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Decision or Decisions

Sequential Decisions, MDP
and Policies
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Sequential DeCISlon Settlng Sequential Decisions, MDP
and Policies

Sequential Decision Setting

@ In many (most?) settings, not a single decision but a sequence of decisions.

o Need to take into account the (not necessarily immediate) consequences of the
sequence of decisions/actions rather than of each decisions.

o Different framework than supervised learning (no immediate feedback here) and
unsupervised learning (well defined goal here).
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From Sequential Decision to Reinforcement Learning  scuentsi pecions, vor /%

and Policies

Sequential Decision

Sequential Decision

@ Sequence of action A; as a response of an environment defined by a state S;

o Feedback through a reward R;

@ Is my current way of choosing actions good?

@ How to make it better?




From Sequential Decision to Reinforcement Learning  scquential becisions, mor

and Policies

Sequential Decision MDP Modeling

Markov Decision Process Modeling

@ Specific modeling of the environment.

@ Goal as as a (weighted) sum of a scalar reward.

@ Is my current way of choosing actions good?

@ How to make it better?




From Sequential Decision to Reinforcement Learning  scquential becisions, mor

and Policies

Sequential Decision MDP Modeling Reinforcement Learning

Reinforcement Learning

@ Same modeling. ..
@ But no direct knowledge of the MDP.

@ Is my current way of choosing actions good?

@ How to make it better?




Sequential Decision Settings

Sequential Decisions

@ MDP / Reinforcement Learning:

max [E, lz Rt]
t
@ Optimal Control:

min E [Z C(xt, ut)]

t

Sequential Decisions, MDP

Related settings. . .
@ (Stochastic) Search:
méa\xIE[F(H, W)

@ Online Regret:
maxZE[F(Ok, W)
k
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EnVII’on nement Sequential Decisions, MDP  /} ‘

and Policies

Decision Process and Environment

o At time step t € N:

State S; € S: representation of the environment
Action A; € A(S;): action chosen

Reward R;;; € R: instantaneous reward

New state S;.1

@ Focus on the discrete setting, i.e. S finite, A(s) finite and R finite.

e Extension: Non finite bounded R: easy / Non finite S: hard / Non finite A:
harder. 10



EnVl |’0n nement Sequential Decisions, MDP

and Policies

Stochastic Model

@ Dynamic defined by:
P(Seq1 =5, Rey1 = r|(Ser, Av, Re), t' < t)
= ]P(St+1 = 5/, Rt+1 = r|5t = S,At = a, Ht)
where Hy = (R, St—1,At—1, Rt—1, St—2, ... ) is the past and (S;, At) the present.

10



Markov Decision Process and Environment Sequential Decisions, MDP

and Policies

Markovian Environment
@ Markovian Dynamic Assumption: S;y1 and R:y1 are independent of the past
Hy = (Re, St—1,At—1, Re—1, St—2, ... ) conditionally to the present (S¢, A¢).
@ Dynamic entirely defined by state-reward transition probabilities
P(Sty1 =5, Rey1 =r|St =s,Ar = a, Hy) = P(St11 =5, Rep1 = r|Se = s, A = a)

= p(s, rls, a)

in the discrete setting.

@ Informally, this means that S; encodes all the information related to the past.

11



Markov Decision Process and State-Action Sequential Decisions, MDP

and Policies
@ State-Reward transition probabilities for a given state-action:
]P)(St+1 = Sl, Rt+1 = r‘St = S,At = a, Ht) = ]P)(SH»I = 5/7 Rt+1 = r}St = 57/41_L = 3)

= p(s', r|s, a)

Induced State-action laws

@ State transition probabilities for a given state-action:
]P)(St+]_ = S"St = S,AtL =l Ht) = ]P)(St+1 = 5/|51_- = 55 At = a)

(s'|s,a) = Zp(s rls, a)

@ Expected reward for a given state-action:
]E[Rt+1|5t = S,Ai_L = Ht] = ]E[Rt+]_|5t = 5 At = 3]

= r(s, a) ZZps r|r,a)

@ From now on, we will always assume that the Markovian property holds for the
environment.

12



P

Exa m pleS Sequential Decisions, MDP

and Policies o
1, Tvait 1-8.-3 et
5 a =i p(s'|s,a) | r(s,a,s’) A
high search high @ Tsearch
high  search low il =@y Tsearch
low search high | 1 —-p — I
low search low B Tsearch recharge S
high wait high | 1 Tuait 5
high wait low 0 - =
low wait high 0 - S
low wait low 1 Tyait —
low recharge high | 1 0 £
low recharge  low 0 - 8_
L Pase 3
T
]
©
=
&
<
0 .
o
T
! A
o
2 5
5
3 b=
5
)
4 i
CU
o
5
[}
n

[y
w



Decision Process, Agent and Policy Sequential Decisions, MDP K

and Policies

Agent
@ Interact with the environment by choose the action given the past.

Policy I : specification of how to choose the action

@ General stochastic policy [ = (m, 71, ..., 7¢,...):
MN:(Ar = alSt = s, Hy) = me(Ar = a|St = s, Hy)
o General deterministic policy I = (7o, 71, ..., 7t,...) (with as slight abuse of
notation):
MNe(Ar = a|St = s, H;) = 1At=7rt(5t=s,Ht)

14



Markov Decision Process, Agent and Policy Sequential Decisions, MDP K

and Policies

Agent
@ Interact with the environment by choose the action given the past.

Policy I1: specification of how to choose the action

@ History dependent stochastic policy 1 = (mg, 71, ..., 7¢,...):
MN:(A: = a|St = s, Ht) = m¢(Ar = a|St = s, Hy)
@ Markovian stochastic policy N = (mg, 71, .., T¢,...):
MNe(Ar = alSt = s, Hy) = me(Ar = 8|St = s) = m(als)
@ Stationary Markovian stochastic policy N = (7, 7,...,m,...):
M:(Ar = a|St = s, Ht) = m(Ar = a|S: = s) = w(a|s)

Similar deterministic policy definition.
Partially Observed Markov Decision Process extension: the Agent has only access
to a partial observation O; at each time step. .. (not the focus of the lectures)

15



Decision Process and Trajectories Sequential Decisions, MDP K

and Policies
./"’4

O

O-e-0@

Trajectories
@ Trajectory (Sp, Ao, R1, S1, A1, . ..) defined by

e an initial distribution Pg for Sg,
o a policy M = (mg, 71, ..., ¢, . ..) specifying
M:(A: = a|S, Hr) = 7me(Ar = a|St, Hr)
e an environment specifying
P(St11, Rey1|St, Aty He)

16



Decision Process and Trajectories Sequential Decisions, MDP K

and Policies
./o ®
O | i
b $

@ Induced probability:
P(So =sp, Ao =ao, Ri=n,51 =s1,A1=a1,...St=s,Re = 1)
=Po(So = s0)
x (Ao = a0|So0) P(S1, R1|So, Ao) 71 (A1 = a1|S1 = s1, H1)
X oo X P(S¢t = st, Re = rt|St—1 = st—1,At—1 = an—1, Hi—1)

16



Markov Decision Process and Trajectories Sequential Decisions, MDP K

and Policies
./"’4 i

Trajectories
@ Trajectory (Sp, Ao, R1, S1, A1, . ..) defined by

e an initial distribution Pg for Sg,
o a policy M = (mg, 71, ..., ¢, . ..) specifying
M:(A: = a|S, Hr) = 7me(Ar = a|St, Hr)
e a Markovian environment specifying
P(St11, Ret1Se, Ar)

17



Markov Decision Process and Trajectories Sequential Decisions, MDP K

and Policies
./"’4
¥

Trajectories

@ Induced probability:
P(SO = So,Ao = 4o, Rl = r1,51 = 51,A1 = éGllgoo .St = S, Rt = rt)
= Po(S0 = %0)
X TFQ(AO = ao|50) P(Sl, R1|50,A0) 7T1(A1 = 31|51 =5, Hl)
X oo X P(St = st, Rt = re|St—1 = st-1, At—1 = ar-1)

17



Markov Decision Process and Trajectories Sequential Decisions, MDP K

and Policies
./"’4
¥

Markovian Trajectories only if the policy is Markovian

° P(Rt+1, 5t+17 At+1, Reto, St+2; oo Rk, 5t—|—k|5t7 At, Ht)
= P(Ret1, St+1, Aet1, Re2, Set2, - - Reies Stk Sty Ae)
= P(St-i-l; Rit1 |5t> At) 7Tt+1(At+1‘5t+1)
X oo X P(Stik, Re-vk|St+k—15 At+k—1)

@ Stationary if the policy is stationary. 17
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@ Returns and Value Functions

18



ReWards and TOtal Retu rn Sequential Decisions, MDP 1

and Policies

Rewards and Total Returns
@ MDP: Rewards R; encode all the feedbacks!

@ Quality of a policy Il measured from the remaining total return:

o
Gt = Z Rtl

t/=t4+1
@ Expected total return following 1 starting from s:

Eﬂ[thst = S] = Z Eﬂ[Rt/‘St = S]
t/=t+1

19



Total Return: Issue and Fixes Sequential Decisions, MDP ><

and Policies

@ G; is a limiting process and thus may not be defined!

@ Can diverge to +00 or not converge at all.
T
e Finite horizon: G = Z Ry

t'=t+1
o Episodic setting: it exists a random T such that Vt' > T, Ry = 0 and E[T] < 0o
oo

so that G; = Z Ry is well defined.

t'=t+1
@ Discounted setting: for 0 < v < 1, G; = Z A=) R,
t'=t+1
B t+T
@ Average return: G; = lim T t,_ztﬂ Ry

20




Flnlte HOFIZOH Sequential Decisions, MDP

and Policies

GtT: > ke

t'=t+1

Finite Horizon Setting

@ Always well defined and easy to interpret.
@ Loss of Markovianity as we need to know the time step. ..

@ Can be put in a classical Markov framework!

o Define an absorbing state s,ps (a state that cannot be escaped and from which the 8
reward is always 0). N
o Extend the state space S to (S x {0,..., T}) U {Sabs}- o)
e Define an state reward transition probability: I
p(s',t|s,a) ifs=(s,t), t<Tands =(s t+1) 9
o s 1 if§:(s,t),t:T,§’:sabsandr:0 c
p(3,rl3,a) = o ~ L

1 if $=Sips, S' = Saps and r =10
0 otherwise 21



Sequential Decisions, MDP

Episodic Setting
and Policies

Gt — Z Rt’

t'=t+1

Episodic Setting

@ Assumption: for any policy I1, the average duration before R; remains equal to 0
is smaller than a finite horizon H: En[ min t] < H < 400
t,Ry=0Vt'>t

@ Strong assumption. . .
o Easy to interpret.
@ Slightly stronger (but more convenient) def.:

e Replace all the states from which R; remains equal to 0 whatever the policy by a

single absorbing state s,ps,
e Assumption: for any policy 1 and any initial state, the average duration to reach this

state is smaller than a finite horizon H: Vs, En 5min t|So = s} < H< 40
t,5t=Sabs

P

Episodic Setting

N
N



DISCOU ntEd Sequential Decisions, MDP

and Policies

T /
Gl = Y A" IR,

Discounted

o Always defined but not that easy to interpret.
@ Easiest theoretical setting!

@ Equivalent to an episodic setting if one adds an absorbing state s,ps and changes
all state-reward transition probabilities to:

e
'Vp(sla r|5, a) if s’ 7’5 Sabs; S 7é Sabs 4?:—)’

1— if ' =s,ps,r =0,5#s 2

p(Sl, r‘57 a) _ ( ’Y) y abs 7& abs 8

1 if ' = saps, r = 0,5 = Saps @

0 otherwise @

@ Horizon H=1/(1 —~). 23



Ave ra ge Ret U I’n S ettl n g Sequential Decisions, MDP

and Policies

B 1 t+T
Gt = lim = Z Rt/
T vien

Average Return

Not always defined. (Cesaro Average)
Always equal to 0 in the episodic setting!
Natural definition in a stationary setting. . .

Complex theoretical analysis!

Under a strict stationarity assumption (R; ~ Ry), link with discounted setting as

> 1 1 —
En[G/] =Y 1'En[Ri1] = ;——En[R] = ;= En[G]
—o0 Y Y

Average Return

N
~



State Value FunCtIOnS Sequential Decisions, MDP £ 7

and Policies

State Value Functions

@ Return expectation for a policy I1 starting from s at time t

o Finite horizon setting: -
VtTn(S) = ]E|'| I:GtT|5t = S] = Z ]En[Rt’lst = 5]

t'=t+1
o Episodic setting:

o0

Vfﬂ(s) = IEI'I[Gt|51r = 5] = Z ]EI'I[Rt’|5t = 5]
t/=t+1
o Discounted:

vin(s) =En[G|S: = s] = Z IR [Ry|S, = s]

t/=t-1
o Average return setting: .
_ — .1
Vt7|'|(5) = ]Eﬂ [Gt|5t = 5] = _,_ll_l;noo ? Z Eﬂ[Rtl‘St = 5]
t/=t41

@ Depends on t for a history dependent policy!

25



Markovian Policy and State Value Functions Sequential Decisions, MDP

and Policies

State Value Functions

@ Return expectation for a Markovian policy 1 starting from s at time ¢t.
o Finite horizon setting (with time extended state space):
T

vin(s) =En[G/|S: =s] = > En[Ru|S: = 5]
t'=t+1

Vt,|'|(5) — ]Eﬂ[Gt|St = 5] = Z ]Eﬂ[Rt/|St — 5]

t/=t+1

e Episodic setting:

o Discounted:
In(s) =En[G]|S: = 5] = Z AV DR [Ry (S, = ]

t'=t+1
o Average return setting: T
_ — : 1
Ven(s) = En[Gi[Se = s] = lim = > En[Re|S: = o]
t/'=t+1

@ Becomes independent on t if the policy is stationary and Markovian the generic
case (except in the finite horizon setting).

26



State-Action Value Functions Sequential Decisions, MDP )8

and Policies

State-Action Value Functions

@ Return expectation for a policy [1 starting from s and an action a at time ¢t.

o Finite horizon setting: -
a{n(s,a) =En[G/|S: =s,A; = a] = Z En[Re|S: = s, A = 4

t/'=t+1
o Episodic setting: o
gen(s,a) = En[Ge|S: = s,Ar =a] = > En[Re|S: =s,A: = 3]
=il
e Discounted:

a7 n(s,a) = En[G{|S: = 5, Ar = a] = Z A DRy (S, = s, Ap = 4

t/=t-F1
o Average return setting: -
Gen(s,a) =En[Ge|S: =5, Ar = a] = Il—r>noo T tlgilEn[Rt/|St =5,A; = 4

e Different strategy for action at time t than after. ..
@ Independent of t for a Markovian policy except for the finite horizon setting!

27



State Value Function vs State-Action Value Functions sequentiol becisions, mop

and Policies

i ?

ve,n(s) = IEH‘[Gt|5t =s] qn(s,a) = EI‘I[GIt‘St =s,A: = 4]

State vs State-Action

@ Performance measure of a policy [1:

e starting from a state s for the state value function,
o starting from a state s and an action a (not necessarily related to I1) for the
state-action value function.

@ State value function at time t from state-action value function:

ve,n(s Zn a)q,n(s, a)

7

28



Do We Really Need The History Dependent Policies?  sequentia becisions, mop

and Policies

Equivalent Markovian policy in terms of value function

@ Thm: For any policy I and any initial distribution Po(So), it exists a Markovian
policy I1 such that

@ Relies on the Markovian environment.
@ Possible choice:
Tt {At = 3t|5t = St} = E]P,IPO[Wt(At = 3t|5t = St, Ht)|5t = St, 50]
@ No need to consider non Markovian policy if the goal is entirely defined in
terms of value functions.

29
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e Sequential Decisions, MDP and Policies

@ Prediction and Planning

30



GOE]IS Sequential Decisions, MDP

and Policies

Prediction Planning
@ What is the performance of a given o What is the best policy?

policy?

@ Planning is harder than predicting.

31



P I’ed ICtIOn Sequential Decisions, MDP

and Policies

Prediction

@ What is the performance of a given policy?
o Compute/Approximate/Estimate
ven(s) = En[Ge|St = 5]

@ Well defined provided the expectation exists.

32
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P I a n n | n g Sequential Decisions, MDP

and Policies

Agent Policy

Planning
@ What is the best policy?

@ A possible definition: argmaxZu(s, t)ven(s)
n

s,t
@ Not necessarily well defined. ..
@ Several choices for p!
@ More realistic goal: find a good policy. . .

33
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e Sequential Decisions, MDP and Policies

@ Operations Research and
Reinforcement Learning

34



What Do We Know?

Model

@ Able to use the MDP transition
probabilities.

@ Markov Decision Process / Operations
Research.

@ Probability world.

v,

Sequential Decisions, MDP
and Policies

Only Observations

@ No access to the MDP transition
probabilities.

@ Reinforcement Learning.

@ Statistic world.

@ Reinforcement Learning is harder than Markov Decision Process / Operations

Research.

35



Markov Decision Process / Operations Research Sequentisl Decsions, MDP X

and Policies

MDP / OR

@ Stochastic setting in which the world is known.

o MDP model assumption.
@ Probability world / Idealized setting. ..
@ Lots of insight for the RL problem.

36



Rel nfOrcement Learn i ng Sequential Decisions, MDP

and Policies

@ Stochastic setting in which the world is observed through interactions.

@ Still MDP model assumption.
@ More realistic setting?

@ More difficult theoretical analysis.

37
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e Sequential Decisions, MDP and Policies

@ Control

38



MDP VS DISCFGte COﬂtI’Ol Sequential Decisions, MDP £ 7

and Policies

P Y Discrete Contra

@ State s and action a @ State x and control u
@ Dynamic model: @ Dynamic model:
s’ ~P(:s, a) x" = f(x, u, W)
with W a stochastic perturbation.
@ Reward r defined by P(r|s’, s, a). e Cost: C(x,u, W).
@ Policy N: a; ~ m¢(+|Se, Ht) @ Control strategy U:
o Goal: Uy = ur(xe, He, W)
maxEq lz Rt] o Goal:
g inlE C W,
J lejn u [2 (xt, ut, t)‘|

@ Almost the same setting but with a different vocabulary!

39
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e Sequential Decisions, MDP and Policies

@ Survey

40



RL What Al’e We GOing TO See? Sequential Decisions, MDP

and Policies

Operations Research and MDP.

Reinforcement learning and interactions.

More tabular reinforcement learning.

Reinforcement and approximation of value functions.
Actor/Critic: a Policy Point of View

Extensions

41



Operations ResearCh and M DP Sequential Decisions, MDP

and Policies

How to find the best policy knowing the MDP?

Is there an optimal policy?

How to estimate it numerically?

Finite states/actions space assumption (tabular setting).
Focus on interative methods using value functions (dynamic programming).
Policy deduced by a statewise optimization of the value function over the actions.

Focus on the discounted setting.

42



Reinforcement Learning and Interactions Sequential Decisions, MDP

and Policies

How to find the best policy not knowing the MDP?

How to interact with the environment to learn a good policy?

Can we use a Monte Carlo strategy outside the episodic setting?

How to update value functions after each interaction?

@ Focus on stochastic methods using tabular value functions (Q learning,
SARSA...)

@ Policy deduced by a statewise optimization of the value function over the actions.

43



P

More Tabular Reinforcement Learning Sequential Decisions, MDP

and Policies

Can We Do Better?

@ Is there a gain to wait more than one step before updating?

@ Can we interact with a different policy than the one we are estimating?
@ Can we use an estimated model to plan?
@ Can we plan in real-time instead of having to do it beforehand?

Finite states/actions space setting (tabular setting).

44



Reinforcement and Approximation of Value Functions  scquential becisions, mor

and Policies

How to Deal with a Large/Infinite states/action space?

How to approximate value functions?

@ How to estimate good approximation of value functions?

@ Finite action space setting.
@ Stochastic algorithm (Deep Q Learning...).
@ Policy deduced by a statewise optimization of the value function over the actions.

45



ACtOI’/CI’ItIC a POllcy POlnt Of VleW Sequential Decisions, MDP

and Policies

Could We Directly Parameterized the Policy?
@ How to parameterize a policy?

@ How to optimize this policy?

@ Can we combine parametric policy and approximated value function?

e State Of The Art Algorithms (DPG,PPO, SAC...)

46



EXtenSIOnS Sequential Decisions, MDP

and Policies

Can We Do Something Different in This Setting?
@ How to deal with the total and average returns?

@ How to deal with partial observations?

@ How to learn a policy or an implicit reward by observing an actor?

