ , Ỹ0|X )

]
= sup

R(·|X ,Ỹ ])
ER(·|X ,Ỹ )

[
log p̃(Ỹ , Ỹ0|X )− log r(Ỹ0|X , Ỹ )

]
︸ ︷︷ ︸

ELBO

Need to integrate over Ỹ0 using the conditional law P̃
(
Ỹ0|X , Ỹ

)
, which may be

hard to compute.

Evidence Lower BOund
Using log p̃(Ỹ |X ) = ER(·|X ,Ỹ )

[
log
(
p̃(Ỹ , Ỹ0|X )/p̃(Ỹ0|X , Ỹ )

)]
,

log p̃(Ỹ |X ) = ER(·|X ,Ỹ )

[
log p̃(Ỹ , Ỹ0|X )− log r(Ỹ0|X , Ỹ )

]
− KLỸ0

(R(Ỹ0|X , Ỹ ), P̃
(
Ỹ0|X , Ỹ

)
)

ELBO is a lower bound with equality when R(·|X , Ỹ ) = P̃
(
Ỹ0|X , Ỹ

)
.

Maximization over P̃ and R instead of only over P̃. . . 323
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ELBO and Stochastic Gradient Descent

sup
P̃

EX ,Ỹ

[
log p̃(Ỹ |X )

]
= sup

P̃,R
EX ,Ỹ ,Ỹ0∼R(·|X ,Ỹ )

[
log p̃(Ỹ , Ỹ0|X )− log r(Ỹ0|X , Ỹ )

]
= sup

P̃,R
EX ,Ỹ ,X̃0∼R(·|X ,Ỹ )

[
log p̃(Ỹ |X , Ỹ0)

]
+ EX ,Ỹ ,X̃0∼R(·|X ,Ỹ )

[
log p̃(Ỹ0|X )− log r(Ỹ0|X , Ỹ )

]
︸ ︷︷ ︸

E
X ,Ỹ[KL(R(·|X ,Ỹ ),P̃(Ỹ0|X))]

Parametric models for P̃(Ỹ0|X ), P̃(X̃ |X , Ỹ0) and R(Ỹ0|X , Ỹ ).

Stochastic Gradient Descent
Sampling on (X , Ỹ , X̃0 ∼ R) for EX ,Ỹ ,X̃0∼R(·|X ,Ỹ )

[
∇ log p̃(Ỹ |X , Ỹ0)

]
Sampling on (X , Y ) for EX ,Ỹ

[
∇KL(R(·|X , Ỹ ), P̃(Ỹ0|X ))

]
if closed formula.

Reparametrization trick for the second term otherwise. . .
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Reparametrization Trick
∇EZ [F (Z )]?

Z = G(ω) with ω ∼ Q(·) fixed −→∇EZ [F (Z )] = ∇Eω[F (G(ω))] = Eω[∇(F ◦ G)(ω)]

Reparametrization Trick
Define a random variable Z as the image by a parametric map G of a random
variable ω of fixed distribution Q.
Most classical case: Gaussian. . .
Allow to compute the derivative the expectation of a function of Z through a
sampling of ω.

Application for ELBO:
Ỹ0 = GR(X , X̃ , ωR) with ωR ∼ Q(·|X , Ỹ ) a fixed probability law.
Sampling on ω to approximate:
∇EX ,Ỹ ,X̃0∼R(·|X ,Ỹ )

[
log p̃(Ỹ0|X )− log r(Ỹ0|X , Ỹ )

]
= EX ,Ỹ ,ωR ∼Q(·|X ,Ỹ )

[
∇ log p̃(GR(X , Ỹ , ωR)|X )−∇ log r(GR(X , Ỹ , ωR)|X , Ỹ )

]
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Variational Auto Encoder

Generation: Ỹ0 ∼ P̃(·|X ) decoder−−−−→ Ỹ ∼ P̃(·|X , Ỹ0))

Training: Y ∼ P(·|X ) encoder−−−−→ Y0 ∼ R(·|X , Y ) decoder−−−−→ X̃ ∼ P̃(·|X , Y0)

Variational Auto Encoder
Training structure similar to classical autoencoder. . . but matching on distributions
rather than samples.
Encoder interpretation of the approximate posterior R(·|X , Y ).
Implicit low dimension for Y0.
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Latent Variables

ω0 ∼ Q̃0(·|Y ) and Ỹ0 = G0(X , ω0)
ωt+1 ∼ Q̃t+1

(
·|X , Ỹt

)
and Ỹt+1 = Gt+1(X , Ỹt , ωt+1)

Ỹ = ỸT

Latent Variables
Deeper hierachy is possible. . .
ELBO scheme still applicable using decoders Ri

Ri(Ỹi |X , Ỹi+1) ≃ P̃
(
Ỹi |X , Ỹi+1

)
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Energy Based Model and MCMC Simulator

dP̃
(
Ỹ |X

)
∝eu(Ỹ ,X )dλ

−→ ωt+1 ∼ Q̃u
(
·|X , Ỹt

)
and Ỹt+1 = Gu(Y , Ỹt , ωt+1)

Ỹ ≃ lim Ỹt
Explicit conditional density model up to normalizing constant

Z (u, X ) =
∫

eu(X ,y)dλ(y)

Simulation
Several MCMC schemes to simulate the law without knowing Z (u, X )

Estimation
Not so easy as Z (u, X ) depends a lot on u.

MCMC: Monte Carlo Markov Chain 329
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MCMC Simulation - Metropolis-Hastings

ωt+1/2 ∼ Q̃u
(
·|Y , X̃t

)
X̃t+1/2 = ωt+1/2

ωt+1 =
{

1 with proba αt

0 with proba 1− αt
Ỹt+1 =

{
Ỹt+1/2 if ωt = 1
Ỹt otherwise

with αt = min

1,
eu(X ,Ỹt+1/2)Q̃u

(
Ỹt |X , Ỹt+1/2

)
eu(X ,Ỹt)Q̃u

(
Ỹt+1/2|X , Ỹt

)


Metropolis Hastings
Most classical algorithm.
Convergence guarantee under reversibility of the proposal.
Main issue is the choice of this proposal Q̃.

Many enhanced versions exist!
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MCMC Simulation - Langevin

ωt+1/2 ∼ N(0, 1) Ỹt+1/2 = Yt + γt∇Ỹ u(X , Ỹt) +
√

2γtωt

ωt+1 =
{

1 with proba αt

0 with proba 1− αt
Ỹt+1 =

{
Ỹt+1/2 if ωt = 1
Ỹt otherwise

with αt = min

1,
eu(X ,Ỹt+1/2)e−∥Ỹt−Ỹt+1/2−γt∇

Ỹ
u(X ,Ỹt+1/2)∥2/γ2

t

eu(X ,Ỹt)e−∥Ỹt+1/2−Ỹt−γt∇
Ỹ

u(X ,Ỹt)∥2/γ2
t


Langevin

If γt = γ, Metropolis-Hasting algorithm.
With Ỹt+1 = Ỹt+1/2, convergence toward an approximation of the law.
Connection with SGD with decaying αt

Connection with a SDE: dỸ
dt = ∇Ỹ u(X , Ỹ ) +

√
2dBt where Bt is a Brownian

Motion. 331
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EBM Estimation

Y |X ∼ P(·|X ) −→ Ỹ |X ∼ P̃(·|X ) with dP̃(y |X ) = p̃(y |X )dλ ∝ eu(X ,y)dλ

Intractable log-likelihood:
log p̃(ỹ |X ) = u(X , ỹ)− log Z (u, X )

Estimation
Contrastive: simulate some P̃ at each step and use
∇ log p̃(ỹ |X ) = ∇u(X , ỹ)−∇ log Z (X , u) = ∇u(X , ỹ)− EP̃

[
∇u(X , Ỹ )

]
Noise contrastive: learn to discriminate W = Y from
W = Y ′ ∼ R(·|X ) ∼ er(X ,y)dλ with the parametric approximation

P(W = Y |X ) ≃ eu(X ,y)

eu(X ,y) + Z̃ (u, X )er(X ,y)

Score based: learn directly s(·|X ) = ∇Ỹ u(X , ·) = ∇Y log p(·|X ).
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Score Based Method

E
[
∥∇Y log p(Y |X )− s(Y |X )∥2

]
= E

[1
2∥s(Y |X )∥2 + tr∇Y s(Y |X )

]
+ cst.

Score Based Method
Non trivial formula based on partial integration.
Hard to use in high dimension

Yσ = Y + σϵ −→E
[
∥∇Y log pσ(Yσ|X )− sσ(Y |Xσ)∥2

]
= E

[
∥|∇Y log pσ(Yσ|X , Y )− sσ(Yσ|X )∥2

]
+ cst.

Noisy Score
Connection to denoising through Tweedie formula for ϵ = N(0, 1)

E[Y |Yσ] = Yσ + σ2∇Y log pσ(Yσ|X , Y ) and thus sσ(Y |Xσ) ≃ E[Y |Yσ]− Yσ

σ2 333
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Better Exploration with Annealing and Noisy Score

Ỹ ∼ eu(X ,Y )dλ −→ỸT ∼ e 1
T u(X ,Y )

Annealing
Simulate a sequence of ỸT starting with T large and decaying to 1.

Yσ = Y + σϵ −→E
[
∥∇Y log pσ(Yσ|X )− sσ(Y |Xσ)∥2

]
= E

[
∥|∇Y log pσ(Yσ|X , Y )− sσ(Yσ|X )∥2

]
+ cst.

Noisy Score
Simulate a noisy sequence of Ỹσ with σ decaying to 0.
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Noisy Model: Generation and Corruption

Generation: Ỹ0 ∼ N(0, s2
0 )→ ωt ∼ N(0, 1) and Ỹt+1 = Ỹt + γtss2

t
(Ỹt |X ) +

√
2γtωt

Corruption: ωt ∼ N(0, 1) and Yt−1 = Yt + σtωt → Yt |YT ∼ N(YT , s2
t =

∑
t′≥t

σ2
t′)

Noisy Model
Approximate sequential Langevin approach to obtain Ỹ = ỸT ∼ P̃(Y |X ) from
Ỹ0 ∼ N(0, s2

T ).
Reverse construction is a sequence of noisy version Yt (corruption).
Each Yt is easily sampled from Y0 so that the scores us2

t
can be estimated.

