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Introduction to Supervised
Learning

Machine Learning

So
ur

ce
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eThe classical definition of Tom Mitchell

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E.
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Bike Detection
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Task: say if a bike is present or not in an image
Performance: number of errors
Experience: set of previously seen labeled images
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Article Clustering
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An article clustering algorithm:
Task: group articles corresponding to the same news
Performance: quality of the clusters
Experience: set of articles
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Clever Chatbot
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Task: interact with a customer through a chat
Performance: quality of the answers
Experience: previous interactions/raw texts
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Smart Grid Controler
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.A controler in its sensors in a home smart grid:
Task: control the devices in real-time
Performance: energy costs
Experience:

previous days
current environment and performed actions
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Four Kinds of Learning
Machine Learning

Supervised
Learning

ClassificationRegression

Unsupervised
Learning

Not
Supervised

Dimension
Reduction

Clustering

Generative
AI

Generative
Modeling

Reinforcement
Learning

• Real-Time Decision
• Robotic Control
• Game AI

Forecasting •
Predictions •

Process Optimization •

• Diagnosis
• Scoring
• Detection

Product Segmentation •
Targeted Marketing •

Visualization •
Compression •

Representation Learning •

ChatBot •
Image Generation •

DeepFake •

Recommender System •
Noisy Label •

Unsupervised Learning
Task:
Clustering/DR
Performance:
Quality
Experience:
Raw dataset
(No Ground Truth)

Generative AI
Task:
Generation
Performance:
Quality
Experience:
Raw dataset
(No unique Ground
Truth)

Supervised Learning
Task:
Regression/Classif.
Performance:
Average error
Experience:
Good Predictions
(Ground Truth)

Reinforcement Learning
Task:
Actions
Performance:
Total reward
Experience:
Reward from env.
(Interact. with
env.)

Timing: Offline/Batch (learning from past data) vs Online (continuous learning)

DR: Dimension Reduction 12



Introduction to Supervised
Learning

Supervised and Unsupervised

x1

x2

×××
×
×

x1

x2

Supervised Learning (Imitation)
Goal: Learn a function f predicting a variable Y from an individual X .
Data: Learning set with labeled examples (X i , Yi)

Assumption: Future data behaves as past data!
Predicting is not explaining!

Unsupervised Learning (Structure Discovery)
Goal: Discover/use a structure of a set of individuals (X i).
Data: Learning set with unlabeled examples (X i) (or variations. . . )

Unsupervised learning is not a well-posed setting. . .
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Introduction to Supervised
Learning

Machine Can and Cannot

Machine Can
Forecast (Prediction using the past)
Detect expected changes
Memorize/Reproduce/Imitate
Take decisions very quickly
Generate a lot of variations
Learn from huge dataset
Optimize a single task
Help (or replace) some human beings

Machine Cannot
Predict something never seen before
Detect any new behaviour
Create something brand new
Understand the world
Plan by reasoning
Get smart really fast
Go beyond their task
Replace (or kill) all human beings

A lot of progresses but still very far from the singularity. . . 14
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Machine Learning

So
ur

ce
:

sc
ik

it-
le

ar
n.

or
g

Machine Learning Methods
Huge catalog of methods,
Need to define the performance,
Numerous tricks: feature design, performance estimation. . .

15



Introduction to Supervised
Learning

Under and Over Fitting

Finding the Right Complexity
What is best?

A simple model that is stable but false? (oversimplification)
A very complex model that could be correct but is unstable? (conspiracy theory)

Neither of them: tradeoff that depends on the dataset.

16



Introduction to Supervised
Learning

Machine Learning Pipeline

Raw data & target Validation Set

Training Set

Test Set

Train

Validate

Test

Fitted Predictors

Features Engineering
Model Families

Perf. Estimations Model Selection

Final Predictor

Perf. Estimation

New data Predict Target

TRAINING

PREDICTING

Learning pipeline
Test and compare models.

Deployment pipeline is different!
17



Introduction to Supervised
Learning

Data Science ̸= Machine Learning

So
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Main Data Science difficulties
Figuring out the problem,
Formalizing it,
Storing and accessing the data,
Deploying the solution,
Not (always) the Machine Learning part!
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Introduction to Supervised
Learning

Monthly KPI Dashboard
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Monthly KPI Dashboard
Using financial data to display important KPI for top managers every month in a
slide
Automation to guaranty the quality of the results.

KPI: Key Performance Index 20
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Learning

Realtime Log Dashboard
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Realtime Log Dashboard
Use log data to show the state of a system to IT in real-time using on-premise
tools.
Automation to handle the huge volumetry.

IT: Information Technology 21
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On-demand Legal Document Generation
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On-demand Legal Document Generation
Use raw data to legal document template for a lawyer on-demand using a local
database.
First draft to be edited by the lawyer.
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Introduction to Supervised
Learning

AB Testing

So
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yAB Testing

Using customer journet to help marketing decides between two versions of a
website
Automation to guaranty the accuracy of the results.
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Learning

ER Waiting Time Prediction
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Real-Time ER Waiting Time Prediction
Use patient data to provide in real-time an estimate of the remaining waiting time
to the ER patient.
Tool helping to bear the wait.

ER: Emergency Room 24
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Weekly Churn Prediction

So
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yWeekly Churn Prediction
Using consumer characteristics and history to give a churn score to the marketing
every week using the cloud.
Automation to scale to the volumetry but no strategy recommendation.
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Introduction to Supervised
Learning

Realtime Automatic Fruit Sorting

So
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Realtime Automatic Fruit Sorting
Using camera to sort fruits in a plant in realtime using local computers with GPU.
Automation to reduce cost.

GPU: Graphical Processing Unit 26
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Realtime Chatbot

So
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gRealtime Chatbot
Use previous interactions to predict answer to a consumer question in real-time
using the cloud.
Reduce human interaction cost.

27
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Learning

Writing Assistant

So
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Writing Assistant
Enhance a text using AI in a communication system.
Ease writing steps.

LLM: Large Language Model 28



Introduction to Supervised
Learning

Recommender System

So
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mVideo Recommender System

Use client history to suggest in real-time interesting videos for the current user.
Keep its users.

29
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Learning

Customer Segmentation

So
ur

ce
:
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aiCustomer Segmentation
Use customer data to suggest homogeneous groups to the marketing each year.
Easier to think in term of groups than individuals

30
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Learning

Realtime Anomaly Detection
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Realtime Anomaly Detection
Use production data to detect anomalies in a plant in real-time on a Scada system.
Reduce failure cost.

Scada: Supervisory Control And Data Acquisition 31
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Learning

On-demand Fraud Detection

So
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aOn-demand Fraud Detection

Use claim and client data to detect fraud for an insurer on-demand using
on-premise resources
First automated pass on the claims.

32



Introduction to Supervised
Learning

Prescriptive Maintenance

So
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Prescriptive Maintenance (Not yet available. . . )
Use data to devise and apply the best maintenance plan in a plant using IOT.
Reduce maintenance cost.

IOT: Internet of Things 33
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Introduction to Supervised
Learning

What is a Method?

Raw data & target

Training Set

Validation Set

Training Set

Test Set

Train

Validate

Retrain

Test

Fitted Predictors

Features Engineering
Model Families

Perf. Estimations Model Selection

Final Predictor

Perf. Estimation

A Learning Method
Formula/Algorithm allowing to make predictions
Algorithm allowing to choose this formula/algorithm
Data preprocessing (cleansing, coding. . . )
Optimization criterion for the choice!

36
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Simple Approach: Similarity

So
ur

ce
:

A
na

ly
tic

s
V

id
hy

a

Similarity
Imitate the answer to give by mixing answers to similar questions (k nearest
neighbors)
Require to search for those similar questions for each request
Not always very efficient but fast to build (less to use. . . )
Easy to understand and rather stable
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Learning

Simple Formula: Linear Method
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Linear Method
Simple formula: a0 + a1X (1) + · · · + adX (d)

Imitate the answer to give (linear regression) or a transformation of the
conditional probability of the category (logistic regression)
Numerous variations on the parameter optimization (regularization, SVM,. . . )
Pretty efficient and fast to build
Easy to understand and rather stable
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Learning

Simple Algorithm: Tree

So
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Tree
Construction of a decision tree
Impossible to really optimize but a good tree can be obtained
Not always very efficient but very quick to build
Very easy to understand but not really stable
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Combining Simple Things: Ensemble

So
ur

ce
:
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Ensemble Methods
Strategy:

Bagging: construction of variations in parallel and averaging (random forest)
Boosting: construction of sequential improvements (XGBoost, Lightgbm,
Catboost, HistGradientBoosting)
Stacking: Use of a first set of predictors as features

Very good performance for structured data but quite slow to build
Stable but hard to understand
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Chain Simple Things: Deep Learning

So
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Deep Learning
Chain of simple formulae (Neural Network)
Joint optimization
Very good performance for unstructured data but slow to build
Mildly stable and very hard to understand
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Learning

Methods: Pros and Cons
Method Performance Training Speed Inf. Speed Stability Interpretability
Similarity - ∅ – + +
Linear + ++ ++ ++ +
Tree - ++ ++ - ++
Ensemble ++ - + ++ -
Deep ++ – - - –

Take Away Message
No unanimously best solution
Impossible to guess which method is going to be the best!
A good practice is to always try a linear method as well as an ensemble one for
structured data or deep one for unstructured data

Recent progress on the deep side for structured data, but at a high computational
cost!

42
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Preprocessing

So
ur

ce
:
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Preprocessing
Art of creating sophisticated representations of initial data
Key for good performances
Examples: individual transformation, variable combination, category (and text)
coding. . .

Important part of the learning method
43
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Methods/Models in Machine Learning

So
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ML Methods
Huge catalog of methods,
Need to define the performance,
Need to represent well the data
Need to choose the best method yielding a good model
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Learning

Under and Over Fitting

Finding the Right Complexity
What is best?

A simple model that is stable but false? (oversimplification)
A very complex model that could be correct but is unstable? (conspiracy theory)

Neither of them: tradeoff that depends on the dataset.
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Learning

Which Method to Use?

Competition between several polynomial models.
Toy model where everything is known.
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Learning

Over-fitting, Under-fitting and Complexity

Complexity

Prediction Error

Bad on train
Bad on test

Good on train
Bad on test

Train

TestGood models

Underfitting Overfitting

47



Introduction to Supervised
Learning

ML Pipeline

Raw data & target Validation Set

Training Set

Test Set

Train

Validate

Test

Fitted Predictors

Features Engineering
Model Families

Perf. Estimations Model Selection

Final Predictor

Perf. Estimation

New data Predict Target

TRAINING

PREDICTING

So
ur

ce
:

CD
isc

ou
ntLearning pipeline

Test and compare models.

Deployment pipeline is different!
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Introduction to Supervised
Learning

Cross Validation Principle

Train a model and check its quality on diffent pieces of the data.

So
ur

ce
:
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n

Check the quality of a method by repeating the previous approach.
Beware: a different predictor is learnt for each split.
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Introduction to Supervised
Learning

The Full Cross Validation Scheme

Raw data & target

Training Set

Validation Set

Training Set

Test Set

Train

Validate

Retrain

Test

Fitted Predictors

Features Engineering
Model Families

Perf. Estimations Model Selection

Final Predictor

Perf. Estimation

Most important part of machine learning.
Automatic choice of model possible by (clever?) exploration. . .

50
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Learning

Best Polynomial

Competition results
The true model is not the winner!
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Interpretation?
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Is this that easy?
Simple formula setting:

Y ≃ f (X ) = a0 + a1X (1) + a2X (2) + · · · + adX (d)

Beware of the interpretation!
Everything being equal. . . Correlation is not causality. . .
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Interpretability
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Intepretability or Explainability
Interpretability: possibility to give a causal aspect to the formula.
Explainability: possibility to find the variables having an effect on the decision and
their effect.

Explainability is much easier than interpretability.
Additional constraints that may limit performances.
Transparency (on the datasets, the criterion optimized and the algorithms) yields
already a lot of information.
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eXplainable AI (XAI)

So
ur

ce
:

IB
M

A few directions
Data Explanation.
Use of explainable methods (linear?).
Use of black box methods:

Global explanation (variable importance)
Local explanation (linear approximation, alternative scenario. . . )

Causality very hard to access without a real experimental plan with interventions!
55



Introduction to Supervised
Learning

Outline

1 Introduction to Supervised Learning
Introduction
A Practical View

Method or Models
Interpretability
Metric Choice

A Better Point of View
Risk Estimation and Method Choice
A Probabilistic Point of View
Optimization Point of View
Ensemble Methods
Empirical Risk Minimization

References
2 Unsupervised Learning, Generative Learning

and More
Unsupervised Learning?
A Glimpse on Unsupervised Learning
More Learning. . .
Metrics
Dimension Reduction
Clustering
Generative Modeling
ChatGPT
References

3 References

56



Introduction to Supervised
Learning

Metric and Solution

So
ur

ce
:

J.
M

ar
sh

al
l

Quality metric has a strong impact on the solution.
Implicit encoding rather than an explicit one!
Often simplified criterion in the optimization part.
More involved criterion can be used in evaluation.
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Supervised Performance Metrics

So
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Measure of the cost of not being perfect!
Criterion used to optimize the predictor and/or evaluate its interest.
Classical metrics: quadratic error, zero/one error.
Many other possible choices, idealy encoding domain expertise (asymmetry. . . )
The criterion can be different between optimization and evaluation because of
computation requirements.
Very important factor (too) often neglicted.
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Unsupervised Performance Metrics
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Measure the quality of the result!
Dimension Reduction / Representation: reconstruction quality, relationship
preservation. . .
Clustering: measure of intra-group proximity and inter-group difference?
Very subjective criterion!
Hard to define the right distances especially for discrete variables.
In practice, quality often evaluated by the a posteriori interest.
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Fairness

So
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Fairness?
Very hard to specify criterion.
No consensus on its definition:

faithful reproduction of the reality?
correction of its bias?

Current approaches through constraints in the optimization.
A posteriori verification unavoidable!

Additional constraints that may limit performances. 60
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What About the Data Bias?

So
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Central assumption: representativity of the data!
Optimization made in this setting.
Possible training data bias:

selection bias in the data
population evolution
(historical) bias in the targets

Correction possible at least up to a certain point for the two first cases if one is
aware of the situation.
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Learning

Eucalyptus

10

15

20

25

30

30 40 50 60 70
circ

ht
Simple (and classical) dataset.
Goal: predict the height from circumference
X = circ = circumference.
Y = ht = height.
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Eucalyptus
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30 40 50 60 70
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ht

Linear Model
Parametric model:

fβ(circ) = β(1) + β(2)circ

How to choose β = (β(1), β(2))?
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Learning

Least Squares

Methodology
Natural goodness criterion:

n∑
i=1

|Yi − fβ(X i)|2 =
n∑

i=1
|hti − fβ(circi)|2

=
n∑

i=1
|hti − (β(1) + β(2)circi)|2

Choice of β that minimizes this criterion!

β̂ = argmin
β∈R2

n∑
i=1

|hi − (β(1) + β(2)circi)|2

Easy minimization with an explicit solution!
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Prediction

10

15

20

25

30

30 40 50 60 70
circ

ht

Prediction
Linear prediction for the height:

ĥt = f
β̂
(circ) = β̂(1) + β̂(2)circ
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Learning

Heuristic

Linear Regression
Statistical model: (circi , hti) i.i.d. with the same law as a generic (circ, ht).
Performance criterion: Look for f with a small average error

E
[
|ht − f (circ)|2

]
Empirical criterion: Replace the unknown law by its empirical counterpart

1
n

n∑
i=1

|hti − f (circi)|2

Predictor model: As the minimum over all function is 0 (if all the circi are
different), restrict to the linear functions f (circ) = β(1) + β(2)circ to avoid
over-fitting.
Model fitting: Explicit formula here.

This model can be too simple!
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Polynomial Regression
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Polynomial Model
Polynomial model: fβ(circ) =

∑p
l=1 β(l)circl−1

Linear in β.
Easy least squares estimation for any degree!
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Models
Increasing degree = increasing complexity and better fit on the data
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Best Degree?
How to choose among those solutions? 71
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Over-fitting Issue

Complexity

Prediction Error

Bad on train
Bad on test

Good on train
Bad on test

Train

TestGood models

Underfitting Overfitting

Risk behavior
Training error (empirical error on the training set) decays when the complexity of
the model increases.
Quite different behavior when the error is computed on new observations (true
risk / generalization error).

Overfit for complex models: parameters learned are too specific to the learning set!
General situation! (Think of polynomial fit. . . )
Need to use another criterion than the training error!
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Cross Validation and Penalization

Two directions
How to estimate the generalization error differently?
Find a way to correct the empirical error?

Two Approaches
Cross validation: Estimate the error on a different dataset:

Very efficient (and almost always used in practice!)
Need more data for the error computation.

Penalization approach: Correct the optimism of the empirical error:
Require to find the correction (penalty).
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Univariate Regression
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Questions
How to build a model?
How to fit a model to the data?
How to assess its quality?
How to select a model among a collection?
How to guaranty the quality of the selected model?
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Supervised Learning
Supervised Learning Framework

Input measurement X ∈ X
Output measurement Y ∈ Y.
(X , Y ) ∼ P with P unknown.
Training data : Dn = {(X 1, Y1), . . . , (Xn, Yn)} (i.i.d. ∼ P)

Often
X ∈ Rd and Y ∈ {−1, 1} (classification)
or X ∈ Rd and Y ∈ R (regression).

A predictor is a function in F = {f : X → Y meas.}

Goal
Construct a good predictor f̂ from the training data.

Need to specify the meaning of good.
Classification and regression are almost the same problem!
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Loss and Probabilistic Framework

Loss function for a generic predictor
Loss function: ℓ(Y , f (X )) measures the goodness of the prediction of Y by f (X )
Examples:

0/1 loss: ℓ(Y , f (X )) = 1Y ̸=f (X)
Quadratic loss: ℓ(Y , f (X )) = |Y − f (X )|2

Risk function
Risk measured as the average loss for a new couple:

R(f ) = E(X,Y )∼P[ℓ(Y , f (X))]
Examples:

0/1 loss: E[ℓ(Y , f (X ))] = P(Y ̸= f (X ))
Quadratic loss: E[ℓ(Y , f (X ))] = E

[
|Y − f (X )|2

]
Beware: As f̂ depends on Dn, R(f̂ ) is a random variable!
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Best Solution
The best solution f ⋆ (which is independent of Dn) is

f ⋆ = arg min
f ∈F

R(f ) = arg min
f ∈F

E[ℓ(Y , f (X ))] = arg min
f ∈F

EX
[
EY |X [ℓ(Y , f (X ))]

]
Bayes Predictor (explicit solution)

In binary classification with 0 − 1 loss:

f ⋆(X ) =


+1 if P(Y = +1|X ) ≥ P(Y = −1|X )

⇔ P(Y = +1|X ) ≥ 1/2
−1 otherwise

In regression with the quadratic loss
f ⋆(X ) = E[Y |X ]

R(f ⋆) > 0 in a non deterministic setting (intrinsic noise).

Issue: Solution requires to know Y |X (or E[Y |X ]) for every value of X !
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Goal
Machine Learning

Learn a rule to construct a predictor f̂ ∈ F from the training data Dn s.t. the
risk R(f̂ ) is small on average or with high probability with respect to Dn.

In practice, the rule should be an algorithm!

Canonical example: Empirical Risk Minimizer
One restricts f to a subset of functions S = {fθ, θ ∈ Θ}
One replaces the minimization of the average loss by the minimization of the
empirical loss

f̂ = f
θ̂

= argmin
fθ,θ∈Θ

1
n

n∑
i=1

ℓ(Yi , fθ(X i))

Examples:
Linear regression
Linear classification with

S = {x 7→ sign{x⊤β + β(0)} /β ∈ Rd , β(0) ∈ R} 79
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Example: TwoClass Dataset
Synthetic Dataset

Two features/covariates.
Two classes.

Dataset from Applied Predictive Modeling, M. Kuhn and K. Johnson, Springer
Numerical experiments with R and the {caret} package.
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Example: Linear Classification
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Example: More Complex Model
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Eucalyptus
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Dataset - P.A. Cornillon
Real dataset of 1429 eucalyptus obtained by P.A. Cornillon:

X : circumference / Y: height

Can we predict the height from the circumference?

by a line? by a more complex formula?
by also taking account of the block and the clone type?
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Real dataset of 1429 eucalyptus obtained by P.A. Cornillon:

X : circumference / Y: height
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by also taking account of the block and the clone type?
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Dataset - P.A. Cornillon
Real dataset of 1429 eucalyptus obtained by P.A. Cornillon:

X : circumference, block, clone / Y: height

Can we predict the height from the circumference?
by a line? by a more complex formula?
by also taking account of the block and the clone type?
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Under-fitting / Over-fitting Issue

Model Complexity Dilemna
What is best a simple or a complex model?
Too simple to be good? Too complex to be learned?
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Under-fitting / Over-fitting Issue

Complexity

Prediction Error

Bad on train
Bad on test

Good on train
Bad on test

Train

TestGood models

Underfitting Overfitting

Under-fitting / Over-fitting
Under-fitting: simple model are too simple.
Over-fitting: complex model are too specific to the training set.
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Bias-Variance Dilemma
General setting:

F = {measurable functions X → Y}
Best solution: f ⋆ = argminf ∈F R(f )
Class S ⊂ F of functions
Ideal target in S: f ⋆

S = argminf ∈S R(f )
Estimate in S: f̂S obtained with some procedure

Approximation error and estimation error (Bias-Variance)

R(f̂S) − R(f ⋆) = R(f ⋆
S ) − R(f ⋆)︸ ︷︷ ︸

Approximation error

+ R(f̂S) − R(f ⋆
S )︸ ︷︷ ︸

Estimation error

Approx. error can be large if the model S is not suitable.
Estimation error can be large if the model is complex.

Agnostic approach
No assumption (so far) on the law of (X , Y ).
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Under-fitting / Over-fitting Issue

Complexity

Prediction Error

High Bias
Low Variance

Low Bias
High Variance

Test
Variance

Bias

Good models

Underfitting Overfitting

Different behavior for different model complexity
Low complexity model are easily learned but the approximation error (bias) may
be large (Under-fit).
High complexity model may contain a good ideal target but the estimation error
(variance) can be large (Over-fit)

Bias-variance trade-off ⇐⇒ avoid overfitting and underfitting

Rk: Better to think in term of method (including feature engineering and specific
algorithm) rather than only of model.
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Theoretical Analysis

Statistical Learning Analysis
Error decomposition:

R(f̂S) − R(f ⋆) = R(f ⋆
S ) − R(f ⋆)︸ ︷︷ ︸

Approximation error

+ R(f̂S) − R(f ⋆
S )︸ ︷︷ ︸

Estimation error

Bound on the approximation term: approximation theory.
Probabilistic bound on the estimation term: probability theory!
Goal: Agnostic bounds, i.e. bounds that do not require assumptions on P!
(Statistical Learning?)

Often need mild assumptions on P. . . (Nonparametric Statistics?)
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Binary Classification Loss Issue

Empirical Risk Minimizer

f̂ = argmin
f ∈S

1
n

n∑
i=1

ℓ0/1(Yi , f (X i))

Classification loss: ℓ0/1(y , f (x)) = 1y ̸=f (x)
Not convex and not smooth!
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Probabilistic Point of View
Estimation and Plugin

So
ur

ce
:

A
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The best solution f ⋆ (which is independent of Dn) is
f ⋆ = arg min

f ∈F
R(f ) = arg min

f ∈F
E[ℓ(Y , f (X ))] = arg min

f ∈F
EX
[
EY |X [ℓ(Y , f (x))]

]
Bayes Predictor (explicit solution)

In binary classification with 0 − 1 loss:

f ⋆(X ) =
{

+1 if P(Y = +1|X ) ≥ P(Y = −1|X )
−1 otherwise

Issue: Solution requires to know Y |X for all values of X !
Solution: Replace it by an estimate and plug it in the Bayes predictor formula.
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Optimization Point of View
Loss Convexification and Optimization

Minimizer of the risk

f̂ = argmin
f ∈S

1
n

n∑
i=1

ℓ0/1(Yi , f (X i))

Issue: Classification loss is not convex or smooth.
Solution: Replace it by a convex majorant and find the best predictor for this
surrogate problem. 91
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Probabilistic and Optimization Framework
How to find a good function f with a small risk

R(f ) = E[ℓ(Y , f (X ))] ?
Canonical approach: f̂S = argminf ∈S

1
n
∑n

i=1 ℓ(Yi , f (X i))

Problems
How to choose S?
How to compute the minimization?

A Probabilistic Point of View
Solution: For X , estimate Y |X and plug it in any Bayes predictor: (Generalized)
Linear Models, Kernel methods, k-nn, Naive Bayes, Tree, Bagging. . .

An Optimization Point of View
Solution: Replace the loss ℓ by an upper bound ℓ and minimize directly the
corresponding emp. risk: Neural Network, SVR, SVM, Tree, Boosting. . .
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Example: TwoClass Dataset
Synthetic Dataset

Two features/covariates.
Two classes.

Dataset from Applied Predictive Modeling, M. Kuhn and K. Johnson, Springer
Numerical experiments with R and the {caret} package.
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Example: Linear Classification
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Example: More Complex Model
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Example: KNN
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Training Risk Issue

Complexity

Prediction Error

Bad on train
Bad on test

Good on train
Bad on test

Train

TestGood models

Underfitting Overfitting

Risk behaviour
Learning/training risk (empirical risk on the learning/training set) decays when
the complexity of the method increases.
Quite different behavior when the risk is computed on new observations
(generalization risk).
Overfit for complex methods: parameters learned are too specific to the learning
set!
General situation! (Think of polynomial fit. . . )
Need to use a different criterion than the training risk!
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Risk Estimation vs Method Selection
Predictor Risk Estimation

Goal: Given a predictor f assess its quality.
Method: Hold-out risk computation (/ Empirical risk correction).
Usage: Compute an estimate of the risk of a selected f using a test set to be
used to monitor it in the future.

Basic block very well understood.

Method Selection
Goal: Given a ML method, assess its quality.
Method: Cross Validation (/ Empirical risk correction)
Usage: Compute risk estimates for several ML methods using
training/validation sets to choose the most promising one.