47



O Utl | ne Operations Research:

Prediction and Planning oo

e Operations Research: Prediction and
Planning

48



Markov Decision Process / Operations Research Operations Research:

Prediction and Planning
MDP
p

=

~ o
_,G_,C-’

MDP / OR S
@ Known MDP model é’
@ Focus on the finite horizon setting ~

i c

Z Rt’ CI\DI

t/=t1 =

and the discounted setting: :E

= 3 rR, b=

t'=t+1 =

L

@ We will later consider the other settings.

N
©



Policy

Operations Research:
Prediction and Planning

@ Finite horizon : emphasis on Markovian policies

nt(At = 3t|5t = St, Ht) = 7Tt(At = 3t|5t = St) = 7Tt(3t|5t)
@ Discounted return: emphasis on stationary Markovian policies

N:(Ar = a¢|St = s, He) = m(Ar = a¢|St = st) = m(at|st)

O
(]
-
[
>
o
QO
L
()
\
[
@)
N
=
O
I
(D]
iy ot
=
L
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P I’ed ICtIOn Operations Research:

Prediction and Planning

Prediction

@ How to efficently evaluate the quality of a policy

ven(s) = En Z AR, (S, =
t'=t+1
when we can ensure that the sum is finite?

@ v; n independent of t in the discounted setting if the policy is stationary.

O
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P I ann | n g Operations Research:

Prediction and Planning

@ How to find a policy 7 such that

Z p(s, t)ven(s)

is as large as possible?
@ Emphasis on p(s,t) =0 if t # 0 and p(s,0) = Po(So = %0).

52



O Utl | ne Operations Research:

Prediction and Planning oo

e Operations Research: Prediction and
Planning
@ Prediction and Bellman Equation
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Bellman Equation

Operations Research:
Prediction and Planning

=Y _me(als)r(s,a) +7)_ > p(s'ls, a)me(als)ver1n(s')

s a

Bellman Equation

@ Link between v; and vii1 .

ven(s) = > me(als) > p(s’, rls, a) (r +vverin(s))
’ a@%

@ Straightforward consequence of

T T
Ge= > "R =Rua+y 3 v TR = Reja +9Gea

t'=t+1 t'=t42
and thus

E[Gt|St = 5] = E[Re+1|St = s] + VE[E[Gr+1|St+1]|S: = 5]
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Bel | man O perator Operations Research:

Prediction and Planning

T RIS RIS
TTov(s) =Y me(als)r(s,a) +v > p(s']s,a) Y me(als) v(s') C{{%

rﬂ't(s) Pﬂ'f(57$/)

Bellman Operator

o Affine operator from the space of state value functions to the space of state value
functions.

@ By construction,
vin =T " Ver1n
@ ry, is the vector of average immediate rewards using policy 7 while P™ is the one
step state transition matrix using policy ;.

v,
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O Utl | ne Operations Research:

Prediction and Planning oo

e Operations Research: Prediction and
Planning

@ Prediction by Dynamic Programming
and Contraction
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Flnlte HOFIZOH Naive ApproaCh Operations Research:

Prediction and Planning

T
VtTI_I(s): Z ( Z rt’) Pn(At:at...’RT:rT|5t:5)

At,Fe+1,Se41,0 T \t/=t+1

= > ( > rt’) we(ails) x - x p(s,rr|sroi,aroy) %A m

at,Mt41,5e+1, 507 \t/=t+1

Finite Horizon: Naive Approach

@ Exhaustive exploration of the trajectories.
o Complexity of order (JA| x |S| x |R|)T~t for the value function at time t.

e Complexity can be reduced to (].4| x |S])T~t by noticing that

N
vin(s) = >, ( > f(styat)) me(aels) x -+ x p(st|sT—1,aT-1)

at,St41, 7 ,S5t—1,dr—1 \t'=t+1
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Finite Horizon: Recursive Prediction Operations Research:

Prediction and Planning

V7T,r| =0 g’;
T TTe uT g

Vican = t,N

Finite Horizon: Recursive Prediction

o After time T, the finite horizon return G = 0 hence v{ ; = 0 whatever the
policy.
@ The Bellman equation yields second equation.

@ Equivalent rewriting
Vttl,l'l(s) = rr,_,(s) + Z Pr._4(s, Sl)VtT
s/

o Complexity of order only T x |S|?(|.A| + |S|) to compute all the value functions. )
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Flnlte HOI’IZOI’] Value Iteratlon Operations Research:

Prediction and Planning

Finite Horizon: Prediction by Value Iteration

input: MDP model ((S,.4,R), P) and policy I
parameter: Horizon T
init: v7(s)=0VseS, t=T

repeat
t+—t—1
for Vs € S do
vl (s) < Y me(als) <r(s, a)+ > p(s'ls, a)v;l(s’)>
acA s’eS
end
until t =0

output: Value functions v,

@ Most classical formulation
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DISCOU nted N a |Ve ApproaCh Operations Research:

Prediction and Planning

o) T
v;fn(s) = Z 7t 7(t+1)]E|—|[Rt/\St =s] ~ Z V'En[Ry|S: = s] = in-,T(s)
t'=t+1 t'=t+1

V?,i'lT(s) = Z Z ’Y tH) (styat) | me(aels) x - Wwowm

at,St41, " ,S5t—1,dt—-1 \t'=t+1

x p(st|st-1,ar-1)

Naive approach

@ Exhaustive exploration of truncated trajectories.

@ Back to the finite horizon setting. . .
TH+1-t

< ’ max |r|

@ Prop: Control on the error as ’vﬁ — v””T‘ —_—
0 11—~ rer

£

Discounted

T—t

Relation between the error € ~ «
= (JA] x |S])Tt of order C ~ ¢!

and the numerical complexity

.
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Discounted: Recursive Prediction with Naive Operations Research:
- . . Prediction and Planning
Initialization

/

Y ~ " -
Vrn=Vrn = Vr.n g‘;
i = Tﬂt71 V;{ﬂ ~ Vt—]_,/l_l = Tﬂt71 Vt’ﬂ

Vi—1,n
@ Requires an initialization at time T with a horizon T’.
@ The Bellman equation yields the second equation.

o Complexity of order only T x |S|?(|A| + |S|) to compute all the value functions
after the initialization of cost (|.A| x [S|)T'~T.

!
o Prop: If the approximation error between v  and v}ﬁ is bounded by € then
Ivin = Venllo <77 %, VEST
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Discounted and stationary: Bellman Equation

Operations Research:
Prediction and Planning

v = TWVn
vn(s) = Lo (als)r(s, a) + 722 p(s'ls, a)m(als)vn(s') 4}0

a

Bellman Equation

@ Time independent value function vp.
@ Prop: Unique solution of the linear equation vq = 7™ v
o Complexity of order (|A| + |S|) x |S|? to obtain the solution.
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Discounted and stationary: Recursive Implementation

Operations Research:
Prediction and Planning

vin =T vn ;\C
Vi1 = T v, with arbitrary v

Bellman Iteration

@ Prop: Unique fixed point of the Bellman operator v +— T ™v.

@ Prop: The iterates vi11 = T " v, converges toward v and
Ivic = vitlloo < 7*[Ivo = viilloo

o Complexity of order (k + |A])|S|? to obtain the kth iterate.

@ Exponential decay of the error with respect to the complexity.
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Bellman Operator and Contraction Operations Research:

Prediction and Planning

"7~WV'__’7ﬁTV/Hoo < 74\V - V/Hoo

@ By definition
1T =TV ]lo = YIP"(v = V')loo
@ It suffices then to notice that P is a transition matrix, so that

ZP”—I

and thus |ZP iZj| < max |z
J

Consequences

@ Unicity of the solution of 7T™v = v.

o Linear decay 7 of the error with the iterates.
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Bellman Operator and Bellman Equation Solution Operations Research:

Prediction and Planning

vn = Z ’Yk('DW)k rr
k=0

A Closed Formula for the State Value Function
ovn=T"vqne (I —vP")vqn=rr

@ As PT is a transition matrix, its eigenvalues are smaller than 1 and thus (/ — yPT)
is invertible of inverse

(1= Pyt = 3 A (P
k=0

V.

@ Could have been obtained without the Bellman equation as the ((P“)k) | is, by
5,5

construction, the probability of being at state s’ at time k starting from s at time
0 and following 1.

O
(O]
=
c
>
o
O
=2
)

(o))
(&3]



Discounted and stationary: Value Iteration

Operations Research:
Prediction and Planning

Discounted: Prediction by Value Iteration

input: MDP model ((S,.A, R), P), discount factor -, and stationary policy 7
init: ¥(s)vVse S

repeat
Ve &=
for s € S do
v(s) « > n(als) (( ) +7 > p(s'ls, a)vprev(s')>
acA s'eS
end

output: Value function ¥

@ When to stop?
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Discounted and stationary: Value Iteration Operations Research:

Prediction and Planning

Discounted: Prediction by Value Iteration

input: MDP model ((S,.4,R), P), discount factor , and stationary policy =
parameter: § > 0 as accuracy termination threshold
init: ¥(s)vVse S
repeat
Vprev — v
A<+ 0
for s € S do
7(s) < D m(als) (( )+ p(sls, a)vpm(sv)
ac A s'eS
A < max (A, |[V(s) — Vrev(5)|) o]
end (@}
)
until A < ¢ c
output: Value function ¥ 8
= O
n
@ Prop: when the algorithms stops Q

~ v
1V = villoo < 5770

)]
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Discounted and stationary: Value Iteration Operations Research:

Prediction and Planning

Discounted: Prediction by Value lteration - Gauss-Seidel Version

input: MDP model ((S,.4,R), P), discount factor , and stationary policy =
parameter: § > 0 as accuracy termination threshold
init: ¥(s)vVse S
repeat
A<+ 0
for s € S do
Vorev < V()
U(s) < > _(als) (r(s, a)+v Y p(s'ls, a)\"/(s'))
ac A s'eS
A — max (A, |7(s) — Vorev|) ol
end S
until A <6 c
output: Value function ¥ 8
?
[

@ Gauss-Seidel variation mostly used in practice.
@ No need to store the previous value function.
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Outline

e Operations Research: Prediction and
Planning

@ Planning, Optimal Policies and
Bellman Equation

Operations Research:
Prediction and Planning
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O ptl m al POl ICy Operations Research:

Prediction and Planning

Optimal Policy
@ An optimal policy I, should be better than any other policies:
Vs, Vt, ven, (s) = sup ven(s)
n

.

Several Questions
Do this policy exists?

@ Is it unique?
@ How to characterize it?
@ How to obtain it?

\.

Even the sup above could be an issue if it is not attained!

70



Flnlte HOI’IZOI’] and Optlmal POllcy Operations Research: X

Prediction and Planning

Explicit Recursive Solution

@ After horizon T, any policy leads to a 0 return.

@ At time T — 1,
o the total return Gt is the immediate return at time T and thus

vr.n«(s) = sup Z (als)r(a,s) = sup r(a,s)
m(als)

o the optimal policy 77 _; exists and is determistic.

@ By recursion,
o the total return at time t — 1 is the immediate return at time t plus the total return
at time t — 1 and thus

Ve—1ns(s) = s > m(als) (f(c‘% )+ p(sls a)ven- (5')>
= sup (r(a s +Zp "Is, a)ve,ns (s ))

s/
o the optimal policy m;_; exists and is determistic.

Finite Horizon

~
iy




Operations Research:
Prediction and Planning

Discounted Setting and Optimal Stationary Policy

o

e Optimal policy: vp«(s) = sup, vn(s)
o Stationary solution:

e (5) = sup (T™vn-) (5)

> Do 3\5)< 3,8) +7>_ p(sls, a)vn(s )>

~|s) a s

= sup (r(a, s)+v > p(s'ls, a)Vn*(S/)>

@ Optimal deterministic policy: 7*(s) € argmax (r(a,s) + v > o p(s'|s, a)vn«(s')).

@ Is everything well defined? Yes but one has to be more cautious!
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Optimal Value Function and Bellman Operator Operations Research:

Prediction and Planning

Optimal Value Function
@ Optimal value function: v,(s) = supp vr(s)

o Defined state by state so that it is not necessarily attained by a single I*

Optimal Bellman operator
@ Similar to the Bellman operator but do not depend on a policy:

T*v(s) = sup (r(a, s)+7>_p(s'ls, a)v(s’))

s/

= 517jrp Z m(a) <r(a, s)+ Z P(5/’5= a)v(sl)>

s/

A\,

Link between the two

@ v > T*v implies v > v,.

o v < T7T*v implies v < vq.

Discounted

~
w



Optimal Value Function and Bellman Operator

Operations Research:
Prediction and Planning

Bellman Operator and Fixed Point

@ Prop: 7™* is a y-contraction for the sup-norm and thus it exists a unique vy such
that v, = 7 v,,.

Fixed Point and Optimal Value Function

@ Prop: : v, = v, and is thus the unique fixed point of 7*.

@ Proof: v, = T*v,, and thus vy, = v, according the link between the optimal
value function and the Bellman operator.

@ Does this mean something about policies?
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Optlmal POllcy and Be”man Opel’ator Operations Research:

Prediction and Planning
Bellman Operator and Policy
@ Prop: For any v, any policy 7, satisfying
7,(s) € argmax (r(a, s)+7>_ p(s']s, a)v(s’))
a !

S

is such that 7*v(s) = sup, T™v(s) = T™v(s)

.

Bellman Operator and Optimal Policy

@ Prop: Any stationary policy 7, satisfying

T«(s) € argranax (r(a, s)+ Z p(s'|s, a)v*(s’))

is optimal.

@ Proof: Indeed by construction, 7*vi, = T™ v, and thus, as T vy, = V4, Vi, = V4.
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Optimal Policy and Bellman Operator

Operations Research:
Prediction and Planning

o It exists a unique v such that T*v, = v,
@ Vs, vi(s) = sup, vr(s)
@ Any policy 7, satisfying:
Vs, mi(s) € argmax (r(a, s)+v>_p(s']s, a)v*(s’))
a

s/
is optimal as Vs, vy, (s) = vi(s) = sup, vx(s)

@ Existence result but not (yet) a constructive algorithm!
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O Utl | ne Operations Research:

Prediction and Planning oo

e Operations Research: Prediction and
Planning

@ Linear Programming

7



Linear System and Linear Programming Operations Research:

Prediction and Planning

Vi = Tﬂ Vi Vi = T*V* @

Explicit Resolution of the Equations?

@ Prediction:

e Simple linear system for v;.

o Already mentionned before. . .

o Complexity of order (|A| + |S|)|S|?.
@ Planning:

o More complex linear programming system for v, due to the max operator.
o Optimal policy easily deduced from v,.
o Complexity of order (|A||S|)3.
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Llnear Programmlng Operations Research:

Prediction and Planning

From Vs, v(s) =supr(s,a) + 7> p(s'|s, a)v(s)

to min Z; p(s)v(s)
such that V(s, a), v(s) > r(s,a) +v>_ p(s'ls, a)v(s')

Different formulations but same solution

@ Using v > T*v & v > v,, the condition implies v > v,

@ Now for any p satisfying p(s) > 0, > . p(s)v(s) > > i(s)vi(s) as soon as the
condition is satisfied, hence v, is a solution.

o If for any state v(s) > v,(s) then >°, u(s)v(s) > > p(s)vk(s) and thus v, is the
unique minimizer.

O
(O]
=
c
>
(@]
O
=2
)

~
©



P I’I ma I P ro b | em Operations Research:

Prediction and Planning

Primal: min ZS: p(s)v(s)
such that V(s, a), v(s) > r(s, a) + WZ, p(s'|s, a)v(s")

Some properties

@ Can be solved with a linear programming solver.
@ Unicity of solution (and thus independence with respect to 1) can be proved
without using v.
o Proof: let v; a solution for 11 and v, a solution for iy then min(vy, v») satifies the
constraints. Furthermore if exists va(s) < vi(s) then min(vi, v2) is a strictly better
solution for pp which is impossible.
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Dual Problem Cropn e,
Primal: min>_ u(s)v(s)
sucsh that (s, a), v(s) > r(s,a) + 72; p(s'|s, a)v(s")
Dual:  max > (s, a)r(s, a) S

/\(S,Q)ZO s,a

such that Vs, Y A(s,a) = u(s) + v p(sls’, a)A\(s', a)

/
s’.a

Derivation
@ Usual derivation through the Lagrangian:

L(v,\) = u(s)v(s)+>_ (s, a) (r(s, a)+v > p(sls’, a)v(s') — v(s))

s’.a
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@ Strong duality as Slater condition holds when v < 1 with v = ny maXs , (s, a).
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Dual and Interpl’etathn Operations Research:

Prediction and Planning

Dual:  max > (s, a)r(s, a)

/\(sa >Osa

such that Vs, 3" A(s,a) = u(s) +v > p(s|s’, a)A(s', a)

s’.a

o0
Interpretation :max > YESTP(S: = a, Ar = a|Sy ~ 1, ) r(s, a)
k=0 5.2

Interpretation in terms of policy
@ For any feasible )\, define u(s) = >, A(s, a) and the policy m(als) = A(s, a)/u(s).
o Prop: u = (Id — 7P )u = Y320 7* (P™)  u
o Prop: A(s, a) = n(als)u(s) = o7 P(S: = 2, Ar = a[So ~ 1, )

o Conversely for any m they is a feasible \.

Discounted

@ Any optimal A, (and thus policy) satisfies A.(s,a) = 0 if
vi(s) > r(s,a) + v X o p(s'|s, a)vi(s’) (optimal policy support)

.
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O Utl | ne Operations Research:

Prediction and Planning oo

e Operations Research: Prediction and
Planning

@ Planning by Value Iteration
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Fl n |te H OI’IZOI’] Operations Research:

Prediction and Planning

Finite Horizon: Planning by Value lteration

input: MDP model ((S, A, R), P)
parameter: Horizon T
init: v/ (s)=0VseS, t=T

repeat
t—t—1
for s € S do
v/ (5) - max <( )+ p(s'ls, a)vz;l(s/)>
s’eS
end
until t =0

output: Deterministic policy m¢(s) € argmax < s,a)+ 7 E (s'|s, a) v s'))
acA
s'eS

c
o
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@ Algorithm used to prove the existence of an optimal policy.
@ No necessarily unique as argmax may not be unique.
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Optimal Value Function, Fixed Point and Contraction

Operations Research:
Prediction and Planning

v =T and [TV =TV, <v[v—Vx {\
853D

= Vk41 = T*Vk — Vy

Bellman Operator

@ Properties of Optimal Bellman Operator:
e v, is a fixed point of T*.
e T* is a y-contraction for the || - ||oc norm.

o Classical fixed point theorem setting.

@ Practical algorithm to approximate v.

.
Discounted
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Value Itel’atlon Algorlthm Operations Research:

Prediction and Planning

Discounted: Value Iteration Planning

input: MDP model ((S, A, R), P), and discount factor ~y
parameter: § > 0 as accuracy termination threshold
init: ¥(s)vVse S
repeat

Vprev — v

A<+ 0

for s € S do

(s) « maxr s,a) +y Z s'|s, a) Vprev(s')
s'eS
A < max (A, |[V(s) — Vrev(5)])

end
until A <6
output: Value function ¥

Discounted

@ Same convergence criterion (and similar proof) than in the planning case.
@ Which policy?

e8]
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Value Itel’atlon Algorlthm Operations Research:

Prediction and Planning

Discounted: Value Iteration Planning

input: MDP model ((S, A, R), P), and discount factor ~y
parameter: § > 0 as accuracy termination threshold
init: ¥(s)vVse S
repeat
Vorev + V
A<+0
for s € S do
v(s) + maxr s,a)+y Z s'|s, a) Vprev(s')
s'eS
A < max (A, |[V(s) — Vrev(5)])
end 8
until A <9 =
output: Deterministic policy 7(s) € argmax r(s,a) + Z s'|s,a)v(s") 8
s'eS g
: : : : : a
@ Natural idea: define a policy using the argmax of the existence proof.
@ Do we have a convergence guarantee on the resulting policy? 87



Value and argmax Policy

7i(s) € argmax r(s,a) + WZP( 'Is, a)V(s")

= lvi = villoo < 7M1V = w
1—7

Value and argmax Policy

@ Bound on the loss of the final policy!