Lot of approximations everywhere.
Dependency on X removed from now on for sake of simplicity.
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Diffusion with a Forward Point of View
Forward: ωt ∼ N(0, 1) and Yt+δt = (1 + αtδt)Yt +

√
2βtδtωt

−→dY (t) = α(t)Y (t)dt +
√

2β(t)dB(t)

Forward diffusion from Ỹ (0) ∼ X to Ỹ (T )
Generalization of noisy model:

Y (t)|Y (0) = N
(

Y (0) exp
∫ t

0
α(u)du,

∫ t

0
2β(u) exp

(∫ t

u
α(v)dvdu

))
Reverse: dY (t) = (−2β(t)∇Y log P(Y , t)− α(t)Y (t)) dt +

√
2β(t)dB(t)

−→ ωt ∼ N(0, 1) and Yt−δt = (1− αtδt)Yt + 2βt∇Y log p(Y , t)δt +
√

2βtδtωt

Reverse diffusion: from Ỹ (T )to Ỹ (0) ∼ X
Allow to sample back in time Yt |YT .
Quite involved derivation. . . but Langevin type scheme starting from YT .
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Noise Conditioned Score and Denoising Diffusion

αt = 0→ Y (t)|Y (0) = N
(

Y (0), 2
∫ t

0
β(u)du

)
Noise Conditioned Score (Variance Exploding)

Direct extension of noisy model.
Better numerical scheme but numerical explosion for Y (t).

(1 + αtδt) =
√

1− 2βtδt ≃ 1− βtδt

−→ Y (t)|Y (0) = N
(

Y (0)e−
∫ t

0 β(u)du, 2
(

1− e−
∫ t

0 β(u)
))

Denoising Diffusion Probabilistic Model (Variance Preserving)
Explicit decay of the dependency on P(Y ) and control on the variance.
Better numerical results.

Scores ∇Y log p(Y , t) estimated using the denoising trick as Y (t)|Y (0) is explicit.
Choice of β(t) has a numerical impact. 338
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Numerical Diffusion and Simulation

YT ∼ N(0, σ2
T )

→ ωt ∼ N(0, 1) and Yt−δt = (1− αtδt)Yt + 2βts(x , t)δt +
√

2βtδtωt

→ Ỹ = Y0

Reverse indexing with respect to VAE. . .

Numerical Diffusion and Simulation
Start with a centered Gaussian approximation of XT .
Apply a discretized backward diffusion with the estimated score
s(x , t) ≃ ∇Y log p(Y , t)
Use Y0 as a generated sample.

Very efficient in practice.
Better sampling scheme may be possible.
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A Possible Shortcut ?

Forward (SDE): dY (t) = α(t)Y (t)dt +
√

2β(t)dBt

Backward (ODE): dY (t) = (−2β(t)∇Y log P(Y , t)− α(t)Y (t)) dt

Deterministic Reverse Equation
If Y (T ) is initialized with the law resulting from the forward distribution, the
marginal of the reverse diffusion are the right ones.
No claim on the trajectories. . . but irrelevant in the generative setting.
Much faster numerical scheme. . . but less stable.

Stability results on the score estimation error and the numerical scheme exist for
both the stochastic and deterministic case.
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Connection between Diffusion and VAE

Y ∼ P
R(Y1|Y )

GGGGGGGGGGGBFGGGGGGGGGGG

P(Y |Y1)
Y1

R(Y2|Y1)
GGGGGGGGGGGGBFGGGGGGGGGGGG

P(Y1|Y2)
Y2 . . .

R(Yt+1|Yt)
GGGGGGGGGGGGGBFGGGGGGGGGGGGG

P(Yt |Yt+1)
. . . YT−1

R(YT |YT−1)
GGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGG

P(YT−1|YT )
YT ∼ PT

Gen. of Y from YT using P(Yt |Yt+1) with an encoder/forward diff. R(Yt+1|Yt).

Variational Auto-Encoder
PT is chosen as Gaussian.
Both generative P(Yt |Yt+1) and encoder R(Yt+1|Yt) have to be learned.

Approximated Diffusion Model
R(Yt+1|Yt) is known and PT is approximately Gaussian.
Generative P(Yt |Yt+1) has to be learned.
Same algorithm than with Diffusion but different (more flexible?) heuristic.

Denoising trick ≃ an ELBO starting from R(Yt+1|Yt) = R(Yt+1|Yt , Y ). . .
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Guidance. . .

342



Unsupervised Learning:
Beyond PCA and k-means

Outline
1 Review of the Methods seen so far

Supervised Learning
A Probabilistic Point of View

Conditional Density Modeling
Non Parametric Conditional Density Modeling
Generative Modeling

Cross Validation and Risk Correction
Optimization Point of View

(Deep) Neural Networks
Regularization
SVM
Tree Based Methods

References
2 Trees and Ensemble Methods

Trees
Bagging and Random Forests

Bootstrap and Bagging
Randomized Rules and Random Forests

Boosting
AdaBoost as a Greedy Scheme
Boosting

Ensemble Methods
A Revisited Bias-Variance Tradeoff
References

3 Unsupervised Learning: Beyond PCA and k-means
Unsupervised Learning?
A First Glimpse

Clustering
Dimensionality Curse
Dimension Reduction
Generative Modeling

Dimension Reduction
Simplification
Reconstruction Error
Relationship Preservation
Comparing Methods?

Clustering
Prototype Approaches
Contiguity Approaches
Agglomerative Approaches
Other Approaches

Generative Modeling
(Plain) Parametric Density Estimation
Latent Variables
Approximate Simulation
Diffusion Model
Generative Adversarial Network

References
4 Recommender System and Matrix Factorization,. . . and Text Representation and

ChatGPT
Recommender Systems
Collaborative Filtering
Matrix Factorization and Model Based Recommender Systems
Hybrid Recommender Systems and Evaluation Issue
References
Text, Words and Vectors

Text and Bag of Words
Words and Word Vectors
Text, Words, RNN and Transformers

ChatGPT
ChatGPT?
How Does it Works?
Limits
Challenges

5 Introduction to Reinforcement Learning. . . and Time Series
Machine Learning
Sequential Decisions
Markov Decision Processes
Dynamic Programing
Reinforcement Setting
Reinforcement and Approximation
Reinforcement and Policies
AlphaGo
LLM and RLHF
References
Time Series

6 At Scale Machine Learning and Deployment
Motivation(s)
Code and Computer

Code Optimization
Locality of Reference
Parallelization

Data and Computers
Database Backend
Distribution
Hardware

Deployment
Challenges
Tools
ML Ops

References
7 References

343



Unsupervised Learning:
Beyond PCA and k-means

Generative Adversarial Network

ω ∼ Q̃(·|X ) and Ỹ = G(X , ω)
Non density based approach

Can we optimize G without thinking in term of density (or score)?

(X , Y , Z ) =
(X , Y , 1) with proba 1/2

(G(X , ω), Y , 0) otherwise
GAN Approach

Can we guess Z with a discriminator D(X , X ) ?
No if G is perfect!
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GAN Program

max
G

min
D

EX ,Y

[
ℓ(D(X , Y ), Z )

]
= max

G
min

D

(1
2EX ,Y [ℓ(D(X , Y ), 1)] + 1

2Eω[ℓ(D(X , G(Y , ω)), 0)]
)

Discrimination
Similar idea than the noise contrastive approach in EBM.
If ℓ is a convexification of the ℓ0/1 loss then the optimal classifier is given by

D(X , Y ) =
{

1 if p(Y |X ) > p̃(Y |X )
0 otherwise.

If ℓ is the log-likelihood
max

G
min

D
EX ,Y

[
ℓ(D(X , Y ), Z )

]
= max

G
log2−EX

[
JKL1/2(p(·|X ), p̃(·|X ))

]
Direct (approximate) optimization using only samples (with the reparametrization
trick). 345
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Extensions to f Divergences

Df (P, Q) =
∫

f
(p(y)

q(y)

)
q(y)

= supTEY ∼P [T (Y )]− EG∼Q[f ⋆(T (G))]

f -GAN
Optimization of

min
G

sup
T

(EX ,Y [T (Y )]− Eω,X [f ⋆(T (G(X , ω)))])

Direct (approximate) optimization using only samples (with the reparametrization
trick).

Direct extension of the previous scheme.
T is not a discriminator, but there is an explicit link when f (u) = log(u).
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Wasserstein GAN

W (P, Q) = inf
ξ∈π(P,Q)

E(p,q)∼ξ[∥p − q∥]

= 1
K sup∥f ∥L≤KEY ∼P [f (Y )]− EG∼Q[f (G))]

Wasserstein GAN
Optimization of

min
G

sup
∥f ∥L≤1

EX ,Y [f (Y )]− Eω,X [f (G(ω, X ))]

Direct (approximate) optimization using only samples (with the reparametrization
trick).

More stability but hard to optimize on all the 1-Lipschitz functions.
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Recommender Systems
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P6Recommender Systems
Predict a rating for pairs of user/product,
Use this to rank the products and suggest them to the user.

May predict only a ranking. . .
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Data at Hands
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Basic observation: Triple or Pair
Triple User/Item/Rating: (U, V , R)
Natural interpretation as pair of User-Item/Rating: ((U, V ), R)
Similar to the supervised setting!

Data at Hands
Collection of pairs ((Ui , Vi), Ri)
User U may rate several items V and item V may be rated by several users U.
Not in the classical i.i.d. setting because the item ratings by an user are not
independent!
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Goals
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Goals
Given a user U and an item V , predict the rating R.
Rank the items V for a given user U.
Suggest an item V to a given user U.

We will focus on the first question!
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User
What is a user? An id? A detailed profile?
What about a new user?

Item
What is an item? An id? A detailed description? A set of features?
What about a new item?

Rating
Can we believe them?
How to measure the error? Using the Euclidean norm?

We will cover this. . .
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More Issues
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More Issues
How to take into account the temporality?
How to take into account indirect feedbacks?
How to propose directly a ranking?

We won’t cover that. . .
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Collaborative Filtering
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kCollaborative Filtering

Use similarity between users or items to predict ratings.