Estimates can be pointwise or better intervals.
Multiple test issues in method selection. 100



Introduction to Supervised
Learning

Cross Validation and Empirical Risk Correction

Two Approaches
Cross validation: Use empirical risk criterion but on independent data, very
efficient (and almost always used in practice!) but slightly biased as its target uses
only a fraction of the data.
Correction approach: use empirical risk criterion but correct it with a term
increasing with the complexity of S

Rn(f̂S) → Rn(f̂S) + cor(S)
and choose the method with the smallest corrected risk.

Which loss is used?
The loss used in the risk!
Not the loss used in the training!

Other performance measure can be used.
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Cross Validation

So
ur

ce
:

M
.K

üh
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Very simple idea: use a second (verification) set to compute a verification risk.
Sufficient to remove the dependency issue!
Implicit random design setting. . .

Cross Validation
Use (1 − ϵ) × n observations to train and ϵ × n to verify!
Possible issues:

Validation for a training set of size (1 − ϵ) × n instead of n ?
Unstable risk estimate if ϵn is too small ?

Most classical variations:
Hold Out,
Leave One Out,
V -fold cross validation.
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Hold Out
Principle

Split the dataset D in 2 sets Dtraining and Dtest of size n × (1 − ϵ) and n × ϵ.
Learn f̂ HO from the subset Dtraining.
Compute the empirical risk on the subset Dtest:

RHO
n (f̂ HO) = 1

nϵ

∑
(X i ,Yi )∈Dtest

ℓ(Yi , f̂ HO(X i))

Predictor Risk Estimation
Use f̂ HO as predictor.
Use RHO

n (f̂ HO) as an estimate of the risk of this estimator.

Method Selection by Cross Validation
Compute RHO

n (f̂ HO
S ) for all the considered methods,

Select the method with the smallest CV risk,
Reestimate the f̂S with all the data. 103
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Hold Out
Principle

Split the dataset D in 2 sets Dtraining and Dtest of size n × (1 − ϵ) and n × ϵ.
Learn f̂ HO from the subset Dtraining.
Compute the empirical risk on the subset Dtest:

RHO
n (f̂ HO) = 1

nϵ

∑
(X i ,Yi )∈Dtest

ℓ(Yi , f̂ HO(X i))

Only possible setting for risk estimation.

Hold Out Limitation for Method Selection
Biased toward simpler method as the estimation does not use all the data initially.
Learning variability of RHO

n (f̂ HO) not taken into account.
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V -fold Cross Validation
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Principle
Split the dataset D in V sets Dv of almost equals size.
For v ∈ {1, .., V }:

Learn f̂ −v from the dataset D minus the set Dv .
Compute the empirical risk:

R−v
n (f̂ −v ) = 1

nv

∑
(X i ,Yi )∈Dv

ℓ(Yi , f̂ −v (X i))

Compute the average empirical risk:

RCV
n (f̂ ) = 1

V

V∑
v=1

R−v
n (f̂ −v )

Estimation of the quality of a method not of a given predictor.
Leave One Out : V = n.
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V -fold Cross Validation

Analysis (when n is a multiple of V )
The R−v

n (f̂ −v ) are identically distributed variables but are not independent!
Consequence:

E
[
RCV

n (f̂ )
]

= E
[
R−v

n (f̂ −v )
]

Var
[
RCV

n (f̂ )
]

= 1
V Var

[
R−v

n (f̂ −v )
]

+ (1 − 1
V )Cov

[
R−v

n (f̂ −v ), R−v ′
n (f̂ −v ′)

]
Average risk for a sample of size (1 − 1

V )n.
Variance term much more complex to analyze!
Fine analysis shows that the larger V the better. . .

Accuracy/Speed tradeoff: V = 5 or V = 10. . .
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Linear Regression and Leave One Out

Leave One Out = V fold for V = n: very expensive in general.

A fast LOO formula for the linear regression
Prop: for the least squares linear regression,

f̂ −i(X i) = f̂ (X i) − hiiYi
1 − hii

with hii the ith diagonal coefficient of the hat (projection) matrix.
Proof based on linear algebra!
Leads to a fast formula for LOO:

RLOO
n (f̂ ) = 1

n

n∑
i=1

|Yi − f̂ (X i)|2
(1 − hii)2
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Cross Validation
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Example: KNN (k̂ = 61 using cross-validation)
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Bootstrap
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Risk Estimation and Bootstrap
Bootstrap training/test splitting:

Draw a bootstrap sample Dtraining
b of size n (drawn from the original data with

replacement) as training set.
Use the remaining samples to test Dtest

b = D \ Dtraining
b .

On average .632n distinct samples to train and .368n samples to test.
Basic bootstrap strategy:

Learn f̂b from Dtraining
b .

Compute a risk estimate on the test:
Rn,b(f̂b) = 1

|Dtest
b |

∑
(X i ,Yi )∈Dtest

b

ℓ(Yi , f̂b(X i))

Looks similar to a 2/3 train and 1/3 test holdout! 109



Introduction to Supervised
Learning

Bootstrap
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Repeated Bootstrap Risk Estimation
Compute several bootstrap risks Rn,b(f̂b) and average them

RBoot(f̂ ) = 1
B

B∑
b=1

Rn,b(f̂b)

Pessimistic (but stable) estimate of the risk as only .632n samples are used to
train.

Bootstrap predictions can be used to assess of the stability!
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Bootstrap
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Corrected Bootstrap Risk Estimation
The training risk is an optimistic risk estimate:

Rn(f̂b) = 1
|Dtraining

b |

∑
(X i ,Yi )∈Dtraining

b

ℓ(Yi , f̂b(X i))

Combine both estimate for every b:
R′

b(f̂b) = ωRn,b(f̂b) + (1 − ω)Rn(f̂b)
Choices for ω:

.632 rule: set ω = .632

.632+ rule: set ω = .632/(1 − .368R) with R = (Rn,b(f̂b) − Rn(f̂b))/(γ − Rn(f̂b))
where γ is the risk of a predictor trained on the n2 decoupled data samples (X i , Yj).

Works quite well in practice but heuristic justification not obvious.
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Training/Validation/Test

Raw data & target

Training Set

Validation Set

Training Set

Test Set

Train

Validate

Retrain

Test

Fitted Predictors

Features Engineering
Model Families

Perf. Estimations Model Selection

Final Predictor

Perf. Estimation

Selection Bias Issue:
After method selection, the cross validation is biased.
Furthermore, it qualifies the method and not the final predictor.

Need to (re)estimate the risk of the final predictor.
(Training/Validation)/Test strategy

Split the dataset in two: a (Training/Validation) set and aTest set.
Use CV with the (Training/Validation) set to select a method.
Retrain on the (Training/Validation) set to obtain a single predictor.
Estimate the performance of this predictor on the Test set.

Every choice made from the data is part of the method! 110
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Risk Correction

Empirical loss of an estimator computed on the dataset used to chose it is biased!
Empirical loss is an optimistic estimate of the true loss.

Risk Correction Heuristic
Estimate an upper bound of this optimism for a given family.
Correct the empirical loss by adding this upper bound.

Rk: Finding such an upper bound can be complicated!
Correction often called a penalty.
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Penalization
Penalized Loss

Minimization over a collection of models (Θm)

min
θ∈Θm

1
n

n∑
i=1

ℓ(Yi , fθ(X i)) + pen(Θm)

where pen(Θ) is a risk correction (penalty) depending on the model.

Penalties
Upper bound of the optimism of the empirical loss
Depends on the loss and the framework!

Instantiation
Mallows Cp: Least Squares with pen(Θ) = 2d

n σ2.
AIC Heuristics: Maximum Likelihood with pen(Θ) = d

n .
BIC Heuristics: Maximum Likelihood with pen(Θ) = log(n)d

n .
Structural Risk Minimization: Pred. loss and clever penalty. 112
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Comparison of Two Means
Means

Setting: r.v. e(l)
i with 1 ≤ i ≤ nl and l ∈ {1, 2} and their means

e(l) = 1
nl

nl∑
i=1

e(l)
i

Question: are the means e(l) statistically different?

Classical i.i.d setting
Assumption: e(l)

i are i.i.d. for each l .
Test formulation: Can we reject the null hypothesis that E

[
e(1)

]
= E

[
e(2)

]
?

Methods:
Gaussian (Student) test using asymptotic normality of a mean.
Non-parametric permutation test.

Gaussian approach is linked to confidence intervals.
The larger nl the smaller the confidence intervals. 114
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Comparison of Two Means

Non i.i.d. case
Assumption: e(l)

i are i.d. for each l but not necessarily independent.
Test formulation: Can we reject the null hypothesis that E

[
e(1)

]
= E

[
e(2)

]
?

Methods:
Gaussian (Student) test using asymptotic normality of a mean but variance is hard
to estimate.
Non-parametric permutation test but no confidence intervals.

Setting for Cross Validation (other than holdout).
Much more complicated than the i.i.d. case
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Comparison of Several Means

Several means
Assumption: e(l)

i are i.d. for each l but not necessarily independent.
Tests formulation:

Can we reject the null hypothesis that the E
[
e(l)] are different?

Is the smaller mean statistically smaller than the second one?
Methods:

Gaussian (Student) test using asymptotic normality of a mean with multiple tests
correction.
Non-parametric permutation test but no confidence intervals.

Setting for Cross Validation (other than holdout).
The more models one compares:

the larger the confidence intervals
the most probable the best model is a lucky winner

Justify the fallback to the simplest model that could be the best one.
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PAC Approach

CV Risk, Methods and Predictors
Cross-Validation risk: estimate of the average risk of a ML method.
No risk bound on the predictor obtained in practice.

Probably-Approximately-Correct (PAC) Approach
Replace the control on the average risk by a probabilistic bound

P
(
E
[
ℓ(Y , f̂ (X ))

]
> R

)
≤ ϵ

Requires estimating quantiles of the risk. 117
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Cross Validation and Confidence Interval
How to replace pointwise estimation by a confidence interval?
Can we use the variability of the CV estimates?
Negative result: No unbiased estimate of the variance!

Gaussian Interval (Comparison of the means and ∼ indep.)
Compute the empirical variance and divide it by the number of folds to construct
an asymptotic Gaussian confidence interval,
Select the simplest model whose value falls into the confidence interval of the
model having the smallest CV risk.

PAC approach (Quantile, ∼ indep. and small risk estim. error)
Compute the raw medians (or a larger raw quantiles)
Select the model having the smallest quantiles to ensure a small risk with high
probability.

Always reestimate the chosen model with all the data.
To obtain an unbiased risk estimate of the final predictor: hold out risk on
untouched test data. 118
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Cross Validation
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Unbalanced and Rebalanced Dataset
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Unbalanced Class
Setting: One of the classes is much more present than the other.
Issue: Classifier too attracted by the majority class!

Rebalanced Dataset
Setting: Class proportions are different in the training and testing set (stratified
sampling)
Issue: Training risks are not estimate of testing risks.

121



Introduction to Supervised
Learning

Resampling Strategies
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Resampling
Modify the training dataset so that the classes are more balanced.
Two flavors:

Sub-sampling which spoils data,
Over-sampling which needs to create new examples.

Issues: Training data is not anymore representative of testing data
Hard to do it right! 122
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Resampling Effect
Testing

Testing class prob.: πtest(k)
Testing risk target:
Etest[ℓ(Y , f (X ))] =∑

k
πtest(k)E[ℓ(Y , f (X ))|Y = k]

Training
Training class prob.: πtraining(k)
Training risk target:

Etraining[ℓ(Y , f (X ))] =∑
k

πtraining(k)E[ℓ(Y , f (X ))|Y = k]

Implicit Testing Risk Using the Training One
Amounts to use a weighted loss:

Etraining[ℓ(Y , f (X ))] =
∑

k
πtraining(k)E[ℓ(Y , f (X ))|Y = k]

=
∑

k
πtest(k)E

[
πtraining(k)

πtest(k) ℓ(Y , f (X ))
∣∣∣∣Y = k

]
= Etest

[
πtraining(Y )

πtest(Y ) ℓ(Y , f (X ))
]

Put more weight on less probable classes! 123
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Weighted Loss

In unbalanced situation, often the cost of misprediction is not the same for all
classes (e.g. medical diagnosis, credit lending. . . )
Much better to use this explicitly than to do blind resampling!

Weighted Loss
Weighted loss:

ℓ(Y , f (X )) −→ C(Y )ℓ(Y , f (X ))
Weighted risk target:

E[C(Y )ℓ(Y , f (X ))]

Rk: Strong link with ℓ as C is independent of f .
Often allow reusing algorithm constructed for ℓ.
C may also depend on X . . .
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Weighted Loss, ℓ0/1 loss and Bayes Classifier
The Bayes classifier is now:

f ⋆ = argminE[C(Y )ℓ(Y , f (X ))] = argminEX
[
EY |X [C(Y )ℓ(Y , f (X ))]

]
Bayes Predictor

For ℓ0/1 loss, f ⋆(X ) = argmax
k

C(k)P(Y = k|X )

Same effect than a threshold modification for the binary setting.

Allow putting more emphasis on some classes than others.

Two possible probabilistic implementations (plus their interpolation)
Estimation of the true P(Y = k|X ) with observed empirical data and use of the
cost dependent Bayes predictor.
Estimation of the skewed P̃ {Y = k|X} = C(k)P(Y =k|X)∑

C(k)P(Y =k′|X) with empirical data
weighted by C(k) and use of the cost independent Bayes predictor.

Same target but no equivalence (different approximation error average along X !) 125
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Linking Weights and Proportions
Cost and Proportions

Testing risk target:
Etest[Ctest(Y )ℓ(Y , f (X ))] =

∑
k

πtest(k)Ctest(k)E[ℓ(Y , f (X ))|Y = k]

Training risk target
Etraining[Ctraining(Y )ℓ(Y , f (X ))] =

∑
k

πtraining(k)Ctraining(k)E[ℓ(Y , f (X ))|Y = k]

Coincide if
πtest(k)Ctest(k) = πtraining(k)Ctraining(k)

Lots of flexibility in the choice of Ct , Ctraining or πtraining.
Same target if πtest(k)Ctest(k) = Cπtraining(k)Ctraining(k)
Can be generalized to respectively

πtest(Y |X )Ctest(Y , X ) = πtraining(Y |X )Ctraining(Y , X )
and

πtest(Y |X )Ctest(Y , X ) = X (X )πtraining(Y |X )Ctraining(Y , X ) 126
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Combining Weights and Resampling

Weighted Loss and Resampling
Weighted loss: choice of a weight Ctest ̸= 1.
Resampling: use a πtraining ̸= πtest.

Stratified sampling may be used to reduce the size of a dataset without loosing a
low probability class!

Combining Weights and Resampling
Weighted loss: use Ctraining = Ctest as πtraining = πtest.
Resampling: use an implicit Ctest(k) = πtraining(k)/πtest(k).
Combined: use Ctraining(k) = Ctest(k)πtest(k)/πtraining(k)

Most ML methods allow such weights!
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Auto ML
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Auto ML
Automatically propose a good predictor
Rely heavily on risk evaluations
Pros: easy way to obtain an excellent baseline
Cons: black box that can be abused. . .
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Auto ML Task
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Auto ML Task
Input:

a dataset D = (X i , Yi)
a loss function ℓ(Y , f (X ))
a set of possible predictors fl,h,θ corresponding to a method l in a list, with
hyperparameters h and parameters θ

Output:
a predictor f equal to f̂l,ĥ,θ̂ or combining several such functions.
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Predictors
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Predictors, a.k.a fitted pipelines
Preprocessing:

Feature design: normalization, coding, kernel. . .
Missing value strategy
Feature selection method

ML Method:
Method itself
Hyperparameters and architecture
Fitted parameters (includes optimization algorithm)

Quickly amounts to 20 to 50 design decisions!
Bruteforce exploration impossible!
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Auto ML and Hyperparameter Optimization
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Most Classical Approach of Auto ML
Task rephrased as an optimization on the discrete/continous space of
methods/hyperparameters/parameters.
Parameters obtained by classical minimization.
Optimization of methods/hyperparameters much more challenging.
Approaches:

Bruteforce: Grid search and random search
Clever exploration: Evolutionary algorithm
Surrogate based: Bayesian search and Reinforcement learning
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Auto ML and Meta-Learning
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Learn from other Learning Tasks
Consider the choice of the method from a dataset and a metric as a learning task.
Requires a way to describe the problems (or to compute a similarity).
Descriptor often based on a combination of dataset properties and fast method
results.
May output a list of candidates instead of a single method.

Promising but still quite experimental!
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Auto ML and Time Budget
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How to obtain a good result with a time constraint?
Brute force: Time out and methods screening with Meta-Learning (less
exploration at the beginning)
Surrogate based: Bayesian optimization (exploration/exploitation tradeoff)
Successive elimination: Fast but not accurate performance evaluation at the
beginning to eliminate the worst models (more exploration at the beginning)
Combined strategy: Bandit strategy to obtain a more accurate estimate of risks
only for the promising models (exploration/exploitation tradeoff)
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Auto ML benchmark
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Benchmark
Almost always (slightly) better than a good random forest or gradient boosting
predictor.
Worth the try!
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Probabilistic and Optimization Framework
How to find a good function f with a small risk

R(f ) = E[ℓ(Y , f (X ))] ?
Canonical approach: f̂S = argminf ∈S

1
n
∑n

i=1 ℓ(Yi , f (X i))

Problems
How to choose S?
How to compute the minimization?

A Probabilistic Point of View
Solution: For X , estimate Y |X and plug it in any Bayes predictor: (Generalized)
Linear Models, Kernel methods, k-nn, Naive Bayes, Tree, Bagging. . .

An Optimization Point of View
Solution: Replace the loss ℓ by an upper bound ℓ and minimize directly the
corresponding emp. risk: Neural Network, SVR, SVM, Tree, Boosting. . .
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Three Classical Methods in a Nutshell

Logistic Regression
Let fθ(X ) = X⊤β + β(0) with θ = (β, β(0)).
Let Pθ(Y = 1|X ) = efθ(X)/(1 + efθ(X))
Estimate θ by θ̂ using a Maximum Likelihood.
Classify using Pθ̂(Y = 1|X ) > 1/2

k Nearest Neighbors
For any X ′, define VX ′ as the k closest samples Xi from the dataset.
Compute a score gk =

∑
Xi ∈VX ′ 1Yi ==k

Classify using arg max gk (majority vote).
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Three Classical Methods in a Nutshell

Quadratic Discrimant Analysis
For each class, estimate the mean µk and the covariance matrix Σk .
Estimate the proportion P(Y = k) of each class.
Compute a score ln(P(X |Y = k)) + ln(P(Y = k))

gk(X ) = − 1
2(X − µk)⊤Σ−1

k (X − µk)

− d
2 ln(2π) − 1

2 ln(|Σk |) + ln(P(Y = k))

Classify using arg max gk

Those three methods rely on a similar heuristic: the probabilistic point of view!
Focus on classification, but similar methods for regression: Gaussian Regression, k
Nearest Neighbors, Gaussian Processes. . .
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Best Solution

The best solution f ⋆ (which is independent of Dn) is
f ⋆ = arg min

f ∈F
R(f ) = arg min

f ∈F
E[ℓ(Y , f (X ))] = arg min

f ∈F
EX
[
EY |X [ℓ(Y , f (X ))]

]
Bayes Predictor (explicit solution)

In binary classification with 0 − 1 loss:

f ⋆(X ) =


+1 if P(Y = +1|X ) ≥ P(Y = −1|X )

⇔ P(Y = +1|X ) ≥ 1/2
−1 otherwise

In regression with the quadratic loss
f ⋆(X ) = E[Y |X ]

Issue: Explicit solution requires to know Y |X for all values of X !
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Plugin Predictor

Idea: Estimate Y |X by Y |X
∧

and plug it the Bayes classifier.

Plugin Bayes Predictor
In binary classification with 0 − 1 loss:

f̂ (X ) =


+1 if P(Y = +1|X )
∧

≥ P(Y = −1|X )
∧

⇔ P(Y = +1|X )
∧

≥ 1/2
−1 otherwise

In regression with the quadratic loss
f̂ (X ) = E

[
Y |X
∧]

Rk: Direct estimation of E[Y |X ] by E[Y |X ]
∧

also possible. . .
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Plugin Predictor

How to estimate Y |X?

Three main heuristics
Parametric Conditional modeling: Estimate the law of Y |X by a parametric
law Lθ(X ): (generalized) linear regression. . .
Non Parametric Conditional modeling: Estimate the law of Y |X by a non
parametric estimate: kernel methods, loess, nearest neighbors. . .
Fully Generative modeling: Estimate the law of (X , Y ) and use the Bayes
formula to deduce an estimate of Y |X : LDA/QDA, Naive Bayes, Gaussian
Processes. . .

More than one loss can be minimized for a given estimate of Y |X (quantiles, cost
based loss. . . )
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Plugin Classifier

Input: a data set Dn
Learn Y |X or equivalently P(Y = k|X ) (using the data set) and plug this
estimate in the Bayes classifier

Output: a classifier f̂ : Rd → {−1, 1}

f̂ (X ) =

+1 if ̂P(Y = 1|X ) ≥ ̂P(Y = −1|X )
−1 otherwise

Can we guaranty that the classifier is good if Y |X is well estimated?
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Classification Risk Analysis

Theorem
If f̂ = sign(2p̂+1 − 1) then

E
[
ℓ0,1(Y , f̂ (X ))

]
− E

[
ℓ0,1(Y , f ⋆(X ))

]
≤ E

[
∥Ŷ |X − Y |X∥1

]
≤
(
E
[
2 KL(Y |X , Ŷ |X )

])1/2

If one estimates P(Y = 1|X ) well then one estimates f ⋆ well!
Link between a conditional density estimation task and a classification one!
Rk: Conditional density estimation is more complicated than classification:

Need to be good for all values of P(Y = 1|X ) while the classification task focus on
values around the decision boundary.
But several losses can be optimized simultaneously.

In regression, (often) direct control of the quadratic loss. . .
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Parametric Conditional Density Models
Idea: Estimate directly Y |X by a parametric conditional density Pθ(Y |X ).

Maximum Likelihood Approach
Classical choice for θ:

θ̂ = argmin
θ

−
n∑

i=1
logPθ(Yi |X i)

Goal: Minimize the Kullback-Leibler divergence between the conditional law of
Y |X and Pθ(Y |X )

E[KL (Y |X ,Pθ(Y |X ))]

Rk: This is often not (exactly) the learning task!
Large choice for the family {Pθ(Y |X )} but depends on Y (and X ).
Regression: One can also model directly E[Y |X ] by fθ(X ) and estimate it with a
least-squares criterion. . .
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Linear Conditional Density Models

Linear Models
Classical choice: θ = (β, φ)

Pθ(Y |X ) = PX⊤β,φ(Y )
Very strong modeling assumption!

Classical examples:
Binary variable: logistic, probit. . .
Discrete variable: multinomial logistic regression. . .
Integer variable: Poisson regression. . .
Continuous variable: Gaussian regression. . .

147



Introduction to Supervised
Learning

Binary Classifier
Plugin Linear Classification

Model P(Y = +1|X ) by h(X⊤β + β(0)) with h non decreasing.
h(X⊤β + β(0)) > 1/2 ⇔ X⊤β + β(0) − h−1(1/2) > 0
Linear Classifier: sign(X⊤β + β(0) − h−1(1/2))

Plugin Linear Classifier Estimation
Classical choice for h:

h(t) = et

1 + et logit or logistic

h(t) = FN(t) probit
h(t) = 1 − e−et log-log

Choice of the best β from the data.

Extension to multi-class with multinomial parametric model.
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Maximum Likelihood Estimate

Probabilistic Model
By construction, Y |X follows B(P(Y = +1|X ))
Approximation of Y |X by B(h(x⊤β + β(0)))
Natural probabilistic choice for β: maximum likelihood estimate.
Natural probabilistic choice for β: β approximately minimizing a distance between
B(h(x⊤β)) and B(P(Y = 1|X )).

Maximum Likelihood Approach
Minimization of the negative log-likelihood:

−
n∑

i=1
log(P(Yi |X i)) = −

n∑
i=1

(
1Yi =1 log(h(X i

⊤β)) + 1Yi =−1 log(1 − h(X i
⊤β))

)
Minimization possible if h is regular. . .
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Maximum Likelihood Estimate
KL Distance and negative log-likelihood

Natural probalistic loss: Kullback-Leibler divergence
KL(B(P(Y = 1|X )), B(h(X⊤β))

= EX

[
P(Y = 1|X ) log P(Y = 1|X )

h(X⊤β)

+P(Y = −1|X ) log P(Y = −1|X )
1 − h(X⊤β)

]
= EX

[
−P(Y = 1|X ) log(h(X⊤β))

−P(Y = −1|X ) log(1 − h(X⊤β))
]

+ CX ,Y

Empirical counterpart = negative log-likelihood (up to 1/n factor):

− 1
n

n∑
i=1

(
1Yi =1 log(h(X i

⊤β)) + 1Yi =−1 log(1 − h(X i
⊤β))

)
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Logistic Regression
Logistic Regression and Odd

Logistic model: h(t) = et

1+et (most natural choice. . . )
The Bernoulli law B(h(t)) satisfies then

P(Y = 1)
P(Y = −1) = et ⇔ log P(Y = 1)

P(Y = −1) = t

Interpretation in term of odd.
Logistic model: linear model on the logarithm of the odd

log P(Y = 1|X )
P(Y = −1|X ) = X⊤β

Associated Classifier
Plugin strategy:

fβ(X ) =

1 if eX⊤β

1+eX⊤β
> 1/2 ⇔ X⊤β > 0

−1 otherwise
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Logistic Regression and Minimization

Likelihood Rewriting
Negative log-likelihood:

− 1
n

n∑
i=1

(
1Yi =1 log(h(X i

⊤β)) + 1Yi =−1 log(1 − h(X i
⊤β))

)

= −1
n

n∑
i=1

(
1Yi =1 log eX i

⊤β

1 + eX⊤
i β

+ 1Yi =−1 log 1
1 + eX i

⊤β

)

= 1
n

n∑
i=1

log
(
1 + e−Yi (X i

⊤β)
)

Convex and smooth function of β

Easy optimization.