@ Rely on the fact that, by construction, 77 v = T*¥

e Proof:

Vi = Villoo = [|T7 v = T70 + TV — T*vi] oo

ST v =T oo + IT*7 = T villoo
< Allve = Plloo + IV — villoo
< AlIvie = villoo + 291V — viloo

Operations Research:
Prediction and Planning
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Value Itel’atlon Algorlthm Operations Research:

Prediction and Planning

Discounted: Value Iteration Planning

input: MDP model ((S, A, R), P), and discount factor ~y
parameter: § > 0 as accuracy termination threshold
init: ¥(s)vVse S

repeat

Vi = 7

A<+ 0

for s € S do

(s) « maxr s,a) + 7 Z s'|s, @) Voreu(s")
s’eS
A < max (A, |[V(s) — Vrev(5)])

end

until A < §

output: Deterministic policy 7(s) € argmax r(s,a) + Z s'|s,a)v(s")
s'eS
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@ Prop: ||vi — Vi||oo < T i (5
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From State Value to State-Action Value Functions Operations Research:

Prediction and Planning

gr(s,a) = Ex [ZVthSO =sA = a]

k

vr(s) = Ex [Z ’yth|So =5
K

)
(]
)

T™v(s) = ) n(als) (( a)+v ) p(s'ls, a)v(s'>> T q(s,) = r(s,3) + X pls'ls,3) 3 w(als)als’ 212
T v(s) = max r(s,a) +~ Z p(s’|s, a)v(s") T q(s,a) = r(s,a) +~ Z p(s'|s, a) max q(s’, a)

O
L
O
\
. . . O
Two equivalent point of view? 5
Q
2
o
L
90

@ Everything could have been defined using the state-action point of view.

@ Knowing v; is equivalent to knowing g, as

ve(s) = 3" n(als)an(s,2) and  qu(s,a) = (s, a) =73 p(s'ls, a)va(s’).

a



State-Action Bellman Operators Operations Research:

Prediction and Planning

T7q(s,a) = r(s,a) + ’yz p(s'|s, a) Zﬂ(a\s/)q(s’, a)

a

T*q(s,a) = r(s,a) +7Y_ p(s'ls, a) max q(s', a)

s/

Properties

@ Prop: 7™ and T* are y contractions for the || - ||oc norm.
@ Prop: g, is the unique solution of 7™q = g

@ Prop: g, defined q.(s, a) = sup,. g(s, a) is the unique solution of g = 7*q and is
attained for any policy , satisfying m.(s) € argmax g, (s, a).
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@ Prop: Any such policy satisfies: v, (s) = g, (s, m(5)) = vi(s).
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State-Action Value Iteration Algorithm

Operations Research:
Prediction and Planning

Discounted: Planning by State-Action Value lteration

input: MDP model ((S,.A,R), P), and discount factor y
parameter: § > 0 as accuracy termination threshold
init: g(s,a)VvV(s,a) e S x A
repeat
Gprev <= §
A <0
for s € S do
for a € Ado
(s, a) « <r(57 a)+7 D P(s'ls, @) max Gorev (s, a’))
s'eS °
A < max (Av ‘a(sv a) o aP"eV(Sv a)l) -
end Q
end E
until A < o =
output: Deterministic policy 7(s) € argmax §(s, a) 8
. 0
)

@ Same complexity but more storage than with state value function. ..
@ but will be useful later!
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O Utl | ne Operations Research:

Prediction and Planning oo

e Operations Research: Prediction and
Planning

@ Planning by Policy Iteration
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Value Fonction vs Policy Point of View Operations Research:

Prediction and Planning

v,gq — Il or Il — v, q?

Planning

@ Focus so far on value-fonction point of view!
@ Heuristic: find a good approximation of the optimal value function and deduce a
good policy.

@ Can we work directly on the policy itself?

e For prediction, only the policy point of view makes sense!
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TOW3 I’d POl ICy I m pI’OVG ment Operations Research:

Prediction and Planning

Vs, m.(s) € argmax gx(s, a) = Vv (s) > va(5)

Classical Policy Improvement Lemma
@ Prop: Given a policy 7 and its g value-function, one can obtain a better policy
with the argmax operator.
@ Prop: If no improvement is possible, it means that 7 is already optimal.
@ Proof: Use T™ vy = T*v; > T vy = v to prove (T“)k vy > v which implies
the result by letting k goes to +oc.

@ Leads to a sequential improvement algorith. ..
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POl |Cy I m prOVGment I_em ma Operations Research:

Prediction and Planning

Bl (So)] — Blve(So)] = 3. 9*Ew| S 7(6150) (4:(S1:2) = ()
= 39 En | ¥ (#/(315) — 7(a15)) 4s(5:.2)

@ No assumptions on 7 and 7!
e Easy proof.

@ Imply the previous lemma as max, Qx (s, a) — vx(s) > 0.

@ Show that improvement choices are possible.

@ Will prove to be useful later. ..
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POl |Cy |t€ ratlon Operations Research:

Prediction and Planning

Discounted: Planning by Policy lteration

input: MDP model ((S, A, R), P), and discount factor ~y
parameter: Initial policy 7
repeat
Compute gs.
for s € S do
for a € A do
| #(s) « argmax gz (s, a)
end
end
output: Deterministic policy 7.

@ How to obtain g7

@ When to stop?
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POl |Cy |t€ ratlon Operations Research:

Prediction and Planning

Discounted: Planning by Policy Iteration

input: MDP model ((S,.A,R), P), and discount factor y
parameter: Initial policy 7
repeat
stable <— 0
Compute gs.
for s € S do
old — action < 7(s)
7t(s) « argmax g (s, a)
if 77(s) # old — action then
| stable <— 0
end

end
until stable =1
output: Deterministic policy 7.

Finite Setting

o Finite set of action-states implies a finite set of policy.

g Episodic / Discounted

@ Convergence of the algorithm in finite time!



POl |Cy |t€ ratlon Operations Research:

Prediction and Planning

Convergence Rate

@ Crude analysis:
e Bound after k steps of the algorithm

lve, = velloo < AMVaey = Valloo < ¥ llvey — valloo

Y
[V, = Vaelloo < 1 ’YHVM — Vo lloo

e Not much better than value iteration but much higher complexity as g, is obtained
by solving the Bellman equation!

@ Much faster in practice. ..
o Clever analysis (Putterman):
o Under some mild assumptions and provided ||P™ — P*|| < K||vy, — Vi||oo then

g
Ve = Villoo < 7= llvmes = VellZ

e May explain the better convergence in practice!
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O Utl | ne Operations Research:

Prediction and Planning

e Operations Research: Prediction and
Planning

@ Optimization Interpretation
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Value Iteration: (Relaxed) First Order Method Operations Research

Prediction and Planning

Value lteration

@ lteration:

Vi — T*Vk—l
= Vk—_1+ (7—* — Id) Vi1
@ Relaxation
Vk = Vk—1 — a(Id — T7) vg—q
can be proved to converge for any a < %

Can be interpreted as a first order method with pseudo-gradient (7* — Id) vx_1.

No function corresponding to this gradient!

Is there a better choice for o than o = 17
No as the resulting operator is a contraction of constant
1 —al+ay>y
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Policy Iteration: Newton-Raphson Method Operations Research:

Prediction and Planning

Policy Iteration

o Explicit iteration:

Solve vy, | =T ™ vy, |
Let 7k such that 7™ vy, =T v, _,
o Implicit iteration on v ,:
Ve, = (Id — 'yP”k)_lr,,k
= (Id — yP™) 7 (rr, + (yP™ —Id) vy, , + (Id — YP™)vr, ,)
= Vr_;, — (Id = 'Y'Dﬂk)_l(ld = T )W,y
@ Can be interpreted as a second order method with pseudo-gradient
(Id = T™) g, _, = (Id = T*)vy,_, and pseudo-Hessian (Id — P™).

@ Not a formal analysis but give a good insight on the better convergence of policy
iteration.

Discounted
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Planning

@ Approximation and Stability
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Stablllty Of Value and POllcy IteratIOn Operations Research:

Prediction and Planning

Ideal Value and Policy Iteration?

o lterative algorithms.
@ Convergence proofs assume perfect computation.

@ What happens if we make a (small) error at each step?

@ Particularly important for Policy Iteration in which one resolves a linear system at
each step!
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Value Itel’atlon Sta billty Operations Research:

Prediction and Planning

*
Ve = T Vk—1 + €k—1

max ||€x|oo

0<k’<k
= Vi — villoo < 7¥lIVo = Wulloo + = ; -
k41 2’}/ max Hek’Hoo
0<k’<k
— ||V7rk_V*Hoo< 1_7HVO_V*H00+ (1_7)2

Stability with respect to approximations

@ Proof relies on the contraction property of 7* (hence similar results for 77).

k—1

@ Error term —=————— can be replaced by Z YK e lloo
k'=0

e Convergence if ||ex||o tends to O.
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@ Reach a neighborhood of the optimal solution if ||ex || is bounded.
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POl |Cy |te ration Operations Research:

Prediction and Planning

Vke1 = Vo, T -1 and T vy = T vig + 01

1
= vy = Wl < P vy = Wl g (2902 =) g, el max, 1)

Stability with respect to approximations

@ Quite involved proof but crude results.
Error term 2y(2 — / O b laced b
@ Error term 2y(2 — ) oTax, llex 1] oo —i—oglké)ék |0k |lso can be replaced by
k—1
k—k'
(1 —=7) > ¥ (292 = Nllewlloo + 118k l|o) 3
k'=0 2
o Convergence if ||ex||co and ||dk|||oo tends to O. 3
@ Reach a neighborhood of the optimal solution if ||ex||oo and ||dk|||c are bounded. ) @
O
e Justify why Policy lteration only requires an approximate estimate of v, ., for
106

instance obtained by Bellman iteration. ..
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@ Generalized Policy lteration

107



Modified Policy lteration

Operations Research:
Prediction and Planning

Discounted: Planning by Generalized Policy Iteration

input: MDP model ((S,.A,R), P), and discount factor ~y
parameter: Initial g
repeat
for s € S do
‘ 7t(s) < argmaxq(s, a)

end
repeat
Qprev — q
for (s,a) € S x Ado
a(s,3) « r(5,3) + 7 3 p(S'Is, ) (|5)dmer(s, 2)

s,a’

end
output: Deterministic policy 7.

@ Algorithm driven by q.
@ Flexibility in the number of prediction steps after each policy improvement steps.
@ Special cases:

o Large number: Policy Iteration with (small) error.
e One: Value Iteration!

Discounted
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M P I A na IySIS Operations Research:

Prediction and Planning

T vk =T"vi and vip1 = (T™)™ v

1 — Mk * m
L™ pr P 4 ) Ve = villo

— o =l <7 (2

Convergence Results

@ Quite technical proof.

Valid only under the mild assumption 7*vy > vg.

Very fast decay provided ||P™ — P*|| is small.

No stability with arbitrary errors. ..

Except if my is large enough (cf policy iteration).
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Generalized Policy lteration

Operations Research:
Prediction and Planning

General Policy Iteration

@ Two simultaneous interacting processes:

o One forcing the policy to correspond to the current value function (Policy
Improvement)

e One trying to male the current value function coherent with the current policy
(Policy Evaluation)

@ Several variations possible on the two processes.
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@ In GPI, the policy is driven by the value function.
e Typically, stabilizes only if one reaches the optimal value/policy pair.
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State U pd ate O rder Operations Research:

Prediction and Planning

Discounted: Prediction by Value lteration - State Update Order

input: MDP model ((S,.A,R), P), discount factor v, and stationary policy w
init: ¥(s)Vse S
repeat

Vorev < V

for s € S’ C S do

v(s) < > _m(als) (( a)+v>_ p(s'ls, a)vprev(s’))

ac A s’'eS
end
output: Value function v

Classical strategies

o 8§’ = 8: classical iteration
o &' = {s}: Gauss-Seidel
S = {s,|T™V(s) — V(s)| > €}: Prioritized sweeping

Converges provided all states are visited infinitely often. ..
Gain in term of storage or focus on most interesting states. . .

Episodic / Discounted
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POl |Cy | m prOVGment Va rlatlon Operations Research:

Prediction and Planning

Greedy : 7(-|s) € argmax q(s, a) <= 7(-|s) € argmax Y 7(a)q(s, a)

Restricted : 7(-|s) € argmax > _ 7(a)q(s, a)

el a

Regularized : 7(:|s) € argmax ) 7(a)q(s, a) + eP(7)

Classical Variations

@ c-greedy: Restrict 7 to the set of policy s.t. 7(a) > €/|A]
o Explicit solution: 7(als) = ¢/|A| + (1 — €) argmax g(s, a)
o Policy improvement property if € decreases.

@ Soft-max: Regularize by eH(7) where H is the entropy.
o Explicit solution: m(als) o< exp(q(s, a)/e€)
o No classical policy improvement. ..

e}
(O}
)
<
=
O
Q
L
a
~
=
©
]
U
o
Ll

@ Tends to greedy when € goes to 0.
@ Turn out to be interesting later...
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@ Episodic and Infinite Setting

e Operations Research: Prediction and
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E pISOCI |C Settl ng Operations Research:

Prediction and Planning
H-1
B [min{t, 5. = s} < H = [TV = TVl < v = Ve

Proper Policy
@ A policy 7 is said to be H-proper if E [mtin{t, S = 5abs}] <H<x

@ = average duration of an episode using this policy less than a finite horizon H!

Bellman operators

o If a policy 7 is H-proper, the Bellman operator 7™ is a (H — 1)/H- contraction
for a weighted sup-norm.

o If all the policies are H-propers, the optimal Bellman operator 7* is a
(H — 1)/H-contraction for a weighted sup-norm.

@ Under those strong assumptions, episodic setting ~ discounted setting with
v=(H-1)/H.

@ Some results can be obtained under the much milder assumption that there is one proper policy
and that any non-proper policy has at least one state for which v, (s) = —o0.
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Episodic Setting and Discount

Operations Research:
Prediction and Planning

dH < OO,VSJEW |:mtin{t7 St = Sabs

50 = S}:| < H
<=3T,v7 < 1,Vs,P.(ST = Saps|So =5) > 1 — 1

Episodic Setting and Discount
@ Discounted setting: Vs, Pr(S7T = saps|So =5) =1 — v
o Episodic setting: Generalization in which more states are needed to reach the
absorbing state.
o Prop:
o H< oo = Yat+eoH <

e 77T<1l — H<1_7:YT

1
1+e

@ Bertsekas equivalent assumption:
Fys) < L, Vs, Pr (5\3| = Sabs

50:5) > 1=y

.
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I nfl n Ite Settl ng Operations Research:

Prediction and Planning

@ No issue with the rewards, as only the expectation is used.

@ All the theory remains valid if the states are countable, but there is an issue in the
algorithms, as we need to store/update an infinite number of states.

@ The proof of existence of an optimal policy requires the max to be attained, which
cannot be ensured in an infinite (even countable setting).

Some results. . .
@ Thm: If S is countable, there exists an e-optimal (stationary) policy for any ¢ > 0.
@ Thm: If S is a Polish space (separable completely metrizable topological space),
there exists a (P, €)-optimal (stationary) policy for any € > 0.
if each As is countable, there exists an e-optimal (stationary) policy for any € > 0.
if each A is finite, there exists an optimal (stationary) policy.
if each A is a compact metric space, r(s, a) is a bounded u.s.c. function on As and
p(Bls, a) is continuous in a for each Borel subset B and any s, there exists an
optimal (stationary) policy.
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@ Mainly technical difficulties. . .
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Prediction and Planning in
the Tabular Setting

e Reinforcement Learning: Prediction and
Planning in the Tabular Setting
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Rel nfOrcement Learn i ng Reinforcement Learning:

Prediction and Planning in
the Tabular Setting

From Probability to Statistics?
@ What to do if one has no knowledge of the underlying MDP?

@ Only information through interactions!
@ Prediction? Planning?

@ Focus on the discounted setting
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O Utl | ne Reinforcement Learning:

Prediction and Planning in
the Tabular Setting

e Reinforcement Learning: Prediction and
Planning in the Tabular Setting
@ Prediction with Monte Carlo
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Monte Cal’lo, Ie JUSt Playl Reinforcement Learning:

Prediction and Planning in
the Tabular Setting

@ Most simple way to evaluate a policy.

Just Play Following Policy T1

@ Play N episodes following the policy.
@ During each episode, compute the (discounted) gain.

@ Compute the average gain.

@ What is computed?
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Ave rage Galn or Va | ue FU nCtlon Reinforcement Learning:

Prediction and Planning in
the Tabular Setting

E[G] vs ven(s) =E[G:S: = 5]

Prediction as Value Function Evaluation

@ Not the same goal.

@ By construction,
E[Go] = ZMO Von

@ Much easier to compute the average gain than the value function (even if we use
a stationary policy)

@ Average gain is nevertheless the most classical way to evaluate a policy (with a
single number).

@ Implicit episodic setting if we do not want to use approximated gain.
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Ave rage Ga | n EStI m atlon Reinforcement Learning: X

Prediction and Planning in

the Tabular Setting

Episodic: Evaluation by MC

input: MDP environment, initial state distribution po, policy 1 and discount factor v
parameter: Number of episodes N
init: V=0,n=0
repeat
n<—n+1
t<0
G<+0
Pick initial state Sy following i
repeat
Pick action A; according to m(:|S¢)
G— G = 'YtRH»l
t—t+1
until episod ends at time T
V«—V+G6
until n =N
V<« V/N
output: Average gain V
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Monte Cal’lo PredICtIOn Reinforcement Learning:

Prediction and Planning in
the Tabular Setting

@ How to estimate v; n?

Just Play Following Policy Il

@ Play N episodes following the policy.

@ During episode, record S; and R;.

o After each episode, compute recursively for each time t the gain G;.
o

Estimate v; n(s) by the average G; over all trajectories such that Sy ='s

May require a lot of game to have a non empty set for each state s at
each time t

2
o
o
L2
o
L
\
[
=
=
Lo

[y
N
[°N)



Monte Cal’lo PredICtIOn Reinforcement Learning:

Prediction and Planning in
the Tabular Setting

@ How to estimate vy for a stationary policy?

Just Play Following Policy Il

@ Play N episodes following the policy.

@ During each episode, record S; and R;.

o After each episode, compute recursively for each time t the gain G;.
o

Estimate vi(s) by the average over all trajectories of all G; such that S; =s,

whatever t. )
@ The same state may be reached several time during a single episode. . .
o First-visit variant: Use only the first visit of s for each episode.
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Monte Carlo PredICtlon Reinforcement Learning:

Prediction and Planning in

Episodic: Prediction by MC

input: MDP environment, initial state distribution o, policy 'l and discount factor ~y
parameter: Number of episodes N/
init: Vs, V(s),n =0, N(s) =0

repeat
n<—n-+1
t <0
Pick initial state Sp following o
repeat
(If First-visit) N(S:) < N(S:) + 1
Pick action A: according to 7 (:|S:)
Record Rty1, Sei1
t<— t+ 1
until episod ends at time T
Gr4+1 =0
t— T +1
repeat
t<—t—1
Compute Gt = Rit1 + vGrya
(If First-visit) V(S:) = V(S:) + G:
until t =0

until n = N
for s € S do
| V(s) + V(s)/N(s)
end
output: Value function V
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Monte Carlo Prediction Analysis Reinforcement Learning:

Prediction and Planning in
the Tabular Setting

First-Visit Variant Analysis

@ Straightforward analysis as all the used values for a given state s are independent.

@ Variance of order 1/N(s) where N(s) is the number of episodes where s is visited.
o Convergence if the number of visits goes to co.

@ Strong assumption is practice, as some states may not be visited by a given policy
(if we cannot play on the initial state).

o

@ Every-visit works. . . but not necessarily better!
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O Utl | ne Reinforcement Learning:

Prediction and Planning in
the Tabular Setting

e Reinforcement Learning: Prediction and
Planning in the Tabular Setting

@ Planning with Monte Carlo
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Monte Cal’lo Plannlng Reinforcement Learning: 4,

Prediction and Planning in
the Tabular Setting

@ Can we use a MC approach to find a good policy?

A First Attempt

o Estimate v, (s) by Vi(s) using MC.
Compute Qu(s,a) = r(s, ) + 7 S p(5']5, 2) Vi(s)
Enhance the current policy by setting 7(s) = argmax, Q(s, a)

Inspired by the Operations Research results. ..

But unusable as r and p are unknown!

Episodic
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Monte Cal’lo Plannlng Reinforcement Learning:

Prediction and Planning in
the Tabular Setting

A Second Attempt

o Estimate g.(s, a) by Qx(s, a) using MC.
@ Enhance the current policy by setting m(s) = argmax, Qx(s, a)

@ Requires that N(s, a) the number of times that an episode contains the state s
followed by action a goes to co.
@ Impossible with a deterministic policy!

Episodic

[y
N
©



Monte Carlo Plannlng Reinforcement Learning:

Prediction and Planning in
o ottino

Classical Exploratory Policies. . .