Similar idea than in supervised learning.
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User-based Filtering
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User-based Filtering
Given a target pair of user/item (U, V ).
Choose a similarity measure w(U, U ′) between users.
Define a neighborhood N (U) of similar users Ui having rated V , i.e. Vi = V .
Compute a predicted rating by

R̂ =
∑

Ui ∈N (U) w(U, Ui)Ri∑
Ui ∈N (U) w(U, Ui)

Choice of similarity and neighborhood will be discussed later.
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Item-based Filtering
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Item-based Filtering
Given a target pair of user/item (U, V ).
Choose a similarity measure w ′(V , V ′) between items.
Define a neighborhood N (V ) of similar items Vi rated by U, i.e. Ui = U.
Compute a predicted rating by

R̂ =
∑

Vi ∈N ′(V ) w ′(V , Vi)Ri∑
Vi ∈N ′(V ) w ′(V , Vi)

Choice of similarity and neighborhood will be discussed later.
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Similarities and Neighborhood?
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Similarities Based on Known Features
Same setting than kernel density technique in supervised/unsupervised learning.

Similarities Based on Ratings
Similarity based on (common) rated items/users.

Neighborhood
Same setting than kernel density technique in supervised/unsupervised learning.
Most classical approaches:

local – k closest neighbors or neighbors whose similarity is larger than a threshold. . .
non-local – based on a prior clustering of the users (items).
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Reminder on Similarity Measures

Lp Distance
Formula:

dp(X , X ′) =

 d∑
j=1

(X (j) − X ′(j))p

1/p

Renormalized version:

dp(X , X ′) =

 1
d

d∑
j=1

(X (j) − X ′(j))p

1/p

Inverse Distance and Exponential Minus Distance
Inverse Distance: 1/d(X , X ′)
Exponential Minus Distance: exp(−d(X , X ′))
Distance may be raised to a certain power.
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Reminder on Similarity Measures

Cosine Similarity
Formula:

cos(X , X ′) =
∑d

j=1 X (j)X ′(j)(∑d
j=1

(
X (j)) 2

)1/2 (∑d
j=1

(
X ′(j)) 2

)1/2

All those formulas require a coding of categorical variables.
Other similarities exist!
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Similarities Based on Features
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Classical Features
Usual (difficult) supervised/unsupervised setting!
(Inverse/Exponential Minus) Distance,. . .

Content Based Approach
User/Item described by a text.
NLP setting.
Often based on a bag-of-word / keywords approach.
(Inverse/Exponential Minus) Distance, Cosine,. . .
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Similarities Based on Ratings
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Not necessarily the same number of ratings for different users or items!

Similarity Based on Ratings
Similarity based on the vector of rating of common rated items/rating users.
Renormalization needed.
(Inverse/Exponential Minus) Renormalized Distance, Cosine,. . .

All the similarities can be combined. . .
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Local Neighborhood
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Top k / Threshold on Similarity
Precompute the similarity for each pair of users (items) sharing an item (user)
For any user U and item V , define the user (item) neighborhood as the k most
similar users (items) sharing item V (user U) or the ones with similarity above the
threshold.
Localized neighborhood as in nearest neighbors in supervised learning.
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Non-local Neighborhood
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Prior Clustering
Precompute a clustering of the users (items).
Use the group to which user U (item V ) belongs as initial neighborhood.
Restrict it to the users (items) sharing the item V (user U)
Non-local neighborhood as in partition based method in supervised learning.

Strong connection with classical marketing approach!
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Ratings Issues
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alRatings Issues
User rating bias: different users may have different rating scale.
Long tail phenomena: different users (items) may have very different number of
ratings (and most users (items) have few)
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User Bias

User Bias
Different users may have different rating scale.
Possible solution:

Find a formula to obtain debiased ratings DU(R(U, V ))
Predict debiased rating ̂DU(R(U, V )) using only debiased ratings
Compute the biased rating using the inverse formula D−1

U

(
̂DU(R(U, V ))

)
Classical formulas:

Mean corrected: DU(R(U, V )) = R(U, V )− R(U) with R(U) the mean rating for
user U. so that D−1

U

(
̂DU(R(U, V ))

)
= ̂D(R(U, V )) + R(U)

Standardize: DU(R(U, V )) = (R(U, V )− R(U))/σ(R(U)) with σ(R(U)) the
standard deviation of the ratings of user U so that
D−1

U

(
̂DU(R(U, V ))

)
= σ(R(U)) ̂D(R(U, V )) + R(U)
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Long-tail Phenomena
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Long-tail Phenomena
Different users/items may have very different number of ratings (and most
users/items have few)
Similarity may be biased by few items/users having a lot of ratings
Possible solution:

Use a weighted similarity with a weight − log(N(U)/(
∑

U′ N(U ′))
(− log(N(V )/(

∑
V ′ N(V ′))) where N(U) (N(V )) is the number of ratings of user U

(item V )

Information theory approach similar to tf-idf in NLP.
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Cold Start Issue
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Cold Start Issue
Many users (items) have very few ratings.
Some users (items) are new. . .

Not an issue for feature based or content based approaches!

Possible Solutions
Population approach: average based recommendation.
Demographic approach: simple feature based recommendation.
Scarce information approach: seeded recommendation.
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Top Items

So
ur

ce
:

B
.K

im

Population Approach
For a new user, one can use the population average to estimate R(U, V )
Amount to use a constant similarity and a neighborhood equal to the whole
population.
No equivalent approach for a new item!

Demographic Approach
If one has a demographic group information on the user, one may compute the
average on the group.
Amount to use a constant similarity and a neighborhood equal to the
demographic group.
Similar idea for a new item!
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Seeded Recommendations and Blending
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Seeded Recommendations
Compute the average on a group depending on the user behavior
Most classical choice: compute an average on the users having given a good
rating to the current viewed item
Amount to use a constant similarity and a neighborhood equal to the group of
users having given a good rating to the current viewed item.

Blending
For user (item) with few ratings, it is often better to blend a collaborative solution
with a cold start one.
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Pros and Cons

Pros
Intuitive idea
Easy to explain
Can handle features and text
Can be degraded to handle cold start

Cons
Require an (expensive) neighborhood
search!
Require a lot of ratings to use them in
similarities
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Recommendation as Matrix Completion
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User-Item Interaction Matrix
Matrix of ratings!
Often most of the ratings are unknown
Predicting the missing recommendation can be seen as completing the whole
user-item interaction matrix.

Approach based only on the ratings. . .
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Matrix Factorization Principle
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Matrix Factorization Principle
To fill the voids, we need to add some regularity assumption.
Simplest assumption: the n × p matrix R is (approximately) low rank, i.e
R ≃ UV ⊤ with U a n × k matrix and V a p × k matrix.
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Matrix Factorization Principle
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Strong Link with SVD
Any n × p matrix R. can be written UDV ⊤ where U and V are orthogonal
matrices and D is diagonal
The best low rank approximation is obtain by restricting those matrix to the
singular values with the largest eigenvalues in D.

Here R is not fully known so that we can’t use the raw SVD!
380



Recommender System and
Matrix Factorization,. . . and
Text Representation and
ChatGPT

Practical Factorization with SVD
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SVD
Formulation:

argmin
U∈Mn,k ,V ∈Mp,k

∥R − UV ⊤∥22

⇔ argmin
U∈Mn,k ,V ∈Mp,k

∑
i ,j

(Ri ,j − Ui ,·Vj,·
⊤)2

Explicit solution through the SVD of the unknown R.
May be used to obtain a baseline factorization by applying SVD to a completed R
with simple replacement of the missing ratings by the mean(s).
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Practical Factorization with Weighted SVD
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Weighted SVD
Idea: Use a weight to mask the missing values in the fit
Formulation:

argmin
U∈Mn,k ,V ∈Mp,k

∥W ⊙ (R − UV ⊤)∥22

⇔ argmin
U∈Mn,k ,V ∈Mp,k

∑
i ,j

W 2
i ,j(Ri ,j − Ui ,·Vj,·

⊤)2

No explicit solution!
Non convex optimization problem!
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Practical Factorization with Iterative Masked SVD
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Iterative Masked SVD
When W is a mask, i.e. Wi ,j ∈ {0, 1}, there exists a simple descent algorithm!
Algorithm:

Start by an initial factorization U0V0
⊤.

Iterate T time:
Compute the completed matrix Rt = W ⊙ R + (1 − W ) ⊙ (UtVt

⊤)
Use the SVD to obtain a factorization of Rt by Ut+1Vt+1

⊤

Use the last factorization UT VT
⊤.

Instance of a MM algorithm without any global optimality result.
Previous use of the SVD on the completed ratings corresponds to one step of this
algorithm.

Computing the SVD can be very expensive!
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Practical Factorization with Alternate Least Square
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Alternate Least Square
Weighted SVD formulation:

argmin
U∈Mn,k ,V ∈Mp,k

∥W ⊙ (R − UV ⊤)∥22 ⇔ argmin
U∈Mn,k ,V ∈Mp,k

∑
i ,j

W 2
i ,j(Ri ,j − Ui ,·Vj,·

⊤)2

Optimization on U (V ) corresponds to n (p) classical least-squares optimizations.
Lead to an alternate least-squares descent algorithm without any global optimality
result:

Start by an initial factorization U0V0
⊤

Iterate T times
Solve Uk+1 = argminU∈Mn,k

∥W ⊙ (R − UVk
⊤)∥2

2

Solve Vk+1 = argminV ∈Mp,k
∥W ⊙ (R − Uk+1V ⊤)∥2

2

Use UT VT
⊤ as final factorization.

Computing those solutions may remain expensive! 384
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Practical Factorization with SGD
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Stochastic Gradient Descent
Weighted SVD formulation:

argmin
U∈Mn,k ,V ∈Mp,k

∥W ⊙ (R − UV ⊤)∥22 ⇔ argmin
U∈Mn,k ,V ∈Mp,k

∑
i ,j

W 2
i ,j(Ri ,j − Ui ,·Vj,·

⊤)2

Look at this problem as an optimization on Ui ,· and Vj,· and use a stochastic
gradient scheme without any global optimality result:

Start by some initial Ui,· and Vj,·
Iterate

Pick uniformly a pair (i , j)
Update Ui,· by Ui,· + W 2

i,jγ(Ri,j − Ui,·Vj,·
⊤)Vj,·

Update Vj,· by Vj,· + W 2
i,jγ(Ri,j − Ui,·Vj,·

⊤)Ui,·

Use UV ⊤ as final factorization.