152



Introduction to Supervised
Learning

Example: Logistic
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Feature Design

Transformed Representation
From X to Φ(X )!
New description of X leads to a different linear model:

fβ(X ) = Φ(X )⊤β

Feature Design
Art of choosing Φ.
Examples:

Renormalization, (domain specific) transform
Basis decomposition
Interaction between different variables. . .
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Example: Quadratic Logistic
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Gaussian Linear Regression

10

15

20

25

30

30 40 50 60 70
circ

ht

Gaussian Linear Model
Model: Y |X ∼ N(X⊤β, σ2) plus independence
Probably the most classical model of all time!
Maximum Likelihood with explicit formulas for the two parameters.

In regression, estimation of E[Y |X ] is sufficient: other/no model for the noise
possible.
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Extension of Gaussian Linear Regression

Generalized Linear Model
Model entirely characterized by its mean (up to a scalar nuisance parameter)
(v(Eθ[Y ]) = θ with v invertible).
Exponential family: Probability law family Pθ such that the density can be written

f (y , θ, φ) = e
y⊤θ−v(θ)

φ
+w(y ,φ)

where φ is a nuisance parameter and w a function independent of θ.
Examples:

Gaussian: f (y , θ, φ) = e− y⊤θ−∥θ∥2/2
φ − ∥y∥2/2

φ

Bernoulli: f (y , θ) = eyθ−ln(1+eθ) (θ = ln p/(1 − p))
Poisson: f (y , θ) = e(yθ−eθ)+ln(y !) (θ = ln λ)

Linear Conditional model: Y |X ∼ Px⊤β. . .

Maximum likelihood fit of the parameters
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Non Parametric Conditional Estimation

Idea: Estimate Y |X directly without resorting to an explicit parametric model.

Non Parametric Conditional Estimation
Two heuristics:

Y |X is almost constant (or simple) in a neighborhood of X . (Kernel methods)
Y |X can be approximated by a model whose dimension depends on the complexity
and the number of observation. (Quite similar to parametric model plus model
selection. . . )

Focus on kernel methods!
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Kernel Methods

Idea: The behavior of Y |X is locally constant or simple!

Kernel
Choose a kernel K (think of a weighted neighborhood).
For each X̃ , compute a simple localized estimate of Y |X = X̃
Use this local estimate to take the decision

In regression, an estimate of E[Y |X ] is easily obtained from an estimate of Y |X .
Lazy learning: computation for a new point requires the full training dataset.

160



Introduction to Supervised
Learning

Example: k Nearest-Neighbors (with k = 3)
1 2

3 4
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Example: k Nearest-Neighbors (with k = 4)
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k Nearest-Neighbors

Neighborhood Vx of x : k learning samples closest from x .

k-NN as local conditional density estimate

̂P(Y = 1|X ) =
∑

X i ∈VX
1{Yi =+1}

|VX |

KNN Classifier:

f̂KNN(X ) =

+1 if ̂P(Y = 1|X ) ≥ ̂P(Y = −1|X )
−1 otherwise

Lazy learning: all the computations have to be done at prediction time.
Easily extend to the multi-class setting.
Remark: You can also use your favorite kernel estimator. . .
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Example: KNN
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Regression and Local Averaging
A naive idea

E[Y |X ] can be approximated by a local average in a neighborhood N (X ) of X :

f̂ (X ) = 1
|{X i ∈ N (X )}|

∑
X i ∈N (X)

Yi
Heuristic:

If X → E[Y |X ] is regular then
E[Y |X ] ≃ E

[
E
[
Y |X ′] |X ′ ∈ N (X )

]
= E

[
Y |X ′ ∈ N (X )

]
Replace an expectation by an empirical average:

E
[
Y |X ′ ∈ N (X )

]
≃ 1

|{X i ∈ N (X )}|
∑

X i ∈N (X)

Yi

Conditional Density Interpretation
Amount to use as in classification,

Ŷ |X = 1
|{X i ∈ N (X )}|

∑
X i ∈N (X)

δYi
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Regression and Local Averaging

Neighborhood and Size
Most classical choice: N (X ) = {X ′, ∥X − X ′∥ ≤ h } where ∥.∥ is a (pseudo) norm
and h a size (bandwidth) parameter.
In principle, the norm and h could vary with X , and the norm can be replaced by
a (pseudo) distance.
Focus here on a fixed distance with a fixed bandwidth h cased.

Bandwidth Heuristic
A large bandwidth ensures that the average is taken on many samples and thus
the variance is small. . .
A small bandwidth is thus that the approximation E[Y |X ] ≃ E

[
Y |X ′ ∈ N (X )

]
is more accurate (small bias).
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Weighted Local Averaging
Weighted Local Average

Replace the neighborhood N (X ) by a decaying window function w(X , X ′).
E[Y |X ] can be approximated by a weighted local average:

f̂ (X ) =
∑

i w(X , X i)Yi∑
i w(X , X i)

.

Kernel
Most classical choice: w(X , X ′) = K

(
X−X ′

h

)
where h the bandwidth is a scale

parameter.
Examples:

Box kernel: K (t) = 1∥t∥≤1 (Neighborhood)
Triangular kernel: K (t) = max(1 − ∥t∥, 0).
Gaussian kernel: K (t) = e−t2/2

Rk: K and λK yields the same estimate.
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Link with Density Estimation

Density Estimation
How to estimate the density p of X with respect to the Lebesgue measure from
an i.i.d. sample (X 1, . . . , Xn).
Parametric approach: density has a known parameterized shape and estimate
those parameters.
Nonparametric approach: density has a no known parameterized shape and

Approximate it by a parametric one, whose parameters can be estimated
Estimate directly the density

Important nonparametric statistic topic!
Used in generative modeling. . .

168



Introduction to Supervised
Learning

Link with Density Estimation

Kernel Density Estimation (Parzen)
Choose a positive kernel K such that

∫
K (x)dx = 1

Use as an estimate

p̂(X ) = 1
n

n∑
i=1

K (X − X i)

If K = 1
Zh

1∥t∥≤h, easy interpretation as a local empirical density of samples!
General K corresponds to a smoothed version.
Often Kh(t) = 1

hd K (t/h) and let

p̂h(X ) = 1
n

n∑
i=1

Kh(X − X i)
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Link with Density Estimation
Properties

Error decomposition:
E
[
|p(X ) − p̂h(X )|2

]
= E[p(X ) − p̂h(X )]2 + Var [p(X ) − p̂h(X )]

Bias:
E[p(X ) − p̂h(X )] = p(X ) − (Kh ∗ p)(X )

Variance: if p is upper bounded by pmax then

Var [p(X ) − p̂h(X )] ≤ pmax
∫

K 2
h (x)dx

nhd

Bandwidth choice
A small h leads to a small bias but a large variance. . .
A large h leads to a small variance but a large bias. . .
Theoretical analysis possible!
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A Density Estimation Point of View?

Nadaraya-Watson Heuristic
Provided all the densities exist

Y |X ∼ p(X , Y )
p(X ) dY and E[Y |X ] =

∫
Yp(X , Y )dY

(X )
Replace the unknown densities by their kernel estimates:

p̂(X ) = 1
n

n∑
i=1

K (X − X i)

p̂(X , Y ) = 1
n

n∑
i=1

K (X − X i)K ′(Y − Yi)

Now if K ′ is a kernel such that
∫

YK ′(Y )dY = 0 then∫
Y p̂(X , Y )dY = 1

n

n∑
i=1

K (X − X i)Yi
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A Density Estimation Point of View?

Nadaraya-Watson
Resulting estimator of E[Y |X ]

f̂ (X ) =
∑n

i=1 Kh(X − X i)Yi∑n
i=1 Kh(X − X i)

Same local weighted average estimator!

Bandwidth Choice
Bandwidth h of K allows to balance between bias and variance.
Theoretical analysis of the error is possible.
The smoother the densities the easier the estimation but the optimal bandwidth
depends on the unknown regularity!

Probabilistic approach POV!
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Local Linear Estimation
Another Point of View on Kernel

Nadaraya-Watson estimator:

f̂ (X ) =
∑n

i=1 Kh(X − X i)Yi∑n
i=1 Kh(X − X i)

Can be view as a minimizer of
n∑

i=1
Kh(X − X i)|Yi − β|2

Local regression of order 0.

Local Linear Model
Estimate E[Y |X ] by f̂ (X ) = ϕ(X )⊤β̂(X ) where ϕ is any function of X and β̂(X )
is the minimizer of

n∑
i=1

Kh(X − X i)|Yi − ϕ(X i)⊤β|2.

Very similar to a piecewise modeling approach. 173
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LOESS: LOcal polynomial regrESSion
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1D Nonparametric Regression
Assume that X ∈ R and let ϕ(X ) = (1, X , . . . , Xd).
LOESS estimate: f̂ (X ) =

∑d
j=0 β̂(X (j))X j with β̂(X ) minimizing

n∑
i=1

Kh(X − X i)|Yi −
d∑

j=0
β(j)X j

i |
2.

Most classical kernel used: Tricubic kernel
K (t) = max(1 − |t|3, 0)3

Most classical degree: 2. . .
Local bandwidth choice such that a proportion of points belongs to the window.
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Fully Generative Modeling
Idea: If one knows the law of (X , Y ) everything is easy!

Bayes formula
With a slight abuse of notation,

P(Y |X ) = P((X , Y ))
P(X )

= P(X |Y )P(Y )
P(X )

Generative Modeling:
Propose a model for (X , Y ) (or equivalently X |Y and Y ),
Estimate it as a density estimation problem,
Plug the estimate in the Bayes formula
Plug the conditional estimate in the Bayes predictor.

Rk: Require to estimate (X , Y ) rather than only Y |X !
Great flexibility in the model design but may lead to complex computation.
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Fully Generative Modeling

Simpler setting in classification!

Bayes formula

P(Y = k|X ) = P(X |Y = k)P(Y = k)
P(X )

Binary Bayes classifier (the best solution)

f ⋆(X ) =
{

+1 if P(Y = 1|X ) ≥ P(Y = −1|X )
−1 otherwise

Heuristic: Estimate those quantities and plug the estimations.
By using different models/estimators for P(X |Y ), we get different classifiers.
Rk: No need to renormalize by P(X ) to take the decision!
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Discriminant Analysis

Discriminant Analysis (Gaussian model)
The densities are modeled as multivariate normal, i.e.,

P(X |Y = k) ∼ Nµk ,Σk

Discriminant functions: gk(X) = ln(P(X|Y = k)) + ln(P(Y = k))

gk(X ) = − 1
2(X − µk)⊤Σ−1

k (X − µk)

− d
2 ln(2π) − 1

2 ln(|Σk |) + ln(P(Y = k))

Quadratic Discrimant Analysis (QDA) (different Σk in each class) and Linear
Discrimant Analysis (LDA) (Σk = Σ for all k)

Beware: this model can be false but the methodology remains valid!
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Discriminant Analysis
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Quadratic Discriminant Analysis
The probability densities are Gaussian
The effect of any decision rule is to divide the feature space into some decision
regions R1, R2

, . . . , Rc

The regions are separated by decision boundaries
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Quadratic Discriminant Analysis
The probability densities are Gaussian
The effect of any decision rule is to divide the feature space into some decision
regions R1, R2, . . . , Rc

The regions are separated by decision boundaries
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Discriminant Analysis

Estimation
In practice, we will need to estimate µk , Σk and Pk := P(Y = k)

The estimate proportion ̂P(Y = k) = nk
n = 1

n
∑n

i=1 1{Yi =k}

Maximum likelihood estimate of µ̂k and Σ̂k (explicit formulas)

DA classifier

f̂G(X ) =
{

+1 if ĝ+1(X ) ≥ ĝ−1(X )
−1 otherwise

Decision boundaries: quadratic = degree 2 polynomials.
If one imposes Σ−1 = Σ1 = Σ then the decision boundaries is a linear hyperplane.
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Example: LDA
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Example: QDA
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Naive Bayes

Naive Bayes
Classical algorithm using a crude modeling for P(X |Y ):

Feature independence assumption:

P(X |Y ) =
d∏

l=1
P
(

X (l)
∣∣∣Y)

Simple featurewise model: binomial if binary, multinomial if finite and Gaussian if
continuous

If all features are continuous, similar to the previous Gaussian but with a diagonal
covariance matrix!
Very simple learning even in very high dimension!
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Example: Naive Bayes
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Example: Naive Bayes
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Naive Bayes with Density Estimation
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Other Generative Models

Other (generative) models of the world!

Graphical Models
Markov type models on Graphs

Gaussian Processes
Multivariate Gaussian models

Bayesian Approach
Generative Model plus prior on the parameters
Inference thanks again to the Bayes formula

. . .
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Probabilistic and Optimization Framework
How to find a good function f with a small risk

R(f ) = E[ℓ(Y , f (X ))] ?
Canonical approach: f̂S = argminf ∈S

1
n
∑n

i=1 ℓ(Yi , f (X i))

Problems
How to choose S?
How to compute the minimization?

A Probabilistic Point of View
Solution: For X , estimate Y |X and plug it in any Bayes predictor: (Generalized)
Linear Models, Kernel methods, k-nn, Naive Bayes, Tree, Bagging. . .

An Optimization Point of View
Solution: Replace the loss ℓ by an upper bound ℓ and minimize directly the
corresponding emp. risk: Neural Network, SVR, SVM, Tree, Boosting. . .
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Three Classical Methods in a Nutshell

Deep Learning
Let fθ(X ) with f a feed forward neural network outputing two values with a
softmax layer as a last layer.

Optimize by gradient descent the cross-entropy −1
n

n∑
i=1

log
(
fθ(X i)(Yi )

)
Classify using sign(fθ̂)

Regularized Logistic Regression
Let fθ(X ) = X⊤β + β(0) with θ = (β, β(0)).

Find θ̂ = arg min 1
n

n∑
i=1

log
(
1 + e−Yi fθ(X i )

)
+ λ∥β∥1

Classify using sign(fθ̂)
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Three Classical Methods in a Nutshell

Support Vector Machine
Let fθ(X ) = X⊤β + β(0) with θ = (β, β(0)).

Find θ̂ = arg min 1
n

n∑
i=1

max (1 − Yi fθ(X i), 0) + λ∥β∥2
2

Classify using sign(fθ̂)

Those three methods rely on a similar heuristic: the optimization point of view!
Focus on classification, but similar methods for regression: Deep Learning,
Regularized Regression, Support Vector Regression. . .
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Empirical Risk Minimization

The best solution f ⋆ is the one minimizing
f ⋆ = arg min R(f ) = arg minE[ℓ(Y , f (X ))]

Empirical Risk Minimization
One restricts f to a subset of functions S = {fθ, θ ∈ Θ}
One replaces the minimization of the average loss by the minimization of the
average empirical loss

f̂ = f
θ̂

= argmin
fθ,θ∈Θ

1
n

n∑
i=1

ℓ(Yi , fθ(X i))

Often tractable for the quadratic loss in regression.
Intractable for the 0/1 loss in classification!
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Convexification Strategy
Risk Convexification

Replace the loss ℓ(Y , fθ(X )) by a convex upperbound ℓ(Y , fθ(X )) (surrogate loss).
Minimize the average of the surrogate empirical loss

f̃ = f
θ̂

= argmin
fθ,θ∈Θ

1
n

n∑
i=1

ℓ(Yi , fθ(X i))

Use f̂ = sign(f̃ )

Much easier optimization.

Instantiation
Logistic (Revisited)
(Deep) Neural Network
Support Vector Machine
Boosting
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Classification Loss and Convexification

Convexification
Replace the loss ℓ0/1(Y , f (X )) by

ℓ(Y , f (X )) = l(Yf (X ))
with l a convex function.
Further mild assumption: l is decreasing, l(0) = 1, l is differentiable at 0 and
l ′(0) < 0.
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Classification Loss and Convexification

Classical convexification
Logistic loss: ℓ(Y , f (X )) = log2(1 + e−Yf (X)) (Logistic / NN)
Hinge loss: ℓ(Y , f (X )) = (1 − Yf (X ))+ (SVM)
Exponential loss: ℓ(Y , f (X )) = e−Yf (X) (Boosting. . . )
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Properties
The Target is the Bayes Classifier

The minimizer of
E
[
ℓ(Y , f (X ))

]
= E[l(Yf (X ))]

is the Bayes classifier f ⋆ = sign(2η(X ) − 1)

Control of the Excess Risk
It exists a convex function Ψ such that

Ψ
(
E
[
ℓ0/1(Y , sign(f (X ))

]
− E

[
ℓ0/1(Y , f ⋆(X )

])
≤ E

[
ℓ(Y , f (X )

]
− E

[
ℓ(Y , f ⋆(X ))

]
Multi-class generalizations of convexification lead to similar controls, but not
necessarily a direct upper bound of the loss.
Direct (approximate) optimization of the predictor, but for a single loss.
Connection with the probabilistic POV when the (surrogate) loss used is the
opposite of the log-likelihood. 195
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Logistic Revisited

Ideal solution:

f̂ = argmin
f ∈S

1
n

n∑
i=1

ℓ0/1(Yi , f (X i))

Logistic regression
Use f (X ) = X⊤β + β(0).
Use the logistic loss ℓ(y , f ) = log2(1 + e−yf ), i.e. the negative log-likelihood.

Different vision than the statistician but same algorithm!
In regression, a similar approach will be to minimize the least square criterion
without making the Gaussian noise assumption.
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Logistic Revisited
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Which Parametric Functions?

fθ?
Parametric functions everywhere in ML:

predictors,
conditional parameter models. . .

Desirable properties
Easy to compute,
Easy to optimize. . .

Classical choices
Linear functions (plus feature design),
(Deep) Neural Networks!

Not that much in between! 199
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Perceptron
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Perceptron (Rosenblatt 1957)
Inspired from biology.
Very simple (linear) model!
Physical implementation and proof of concept.
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Perceptron
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Perceptron (Rosenblatt 1957)
Inspired from biology.
Very simple (linear) model!
Physical implementation and proof of concept.
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Artificial Neuron and Logistic Regression
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Artificial neuron
Structure:

Mix inputs with a weighted sum,
Apply a (non linear) activation
function to this sum,
Possibly threshold the result to make
a decision.

Weights learned by minimizing a loss
function.

Logistic unit
Structure:

Mix inputs with a weighted sum,
Apply the logistic function
σ(t) = et/(1 + et),
Threshold at 1/2 to make a decision!

Logistic weights learned by minimizing
the -log-likelihood.

Equivalent to linear regression when using a linear activation function!
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Multilayer Perceptron
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MLP (Rumelhart, McClelland, Hinton - 1986)
Multilayer Perceptron: cascade of layers of artificial neuron units.
Optimization through a gradient descent algorithm with a clever implementation
(Backprop).

Construction of a function by composing simple units.
MLP corresponds to a specific direct acyclic graph structure.
Minimized loss chosen among the classical losses in both classification and
regression.
Non convex optimization problem! 202
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Multilayer Perceptron
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Universal Approximation Theorem

Universal Approximation Theorem (Hornik, 1991)
A single hidden layer neural network with a linear output unit can
approximate any continuous function arbitrarily well given enough hidden units.

Valid for most activation functions.
No bounds on the number of required units. . . (Asymptotic flavor)
A single hidden layer is sufficient but more may require less units.
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Deep Neural Network
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Deep Neural Network structure
Deep cascade of layers!

No conceptual novelty. . .
But a lot of tricks allowing to obtain a good solution: clever initialization, better
activation function, weight regularization, accelerated stochastic gradient descent,
early stopping. . .
Use of GPU and a lot of data. . .
Very impressive results!
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Deep Neural Network
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Deep Learning
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Family of Machine Learning algorithm combining:
a (deep) multilayered structure,
a clever optimization including initialization and regularization.

Examples: Deep NN, AutoEncoder, Recursive NN, GAN, Transformer. . .
Interpretation as a Representation Learning.
Transfer learning: use a pretrained net as initialization.
Very efficient and still evolving!
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Convolutional Network
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Le Net - Y. LeCun (1989)
6 hidden layer architecture.
Drastic reduction of the number of parameters through a translation invariance
principle (convolution).

Required 3 days of training for 60 000 examples!
Tremendous improvement.
Representation learned through the task. 208



Introduction to Supervised
Learning

Deep Convolutional Networks
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Alexnet - A. Krizhevsky, I. Sutskever, G. Hinton (2012)
Bigger and deeper layers and thus much more parameters.
Clever intialization scheme, RELU, renormalization and use of GPU.

6 days of training for 1.2 millions images.
Tremendous improvement. . .
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Deep Convolutional Networks
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Bigger and bigger networks! (GoogLeNet / Residual Neural Network /
Transformers. . . )
More computational power to learn better representation.

Work in Progess!

210



Introduction to Supervised
Learning

Outline

1 Introduction to Supervised Learning
Introduction
A Practical View
A Better Point of View
Risk Estimation and Method Choice
A Probabilistic Point of View
Optimization Point of View

(Deep) Neural Networks
SVM
Regularization
Another Perspectivce on Bias-Variance
Tradeoff
Tree

Ensemble Methods

Empirical Risk Minimization
References

2 Unsupervised Learning, Generative Learning
and More

Unsupervised Learning?
A Glimpse on Unsupervised Learning
More Learning. . .
Metrics
Dimension Reduction
Clustering
Generative Modeling
ChatGPT
References

3 References

211



Introduction to Supervised
Learning

Support Vector Machine

fθ(X ) = X ⊤β + β(0) with θ = (β, β(0))

θ̂ = arg min 1
n

n∑
i=1

max (1 − Yi fθ(X i), 0) + λ∥β∥2
2

Support Vector Machine
Convexification of the 0/1-loss with the hinge loss:

1Yi fθ(X i )<0 ≤ max (1 − Yi fθ(X i), 0)
Regularization by the quadratic norm (Ridge/Tikhonov).
Solution can be approximated by gradient descent algorithms.

Revisit of the original point of view.
Original point of view leads to a different optimization algorithm and to some
extensions.
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Ideal Separable Case
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Linear classifier: sign(X⊤β + β(0))
Separable case: ∃(β, β(0)), ∀i , Yi(X i

⊤β + β(0)) > 0

How to choose (β, β(0)) so that the separation is maximal?
Strict separation: ∃(β, β(0)), ∀i , Yi(X i

⊤β + β(0)) ≥ 1
Distance between X⊤β + β(0) = 1 and X⊤β + β(0) = −1:

2
∥β∥

Maximizing this distance is equivalent to minimizing 1
2∥β∥2.
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Separable SVM
Constrained optimization formulation:

min 1
2∥β∥2 with ∀i , Yi(X i

⊤β + β(0)) ≥ 1

Quadratic Programming setting.
Efficient solver available. . .
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Non Separable Case

So
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What about the non separable case?

SVM relaxation
Relax the assumptions

∀i , Yi(X i
⊤β + β(0)) ≥ 1 to ∀i , Yi(X i

⊤β + β(0)) ≥ 1 − si
with the slack variables si ≥ 0
Keep those slack variables as small as possible by minimizing

1
2∥β∥2 + C

n∑
i=1

si

where C > 0 is the goodness-of-fit strength
214
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Non Separable Case
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SVM
Constrained optimization formulation:

min 1
2∥β∥2 + C

n∑
i=1

si with
{

∀i , Yi(X i
⊤β + β(0)) ≥ 1 − si

∀i , si ≥ 0
Hinge Loss reformulation:

min 1
2∥β∥2 + C

n∑
i=1

max(0, 1 − Yi(X i
⊤β + β(0)))︸ ︷︷ ︸

Hinge Loss

Constrained convex optimization algorithms vs gradient descent algorithms. 214
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SVM as a Regularized Convex Relaxation
Convex relaxation:

argmin 1
2∥β∥2 + C

n∑
i=1

max(1 − Yi(X i
⊤β + β(0)), 0)

= argmin 1
n

n∑
i=1

max(1 − Yi(X i
⊤β + β(0)), 0) + 1

Cn
1
2∥β∥2

Prop: ℓ0/1(Yi , sign(X i
⊤β + β(0))) ≤ max(1 − Yi(X i

⊤β + β(0)), 0)

Regularized convex relaxation (Tikhonov!)

1
n

n∑
i=1

ℓ0/1(Yi , sign(X i
⊤β + β(0))) + 1

Cn
1
2∥β∥2

≤ 1
n

n∑
i=1

max(1 − Yi(X i
⊤β + β(0)), 0) + 1

Cn
1
2∥β∥2

No straightforward extension to multi-class classification.
Extension to regression using ℓ(f (X ), Y ) = |Y − X |. 215
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SVM
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Constrained Minimization
Constrained Minimization

Goal:
min

x
f (x)

with
{

hj(x) = 0, j = 1, . . . p
gi(x) ≤ 0, i = 1, . . . q

or rather with argmin!

Different Setting
f , hj , gi differentiable
f convex, hj affine and gi convex.

Feasibility
x is feasible if hj(x) = 0 and gi(x) ≤ 0.
Rk: The set of feasible points may be empty 217
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Lagrangian
Constrained Minimization

Goal:

p⋆ = min
x

f (x) with
{

hj(x) = 0, j = 1, . . . p
gi(x) ≤ 0, i = 1, . . . q

Lagrangian
Def:

L(x , λ, µ) = f (x) +
p∑

j=1
λjhj(x) +

q∑
i=1

µigi(x)

with λ ∈ Rp and µ ∈ (R+)q.
The λj and µi are called the dual (or Lagrange) variables.
Prop:

max
λ∈Rp , µ∈(R+)q

L(x , λ, µ) =
{

f (x) if x is feasible
+∞ otherwise

min
x

max
λ∈Rp , µ∈(R+)q

L(x , λ, µ) = p⋆
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Lagrangial Dual

Lagrangian
Def:

L(x , λ, µ) = f (x) +
p∑

j=1
λjhj(x) +

q∑
i=1

µigi(x)

with λ ∈ Rp and µ ∈ (R+)q.