@ Stochastic policies ensuring that any action can occurs at any state.

@ c-exploratory policy: use a determistic policy and replace it with a random action
with probability e.
@ Gibbs policy: use a policy where 7(als) oc e*@@) > 0.

A Final Attempt

o Start from an exploratory policy.

o Estimate g(s, a) by Qx(s, a) using MC.

@ Enhance the current policy while remaining a exploratory policy.

J o

@ Last step is not straightforward. .. _8
@ except for e-deterministic policy for which the e-exploratory policy with base g_
policy 7(s) = argmax, Qx(s, a) works. Ll

@ No convergence proof. 130
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@ Prediction with Temporal Differencies
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Advanced Implementation of Monte Carlo Prediction  renforcement Learning: ¥

Prediction and Planning in
the Tabular Setting

Vi (Se) < Vi(Se) + a(N(S:))(Gr — V(St))

On-Line Monte Carlo

@ Average for a given state can be updated each time we have the gain G; for a
state S;.

@ Just use a(N) = 1/N and increment N(S;).

@ No need to record the values between episodes. . .

@ We still need to wait until the end of each episode to compute G;.

@ Can we do better?
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Adva nced M C P I’ed ICtIOﬂ Reinforcement Learning:

Prediction and Planning in

Episodic: Prediction by MC

input: MDP environment, initial state distribution o, policy 'l and discount factor ~y
parameter: Number of episodes N/
init: Vs, V(s),n =0, N(s) =0

repeat
n<—n-+1
t <0
Pick initial state Sp following o
repeat
(If First-visit) N(S:) < N(S:) + 1
Pick action A: according to 7 (:|S:)
Record Rty1, Sei1
t<— t+ 1
until episod ends at time T
Gr+1 =0
t— T +1
repeat
t<—t—1
Compute Gy = Rey1 + vGey1
(If First-visit) V(S:) = V(S:) + ﬁ (G: — V(S:)) L_)
until t =0 O
until n = N o
output: Value function V !)
o
@ We still need to wait until the end of each episode to compute G;.
133

@ Can we do better?



Prediction with Temporal Differencies Renforcement Learing: 2K

Prediction and Planning in
the Tabular Setting

From Vi(S:) < Vi(S:) + a(N(S:))(G: — Vi (S:))
to Vi(S:) < Vi(Se) + a(N(St)) (Revr + 7 Va(Ser1) — Va(St))

Ot

Bootstrap Strategy

@ Replace G; by an instantaneous estimate Ryy1 + Vi (St+1)-

@ Amounts to replace YR; 42 + 7?Rey2 + ... by an approximation of its expectation
given Sei1: Vi (Se41).

@ Bootstrap as we use the current estimate V:(S¢4+1) instead of the true value.

@ 0t = Rey1 + YVa(Se+1) — Vi (St) is called a temporal difference.

@ No need to wait until the end of the episodes!
@ Can be used in the discounted setting.
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TD Prediction

Reinforcement Learning:
Prediction and Planning in
the Tabular Setting

Discounted: Prediction by TD

input: MDP environment, initial state distribution po, policy 1 and discount factor v
parameter: Number of step T
init: Vs, V(s),n=0,N(s)=0,t =0
repeat
t+<0
Pick initial state Sy following 1o
repeat
N(S:) < N(S:) +1
Pick action A; according to m(:|S;)
V(Se) <= V(St) + a(N(St)) (Resr + 7 V(Ser1) — V(St))
t—t+1
until episod ends at time T' ort' = T
until t' = T
output: Value function V

Discounted

@ But does this work?
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Prediction with Temporal Differencies Renforcement Learing: 2K

Prediction and Planning in
the Tabular Setting

E[5t|5t] = ]E[Rt+1 + /yvﬂ(st'f'l) - V,r(St)|St] = (7‘7T - Id) Vﬂ(St)

TD and Bellman Operator

@ TD as an approximate Policy lteration:
E[Vz] (St) = Vo + a(N(S5:)) (TT —1d) Vx(5:)
@ Proof of convergence of this algorithm to a zero of 7™ —Id, i.e. the fixed point of
77!
@ Proof requires a mild assumption of « (satisfied by «(N) = 1/N) and the strong
assumption that N(s) goes to co.

@ MC could be interpreted in a similar way (stochastic approximation) by noticing
that E[Gt — Vﬂ(St)‘St] = V’ﬂ'(st) — Vﬂ—(st)
o Often use with a constant «
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M C VS TD Reinforcement Learning:

Prediction and Planning in
the Tabular Setting

Vr(St) <= Vr(Se) + a(N(5:))(Ge — Vr(St))
or  Vi(St) <= Va(Se) + a(N(St)) (Res1 + v Va(Se41) — Va(St))
Jt

Both are based on stochastic approximation.

Both converges (under similar assumptions) to the correct value function.

No theorical difference in the speed of convergence but often TD is better. ..
Solve different approximate problems when used with a finite set of episodes:

o MC compute the empirical gain from any state.
o TD compute the value function of the empirical Bellman operator (the one obtained
by using the empirical transition probabilities)

o
o
@ TD does not require to wait until the end of the episode.
o
o
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If V, is kept constant during an episode
Gt — Va(St) = Z vE 6,

[y
w
hy]



O Utl | ne Reinforcement Learning:

Prediction and Planning in
the Tabular Setting

e Reinforcement Learning: Prediction and
Planning in the Tabular Setting

@ Link with Stochastic Approximation
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StOCh aStIC ApprOXi matIOn Reinforcement Learning:

Prediction and Planning in
the Tabular Setting

9k+1 =0, + akhk(ﬁk) with hk(g) = H(Q) + €k + Nk
— 0, — {6, H(6) = 0}

Stochastic Approximation

Family of sequential stochastic algorithm converging to a zero of a function.
Classical assumptions:

o Elex] =0, Var [ex] < o2, and E[||n«]|] — O,

o Y ,ar—ooand Y, ai < oo,

o the algorithm converges if we replace hyx by H.

Convergence toward a neighborhood if « is kept constant (as often in practice).
Most famous example are probably Robbins-Monro and SGD.

Proof quite technical in general.

The convergence with H is easy to obtain for a contraction.
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Prediction and Planning in
the Tabular Setting

StOChaStIC ApprOXimathn and ODE Reinforcement Learning: 1

From 6k+1 =0, + Ozkhk(ek) with hk(Q) = H(@) + €k + Mk
df .
to — =H(A
5 = H©)
ODE Approach
@ General proof showing that the algorithm converges provided the ODE converges.
@ Rely on the rewriting the equation

) —0
AL 7K — he(Bk) = H(0k) + ex +

oy can be interpreted as a time difference allowing to define a time tx = ),/ a.

6(t) is piecewise affine and defined through its derivative at time t € (t, tki1)-

This piecewise function remains close to any solution of the ODE starting from 6
for an arbitrary amount of time provided k is large enough.

V,

140

@ More general proofs based on martingale.



AsynCh ronous U pd ate Reinforcement Learning: 4

Prediction and Planning in
the Tabular Setting

From 0k+1 =0+ akhk(ek) with hk((g) = H(Q) + €k + Nk
to Vi, 9k+1(l') = Hk(i) + Oék(l')hk(ek)(l')

Asynchronous Update

o Componentwise action on 6.
o Not necessarily the same stepsize (/) for all components.
o ay(i) =0 is permitted!

@ Previous results hold provided for every component 7, >, ax(i) — oo and
>k k(i) < oo,

@ Exact setting of TD approximation!
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Prediction and Planning in
the Tabular Setting

e Reinforcement Learning: Prediction and
Planning in the Tabular Setting

@ Planning with Value Iteration
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Planning with Temporal Differencies Reinforcement Learning:

Prediction and Planning in
o ottino

A State Value Function Attempt

@ V, is the fixed point of T*.
@ Approximate it as the zero of 7* — Id.

@ By construction
T*v(S:) = m;xE[RTH + v (St+1)|St, a]

@ Not an expectation! )

A State-Action Value Function Attempt

@ g, is the fixed point of 77*.

@ Approximate it as the zero of 7* — Id.
@ By construction
T*Q(Sn At) =K [Rt+1 + mg]x q(St+1> 3)‘5t7 At}

@ An expectation!

Discounted

-
N
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Q Learning

Reinforcement Learning:
Prediction and Planning in
the Tabular Setting

Discounted: Planning by Q-Learning

input: MDP environment, initial state distribution po, policy 1 and discount factor v
parameter: Number of step T
init: Vs, a, Q(s, a), N(s,a) =0, n=0, t' =0
repeat
t+0
Pick initial state Sy following o
repeat
N(S:) < N(S:) +1
Pick action A; according to m(:|S;)

Q(St, Ar) — Q(St, Ac) + a(N(S:, Ar)) (Rtﬂ +ymax Q(Sii1,2) — Q(S:, At))

O

t—t+1 8

't +1 c

until episod ends at time T' ort' = T 8
until t' = T 9
output: Deterministic policy 7(s) = argmax, Q(s, a) A

—
~
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Plannlng Wlth Q Learnlng Reinforcement Learning: /

Prediction and Planning in
the Tabular Setting

Q(St, Ar) = Q(St, Ar) + a(N(St, Ar)) | Reyr + max Q(St11,a) — Q(St, Ar)

bt

Q-Learning
@ Update is independent of the policy I1.

@ Convergence of the Q-value function provided the policy is such that N(s, a)
tends to oo for any state and any action.

@ Implies a convergence of the policy.

@ Relies on temporal difference.

@ Most classical (tabular) planning algorithm!
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O Utl | ne Reinforcement Learning:

Prediction and Planning in
the Tabular Setting

e Reinforcement Learning: Prediction and
Planning in the Tabular Setting

@ Planning with Policy Improvement
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Planning with Policy Improvement

Reinforcement Learning: 4
Prediction and Planning in
the Tabular Setting

from  Q(S:, Ar) = Q(S:, Ar) + a(N(S:, Ar)) | Rer + max Q(St41,3) — Q(S:, Ar)

bt

to Q(S:, Ar) = Q(St, Ar) + a(N(Se, Ar)) | Rerr +7Q(Str1, Arvr) — Q(St, Ar)

Ot

M(S;) = argmax Q(S;, a)(plus exploration)

Policy Improvement

@ More emphasis on the policy with a link between the policy used to play and the
optimized policy.

Discounted

o Almost equivalent to use the current policy in the Q-Learning algorithm.
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Reinforcement Learning:
Prediction and Planning in

SARSA
the Tabular Setting

Discounted: Planning by SARSA

input: MDP environment, initial state distribution po, policy 1 and discount factor v
parameter: Number of step T
init: Vs, a, Q(s, a), N(s,a) =0, n=0, t' =0
repeat
t < 0 Pick initial state Sp following 1o
repeat
N(S:) < N(S:) + 1
Pick action A; according to m(:|S¢)
Q(Si—1, A1) + Q(St—1,Ac—1) + a(N(St—1,Ac—1)) (Re + vQ(St, Ar) — Q(Se—1,A¢-1))
M(S¢—1) = argmax, Q(S¢—1, a) (plus exploration)
tt+1
't +1
until episod ends at time T' ort' = T
until ' =T
output: Deterministic policy 7 (s) = argmax, Q(s, a)

Discounted

@ Does this work?
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SARSA and eXploratlon Reinforcement Learning: [V"

Prediction and Planning in
the Tabular Setting

M(S:) = argmax Q(S;, a)(plus exploration)

SARSA and Exploration

No hope of convergence if we do not explore all possible actions (and states).
Impossible if the policy used is deterministic.
Exploration is required!

Most classical choice: e-greedy policy with a decaying e.

Convergence proof is harder than for Q-Learning.

@ Relies on the similarity in the limit (when € goes to 0) with the Q-Learning
algorithm.
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Prediction and Planning in
the Tabular Setting

e Reinforcement Learning: Prediction and
Planning in the Tabular Setting

@ Exploration vs Exploitation
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@-Learning vs SARSA

Reinforcement Learning:
Prediction and Planning in
the Tabular Setting

How different are they?

8ad

$egg

838

ge g
m%
ok
2
2

- <

2

@ In Q-learning, the exploratory policy used is decoupled from the optimized policy.
@ This exploratory policy may yield low rewards on average.

@ In SARSA, the two policies are linked with the hope on having higher rewards
during the learning step.

@ Subtle different behavior even if we modify the exploratory policy in Q-Learning.
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EXplOFatlon VS EXplOItatlon Reinforcement Learning:

Prediction and Planning in
the Tabular Setting

Exploration vs Exploitation

@ Exploration: explore new policies to be able to discover the best ones.

@ Exploitation: use good policies to obtain a good return.

Exploration is a requirement.

No tradeoff if we optimize only the final result!

Tradeoff between the two if we consider that the returns during training matters!
Q-learning use the first approach and SARSA try to tackle the second.

Tradeoff if we study a regret:

Y (En.[Rd] —En,[R:])
t
which forces us to be good as fast as possible.

No natural definition in the discounted setting.
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Advanced Techniques in the
Tabular Setting

o Reinforcement Learning: Advanced
Techniques in the Tabular Setting
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Advanced Tabular Reinforcemcent Learning Reinforcement Learning:

Advanced Techniques in the
Tabular Setting

@ Core idea: Approximate Bellman Operators with Stochastic Approximation. . .

Advanced ldeas?
@ Between MC and TD?
Off-policy vs on-policy?

@ Exploration vs Exploitation?
@ Model? Replay?
@ Real-Time Planning?
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Advanced Techniques in the
Tabular Setting

o Reinforcement Learning: Advanced
Techniques in the Tabular Setting
@ n-step Algorithms
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n-steps

Reinforcement Learning: 4
Advanced Techniques in the
Tabular Setting

O+ Q@
0-O+-0+-O+o+@

or or

How many steps before backup?

@ One step: TD.

@ As many steps as required to end the episod: MC.
@ n-steps: n-steps TD.

(7)" v(s) = Bn | Res1 + YRex2 + 7" Reyn +7"v(St1n)|Se = s

Gt:t+n

Discounted

@ Family of stochastic approximation algorithms:

V(St) < V(St) + a(N(St)) (Geevn — V(St))

[y
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n—StepS TD Reinforcement Learning: 4
Advanced Techniques in the
Tabular Setting

or

O+ Q@
0-O+-0+-O+o+@

or

V(St) <= V(St) + a(N(St)) (Grevn — V(St))

Convergence for prediction.

Need to be combined with Policy Improvement for planning: n-steps SARSA.

n-steps Q-learning could be an extension of API. .. but this means following the
optimized policy I1...i.e. SARSA!

Best convergence often for intermediate n.
No proof beside TD for n > 1!
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n-steps TD

Reinforcement Learning:
Advanced Techniques in the
=1s) 2 cttino

Discounted: Prediction by n-steps TD

input: MDP environment, initial state distribution o, policy I and discount factor
parameter: Number of step T

init: Vs, a, Q(s, a), N(s,a) =0, n=0, t' =0

repeat

t<0

Pick initial state Sp following 1o
repeat
N(S:) < N(S:) +1
Pick action A; according to m(-|S)
Q(stfny Atfn) — Q(Stfny Atfn) T OZ(N(Sn At)) (thn:t — Q(Sn At))
tt+1
t'«+—t' +1
until episod ends at time T' ort' = T
until t' =T
output: State-Action value function @
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Expected SARSA

Reinforcement Learning: 4
Advanced Techniques in the
Tabular Setting

or

Expected SARSA
@ The policy I is known so that we can use it in a formula:
Rt +vQ(St, Ar) — Re + ’YZ m(a|St) Q(St, a)
a
@ Make the update independent of the action chosen (and thus of the policy used to
play).
@ Reduce the variance for a computational cost.

@ Amount to use the current estimate for V/(5;). ..

Discounted
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EXpeCted SA RSA Reinforcement Learning:

Advanced Techniques in the

Discounted: Prediction by Expected SARSA

input: MDP environment, initial state distribution o, policy I and discount factor
parameter: Number of step T
init: Vs, a, Q(s, a), N(s,a) =0, n=0, t' =0
repeat
t<0
Pick initial state Sp following 1o
repeat
N(S:) < N(S:) +1
Pick action A; according to m(-|S)
Q(Sh At) < Q(St, At) + Q(N(St, At)) (RH—I + 7 Za 7T(a|5t)Q(5t+1y 3) - Q(St, At))
t<—t+1
'+t +1
until episod ends at time T' ort' = T
until t =T
output: State-Action value function Q

Discounted
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n-steps Tree Backup

Reinforcement Learning:
Advanced Techniques in the
Tabular Setting

n-steps Tree Backup

@ At each time step, use the expected SARSA average over the action while
replacing the @ value for the picked action by a deeper estimate.
o 1-step return (Expected Sarsa)
Gt:t+1 = Rep1 + Z 7T(a|5t+1)Q(5t+1, a)
a
@ 2-step return:

Grtyo = Rey1+v D> m(alSe41) Qetr1(Seq1, a)
aFAri1

+ Y7 (Atr1|Se+1) (Rt+2 + 7> 7(alSt42) Q(St2, 3))

O
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+
c
=
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Q
=t
)

=Rep1+7 D 7(alSe41)Q(Set1,a) + Y (Ari1]Se41) Geg1:e42
aFAt+1
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n-steps Tree Backup

Reinforcement Learning:
Advanced Techniques in the
Tabular Setting

@ 1-step return (Expected Sarsa)
Grt+1 = Ret1+7y Z W(3\5t+1)Q(5t+17 3)

@ 2-step return:

Grit42 = Rey1 + Z 7T(3|5t+1)Q(5t+1> 3) + ’77T(At+1|5t+1)Gt+1:t+2
aFAr1

= Rey1+7 Z m(a|Se+1) Q(Se+1, @) + Y (Ars1|Se+1) (Grtr:er2 — Q(Se41, Art1))

@ Recursive definition of n-step return:
Gt:t4n = Rey1+7 Z 7(a|St+1)Q(St+1, a)
a

+ Y (Aes1|Se41) (Gegt:t4n — Q(St41, Aty1))
@ TD update

Q(St—n, At—n) = Q(St—n, At—n) + a(N(St—n, Qt—n)) (Gt—n:t — Q(St—n, At—n))
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Reinforcement Learning: 4
Advanced Techniques in the
Tabular Setting

Between and

O
O

Sampling or Averaging

@ Unifying algorithm!
@ Recursive definition of n-step return:

Gityn = Riy1+0Gii1:04n

+(1-0) (7 (3151 QSe41,2)

+7(Ae1|Se1) (Gerviern — Q(Ses1, Arsa)) )

Discounted
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Reinforcement Learning:

A-Return
Advanced Techniques in the

Averaged n-steps return? '4

@ n-step return:
Getrn = Rep1+YReq2 + -+ + 7" "Reqn +7"V(St4n)
@ Averaged n-step return: (compound update)
o

(e}
?) = anGt:tH»n with an =1
n=1 i=n

@ TD(\): specific averaging
Gt)‘— 1-A Z)\iGtH—n

T—t

=(1-X) > AN 'Grern+ATIG: (Episodic)
n=1
interpolating between TD (a.k.a TD(0)) and MC for A = 1.

@ Can be mixed with tree backup strategies (TB()))
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A-return and Temporality

Reinforcement Learning:
Advanced Techniques in the
Tabular Setting

@ Require to wait until the end of an episode before we can update.
@ Unusable in a non episodic setting!

\.

Truncated A-return
@ Truncated A-return:
H—t
GtA = (1 o >‘) Z )‘n_th:H—n -+ AH_th:H
n=1
@ The virtual horizon H may vary during the algorithm.