As in any SGD scheme, the choice of the stepsize γ is very important.
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Extension of Practical Factorization
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Unbiased Rating
Better results if one replace R with an unbiased version:

by subtracting the global mean (and adding it afterward)
by subtracting the user means (and adding them afterward)

Regularization
Regularized Weighted SVD formulation:

argmin
U∈Mn,k ,V ∈Mp,k

∥W ⊙ (R − UV ⊤)∥22 + λ∥U∥22 + λ∥V ∥22

⇔ argmin
U∈Mn,k ,V ∈Mp,k

∑
i ,j

W 2
i ,j(Ri ,j − Ui ,·Vj,·

⊤)2 + λ

 n∑
i=1
∥Ui ,·∥22 +

p∑
j=1
∥Vj,·∥22


Alternate Least-Squares and SGD can be extended to this setting.
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Practical Factorization and Funk’s Algorithm
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Funk’s Algorithm
Funk’s formulation:

argmin
U∈Mn,k ,V ∈Mp,k ,µ∈R,u∈Rn,v∈Rp

∑
i ,j

W 2
i ,j(Ri ,j − (µ + ui + vj + Ui ,·Vj,·

⊤))2

+ λ

µ2 +
n∑

i=1
(u2

i + ∥Ui ,·∥22) +
p∑

j=1
(v2

j + ∥Vj,·∥22)


Explicit formula including the user and item bias!
SGD can be used in this setting!

Lead to state of the art results!
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Pros and Cons

Pros
Quite efficient even if the rating
matrix is sparse.
Lead to an explicit formula for any
pair of user/item.
Efficient numerical algorithm.

Cons
No straightforward explanation of the
prediction.
Do not use features or text.
No way to handle cold start.
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Recommendation as Prediction
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Factorization as a Prediction Algorithm
Optimization of a formula

R(Ui , Vj) = µ + ui + vj + Ui ,·Vj,·
⊤

with a least-squares criterion.
Other formulas are probably possible. . .
Key: representation learning ? Can we use Deep Learning?

Not easy to do better than matrix factorization with a classical DNN!
Explicit scalar product seems required! 389
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Model Based Recommendation
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Model Based Recommandation
Optimization of a formula:

R(Ui , Vj) = f (Ui , Vj)
where Ui and Vi can be a combination of an id (one hot encoding) and features.
Models with explicit interactions:

R(Ui , Vi) = fU(Ui) + fV (Vj) + FUV (Ui , Vj)
If F is a MLP, better results when adding an explicit scalar product interaction :

FUV (Ui , Vi)⇒ FUV (Ui , Vi , MUUi(Mv Vj)⊤)
Link with transformers. . .
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Deep Recommendation
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Deep Recommendation
Combine an explicit dot product structure with a classical DNN.
Allow learning a representation and adding features / text content directly.
Large flexibility in the architecture.
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Pros and Cons

Pros
Combine the strength of the
factorization based and the feature
based methods
Best performances. . .

Cons
Not so easy to construct a good
formula/architecture. . .
Not so easy to train. . .
Not easy to beat raw matrix
factorization (when using only
user/item interactions)!
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Hybrid Recommender
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Hybrid Recommender
Combine the scores of several recommendation algorithms.
Can be casted as an ensemble method where the number of interactions is used.

Pros
Lots of flexibility

Cons
Lots of flexibility!
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Performance Measure
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Need of a metric to measure the performance!

Metric on the ratings
RMSE:

Most classical choice
Implicitly used in collaborative filtering and explicitly in matrix factorization.
Easy to use.

MAE: more robust to outliers. . .
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Validation
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Need of validation technique!

Validation Scheme
Much more complicated that the usual supervised setting.
Lack of independence of the observations.
Most classical choice: random partition of the ratings!

No strong theoretical support!
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Metric vs Goals
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Are those metrics really the right thing to optimize?

Better Goals
Diversity : do not always suggest the same items.
Coverage: suggest most of the items to at least some users.
Serendipity: suggest surprising items.
Business Goal: Sell more! Earn more money!

Explain why there is a lot of post-processing to go from the ratings to the
suggested item list!
For instance: use of lift instead of ranking, use of localization, use of
randomization. . . 397
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A/B Testing
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A/B Testing
No direct way to estimate the performance according to non trivial metric.
Solution: perform experiment to test whether a method is good or not!
A/B Testing: classical hypothesis testing on the means (or the proportions).
Bandit approach: real-time optimization of the allocation (not much used in
practice).
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Text and Bag of Words

How to transform a text into a vector of numerical features?

Bag of Words strategy
Make a list of words.
Compute a weight for each word.

List building
Make the list of all used words with their number of occurrence.
Compute the histogram hw (d).
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Text and Bag of Words

Weight computation
Apply a renormalization:

tf transform (word profile): tfw (d) = hw (d)∑
w hw (d)

so that tfw (d) is the frequency within the document d .
tf-idf transform (word profile weighted by rarity): tf − idfw (d) = idfw × tfw (d)
with idf a corpus dependent weight idfw = log n∑n

i=1 1hw (di )̸=0

Use the vector tf(d) (or tf − idf(d)) to describe a document.
Most classical text preprocessing!
Latent Semantic Analysis: PCA of this representation.
Stemming, Lemmatization, Hashing and Tokenization can be used to reduce the
number of words.
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Stemming, Lemmatization and Hashing

So
ur

ce
:

Q
uo

ra

Text Preprocessing
Very important step in text processing.
Art of obtaining good tokens.
Ingredients:

Normalization, spelling correction
Stemming (systematic transform)
Lemmatization (gramatical transform)
Hashing
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Tokenization

So
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Tokenization
Tokens: finite dictionary allowing to build every words.
Allow to encode never-seen-before words!
More than one token by words on average.
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Okapi BM25 for Text Retrieval

Okapi BM25
Representation (smoothed tf-idf):

bm25w (d) = idfw ×
(k1 + 1)tfw (d)

k1 + tfw (d)
Match quality for a set of words Q measured by a simple scalar product:

BM25(d , Q) =
∑

w∈Q
bm25w (d)

Extensively used in text retrieval.
Can be traced back to 1976!
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Unsupervised Text Clustering

Probabilistic latent semantic analysis (PLSA)
Model:

P(tf) =
K∑

k=1
P(k)P(tf|k)

with k the (hidden) topic, P(k) a topic probability and P(tf|k) a multinomial law
for a given topic.
Clustering according to a mixture model

P(k|tf) = P̂(k)P̂(tf|k)∑
k′ P̂(k ′)P̂(tf|k ′)

Same idea than GMM!
Bayesian variant called LDA.
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Word Vectors
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Word Embedding
Map from the set of words to Rd .
Each word is associated to a vector.
Hope that the relationship between two vectors is related to the relationship
between the corresponding words!
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Word And Context

Look ! A single word and its context

Word And Context
Idea: characterize a word w through its relation with words c appearing in its
context. . .
Probabilistic description:

Joint distribution: f (w , c) = P(w , c)
Conditional distribution(s): f (w , c) = P(w |c) or f (w , c) = P(c|w).
Pointwise mutual information: f (w , c) = P(w , c) /(P(w)P(c))

Word w characterized by the vector Cw = (f (w , c))c or Cw = (log f (w , c))c .

In practice, C is replaced by an estimate on large corpus.
Very high dimensional model!
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A (Naïve) SVD Approach

C

(nw ×nc)

≃ Ur

(nw ×r)

Σr ,r

(r×r)

Vr
⊤

(r×nc)

Truncated SVD Approach
Approximate the embedding matrix C using the truncated SVD decomposition
(best low rank approximation).
Use as a code

C ′
w = Ur ,w Σα

r ,r
with α ∈ [0, 1].

Variation possible on C .
State of the art results but computationally intensive. . . 413
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A Least-Squares Approach

All the previous models correspond to
−logP(w , c) ∼ C ′t

w C ′′
c + αw + βc

GloVe (Global Vectors)
Enforce such a fit through a (weighted) least-squares formulation:∑

w ,c
h(P(w , c))

∥∥−logP(w , c)−
(
C ′t

w C ′′
c + αw + βc

)∥∥2

with h a increasing weight.
Minimization by alternating least square or stochastic gradient descent. . .

Much more efficient than SVD.
Similar idea in recommendation system.
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A Learning Approach

Supervised Learning Formulation
True pairs (w , c) are positive examples.
Artificially generate negative examples (w ′, c ′) (for instance by drawing c ′ and w ′

independently in the same corpus.)
Model the probability of being a true pair (w , c) as a (simple) function of the
codes C ′

w and C ′′
c .

Word2vec: logistic modeling

P(1|w , c) = eC ′t
W C ′′

c

1 + eC ′t
W C ′′

c

State of the art and efficient computation.
Similar to a factorization of − log(P(w , c) /(P(w)P(c))) but without requiring
the estimation of the probabilities!
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Text as Sequences

A recurrent neural network (RNN) is a class of artificial neural network where connections
between units form a directed cycle. This creates an internal state of the network which allows
it to exhibit dynamic temporal behavior. Unlike feedforward neural networks, RNNs can use
their internal memory to process arbitrary sequences of inputs. This makes them applicable
to tasks such as unsegmented connected handwriting recognition or speech recognition.
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Sequences
Word = sequence of letters.
Text = sequence of letters/words.

Capitalize on this structure.
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Recurrent Neural Networks

So
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s:

Y
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/
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nk
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w
nRecurrent Neural Network Unit

Input seen as a sequence.
Simple computational units with shared weights.
Information transfer through a context!