Lagrangian Dual
Lagrangian dual function:

Q(λ, µ) = min
x

L(x , λ, µ)
Prop:

Q(λ, µ) ≤ f (x), for all feasible x
max

λ∈Rp , µ∈(R+)q
Q(λ, µ) ≤ min

x feasible
f (x)
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Duality
Primal

Primal:

p⋆ = min
x∈X

f (x) with
{

hj(x) = 0, j = 1, . . . p
gi(x) ≤ 0, i = 1, . . . q

Dual
Dual:

q⋆ = max
λ∈Rp , µ∈(R+)q

Q(λ, µ) = max
λ∈Rp , µ∈(R+)q

min
x

L(x , λ, µ)

Duality
Always weak duality:

q⋆ ≤ p⋆

max
λ∈Rp , µ∈(R+)q

min
x

L(x , λ, µ) ≤ min
x

max
λ∈Rp , µ∈(R+)q

L(x , λ, µ)

Not always strong duality q⋆ = p⋆. 220
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Strong Duality
Strong Duality

Strong duality:
q⋆ = p⋆

max
λ∈Rp , µ∈(R+)q

min
x

L(x , λ, µ) = min
x

max
λ∈Rp , µ∈(R+)q

L(x , λ, µ)

Allow to compute the solution of one problem from the other.
Requires some assumptions!

Strong Duality under Convexity and Slater’s Condition
f convex, hj affine and gi convex.
Slater’s condition: it exists a feasible point such that hj(x) = 0 for all j and
gi(x) < 0 for all i .
Sufficient to prove strong duality.
Rk: If the gi are affine, it suffices to have hj(x) = 0 for all j and gi(x) ≤ 0 for all
i . 221
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KKT
Karush-Kuhn-Tucker Condition

Stationarity:
∇xL(x⋆, λ, µ) = ∇f (x⋆) +

∑
j

λj∇hj(x⋆) +
∑

i
µi∇gi(x⋆) = 0

Primal admissibility:
hj(x⋆) = 0 and gi(x⋆) ≤ 0

Dual admissibility:
µi ≥ 0

Complementary slackness:
µigi(x⋆) = 0

KKT Theorem
If f convex, hj affine and gi convex, all are differentiable and strong duality
holds then x⋆ is a solution of the primal problem if and only if the KKT
condition holds

Same result without differentiability using the sub-gradient. . .
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SVM and Lagrangian

SVM
Constrained optimization formulation:

min 1
2∥β∥2 + C

n∑
i=1

si with
{

∀i , Yi(X i
⊤β + β(0)) ≥ 1 − si

∀i , si ≥ 0

SVM Lagrangian
Lagrangian:

L(β, β(0), s, α, µ) = 1
2∥β∥2 + C

n∑
i=1

si

+
∑

i
αi(1 − si − Yi(X i

⊤β + β(0))) −
∑

i
µisi
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SVM and KKT
KKT Optimality Conditions

Stationarity:
∇βL(β, β(0), s, α, µ) = β −

∑
i

αiYiX i = 0

∇β(0)L(β, β(0), s, α, µ) = −
∑

i
αi = 0

∇si L(β, β(0), s, α, µ) = C − αi − µi = 0
Primal and dual admissibility:

(1 − si − Yi(X i
⊤β + β(0))) ≤ 0, si ≥ 0, αi ≥ 0, and µi ≥ 0

Complementary slackness:
αi(1 − si − Yi(X i

⊤β + β(0))) = 0 and µisi = 0

Consequence
β⋆ =

∑
i αiYiX i and 0 ≤ αi ≤ C .

If αi ̸= 0, X i is called a support vector and either
si = 0 and Yi(X i

⊤β⋆ + β(0)∗) = 1 (margin hyperplane),
or αi = C (outliers).

β(0)∗ = Yi − X i
⊤β⋆ for any support vector with 0 < αi < C .
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SVM Dual
SVM Lagrangian Dual

Lagrangian Dual:
Q(α, µ) = min

β,β(0),s
L(β, β(0), s, α, µ)

Prop:
if
∑

i αiYi ̸= 0 or ∃i , αi + µi ̸= C ,
Q(α, µ) = −∞

if
∑

i αiYi = 0 and ∀i , αi + µi = C ,

Q(α, µ) =
∑

i
αi − 1

2
∑
i,j

αiαjYiYjX i
⊤X j

SVM Dual problem
Dual problem is a Quadratic Programming problem:

max
α≥0,µ≥0

Q(α, µ) ⇔ max
0≤α≤C

∑
i

αi − 1
2
∑
i ,j

αiαjYiYjX i
⊤X j

Involves the X i only through their scalar products. 225
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Mercer Theorem
Mercer Representation Theorem

For any loss ℓ and any increasing function Φ, the minimizer in β of
n∑

i=1
ℓ(Yi , X i

⊤β + β(0)) + Φ(∥β∥2)

is a linear combination of the input points β⋆ =
n∑

i=1
α′

iX i .

Minimization problem in α′:
n∑

i=1
ℓ(Yi ,

∑
j

α′
jX i

⊤X j + β(0)) + Φ(∥β∥2)

involving only the scalar product of the data.

Optimal predictor requires only to compute scalar products.
f̂ ⋆(X ) = X⊤β⋆ + β(0),∗ =

∑
i

α′
iX i

⊤X

Transform a problem in dimension dim(X ) in a problem in dimension n.
Direct minimization in β can be more efficient. . . 226
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The Kernel Trick
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Non linear separation: just replace X by a non linear Φ(X ). . .
Knowing ϕ(X i)⊤ϕ(X j) is sufficient to compute the SVM solution.

Kernel trick
Computing k(X , X ′) = ϕ(X )⊤ϕ(X ′) may be easier than computing ϕ(X ),
ϕ(X ′) and then the scalar product!
ϕ can be specified through its definite positive kernel k.
Examples: Polynomial kernel k(X , X ′) = (1 + X⊤X ′)d , Gaussian kernel
k(X , X ′) = e−∥X−X ′∥2/2,. . .
Reproducing Kernel Hilbert Space (RKHS) setting!
Can be used in (logistic) regression and more. . .
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SVM
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SVM
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Feature Map

So
ur
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Feature Engineering
Art of creating new features from the existing one X .
Example: add monomials (X (j))2, X (j)X (j′). . .
Adding features increases the dimension.

Feature Map
Application ϕ : X → H with H a Hilbert space.
Linear decision boundary in H: ϕ(X )⊤β + β(0) = 0 is not a hyperplane anymore
in X .

Heuristic: Increasing dimension allows making data almost linearly separable.
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Polynomial Mapping

So
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Polynomial Mapping of order 2
ϕ : R2 → R6

ϕ(X ) =
(
(X (1))2, (X (2))2,

√
2X (1)X (2),

√
2X (1),

√
2X (2), 1

)
Allow to solve the XOR classification problem with the hyperplane X (1)X (2) = 0.

Polynomial Mapping and Scalar Product
Prop:

ϕ(X )⊤ϕ(X ′) = (1 + X⊤X ′)2
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SVM Primal and Dual
Primal, Lagrandian and Dual

Primal:

min ∥β∥2 + C
n∑

i=1
si with

{
∀i , Yi(ϕ(X i)⊤β + β(0)) ≥ 1 − si

∀i , si ≥ 0
Lagrangian:

L(β, β(0), s, α, µ) = 1
2∥β∥2 + C

n∑
i=1

si

+
∑

i
αi(1 − si − Yi(ϕ(X i)⊤β + β(0))) −

∑
i

µisi

Dual:
max

α≥0,µ≥0
Q(α, µ) ⇔ max

0≤α≤C

∑
i

αi − 1
2
∑
i ,j

αiαjYiYjϕ(X i)⊤ϕ(X j)

Optimal ϕ(X )⊤β⋆ + β(0),∗ =
∑

i αiYiϕ(X )⊤ϕ(X i)

Only need to know to compute ϕ(X )⊤ϕ(X ′) to obtain the solution. 232
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From Map to Kernel

Many algorithms (e.g. SVM) require only to be able to compute the scalar
product ϕ(X )⊤ϕ(X ′).

Kernel
Any application

k : X × X → R
is called a kernel over X .

Kernel Trick
Computing directly the kernel k(X , X ′) = ϕ(X )⊤ϕ(X ′) may be easier than
computing ϕ(X ), ϕ(X ′) and then the scalar product.

Here k is defined from ϕ.
Under some assumption on k, ϕ can be implicitly defined from k!
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PDS Kernel

Positive Definite Symmetric Kernels
A kernel k is PDS if and only if

k is symmetric, i.e.
k(X , X ′) = k(X ′, X )

for any N ∈ N and any (X 1, . . . , XN) ∈ X N ,
K = [k(X i , X j)]1≤i,j≤N

is positive semi-definite, i.e. ∀u ∈ RN

u⊤Ku =
∑

1≤i,j≤N
u(i)u(j)k(X i , X j) ≥ 0

or equivalently all the eigenvalues of K are non-negative.

The matrix K is called the Gram matrix associated to (X 1, . . . , XN).
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Reproducing Kernel Hilbert Space

Moore-Aronsajn Theorem
For any PDS kernel k : X × X → R, it exists a Hilbert space H ⊂ RX with a
scalar product ⟨·, ·⟩H such that

it exists a mapping ϕ : X → H satisfying
k(X , X ′) =

〈
ϕ(X ), ϕ(X ′)

〉
H

the reproducing property holds, i.e. for any h ∈ H and any X ∈ X
h(X ) = ⟨h, k(X , ·)⟩H .

By def., H is a reproducing kernel Hilbert space (RKHS).
H is called the feature space associated to k and ϕ the feature mapping.
No uniqueness in general.
Rk: if k(X , X ′) = ϕ′(X )⊤ϕ′(X ′) with ϕ′ : X → Rp then

H can be chosen as {X 7→ ϕ′(X )⊤
β, β ∈ Rp} and ∥X 7→ ϕ′(X )⊤

β∥2
H = ∥β∥2

2.
ϕ(X ′) : X 7→ ϕ′(X )⊤

ϕ′(X ′).
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Kernel Construction Machinery
Separable Kernel

For any function Ψ : X → R, k(X , X ′) = Ψ(X )Ψ(X ′) is PDS.

Kernel Stability
For any PDS kernels k1 and k2, k1 + k2 and k1k2 are PDS kernels.
For any sequence of PDS kernels kn converging pointwise to a kernel k, k is a
PDS kernel.
For any PDS kernel k such that |k| ≤ r and any power series

∑
n anzn with an ≥ 0

and a convergence radius larger than r ,
∑

n
ankn is a PDS kernel.

For any PDS kernel k, the renormalized kernel k ′(X , X ′) = k(X , X ′)√
k(X , X )k(X ′, X ′)

is

a PDS kernel.
Cauchy-Schwartz for k PDS: k(X , X ′)2 ≤ k(X , X )k(X ′, X ′)
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Classical Kernels

PDS Kernels
Vanilla kernel:

k(X , X ′) = X⊤X ′

Polynomial kernel:
k(X , X ′) = (1 + X⊤X ′)k

Gaussian RBF kernel:
k(X , X ′) = exp

(
−γ∥X − X ′∥2

)
Tanh kernel:

k(X , X ′) = tanh(aX⊤X ′ + b)

Most classical is the Gaussian RBF kernel. . .
Lots of freedom to construct kernel for non classical data.
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Representer Theorem

Representer Theorem
Let k be a PDS kernel and H its corresponding RKHS,
for any increasing function Φ and any function L : Rn → R, the optimization
problem

argmin
h∈H

L(h(X 1), . . . , h(Xn)) + Φ(∥h∥)

admits only solutions of the form
n∑

i=1
α′

ik(X i , ·).

Examples:
(Kernelized) SVM
(Kernelized) Regularized Logistic Regression (Ridge)
(Kernelized) Regularized Regression (Ridge)
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Kernelized SVM
Primal

Constrained Optimization:

min
f ∈H,β(0),s

∥f ∥2
H + C

n∑
i=1

si with
{

∀i , Yi(f (X i) + β(0)) ≥ 1 − si

∀i , si ≥ 0
Hinge loss:

min
f ∈H,β(0)

∥f ∥2
H + C

n∑
i=1

max(0, 1 − Yi(f (X i) + β(0)))

Representer:
min

α′,β(0)

∑
i ,j

α′
iα

′
jk(X i , X j)

+ C
n∑

i=1
max(0, 1 − Yi(

∑
j

α′
jk(X j , X i) + β(0)))

Dual
Dual: max

α≥0,µ≥0
Q(α, µ) ⇔ max

0≤α≤C

∑
i

αi − 1
2
∑
i ,j

αiαjYiYjk(X i , X j)
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SVM
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SVM
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Under-fitting / Over-fitting Issue

Model Complexity Dilemna
What is best a simple or a complex model?
Too simple to be good? Too complex to be learned?
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Under-fitting / Over-fitting Issue

Complexity

Prediction Error

Bad on train
Bad on test

Good on train
Bad on test

Train

TestGood models

Underfitting Overfitting

Under-fitting / Over-fitting
Under-fitting: simple model are too simple.
Over-fitting: complex model are too specific to the training set.
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Bias-Variance Dilemma
General setting:

F = {measurable functions X → Y}
Best solution: f ⋆ = argminf ∈F R(f )
Class S ⊂ F of functions
Ideal target in S: f ⋆

S = argminf ∈S R(f )
Estimate in S: f̂S obtained with some procedure

Approximation error and estimation error (Bias-Variance)

R(f̂S) − R(f ⋆) = R(f ⋆
S ) − R(f ⋆)︸ ︷︷ ︸

Approximation error

+ R(f̂S) − R(f ⋆
S )︸ ︷︷ ︸

Estimation error

Approx. error can be large if the model S is not suitable.
Estimation error can be large if the model is complex.

Agnostic approach
No assumption (so far) on the law of (X , Y ).
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Under-fitting / Over-fitting Issue

Complexity

Prediction Error

High Bias
Low Variance

Low Bias
High Variance

Test
Variance

Bias

Good models

Underfitting Overfitting

Different behavior for different model complexity
Low complexity model are easily learned but the approximation error (bias) may
be large (Under-fit).
High complexity model may contain a good ideal target but the estimation error
(variance) can be large (Over-fit)

Bias-variance trade-off ⇐⇒ avoid overfitting and underfitting

Rk: Better to think in term of method (including feature engineering and specific
algorithm) rather than only of model.
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Theoretical Analysis

Statistical Learning Analysis
Error decomposition:

R(f̂S) − R(f ⋆) = R(f ⋆
S ) − R(f ⋆)︸ ︷︷ ︸

Approximation error

+ R(f̂S) − R(f ⋆
S )︸ ︷︷ ︸

Estimation error

Bound on the approximation term: approximation theory.
Probabilistic bound on the estimation term: probability theory!
Goal: Agnostic bounds, i.e. bounds that do not require assumptions on P!
(Statistical Learning?)

Often need mild assumptions on P. . . (Nonparametric Statistics?)
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Simplified Models
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Bias-Variance Issue
Most complex models may not be the best ones due to the variability of the
estimate.

Naive idea: can we simplify our model without loosing too much?
by using only a subset of the variables?
by forcing the coefficients to be small?

Can we do better than exploring all possibilities?
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Linear Models
Setting: Gen. linear model = prediction of Y by h(x⊤β).

Model coefficients
Model entirely specified by β.
Coefficientwise:

β(i) = 0 means that the ith covariate is not used.
β(i) ∼ 0 means that the ith covariate as a low influence. . .

If some covariates are useless, better use a simpler model. . .

Submodels
Simplify (Regularize) the model through a constraint on β!
Examples:

Support: Impose that β(i) = 0 for i ̸∈ I.
Support size: Impose that ∥β∥0 =

∑d
i=1 1β(i) ̸=0 < C

Norm: Impose that ∥β∥p < C with 1 ≤ p (Often p = 2 or p = 1)
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Norms and Sparsity
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Sparsity
β is sparse if its number of non-zero coefficients (ℓ0) is small. . .
Easy interpretation in terms of dimension/complexity.

Norm Constraint and Sparsity
Sparsest solution obtained by definition with the ℓ0 norm.
No induced sparsity with the ℓ2 norm. . .
Sparsity with the ℓ1 norm (can even be proved to be the same as with the ℓ0
norm under some assumptions).
Geometric explanation.
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Constraint and Lagrangian Relaxation
Constrained Optimization

Choose a constant C .
Compute β as

argmin
β∈Rd ,∥β∥p≤C

1
n

n∑
i=1

ℓ(Yi , h(x i
⊤β))

Lagrangian Relaxation
Choose λ and compute β as

argmin
β∈Rd

1
n

n∑
i=1

ℓ(Yi , h(x i
⊤β)) + λ∥β∥p′

p

with p′ = p except if p = 0 where p′ = 1.
Easier calibration. . . but no explicit model S.

Rk: ∥β∥p is not scaling invariant if p ̸= 0. . .
Initial rescaling issue. 251
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Regularization
Regularized Linear Model

Minimization of

argmin
β∈Rd

1
n

n∑
i=1

ℓ(Yi , h(x i
⊤β)) + reg(β)

where reg(β) is a (sparsity promoting) regularisation term (regularization penalty).
Variable selection if β is sparse.

Classical Regularization Penalties
AIC: reg(β) = λ∥β∥0 (non-convex / sparsity)
Ridge: reg(β) = λ∥β∥2

2 (convex / no sparsity)
Lasso: reg(β) = λ∥β∥1 (convex / sparsity)
Elastic net: reg(β) = λ1∥β∥1 + λ2∥β∥2

2 (convex / sparsity)

Easy optimization if reg (and the loss) is convex. . .
Need to specify λ to define an ML method! 252
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Regularized Gen. Linear Models

Classical Examples
Regularized Least Squares
Regularized Logistic Regression
Regularized Maximum Likelihood
SVM
Tree pruning

Sometimes used even if the parameterization is not linear. . .
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Regularization and Cross-Validation
Practical Selection Methodology

Choose a regularization penalty family regλ.
Compute a CV risk for the regularization penalty regλ for all λ ∈ Λ.
Determine λ̂ the λ minimizing the CV risk.
Compute the final model with the regularization penalty reg

λ̂
.

CV allows to select a ML method, penalized estimation with a regularization
penalty reg

λ̂
, not a single predictor hence the need of a final reestimation.

Why not using directly a parameter grid?
Grid size scales exponentially with the dimension!
If the regularized minimization is easy, much cheaper to compute the CV risk
for all λ ∈ Λ. . .
CV performs best when the set of candidates is not too big (or is structured. . . )
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NN and Bias-Variance Tradeoff

Traditional view NN reality
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No Bias-Variance Tradeoff with Neural Networks ?
Simultaneous decay of the variance and the bias!
Contradiction with the bias-variance tradeoff intuition ?
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Bias-Variance Dilemma

General setting:
F = {measurable functions X → Y}
Best solution: f ⋆ = argminf ∈F R(f )
Class S ⊂ F of functions
Ideal target in S: f ⋆

S = argminf ∈S R(f )
Estimate in S: f̂S obtained with some procedure

Approximation error and estimation error (Bias-Variance)

R(f̂S) − R(f ⋆) = R(f ⋆
S ) − R(f ⋆)︸ ︷︷ ︸

Approximation error

+ R(f̂S) − R(f ⋆
S )︸ ︷︷ ︸

Estimation error

Approx. error can be large if the model S is not suitable.
Estimation error can be large if the model is complex.
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Approximation-Estimation Dilemna?
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Approximation error and estimation error (̸= predictor bias-variance)
R(f̂S) − R(f ⋆) = R(f ⋆

S ) − R(f ⋆)︸ ︷︷ ︸
Approximation error

+ R(f̂S) − R(f ⋆
S )︸ ︷︷ ︸

Estimation error
Approx. error can be large if the model S is not suitable.
Estimation error

can be large if the model is complex,
but may be small for complex model if it is easy to find a model having a
performance similar to the best one!

Might be related to a regularization effect.
Small estimation errors scenario seems the most probable one in deep learning. 258
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A Refined View
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Traditional View
Single good target
Difficulty to be close grows with
complexity.
Bias-Variance analysis in the predictor
space.

Refined View
Many good targets
Difficulty to be close from one may
decrease with complexity.
Bias-Variance analysis in the loss
space.

Importance of (cross) validation! 259
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Classification And Regression Trees

Tree principle (CART by Breiman (85) / ID3 by Quinlan (86))
Construction of a recursive partition through a tree structured set of questions
(splits around a given value of a variable)
For a given partition, probabilistic approach and optimization approach yield the
same predictor!
A simple majority vote/averaging in each leaf
Quality of the prediction depends on the tree (the partition).
Intuitively:

small leaves lead to low bias, but large variance
large leaves lead to large bias, but low variance. . .

Issue: Minim. of the (penalized) empirical risk is NP hard!
Practical tree construction are all based on two steps:

a top-down step in which branches are created (branching)
a bottom-up in which branches are removed (pruning) 261
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CART
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Branching

X1 < .5?

X1 < .2? X2 < .7?

Yes No

Yes NoYes No

Greedy top-bottom approach
Start from a single region containing all the data
Recursively split those regions along a certain variable and a certain value

No regret strategy on the choice of the splits!
Heuristic: choose a split so that the two new regions are as homogeneous
possible. . .

263



Introduction to Supervised
Learning

Branching
X1 < .5?

X1 < .2? X2 < .7?

Yes No

Yes NoYes No

Greedy top-bottom approach
Start from a single region containing all the data
Recursively split those regions along a certain variable and a certain value

No regret strategy on the choice of the splits!
Heuristic: choose a split so that the two new regions are as homogeneous
possible. . .

263



Introduction to Supervised
Learning

Branching
X1 < .5?

X1 < .2?

X2 < .7?

Yes No

Yes No

Yes No

Greedy top-bottom approach
Start from a single region containing all the data
Recursively split those regions along a certain variable and a certain value

No regret strategy on the choice of the splits!
Heuristic: choose a split so that the two new regions are as homogeneous
possible. . .

263



Introduction to Supervised
Learning

Branching
X1 < .5?

X1 < .2? X2 < .7?

Yes No

Yes NoYes No

Greedy top-bottom approach
Start from a single region containing all the data
Recursively split those regions along a certain variable and a certain value

No regret strategy on the choice of the splits!
Heuristic: choose a split so that the two new regions are as homogeneous
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Branching
Various definition of inhomogeneous

CART: empirical loss based criterion (least squares/prediction error)
C(R, R) =

∑
x i ∈R

ℓ(yi , y(R)) +
∑
x i ∈R

ℓ(yi , y(R))

CART: Gini index (Classification)
C(R, R) =

∑
x i ∈R

p(R)(1 − p(R)) +
∑
x i ∈R

p(R)(1 − p(R))

C4.5: entropy based criterion (Information Theory)
C(R, R) =

∑
x i ∈R

H(R) +
∑
x i ∈R

H(R)

CART with Gini is probably the most used technique. . . even in the multi-class
setting where the entropy may be more natural.
Other criterion based on χ2 homogeneity or based on different local predictors
(generalized linear models. . . )
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Branching

Choice of the split in a given region
Compute the criterion for all features and all possible splitting points
(necessarily among the data values in the region)
Choose the split minimizing the criterion

Variations: split at all categories of a categorical variable using a clever category
ordering (ID3), split at a restricted set of points (quantiles or fixed grid)
Stopping rules:

when a leaf/region contains less than a prescribed number of observations,
when the depth is equal to a prescribed maximum depth,
when the region is sufficiently homogeneous. . .

May lead to a quite complex tree: over-fitting possible!
Additional pruning often used.
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Pruning

→

Model selection within the (rooted) subtrees of previous tree!
Number of subtrees can be quite large, but the tree structure allows to find the
best model efficiently.

Key idea
The predictor in a leaf depends only on the values in this leaf.
Efficient bottom-up (dynamic programming) algorithm if the criterion used
satisfies an additive property

C(T ) =
∑
L∈T

c(L)

Example: AIC / CV.
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Pruning

Examples of criterion satisfying this assumptions
AIC type criterion:

n∑
i=1

ℓ(yi , fL(x i )(x i)) + λ|T | =
∑
L∈T

∑
x i ∈L

ℓ(yi , fL(x i)) + λ


Simple cross-Validation (with (x ′

i , y ′
i ) a different dataset):

n′∑
i=1

ℓ(y ′
i , fL(x ′

i)) =
∑
L∈T

∑
x ′

i ∈L
ℓ(y ′

i , fL(x ′
i))


Limit over-fitting for a single tree.
Rk: almost never used when combining several trees. . .
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Pruning and Dynamic Algorithm

Key observation: at a given node, the best subtree is either the current node or
the union of the best subtrees of its child.

Dynamic programming algorithm
Compute the individual cost c(L) of each node (including the leaves)
Scan all the nodes in reverse order of depth:

If the node L has no child, set its best subtree T (L) to {L} and its current best
cost c ′(L) to c(L)
If the children L1 and L2 are such that c ′(L1) + c ′(L2) ≥ c(L), then prune the child
by setting T (L) = {L} and c ′(L) = c(L)
Otherwise, set T (L) = T (L1) ∪ T (L2) and c ′(L) = c ′(L1) + c ′(L2)

The best subtree is the best subtree T (R) of the root R.

Optimization cost proportional to the number of nodes and not the number of
subtrees!
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Extensions

Local estimation of the proportions or of the conditional mean.
Recursive Partitioning methods:

Recursive construction of a partition
Use of simple local model on each part of the partition

Examples:
CART, ID3, C4.5, C5
MARS (local linear regression models)
Piecewise polynomial model with a dyadic partition. . .

Book: Recursive Partitioning and Applications by Zhang and Singer
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CART
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CARTs
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CART: Pros and Cons

Pros
Leads to an easily interpretable model
Fast computation of the prediction
Easily deals with categorical features
(and missing values)

Cons
Greedy optimization
Hard decision boundaries
Lack of stability
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Ensemble methods

Lack of robustness for single trees.
How to combine trees?