.
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A-return and Temporality

Reinforcement Learning:
Advanced Techniques in the
Tabular Setting

Temporality

@ n-step return

Gt:t4+n = Rey1 + YRy + - + 7"71Rt+n + 7"V (S¢4n)
depends on a current estimate V (or Q)!
@ In G) should we use
@ an estimate available at time t?
@ an estimate available at time t + n?
@ an estimate available at time H?

o Off-Line vs On-Line!
o Off-line: keep V constant during the episodes.
e On-line: Used updated V when available.
o True on-line (Sutton and Barto): restart algorithm with a growing horizon.
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O Utl | ne Reinforcement Learning:

Advanced Techniques in the
Tabular Setting

o Reinforcement Learning: Advanced
Techniques in the Tabular Setting

@ Eligibility Traces
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FOI’WE] rd a nd BaCkWa rd POint Of VleW Reinforcement Learning:

Advanced Techniques in the
Tabular Setting

From a forward view

To a backward one:
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Returns and Temporal Differencies

Reinforcement Learning: 4,
Advanced Techniques in the
=1s) 2 cttino

Returns and Temporal Differencies

@ n-step returns:
Getyn— Q(St, At) = Rev1 +YReq2 + - + ’Yn_lRt+n
+ 7" Q(St+4n, Atgn) — Q(St, Ar)

= Z ’Y/_I(RH/ + 7Q(Sts1; Ats1) — Q(Stti-1, Ati-1))
[=1l

n—1
-1
= Z YT O
=0

@ ) return: 8
G — Q(St,At) = (1= A) D A"(Grtvn — Q(St, Ar)) §

" o)

=2 A" "0etn 2

n=0 [

[y
[e)]
©



Forward View and Backward View

Reinforcement Learning:
Advanced Techniques in the
Tabular Setting

o Updates:

Qc(5,3) = Qe-1(5,3) + Ls.a)—(sae(s:2) | D A" o
t'>t
@ Cumulative updates:

Qu(s,3) = Qo(s,3) + 3 L(s.0)(s,,,4,) (5, 3 (Z Ayt 5)

t'<t @ 2
o Limit:
Qoo(s,a) = Qo(s,a) + D 1(s,0)=(s,,4,)ar(s, a) ( > At"_tlfyt”‘t'cst,/)
t/ >t
— /

@ Focus on the update place.

Discounted
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Forward View and Backward View

Reinforcement Learning:
Advanced Techniques in the
Tabular Setting

o Limit:

Qoo(s;a) = Qo(s, a) + Z l(s,a)z(Stl,At/)at’(Sa a) Z Atl’_tl’yt”_t/(;tu
t/

t''>t

= QO(Sa a) -+ Z(Stu Z l(s,a)z(stlyAt/)at’(S, Q)At/l_t/f)/tu_tl

t” tlgt”

@ Focus on the update place or and the temporal differencies. . .
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Forward View and Backward View

Reinforcement Learning:
Advanced Techniques in the

Backward View |

@ Same limit with cumulative udpates over temporal differencies

Qt(s’ a) - Qo(s, a) + Z Ogr Z l(s,a):(Str,At/)Oét’(S, a))\t”_t,'?’t”_t,

t<t t<t!

O
(O]
+—
c
=
(@)
Q
=t
)

o Updates
Qt(57 a) =5 Qt_l(S, a) + 5t Z l(s,a)z(st/,At/)at’(57 a))\tft ,ytft

t/'<t

z¢(s,a)

@ Pseudo Eligibility trace:
z(s, a) Z 1 (s,a) t/,At/)at/(sv a))‘t_t ’yt_t

t'<t

= A\yze-1(s, a) + at(s, a)(s 5)—=(s,.A,)

@ Proof of convergence toward the same target.
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Eligibility Trace

Reinforcement Learning:
Advanced Techniques in the
Tabular Setting

Q:(s,a) = Qi_1(s, a) + a,d:z:(s, a)
Eligibility Trace
@ Focus on temporal differencies with simultaneous update on all states.
o TD(\) eligibility trace: z(s,a) = Myzt—1(s, a) + 1(s,2)—(s,,A,)
@ Strictly equivalent to the previous scheme for constant stepsize

@ Other eligibility trace:
o Replacing trace:
1 if = A
Zt(S, a) — ! (Sa a). (Sh t)
Ayz:—1(s,a) otherwise
e Time dependent trace:

Zt(S, a) = ct*yzt_l(s, a) = l(s,a)z(St,At)
where c; is defined in a appropriate way to ensure the convergence of the algorithm.
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@ Need to store (and update) this information. . .
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Tem pOFa | D |fFe renCIGS Reinforcement Learning: 4 X

Advanced Techniques in the
Ot

Tabular Setting
Temporal Differencies

@ Basic temporal differencies:
0t = Req1 + YQ(St41, Ary1) — Q(St, Ar)
@ Expected temporal differencies:
0t = Rep1 +7V(Sev1) — Q(St, Ar)

=Rey1 + VZW(Q\StH)Q(SHL a) — Q(S¢, Ar)

@ Average of both:
0t = Rey1 + 70 Q(St41, At+1) + 7(1 — o) V(St+1) — Q(St, Ae)
= Rey1 +7V(St41) + 70 (Q(St11, Arr1) — V(St41)) — Q(St, Ar)

O
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a

@ Only expected temporal average is independent of the next action.
@ No generic proof of convergence. ..
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O Utl | ne Reinforcement Learning:

Advanced Techniques in the
Tabular Setting

o Reinforcement Learning: Advanced
Techniques in the Tabular Setting

@ Off-policy vs on-policy
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O n- POl |Cy VS OfF‘ POl |Cy Reinforcement Learning:

Advanced Techniques in the
Tabular Setting

From to

On-Policy vs Off-Policy

@ On-Policy: the policy b used to interact is the same than the policy I evaluated
or optimized.

o Off-Policy: the policy b used to interact may be different from the policy Il
evaluated or optimized.

e Off-Policy allows in particular to (re)use interactions from previous experiments.

@ Q-learning was possible in off-policy setting.
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Importance Sampllng Reinforcement Learning:

Advanced Techniques in the
Tabular Setting

PH(SD At7 Rt+17 St+17 ce e Rt/u 5!”7 At"st) o 7T(’41‘|St') s 7T(’é\t"‘s’t”)

Pre = Pb(sta At; Rt+17 5t+17 R Rt’: St/7 At”5t) b(At|5t) B b(At’|5t/)

Importance Sampling

o For any law p and g, and any function g

Eple(c)] = Eq| 290
provided g(x) = 0 implies p(x) = 0.

e Varg [%g(x)] may be large with respect to Var, [g(x)] if the ratio p(x)/q(x) is

large. ..

.

Importance Sampling for Trajectories

e For any trajectory 7y.¢ = S, At, Ret1, St41,- - - s Rery Sty A (s Rere1, Str41))
Pl_l(sta Ata Rt+17 St+17 ey Rt’a St’a At’(v Rt’-i—la St’+1)|5t) 7-‘-(/4t’|5f) OO 7T(’At/|5t’)

]P)b(sb Al’a Rt-‘rla 5t+17 DI Rt’v St’7 At’(a Rt’-}—la 5t’+1)|5t) b(At|5t) cee b(At’|5t’)
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Importance Sampling and Returns Reinforcement Learning: K

Advanced Techniques in the
Tabular Setting

(A¢|S:) ... m(Ar|S)
b(A:|S:) ... b(Awv|Se)

St:S]
St—S]

]Eﬂ[g(Tt:t/)‘St = 5] = Eb[pt:ﬂg(ﬁ;t')\St = 5] with Pttt =

@ Returns: _
t/
E[Gt.e|St = 5] = Ex Z L S ’Ytlftv(st') St = S]
Lt"/=t+1

tl

=Ep pt:(t’l)( > Vt//tht"‘F’Yt/tV(St’))

t''=t+1

=Ep Z Pt:(t'—1)7 Rt” + Pe(r—-1)7 V(St’)
| t//=t+1

v,

178



Importance Sampling and Returns Reinforcement Learning:

Advanced Techniques in the
Tabular Setting

T A 5 oL T A ! 5 /

@ Returns:

StaAt:| with  pry =

t

Er[Ge.tr|St, Al = Ex Z ’YtlLFlRt’/ + ’YtLtQ(StHAt’) St, As
=41

t

=Ep P(t+1):(t'—1) Z ’Yt”itilRt”+’Ytl7tQ(5t’aAt') Se, Ae
t/'=t+1

t/
=E, Z ’Yt 7tilp(t+1):(t”71)Rt“ + P(t+1):t"7t 7tQ(5t/7At’) Se, Ae
' =t+1

@ No correctionif ' =t +1
179



A‘ retU rn Reinforcement Lfearninlg:
@ Recursive definition of the A-return:
G|t = Rey1 + ((1 = M)V (St41) + )\Gt)\+1>
G|St, At = Repa + 7((1 — A)(0Q(St41, Ars1) + (L = 0)(D_ 7(a|St11) Q(St41, a)
a

T(Aes1|Se+1) (G?H — Q(St+1, At+1)))) + /\Gt+1)
@ Off-line correction

GY|St = pre (Rt+1 + ((1 — AN V(St41) + )‘Gt)\+1))
G|St, At = Rey1 + 7((1 — M(0Q(St41, Ary1) + (1 = 0)(D_ 7(alSt11) Q(St41, a)

+ m(Ars1|St+1) (Gg‘+1 — Q(StJrlvAtJrl))))
+ A\Pri1:e+1 Gt)\—i-l)

where A, is drawn following 7 (or multiply by p¢y1.¢41 to use Aryq).

Discounted
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Tem pOFal lefe renCIGS Reinforcement Learning: 4, 7

Advanced Techniques in the
Ot

Tabular Setting
Temporal Differencies

@ Basic temporal differencies:

0t = Rep1 +7Q(Str1, Ar1) — Q(St, Ar)
with AL, ; drawn using 7.

o Expected temporal differencies:
0t = Rey1 +7V(Se1) — Q(Se, Ar)
= Rey1+7 ) m(alSt11)Q(Se41, @) — Q(St, Ar)
without any correction. :
@ Average of both:
6t = Rey1 + 70 Q(Se41, Arv1) +7(1 — o) V(Se41) — Q(St, Ae)

= Rer1 +7V(Se41) +70 (Q(Ser1, At1) — V(Se41)) — Q(St, Ar)
with AL, ; drawn using 7.
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OfF‘ POl ICy Algorith m Reinforcement Learning:

Advanced Techniques in the
Tabular Setting

Off-Policy Correction

@ Replace any estimate of the gain by an importance-sampling corrected one.
@ Works well for prediction.

@ Can be combined with policy improvement (a la SARSA) but less (no?)
theoretical guarantees.
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Retrace()\) Reinforcement Learning: 4
_ Advanced echnlques in the -
TQ(s,a) = Q(s;a) +Ep > 7 (H ct/) 0¢|So = s, Ag ="a|™
t>0 t'=1
Ct = C(At'/st?At—laSt—lJ”' 7A0750)
Ep[0¢]St, At] = E[Rey1 + YE[Q(St11, )] — Q(St, Ar)|St, A¢

Generic Off-Policy Algorithm

@ Generic off-line algorithm including
o Importance sampling: ¢; = pr.r = m(A¢|St)/b(At|St)
o TB(A): ¢ = A\m(A¢|St)
o Retrace(A): ¢ = Amin(1, 7w(A¢|St)/b(A:/St))

o Prop: Q is a fixed point as Ep[0¢|St, Ae] = E[T7Q(St, Ar) — Q(St, Ar)|St, Atl. IS
= e

@ Prop: T is a contraction provided ¢; < p; = w(A¢|St)/b(At|St). =
o Convergence for Importance sampling, TB(\) and Retrace()) for any b. 9
(9]

@ Partial results for policy improvement under more assumptions. ) Q
@ For Q()), ¢t = A, convergence if ||7(|s) — b(|s)||1 < e and A < (1 —7)/(7e). 183



O Utl | ne Reinforcement Learning:

Advanced Techniques in the
Tabular Setting

o Reinforcement Learning: Advanced
Techniques in the Tabular Setting

@ Bandits
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@-Learning vs SARSA

Reinforcement Learning:
Advanced Techniques in the
Tabular Setting

How different are they?
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@ In Q-learning, the exploratory policy used is decoupled from the optimized policy.
@ This exploratory policy may yield low rewards on average.

@ In SARSA, the two policies are linked with the hope on having higher rewards
during the learning step.

@ Subtle different behavior even if we modify the exploratory policy in Q-Learning.
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EXplOFatlon VS EXplOItatlon Reinforcement Learning:

Advanced Techniques in the
Tabular Setting

Exploration vs Exploitation

@ Exploration: explore new policies to be able to discover the best ones.

@ Exploitation: use good policies to obtain a good return.

Exploration is a requirement.

No tradeoff if we optimize only the final result!

Tradeoff between the two if we consider that the returns during training matters!
Q-learning use the first approach and SARSA try to tackle the second.

Tradeoff if we study a regret:

Y (En.[Rd] —En,[R:])
t
which forces us to be good as fast as possible.

No natural definition in the discounted setting.
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Ba n d ItS Reinforcement Learning:

Advanced Techniques in the
Tabular Setting

S§={0} and A={1,...K} and r(s,a)=r,

Bandits
@ Very simple toy model where there is only one state!
@ Optimal policy: pick a, € argmaxr,.
@ Q estimation: estimate r, by playing action a.

o Strategy:

o Every arm has to be played until we are sure they are bad.
e Best arm should be played as often as possible to maximime the rewards during the
learnig phase.

@ Simple enough setting to obtain result on the regret

rr = Z (ra* _Rt)

t<T

e We will use A, = r,, — r, and assume that R|a is 1-subgaussian.
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Explore Then Com m |t Reinforcement Learning: 4 X

Advanced Techniques in the
Tabular Setting

Explore Then Commit (Random Exploration)

@ Play the arm successively during Km steps and then play the optimal one during

T — Km steps.
o Prop:
k K
E[rr] < min(m, T/K) Z A(a) + max(T — mK,0) Z A(a) exp(—mA(a)?/4)
a=1 a=1
Furthermore,

Plar =a.) > 1— Y exp(—mA(a)?/4)
a#ax

e With m  log T, logarithmic regret: E[r1] < O(log T) for
@ but E[rr] = O(T) for any fixed m.
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€—gl’eedy Strategy Reinforcement Learning: 4, 7

Advanced Techniques in the
Tabular Setting

e-greedy Strategy

e Estimate Q(a) = r, by MC:

t—1
/— 1 ,:aR/
Qi(a) = L= E -

t—1
ZI:]_ ]-At/:a

@ Pick arm a at time t using
et/K+ (1 —¢) if a=argmax, Q:(a’) (only the smallest if necessary)
m(a) = ,
et/ K otherwise

e Prop:

.
Elrr] > Y % > Aa)

=l =l
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G_greedy Strategy Reinforcement Learning:

Advanced Techniques in the

e-greedy Strategy

o Prop:
4
P(Ar = a,) > 1 — e — T exp(—X 7/(6k)) — Se AEIET/(K)
A(a)
ata.
with X7 =37 e
Furthermore,
4
P(a, = argmax Q7 ,) > 1 — Xiexp(—X7/(6K)) — Z INBE Y
23 A()
If €t = C/t,
log(T)+1 4
Elrr] < 30 (A(a) (c 4 c) + c)
=, K A(a)
as soon as ¢/(6K) > 1 and cmin,«,, A(a)/4K < 1.
If ¢, = clog(t)/t then
log(T)(log(T)+1 4
Elrr]< ) <A(a) (c ca(T)log(T)+1) c) +c’)
Jorpd K A(a)
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U C B Strategy Reinforcement Learning: 4'" L

Advanced Techniques in the

Upper Confidence Bound e

@ Use an optimistic strategy to pick the best arm

clogt
A; = argmax a) +
t g Qt( ) Nt(a)
o Prop: peln T
cln
El[rr] < C A(a) + .
<2825

with C. < 400 as soon as ¢ > 3/2
Furthermore
P(AT = a,) > 1 — 2KT 2T

4cin T

as soon as T > max;, AGYE

@ Optimal regret!
@ Hard to extend to RL setting but shows that e-greedy may not be optimal.
@ Bayesian approach possible: Thompson sampling.
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O Utl | ne Reinforcement Learning:

Advanced Techniques in the
Tabular Setting

o Reinforcement Learning: Advanced
Techniques in the Tabular Setting

@ Model Based Approach

192



MOdel Based ApprOaCh Reinforcement Learning:
Advanced Techniques in the
Tabular Setting

Model Based Approach
@ Use the interactions to learn a model. . .

@ that can be used to learn a good policy.
@ This model can be:

e a MDP,
e a simulator.

@ Often easier to obtain a simulator. 193



M Odel based a nd M D P Reinforcement Learning: 4,

Advanced Techniques in the
Tabular Setting

Estimated MDP: back to OR
MDP can be estimated from trajectories.

Simple (but maybe slow) even in an off-line setting.

@ Once we have an estimated MDP, prediction and planning can be done using OR.

Implicitely done by TD(0) when doing several passes.

Model should be checked/improved as much as possible when new trajectories
arrive.
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MOdel based and RI_ Reinforcement Learning:

Advanced Techniques in the
Tabular Setting

Estimated Simulator: back to RL
@ Simulator can be estimated from trajectories.

@ Simple (but maybe slow) even in an off-line setting.

@ Once we have an estimated simulator, prediction and planning can be done using
RL.

@ Model should be checked/improved as much as possible when new trajectories
arrive.
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Model Free and Model Based Approach Reinforcement Learning:

Advanced Techniques in the
Tabular Setting

@ Combine true interactions with simulated ones.
@ Simultaneous acting, model learning, OR learning and RL learning.

@ Search for a tradeoff between the (slow) learning RL algorithm and the (wrong)
model OR algorithm.

@ Need to deal with schedule!
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O Utl | ne Reinforcement Learning:

Advanced Techniques in the
Tabular Setting

o Reinforcement Learning: Advanced
Techniques in the Tabular Setting

@ Replay Buffer and Prioritized Sweeping
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Replay BUﬂ:er and PI’IOFItIZGd SWeeping Reinforcement Learning:

Advanced Techniques in the
Tabular Setting

Replay Buffer and Prioritized Sweeping

o Can we reuse previous interactions?

@ In which order?
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Replay BUffer Reinforcement Learning:

Advanced Techniques in the
Tabular Setting

Replay Buffer

@ Store previous interactions (trajectories) in a first-in first-out buffer.
@ Draw a subsequence from those interactions (trajectories) and use it in a RL
algorithm:

o On-line: if the trajectory comes from the same policy.
o Off-line: if the trajectory comes from a different policy.

@ Similar to a simulator but no arbitrary choice of state or action.
@ Often use with on-line algorithm if the policy has only mildy evolved. ..
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PI’IOI’ItIZCd SWeeplng Reinforcement Learning:

Advanced Techniques in the
Tabular Setting

Prioritized Sweeping

@ Plain Replay Buffer: subsequence drawn uniformly.

@ Prioritized Sweeping: subsequence drawn favoring states with large temporal
differencies.

@ Can be combined with a model approach.
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O Utl | ne Reinforcement Learning:

Advanced Techniques in the
Tabular Setting

o Reinforcement Learning: Advanced
Techniques in the Tabular Setting

@ Real-Time Planning
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Real_Tlme Plannlng Reinforcement Learning:

Advanced Techniques in the
Tabular Setting

Real-Time Planning

o Can we optimize the policy at the current state?
@ Do we need to optimize it everywhere?
@ What is required?

@ Planning at decision time. ..
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Real-Time Dynamic Programming Reinforcement Learning:

Advanced Techniques in the
Tabular Setting

Irrelevant States:
unreachable from any start state
Start States under any optimal policy

Relevant States
reachable from some start state
under some optimal policy

@ Warmup in Dynamic Programming. ..

Use trajectories to sample the states to update.
Convergence holds with exploratory policy.
Optimal policy does not require to specify the action in irrelevant states.

Convergence holds even without full exploration in some specific cases!

In practice, seems to be computationaly efficient.

203



P I ann | ng At DeCISIOn Tl me Reinforcement Learning:

Advanced Techniques in the
Tabular Setting

bd

Planning At Decision Time
@ Can we find a good action A; at S;...without having it precomputed?

@ Policy Improvement
A: = argmax Q¢(St, -)
can be seen as a first step.

@ How to go deeper?

@ A model or a simulator will be required!
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HeU I’IStIC Sea I’Ch Reinforcement Learning:

Advanced Techniques in the
Tabular Setting

Heuristic Search
@ Requires the knowledge of the MDP and of a heuristic based value function V.

o Strategy:

o Build a limited depth tree by stopping after a few steps and at some specific states.

o Backup the heuristic based value function using Dynamic Programming (Optimal
Bellman operator).

o Pick the action having the hight value.

@ The deeper the better. .. but the more expensive due to branching!

@ Requires a suitable heuristic. . .
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ROl |OUt Algorlth m Reinforcement Learning:

Advanced Techniques in the
Tabular Setting

Rollout Policy

Use a MC estimate with a default policy instead of a heuristic.

Backup those estimates using Dynamic Programming.

Simulation can even start after the first action (as in Policy Improvement).

The values are (most of the time) discarded for the next state.
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Monte Cal’lo Tree SearCh Reinforcement Learning:

Advanced Techniques in the
Tabular Setting

Monte Carlo Tree Search
@ Simultaneour tree growing, rollout and backup by DP.
@ Repeat 4 steps:

Selection of a sequence of actions according to the current values with a tree policy.
o Expansion of the tree at the last node without values.

e Simulation with a rollout policy to estimate the values at this node.

e Backup of the value by relaxed Dynamic Programming.