Several architectures!
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Automatic Translation

So
ur

ce
:

N
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di
aEncoder/Decoder structure

Word vectors, RNN, stacked structure.
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Automatic Translation

So
ur

ce
:

N
vi

di
a

Encoder/Decoder structure
Much more complex structure: asymmetric, attention order. . .
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Automatic Captioning

So
ur

ce
:

N
vi

di
aEncoder/Decoder structure

Much more complex structure: asymmetric, attention order. . .
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Text as Graph

So
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iText as Graph

More than just sequential dependency.
Each word is related to (all the) other words.
Graph structure with words and directed relations between words.
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Attention

So
ur

ce
:
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Attention between words
Words encoded by hi at layer l .
Compute individual value for each word: vi = V lhi

Compute combined value for each word: h′
i =

∑
j wi ,jvj

(Self) Attention: weight wi ,j defined by
wi ,j = SoftMax

(〈
Qlhi , K lhj

〉)
Qlhi is called a query and K lhj a key.
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Transformer

So
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s:
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arTransformer

Block combining several attention heads and a classical MLP.

Encoder/Decoder Architecture
Combine several transformers and more MLP in a task-adapted architecture.
End-to-end training is not easy (initialization, optimization. . . ).
Initial embedding at token level rather than word level to cope with new words!
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ChatGPT?
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Talking to a Computer?
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Use Cases
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Doing Without Learning
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And the Others?
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How is This Working?
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Language Models
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Always more. . .
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True for computation and corpus size!
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ChatGPT-4 Dimensioning
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Artificial Intelligence or Artificial Parrot
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Model Specialization
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Which limits?
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Prompt Engineering!
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Hallucinations and Knowledge
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Lack of Control
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Training Cost
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Knowledge Source(s)
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Substitute or Assistant?
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Tool Mastering
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Energy/Cost Management
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Knowledge Management
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Toward a Redefinition of Intelligence?
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Machine Learning
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Machine Learning

So
ur

ce
:

Co
un
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fE
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eThe classical definition of Tom Mitchell

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E.
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Object Detection
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rgA detection algorithm:
Task: say if an object is present or not in the image
Performance: number of errors
Experience: set of previously seen labeled images

457



Introduction to
Reinforcement
Learning. . . and Time Series

Article Clustering
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An article clustering algorithm:
Task: group articles corresponding to the same news
Performance: quality of the clusters
Experience: set of articles
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Smart Grid Controler

So
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.A controler in its sensors in a home smart grid:
Task: control the devices in real-time
Performance: energy costs
Experience:

previous days
current environment and performed actions
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Three Kinds of Learning

Machine Learning

Supervised
Learning

ClassificationRegression

Unsupervised
Learning

Not
Supervised

Generative
Modeling

Dimension
Reduction

Clustering

Reinforcement
Learning

• Real-Time Decision
• Robotic Control
• Game AI

Forecasting •
Predictions •

Process Optimization •

• Diagnosis
• Scoring
• Detection

Product Segmentation •
Targeted Marketing •

Visualization •
Compression •

Representation Learning •

ChatBot •
Image Generation •

DeepFake •

Recommender System •
Noisy Label •

Unsupervised Learning
Task:
Clustering/DR/Generative
Performance:
Quality
Experience:
Raw dataset
(No (unique) Ground Truth)

Supervised Learning
Task:
Regression/Classification
Performance:
Average error
Experience:
Good Predictions
(Ground Truth)

Reinforcement Learning
Task:
Actions
Performance:
Total reward
Experience:
Reward from env.
(Interact. with env.)

Timing: Offline/Batch (learning from past data) vs Online (continuous learning)

DR: Dimension Reduction 460
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Reinforcement Learning

Reinforcement Learning Setting
Env.: provides a reward and a new state for any action.
Agent policy π: choice of an action At from the state St .
Total reward: (discounted) sum of the rewards.

Questions
Policy evaluation: how to evaluate the expected reward of a policy knowing the
environment?
Planning: how to find the best policy knowing the environment?
Reinforcement Learning: how to find the best policy without knowing the
environment?
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Decision or Decisions
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Sequential Decision Setting

So
ur

ce
:

W
.P

ow
el

l

Sequential Decision Setting
In many (most?) settings, not a single decision but a sequence of decisions.
Need to take into account the (not necessarily immediate) consequences of the
sequence of decisions/actions rather than of each decisions.
Different framework than supervised learning (no immediate feedback here) and
unsupervised learning (well defined goal here).
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From Sequential Decision to Reinforcement Learning

MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

Sequential Decision

MDP Modeling Reinforcement Learning

Sequential Decision
Sequence of action At as a response of an environment defined by a state St

Feedback through a reward Rt

Actions?
Is my current way of choosing actions good?
How to make it better?
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From Sequential Decision to Reinforcement Learning

MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

Sequential Decision MDP Modeling

Reinforcement Learning

Markov Decision Process Modeling
Specific modeling of the environment.
Goal as as a (weighted) sum of a scalar reward.

Actions?
Is my current way of choosing actions good?
How to make it better?
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From Sequential Decision to Reinforcement Learning

MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

MDP

Env.

Agent

P

St+1, Rt+1St

At

Interaction

Sequential Decision MDP Modeling Reinforcement Learning

Reinforcement Learning
Same modeling. . .
But no direct knowledge of the MDP.

Actions?
Is my current way of choosing actions good?
How to make it better?
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Sequential Decision Settings
Sequential Decisions

MDP / Reinforcement Learning:

max
π

Eπ

[∑
t

Rt

]
Optimal Control:

min
u

E
[∑

t
C(xt , ut)

]

Related settings. . .
(Stochastic) Search:

max
θ

E[F (θ, W )]

Online Regret:
max

∑
k

E[F (θk , W )]
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The Agent-Environment Interface

Markovian Decision Processes
At time step t ∈ N:

State St ∈ S: representation of the environment
Action At ∈ A(St): action chosen
Reward Rt+1 ∈ R: instantaneous real valued reward
New state St+1

Main assumption: dynamic entirely defined by the present
P
(
St+1 = s ′, Rt+1 = r

∣∣St = s, At = a
)

= p(s ′, r |s, a)

Finite MDP: S, A and R are finite.
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Returns and Episodes
Return

(Discounted) Return:

Gt =
T∑

t′=t+1
γt′−(t+1)Rt′ with γ ≤ 1

Finite if |R| ≤ M

|Gt | ≤
{

(T − (t + 1))M if T <∞
M 1

1−γ otherwise
Not well-defined if T =∞ and γ = 1.
Recursive property

Gt = Rt+1 + γGt+1

From now on, focus on the disounted case γ < 1.
Similar analysis holds for T <∞ (finite horizon setting) and
E[argmint{∀t ′ ≥ t, Rt = 0}] <∞ (Stochastic Shortest Path setting).
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Policies and Value Functions

Policy and Value Functions
Policy: π(a|s)
State calue function:

vπ(s) = Eπ[Gt |St = s] = Eπ

[ ∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s
]

State-action value function:
qπ(s, a) = Eπ[Gt |St = s, At = a]

Two natural problems
Policy evaluation: compute vπ given π.
Planning: find π⋆ such that vπ⋆(s) ≥ vπ(s) for all s and π.

Those objects may not exist in general!
Can be traced back to the 50s!
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MDP vs Discrete Control

MDP
State s and action a
Dynamic model:

P
(
s ′|s, a

)
Reward r defined by P(r |s ′, s, a).
Policy Π: at = πt(St , Ht)
Goal:

maxEΠ

[∑
t

Rt

]

Discrete Control
State x and control u
Dynamic model:

x ′ = f (x , u, W )
with W a stochastic perturbation.
Cost: C(x , u, W ).
Control strategy U: ut = u(xt , Ht)
Goal:

min
U

EU

[∑
t

C(xt , ut , Wt)
]

Almost the same setting but with a different vocabulary!
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Policy Evaluation by Bellman Backup

Fixed Point Property
Bellman Equation

vπ(s) =
∑

a
π(a|s)

∑
s′

∑
r

p(s ′, r |s, a)
[
r + γvπ(s ′)

]
= T π(vπ)(s)

Direct consequence of Gt = Rt+1 + γGt+1.
Linear equation that can be solved.

Policy Evaluation by Dynamic Programming
Bellman operator T π is a γ-contraction for the sup-norm.
Fixed point iterative algorithm: vk+1(s) = T π(vk)(s)
Dynamic programming : (back) propagation of an initial guess on vπ.

Convergence for any v0 and stability with respect to the sup-norm.
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Planning by Policy Improvement

Policy Improvement Property
If π′ is such that ∀s, qπ(s, π′(s)) ≥ vπ(s) then vπ′ ≥ vπ.

Policy Iteration Algorithm
Compute vπk

Greedy update:
πk+1(s) = argmax

a
qπk (s, a)

= argmax
a

∑
s′,r

p(s ′, r |s, a)
(
r + γvπk (s ′)

)
If π′ = π after a greedy update vπk+1 = vπk = v∗.

Convergence in finite time in the finite setting.
Stability results with respect to the estimation of vπk in sup-norm.
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Planning by Bellman Backup

Fixed Point Property
Bellman Equation

v∗(s) = max
a

∑
s′

∑
r

p(s ′, r |s, a)
[
r + γv∗(s ′)

]
= T ∗(v∗)(s)

Linear programming problem that can be solved.

Planning by Dynamic Programming
Bellman operator T ∗ is a γ-contraction for the sup-norm.
Iterative algorithm: vk+1(s) = T ∗(vk)(s)

Convergence for any v0 and stability with respect to the sup-norm.
No explicit policy until the end, but amounts to improving a policy after only one
step of policy evaluation.
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Planning by Bellman Backup
Q-value and enhancement

Q-value:

qπ(s, a) =
∑
s′

∑
r

p(s ′, r |s, a)
[
r + γ

∑
a′

π(a′|s ′)qπ(s ′, a′)
]

Easy policy enhancement: π′(s) = argmax
a

qπ(s, a)

Fixed Point Property
Bellman Equation

q∗(s, a) =
∑
s′

∑
r

p(s ′, r |s, a)
[
r + γ max

a′
q∗(s ′, a′)

]
= T ∗(q∗)(s, a)

Linear programming problem that can be solved.
Policy Evaluation by Dynamic Programming

Iterative algorithm: qk+1(s, a) = T ∗(qk)(s, a)
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Generalized Policy Iteration

Generalized Policy Iteration
Consists of two simultaneous interacting processes:

one making a value function consistent with the current policy (policy evaluation)
one making the policy greedy with respect to the current value function (policy
improvement)

Stabilizes only if one reaches the optimal value/policy pair.
Asynchronous update are possible provided every state(/action) is visited infinitely
often.
Very efficient but requires the knowledge of the transition probabilities.
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Reinforcement Learning

Reinforcement Learning - Sutton (98)
An agent takes actions in a sequential way, receives rewards from the environment
and tries to maximize his long-term (cumulative) reward.