Parallel construction
Construct several trees from bootstrapped samples and average the responses
(Bagging)
Add more randomness in the tree construction (Random Forests)

Sequential construction
Construct a sequence of trees by reweighting sequentially the samples according
to their difficulties (AdaBoost)
Reinterpretation as a stagewise additive model (Boosting)
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Ensemble methods
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Ensemble methods
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Ensemble methods
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Ensemble Methods
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Ensemble Methods
Averaging: combine several models by averaging (bagging, random forests,. . . )
Boosting: construct a sequence of (weak) classifiers (XGBoost, LightGBM,
CatBoost, Histogram Gradient Boosting from scikit-learn)
Stacking: use the outputs of several models as features (tpot. . . )

Loss of interpretability but gain in performance
Beware of overfitting with stacking: the second learning step should be done with
fresh data.
No end to end optimization as in deep learning!
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Independent Average

Stability through averaging
Very simple idea to obtain a more stable estimator.
Vote/average of B predictors f1, . . . , fB obtained with independent datasets of
size n!

fagr = sign
(

1
B

B∑
b=1

fb

)
or fagr = 1

B

B∑
i=1

fb

Regression: E[fagr(x)] = E[fb(x)] and Var [fagr(x)] = Var[fb(x)]
B

Prediction: slightly more complex analysis
Averaging leads to variance reduction, i.e. stability!

Issue: cost of obtaining B independent datasets of size n!

280



Introduction to Supervised
Learning

Bagging and Bootstrap
Strategy proposed by Breiman in 1994. D

Obs X Y
1 4.3 2.4
2 2.1 1.1
3 5.3 2.8

D1

Obs X Y
3 5.3 2.8
1 4.3 2.4
3 5.3 2.8

Db

Obs X Y
2 2.1 1.1
3 5.3 2.8
1 4.3 2.4

DB

Obs X Y
2 2.1 1.1
2 2.1 1.1
1 4.3 2.4

f̂1

f̂b

f̂B

...

...

...

...

Stability through bootstrapping
Instead of using B independent datasets of size n, draw B datasets from a single
one using a uniform with replacement scheme (Bootstrap).
Rk: On average, a fraction of (1 − 1/e) ≃ .63 examples are unique among each
drawn dataset. . .
The fb are still identically distributed but not independent anymore.
Price for the non independence: E[fagr(x)] = E[fb(x)] and

Var [fagr(x)] = Var [fb(x)]
B +

(
1 − 1

B

)
ρ(x)

with ρ(x) = Cov [fb(x), fb′(x)] ≤ Var [fb(x)] with b ̸= b′.
Bagging: Bootstrap Aggregation

Better aggregation scheme exists. . .
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Randomized Predictors
D

Obs X Y
1 4.3 2.4
2 2.1 1.1
3 5.3 2.8

D, ω1

Obs X Y
1 4.3 2.4
2 2.1 1.1
3 5.3 2.8

, ω1

D, ωb

Obs X Y
1 4.3 2.4
2 2.1 1.1
3 5.3 2.8

, ωb

D, ωB

Obs X Y
1 4.3 2.4
2 2.1 1.1
3 5.3 2.8

, ωB

f̂1

f̂b

f̂B

...

...

...

...

Correlation leads to less variance reduction:
Var [fagr(x)] = Var [fb(x)]

B +
(

1 − 1
B

)
ρ(x)

with ρ(x) = Cov [fb(x), fb′(x)] with b ̸= b′.
Idea: Reduce the correlation by adding more randomness in the predictor.

Randomized Predictors
Construct predictors that depend on a randomness source R that may be chosen
independently for all bootstrap samples.
This reduces the correlation between the estimates and thus the variance. . .
But may modify heavily the estimates themselves!

Performance gain not obvious from theory. . .
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Random Forest
D

Obs X Y
1 4.3 2.4
2 2.1 1.1
3 5.3 2.8

D1, ω1

Obs X Y
3 5.3 2.8
1 4.3 2.4
3 5.3 2.8

, ω1

Db, ωb

Obs X Y
2 2.1 1.1
3 5.3 2.8
1 4.3 2.4

, ωb

DB , ωB

Obs X Y
2 2.1 1.1
2 2.1 1.1
1 4.3 2.4

, ωB

f̂1

f̂b

f̂B

...

...

...

...

Example of randomized predictors based on trees proposed by Breiman in 2001. . .

Random Forest
Draw B resampled datasets from a single one using a uniform with replacement
scheme (Bootstrap)
For each resampled dataset, construct a tree using a different randomly drawn
subset of variables at each split.

Most important parameter is the subset size:
if it is too large then we are back to bagging
if it is too small the mean of the predictors is probably not a good predictor. . .

Recommendation:
Classification: use a proportion of 1/

√p
Regression: use a proportion of 1/3

Sloppier stopping rules and pruning than in CART. . . 283
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Extra Trees

Extremely randomized trees!

Extra Trees
Variation of random forests.
Instead of trying all possible cuts, try only K cuts at random for each variable.
No bootstrap in the original article.

Cuts are defined by a threshold drawn uniformly in the feature range.
Much faster than the original forest and similar performance.

Theoretical performance analysis very challenging!
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Error Estimate and Variable Ranking

Out Of the Box Estimate
For each sample xi , a prediction can be made using only the resampled datasets
not containing xi . . .
The corresponding empirical prediction error is not prone to overfitting but does
not correspond to the final estimate. . .
Good proxy nevertheless.

Forests and Variable Ranking
Importance: Number of time used or criterion gain at each split can be used to
rank the variables.
Permutation tests: Difference between OOB estimate using the true value of
the jth feature and a value drawn a random from the list of possible values.

Up to OOB error, the permutation technique is not specific to trees.
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Boosting
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Boosting
Construct a sequence of predictors ht and weights αt so that the weighted sum

ft = ft−1 + αtht
is better and better (at least on the training set!).

Simple idea but no straightforward instanciation!
First boosting algorithm: AdaBoost by Schapire and Freund in 1997.
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AdaBoost
Idea: learn a predictor in a sequential manner by training a correction term at
each step with weighted dataset with weights depending on the error so far.

Iterative scheme proposed by Schapire and Freud
Set w1,i = 1/n; t = 0 and f = 0
For t = 1 to t = T

ht = argminh∈H
∑n

i=1 wt,iℓ
0/1(yi , h(xi))

Set ϵt =
∑n

i=1 wt,iℓ
0/1(yi , ht(xi)) and αt = 1

2 log 1−ϵt
ϵt

let wt+1,i = wt,i e−αt yi ht (xi )

Zt+1
where Zt+1 is a renormalization constant such that∑n

i=1 wt+1,i = 1
f = f + αtht

Use f =
∑T

i=1 αtht or rather its sign.
Intuition: wt,i measures the difficulty of learning the sample i up to step t and
thus the importance of being good at this step. . .
Prop: The resulting predictor can be proved to have a training risk of at most
2T ∏T

t=1
√

ϵt(1 − ϵt). 288
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AdaBoost
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AdaBoost Intuition
ht obtained by minimizing a weighted loss

ht = argmin
h∈H

n∑
i=1

wt,iℓ
0/1(yi , h(x i))

Update the current estimate with
ft = ft−1 + αtht
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AdaBoost
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AdaBoost Intuition
Weight wt,i should be large if x i is not well-fitted at step t − 1 and small
otherwise.
Use a weight proportional to e−yi ft−1(x i ) so that it can be recursively updated by

wt+1,i = wt,i × e−αtyi ht(x i )

Zt
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AdaBoost
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AdaBoost Intuition
Set αt such that ∑

yi ht(xi)=1
wt+1,i =

∑
yi ht(xi)=−1

wt+1,i

or equivalently  ∑
yi ht(xi)=1

wt,i

 e−αt =

 ∑
yi ht(xi)=−1

wt,i

 eαt
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AdaBoost
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AdaBoost Intuition
Using

ϵt =
∑

yi ht(xi)=−1
wt,i

leads to
αt = 1

2 log 1 − ϵt
ϵt

and Zt = 2
√

ϵt(1 − ϵt)
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AdaBoost

Exponential Stagewise Additive Modeling
Set t = 0 and f = 0.
For t = 1 to T ,

(ht , αt) = argminh,α

∑n
i=1 e−yi (f (x i )+αh(x i ))

f = f + αtht

Use f =
∑T

t=1 αtht or rather its sign.

Greedy optimization of a classifier as a linear combination of T classifiers for the
exponential loss.
Additive Modeling can be traced back to the 70’s.
AdaBoost and Exponential Stagewise Additive Modeling are exactly the same!
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Revisited AdaBoost

AdaBoost
Set t = 0 and f = 0.
For t = 1 to T ,

(ht , αt) = argminh,α

∑n
i=1 e−yi (f (x i )+αh(x i ))

f = f + αtht

Use f =
∑T

t=1 αtht or rather its sign.

Greedy iterative scheme with only two parameters: the class H of weak
classifiers and the number of steps T .
In the literature, one can read that Adaboost does not overfit! This is not true
and T should be chosen with care. . .
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Weak Learners
Weak Learner

Simple predictor belonging to a set H.
Easy to learn.
Need to be only slightly better than a constant predictor.

Weak Learner Examples
Decision Tree with few splits.
Stump decision tree with one split.
(Generalized) Linear Regression with few variables.

Boosting
Sequential Linear Combination of Weak Learner
Attempt to minimize a loss.

Example of ensemble method.
Link with Generalized Additive Modeling. 292
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Generic Boosting
Greedy optim. yielding a linear combination of weak learners.

Generic Boosting
Algorithm:

Set t = 0 and f = 0.
For t = 1 to T ,

(ht , αt) = argminh,α

∑n
i=1 ℓ(yi , f (xi ) + αh(xi ))

f = f + αtht

Use f =
∑T

t=1 αtht

AKA as Forward Stagewise Additive Modeling
AdaBoost with ℓ(y , h) = e−yh

LogitBoost with ℓ(y , h) = log2(1 + e−yh)
L2Boost with ℓ(y , h) = (y − h)2 (Matching pursuit)
L1Boost with ℓ(y , h) = |y − h|
HuberBoost with ℓ(y , h) = |y − h|21|y−h|<ϵ + (2ϵ|y − h| − ϵ2)1|y−h|≥ϵ

Extension to multi-class classification through surrogate losses.
No easy numerical scheme except for AdaBoost and L2Boost. . . 293
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Gradient Boosting

Issue: At each boosting step, one need to solve

(ht , αt) = argmin
h,α

n∑
i=1

ℓ(yi , f (xi) + αh(xi)) = L(y , f + αh)

Idea: Replace the function by a first order approximation
L(y , f + αh) ∼ L(y , f ) + α⟨∇L(y , f ), h⟩

Gradient Boosting
Replace the minimization step by a gradient descent step:

Choose ht as the best possible descent direction in H according to the approximation
Choose αt that minimizes L(y , f + αht) (line search)

Rk: Exact gradient direction often not possible!
Need to find efficiently this best possible direction. . .
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Best Direction
Gradient direction:

∇L(y , f ) with ∇iL(y , f ) = ∂

df (xi)

( n∑
i ′=1

ℓ(yi ′ , f (xi ′))
)

= ∂

df (xi)
ℓ(yi , f (xi))

Best Direction within H
Direct formulation:

ht ∈ argmin
h∈H

∑n
i=1 ∇iL(y , f )h(xi)√∑n

i=1 |h(xi)|2

(
= ⟨∇L(y , f ), h⟩

∥h∥

)
Equivalent (least-squares) formulation: ht = −βth′

t with

(βt , h′
t) ∈ argmin

(β,h)∈R×H

n∑
i=1

|∇iL(y , f ) − βh(xi)|2
(
= ∥∇L − βh∥2

)
Choice of the formulation will depend on H. . .
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Gradient Boosting of Classifiers
Assumptions:

h is a binary classifier, h(x) = ±1 and thus ∥h∥2 = n.
ℓ(y , f (x)) = l(yf (x)) so that ∇iL(y , f ) = yi l ′(yi f (xi)).

Best direction ht in H using the first formulation
ht = argmin

h∈H

∑
i

∇iL(y , f )h(xi)

AdaBoost Type Minimization
Best direction rewriting

ht = argmin
h∈H

∑
i

l ′(yi f (xi))yih(xi)

= argmin
h∈H

∑
i

(−l ′)(yi f (xi))(2ℓ0/1(yi , h(xi)) − 1)

AdaBoost type weighted loss minimization as soon as (−l ′)(yi f (xi) ≥ 0:
ht = argmin

∑
i

(−l ′)(yi f (xi))ℓ0/1(yi , h(xi))
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Gradient Boosting of Classifiers

Gradient Boosting
(Gradient) AdaBoost: ℓ(y , f ) = exp(−yf )

l(x) = exp(−x) and thus (−l ′)(yi f (xi)) = e−yi f (xi ) ≥ 0
ht is the same as in AdaBoost
αt also. . . (explicit computation)

LogitBoost: ℓ(y , f ) = log2(1 + e−yf )
l(x) = log2(1 + e−x ) and thus (−l ′)(yi f (xi)) = e−yi f (xi )

log(2)(1+e−yi f (xi )) ≥ 0
Less weight on misclassified samples than in AdaBoost. . .
No explicit formula for αt (line search)
Different path than with the (non-computable) classical boosting!

SoftBoost: ℓ(y , f ) = max(1 − yf , 0)
l(x) = max(1 − x , 0) and (−l ′)(yi f (xi)) = 1yi f (xi )≤1 ≥ 0
Do not use the samples that are sufficiently well classified!
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Gradient Boosting and Least Squares

Least squares formulation is preferred when |h| ≠ 1.

Least Squares Gradient Boosting
Find ht = −βth′

t with

(βt , h′
t) ∈ argmin

(β,h)∈R×H

n∑
i=1

|∇iL(y , f ) − βh(xi)|2

Classical least squares if H is a finite dimensional vector space!
Not a usual least squares in general but a classical regression problem!

Numerical scheme depends on the loss. . .
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Gradient Boosting and Least Squares
Examples

Gradient L2Boost:
ℓ(y , f ) = |y − f |2 and ∇iL(yi , f (xi)) = −2(yi − f (xi)):

(βt , h′
t) ∈ argmin

(β,h)∈R×H

n∑
i=1

|2yi − 2(f (xi) − β/2h(xi))|2

αt = −βt/2
Equivalent to classical L2-Boosting

Gradient L1Boost:
ℓ(y , f ) = |y − f | and ∇iL(yi , f (xi)) = −sign(yi − f (xi)):

(βt , h′
t) ∈ argmin

(β,h)∈R×H

n∑
i=1

| − sign(yi − f (xi)) − βh(xi)|2

Robust to outliers. . .

Classical choice for H: Linear Model in which each h depends on a small subset of
variables.
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Gradient Boosting and Least Squares

Least squares formulation can also be used in classification!
Assumption:

ℓ(y , f (x)) = l(yf (x)) so that ∇iL(yi , f (xi)) = yi l ′(yi f (xi))

Least Squares Gradient Boosting for Classifiers
Least Squares formulation:

(βt , h′
t) ∈ argmin

(β,h)∈R×H

n∑
i=1

|yi l ′(yi f (xi)) − βh(xi)|2

Intuition: Modify misclassified examples without modifying too much the
well-classified ones. . .
Most classical optimization choice nowadays!
Also true for the extensions to multi-class classification.
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Boosting Variations

Stochastic Boosting
Idea: change the learning set at each step.
Two possible reasons:

Optimization over all examples too costly
Add variability to use an averaged solution

Two different samplings:
Use sub-sampling, if you need to reduce the complexity
Use re-sampling, if you add variability. . .

Stochastic Gradient name mainly used for the first case. . .

Second Order Boosting
Replace the first order approximation by a second order one and avoid the line
search. . .
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XGBoost

Very efficient boosting algorithm proposed by Chen and Guestrin in 2014.

eXtreme Gradient Boosting
Gradient boosting for a (regularized) smooth loss using a second order
approximation and the least squares approximation.
Reduced stepsize with a shrinkage of the optimal parameter.
Feature subsampling.
Weak learners:

Trees: limited depth, penalized size and parameters, fast approximate best split.
Linear model: elastic-net regularization.

Excellent baseline for tabular data (and time series)!
Lightgbm, CatBoost, and Histogram Gradient Boosting from scikit-learn are
also excellent similar choices!
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Deep Learning and Tabular Data
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Deep Learning and Tabular Data
Tree ensemble methods are still the most efficient methods. . . for limited data or
limited computational resources.
Recent advances with classical MLP combined with clever feature engineering
(even for numerical features).

Other insights: better results with other defaults for tree ensemble methods, not
much gain of using clever hyperparameter optimization over random search.

MLP: Multi Layer Perceptron 303
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Empirical Risk Minimization

Empirical Risk Minimizer (ERM)
For any loss ℓ and function class S,

f̂ = argmin
f ∈S

1
n

n∑
i=1

ℓ(Yi , f (X i)) = argmin
f ∈S

Rn(f )

Key property:
Rn(f̂ ) ≤ Rn(f ), ∀f ∈ S

Minimization not always tractable in practice!
Focus on the ℓ0/1 case:

only algorithm is to try all the functions,
not feasible is there are many functions
but interesting hindsight!
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ERM and PAC Analysis

Theoretical control of the random (error estimation) term:
R(f̂ ) − R(f ⋆

S )

Probably Almost Correct Analysis
Theoretical guarantee that

P
(
R(f̂ ) − R(f ⋆

S ) ≤ ϵS(δ)
)

≥ 1 − δ

for a suitable ϵS(δ) ≥ 0.
Implies:

P
(

R(f̂ ) − R(f ⋆) ≤ R(f ⋆
S ) − R(f ⋆) + ϵS(δ)

)
≥ 1 − δ

E
[
R(f̂ ) − R(f ⋆

S )
]

≤
∫ +∞

0
δS(ϵ)dϵ

The result should hold without any assumption on the law P!

308



Introduction to Supervised
Learning

A General Decomposition
By construction:

R(f̂ ) − R(f ⋆
S ) = R(f̂ ) − Rn(f̂ ) + Rn(f̂ ) − Rn(f ⋆

S ) + Rn(f ⋆
S ) − R(f ⋆

S )
≤ R(f̂ ) − Rn(f̂ ) + Rn(f ⋆

S ) − R(f ⋆
S )

≤
(
R(f̂ ) − R(f ⋆

S )
)

−
(
Rn(f̂ ) − Rn(f ⋆

S )
)

Four possible upperbounds
R(f̂ ) − R(f ⋆

S ) ≤ sup
f ∈S

((R(f ) − R(f ⋆
S )) − (Rn(f ) − Rn(f ⋆

S )))

R(f̂ ) − R(f ⋆
S ) ≤ sup

f ∈S
(R(f ) − Rn(f )) + (Rn(f ⋆

S ) − R(f ⋆
S ))

R(f̂ ) − R(f ⋆
S ) ≤ sup

f ∈S
(R(f ) − Rn(f )) + sup

f ∈S
(Rn(f ) − R(f ))

R(f̂ ) − R(f ⋆
S ) ≤ 2 sup

f ∈S
|R(f ) − Rn(f )|

Supremum of centered random variables!
Key: Concentration of each variable. . . 309
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Risk Bounds

By construction, for any f ′ ∈ S,
R(f ′) = Rn(f ′) +

(
R(f ′) − Rn(f ′)

)
A uniform upper bound for the risk

Simultaneously ∀f ′ ∈ S,
R(f ′) ≤ Rn(f ′) + sup

f ∈S
(R(f ) − Rn(f ))

Supremum of centered random variables!
Key: Concentration of each variable. . .
Can be interpreted as a justification of the ERM!
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Concentration of the Empirical Loss
Empirical loss:

Rn(f ) = 1
n

n∑
i=1

ℓ0/1(Yi , f (X i))

Properties
ℓ0/1(Yi , f (X i)) are i.i.d. random variables in [0, 1].

Concentration

P(R(f ) − Rn(f ) ≤ ϵ) ≥ 1 − e−2nϵ2

P(Rn(f ) − R(f ) ≤ ϵ) ≥ 1 − e−2nϵ2

P(|Rn(f ) − R(f )| ≤ ϵ) ≥ 1 − 2e−2nϵ2

Concentration of sum of bounded independent variables!
Hoeffding theorem.
Equiv. to P

(
R(f ) − Rn(f ) ≤

√
log(1/δ)/(2n)

)
≥ 1 − δ 312
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Hoeffding

Theorem
Let Zi be a sequence of ind. centered r.v. supported in [ai , bi ] then

P
( n∑

i=1
Zi ≥ ϵ

)
≤ e

− 2ϵ2∑n
i=1(bi −ai )2

Proof ingredients:
Chernov bounds:

P

( n∑
i=1

Zi ≥ ϵ

)
≤

E
[
eλ
∑n

i=1 Zi
]

eλϵ
≤
∏n

i=1 E
[
eλZi

]
eλϵ

Exponential moment bounds: E
[
eλZi

]
≤ e

λ2(bi −ai )2
8

Optimization in λ

Prop:

E
[
eλ
∑n

i=1 Zi
]

≤ e
λ2∑n

i=1(bi −ai )2

8 .
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Hoeffding Inequality
Theorem

Let Zi be a sequence of independent centered random variables supported in
[ai , bi ] then

P
( n∑

i=1
Zi ≥ ϵ

)
≤ e

− 2ϵ2∑n
i=1(bi −ai )2

Zi = 1
n

(
E
[
ℓ0/1(Y , f (X ))

]
− ℓ0/1(Yi , f (X i))

)
E[Zi ] = 0 and Zi ∈ [ 1

n

(
E
[
ℓ0/1(Y , f (X ))

]
− 1

)
, 1

nE
[
ℓ0/1(Y , f (X ))

]
]

Concentration:
P(R(f ) − Rn(f ) ≥ ϵ) ≤ e−2nϵ2

By symmetry,
P(Rn(f ) − R(f ) ≥ ϵ) ≤ e−2nϵ2

Combining the two yields
P(|Rn(f ) − R(f )| ≥ ϵ) ≤ 2e−2nϵ2
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Finite Class Case

Concentration
If S is finite of cardinality |S|,

P

sup
f

(R(f ) − Rn(f )) ≤

√
log |S| + log(1/δ)

2n

 ≥ 1 − δ

P

sup
f

|Rn(f ) − R(f )| ≤

√
log |S| + log(1/δ)

2n

 ≥ 1 − 2δ

Control of the supremum by a quantity depending on the cardinality and the
probability parameter δ.
Simple combination of Hoeffding and a union bound.
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Finite Class Case
PAC Bounds

If S is finite of cardinality |S|, with proba greater than 1 − 2δ

R(f̂ ) − R(f ⋆
S ) ≤

√
log |S| + log(1/δ)

2n +

√
log(1/δ)

2n

≤ 2

√
log |S| + log(1/δ)

2n
If S is finite of cardinality |S|, with proba greater than 1 − δ, simultaneously
∀f ′ ∈ S,

R(f ′) ≤ Rn(f ′) +

√
log |S| + log(1/δ)

2n

≤ Rn(f ′) +

√
log |S|

2n +

√
log(1/δ)

2n
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Finite Class Case

PAC Bounds
If S is finite of cardinality |S|, with proba greater than 1 − 2δ

R(f̂ ) − R(f ⋆
S ) ≤

√
log |S|

2n +

√
2 log(1/δ)

n
If S is finite of cardinality |S|, with proba greater than 1 − δ, simultaneously
∀f ′ ∈ S,

R(f ′) ≤ Rn(f ′) +

√
log |S|

2n +

√
log(1/δ)

2n

Risk increases with the cardinality of S.
Similar issue in cross-validation!
No direct extension for an infinite S. . .
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Concentration of the Supremum of Empirical Losses
Supremum of Empirical losses:

∆n(S)(X 1, . . . , Xn) = sup
f ∈S

R(f ) − Rn(f )

= sup
f ∈S

(
E
[
ℓ0/1(Y , f (X ))

]
− 1

n

n∑
i=1

ℓ0/1(Yi , f (X i))
)

Properties
Bounded difference:

|∆n(S)(X 1, . . . , X i , . . . Xn) − ∆n(S)(X 1, . . . X ′
i , . . . , Xn)| ≤ 1/n

Concentration

P(∆n(S) − E[∆n(S)] ≤ ϵ) ≥ 1 − e−2nϵ2

Concentration of bounded difference function.
Generalization of Hoeffding theorem: McDiarmid Theorem.
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McDiarmid Inequality
Bounded difference function

g : X n → R is a bounded difference function if it exist ci such that
∀(X i)n

i=1, (X ′
i)n

i=1 ∈ R,∣∣g(X 1, . . . , X i , . . . , Xn) − g(X 1, . . . , X ′
i , . . . , Xn)

∣∣ ≤ ci

Theorem
If g is a bounded difference function and X i are independent random variables
then

P(g(X 1, . . . , Xn) − E[g(X 1, . . . , Xn)] ≥ ϵ) ≤ e
−2ϵ2∑n

i=1 c2
i

P(E[g(X 1, . . . , Xn)] − g(X 1, . . . , Xn) ≥ ϵ) ≤ e
−2ϵ2∑n

i=1 c2
i

Proof ingredients:
Chernov bounds
Martingale decomposition. . .
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McDiarmid Inequality

Theorem
If g is a bounded difference function and X i are independent random variables
then

P(g(X 1, . . . , Xn) − E[g(X 1, . . . , Xn)] ≥ ϵ) ≤ e
−2ϵ2∑n

i=1 c2
i

Using g = ∆n(S) for which ci = 1/n yields immediately

P(∆n(S) − E[∆n(S)] ≥ ϵ) ≤ e
−2ϵ2∑n

i=1 c2
i = e−2nϵ2

We derive then

P(∆n(S) ≥ E[∆n(S)] + ϵ) ≤ e
−2ϵ2∑n

i=1 c2
i = e−2nϵ2

It remains to upperbound

E[∆n] = E
[
sup
f ∈S

R(f ) − Rn(f )
]
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Rademacher Complexity
Theorem

Let σi be a sequence of i.i.d. random symmetric Bernoulli variables (Rademacher
variables):

E
[
sup
f ∈S

(R(f ) − Rn(f ))
]

≤ 2E
[
sup
f ∈S

1
n

n∑
i=1

σiℓ
0/1(Yi , f (X i))

]

Rademacher complexity
Let B ⊂ Rn, the Rademacher complexity of B is defined as

Rn(B) = E
[

sup
b∈B

1
n

n∑
i=1

σibi

]

Theorem gives an upper bound of the expectation in terms of the average
Rademacher complexity of the random set
Bn(S) = {(ℓ0/1(Yi , f (X i)))n

i=1, f ∈ S}.
Back to finite setting: This set is at most of cardinality 2n. 322
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Finite Set Rademacher Complexity Bound

Theorem
If B is finite and such that ∀b ∈ B, 1

n∥b∥2
2 ≤ M2, then

Rn(B) = E
[

sup
b∈B

1
n

n∑
i=1

σibi

]
≤

√
2M2 log |B|

n

If B = Bn(S) = {(ℓ0/1(Yi , f (X i)))n
i=1, f ∈ S}, we have M = 1 and thus

Rn(B) ≤

√
2 log |Bn(S)|

n
We obtain immediately

E
[
sup
f ∈S

(R(f ) − Rn(f ))
]

≤ E

√8 log |Bn(S)|
n

 .
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Finite Set Rademacher Complexity Bound

Theorem
With probability greater than 1 − 2δ,

R(f̂ ) − R(f ⋆
S ) ≤ E

√8 log |Bn(S)|
n

+

√
2 log(1/δ)

n

With probability greater than 1 − δ, simultaneously ∀f ′ ∈ S

R(f ′) ≤ Rn(f ′) + E

√8 log |Bn(S)|
n

+

√
log(1/δ)

2n

This is a direct consequence of the previous bound.