@ MCTS focuses on promising paths using a UCB approach.
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Advanced Techniques in the
Tabular Setting

Monte Carlo Tree Search
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Monte Cal’lo Tree SearCh Reinforcement Learning:

Advanced Techniques in the
Tabular Setting

? odo

Monte Carlo Tree Search
@ Simultaneour tree growing, rollout and backup by DP.
@ Repeat 4 steps:
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e Simulation with a rollout policy to estimate the values at this node.

e Backup of the value by relaxed Dynamic Programming.

@ MCTS focuses on promising paths using a UCB approach.

207



Monte Cal’lo Tree SearCh Reinforcement Learning:

Advanced Techniques in the
Tabular Setting

Monte Carlo Tree Search
@ Simultaneour tree growing, rollout and backup by DP.
@ Repeat 4 steps:

Selection of a sequence of actions according to the current values with a tree policy.
o Expansion of the tree at the last node without values.

e Simulation with a rollout policy to estimate the values at this node.

e Backup of the value by relaxed Dynamic Programming.

@ MCTS focuses on promising paths using a UCB approach.

207



Monte Cal’lo Tree SearCh Reinforcement Learning:

Advanced Techniques in the
Tabular Setting

Monte Carlo Tree Search
@ Simultaneour tree growing, rollout and backup by DP.
@ Repeat 4 steps:

Selection of a sequence of actions according to the current values with a tree policy.
o Expansion of the tree at the last node without values.

e Simulation with a rollout policy to estimate the values at this node.

e Backup of the value by relaxed Dynamic Programming.

@ MCTS focuses on promising paths using a UCB approach.

207



Monte Cal’lo Tree SearCh Reinforcement Learning:

Advanced Techniques in the
Tabular Setting

Monte Carlo Tree Search
@ Simultaneour tree growing, rollout and backup by DP.
@ Repeat 4 steps:

Selection of a sequence of actions according to the current values with a tree policy.
o Expansion of the tree at the last node without values.

e Simulation with a rollout policy to estimate the values at this node.
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@ MCTS focuses on promising paths using a UCB approach.
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M Odel P I’ed ICtIVG ContrOl ? Reinforcement Learning:

Advanced Techniques in the
Tabular Setting

bd

Model Predictive Control
@ Open loop optimization:

t+h
max E Z R:
at,dt+1,---,dt+h -

using a predictive model (simulator).

Do not take into account state uncertainties in the control choice. . .

But much simpler optimization. . .

and equivalence for a linear Gaussian model.

Extensively used for short-term planning in Control.
May be combined with value functions after t + h. 208
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A I'OXI m atIO n ? Reinforcement Learning:
PP

Approximation of the Value
Functions

Tabular Setting
@ Require to store the state(-action) values (a table).
@ Requirement in both OR and RL.

\.

Approximation!
@ Use instead approximated value functions.
@ What is a good approximation?

@ How to use them?

.

@ Focus on value-functions. .. 210



O Utl | ne Reinforcement Learning:

Approximation of the Value
Functions

e Reinforcement Learning: Approximation
of the Value Functions
@ Approximation Target(s)
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ApprOXI m ated Va I ue FU nCtlonS Reinforcement Learning:

Approximation of the Value
Functions

7

V(s) = Vi (s)
Q(s,a) = Qu(s, a)

Parametric Model

@ Reduce dimensionality by storing w instead of all the values.
@ Linear: Vi, (s) = (®(s),w) and Qu(s,a)= (P(s,a), w)
o ®(s) and (s, a) are features associated to the states(-actions).
o Tabular setting corresponds to (®)s/( )(s(, a)) = Lo—s(,a—a)-
o Often used in theoretical analysis.
@ Deep Learning: Vi (s) = NNy (P(s)) and Qu(s,a) = NN, (P(s,a))
o NN is any (deep) learning network.
o Often used in practice.

@ Other parametrization (or even non parametric coding) could be used (at least in
theory. . .). 212



ApprOXImated Value FunCtlonS Usage Reinforcement Learning: 4,

Approximation of the Value
Functions

Ve(s) = V. (s) vi(s) =~ V. (s)
Gz (s, a) =~ Qu, (s, a) :(s,a) =~ Qu, (s, a)
argmax g, (s, a) ~ argmax Q,._ (s, a) argmax q,(s, a) > argmax Q. (s, a)

Approximated Value Functions Usage

@ Drop-in replacements for all the value functions?
@ Prediction and Planning?
@ Quality and Stability?

213



ApprOXImatlon Quallty Reinforcement Learning: [“

Approximation of the Value
Functions

Va(s) = Vi, (5) () = Vi (5)
Gz (s, a) ~ Qu,(s, a) :(s, a) ~ Qu, (s, a)
argmax g,(s, a) ~ argmax Qu, (s, a) argmax g, (s, a) ~ argmax Q. (s, a)
Approximation Quality Norm
o Ideal loss:

v = Viwlleo o [[g— Qulloo
as this is the error used in all the previous analysis.

@ Practical loss:
v = Vill® , = u(s)|v(s) — Viu(s)IP
S

or lg = Qullf, =D nls. a)la(s, a) — Quls, a)l”

often with p = 2 and pu related to the behavior policy.
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A p pI'OXI m at | on Ta rget ( S) Reinforcement Learning:

Approximation of the Value
Functions

q(s,a) =Tq(s,a) ~ Qu(s,a) — {HTQW — Qwl|..p small

Approximation Targets(s)
@ Direct measurement.

@ Bellman residual error.

.

Quality Measure

o Norm: g — Qullup or |7 Qu — Qullp small

@ Projection (with linear parametrization):
”P‘D (q - Qw) ||M,P or ”P¢ (TQW - Qw) H,LL,P small

@ Probes Z: Ez[| (g — Quw, Z) |P] or Ez[| (T Quw — Qu, Z) |P] small.

\.

@ Lots of freedom but hard to link with optimality of derived policy!
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O Utl | ne Reinforcement Learning:

Approximation of the Value
Functions

@ Gradient and Pseudo-Gradient

e Reinforcement Learning: Approximation
of the Value Functions
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Prediction, Approximation and Gradient Descent Reinforcement Learning:

Approximation of the Value
Functions

min 3 pis(s. 2) 6x(5. @) — Quls. )

Prediction, Approximation and Gradient Descent

@ Prediction objective:

VE(w) =Y is(s, 3) [x(s, 2) — Qu(s, a)|>

o Gradient:
VW(W) = -2 Z ﬂb(57 a) (q7r(57 a) _ QW(57 a)) VQW(S7 a)
@ Stochastic graiiient: |
VW(W) = —2(gx(St, At) — Qu(St, At)) VQuw(St, At)

@ Not a practical algorithm as g, is unknown.
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PI’edICtIOn, ApprOXImatlon and MC Reinforcement Learning: /

Approximation of the Value
Functions

Wir1 = Wi + 204 (G — Qu, (S, At)) V Qu, (S, Ar)

Monte Carlo Approach
@ Use b = 7 and replace g,(S¢, A¢) by its Monte Carlo estimate G;.
@ Still a Stochastic Gradient of the original problem with limit (if it exists) satisfying
Er[(Gt — Quo. (St At)) V Qu. (St At)]
= E[(qr(St, At) = Quo (St, At)) VQuoo (St Ar)] = 0

@ Convergence ensured for the linear parametrization as it is a convex problem.

@ Correspond exactly to the tabular MC prediction algorithm for the tabular
parametrization.

@ For the linear parametrization:
Limiting equation: E[q:(S¢, At)P(St, Ar)] = Ex {CD(St,At)CD(St,At)T} W
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PI’edICtIOn, ApprOXImatlon and TD Reinforcement Learning: /

Approximation of the Value
Functions

W1 = We + 20 (Reg1 + YQuw, (Se+1, Aev1) — Qui(St, Ar)) V Qu, (St, At)

Temporal Differencies Approach

@ Use b =7 and replace g(St, At) by Rey1 + vQw,(St+1, Ary1)-
@ Not a Stochastic Gradient of the original problem but a Stochastic Approximation
algorithm with limit (if it exists) satisfying
Ex[(Re + 7 Queo (St+1, Att1) — Qu (St: At)) V Qui (St Ae)]
= Er[((T" Quoe — Que)(St,At)) VQuoo (S, Ar)] = 0

@ No simple argument to justify the convergence. ..

@ In general, no straightforward relation with Bellman operator.

@ Correspond exactly to the tabular TD prediction algorithm for the tabular
parametrization.
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Prediction, Approximation and Advanced TD Reinforcement Learning:

Approximation of the Value
Functions

Wil = Wi + 204 (@t — Qu, (5S¢, At)) V Qu, (S, Ar)

Temporal Differencies Approach

o Replace g,(S;, A;) by any advanced return G;.

@ Not a Stochastic Gradient of the original problem but a Stochastic Approximation
algorithm with limit (if it exists) satisfying

Exr[ (Gt — Qui(St, Ar)) V Quac (St, Ar))|
= B [((T" Quee = Quec)(5t:At)) VQuor (St Ar)| = 0

@ No simple argument to justify the convergence. ..

@ In general, no straightforward relation with Bellman operator.
@ Correspond exactly to the tabular TD prediction algorithm for the tabular
parametrization.
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Prediction, Approximation and Eligibility Trace rentocemen Leamivg. X

Approximation of the Value
Functions

Zy = YAZe_1 + Vth(St, At)
0t = Rev1 + 7Qu,(Stv1, Arv1) — Qu,(St, Ar)
Wi = Wy + Q0:2;

Eligibility Trace
@ Use b = 7 and rewrite the TD(\) updates using the backward point of view.
@ No strict equivalence due to time evolution of the parameterization.
@ Stochastic Approximation with limit (if it exists) satisfying
Er[(Re+1 + 7 Quee (Se41, Att1) — Quee (St, At)) z¢]
=Er[(T" Quee — Quee) (S, At)ze] =0

@ No simple argument to justify the convergence.
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O Utl | ne Reinforcement Learning:

Approximation of the Value
Functions

@ Linear Approximation and LSTD

e Reinforcement Learning: Approximation
of the Value Functions
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I_l near Pa ra met rlzatlon Reinforcement Learning:

Approximation of the Value
Functions

Qu(Se, A) = O(S:, A))'w and  VQu(S:, Ar) = (S, Ay)

Linear Parametrization
@ Extension of the tabular setting.
@ Derivative is independent of w.
@ Analysis of Stochastic Approximation often possible!

@ More than a toy model as an algorithm not converging in the linear case will
almost certainly not converge in a more general setting.
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Llnear Pal’ametrlzatlon and MC Reinforcement Learning: /

Approximation of the Value
Functions

|tel’atI0nWt+1 — Wt' + Oét (Gt - (D(St, At)TWt> q)(St, At)

Limiting equation: E,[g.(S:, A:)®(S:, Ar)] = Ex {(b(st;At)(D(StyAt)T} Weo
dw

ODE: —~ = —Er [ O(Se, A)D(Se, Ae) | (w — wi)

Linear Parametrization and MC

o Limiting equation is a linear equation.

@ Under asymptotic stationarity assumption, convergence of ODE as
E. [d)(St,At)d)(St,At)T] is a Gram Matrix with positive eigenvalues (provided ¢
is not redundant and under an ergodicity assumption).

@ Need to explore all state-action pairs!

Episodic

N
N
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Llnear Parametrlzatlon and TD Reinforcement Learning: Z

Appr0><|mat|on of the Value
ctions

Iteration: Wii1 = Wt + o (Rt-i-l + 'y¢(5t+1, At+1)TWt - CD(St, t) Wt CD(St, )

Lim. eq.: Ex[r(ST,At)P(S:, Ar)] = [ (St, At) (‘D(St,At)T *7¢(5t+17At+1)T)} Woo

d
ODE: ditl = —E, [‘D(StaAt) (q)(st:At)T - 'Y¢(5t+1,At+1)T>} (W - Woo)

Linear Parametrization and TD

o Convergence of ODE if Ex[®(Si, Ac) (®(St, Ar) " = ¥®(Ses1, Aes1) " )| has
complex eigenvalues with positive real parts. . .

@ which can be proved to be true under an ergodicity assumption!

o

O

o Need to explore all state-action pairs! =

@ Different solution than MC! Minimization of the Projected Bellman Residual. .. §

o Prop: - 1 1 - é’
VE(wrp) < mVE(WMC) 71—, 1in VE(w)

L
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N
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Least-Squares TD

Approximation of the Value
Functions

1 t—1
b = Ew[r(ST, At)cb(sta At)] ~ E Z Rt’—i—l(b(st’v At’)

t'=0
{CD(St, t) ((D(Sta At)T — 7®(St11, At+1)T)}
t—
Z St’ At’ ( (St’vAt’)T *7¢(5t'+1aAt’+1)T)

Least-Squares TD

@ Bypass the Stochastic Approximation scheme by estimating directly its limit:
_ a=1
W = A b
@ Much more sample efficient.

@ Recursive implementation possible.

@ Recursive implementation maintaining an estimate of A~ is also possible.

Reinforcement Learning: 4

Discounted

N
N
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Ad Va nced RetU rns Reinforcement Learning: 4,

Approximation of the Value
Functions

Return: Gr = Re11 + ®/ w  (affine formula)
Iteration: W1 = W —+ o (Rt + 6: w; — (D(St, At)TWt) q)(sh At)
Lim. eq.: Ex [R’tcb(st’At)} =K, {CD(S,:,At) (cb(st,At)T - ¢tT)} Woo

ODE: %‘;’ = —Er [O(St, Ac) (0(Se, A) T — &) )| (w — we)

Linear Parametrization and TD

@ Convergence of ODE if E; [CD(St,At) (dD(St,At)T = JJI)} has complex
eigenvalues with positive real parts. ..

@ which can be proved to be true for the advanced returns under an ergodicity
assumption!
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O Utl | ne Reinforcement Learning:

Approximation of the Value
Functions

@ On-Policy Prediction and Control

e Reinforcement Learning: Approximation
of the Value Functions
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O n- POl |Cy P red ICtIOﬂ Reinforcement Learning:

Approximation of the Value
Functions

W1 = Wy + 20t (Gt - th(st, At)) vat(St; At)
On-line TD Algorithm

@ Use the policy I to obtain the interactions S;A;Rr11St+1Ar11. - -

@ Convergence. .. for linear parametrization under stationarity and coverage
assumptions!

@ Appear to converge even with more complex parametrization.

@ Monte Carlo can be used for short episodes.

@ Similar observations for elegibility trace.
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O n- POl |Cy COntl’Ol Reinforcement Learning:

Approximation of the Value
Functions

W1 = Wy + 20, (ét - th(st; At)) vat(sn At)

mey1(s) = argmax Qu,(s,-) (plus exploration)

On-Policy Control

@ SARSA type algorithm: update @ values and policy 7 while using policy 7.
@ Not a Stochastic Approximation algorithm anymore. . .

o Not approximate policy improvement as no sup-norm control. ..

o

No proof of convergence... but appear to work well in practice.

Non trivial scheduling issue in the definition of G;.

More constraints with eligibility trace.
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Outline

e Reinforcement Learning: Approximation
of the Value Functions

Reinforcement Learning:
Approximation of the Value
Functions

@ Off-Policy and Deadly Triad
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O n- POl |Cy VS OfF‘ POl |Cy Reinforcement Learning: 4
Approximation of the Value
Functions

On-Policy vs Off-Policy

@ On-Policy: the policy b used to interact is the same than the policy I1 evaluated
or optimized.

o Off-Policy: the policy b used to interact may be different from the policy 1
evaluated or optimized.

e Off-Policy correction available for the return.
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OfF‘ Pol |Cy P red ICtIO n Reinforcement Learning: 4,

Approximation of the Value
Functions

Wi = We + (Gt — Qu,(S¢, At)) V Qu, (5t At)

Off-policy TD Algorithm

@ Use a policy b to obtain the interactions S;A:Ri11St11A+1- .-
e Compute an (importance-sampling based) corrected return.
@ Use it in the algorithm.

Can fail spectacularly!

Monte Carlo will work.
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Off_ POl ICy Dlvergence Reinforcement Learning:

Approximation of the Value

: : Functions

@ Simple transition with a reward 0.

Simplest Example?

@ TD error:
0t = Ret1 + YV (Se+1) — Vi, (St)

=0+72w; — wy = (27 — 1)ws
o Off-policy semi-gradient TD(0) update:
Wep1 = We + pe6e VV(Sepr, we)
=wi+arx1x2y—=1w; =1+ a2y —1))w;
@ Explosion if this transition is explored without w being update on other
transitions as soon as v > 1/2.

@ No explosion if each update is followed by an update on the other state (with
(St = —2Wt)|

7

Discounted
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Off-Policy Divergence

Reinforcement Learning:
Approximation of the Value

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Functions
LTTTF 4 4 L) f A
i ' i : 1 :
|
i
i
\
\
| m(solid]) = 1
\
\ b(dashed|-) = 6/7
\ b(solid|-) = 1/7
\
N T 5 =0.99
Semi-gradient Off-policy TD Semi-gradient DP

-
—
w ‘,‘_KT‘FZFJ '
o 1000 n’
Swoeps

Baird's Counterexample

o Divergence of off-policy algorithm even without sampling, i.e. in Dynamic
Programming.
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Off-Policy Divergence

Reinforcement Learning: 4
Approximation of the Value
Functions
1—¢

(w)—
[

Tsistiklis and Van Roy’'s Counterexample

o Exact minimization of bootstrapped VE at each step:
Wii1 = argmin Z (Ve (8) — Ex[Res1 + ¥ Vi (Se41)[Se = s])°

= argmin(w — 72w;)? + 2w — (1 — €)y2w;)?
w

_6—46W
T 5 YWt

e Divergence if v > 5/(6 — 4¢).

Discounted

L.
N
w
o))



Llnear Parametrlzatlon and TD Reinforcement Learning:

Approximation of the Value

|terati0n: Wil = Wt + at(Rt+]_ + Y Z W(a‘5t+1)¢(5t+1, a)TWt — ¢(5t7 t ﬁﬂnctljaD St,

a

Lim. Eq.:Ep[r(ST,At)P(St, A)] = Ep

dw
ODE: — = —-E
dt b

d>(St,At)< (S, A f’yz (a|Se41)P(Ses1, a) )1(Wwoo)

Linear Parametrization and TD
o Convergence of ODE if

Ep [CD(St,At) <¢(5t, —VZ (a]St41)®(St41,a) )] =O=(/ —yP")o "

(with ® = (¥(s,a)), = = dlag(yb(s, a))) and P the transition matrix associated
to ) has complex eigenvalues with positive real parts. ..

@ Proof for on-policy relies on jip = jur which satisfies jir ' Py = pir .

@ Not true anymore with an arbitrary behavior policy!

d(Se, Ar) ( (S, A _72 a|Se41)P(Sey1, 3)T>] Woo

Discounted
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Dea d |y TI’I ad Reinforcement Learning:
Approximation of the Value
Functions

Deadly Triad

@ Function approximation
o Bootstrapping
o Off-policy training

Instabilities as soon as the three are present!

Function approximation is unavoidable.

Bootstrap is much more computational and data efficient.

Off-policy may be avoided. . . but essential when dealing with extended setting
(learn from others or learn several tasks)

Dead End?
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Ta I’get? Reinforcement Learning:

Approximation of the Value
Functions

Linear Parametrization Target?

o Prediction objective VE:
lgr — Qull?
@ Bellman Error BE:
17 Qu — Qull?
@ Projected Bellman Error PBE:
IProj 7™ Qu — Qull?
with Proj = ®(¢T=0)d () =

239



Prediction Objective

Reinforcement Learning: 4,
Appro><|mat|on of the Value

.........

Prediction Objective

@ Two MRP with the same outputs (because of approximation).
e but different VE.
o Impossibility to learn VE.

@ Minimizer however is learnable:
RE(w) = E[(G: — Vi (S1))?]

=E|(
VE(w) +E|(Ge — va(S:))?]

@ MC method target.
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Bel | man E rror Reinforcement Learning: 4,

Approximation of the Value
Functions

Bellman Error

@ Two MRP with the same outputs (because of approximation).
o Different BE.
@ Different minimizer!

@ BE is not learnable!
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T D E rror Reinforcement Learning: 4

Approximation of the Value
Functions

TDE(w) = |[Ex|57]Se, Ac| [l

Mean-Squares TD Error
o TDE(w) = Ep[p:6?]
o Gradient: VTDE(w) =
Ep[pe (Re + 7 Qu(St415 Ar+1)) — Que(St: Ar)) (7Y Qu (St1, Ae1) — V Qu, (St Ar))]
@ SGD algorithm. ..