Reinforcement Learning
MDP setting with cumulative reward.
Planning problem.
Environment known only through interaction, i.e. some sequences
· · · StAtRt+1St+1At+1 · · · . 479
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RL: More than planning?
Prediction

Known π and access to interactions with MDP and estimation of vπ.

Planning
Access to interactions with MDP and estimation of a good (optimal?) policy π.

Imitation Learning
Observation of interactions with an unknown policy and estimation of this policy.
Back to Supervised Learning setting.

Inverse Reinforcement Learning
Observation of interactions following a policy π and estimation of rewards so that
this (implicitly Gibbs type) policy is (almost) optimal.

Focus on prediction/planning!
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Monte Carlo
MC Methods

Back to vπ(s) = Eπ[Gt |St = s].
Monte Carlo:

Play several episodes using policy π.
Average the returns obtained after any state s.

Online algorithm: V (St)← V (St) + α(Gt − V (St)).

Good theoretical properties provided every states are visited asymptotically
infinitely often.

Extensions
Off-policy setting (behavior policy b ̸= target policy π) with importance sampling.
Planning with policy improvement steps (estimating qπ instead of vπ)

No theoretical results for the last case.
Need to wait until the end of an episode to update anything. . .
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Bootstrap and TD Prediction

Bootstrap and TD
Bootstrap idea: Replace Gt by Rt+1 + γvπ(St+1) so that an update occurs at
each time step.
Online algorithm:

V (St)← V (St) + α (Rt+1 + γV (St+1)− V (St))
Stochastic approximation scheme relying on
= E[Rt+1 + γvπ(St+1)− V (St)|St = s] = T πvπ(s)− vπ(s) = 0
Converge under some assumption on α provided all states are explored.

Combine the best of Dynamic Programing and MC.
Can be written in term of Q:

Q(St , At)← Q(St , At) + α (Rt+1 + γQ(St+1, At+1)− Q(St , At))
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SARSA and Q Learning
How to use this principle to obtain the best policy?

SARSA: Planning by Prediction and Improvement (online)
Update Q following the current policy π

Q(St , At)← Q(St , At) + α (Rt+1 + γQ(St+1, At+1)− Q(St , At))
Update π by policy improvement possible only if Q is estimated.

No converge with a greedy policy update as a single action per state is explored.

Q Learning: Planning by Bellman Backup (off-line)
Update Q following the behavior policy b (off-policy/offline algorithm. . . )

Q(St , At)← Q(St , At) + α
(
Rt+1 + γ max

a
Q(St+1, a)− Q(St , At)

)
Stochastic Approximation algorithm associated to T ∗ − Id (only possible for Q)
Final policy deduced from Q.

Proof of convergence in both cases under an exploratory policy assumption.
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Planning, Modeling and Real-Time Learning

Planning and Models
Planning can combine model estimation (DP) and direct learning (RL).

Real-Time Planning
Planning can be made online starting from the current state.
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Variations

Depth
Number of steps in the update.

Width
Number of states/actions considered at each step.
Narrow without model.

Curse of dimensionality: all those methods are hard to use when the cardinality of
the states-action set is large! 485
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Value Function Approximation

Value Function Approximation
Idea: replace v(s) by a parametric v̂(s, w).
Issues:

Which approximation functions?
How to define the quality of the approximation?
How to estimate w?

Approximation functions
Any parametric (or kernel based) approximation could be used.
Most classical choice:

Linear approximation.
Deep Neural Nets. . .

487



Introduction to
Reinforcement
Learning. . . and Time Series

Approximation Quality

How to define when v̂(·, w) is close to vπ (or v∗) ?

Prediction(/Control)
Prediction objective: ∑

s
µ(s)(vπ(s)− v̂(s, w))2

Bellman Residual: ∑
s

µ(s)(T π v̂(s, w)− v̂(s, w))2

or its projection. . .

Issues:
Neither vπ nor T π are known. . .
No connection between a policy associated to v̂ and π as we do not use the
sup-norm. . . 488
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Online Gradient and Semi-Gradient
Online Prediction

SGD algorithm on w :
wt+1 = wt + α (vπ(St)− v̂(St , wt))∇v̂(St , wt)

MC approximation (still SGD):
wt+1 = wt + α (Gt − v̂(St , wt))∇v̂(St , wt)

TD approximation (not SGD but still Stochastic Approximation):
wt+1 = wt + α (Rt+1 + γv̂(St+1, wt)− v̂(St , wt))∇v̂(St , wt)

Deeper or wider scheme possible.

Online Control
SARSA-like algorithm:

Prediction step as previously with the current policy
wt+1 = wt + α (Rt+1 + γq̂(St+1, At+1, wt)− q̂(St , At , w))∇q̂(St , At , wt)

ϵ-greedy update of the current policy
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Offline Control with Approximation

Offline Control
Q-Learning like algorithm:

wt+1 = wt + α
(
Rt+1 + γ max

a
q̂(St+1, a, wt)− q̂(St , At , wt)

)
×∇q̂(St , At , wt)

with an arbitrary policy b.
Deeper formulation using importance sampling possible.

Issue: Hard to make it converge in general!
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Deadly Triad

Sutton-Barto’s Deadly Triad
Function Approximation
Bootstrapping
Off-policy training

Deep Q-Learning Stabilization Tricks
Frozen Q: fit the Qw to Rt + γ maxa Qν(St + 1, a) with a frozen parameter ν.
Replay buffer to reuse the interactions.
. . .

Good mathematical justifications :
Frozen Q: two-scales stochastic approximation algorithm.
Replay buffer: empirical transition probability modeling.
. . .
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Value Function or Policy Approximation ?

Without approximation (or with sup-norm approximation)
Almost equivalence between value function and policy (policy evaluation/greedy
update).
Closeness in sup-norm to optimal policy equivalent to closeness in sup-norm to
optimal value function.
Only difference is due to numerical approximation. . .

With approximation
Weaker link between approximate value function and policy.
Almost no control with quadratic norm approximation. . .

Should we parametrize directly the policy?
Pontryagin vs Hamilton-Jacobi in control. . .
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Policy Based Approach
Explicit parametrization of the policy.
Explicit optimization of the policy.

Parametric Policy Setting
New goal:

J(θ) =
∑

s
µπθ

(s)vπθ
(s)

=
∑

s
µπθ

(s)
∑

a
πθ(a|s)qπθ

(s, a)

Stochastic gradient (Non trivial proof. . . ):
∇̂J(θ) =

∑
t

γt∇ log πθ(At |St)qπθ
(St , At)

Requires an estimate of qπθ
(ST , AT ) for instance Gt (MC) if on-policy.

State-action value function qπθ
(St , At) can be replaced by state-action advantage

function aπθ
(St , At) = qπθ

(St , At)− vπθ
(St)
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Actor-Critic

Actor-Critic
Simultaneous parameterization of

the policy π by θ,
the value function Q (and V (s) = Eπ[Q(s, ·)] or the advantage) by w

Simultaneous update:
δt = Rt + γv̂(St+1, wt)− q̂(St , At , wt)

wt+1 = wt + αδt∇q̂(St , At , wt)
θt+1 = θt + β (Qw(St , At)− Vw(St))∇ log πθ(a|St , θt)

Two-scales Stochastic Approximation algorithm. . .
Can be adapted to continuous actions.
Basis for SOTA algorithm.
But hard to make it really off-policy/off-line. . .
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AlphaGo

AlphaGo
Enhanced MCTS technique using a Deep NN for both the value function and the
policy.
Rollout policy and initial value network by supervised learning on a huge database.
Enhancement of the value network using Actor/Critic RL on self-play.
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AlphaGo

AlphaGo Zero
No supervised initialization but only self-play.
Alternate

MCTS with a current policy.
Gradient descent toward the resulting MCTS policy

Much shorter training time and better performance!
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LLM and RLHF
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Reinforcement Learning from Human Feedbacks
View a LLM prediction as a policy.
Learn a reward model from (human) preferences.
Enhance the LLM using RL methods (actor/critic) with this reward.

Often iterated scheme.
Reward estimation may be bypassed (DPO).
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Time Series
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Time Series
Sequence of values of the same entity across time.
Values taken at regular interval, most of the time
Beware: time dependency in the values!
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Which Goals?
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Goals
Supervised:

Predict a value in the future,
Predict some values (a trajectory) in the future,
Predict a category in the future.

Unsupervised:
Find break points,
Group some series together (possibly in real-time)

Using future values to act at a given time not allowed! 505
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Time Series and Structured Signals
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Structured Signals
Sequence of values of the same entity (spatially or temporaly).
Decision can be taken a posteriori.
No hard real-time constraints.

Easier to deal with. . . but dependency with the data.
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Time Series and Validation
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Cross Validation
Never use the future. . . including for the validation.
Classical Cross Validation is not working!
Backtesting principle.

Loss choice remains important.
For structured data, safety buffer required between training and testing data.
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Trend and Seasonality
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Trend and Seasonality
Trend: long term evolution of average behavior.
Seasonality: periodic variability around this mean.
Residual: values after subtraction of the trend and the seasonality

Need to estimate everything using only the past.
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Stationarization
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Stability in time assumption
Required for learning. . .
but not necessarily true.
Often approximately correct after a transformation!

Strongly data dependent!
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Time Series Modeling
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Models
3-layers approach: trend, seasonality and residuals.
Decomposition not well specified. . .
Several approaches for each layer!
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Statistical Approach
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Statistical Approach
Most classical modeling.
Combines past values of the sequence and a random noise.
Explicit modeling of the variability!
Complex estimation. . .
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Machine Learning Approach
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Machine Learning Approach
Past taken into account only by feature engineering!
Often using directly lagged values from the past.
Variability not taken into account.
Estimation with classical ML tools.
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Deep Learning Approach
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Deep Learning Approach
Past taken into account through the architecture.
Explicit use of past values.
Variability not taken into account.
Huge choice for the architecture.

Often trade-off performance/interpretability!
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Too slow? Too big?