324



Introduction to Supervised
Learning

Finite Set Rademacher Complexity Bound

Corollary
If S is finite then with probability greater than 1 − 2δ

R(f̂ ) − R(f ⋆
S ) ≤

√
8 log |S|

n +

√
2 log(1/δ)

n
If S is finite then with probability greater than 1 − δ, simultaneously ∀f ′ ∈ S

R(f ′) ≤ Rn(f ′) +

√
8 log |S|

n +

√
log(1/δ)

2n

It suffices to notice that
|Bn(S)| = |{(ℓ0/1(Yi , f (X i)))n

i=1, f ∈ S}| ≤ |S|
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Finite Set Rademacher Complexity Bound

Same result with Hoeffding but with better constants!

R(f̂ ) − R(f ⋆
S ) ≤

√
log |S|

2n +

√
2 log(1/δ)

n

R(f ′) ≤ Rn(f ′) +

√
log |S|

2n +

√
log(1/δ)

2n
Difference due to the crude upperbound of

E
[
sup
f ∈S

(R(f ) − Rn(f ))
]

Why bother?: We do not have to assume that S is finite!
|Bn(S)| ≤ 2n
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Back to the Bound

Theorem

E
[
sup
f ∈S

(R(f ) − Rn(f ))
]

≤ E

√8 log |Bn(S)|
n


Key quantity: E

[√
8 log |Bn(S)|

n

]
Hard to control due to its structure!

A first data dependent upperbound

E

√8 log |Bn(S)|
n

 ≤

√
8 logE[|Bn(S)|]

n (Jensen)

Depends on the unknown P!
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Shattering Coefficient

Shattering Coefficient (or Growth Function)
The shattering coefficient of the class S, s(S, n), is defined as

s(S, n) = sup
((X1,Y1),...,(Xn,Yn))∈(X ×{−1,1})n

|{(ℓ0/1(Yi , f (X i)))n
i=1, f ∈ S}|

By construction, |Bn(S)| ≤ s(S, n) ≤ min(2n, |S|).

A data independent upperbound

E

√8 log |Bn(S)|
n

 ≤

√
8 log s(S, n)

n
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Shattering Coefficient

Theorem
With probability greater than 1 − 2δ,

R(f̂ ) − R(f ⋆
S ) ≤

√
8 log s(S, n)

n +

√
2 log(1/δ)

n
With probability greater than 1 − δ, simultaneously ∀f ′ ∈ S,

R(f ′) ≤ Rn(f ′) +

√
8 log s(S, n)

n +

√
log(1/δ)

2n

Depends only on the class S!
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Vapnik-Chervonenkis Dimension

VC Dimension
The VC dimension dVC of S is defined as the largest integer d such that

s(S, d) = 2d

The VC dimension can be infinite!

VC Dimension and Dimension
Prop: If span(S) corresponds to the sign of functions in a linear space of
dimension d then dVC ≤ d .

VC dimension similar to the usual dimension.
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VC Dimension and Sauer’s Lemma

Sauer’s Lemma
If the VC dimension dVC of S is finite

s(S, n) ≤

2n if n ≤ dVC(
en

dVC

)dVC if n > dVC

Cor.: log s(S, n) ≤ dVC log
(

en
dVC

)
if n > dVC .

332



Introduction to Supervised
Learning

VC Dimension and PAC Bounds

PAC Bounds
If S is of VC dimension dVC then if n > dVC

With probability greater than 1 − 2δ,

R(f̂ ) − R(f ⋆
S ) ≤

√√√√8dVC log
(

en
dVC

)
n +

√
2 log(1/δ)

n
With probability greater than 1 − δ, simultaneously ∀f ′ ∈ S,

R(f ′) ≤ Rn(f ′) +

√√√√8dVC log
(

en
dVC

)
n +

√
log(1/δ)

2n

Rk: If dVC = +∞ no uniform PAC bounds exists!
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Countable Collection and Non Uniform PAC Bounds

PAC Bounds
Let πf > 0 such that

∑
f ∈S πf = 1

With proba greater than 1 − 2δ,

R(f̂ ) − R(f ⋆
S ) ≤

√
log(1/πf )

2n +

√
2 log(1/δ)

n
With proba greater than 1 − δ, simultaneously ∀f ′ ∈ S,

R(f ′) ≤ Rn(f ′) +

√
log(1/πf )

2n +

√
log(1/δ)

2n

Very similar proof than the uniform one!
Much more interesting idea when combined with several models. . .
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Models, Non Uniform Risk Bounds and SRM
Assume we have a countable collection of set (Sm)m∈M and let πm be such that∑

m∈M πm = 1.

Non Uniform Risk Bound
With probability 1 − δ, simultaneously for all m ∈ M and all f ∈ Sm,

R(f ) ≤ Rn(f ) + E

√8 log |Bn(Sm)|
n

+

√
log(1/πm)

2n +

√
log(1/δ)

2n

Structural Risk Minimization
Choose f̂ as the minimizer over m ∈ M and f ∈ Sm of

Rn(f ) + E

√8 log |Bn(Sm)|
n

+

√
log(1/πm)

2n

Mimics the minimization of the integrated risk!
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SRM and PAC Bound

PAC Bound
If f̂ is the SRM minimizer then with probability 1 − 2δ,

R(f̂ ) ≤ inf
m∈M

inf
f ∈Sm

R(f ) + E

√8 log |Bn(Sm)|
n

+

√
log(1/πm)

2n


+

√
2 log(1/δ)

n

The SRM minimizer balances the risk R(f ) and the upper bound on the
estimation error E

[√
8 log |Bn(Sm)|

n

]
+
√

log(1/πm)
2n .

E
[√

8 log |Bn(Sm)|
n

]
can be replaced by an upper bound (for instance a VC based

one). . .
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Learning without Labels?
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What is possible with data without labels?
To group them?
To visualize them in a 2 dimensional space?
To generate more data?
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Marketing and Groups
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To group them?
Data: Base of customer data containing their properties and past buying records
Goal: Use the customer similarities to find groups.
Clustering: propose an explicit grouping of the customers
Visualization: propose a representation of the customers so that the groups are
visible. (Bonus)
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Image and Visualization

So
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To visualize them?
Data: Images of a single object
Goal: Visualize the similarities between images.
Visualization: propose a representation of the images so that similar images are
close.
Clustering: use this representation to cluster the images. (Bonus)
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Images and Generation
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To generate more data?
Data: Images.
Goal: Generate images similar to the ones in the dataset.
Generative Modeling: propose (and train) a generator.
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Machine Learning

So
ur

ce
:
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eThe classical definition of Tom Mitchell

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E.
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Supervised Learning

Experience, Task and Performance measure
Training data : D = {(X 1, Y1), . . . , (Xn, Yn)} (i.i.d. ∼ P)
Predictor: f : X → Y measurable
Cost/Loss function: ℓ(f (X ), Y ) measure how well f (X ) predicts Y
Risk:

R(f ) = E[ℓ(Y , f (X ))] = EX
[
EY |X [ℓ(Y , f (X ))]

]
Often ℓ(f (X ), Y ) = ∥f (X ) − Y ∥2 or ℓ(f (X ), Y ) = 1Y ̸=f (X)

Goal
Learn a rule to construct a predictor f̂ ∈ F from the training data Dn s.t. the
risk R(f̂ ) is small on average or with high probability with respect to Dn.
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Unsupervised Learning

Experience, Task and Performance measure
Training data : D = {X 1, . . . , Xn} (i.i.d. ∼ P)
Task: ???
Performance measure: ???

No obvious task definition!

Classical Tasks
Dimension reduction: construct a map of the data in a low dimensional space
without distorting it too much.
Clustering (or unsupervised classification): construct a grouping of the data
in homogeneous classes.
Generative modeling: generate new samples.
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Dimension Reduction
Training data : D = {X 1, . . . , Xn} ∈ X n (i.i.d. ∼ P)
Space X of possibly high dimension.

Dimension Reduction Map
Construct a map Φ from the space X (or D) into a space X ′ of smaller
dimension:

Φ : X (or D) → X ′

X 7→ Φ(X )

Map can be defined only on the dataset.

Motivations
Visualization of the data
Dimension reduction (or embedding) before further processing
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Dimension Reduction

Need to control the distortion between D and Φ(D) = {Φ(X 1), . . . , Φ(Xn)}

Distortion(s)
Reconstruction error:

Construct Φ̃ from X ′ to X
Control the error between X and its reconstruction Φ̃(Φ(X ))

Relationship preservation:
Compute a relation X i and X j and a relation between Φ(X i) and Φ(X j)
Control the difference between those two relations.

Lead to different constructions. . . .
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Clustering
Training data : D = {X 1, . . . , Xn} ∈ X n (i.i.d. ∼ P)
Latent groups?

Clustering
Construct a map f from X (or D) to {1, . . . , K} where K is a number of classes
to be fixed:

f : X (or D) → {1, . . . , K}
X 7→ f (X )

Similar to classification except:
no ground truth (no given labels)
often only defined for elements of the dataset!

Motivations
Interpretation of the groups
Use of the groups in further processing
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Clustering

Need to define the quality of the cluster.
No obvious measure!

Clustering quality
Inner homogeneity: samples in the same group should be similar.
Outer inhomogeneity: samples in two different groups should be different.

Several possible definitions of similar and different.
Often based on the distance between the samples.
Example based on the Euclidean distance:

Inner homogeneity = intra-class variance,
Outer inhomogeneity = inter-class variance.

Beware: choice of the number of clusters K often complex!
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Generative Modeling

Training data : D = {X 1, . . . , Xn} ∈ X n (i.i.d. ∼ P).

Generative Modeling
Construct a map G from a randomness source Ω to X

G :Ω → X
ω 7→ X

Motivation
Generate plausible novel samples based on a given dataset.

Sample Quality
Related to the proximity between the law of G(ω) and the law of X .

Most classical choice is the Kullback-Leibler divergence.
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Generative Modeling

Ingredients
Generator Gθ(ω) and density prob. Pθ(X ) (Explicit vs implicit link)
Simple / Complex / Approximate estimation. . .

Some Possible Choices
Probabilistic model Generator Estimation

Base Simple (parametric) Explicit Simple (ML)
Flow Image of simple model Explicit Simple (ML)

Factorization Factorization of simple model Explicit Simple (ML)
VAE Simple model with latent var. Explicit Approximate (ML)
EBM Arbitrary Implicit (MCMC) Complex (ML/score/discrim.)

Diffusion Continuous noise Implicit (MCMC) Complex (score)
Discrete Noise with latent var. Explicit Approximate (ML)

GAN Implicit Explicit Complex (Discrimination)

SOTA: Diffusion based approach!

ML: Maximum Likelihood/VAE: Variational AutoEncoder/EBM: Energy Based Model/MCMC: Monte Carlo Markov Chain/GAN: Generative Adversarial
Network 355
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What’s a group?

So
ur

ce
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No simple or unanimous definition!
Require a notion of similarity/difference. . .

Three main approaches
A group is a set of samples similar to a prototype.
A group is a set of samples that can be linked by contiguity.
A group can be obtained by fusing some smaller groups. . .
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Prototype Approach
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Prototype Approach
A group is a set of samples similar to a prototype.
Most classical instance: k-means algorithm.
Principle: alternate prototype choice for the current groups and group update
based on those prototypes.

Number of groups fixed at the beginning
No need to compare the samples between them! 359
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Contiguity Approach
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Contiguity Approach
A group is the set of samples that can be linked by contiguity.
Most classical instance: DBScan
Principle: group samples by contiguity if possible (proximity and density)

Some samples may remain isolated.
Number of groups controlled by the scale parameter.

DBSCAN: Density-Based Spatial Clustering of Applications with Noise 360
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Agglomerative Approach
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Agglomerative Approach
A group can be obtained by fusing some smaller groups. . .
Hierachical clustering principle: sequential merging of groups according to a best
merge criterion

Numerous variations on the merging criterion. . .
Number of groups chosen afterward.
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Choice of the method and of the number of groups

So
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No method or number of groups is better than the others. . .
Criterion not necessarily explicit!
No cross validation possible
Choice of the number of groups (and the algorithm): a priori, heuristic, based on
the final usage. . .
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Dimensionality Curse
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DISCLAIMER: Even if they are used everywhere, beware of the usual
distances in high dimension!

Dimensionality Curse
Previous approaches based on distances.
Surprising behavior in high dimension: everything is ((often) as) far away.
Beware of categories. . .
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Dimensionality Curse
DISCLAIMER: Even if they are used everywhere, beware of the usual
distances in high dimension!

High Dimensional Geometry Curse
Folks theorem: In high dimension, everyone is alone.
Theorem: If X 1, . . . , Xn in the hypercube of dimension d such that their
coordinates are i.i.d then

d−1/p
(
max ∥X i − X j∥p − min ∥X i − X j∥p

)
= 0 + OP

√ log n
d


min ∥X i − X j∥p

max ∥X i − X j∥p
= 1 + OP

√ log n
d

 .

When d is large, all the points are almost equidistant. . .
Nearest neighbors are meaningless!
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Visualization and Dimension Reduction
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Visualization and Dimension Reduction
How to view a dataset in high dimension !
High dimension: dimension larger than 2!
Projection onto a 2D space.
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Visualization and Dimension Reduction
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Visualization and Dimension Reduction
How to view a dataset in high dimension !
High dimension: dimension larger than 2!
Projection onto a 2D space.
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Visualization and Dimension Reduction
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Visualization and Dimension Reduction
How to view a dataset in high dimension !
High dimension: dimension larger than 2!
Projection onto a 2D space.
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Visualization and Dimension Reduction
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Visualization and Dimension Reduction
How to view a dataset in high dimension !
High dimension: dimension larger than 2!
Projection onto a 2D space.
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Principal Component Analysis
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Simple formula: X̃ = P(X − m)

How to chose P?
Maximising the dispersion of the points?
Allowing to well reconstruct X from X̃?
Preserving the relationship between the X through those between the X̃?

The 3 approaches yield the same solution!
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Principal Component Analysis
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Simple formula: X̃ = P(X − m)

How to chose P?
Maximising the dispersion of the points?
Allowing to well reconstruct X from X̃?
Preserving the relationship between the X through those between the X̃?

The 3 approaches yield the same solution!
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Reconstruction Approaches

Reconstruction Approaches
Learn a formula to encode and one formula to decode.
Auto-encoder structure

Yields a formula for new points.
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Reconstruction Approaches

Reconstruction Approaches
Learn a formula to encode and one formula to decode.
Auto-encoder structure

Yields a formula for new points.
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Reconstruction Approaches

Reconstruction Approaches
Learn a formula to encode and one formula to decode.
Auto-encoder structure

Yields a formula for new points.
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Relationship Preservation Approaches

Relationship Preservation Approaches
Based on the definition of the relationship notion (in both worlds).
Huge flexibility! and Instability?

Not always yields a formula for new points.
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Choices of Methods and Dimension

0
1

0
2

0
3

0
4

0

...1 2 3 4

% d’inertie

So
ur

ce
:

E.
M

at
zn

er
-L

øb
er

No Better Choice?
Different criterion for different methods: impossible to use cross-validation.
The larger the dimension, the easier it is to be faithful!
In visualization, dimension 2 is the only choice.
Heuristic criterion for the dimension choice: elbow criterion (no more gain),
stability. . .

Dimension Reduction is rarely used standalone but rather as a step in a
predictive/prescriptive method.
The dimension becomes a hyperparameter of this method. 371



Unsupervised Learning,
Generative Learning and More

Representation Learning
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Representation Learning
How to transform arbitrary objects into numerical vectors?
Objects: Categorical variables, Words, Images/Sounds. . .

The two previous dimension reduction approaches can be used (given possibly a
first simple high dimensional representation)
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Generative Modeling
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Generative Modeling
Generate new samples similar to the ones in an original dataset.
Generation may be conditioned by an input.

Key for image generation. . . and chatbot! 374



Unsupervised Learning,
Generative Learning and More

Density Estimation and Simulation
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Heuristic: If we can estimate the (conditional) law P of the data and can
simulate it, we can obtain new samples similar to the input ones.

Estimation and Simulation
How to estimate the density?
How to simulate the estimated density?

Other possibilities?
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Simple Estimation and Simple Simulation
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Parametric Model, Image and Factorization
Use

a simple parametric model,. . .
or the image of a parametric model (flow),. . .
or a factorization of a parametric model (recurrent model)

as they are simple to estimate and to simulate.

Estimation by Maximum Likelihood principle.
Recurrent models are used in Large Language Models! 376
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Complex Estimation and Simple Simulation
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Latent Variable
Generate first a (low dimensional) latent variable Z from which the result is easy
to sample.
Estimation based on approximate Maximum Likelihood (VAE/ELBO)

The latent variable can be generated by a simple method (or a more complex
one. . . ).
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Complex Estimation and Complex Simulation
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Monte Carlo Markov Chain
Rely on much more complex probability model. . .
which can only be simulated numerically.
Often combined with noise injection to stabilize the numerical scheme (Diffusion).

Much more expensive to simulate than with Latent Variable approaches.
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Complex (non)Estimation and Simple Simulation
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Generative Adversarial Network
Bypass the density estimation problem, by transforming the problem into a
competition between the generator and a discriminator.
The better the generator, the harder it is for the generator to distinguish true
samples from synthetic ones.
No explicit density!

Fast simulator but unstable training. . . 379
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More Than "Supervised or Unsupervised"?
Task Experience Performance Measure

Supervised f : X → Y (Xi , Yi) i.i.d R(f ) = E[ℓ(Y , f (X ))]
X 7→ f (X )

Clustering/DR f : X → Y (Xi) i.i.d R(f ) =???
X 7→ f (X )

Generative G : Ω → X (Xi) i.i.d R(G) =???
ω 7→ G(ω)

Task?
Deterministic or Stochastic? Target space Y? Only for Xi in the dataset?

Experience?
Label? Relation? i.i.d.?

Performance Measure
Average loss? Of samples? Of pairs? 381
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Task

Deterministic or Stochastic
Deterministic: single (good) answer.
Stochastic: several (good) answers. (Generative modeling?)
Link through the probabilistic framework.

Target Space
Known (given by the dataset) / To be chosen. (Unsupervised?)
Simple (low dimensional) / Complex (Structured?)

Random vs Fixed Design
Defined for any X ∈ X .
Defined only for Xi in the dataset (Classical statistics?)
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Experience
Labels

Labeled (Supervised?)
Unlabeled / Not always labeled (Unsupervised?/Semi Supervised?)
Incorrect label (Weakly-Supervised?)

Singleton, Pairs and Tuples
Classical pairs (Xi , Yi).
Pairs of pairs ((Xi , Yi), (X ′

i , Y ′
i )) plus side information Zi . (Comparison?)

Tuples ((X k
i , Y k

i )) and side information Zi . (Contrastive?)

Dependency Structure
Independent (Xi , Yi)
Dependent (Xi , Yi) (Spatio-temporal?/ Graph?)
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Performance Measure

Losses
Instance-wise loss ℓ(Y , f (X ), X )!

Losses or Metrics
Loss: performance is an average.
Metric: any (other) way of measuring the performance.

Singleton, Pairs and Tuples
Performance measured by looking at singleton of pair (X , Y )
Performance measured by looking at more samples simultaneously.
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* Learning
Task

Deterministic Stochastic
f (X) G(X , ω)

Labeled (X , Y ) Supervised Generative
Experience Unlabeled (X , ) Unsupervised (Generative)

Not always labeled (X , Y ) or (X , ) Semi-Supervised ?
Not correctly labeled (X , E(Y , ω′)) Weakly-Supervised ?

Some Learning Settings
Supervised: deterministic predictor trained from labeled dataset.
Unsupervised: deterministic predictor trained from unlabeled dataset.
Semi-supervised: deterministic predictor trained from not always labeled dataset.
Weakly-supervised: deterministic predictor trained from not correctly labeled
dataset.
Generative: stochastic predictor trained from labeled dataset.
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Generative Modeling
Training data : D = {(X 1, Y 1), . . . , (Xn, Y n)} ∈ (X × Y)n (i.i.d. ∼ P).
Same kind of data than for supervised learning if X ̸= ∅.

Generative Modeling
Construct a map G from the product of X and a randomness source Ω to Y

G :X × Ω → Y
(X , ω) 7→ Y

Unconditional model if X = ∅. . .

Motivation
Generate plausible novel conditional samples based on a given dataset.

Sample Quality
Related to the proximity between the law of G(X , ω) and the law of Y |X .

Most classical choice is the Kullback-Leibler divergence.
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Generative Modeling

Ingredients
Generator Gθ(X , ω) and cond. density prob. Pθ(Y |X ) (Explicit vs implicit link)
Simple / Complex / Approximate estimation. . .

Some Possible Choices
Probabilistic model Generator Estimation

Base Simple (parametric) Explicit Simple (ML)
Flow Image of simple model Explicit Simple (ML)

Factorization Factorization of simple model Explicit Simple (ML)
VAE Simple model with latent var. Explicit Approximate (ML)
EBM Arbitrary Implicit (MCMC) Complex (ML/score/discrim.)

Diffusion Continuous noise Implicit (MCMC) Complex (score)
Discrete Noise with latent var. Explicit Approximate (ML)

GAN Implicit Explicit Complex (Discrimination)

SOTA: Diffusion based approach!

ML: Maximum Likelihood/VAE: Variational AutoEncoder/EBM: Energy Based Model/MCMC: Monte Carlo Markov Chain/GAN: Generative Adversarial
Network 387
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Semi-Supervised Learning and Weakly-Supervised
Learning
Semi-Supervised Learning

Some samples are unlabeled:
(Xi , Yi) or (Xi , ?)

Heuristics:
Regularization using the unlabeled samples.
Auxiliary task defined on unlabeled samples. (Representation Learning?)

Weakly-Supervised Learning
Some samples are mislabeled:

(Xi , Yi) or (Xi , E (Yi , ω))
Heuristic:

Explicit model of the label noise: instance-wise, group-wise. . .
Hard to assess the quality without some good labels. . .
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Representation Learning and Self-Supervised Learning

Representation Learning
Obtain a representation by learning rather than only feature engineering:

(Xi , Yi) → Φ(Xi)
Heuristics:

Use the results of an arbitrary learning task on the same input.
Use an inner representation obtained by an arbitrary learning on the same input.

Self-Supervised Learning
Build a supervised learning problem without having labels:

Xi → Φ(Xi)
Heuristics:

Use labels that are free (or very cheap) to obtain.
Use labels from another predictor.
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Comparison Learning

Comparison Learning
Feedback through comparison between two outputs Y (1)

i and Y (2)
i for a

given input:
Is Q(Y (1)

i , Xi) ≥ Q(Y (2)
i , Xi) ?

No explicit target or loss!
Heuristic:

Preferences related to an instance-wise quality Q that can be learned (ELO. . . )

Human Feedback brick in RLHF (Reinforcement Learning from Human Feedback).
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Contrastive Learning

Contrastive Learning
Feedback through the proximity ranking between a reference input and
two other ones:

Is d(X ref
i , X (1)

i ) > d(X ref
i , X (2)

i ) ?
Amount to a comparison between two pairs. . .
Heuristics:

A distance can be learned to explain those comparisons.
A representation paired with a simple distance can be learned to explain those
comparisons.
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Structured Machine Learning
Structured Output

Output Y has a more complex structure than a vector.
Text, graph, spatio-temporal (image, sound, video,. . . ), . . .
Heuristics:

Output a vector representation.
Output a (variable length) code that can be decoded. . .

Structured Dataset
I.i.d. assumption not satisfied as there are dependencies between the
(Xi , Yi).
Nodes on graph, spatio-temporal series (possibly with overlaps!)
Heuristic:

The training part may be kept as is, but the testing/validation one should be
modified.
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Sequential Decision Learning

Sequential Decision Learning
Success/loss may depend on more than one choice/prediction.
Isolated decision vs strategy!
Heuristics:

Operation Research with Learned Model
Reinforcement Learning
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. . . Learning
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Many Learning Setting
Most classical setting: Supervised Learning.
Much more variety in the real world: Unsupervised, Generative, Reinforcement. . .
Matching a real-world problem to the right learning task is the main
challenge!
Often, easier to solve the learning task than to identify it!
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Metrics and Supervised Learning

What is a good predictor?
R(f ) = E[ℓ(Y , f (X ))] vs Rℓ(f ) = E

[
ℓ(Y , f (X ))

]
vs R(f )

Three Places for Performance Measure (Metric)
Framework: Initial target performance measure (Risk) defined as the expectation
of an individual cost (loss): ℓ0/1, ℓ2. . .
Training: Intermediate performance measure (Optimization goal) defined as an
average of an easier to optimize cost (surrogate loss): -log-likelihood, hinge loss,
ℓ2. . .
Scoring: Final (possibly global) performance measure(s) (score): ℓ0/1, AUC, f 1,
lift, ℓ2. . .

Ideally, the same metric should be used everywhere!
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Framework
R(f ) = E[ℓ(Y , f (X ), X )]

Statistical Learning Framework
Loss ℓ(Y , f (X ), X ): Cost of predicting f (X ) at X when the true value is Y .
Risk R(f ): Performance of a predictor f measured by the expectation of the loss.