@ but solutions often converge to not to a desirable place even without approximation!

Discounted
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Projected Bellman Error

Reinforcement Learning:
Approximation of the Value
Functions

roj w— Qw with Proj = =0)” =
| Proj 7™ Quw — Qull? hP d(d'=d) o=

Projected Bellman Error

@ Rewriting
PBE(w) = || Proj T quw — qu|l?, = || Proj dwll?
—1
= (Proj dw) "= (Proj ) = (¢7Z6w) (67=0) (7 =6w)
o Gradient: .
VPBE(w) = 2V(¢'Z5,) (¢720)  (¢7=6w)
@ Expectations:
=5, = Ep[pe6:P(St, Ar)]
— T
V(®Z0u) = Ep|pe(70(Sts1, A1) — B(Si, Ar)) (St Ar) |
OT=d =, [0(Si, A)P(Se, Ar) |
@ Not yet a SGD/SA as the gradient is a product of several terms. . .

7

Discounted
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P rO_]GCted Bel | man E rror Reinforcement Learning: 4, 7

Approximation of the Value
o iop

Gradient and Stochastic Approximation

o Gradient:
VPBE(w) = 2Ep | pe(1(Se11, Aep1) — ®(St, Ac))P(Si, Ar) |

(s [(Se, A)S(St. Ar)T]) " Eblpeded(Se, Ac)]

@ Least-squares inside:

v = (Eb[0(St, A)0(Se, A)T] ) Es[pesc®(St, A)]

2
& v = argminEp {(CD(SD At)Tvt — ptét) }
which can be estimated by ’
Virr = Ve + B ®(St, At)(6: — pe®(St, At)TVt)
@ Plugin pseudo gradient (SA):
Wep1 = we — 200pe(YO(St 11, A1) — P(St, Ar))P(St, Ar) v
@ Same target than Pseudo Gradient but converging algorithm provided a; < [.
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Reinforcement Learning: 4,

Gradient TD Algorithm
Appro‘ximation of the Value

@ Simultaneous update:
Vir1 = Ve + BeP(St, Ar) (0 — peP(St, At)TVt)

Wer1 = We — 2000t (YP(Sea1, Aer1) — O(Se, Ar))D(Se, Ar) T ve
@ As ay < ¢, w is seen as constant by v. ..

@ Simultaneous update:
Virl = Ve + B ®(St, Ar) (0 — pe®(St, At)TVt)

Wi = W — 2C¥tpt(5t¢(5t,At) — ’Y¢(5t+17At+1))¢(5t7At)T Vi
@ Obtained by a similar derivation but faster in practice. . .

@ As a; < B¢, w is seen as constant by v. ..

Discounted

@ Restricted to the linear setting but interesting insight.
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Outline

e Reinforcement Learning: Approximation
of the Value Functions

Reinforcement Learning:
Approximation of the Value
Functions

@ Two-Scales Algorithms
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StOCh aStIC ApprOXimathn Reinforcement Learning: 4

Approximation of the Value
Functions

9k+1 =0, + akhk(ﬁk) with hk(g) = H(Q) + €k + Nk
— 0, — {6, H(6) = 0}

Stochastic Approximation

Family of sequential stochastic algorithm converging to a zero of a function.
Classical assumptions:

o Elex] =0, Var [ex] < o2, and E[||n«]|] — O,

o Y ,ar—ooand Y, ai < oo,

o the algorithm converges if we replace hyx by H.

Convergence toward a neighborhood if « is kept constant (as often in practice).
Most famous example are probably Robbins-Monro and SGD.

Proof quite technical in general.

The convergence with H is easy to obtain for a contraction.
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StOChaStIC ApprOXimathn and ODE Reinforcement Learning: 1

Approximation of the Value
Functions

From 6k+1 =0, + Ozkhk(ek) with hk(Q) = H(@) + €k + Mk
df .
to — =H(A
5 = H©)
ODE Approach
@ General proof showing that the algorithm converges provided the ODE converges.
@ Rely on the rewriting the equation

) —0
AL 7K — he(Bk) = H(0k) + ex +

oy can be interpreted as a time difference allowing to define a time tx = ),/ a.

6(t) is piecewise affine and defined through its derivative at time t € (t, tki1)-

This piecewise function remains close to any solution of the ODE starting from 6
for an arbitrary amount of time provided k is large enough.

V,

248

@ More general proofs based on martingale.



StOCh aStIC ApprOXimathn Reinforcement Learning: /'“

Approximation of the Value
Functions

ek-l-l =0, + Odkhk(ek, I/k) with hk(0, V) = H(@, V) + €k + Mk
Vit = Vi + Bigr(Ok, Vi) gk(0,v) = G(0,v) + € + 1
— 0 — {0, H(0,1(0)) = 0,1(0) € {v, G(0, ) = 0}}

Stochastic Approximation

o Family of sequential stochastic algorithm converging to a zero of a function.
o Classical assumptions:

o E[ex] =0, Var [k] < 02, and E[||n«|]] — 0,

o >,k —ooand Y, a2 < oo,

o Y, Bk—ooand >, B2 < oo,
o ay/Bk — 0 (two-scales assumption),
o the algorithm converges if we replace hx and gx by H and G.

e Convergence toward a neighborhood if a < /3 are kept constant (as often in
practice). 249



StOCh aStIC ApprOXimathn and ODE Reinforcement Learning: /

Approximation of the Value
Functions

From 0k+1 =0 + akhk(ék, Vk) with hk(ﬁ, V) = H(Q, V) -+ GIk + T}:(
Vi1 = Vi + Br + 8x(0k, k) gk(0,v) = G(0,v) + € +

o 2_ H(,(0)) with (6) the limit of ‘C’/’; = G(0, 1)

ODE Approach

@ General proof showing that the algorithm converges provided the two ODE
converge.

@ Quite generic setting and source of new algorithm or insight on existing ones.

@ Importance of having two scales. . .

@ Can be used to prove the convergence of GTD and TDC!
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Outline

e Reinforcement Learning: Approximation
of the Value Functions

Reinforcement Learning:
Approximation of the Value
Functions

@ Deep Q Learning
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Slmpllfled Deep Q‘Learnlng Reinforcement Learning: /"“

Approximation of the Value

Functions

Wip1 = We + Be(Rey1 + 7 max Q. (St41,3) — Qu, (St Ar))V Qu,(St, Ar)

Ve = Wiy T\ T

Simplified Deep Q-Learning

@ Stochastic Approximation for a fixed v:
o Limiting equation:
]Eb[(T*QU(St’ At) — ch>o (Sta At))VQWco (St’ At)] = 0
e Stochastic Gradient Descent of
Eb|(T*Qu(St, Ac) = Qu(Si A)Y|
o Qu—T"Q,

@ Approximate Value lteration Scheme!

@ Two-scales algorithm flavour as v is kept constant.
e Explicit two scales with vy1 = v + a(w; — 1) variation.
@ Could be used for prediction with Re1 + 7>, m(a|St+1) Qv (St+1, a)

Discounted

N
o1
N



Reinforcement Learning:

Deep Q_Learn I ng Approximation of the Value
Wer1 = We + Be(Re +y max Qu.(St+1,a) — Qu(St, Ar))V Qu (B As)
Vet =Wy
@ Who are S;, A¢, Riy1,S¢+17 and thus to what corresponds E,?

Simplified Deep Q-Learning

@ Use a behaviour policy b.

@ The current greedy plus exploration @-policy can be used.

Neural Fitted-Q

@ Instead of a policy b, use a fix dataset D of S;, A¢, Rey1, Sey1-
@ Several pass on the data can be made.

\.

Deep Q-Learning

Discounted

@ Use the current greedy plus exploration Q-policy to populate a FIFO buffer D.
@ Use random samples of the buffer D; (more than one per interaction is OK).
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Deep Q‘ Lea rnm | ng Reinforcement Learning: 4

Approximation of the Value
Functions

Wi = W + ﬁt(Rt + maaX Qyt(5t+17 3) - Qw(5t7 At))va(St; At)

Ve = Wl/T1T
Plus tricks

Deep Q-Learning Tricks

@ Replay buffer

@ Double @-Learning
@ Better Exploration

@ Advanced Return and Distributional

@ Network Architecture

@ Rainbow paper. ..
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Replay BUffer Reinforcement Learning:

Approximation of the Value

Replay Buffer

@ Replace an expectation over real trajectories by an empirical average over past
(short) sub-trajectories stored in a replay buffer.

@ The empirical average corresponds to uniform sampling.

o If the policy is changing across time, we should use a importance sampling
correction to be faithful with the theory. ..

@ Not necessary for one-step @ learning but required for most of the other methods
where replay buffer is used.

@ Often no correction in practice if the policies used in the buffer are closed to the
current one.

@ Prioritized sweeping variant possible. . .

@ Buffer can be constructed in parallel of the learning part.

@ Only requires to transmit the current greedy plus exploration Q-policy.
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DOUble Q_Learnlng Reinforcement Learning: X

Approximation of the Value
o iop

@-Learning and overestimation

@ Target: Rs,+ymaxy Qu(s', )

@ Approximation issue: Qu(s’,a") ~ Q(s, a) + €(s, a)
o Consequence: E[max, Qu(St, a)] > max (Q(s, a) + E[e(s, a)])

Double Q-Learning with two Q functions: Qu, and Qu,

@ Used in a crossed way for the target of Qu;:
Rs,a +7Quw, (s, argmax Qu,(s’, a'))
a/
o Mitigates the bias.

Clipped Q-Learning with several @ functions: Q,,
@ Used in a pessimistic way for the target of Qu;:
Rs.2 + v min Qu, (s', argmax Qu,(s', a"))
i’ ! =

@ Seems even more efficient. 256




Outline

e Reinforcement Learning: Approximation
of the Value Functions

Reinforcement Learning:
Approximation of the Value
Functions

@ Continuous Actions
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Conti nuous ACtIOﬂ Reinforcement Learning:

Approximation of the Value
Functions

@ Case (almost) not yet covered in the lectures.
@ Most complex theoretical extension.

@ No algorithmic issue if one can sample 7.

o Off-policy can be considered under a domination assumption.

.

Planning
@ Main issue is the argmax of the greedy policy (or the sampling of Gibbs policy).
@ May be impossible to compute.

@ Possible if the parametrization of Q with respect to a is simple (e.g. explicit
quadratic dependency in a).

@ An alternative could be to approximate the argmax operator, or to learn how to
approximate the argmax directly, which is very close to approximating directly the
policy itself. . .
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O Utl | ne Reinforcement Learning:

Policy Approach oo

e Reinforcement Learning: Policy
Approach
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POllcy POIITt Of VleW Reinforcement Learning:

Policy Approach

Policy Point of View

o Optimize policy directely instead of deriving it from a value function.
@ Avoid the argmax operator.
@ Most natural POV?

e Pontryagin vs Hamilton-Jacobi(-Bellman) in control!
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O Utl | ne Reinforcement Learning:

Policy Approach oo

e Reinforcement Learning: Policy
Approach
@ Policy Gradient Theorems

261



POl |Cy an d Goa | Reinforcement Learning:

Policy Approach

Ju(m) = 2 pu(s)vx(s)

S

Goal: average expected return over the states

@ Target used to define the linear programming formulation of an optimal policy in
the tabular setting.

@ 4 can be the initial distribution of the states (independent of ). ..
@ but may also depends on 7 (for instance the associated stationary measure)

@ Other choices will appear.

e Goal: optimize J,(7) in 7!
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Pa ram etl’IC POl ICy Reinforcement Learning:

Policy Approach

eho(a;s)
W (SOftmaX)
mo(als) = Phys)(a)  (parametric conditional model)
1a—hy(s) (deterministic)

Parametric Policy

@ Restriction of the set of policy to a parametrized one.
@ Most classical parametrizations:

o Soft-max with a preference function hy(a,s),
o Parametric conditional model with parameter hy(s)

To be useful need to be able to sample the distribution.

hg: from linear model to deep learning. ..

Most of our result will assume that my(a|s) is differentiable with respect to 0.

@ Deterministic policies will be considered with a different analysis.
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Episodic Setting: Gradient of Expected Returns rentocemen Leaming.

Policy Approach

50_5]

Expected Returns

@ Rely on v, (s) = ZPW(T|50 =s) Go(7) and

VP, (TS0 = s) = Pr,(7]|So = 5) VIog P, (7|So = 5)
= Pry (7150 = 5) Y (Vlog mo(A¢|St) + Vp(Rey1, Seta|St, Ar))

t

= Pry (7150 = 5) Y Vlog mp(A¢|S:)
t

VTFQ(S) = Eﬂe[G0|50 - S]

(TTZ:I Vlog ﬂg(At]St)> Go

VoVe,(s) = Eg,

t=0

Episodic

@ In an episodic setting, any trajectory 7 ends at a finite time T..
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EpiSOdIC Settlng POllcy Gradlent Theorem Reinforcement Learning:

Policy Approach

Juo(10) ZIP’ (So = 5) Viry ()

VJMO (’/Tg) =E

t=0

(Ti:l V log 7rG(Atr‘st)) G

Policy Gradient Theorem

o Natural p: initial state distribution.

o Gradient is an expectation: MC type algorithm. . .

@ Can be interpreted as the gradient of a the maximum likelihood of the actions
weighted by the return.

@ Favors good actions over bad ones.
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Baseline and Variance Reduction Reinforcement Leaming: /X

Policy Approach

Juo(0) Z}P (So = s) vy (5)

VJHO(T‘-@) =E 0

( DRy Iogm(At|5t)) (Go — b)]

t=0

Variance Reduction and Baseline
@ The previous formulae are valid if one replace Gy by any function of 7.

Tp=il
(Z V|0g7r9(At|5t)) b]

t=0

@ For any constant b, this leads to

VEqr,[b] =0 = Er,

@ Optimal value for
2 2
b= Ex, | (S5 Viogmo(AlS))” Go| /Ery | (ST25" Vlogma(4dS0)’]

@ Most used value b = E,[Go].

Episodic

N
[N
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Gradient(s) of Expected Return

Vrg(5) = By [ 7' Re|So = ]

s) = ;VfEm th V log 7r9(At/|5t,)> R,

t'=0

SOIS]

=> E,,

tl

t>t

V log mo(Aw|Se) (Z’Y ) 1So =5

=3 AE,, [V log m(Ar| St )Gy (Ser, Arr)|So = s]
tl

Reinforcement Learning:

Policy Approach

= ZV Er, | Vlog mo(Ar|St) (Gry (Str, Aer) — Vo (Ser)) [So = s

aﬁe( A

From Returns to Value Functions

@ Action point of view and use of value functions.
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M ore G rad ient (S) Reinforcement Learning:

Policy Approach

Vvﬂa (5) = Z'ytlEﬂ'e [v log 7"'G(At’|5t/)q7r9(5t’aAt/)’SO = 5]

tl
=S " AYEr, [V log m(Av|Ser)an, (Ser, Avr)|So = s
tl

= Z (Z V' Pr, (St = 5'|So = s)) <Z mg(als )V log mo(als’) qr, (s, a))
=> (Z VP, (St = 8|S0 = s)) <Z mg(als’ )V log mp(als’)an, (s, a))

Focus on states
@ Even more stochastic gradients!
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POl |Cy G rad Ient(S) Reinforcement Learning:

Policy Approach

Juo(T6) ZMO )V (S
V() Z <ZV (St =5 ) (Z o(a|s)V log mo(als)qx, (s, a)>
=3 (S0P (5= 9)) (S mlale)T o m(als) (5 2) v . 2)

o
(O}

Discounted Setting

@ Average (discounted) return from the beginning.

@ Focus on early steps in discounted setting. . .

8 Episodic / Disco



Policy Improvement Lemma

Reinforcement Learning: 4
Policy Approach

) = ) = X (5= ) (2 (7(as) — n(al)) a2
=SSPl =) (S (el ~ nlals) a2

a

@ By construction, if S; is a trajectory using policy 7’
Ver(Se) = va(Se) = Z( "(alS¢) — 7(alSt)) g (S, a) + ZW (alst) (qn(St; @) — qx (St a))
= Z "(alse) — m(a[St)) v (St, @) + Er [Vier (Se1) — Ve (Se1)1 St

@ Discounted settlng shortcut
Vr! — Vp = r7r’+’7P7r/V7r’ —frr—’YPﬂVw = I _r7r+'7<Pﬂl _Pﬂ-) V7T+'7Pﬂ- ( L VTI')

Vo — v = (I = yP™ )1 (r,,/ — Ity (P”/ - P’r) vﬁ)

% Episodic / Discounted




Approximate Policy Improvement Lemma

Reinforcement Learning: 4
Policy Approach

a

Juo (') = Juo(m) = DD 7' Pr(Se = ) (Z (7'(als) — m(als)) ax(s, a)) |

S A (Bar(Se = 5) — Ba(St = 5)) (Z (w'(als) — w(als)) ax(s. a)) '

S t a

.
S Aoqp M I7"(-[s) = 7 (-|s)II5 max |ax(s, a)]

Approximate Policy Improvement Lemma

o If maxs ||7'(:|s) — w(:|s)|l1 < e
Po(St =5) = (1 — &)'Pr(St = 5) + (1 — (1 — €)")Pristake(St = 5)
= P (St =5) —Pr(S: =s)| <2(1 — (1 —€)*) < 2et
° X2t = 5y

Discounted
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Approximate Policy Improvement Lemma Renforcement Learing: 2K

Policy Approach

a

Jio(®) = o) = 32 S4B (St = 5) (Z (w'(als) — m(als)) an(s, a)) |

2y
< 1-~)2 " 17 (-|s) = 7 (-[s)II2 max |ar(s, a)|

Approximate Policy Improvement Lemma and Policy Gradient Theorem

o Let 7’ = TO+h and my
o 7o n(als) — mo(als) = me(als)(V log mo(als), h) + O(||Al|)
o |[mo+h(:[s) — mo(-Is)ll1 < [|hll max, |V log mo(als)|| + O(||Al1?)
@ Implies Policy Gradient Theorem:
Juo(ﬂ'o—l-h)

= Juo(m0) + 3 D7 Pry (St = 9) (Z mo(als)(V log mo(s, a), h)ax(s, a)) +O(|Ihl1%)

4
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O Utl | ne Reinforcement Learning:

Policy Approach oo

e Reinforcement Learning: Policy
Approach

@ Monte Carlo Based Policy Gradient
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Monte Carlo Approach

Gt = Z Rt+1

t'>t

Qt7ﬂ—9(5, a) — ]E[Gt‘st — S,At — a]

Monte Carlo
@ Replace every return by an empirical estimate along episodes.

@ Need to wait until the end of the episods.

Reinforcement Learning:
Policy Approach

Episodic

N
~
N



REINFORCE: Monte Carlo Based Policy Gradient e Leomine

Policy Approach

Juo(m0) = D_P(So = 5) vy (5)
(7§1V|ogﬂ9(At|5t)> Go
=) (Z: P, (S: = s)) <Z mo(als)V log ma(als)qu, (s, a)>

VJ#O(T‘-G) =E 0

T,—1
V(7o) = (Z V log m(A: \59) or V() ZVIogﬂg(A e
_ O
©
e Plain MC (SGD) algorithm. .%
@ Need to wait until the end of the episods. L
o Convergence guarantees (even in off-line setting with importance sampling). 275




REINFORCE with Baseline

Policy Approach
T,—1

t=0

= 25: <zt: P, (S5 = s)) (23: mo(als)V log ma(als) (gx, (s, a) — b(s)))

T o) = (nzlwogm(A |st)) (Go— b)

or V() ZVlOgﬂe(A |5¢) (Ge — b(S¢))

VJNO(T(—Q) =

REINFORCE with baseline

@ Several choices for b. ..
@ and for b(s) which can be any function (a crude estimate of V; ,(s) for instance)!

Episodic

o Convergence guarantees (even in off-line setting with importance sampling).

N
~
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Discounted REINFORCE? Reinforcement Learning

Policy Approach
T,—1
( Z Vlog W@(AJS})) (Go — b)

t=0

= ES: <zt: VP (S = s)) (Z; mo(als)V log my(als) (gr, (s, a) — b(s)

VJNO(T(—Q) =K

—

T () = (nzlwogm(/\ |st)) (Go— b)

or VJMO 7T9 Z ’}/tv |Og T@(A ‘St) (Gt - b(st))

Discounted REINFORCE

@ Can be defined. . .

@ but still requires an episodic setting for the discounted return G; to be computed.