A frustrated Data Practicionner. . .

So
ur

ce
:

Sh
ut

te
rs

to
ck

517



At Scale Machine Learning
and Deployment

Big Data?
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Hardware Constraints
All the computations are done in a core using data stored somewhere nearby.
Constraints:

Data access / storage (Locality of Reference).
Multiple core architecture (Parallelization).
Cluster (Distribution)
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What could be limiting?
Possible Issues

Coding issue?
I/O issue?
Processing issue?
Data storage issue?

Enhancement?
Better algorithm/language/library? (code optimization)
Better memory usage? (locality of reference)
Better CPU usage? (parallelization)
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Sampling Trick
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Speed is linked to data size
Much faster with a smaller dataset!

Data Sampling
Similar idea than polling. . .
Similar techniques to do it well (stratification!)

Always a good idea when working with a large dataset. . .
At least during a first exploration!
Rule of thumb: Sample your data so that any experiment takes less than 5
minutes. 520



At Scale Machine Learning
and Deployment

From POC to Production
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From POC to Production
POC: only first step(s)!
Moving to production requires much more work: usability, scaling, IT
integration. . .

Main difficulty outside academia!
POC: Proof of Concept 521
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What is slow?
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Profiling
Use a profiler to find out.
Don’t (over)optimize otherwise.
Profiler in Jupyter (line_profiler/py-heat-magick), in another IDE or
standalone (yappi/py-spy/austin).

Think of using a debugger in case of incorrect results (and of making tests). 526
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Libraries
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Libraries
Avoid coding as much as possible. . .
Pick a good implementation (often packaged in a library) based on:

capability,
product development,
community health.

Choice may depend on goal/ecosystem!
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polars

So
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.rs

Speed and memory optimized data.frame
Based on arrow.
Standalone and optimized Rust code.
Very fast and memory efficient. . .

pandas is optimized? for expressivity and speed.
Datatable is another interesting option.

528



At Scale Machine Learning
and Deployment

Algorithmic Design
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owComplexity

Algorithm choice can have a huge impact.
Sorting algorithm example!
Approximated/Stochastic variants. . .
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Faster Language

So
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rsInterpreted vs Compiled
R and Python are interpreted languages. . .
constructed as a glue between libraries.
Use compiled (and optimized) libraries. . . or compile code.
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Cython

So
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akC/C++ from Python

Easy way to write C/C++ code using a syntax a la Python

Based on a static compiler.

numba/jax are also interesting.
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Computer Architecture
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Central Processing Unit
Everything should go through the CPU. . .
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Memories
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Size hierarchy
CPU register 64 b × 16
Level 1 cache access 32-65 kb per core
Level 2 cache access 256-512 kb per core
Level 3 cache access 8-32 MB shared
Main memory access 4 GB - 2 TB
Solid-state disk I/O 120 GB - 300 TB
Rotational disk I/O 250 GB - 20 TB

CPU: Central Processing Unit / I/O: Input/Output 536
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Memories
Speed hierarchy

1 CPU cycle 0.3 ns 1 s

CPU bound latency

Level 1 cache access 0.9 ns 3 s
Level 2 cache access 2.8 ns 9 s
Level 3 cache access 12.9 ns 43 s
Main memory access 120 ns 6 min
Solid-state disk I/O 50 µs 2 days

IO bound latency

Local network 120 µs 3 days
Rotational disk I/O 10 ms 12 months
Internet: SF to NYC 40 ms 4 years
Internet: SF to Australia 183 ms 19 years
Read 1 MB sequentially from RAM 250 µs 10 days

IO bound bandwidthRead 1 MB sequentially from SSD disk 1 ms 40 days
Read 1 MB sequentially from HD disk 20 ms 2 years

So
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CPU: Central Processing Unit / I/O: Input/Output / OS: Operating System 537
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Locality Of Reference

Memory Issue
Data should be as close as possible from the core.
Ideal case: dataset in the memory of a single computer.
Useless if data used only once. . . (bottleneck = I/O)
Memory required may be

larger than raw dataset (interactions. . . )
smaller than raw dataset (split. . . )

Memory growth faster than data growth (fewer big data limitation in ML?) So
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Split/Apply/Combine

So
ur
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H
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nSplit/Apply/Combine a.k.a. GROUP BY

Very simple strategy!
Load in the memory only the data you need for the computation.
Often much easier for production than for the learning part. . .
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I/O Optimization
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Prefetching
Pre-load data in background.

Zero Copy
Avoid any copy/translation of data.
Single representation of objects.
Apache Arrow (combined with Parquet) is becoming a de facto standard.

540



At Scale Machine Learning
and Deployment

Outline
1 Review of the Methods seen so far

Supervised Learning
A Probabilistic Point of View

Conditional Density Modeling
Non Parametric Conditional Density Modeling
Generative Modeling

Cross Validation and Risk Correction
Optimization Point of View

(Deep) Neural Networks
Regularization
SVM
Tree Based Methods

References
2 Trees and Ensemble Methods

Trees
Bagging and Random Forests

Bootstrap and Bagging
Randomized Rules and Random Forests

Boosting
AdaBoost as a Greedy Scheme
Boosting

Ensemble Methods
A Revisited Bias-Variance Tradeoff
References

3 Unsupervised Learning: Beyond PCA and k-means
Unsupervised Learning?
A First Glimpse

Clustering
Dimensionality Curse
Dimension Reduction
Generative Modeling

Dimension Reduction
Simplification
Reconstruction Error
Relationship Preservation
Comparing Methods?

Clustering
Prototype Approaches
Contiguity Approaches
Agglomerative Approaches
Other Approaches

Generative Modeling
(Plain) Parametric Density Estimation
Latent Variables
Approximate Simulation
Diffusion Model
Generative Adversarial Network

References
4 Recommender System and Matrix Factorization,. . . and Text Representation and

ChatGPT
Recommender Systems
Collaborative Filtering
Matrix Factorization and Model Based Recommender Systems
Hybrid Recommender Systems and Evaluation Issue
References
Text, Words and Vectors

Text and Bag of Words
Words and Word Vectors
Text, Words, RNN and Transformers

ChatGPT
ChatGPT?
How Does it Works?
Limits
Challenges

5 Introduction to Reinforcement Learning. . . and Time Series
Machine Learning
Sequential Decisions
Markov Decision Processes
Dynamic Programing
Reinforcement Setting
Reinforcement and Approximation
Reinforcement and Policies
AlphaGo
LLM and RLHF
References
Time Series

6 At Scale Machine Learning and Deployment
Motivation(s)
Code and Computer

Code Optimization
Locality of Reference
Parallelization

Data and Computers
Database Backend
Distribution
Hardware

Deployment
Challenges
Tools
ML Ops

References
7 References

541



At Scale Machine Learning
and Deployment

What could be limiting?
Possible Issues

Coding issue?
I/O issue?
Processing issue?
Data storage issue?

Enhancement?
Better algorithm/language/library? (code optimization)
Better memory usage? (locality of reference)
Better CPU usage? (parallelization)
Better data storage? (database)
More computers? (distribution)
Better computing infrastructure? (hardware)

I/O: Input/Output / CPU: Central Processing Unit 542



At Scale Machine Learning
and Deployment

What could be limiting?
Possible Issues

Coding issue?
I/O issue?
Processing issue?
Data storage issue?

Enhancement?
Better algorithm/language/library? (code optimization)
Better memory usage? (locality of reference)
Better CPU usage? (parallelization)
Better data storage? (database)
More computers? (distribution)
Better computing infrastructure? (hardware)

I/O: Input/Output / CPU: Central Processing Unit 543



At Scale Machine Learning
and Deployment

Parallelization
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Speed Issue
Parallelization: Modern computer have several cores.
HPC / DS (HPDA) setting: CPU bound tasks / I/O bound tasks.
Data science: Often embarrassingly parallel setting
(no interaction between tasks).
Not always acceleration due to I/O limitation!

HPC: High Performance Computing / DS: Data Science / HPDA: High Performance Data Analysis / CPU: Central Processing Unit / I/O: Input/Output 544
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Parallelization in Python
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Parallelization Tools
Global Interpreter Lock makes thread less interesting for CPU bound tasks.
multiprocessing library provides Pool and Process to parallelize tasks.
Pool uses a map/apply approach with a fixed number of processes.
Built-in in Scikit-Learn (n_jobs parameter) using joblib.
Advanced functionalities (distribution/DAG) available in Dask/Ray

CPU: Central Processing Unit / DAG: Directed Acyclic Graph 545
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What could be limiting?
Possible Issues

Coding issue?
I/O issue?
Processing issue?
Data storage issue?

Enhancement?
Better algorithm/language/library? (code optimization)
Better memory usage? (locality of reference)
Better CPU usage? (parallelization)
Better data storage? (database)
More computers? (distribution)
Better computing infrastructure? (hardware)
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Databases

So
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k(SQL?) Databases

Most convenient tool to store/access data.
Abstraction of the implementation that eases the use.
Lot of knowledge inside.

SQL: Structured Query Language 550
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DB API
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DB API
Standardized API for database.
Several database specific libraries. . .
Allow to send a request and retrieve the result.
SQLAlchemy allows to interact in a more pythonic way.

DB: Data Base / API: Application Programming Interface 551
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More than one solution: SQL/NoSQL
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SQL
Most classical design,
Limitations linked to the CAP theorem: Hard to distribute without asking less. . .

NoSQL (Not only SQL!)
Relaxation to ease distribution.
Simplification/modification of the stored data type to ease the use.

SQL: Structured Query Language / CAP: Consistency/Availability/Partition Tolerance 552
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Why Not Always Use a (Meta) Database?
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Unified (DB) interface
Query (almost) any datastore from as single place.
Drill/Trino supports a variety of relational databases, NoSQL databases and file
systems.
Both use SQL-like requests
with py-drill/trino-python-client, drill/Trino can be used in Python.

duckdb is a lighter interesting option which supports local dataframe, local files
and few databases including duckdb itself!
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True Big Data Setting
Computation in a cluster:

Distribution of the data (DS / HPDA),
or/and distribution of the computation (HPC)

Hadoop/Spark realm.
Locally parallel in memory computation are faster. . . if data used more than
once.
Real challenge when not embarrassingly parallel (interaction. . . )

DS: Data Science / HPDA: High Performance Data Analysis / HPC: High Performance Computing 557
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Hadoop and Map/Reduce
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Hadoop
Implementation of (classical) Map/Reduce algorithm.
Data transfer through disk and networked file system!
Main contribution: Node failure handling and ecosystem.