Learning Goal
Ideal target f ⋆: argmin R(f ).
Learn a predictor f̂ such that E

[
R(f̂ )

]
− R(f ⋆) or P

(
R(f̂ ) − R(f ⋆) > δ

)
is as

small as possible.

Dependency Caveat and (Cross) Validation
If f̂ depends on (Xi , Yi),

E
[

1
n

n∑
i=1

ℓ(Yi , f̂ (Xi), Xi)
]

̸= E
[
R(f̂ )

]
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Framework – Classification

f ⋆(X ) = argmin
f

∑
y

ℓ(y , f , X )P(y |X )

Ideal Target (Bayes Predictor)
Straightforward finite optimization given the conditional probabilities P(y |X )!

Classical Losses
0/1 loss: ℓ0/1(Y , f , X ) = 1Y ̸=f

Weighted 0 − 1 loss: ℓ(Y , f , X ) = C(Y , X )1Y ̸=f

For a fixed X , matrix loss ℓ(Y , f , X ) covers all possible losses.
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Framework – Regression

f ⋆(X ) = argmin
f

∫
ℓ(y , f , X )dP(y |X )

Ideal Target (Bayes Predictor)
No guarantee on the existence in general!
Convex setting if ℓ is convex with respect to f .

Classical Losses
Quadratic loss: ℓ2(Y , f , X ) = (Y − f )2

Weighted quadratic loss: ℓ(Y , f , X ) = C(Y , X )(Y − f )2

Much more freedom than in classficiation!

Is the ideal target well defined? Can we describe it?
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Framework – Regression

Ideal target well defined when ℓ(Y , f , X ) convex with respect to f .

ℓp norms, Quantiles and Expectiles
ℓp norm:

ℓp(Y , f , X ) = |Y − f |p (convex when p ≥ 1)
f ⋆(X ) is the conditional expectation E[Y |X ] for p = 2 and the conditional median
for p = 1.

Quantile loss:
ℓα(Y , f , X ) = (1 − α)|Y − f |1Y −f <0 + α|Y − f |1Y −f ≥0
f ⋆(X ) is the quantile of order α of Y |X .

Expectile loss: ℓα(Y , f , X ) = (1 − α)|Y − f |p1Y −f <0 + α|Y − f |p1Y −f ≥0

|Y − f |p can be replaced by ϕ(Y − f ) with any convex function ϕ.
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Framework – Regression

Robust Norms
Huber loss:

ℓ(Y , f , X ) =
{

|Y − F |2 if |Y − f | ≤ C
C |Y − F | otherwise

Cosh loss: ℓ(Y , f , X ) = cosh(C(Y − f ))

Weighted and Transformed
Weighted loss: ℓ′(Y , f , X ) = C(Y , X )ℓ(Y , f , X )
Transformed loss: ℓ′(Y , f , X ) = ℓ(ϕ(Y ), ϕ(f ), X ) with Φ non-decreasing.

Difficulty may arise quickly when convexity with respect to f is lost:
|Y − f |p

|Y |p + ϵ
vs 2|Y − f |p

|Y |p + |f |p + 2ϵ
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Training

f̂ (X ) = argmin
f

EP̂[ℓ(Y , f , X )|X ] vs argmin
f ∈S

1
n

n∑
i=1

ℓ(Yi , f (Xi), Xi)

Probabilistic Approach
Estimate P(Y |X ) and plug in the Bayes predictor.
How to perform the estimation?

Optimization Approach
Optimize directly the empirical loss. . .
If it is possible. . .
Otherwise, optimize a surrogate risk.
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Probabilistic Approach – Modeling and Plugin

P̂ = argmin −1
n

n∑
i=1

logP(Yi |Xi)?

Conditional Maximum Likelihood Approach
Parametric modeling for P.
Minimization of the (regularized) empirical negative log-likelihood.

Maximum Likelihood
Parametric model choice:

(Multi/Bi)nomial in classification.
No universal model in regression!

Empirical negative log-likelihood is a performance measure, not explicitly related
to the original risk.

Computing plugin Bayes predictor: easy in classification but may be hard in
regression! 403
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Optimization Approach

argmin
f ∈S

1
n

n∑
i=1

ℓ(Yi , f (Xi), Xi)

Direct Optimization
Parametric set S for f .
Direct optimization of the (regularized) empirical risk.
Most classical algorithm Gradient Descent. . .
But smoothness/convexity requirement.

What to do if this optimization is hard?

Surrogate Optimization
Replacement of the hard optimization by a surrogate (easiest) one such that the
optimal solutions of the two problems are related. . .
Implies a new performance measure (Surrogate Risk). 404
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Optimization – Surrogate

From

X Y
X f (X)

Y

ℓ(Y , f (X))

f

ℓ

to
X Rd Y
X f (X) f (X) = dec(f (X))

enc(Y ) Y

ℓ(enc(Y ), f (X)) ℓ(Y , f (X))

f

ℓ

dec

enc

ℓ

Encoder/Decoder and Surrogate Loss
Y valued predictor f replaced by a real (vector) valued one f .
Prediction requires decoding f (X ) into dec(f (X )) in Y
Optimization of f requires encoding the target Y into enc(Y ) in Rd and a loss ℓ
from Rd × Rd to R.

Rd can be replaced by an arbitrary Hilbert space.
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Optimization – Surrogate

From f̂ = argmin
f

1
n

n∑
i=1

ℓ(Yi , f (Xi)) to f̂ = dec(f̂ ) with f̂ = argmin
f

1
n

n∑
i=1

ℓ(enc(Yi), f (Xi))

Surrogate Assumptions
Optimization with respect to f should be easy. . .
and there should be a link between the two solutions!

Fisher Consistency and Calibration
Fisher consistency:

dec
(

argmin
f

E
[
ℓ(enc(Y ), f )

∣∣∣X]) = argmin
f

E[ℓ(Y , f )|X ] = f ⋆(X )

Calibration:
E[ℓ(Y , dec(f (X )))] − E[ℓ(Y , f ⋆(X ))] ≤ Ψ

(
E
[
ℓ(enc(Y ), f (X ))

]
− E

[
ℓ(enc(Y ), f ⋆(X ))

])
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Optimization – Surrogate Examples
Binary Classification

enc(Y ) = +1/ − 1 and dec(f (X )) = sign(f (X )).
Classical surrogate loss: convex upper bound of the ℓ0/1 loss!
Flexible setting: justification of the use of an ℓ2 loss in classification!

Classification
enc(Y ) = eY (dummy coding) and dec(f (X )) = argmaxk(f (X ))(k)

Classical surrogate loss:
Cross entropy (amounts to a log-likelihood of a multinomial model):
ℓ(enc(Y ), f (X )) = −enc(Y )⊤ log(f (X )).
Square loss: ℓ(enc(Y ), f (X )) = ∥enc(Y ) − f (X )∥2.
Hinge loss: ℓ(enc(Y ), f (X )) = supk(1 − enc(Y ) + f (X ))(k) − f (X )⊤enc(Y ) (Not
always consistent!)

Less interest in regression, except for a convexification of a loss. . .
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Scoring

R(f ) = E[ℓ(Y , f (X ), X )] vs R1(f ) = F1(f ,P), . . . , Rr(f )

Scoring
Beyond a single average loss. . .
Risk (or interest) evaluated by

several different risks,
a quantity that is not an average (Precision/Recall. . . ),
a quantity that is only measured empirically (real world experiment,
speed/cost. . . ). . .

Depending on the score, a better score may correspond to a larger (↑) or a smaller
(↓) value.
Often no way to optimize the score directly. . . except if it is a classical risk!
May be related to an idea of tradeoff. . .
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Scoring – Classification
Truth

1 · · · K

Prediction
1
... cj,k

K

Truth
-1 1

Prediction 1 True Negative False Negative
1 False Positive True Positive

Confusion Matrix
Matrix C summarizing the classification performance

Cj,k = |{i , (Yi , f (Xi)) = (k, j)}|
Renormalized version with percentage!

Binary Confusion Matrix
Positive (1) vs Negative (-1)
Detection setting. . .
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Scoring – Binary Classification
Truth

-1 1

Prediction -1 True Negative False Negative
1 False Positive True Positive

Binary Classification Scores

True Positive Rate/Recall/Sensitivity (↑):
TP

FN + TP

False Negative Rate (↓):
FN

FN + TP

False Positive Rate/Type 1 Error (↓):
FP

TN + FP

True Negative Rate/Specificity (↑):
TN

TN + FP

Lift (↑):
TP

FN + TP
/

P
N + P

Positive Predictive Value/Precision (↑):
TP

FP + TP

False Discovery Rate (↓): FP
FP + TP

False Omission Rate (↓): FN
TN + FN

Negative Predictive Value (↑): TN
TN + FN

Those scores have trivial optimum: always predict either 0 or 1!
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Scoring – Binary Classification

Precision = TP
FP + TP Recall = TP

FN + TP

Tradeoff

F1 score (↑): 2
Recall−1 + Precision−1 = 2TP

2TP + FP + FN

Fβ score (↑): (1 + β2) Precision × Recall
β2Precision + Recall

Fowlkes–Mallows index (↑): Recall1/2 × Precision1/2

Many other creative scores. . .
but they are hard to interpret (and to optimize directly)!
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Scoring – Binary Classification
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Receiving Operator Curve (ROC)
Threshold choice in binary classification (probability/surrogate predictor).
Transition between the two trivial predictors: always answer −1, resp. 1.
ROC: visualization of this tradeoff by showing the True Positive Rate with respect
to the False Positive Rate.
Each point correspond to a choice for the threshold and thus a different predictor.

This curve is convex for the ideal Bayes predictor, but may not be convex for a
trained one. 412



Unsupervised Learning,
Generative Learning and More

Scoring – Binary Classification
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Area Under the Curve (AUC)
AUC (Area Under the (RO) Curve) (↑):global performance measure for the family
of predictors and not of a single predictor!
AUC = 1 for a family of perfect predictors vs .5 for a family of random ones
Variations: Localization to a FPR/TPR band, other tradeoff curve. . .

Probabilistic interpretation of the AUC :
P
(
f (X−1) ≤ f (X1)

∣∣∣Y0 = −1, Y1 = 1
)
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Scoring – Multiclass Classification
Truth

1 · · · K

Prediction
1
... cj,k

K

Multiclass Extension
No straightforward extension of the binary criterion.
Heuristic: Look at the multiclass classification as K binary classification problems.
Macro approach:

Compute (weighted) average criterion over all problems.
Micro approach:

Define the TP/FP/FN as the total number of true positive/false positive/false
negative in the K binary classification number and let TN = 0
Compute the score using the formula for binary classification. . .

No natural unique score in multiclass. . .
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Scoring – Classification

Generic or Specific Scores
So far, generic scoring functions that are not always aligned with the real-world
goal.
Better scores can be designed by considering those specific goals.
Hard task! but often the most important. . .

The alignment is often not perfect and the choice of an algorithm may depends
on other factors!
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Scoring – Regression

Classical scores
Classical losses. . .
True (weighted) ℓp norm (RMSE for p = 2/MAR for p = 1):(∑

wi∥Yi − f (Xi)∥p
)1/p

Same optimization than without the p root, but easier comparison between norms.
Losses that were complex to optimize but easy to compute:
ℓ(Y , f , X ) = 2∥Y − f (X )∥p/(∥Y ∥p + ∥f (X )∥p),. . .
Variance/Moments/Quantiles of a loss.
. . .

Lots of flexibility in the design!
Ideally linked to real world goals.
Allow to have different views on the same predictor.
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Metrics – More settings. . .

Multi-step time-series
Metric obtained as average over several time-steps

Permutation/Ranking
Relaxation of the optimization with optimal transport (surrogate predictor target).

Segmentation
Specific score: Jacard/IOU: ℓ(Y , f (X )) = |Y ∩ f (X )|/(Y ∪ f (X ))|
Lovász-Softmax (convex) relaxation and direct optimization. . .

. . .
Importance of adapting the metric(s) to the problem! (Domain knowledge,
Business,. . . )
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Bonus – Calibration
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Can we believe the probabilities given by a classifier or build them?

Probability Calibration
Learn a mapping P from the raw probability or the surrogate predictor to a better
probability prediction
Target:

Ideal calibration: P(f (X )) = P(Y = 1|X )
Perfect calibration: P(f (X )) = P

(
Y = 1|f̄ (X )

)
Averaged (empirical) criterion: average conditional likelihood, average L2 loss
(Brier).
Shape for P: sigmoid (Platt), isotonic (non decreasing),. . . 417
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Metrics and Not-Supervised Learning

Metrics are everywhere!
Much harder to define outside the supervised setting!

Clustering/Dimension Reduction
Almost as many metrics as algorithms. . .
Hard to relate universal metrics to the use case.
Better use global task-oriented metrics than clustering/DS-task ones!

Generative
How to assess the quality?
Fidelity or quality?
Importance of human-based metrics!
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Dimension Reduction
Training data : D = {X 1, . . . , Xn} ∈ X n (i.i.d. ∼ P)
Space X of possibly high dimension.

Dimension Reduction Map
Construct a map Φ from the space X (or D) into a space X ′ of smaller
dimension:

Φ : X (or D) → X ′

X 7→ Φ(X )

Map can be defined only on the dataset.

Motivations
Visualization of the data
Dimension reduction (or embedding) before further processing

420



Unsupervised Learning,
Generative Learning and More

Dimension Reduction

Need to control the distortion between D and Φ(D) = {Φ(X 1), . . . , Φ(Xn)}

Distortion(s)
Reconstruction error:

Construct Φ̃ from X ′ to X
Control the error between X and its reconstruction Φ̃(Φ(X ))

Relationship preservation:
Compute a relation X i and X j and a relation between Φ(X i) and Φ(X j)
Control the difference between those two relations.

Lead to different constructions. . . .
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How to Simplify?
A Projection Based Approach

Observations: X 1, . . . , Xn ∈ Rd

Simplified version: Φ(X 1), . . . , Φ(Xn) ∈ Rd with Φ an affine projection preserving
the mean Φ(X ) = P(X − m) + m with P⊤ = P = P2 and m = 1

n
∑

i X i .

How to choose P?
Inertia criterion: max

P

∑
i ,j

∥Φ(X i) − Φ(X j)∥2?

Reconstruction criterion:
min

P

∑
i

∥X i − Φ(X i)∥2?

Relationship criterion:
min

P

∑
i ,j

|(X i − m)⊤(X j − m) − (Φ(X i) − m)⊤(Φ(X j) − m)|2?

Rk: Best solution is P = I! Need to reduce the rank of the projection to
d ′ < d . . . 423
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Inertia criterion
Heuristic: a good representation is such that the projected points are far apart.

Two views on inertia
Inertia:

I = 1
2n2

∑
i ,j

∥X i − X j∥2 = 1
n

n∑
i=1

∥X i − m∥2

2 times the mean squared distance to the mean = Mean squared distance
between individual

Inertia criterion (Principal Component Analysis)

Criterion: max
P

∑
i ,j

1
2n2 ∥PX i − PX j∥2 = max

P

1
n
∑

i
∥PX i − m∥2

Solution: Choose P as a projection matrix on the space spanned by the d ′ first
eigenvectors of Σ = 1

n
∑

i(X i − m)(X i − m)⊤
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First Component of the PCA
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X̃ = m + a⊤(X − m)a with ∥a∥ = 1

Inertia: 1
n

n∑
i=1

a⊤(X i − m)(X i − m)⊤a

Principal Component Analysis: optimization of the projection

Maximization of Ĩ = 1
n

n∑
i=1

a⊤(X i − m)(X i − m)⊤a = a⊤Σa with

Σ = 1
n

n∑
i=1

(X i − m)(X i − m)⊤ the empirical covariance matrix.

Explicit optimal choice given by the eigenvector of the largest eigenvalue of Σ.
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PCA
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Principal Component Analysis : sequential optimization of the projection
Explicit optimal solution obtain by the projection on the eigenvectors of the
largest eigenvalues of Σ.
Projected inertia given by the sum of those eigenvalues.

Often fast decay of the eigenvalues: some dimensions are much more important
than others.
Not exactly the curse of dimensionality setting. . .
Yet a lot of small dimension can drive the distance!
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Reconstruction Criterion

Heuristic: a good representation is such that the projected points are close to the
original ones.

Reconstruction Criterion

Criterion: min
P

∑
i

1
n∥X i − (P(X i − m) + m)∥2 = min

P

1
n
∑

i
∥(I − P)(X i − m)∥2

Solution: Choose P as a projection matrix on the space spanned by the d ′ first
eigenvectors of Σ = 1

n
∑

i(X i − m)(X i − m)⊤

Same solution with a different heuristic!
Proof (Pythagora):∑

i
∥X i − m∥2 =

∑
i

(
∥P(X i − m)∥2 + ∥(I − P)(X i − m)∥2

)
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PCA, Reconstruction and Distances

Individu 1

Individu 2
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Close projection doesn’t mean close individuals!
Same projections but different situations.
Quality of the reconstruction measured by the angle with the projection space!
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Relationship Criterion

Heuristic: a good representation is such that the projected points scalar products
are similar to the original ones.

Relationship Criterion (Multi Dimensional Scaling)
Criterion: min

P

∑
i ,j

|(X i − m)⊤(X j − m) − (Φ(X i) − m)⊤(Φ(X j) − m)|2

Solution: Choose P as a projection matrix on the space spanned by the d ′ first
eigenvectors of Σ = 1

n
∑

i(X i − m)(X i − m)⊤

Same solution with a different heuristic!
Much more involved justification!
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Link with SVD
PCA model: X − m ≃ P(X − m)
Prop: P = VV ⊤ with V an orthormal family in dimension d of size d ′.
PCA model with V : X − m ≃ VV ⊤(X − m) where X̃ = V ⊤(X − m) ∈ Rd ′

Row vector rewriting: X⊤ − m⊤ ≃ X̃⊤V ⊤

Matrix Rewriting and Low Rank Factorization
Matrix rewriting

X 1
⊤ − m⊤

...

...
Xn

⊤ − m⊤

(n×d)

≃

X̃ 1
⊤

...

...
X̃n

⊤

(n×d ′)

V⊤

(d ′×d)

Low rank matrix factorization! (Truncated SVD solution. . . )
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SVD

SVD Decomposition
Any matrix n × d matrix A can be decomposed as

A

(n×d)

= U

(n×n)

D

(n×d)

W⊤

(d×d)

with U and W two orthonormal matrices and D a diagonal matrix with decreasing
values.
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SVD
Low Rank Approximation

The best low rank approximation or rank r is obtained by restriction of the
matrices to the first r dimensions:

A

(n×d)

≃ Ur

(n×r)

Dr ,r
(r×r)

Wr
⊤

(r×d)

for both the operator norm and the Frobenius norm!
PCA: Low rank approximation with Frobenius norm, d ′ = r and

X 1
⊤ − m⊤

...

...
Xn

⊤ − m⊤

 ↔ A,


X̃ 1

⊤

...

...
X̃n

⊤

 ↔ UrDr ,r , V⊤ ↔ W⊤
r
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SVD

SVD Decompositions
Recentered data:

R =


X 1

⊤ − m⊤

...
Xn

⊤ − m⊤

 = UDW ⊤

Covariance matrix:
Σ = R⊤R = WD⊤DW

with D⊤D diagonal.
Gram matrix (matrix of scalar products):

G = RR⊤ = UDD⊤U
with DD⊤ diagonal.

Those are the same U, W and D, hence the link between all the approaches.
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Reconstruction Error Approach

Goal
Construct a map Φ from the space X into a space X ′ of smaller dimension:

Φ : X → X ′

X 7→ Φ(X )
Construct Φ̃ from X ′ to X
Control the error between X and its reconstruction Φ̃(Φ(X ))

Canonical example for X ∈ Rd : find Φ and Φ̃ in a parametric family that minimize
1
n

n∑
i=1

∥X i − Φ̃(Φ(X i))∥2
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Principal Component Analysis

X ∈ Rd and X ′ = Rd ′

Affine model X ∼ m +
∑d ′

l=1 X ′(l)V (l) with (V (l)) an orthonormal family.
Equivalent to:

Φ(X ) = V ⊤(X − m) and Φ̃(X ′) = m + V X ′

Reconstruction error criterion:
1
n

n∑
i=1

∥X i − (m + VV ⊤(X i − m)∥2

Explicit solution: m is the empirical mean and V is any orthonormal basis of the
space spanned by the d ′ first eigenvectors (the one with largest eigenvalues) of
the empirical covariance matrix 1

n
∑n

i=1(X i − m)(X i − m)⊤.
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Principal Component Analysis

PCA Algorithm
Compute the empirical mean m = 1

n
∑n

i=1 X i

Compute the empirical covariance matrix 1
n
∑n

i=1(X i − m)(X i − m)⊤.
Compute the d ′ first eigenvectors of this matrix: V (1), . . . , V (d ′)

Set Φ(X ) = V ⊤(X − m)

Complexity: O(n(d + d2) + d ′d2)
Interpretation:

Φ(X ) = V ⊤(X − m): coordinates in the restricted space.
V (i): influence of each original coordinates in the ith new one.

Scaling: This method is not invariant to a scaling of the variables! It is custom to
normalize the variables (at least within groups) before applying PCA.
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Decathlon
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Swiss Roll
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Principal Component Analysis

Decathlon Decathlon Swiss Roll
Renormalized
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Multiple Factor Analysis
PCA assumes X = Rd !
How to deal with categorical values?
MFA = PCA with clever coding strategy for categorical values.

Categorical value code for a single variable
Classical redundant dummy coding:

X ∈ {1, . . . , V } 7→ P(X ) =
(
1X=1, . . . , 1X=V

)⊤
Compute the mean (i.e. the empirical proportions): P = 1

n
∑n

i=1 P(X i)

Renormalize P(X ) by 1/
√

(V − 1)P:

P(X ) =
(
1X=1, . . . 1X=V

)
7→

 1X=1√
(V − 1)P1

, . . . ,
1X=V√

(V − 1)PV
= Pr (X )


χ2 type distance!
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Multiple Factor Analysis

PCA becomes the minimization of
1
n

n∑
i=1

∥Pr (X i) − (m + VV ⊤(Pr (X i) − m))∥2

= 1
n

n∑
i=1

V∑
v=1

∣∣∣1X i =v − (m′ +
∑d ′

l=1 V (l)⊤(P(X i) − m′)V (l ,v))
∣∣∣2

(V − 1)Pv

Interpretation:
m′ = P
Φ(X ) = V ⊤(P r (X ) − m): coordinates in the restricted space.
V (l) can be interpreted s as a probability profile.

Complexity: O(n(V + V 2) + d ′V 2)
Link with Correspondence Analysis (CA)
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Multiple Factor Analysis

MFA Algorithm
Redundant dummy coding of each categorical variable.
Renormalization of each block of dummy variable.
Classical PCA algorithm on the resulting variables

Interpretation as a reconstruction error with a rescaled/χ2 metric.
Interpretation:

Φ(X ) = V ⊤(P r (X ) − m): coordinates in the restricted space.
V (l): influence of each modality/variable in the ith new coordinates.

Scaling: This method is not invariant to a scaling of the continuous variables! It
is custom to normalize the variables (at least within groups) before applying PCA.

443



Unsupervised Learning,
Generative Learning and More

Multiple Factor Analysis
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Non Linear PCA

PCA Model
PCA: Linear model assumption

X ≃ m +
d ′∑

l=1
X ′,(l)V (l) = m + V X ′

with
V (l) orthonormal
X ′,(l) without constraints.

Two directions of extension:
Other constraints on V (or the coordinates in the restricted space): ICA, NMF,
Dictionary approach
PCA on a non-linear image of X : kernel-PCA

Much more complex algorithm!
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Non Linear PCA

ICA (Independent Component Analysis)
Linear model assumption

X ≃ m +
d ′∑

l=1
X ′,(l)V (l) = m + V X ′

with
V (l) without constraints.
X ′,(l) independent

NMF (Non Negative Matrix Factorization)
(Linear) Model assumption

X ≃
d ′∑

l=1
X ′,(l)V (l) = V X ′

with
V (l) non-negative
X ′,(l) non-negative.
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Non Linear PCA
Dictionary

(Linear) Model assumption

X ≃ m +
d ′∑

l=1
X ′,(l)V (l) = m + V X ′

with
V (l) without constraints
X ′ sparse (with a lot of 0)

kernel PCA
Linear model assumption

Ψ(X − m) ≃
d ′∑

l=1
X ′,(l)V (l) = V X ′

with
V (l) orthonormal
X ′

l without constraints.
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Non Linear PCA

Decathlon

Swiss Roll

ICA NMF Kernel PCA
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Auto Encoder

Deep Auto Encoder
Construct a map Φ with a NN from the space X into a space X ′ of smaller
dimension:

Φ : X → X ′

X 7→ Φ(X )
Construct Φ̃ with a NN from X ′ to X
Control the error between X and its reconstruction Φ̃(Φ(X )):

1
n

n∑
i=1

∥X i − Φ̃(Φ(X i))∥2

Optimization by gradient descent.
NN can be replaced by another parametric function. . .
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Deep Auto Encoder

Shallow Auto Encoder Deep Auto Encoder
(PCA)
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Pairwise Relation
Different point of view!
Focus on pairwise relation R(X i , X j).