Discounted? / Episodi

N
BN
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D |SCOU nted MeaSU re? Reinforcement Learning: 4 X

Policy Approach

V() = 3" 7'V log m(A:|S:) (G: — b(S:))
t
— 1
— VJHW ('ﬂ'@) = ﬁv |Og WQ(AtISt) (Gt — b(St))?

Discounted Measure?
@ Much less weights for later states if © corresponds to the initial state distribution!

@ Equal weights corresponds to an averaged probability independent t, which is well
defined if the initial distribution is the stationary distribution i, corresponding to
mg (it it exists).

o Approximately true after a burning stage if we reach stationarity. . .

@ Better handled by the average return!

@ More on this later. ..
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@ Actor / Critic Principle
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ACtOI’/CI’ItIC Reinforcement Learning:

Policy Approach

Actor: Parametric policy my used.

Critic: Q-value function Qu (-, -) approximating Qr,.

Critic follows the Actor, which is optimized using the Critic.

In Value Approximation, the Actor follows the Critic (through the argmax
operator).

@ In on-line methods, the Actor is used to interact with the environment.

280



ACtOF/ C rItIC Reinforcement Learning: 4

Policy Approach
ZMO V7T9
V(o) z(zw . st—s>(zm )V log 0(a[5)(Gny (5. 3) — Vi (5. 3))

V() = 57"l A ) log (A5 (qm(st, A — 3 (212 m (St A»)

a

~ ;vtﬂe(AJSt)V log (A Se) (ow(st, Ar) — Zw(a!&)Qw(SuAt))

a

o Critic update: Stochastic Policy Gradient with plugin.

@ Actor update: any Q-value methods estimating gy, .

@ Requires a two-scales algorithm so that Qy is always a good estimate of gr,.

8 Episodic / Discounted ~—

@ Is this a real algorithm in a non-episodic setting?



ACtOF/ C rItIC Reinforcement Learning: 4

Policy Approach

Jyiny (T0) = D iy (8) Vi (5)

S

Vo (10) = 5 (51 = ) (S 1) o ol 5,2) — v (5 2) |

v,

= (T0) = 7

a

7o(Ae|St)V log mp(A¢| St ) (QW(St, Ar) = 7(a]S:) Qu(S:, At)>

Critic update: Stochastic Policy Gradient with plugin.

Actor update: any Q-value methods estimating gy, .

Requires a two-scales algorithm so that Q,, is always a good estimate of q,.

Require the existence of a stationary measure. .. and that this stationary measure
is reached quickly.
Much harder to do off-policy algorithm as the stationary measure is not known!

Discounted

[
N
o0
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Critic in Actor/Critic

Reinforcement Learning:
Policy Approach

Qw >~ Gx,y

@ On-line TD learning with interaction following .

o Off-Policy TD learning is possible if the policy used for any action is stored.

@ Approximate off-policy TD learning is possible using a replay buffer providing 7y is
changing slowly.

@ May lead to 3 scales algorithm (Actor/Critic Target/Critic)

@ As mentionned in the previous slide, much harder to do off-line update for the
actor.
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OfF‘ Ll ne ACtOF Reinforcement Learning:

Policy Approach

Off-Line Actor
o Idea proposed in 2012.
@ Key lemma in the paper
VJ,,(70) Zy )Y mo(als)Vmo(als)qn, (s, a)
a
turns out to be wrong!

o Still used as a heuristic justification of many algorithms!

o Explicit formula for VJ|,(mg) can be obtained but much harder to use. ..

284
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e Reinforcement Learning: Policy
Approach

@ 3 SOTA Algorithms
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PPO: Minorize-Majorization Algorithm

Reinforcement Learning:
Policy Approach

a

Juo(7') = Juo(7) + thP (Z (7'(sla) — m(s[a)) ax(s, a))

2y
Ta—q M I7'(-Is) = (:Is)l1i max |ax(s, a)|

Ideal Minorize-Majorization Algorithm

o At step k, find 041 maximizing

Juo(molma) =D D 7' Pry, (St = ) (Z (mo(s|a) — 7, (s[a)) ar,, (s, a))

a

2 5
Ty 2 ImoC1s) = ma,(19)] max far, (5, 2)

@ By construction, J,,(ma,.,) > Juo(7s,)

O
(O]
+
c
=
(@)
Q
=t
a

e Sample efficient algorithm as the same trajectory can be (re)used in the
optimization.
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PPO Optlmlzathn Reinforcement Learning:
Policy Approach

Da(70) 2 Jpa(70,) + 30 301 By (52 = 5) (Z (mo(sl3) — 7, (512)) ax, (s a))
2
oy 2o (1s) — 7o, (19) [ maxar,, (5, 2)

Optimization

o Gradient descent is possible.

o Gradient of the first term can be approximated using a critic by

S A P(Se = s) (Z moVo(s|a)Ax,, (s, a))

@ Gradient of the second term more involved.

@ Simpler (TRPO like) strategy: optimize

> VPr, (Se=5) (Z (mo(s|a) = mp,(s]a)) ary, (s, a))

under maxs ||mg(+|s) — . (-|s)||7 < € and reduce € there is no gain.

P

Discounted
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PPO KL Relaxatlon Reinforcement Learning: /

Policy Approach

Da(70) = Jyalm0,) + 30 02 B (5= 9) (Z (mo(sla) — 70, (512)) ar,, (s, a)))

27 Rmax s a

(1 =)

TRPO/PPO Optimization

@ Replace the /1 norm by a KL divergence.

max KL(7o, (-[s), mo(:[5))

@ In practice, replace the max by an average and replace %Y% by parameter § and
replace the a,, by an estimate A, .

o PPO: Gradient descent of the relaxed goal.

@ TRPO: Constrained optimization.

@ Adaptive scheme to set (5.
@ Can be used with continuous action.
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PPO: Clipped Objective

Reinforcement Learning: 4,
Policy Approach

SO, (5= 9) (Z (sl min (Z208%a, (s.a).cip(1 - e TS 14 O, (5 >)>

7o, (s, a) 7o, (s, a)

Clipped Objective
o Insight by (re)substracting -, 7, (s|a)ag, (s, a) = 0:
>~ min ((m(s|a) = 7,(s, a)) any, (5, 3), clip(—€, 79(s]a) — 79, (5, 3), €)ar,, (5, 3))

= chip(—mgk (s, a), mo(s|a) — ma, (s, a), emo, (s, @) ar,, (s, a)

— max (0, —(my(s|a) — 79, (5, 2))any, (5, 3) — €mo, (5, 3)|amy, (5, 2)])

ue;
@ First term amount to replace my by a policy 9
7ig(als) = clip(mg, (als)(1 — €), mo(als), mq, (als)(1 + €)) + nsm, (als) =

where 7 is so that 7 is a probability for all s and ||7g(-,s) — 7, (-, 5)|l1 < € §

@ Second term: hinge loss type penalization of policy 7y penalizing bad actions. ) Q
@ Very efficient for discrete actions. 289



P PO Statlon ary O b_]eCtIVG Reinforcement Learning: /"L‘:

Policy Approach

Y Pr (S =5) (Z (mo(s|a) — mo,(s]a)) ar,, (s, a)) — BmaxKL(mg, (-[s), mo(-[s))

ZIP’mk(St =5) (Z 7o, (s]a) min ( mo(s12) am,, (5, a),clip(l — e, mo(s1a) 14 ¢€)ax, (s, a)))

7o, (s, a) 7o, (s, a)

Stationary Objective

e Amount to replace J,,(7) by J,. ()
@ Most common implementation of PPO. ..
@ But no way to justify it mathematically!

@ May explain the (possible) instabilities of PPO.

@ More on this later. ..
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D P G Determ | n ISth POl |Cy G rad |ent Reinforcement Learning:

Policy Approach

Juo(mp) = Z,uo( )V, (s) with deterministic policy mg(als) = 1.—py(s)
Jo(76) Z Z'Ytpwe (St = 5) Vaq(Se, ho(S:))V ho(S:)

Deterministic Policy Gradient

o Deterministic policy replaced by a randomized one centered on hy() in the
interactions!

Critic trained with a TD variant of DQN.
Same formula by using a policy g = N(hg(s), o?Id) and letting o goes to 0.
Off-Policy as claimed?

Yes for the actor but no theoretical justification for the critic!

In practice, the buffer contains only samples using a policy close to the current
one. ..
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SAC: A New Goal

Reinforcement Learning: 4,
Policy Approach

R: = R + AH(m(5:))

A Modified Reward
@ Modification of the reward to favor high entropy policy:

Rt — Rt aF )\H(']T(St))
o Goal:

J(m) =E, lz v (R: + )\’H(W(St)))}
t
@ Soft value function implicitly defined as the fixed point of

T"qx(s,a) = rx(s,a) + Z ,0(5/‘5, a)VW(S,)

where vi(s,a) = Zw(a]s) (g=(s,a) — Nog(als))

a

Discounted
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SAC: Policy Improvement and Optimal Policy rentocemen Leaming.

Policy Approach

Ry — Ry + AH(7(S:))

A Modified Policy Improvement Lemma

@ Policy improvement rule:
mt([s) = argmax Y w(als) (q(s, a) — Alog(7(als)))
m(-ls) a

7+ (als) ox exp(4(5, )
implies G+ (s, a) > Gx(s, a).

@ At convergence, J(7*) is optimal!

@ Convergence in the finite setting.

Discounted
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SAC: Parametrization

Reinforcement Learning: 4,
Policy Approach

m~my and q(s,a) ~ Qu

o Fitted TD learning for Q:
w~argmin Y (R+Eq[vQw(S',a) — Mogmy(alS)] — Qu(S, A))°
(S,A,R,S")eB
where the trajectory pieces are samples from a replay buffer and w is a slowdown
version of w (two-scales algorithm).

@ Online version rather than batch. ..

o Fitted KL for m: o
6 ~ argmin Z KL(ma(:|S)| exp —AQW](S,)/Zw(S)) =
(S,AR,S")eB S
1 Ko
~ Y E, [A log ma(alS) — Qu(als) A
(S,AR,S"eB
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TOtal ReWa rd Extensions

+oo

n(5) = En| 3 R

t'=1

SO_S]

@ Total reward not necessarily well defined!
@ Need to assume this is the case!

Properness Assumptions - Finite duration of episodes

@ H-proper policy: It exists an absorbing state s,ps such that
Vs, En[mings,—s,. t|So = s] < H < 400

@ Episodic model: every policy is H-proper ~ discounted setting for a weighted

sup-norm.

@ Stochastic Shortest Path: there is a proper policy and any non proper policy I1 is

such that 3s, vn(s) = —o0.

@ Other models proposed by Puterman (Positive Bounded and Negative Models)

have been abandoned by Puterman himself!

Total



Bellman Operator and Optimality Equation Extensions

sup vi(s) = vi(s) = maxr(s, a) + Z/ p(s'|s, a)vi(s")

TH(vx)(s)
@ Similar to the discounted setting as:

e We can focus on Markovian policy.
e The optimal value v, satisfies the Bellman optimality equation.

T* is not a contraction and thus there may be several solutions of the equation.
If 7 is such that 7™ v, = T *v, we need to assume that lim sup(P™)"v,(s) < 0 to

°

prove that 1 = (7, m,...) is optimal.

@ There may not exist an optimal policy! _
©
+—

@ Existence of optimal policies in the finite state-action setting by defining the total |<_3

reward to the limit of discounted setting when v — 1 and using the finiteness of
208

the policy set. ..



Stochastic Shortest Path Extensions

t, t*sabs

1 H-proper < Vs, En[ min t'So = 5} < H< 4

Assumptions

@ It exists a proper policy.

@ For any improper policy, it exists s such that vp(s) = —oo.

Properties

@ For any proper policy, v, is the unique solution of v ="7T"v, and 7" is a

contraction.
@ v, is the unique solution of v = T*v.
@ Value Iteration and Policy Iteration converge in a stable manner.

o Modified Policy Iteration converges provided vy < T*vp.
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Stochastic Shortest Path and Reinforcement Learning  exensions

5t - Rt + Q(5t+1; At+1) - Q(St7 At)

Prediction
@ Convergence of TD-learning algorithms for any proper policy.

0y = Re + mgx(5t+17 3) - Q(Sta At)

Planning
@ Convergence of Q-learning algorithms is the Stochastic Shortest Path setting if
the @ estimates remain bounded.

@ See Neuro-Dynamic Programming from Bertsekas and Tsitsiklis!
@ May be very slow in practice!
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Stochastic Shortest Path and Policy Gradient Extensions
Vry(s) =Y Er,[Vlog mg(Ap|Ser)ar, (Ser, Aer)|So = s]
t/

= Z (Z Pr, (5t = s|So = s)) (Z mo(als)V log mp(als)qnr, (s, a))

Policy Gradient
@ Formula valid in the Stochastic Shortest Path Assumption (if the current policy is
proper).
@ Approximate Policy Improvement Lemma with a H? multiplicative constant
(instead of O(H)).

.

@ Valid approach provided all the policies considered remain propers.

e Main difficulty is to maintain a good estimate of q,. ..
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@ Average Return
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Average Return Extensions

1 . g
Vn(S) = Tlinoo ?VT,I_I(S) = Iin *]En [Z Rt

1
— Von(s) = limsup =vrn(s)
T—o0 T

1
v_n(s) = IiTrn%igof —vr.n(s)

T

Average Return(s)

@ Limit vV may not be defined!

o Prop: v is well defined if I is stationary and + ST (P™)t1! tends to a
stochastic matrix.

o
a0
©
A
o
>

<

@ Limits v n and V_ j always defined!




Average Returns and Optimality Extensions

Vi.(s) =supvin(s) and V_,(s)=supv_n(s)
n n

Optimality of I,

@ Average optimal:
Vo, = Viu(s)
Lim-sup average optimal (best case analysis):
Vi, = Viu(s)
@ Lim-inf average optimal (worst case analysis):

V_zn* Z V_y*(s)

More complex setting!
Let's start with Prediction. ..

o
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Prediction for a Stationary Markov Policy Extensions

T—o0

Stochastic Matrix P2°

@ Measures the average amount of time spend on a state s’ starting from state s at
t = 0 when using policy 7.

1 T
vn(s) = 7_Iinoc TZPt by, = ( lim T;P;1> re = P>r,

@ Structure linked to the properties of the resulting Markov chain:

o If aperiodic, P2° = limt P i.e. P> is close to the probability of reaching s’ from s
at any large T.

o If unichain, then P2° has identical rows and corresponds to the stationary
distribution.

o If multichhain, then P2° has a diagonal block structure with rows equal withing each

block corresponding to the stationary distribution in each chain.

4

)
a0
©
A
o
>

<

e Implies that vp(s) = vp(s') in the Markov process is unichain.
e Limit P.° may be hard to compute. .. 30
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Average Reward and Relative Value Functions Extensions

U:(s) =E, [i(Rt — V()

t=1

5 — s] & U, = (Id— P, + P®)(1d - P¥)

Hx

Link between U, and v,
o (Id— P;)v; =0
oV, + (I —Pr)Ur =1y

.

Characterization by a system
o If (Id— P;)v=0and v+ (I — P;)U = ry then

oV ="Vg,
o U= U;+ uwith (I — P;)u=0,
o If P>°U =0 then u=0.

.
Average

@ Prediction possible by solving this system as we do not need U,.



Optlmallty EquatiOI"IS Extensions

—mapr 'Is, a)v(s’)
U(s) + v(s) = g;ags(r s,a —i—Zp s'|s, a)U(s)with By = {a\Zp 'Is, a)v(s') = v(s)}

m.(s) € argmaxr(s, a +Zp s'ls,a)U(s)

acBs

If there is a solution (v, U) of the system then Vv = v, and 7, is an optimal policy.

@ There may exist other optimal policies not satisfying the argmax property.

@ There may not exist solutions to the system. g)o
©

@ Associated relative value iteration and modified policy iteration can be defined. 3}

@ Convergence under strong assumptions. . . E



Average Return and Relative Value Functions Extensions

() = imE, H i% Rt] = Y pals) X lals) Y- pl(s' rls.a)r
Ge= 3" (R — r(m))

t'>t

Vo(s) = E;[G:|S: =s] and q.(s,a) = E [G:|S: = s, A: = 4]

Connection with Stochastic Shortest Path

@ Provided there is a state s that is visited with positive probability in the first m
steps for any starting state and any policy.

@ r(m) is the average cost between a visit s and the next one. ..

Reinforcement Learning Algorithms

Average

@ Simultaneous estimation of g and r. ..

@ Much less theory as there is no contraction!




Algorlth m (S) Extensions

Average: Planning by SARSA

input: MDP environment, initial state distribution g, policy 1 and discount factor
parameter: Number of step T
init: Vs, a, Q(s, a), N(s,a) =0, n=0,t=0, r=0
Pick initial state Sy following o
repeat
N(S:) <+ N(S:) +1
Pick action A; according to m(-|St)
Q(St—hAt—l) — Q(St—l,At—l) SR a(N(St—l,At—l)) (Rt — -1+ ’YQ(St, At) — Q(St—h At—l))
r<r+oa:(R:—r)
M(S:—1) = argmax, Q(S:—1, a) (plus exploration)
t—t+1
until t =T
output: Deterministic policy 7(s) = argmax, Q(s, a)

@ Q-learning variant (known as R-learning) and other estimations of r exist.
@ No convergence proof.

309



POllcy Gradlent Extensions

Vr(r) = I|m ;_IE lZVIogﬂ (A:]S:)a.(S:, A )1

Vr(r) = Iip ;_IFL}T [; V log m(A¢|St)a(Ss, At)]

Policy Gradient
@ REINFORCE type algorithms, using MC estimate of g and a are possible,
@ but g and a are the relative ones, not the classical ones, and are much harder to
estimate.

@ Actor/Critic algorithms combining parametric estimation of g (or a) and gradient
exist.
310
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To Discount or Not? Extensions

SoZS,aoza‘|

To Discount:  J(7) = E, lz pth] Qx(s,a) =E, [Z P R;

t t

SoZS,aoza]

or Not (SSP): J(w) =E, lz Rt] Qx(s,a) =E, [Z R:

To Discount or Not?

Discount is (quite) artificial.

No discount in the evaluation part most of the time.

Discount often used in training due to better convergence for value
functions. . . toward a (quite) artificial policy target!

In practice, often hybrid scheme with no discount for the policy gradient part, but
discount for the value functions part! No strong justification but often better

numerical performance!

Average reward much less used! 312
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POMDP Extansions

o~ ]P)('|57 a)

Partially Observed Markov Decision Process

@ MDP strongest assumption is that s is observed!

@ POMDP replaces this assumption by the observation of o with a known law of
P(ols, a).

@ Can be recasted as a MDP where the state is the probability of being in a state s
given the current observation!

@ Much higher dimensional setting!

@ Policy gradient algorithms remain valid in the POMDP setting when replacing s
with o.

e Difficult part is to obtain a good value function estimate.

314
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@ Imitation and Inverse Reinforcement
Learning
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Imitation Learning Extensions

Good 5t7 At7 (Rt+17 )St+17 At+l — T

t
argmin Y _ log mo(A¢|S:)
o

i=1

Imitation Learning

@ Learn policy from demonstrations (observations).

@ Most classical approach: maximum likelihood.

@ Need to cover all states (possibly through the approximation)
o

Reward is not used.

DAGGER: Sequential approach to add feedback from trajectory with an estimated
policy through the decision that would have been made.

316



Inverse Reinforcement Learning Extensions

Good 5t7 At; St+17 At+l ormt— R — 71—*

Inverse Reinforcement Learning

@ Heuristic: Learn a reward which explains the observed policy and used it to
obtain a better policy (or to generalize to different models).

@ No clear mathematical formulation:

o Reward so that the observed policy is optimal (with a margin).

o Expected return/optimal value function linked to observed policy (trajectories)

probability (with entropic regularization)
e Most generic formulation?
min m’ngﬂ[R] —E~[R]1+ K(n') — C(R)

@ Exact problem considered not always clear for a given algorithm (and different
from one algorithm to another)!

@ Very hard problem!
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Learning from Preferences Extensions
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Learning from Preferences

o Often easier to compare trajectories than to make a demonstration.

@ Reinforcement Learning from Human Feedback: Learn a reward from the
demonstration using a preference model (Bradley-Terry?) and use it to find a
policy.

o Direct Policy Optimization: shortcut to optimize directly the policy thanks to
the explicit preference model used.

@ Proximity constrains are often added to avoid moving too fast from a current
policy.

o Key to the performances of current LLMs.
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o Extensions

@ More
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M Orel Extensions

Regrets

Sample optimality
Robustness

Multi-agents (Games. . .)
LLM and world models. . .
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