HDFS: HaDoop File System 558
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Spark
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Spark
More flexible algorithm structure (DAG).
In Memory: cache some objects in memory. . .

DAG: Directed Acyclic Graph 559
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Distribution of UDF
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Spark as a a generic engine
From single machine Spark usage to huge cluster.
Dataframe API (/ RDD API)
User Defined Function (UDF) can be applied.

API: Application Programming Interface / RDD: Resilient Distributed Dataset 560
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Distributed ML with Spark ML
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Spark
Full distributed power of Spark

ML Lib

ML: Machine Learning 561
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Distributed ML with H2O
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Distributed ML system
Standalone or Spark based
Easy to use.

ML: Machine Learning 562
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PySpark
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PySpark
Provide access to both the DataFrame and RDD API.
Access through pyspark rather than the usual python shell.
User Defined Functions are available.

RDD: Resilient Distributed Dataset / API: Application Programming Interface 563
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Database vs Distributed System
DB: focus on data then computation.
Distributed System: focus on computation then data.

Are they that different?
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UDF: DB as a Distributed System

So
ur

ce
:

U
nk

no
w

n

Database and User Defined Function
Allow to defined complex function that can be run in the server of the DB.
Idea: minimize the data transport by moving only the answer.
PostGreSQL, SqlServer, Oracle, Teradata, HAWQ, SAP Hana. . .
Require some priviledges. . .
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SparkSQL: a Distributed System as a DB
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Spark as a DB engine
Store data files in disk/memory (caching).
Use SparkSQL to request data from it.
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Lighter Distribution Engines
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Hadoop/Spark are often seen as complex to use. . .

Lighter Distribution Engines
Based on the idea of chunking data and using a DAG to organize the
computations.
Several instantiations:

dask, ray, vaex, PyArrow in Python

Perform operations on dataset of arbitrary size using from 1 to 100 computers.
Different implementation choices/maturities but promising direction.
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Dask / Ray / vaex / PyArrow . . .
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Dask / Ray / vaex / PyArrow . . .
Construct a task DAG on chunked data from a regular Python code (API à la
Pandas/NumPy/scikit-learn).
Execute this DAG on various parallel/distributed architecture.
No connection with Spark ecosystem. . . but much more flexibility!
Single computer out of core computations.
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What could be limiting?
Possible Issues

Coding issue?
I/O issue?
Processing issue?
Data storage issue?

Enhancement?
Better algorithm/language/library? (code optimization)
Better memory usage? (locality of reference)
Better CPU usage? (parallelization)
Better data storage? (database)
More computers? (distribution)
Better computing infrastructure? (hardware)

I/O: Input/Output / CPU: Central Processing Unit 570
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RAM and SSD
The larger and the faster the better. . .
Quite cheap nowadays.

RAM: Random Access Memory / SSD: Solid-State Drive 572
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mPU: CPU, GPU, FPGA, ASICS

More than one processor architecture.
Flexibility vs performance.
Parallelism: CPU < GPU < FPGA < ASIC.

Cluster
More computers. . .
I/O is important!

PU: Processing Unit / CPU: Central Processing Unit / GPU: Graphical Processing Unit / FPGA: Field Programmable Gate Array / ASIC: Application-
Specific Integrated Circuit / 573
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From POC to Production
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From POC to Production
POC: only first step(s)!
Moving to production requires much more work: usability, scaling, IT
integration. . .

Main difficulty outside academia!
POC: Proof of Concept 575



At Scale Machine Learning
and Deployment

Outline
1 Review of the Methods seen so far

Supervised Learning
A Probabilistic Point of View

Conditional Density Modeling
Non Parametric Conditional Density Modeling
Generative Modeling

Cross Validation and Risk Correction
Optimization Point of View

(Deep) Neural Networks
Regularization
SVM
Tree Based Methods

References
2 Trees and Ensemble Methods

Trees
Bagging and Random Forests

Bootstrap and Bagging
Randomized Rules and Random Forests

Boosting
AdaBoost as a Greedy Scheme
Boosting

Ensemble Methods
A Revisited Bias-Variance Tradeoff
References

3 Unsupervised Learning: Beyond PCA and k-means
Unsupervised Learning?
A First Glimpse

Clustering
Dimensionality Curse
Dimension Reduction
Generative Modeling

Dimension Reduction
Simplification
Reconstruction Error
Relationship Preservation
Comparing Methods?

Clustering
Prototype Approaches
Contiguity Approaches
Agglomerative Approaches
Other Approaches

Generative Modeling
(Plain) Parametric Density Estimation
Latent Variables
Approximate Simulation
Diffusion Model
Generative Adversarial Network

References
4 Recommender System and Matrix Factorization,. . . and Text Representation and

ChatGPT
Recommender Systems
Collaborative Filtering
Matrix Factorization and Model Based Recommender Systems
Hybrid Recommender Systems and Evaluation Issue
References
Text, Words and Vectors

Text and Bag of Words
Words and Word Vectors
Text, Words, RNN and Transformers

ChatGPT
ChatGPT?
How Does it Works?
Limits
Challenges

5 Introduction to Reinforcement Learning. . . and Time Series
Machine Learning
Sequential Decisions
Markov Decision Processes
Dynamic Programing
Reinforcement Setting
Reinforcement and Approximation
Reinforcement and Policies
AlphaGo
LLM and RLHF
References
Time Series

6 At Scale Machine Learning and Deployment
Motivation(s)
Code and Computer

Code Optimization
Locality of Reference
Parallelization

Data and Computers
Database Backend
Distribution
Hardware

Deployment
Challenges
Tools
ML Ops

References
7 References

576



At Scale Machine Learning
and Deployment

Data Products
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For Human - Insight (Study)
Data / Analysis
Most classical variations:

Report,
Static dashboard,
Interactive dashboard.

For Machine - Automation (Product)
Prediction / Modeling.
Most classical variations:

Batch update,
On-demand

More Factors
Data, Users, Temporal aspect, Location. . .
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Insights
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For Human - Insight
Data / Analysis
Most classical variations:

Report,
Static dashboard,
Interactive dashboard.

No sophisticated algorithms are required to yield value!
Huge data quality challenge! 578
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Insights
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Report
Analysis, AB testing, KPI. . .
Word processor / Literate programming (Rmd/Notebook)

Static Dashboard
Graph / Automatic summary. . .
Literate programming (Rmd/Notebook) / Dataviz tools / Static web page

Interactive Dashboard
Graph / Automatic summary with user interaction. . .
Javascript / Client/server ({Shiny}/Flask/Dash) 579
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For Machine - Automation
Prediction / Modeling.
Most classical variations: Batch update and On-demand

Much more demanding!
Going from POC to production is not easy.

POC: Proof Of Concept 580
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Automation
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Using an algorithm in production
Not the same hardware requirements for dev, training and prediction (CPU/RAM
vs latency/availability/scalability).
Better to use the same language/code everywhere.
Often require data (cleaning) duplication.
Two quite different scenarios:

Batch scoring (easier)
On-demand (REST API, Stream. . . )
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DS Architecture
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aData Science Architecture
Usage dependent architecture!

Finding a good architecture is difficult

DS: Data Science / ETL: Extract/Transform/Load / REST: REpresentational State Transfer / VCS: Version Control System 582
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More tools

Much more tools!
Much more tools than analytics, database and distribution!
BI/Dataviz, Prediction delivery, DS platform, Data Pipeline, Orchestration. . .
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BI/DataViz

So
ur

ce
:

O
SD

C

DataViz
BI/Dataviz dedicated tools.
Specific development with R and Python (Niche?).

Quite mature ecosystem. . .
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Prediction Delivery
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How to deliver the predictions?
By running the code. . .
By delivering the code.
By delivering the model (PMML/PFA) ?
By delivering an API

Should not be done manually?
PMML: Portable Model Markup Language/PFA: Portable Format for Analytics 586
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Data Science Platform
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Data Science Platform
Development and deployment.
Code / low code / No code.
Library / Style choices.

Key to efficient delivery!
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Orchestration

Orchestration
Training/Predicting/Monitoring.
Stream.
Hardware/Software optimization.

Still under development!
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Data Pipeline

Data Pipeline
Data preparation.
Scaling issues.

Data Management aspect!
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DataOps/MLOps Approach
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DataOps/MLOps
Inspired by DevOps and Lean Management
Mindset + tools to deal with Data products
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DevOps?
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DevOps
Combination of Software Development and IT Operations.
a set of practices intended to reduce the time between committing a change to a
system and the change being placed into normal production, while ensuring high
quality
Combine tools and mindset! 592
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DevOps Mindset
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Much more than technical tools!
Culture: Cooperation / Learning / Blamelessness / Empowerment
Automation: Tools / Tests / Package / Configuration
Monitoring: Dashboard / Post Mortem
Sharing: Goals / Practice / Learning
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DevOps Tools
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Lots of tools for each step!
Collaborate: Lifecycle mgmt, Communication, Knowledge sharing
Build: SCM/VCS, CI, Build, DB mgmt
Test: Testing
Deploy: Deployment, Config mgmt, Artifact mgmt
Run: Cloud/*aas, Orchestration, Monitoring

Tool choice depends on the context.
Good usage is more important that the tool itself. 594
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Code and DevOps
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Code are meant to be used/shared/reused.

Good practice
Versioning (Code),
Documentation,
Testing,
Packaging,
Continuous Integration/Continuous Deployment,
Human Training
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Models and MLOps
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Models are meant to be used/shared/reused.

Good practice
Versioning (Models/Code+Environment/Dataset),
Artifact mgmt,
Documentation,
Training/Testing/Monitoring,
Human Training,
Continuous Integration/Continuous Deployment
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Data and DataOps
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Data are meant to be used/shared/reused.

Good practice
Versioning (Data/Processing),
Documentation/Governance,
Testing/Monitoring,
Packaging (Feature store),
Human Training,
Continuous Integration/Continuous Deployment.
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