Distance Preservation
Construct a map Φ from the space X into a space X ′ of smaller dimension:

Φ : X → X ′

X 7→ Φ(X ) = X ′

such that
R(X i , X j) ∼ R′(X ′

i , X ′
j)

Most classical version (MDS):
Scalar product relation: R(X i , X j) = (X i − m)⊤(X j − m)
Linear mapping X ′ = Φ(X ) = V ⊤(X − m).
Euclidean scalar product matching:

1
n2

n∑
i=1

n∑
j=1

∣∣∣(X i − m)⊤(X j − m) − X ′
i
⊤X ′

j

∣∣∣2
Φ often defined only on D. . . 452
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MultiDimensional Scaling

MDS Heuristic
Match the scalar products:

1
n2

n∑
i=1

n∑
j=1

∣∣∣(X i − m)⊤(X j − m) − X i
′⊤X ′

j

∣∣∣2
Linear method: X ′ = U⊤(X − m) with U orthonormal

Beware: X can be unknown, only the scalar products are required!
Resulting criterion: minimization in U⊤(X i − m) of

1
n2

n∑
i=1

n∑
j=1

∣∣∣(X i − m)⊤(X j − m) − (X i − m)⊤UU⊤(X j − m)
∣∣∣2

without using explicitly X in the algorithm. . .
Explicit solution obtained through the eigendecomposition of the know Gram
matrix (X i − m)⊤(X j − m) by keeping only the d ′ largest eigenvalues.
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MultiDimensional Scaling

In this case, MDS yields the same result as the PCA (but with different inputs,
distance between observation vs correlations)!
Explanation: Same SVD problem up to a transposition:

MDS
X (n)

⊤X (n) ∼ X (n)
⊤UU⊤X (n)

PCA
X (n)X (n)

⊤ ∼ U⊤X (n)X (n)
⊤U

Complexity: PCA O((n + d ′)d2) vs MDS O((d + d ′)n2). . .
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MultiDimensional Scaling

Decathlon

Swiss Roll

PCA MDS
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Generalized MDS

Preserving the scalar products amounts to preserve the Euclidean distance.
Easier generalization if we work in terms of distance!

Generalized MDS
Generalized MDS:

Distance relation: R(X i , X j) = d(X i , X j)
Linear mapping X ′ = Φ(X ) = V ⊤(X − m).
Euclidean matching:

1
n2

n∑
i=1

n∑
j=1

∣∣d(X i , X j) − d ′(X ′
i , X ′

j)
∣∣2

Strong connection (but no equivalence) with MDS when d(x , y) = ∥x − y∥2!
Minimization: Simple gradient descent can be used (can be stuck in local
minima).
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ISOMAP

MDS: equivalent to PCA (but more expensive) if d(x , y) = ∥x − y∥2!
ISOMAP: use a localized distance instead to limit the influence of very far point.

ISOMAP
For each point X i , define a neighborhood Ni (either by a distance or a number of
points) and let

d0(X i , X j) =
{

+∞ if X j /∈ Ni

∥X i − X j∥ otherwise
Compute the shortest path distance for each pair.
Use the MDS algorithm with this distance
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ISOMAP

Decathlon Swiss Roll
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Random Projection

Random Projection Heuristic
Draw at random d ′ unit vector (direction) Ui .
Use X ′ = U⊤(X − m) with m = 1

n
∑n

i=1 X i

Property: If X lives in a space of dimension d ′′, then, as soon as, d ′ ∼ d ′′ log(d ′′),

∥X i − X j∥2 ∼ d
d ′ ∥X ′

i − X ′
j∥2

Do not really use the data!
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Random Projection

Decathlon Swiss Roll
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t-Stochastic Neighbor Embedding
SNE heuristic

From X i ∈ X , construct a set of conditional probability:

Pj|i = e−∥X i −X j ∥2/2σ2
i∑

k ̸=i e−∥X i −Xk∥2/2σ2
i

Pi |i = 0

Find X ′
i in Rd ′ such that the set of conditional probability:

Qj|i = e−∥X ′
i −X ′

j ∥2/2σ2
i∑

k ̸=i e−∥X ′
i −X ′

k∥2/2σ2
i

Qi |i = 0

is close from P.

t-SNE: use a Student-t term (1 + ∥X ′
i − X ′

j∥2)−1 for X ′
i

Minimize the Kullback-Leibler divergence (
∑
i ,j

Pj|i log
Pj|i
Qj|i

) by a simple gradient

descent (can be stuck in local minima).
Parameters σi such that H(Pi) = −

∑n
j=1 Pj|i log Pj|i = cst.
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t-Stochastic Neighbor Embedding

Decathlon Swiss Roll
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t-Stochastic Neighbor Embedding

Very successful/ powerful technique in practice
Convergence may be long, unstable, or strongly depending on parameters.
See this distill post for many impressive examples
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Representation depending on t-SNE parameters
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UMAP
Topological Data Analysis inspired.

Uniform Manifold Approximation and Projection
Define a notion of asymmetric scaled local proximity between neighbors:

Compute the k-neighborhood of X i , its diameter σi and the distance ρi between X i
and its nearest neighbor.
Define

wi(X i , X j) =
{

e−(d(X i ,X j )−ρi )/σi for X j in the k-neighborhood
0 otherwise

Symmetrize into a fuzzy nearest neighbor criterion
w(X i , X j) = wi(X i , X j) + wj(X j , X i) − wi(X i , X j)wj(X j , X i)

Determine the points X ′
i in a low dimensional space such that∑

i ̸=j
w(X i , X j) log

(
w(X i , X j)
w ′(X ′

i , X ′
j)

)
+ (1 − w(X i , X j)) log

(
(1 − w(X i , X j))
(1 − w ′(X ′

i , X ′
j))

)

Can be performed by local gradient descent. 464
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UMAP

Decathlon Swiss Roll
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Graph based

Graph heuristic
Construct a graph with weighted edges wi ,j measuring the proximity of X i and X j
(wi ,j large if close and 0 if there is no information).
Find the points X ′

i ∈ Rd ′ minimizing
1
n

1
n

n∑
i=1

n∑
j=1

wi ,j∥X ′
i − X ′

j∥2

Need of a constraint on the size of X ′
i . . .

Explicit solution through linear algebra: d ′ eigenvectors with smallest eigenvalues
of the Laplacian of the graph D − W , where D is a diagonal matrix with
Di ,i =

∑
j wi ,j .

Variation on the definition of the Laplacian. . .
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Graph

Decathlon Swiss Roll
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How to Compare Different Dimensionality Reduction
Methods ?

Difficult! Once again, the metric is very subjective.

However, a few possible attempts
Did we preserve a lot of inertia with only a few directions?
Do those directions make sense from an expert point of view?
Do the low dimension representation preserve some important information?
Are we better on subsequent task?
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A Challenging Example: MNIST

PCA autoencoder t-SNE UMAP

MNIST Dataset
Images of 28 × 28 pixels.
No label used!
4 different embeddings.

Quality evaluated by visualizing the true labels not used to obtain the
embeddings.
Only a few labels could have been used.
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A Challenging Example: MNIST

PCA autoencoder t-SNE UMAP

MNIST Dataset
Images of 28 × 28 pixels.
No label used!
4 different embeddings.

Quality evaluated by visualizing the true labels not used to obtain the
embeddings.
Only a few labels could have been used.
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A Challenging Example: MNIST

PCA autoencoder t-SNE UMAP

MNIST Dataset
Images of 28 × 28 pixels.
No label used!
4 different embeddings.

Quality evaluated by visualizing the true labels not used to obtain the
embeddings.
Only a few labels could have been used. 470
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A Simpler Example: A 2D Set

Original

PCA t-SNE UMAP

Cluster Dataset
Set of points in 2D.
No label used!
3 different embeddings.

Quality evaluated by stability. . .
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A Simpler Example: A 2D Set

Original

PCA t-SNE UMAP

Cluster Dataset
Set of points in 2D.
No label used!
3 different embeddings.

Quality evaluated by stability. . .
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A Simpler Example: A 2D Set

Original PCA t-SNE UMAP

Cluster Dataset
Set of points in 2D.
No label used!
3 different embeddings.

Quality evaluated by stability. . .
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Clustering
Training data : D = {X 1, . . . , Xn} ∈ X n (i.i.d. ∼ P)
Latent groups?

Clustering
Construct a map f from X (or D) to {1, . . . , K} where K is a number of classes
to be fixed:

f : X (or D) → {1, . . . , K}
X 7→ f (X )

Similar to classification except:
no ground truth (no given labels)
often only defined for elements of the dataset!

Motivations
Interpretation of the groups
Use of the groups in further processing
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Clustering

Need to define the quality of the cluster.
No obvious measure!

Clustering quality
Inner homogeneity: samples in the same group should be similar.
Outer inhomogeneity: samples in two different groups should be different.

Several possible definitions of similar and different.
Often based on the distance between the samples.
Example based on the Euclidean distance:

Inner homogeneity = intra-class variance,
Outer inhomogeneity = inter-class variance.

Beware: choice of the number of clusters K often complex!
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Partition Based
Partition Heuristic

Clustering is defined by a partition in K classes. . .
that minimizes a homogeneity criterion.

K- Means
Cluster k defined by a center µk .
Each sample is associated to the closest center.

Centers defined as the minimizer of
n∑

i=1
min

k
∥X i − µk∥2

Iterative scheme (Loyd):
Start by a (pseudo) random choice for the centers µk
Assign each samples to its nearby center
Replace the center of a cluster by the mean of its assigned samples.
Repeat the last two steps until convergence.
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Partition Based
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Partition based

Other schemes:
McQueen: modify the mean each time a sample is assigned to a new cluster.
Hartigan: modify the mean by removing the considered sample, assign it to the
nearby center and recompute the new mean after assignment.

A good initialization is crucial!
Initialize by samples.
k-Mean++: try to take them as separated as possible.
No guarantee to converge to a global optimum: repeat and keep the best result!

Complexity : O(n × K × T ) where T is the number of steps in the algorithm.

478



Unsupervised Learning,
Generative Learning and More

Partition based

k-Medoid: use a sample as a center
PAM: for a given cluster, use the sample that minimizes the intra distance (sum of
the squared distance to the other points)
Approximate medoid: for a given cluster, assign the point that is the closest to the
mean.

Complexity
PAM: O(n2 × T ) in the worst case!
Approximate medoid: O(n × K × T ) where T is the number of steps in the
algorithm.

Remark: Any distance can be used. . . but the complexity of computing the
centers can be very different.
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K-Means

k = 4 k = 10 k = 10
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Model Based

Model Heuristic
Use a generative model of the data:

P(X ) =
K∑

k=1
πkPθk (X |k)

where πk are proportions and Pθ(X |k) are parametric probability models.
Estimate those parameters (often by a ML principle).
Assign each observation to the class maximizing the a posteriori probability
(obtained by Bayes formula)

π̂kPθ̂k
(X |k)∑K

k′=1 π̂k′P
θ̂k′

(X |k ′)

Link with Generative model in supervised classification!
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Model Based

A two class example
A mixture π1f1(X ) + π2f2(X )

and the posterior probability πi fi(X )/(π1f1(X ) + π2f2(X ))

Natural class assignment!
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Model Based

Sub-population estimation
A mixture π1f1(X ) + π2f2(X )

Two populations with a parametric distribution fi .

Most classical choice: Gaussian distribution

Gaussian Setting
X 1, . . . , X n independent

X i ∼ N(µ1, σ2
1) with probability π1 or X i ∼ N(µ2, σ2

2) with probability π2

We don’t know the parameters µi , σi , πi .

We don’t know from which distribution each X i has been drawn.
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Model Based

Maximum Likelihood
Density: π1Φ(X , µ1, σ2

1) + π2Φ(X , µ2, σ2
2)

log-likelihood: L(θ) =
n∑

i=1
log
(
π1Φ(X i , µ1, σ2

1) + π2Φ(X i , µ2, σ2
2)
)

No straightforward way to optimize the parameters!

What if algorithm
Assume we know from which distribution each sample has been sampled: Zi = 1 if from
f1 and Zi = 0 otherwise.

log-likelihood:
n∑

i=1
Zi log Φ(X i , µ1, σ2

1) + (1 − Zi) log Φ(X i , µ2, σ2
2)

Easy optimization. . . but the Zi are unknown!
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Model Based

What if algorithm
Assume we know from which distribution each sample has been sampled: Zi = 1 if from
f1 and Zi = 0 otherwise.

log-likelihood:
n∑

i=1
Zi log Φ(X i , µ1, σ2

1) + (1 − Zi) log Φ(X i , µ2, σ2
2)

Easy optimization. . . but the Zi are unknown!

Bootstrapping Idea
Replace Zi by its expectation given the current estimate.

E[Zi ] = P(Zi = 1|θ) (A posteriori probability)

and iterate. . .

Can be proved to be good idea!
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Model Based

EM Algorithm
(Random) initialization: µ0

i , σ0
i , π0

i .
Repeat:

Expectation (Current a posteriori probability):

Et [Zi ] = P
(
Zi = 1|θt) = πt

1Φ(X i , µt
1, (σt

1)2)
πt

1Φ(X i , µt
1, (σt

1)2) + πt
2Φ(X i , µt

2, (σt
2)2)

Maximization of
n∑

i=1

Et [Zi ] log Φ(X i , µ1, σ2
1) + Et [1 − Zi ] log Φ(X i , µ2, σ2

2)

to obtain µt+1
i , σt+1

i , πt+1
i .
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Model Based

Large choice of parametric models.

Gaussian Mixture Model
Use

Pθk

(
X⃗ |k

)
∼ N(µk , Σk)

with N(µ, Σ) the Gaussian law of mean µ and covariance matrix Σ.

Efficient optimization algorithm available (EM)
Often some constraints on the covariance matrices: identical, with a similar
structure. . .
Strong connection with K -means when the covariance matrices are assumed to be
the same multiple of the identity.
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Model Based

Probabilistic latent semantic analysis (PLSA)
Documents described by their word counts w
Model:

P(w) =
K∑

k=1
πkPθk (w |k)

with k the (hidden) topic, πk a topic probability and Pθk (w |k) a multinomial law
for a given topic.
Clustering according to

P(k|w) =
π̂kPθ̂k

(w |k)∑
k′ π̂k′P

θ̂k′
(w |k ′)

Same idea than GMM!
Bayesian variant called LDA.
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Model Based

Parametric Density Estimation Principle
Assign a probability of membership.
Lots of theoretical studies. . .
Model selection principle can be used to select K the number of classes (or rather
to avoid using a nonsensical K . . . ):

AIC / BIC / MDL penalization
Cross Validation is also possible!

Complexity: O(n × K × T )
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Gaussian Mixture Models

k = 4 k = 10 k = 10
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(Non Parametric) Density Based

Density Heuristic
Cluster are connected dense zone separated by low density zone.
Not all points belong to a cluster.

Basic bricks:
Estimate the density.
Find points with high densities.
Gather those points according to the density.

Density estimation:
Classical kernel density estimators. . .

Gathering:
Link points of high density and use the resulted component.
Move them toward top of density hill by following the gradient and gather all the
points arriving at the same summit.
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(Non Parametric) Density Based

Concepts

2 paramètres:
� Eps: rayon maximum de voisinage

� MinPts: nb minimum de pts pour que V(p) soit un voisinage de taille Eps du pts p

Exemple avec MinPts = 4 et Eps = 1cm

x
y objet de coeur car V(y) existe (au moins MinPts objets dans le voisinage

de y de rayon Eps)x

y

de y de rayon Eps)

x objet de bord (d’une classe) car V(x) n’existe pas (moins de MinPts dans

son voisinnage de rayon eps)

x est directement densité atteignable depuis y car V(y) existe et x  

appartient à V(y); y n’est pas directement atteignable depuis x car V(x) 

n’existe pas

Concepts

x est densité-atteignable depuis y s’il existe une chaîne de points (de 

longueur quelconque) partant de y et allant jusqu’à x et telle que le 

point pi+1 est densité atteignable depuis pi. 

p1 appartient à V(y), p2 appartient à V(p1),  x appartient à V(p2)

x

p2

X et y sont densité-connectés s’il existe un point z tel que x soit atteignable

depuis z et y soit atteignable depuis z (sur ce schéma, on voit que sans 

x

p1
y

le point)

Une classe C doit vérifier les 2 conditions suivantes :

1) Si un point x appartient à C alors tout point atteignable depuis x 

appartient à C. 

2) Tous les points d’une classe sont densité-connectés. 

Les points pleins appartiennent à une même classe, les points vides a une

autre classe. Le point z appartient à deux classes. Par convention, on 

l’affecte à la première classe à laquelle il est affecté.

x

y

z

Concepts

x est densité-atteignable depuis y s’il existe une chaîne de points (de 

longueur quelconque) partant de y et allant jusqu’à x et telle que le 

point pi+1 est densité atteignable depuis pi. 

p1 appartient à V(y), p2 appartient à V(p1),  x appartient à V(p2)

x

p2

X et y sont densité-connectés s’il existe un point z tel que x soit atteignable

depuis z et y soit atteignable depuis z (sur ce schéma, on voit que sans 

x

p1
y

le point)

Une classe C doit vérifier les 2 conditions suivantes :

1) Si un point x appartient à C alors tout point atteignable depuis x 

appartient à C. 

2) Tous les points d’une classe sont densité-connectés. 

Les points pleins appartiennent à une même classe, les points vides a une

autre classe. Le point z appartient à deux classes. Par convention, on 

l’affecte à la première classe à laquelle il est affecté.

x

y

z

Examples
DBSCAN: link point of high densities using a very simple kernel.

PdfCLuster: find connected zone of high density.

Mean-shift: move points toward top of density hill following an evolving kernel density
estimate.

Complexity: O(n2 × T ) in the worst case.
Can be reduced to O(n log(n)T ) if samples can be encoded in a tree structure
(n-body problem type approximation).
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DBSCAN

ϵ = .45 ϵ = .2 ϵ = .1
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Agglomerative Clustering

Agglomerative Clustering Heuristic
Start with very small clusters (a sample by cluster?)
Sequential merging of the most similar clusters. . .
according to some greedy criterion ∆.

Generates a hierarchy of clustering instead of a single one.
Need to select the number of cluster afterwards.
Several choices for the merging criterion. . .
Examples:

Minimum Linkage: merge the closest cluster in term of the usual distance
Ward’s criterion: merge the two clusters yielding the less inner inertia loss (k-means
criterion)
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Agglomerative Clustering
Algorithm

Start with (C(0)
i ) = ({X i}) the collection of all singletons.

At step s, we have n − s clusters (C(s)
i ):

Find the two most similar clusters according to a criterion ∆:
(i , i ′) = argmin

(j,j′)
∆(C(s)

j , C(s)
j′ )

Merge C(s)
i and C(s)

i′ into C(s+1)
i

Keep the n − s − 2 other clusters C(s+1)
i′′ = C(s)

i′′

Repeat until there is only one cluster.

Complexity: O(n3) in general.
Can be reduced to O(n2)

if only a bounded number of merging is possible for a given cluster,
for the most classical distances by maintaining a nearest neighbors list.
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Agglomerative Clustering
2
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Merging criterion based on the distance between points
Minimum linkage:

∆(Ci , Cj) = min
X i ∈Ci

min
X∈Cj

d(X i , X j)

Maximum linkage:
∆(Ci , Cj) = max

X i ∈Ci
max
X∈Cj

d(X i , X j)

Average linkage:
∆(Ci , Cj) = 1

|Ci ||Cj |
∑

X i ∈Ci

∑
X∈Cj

d(X i , X j)

Clustering based on the proximity. . .
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Agglomerative Clustering

Merging criterion based on the inertia (distance to the mean)
Ward’s criterion:

∆(Ci , Cj) =
∑

X i ∈Ci

(
d2(X i , µCi ∪Cj ) − d2(X i , µCi )

)
+
∑

X j ∈Cj

(
d2(X j , µCi ∪Cj ) − d2(X j , µCj )

)
If d is the Euclidean distance:

∆(Ci , Cj) = 2|Ci ||Cj |
|Ci | + |Cj |

d2(µCi , µCj )

Same criterion than in the k-means algorithm but greedy optimization.
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Agglomerative Clustering

Single

Complete

Ward

Dendogram k = 4 k = 10 k = 20 500
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Grid based

Grid heuristic
Split the space in pieces
Group those of high density according to their proximity

Similar to density based estimate (with partition based initial clustering)
Space splitting can be fixed or adaptive to the data.
Examples:

STING (Statistical Information Grid): Hierarchical tree construction plus DBSCAN
type algorithm
AMR (Adaptive Mesh Refinement): Adaptive tree refinement plus k-means type
assignment from high density leaves.
CLIQUE: Tensorial grid and 1D detection.

Linked to Divisive clustering (DIANA)
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Others

Graph based
Graph of nodes (Xi) with edges strength related to d(Xi , Xj).
Several variations:

Spectral clustering: dimension reduction based on the Laplacian of the graph +
k-means.
Message passing: iterative local algorithm.
Graph cut: min/max flow.
. . .

Kohonen Map (incorporating some spatial information),
. . .

503



Unsupervised Learning,
Generative Learning and More

Outline

1 Introduction to Supervised Learning
Introduction
A Practical View
A Better Point of View
Risk Estimation and Method Choice
A Probabilistic Point of View
Optimization Point of View
Ensemble Methods
Empirical Risk Minimization
References

2 Unsupervised Learning, Generative
Learning and More

Unsupervised Learning?

A Glimpse on Unsupervised Learning
More Learning. . .
Metrics
Dimension Reduction
Clustering

Prototype Approaches
Contiguity Approaches
Agglomerative Approaches
Other Approaches
Scalability

Generative Modeling
ChatGPT
References

3 References

504



Unsupervised Learning,
Generative Learning and More

Scalability

Large dataset issue
When n is large, a O(nα log n) with α > 1 is not acceptable!
How to deal with such a situation?

Beware: Computing all the pairwise distance requires O(n2) operations!

Ideas
Sampling
Online processing
Simplification
Parallelization
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Sampling

Sampling heuristic
Use only a subsample to construct the clustering.
Assign the other points to the constructed clusters afterwards.

Requires a clustering method that can assign new points (partition, model. . . )
Often repetition and choice of the best clustering
Example:

CLARA: K-medoid with sampling and repetition
Two-steps algorithm:

Generate a large number n′ of clusters using a fast algorithm (with n′ ≪ n)
Cluster the clusters with a more accurate algorithm.
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Online

Online heuristic
Modify the current clusters according to the value of a single observation.

Requires compactly described clusters.
Examples:

Add to an existing cluster (and modify it) if it is close enough and create a new
cluster otherwise (k-means without reassignment)
Stochastic descent gradient (GMM)

May leads to far from optimal clustering.

507



Unsupervised Learning,
Generative Learning and More

Simplification

Simplification heuristic
Simplify the algorithm to be more efficient at the cost of some precision.

Algorithm dependent!
Examples:

Replace groups of observation (preliminary cluster) by the (approximate) statistics.
Approximate the distances by cheaper ones.
Use n-body type techniques.
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Parallelization

Parallelization heuristic
Split the computation on several computers.

Algorithm dependent!
Examples:

Distance computation in k-means, parameter gradient in model based clustering
Grid density estimation, Space splitting strategies

Classical batch sampling not easy to perform as partitions are not easily merged. . .
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Generative Modeling
Training data : D = {(X 1, Y 1), . . . , (Xn, Y n)} ∈ (X × Y)n (i.i.d. ∼ P).
Same kind of data than for supervised learning if X ̸= ∅.

Generative Modeling
Construct a map G from the product of X and a randomness source Ω to Y

G :X × Ω → Y
(X , ω) 7→ Y

Unconditional model if X = ∅. . .

Motivation
Generate plausible novel conditional samples based on a given dataset.

Sample Quality
Related to the proximity between the law of G(X , ω) and the law of Y |X .

Most classical choice is the Kullback-Leibler divergence.
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Generative Modeling

Ingredients
Generator Gθ(X , ω) and cond. density prob. Pθ(Y |X ) (Explicit vs implicit link)
Simple / Complex / Approximate estimation. . .

Some Possible Choices
Probabilistic model Generator Estimation

Base Simple (parametric) Explicit Simple (ML)
Flow Image of simple model Explicit Simple (ML)

Factorization Factorization of simple model Explicit Simple (ML)
VAE Simple model with latent var. Explicit Approximate (ML)
EBM Arbitrary Implicit (MCMC) Complex (ML/score/discrim.)

Diffusion Continuous noise Implicit (MCMC) Complex (score)
Discrete Noise with latent var. Explicit Approximate (ML)

GAN Implicit Explicit Complex (Discrimination)

SOTA: Diffusion based approach!

ML: Maximum Likelihood/VAE: Variational AutoEncoder/EBM: Energy Based Model/MCMC: Monte Carlo Markov Chain/GAN: Generative Adversarial
Network 512
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Generators

Ỹ = G(X , ω) ?

Small abuse of notations. . .
More an algorithm than a map!

Generators
One step: ω ∼ Q̃(·|X ) and Ỹ = G(X , ω).
Several steps:

ω0 ∼ Q̃0(·|X ) and Ỹ0 = G0(X , ω0)
ωt+1 ∼ Q̃t+1(·|X , Ỹt) and Ỹt+1 = Gt+1(X , Ỹt , ωt+1)

Fixed or variable number of steps.
Fixed or variable dimension for Ỹt and ωt . . .

Q̃ (or Q̃t) should be easy to sample.
Most of the time, parametric representations for Q̃ (or Q̃t) and G (or Gt). 513
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Warmup: Density Estimation and Generative
Modeling

X ∼ P with dP(x) = p(x)dλ −→ X̃ ∼ P̃ with dP̃(x) = p̃(x)dλ

Heuristic
Estimate p by p̃ from an i.i.d. sample X1, . . . , Xn.
Simulate X̃ having a law P̃.

By construction, if p̃ is close from p, the law of X̃ will be close from the law of X .

Issue: How to do it?
How to estimate p̃? Parametric, non-parametric? Maximum likelihood? Other
criteria?
How to simulate P̃? Parametric? One-step? Multi-step? Iterative?
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Warmup: Parametric Density Estimation

X ∼ P(·) with dP(x) = p(x)dλ −→ X̃ ∼ P̃θ̃ with dP̃θ̃(x) = p̃θ̃(x)dλ

Maximum Likelihood Approach
Select a family P̃ and estimate p by p̃

θ̃
from an i.i.d. sample X1, . . . , Xn.

Simulate X̃ having a law P̃
θ̃
.

By construction, if p̃
θ̃

is close from p, the law of X̃ will be close from the law of X .

Issue: How to do it?
Which family P̃?
How to simulate P̃

θ̃
? Parametric? Iterative?

Corresponds to ω ∼ P̃
θ̃

and X̃ = G(ω) = ω

516



Unsupervised Learning,
Generative Learning and More

Conditional Density Est. and Generative Modeling

Y |X ∼ P(·|X ) with dP(y |X ) = p(y |X )dλ

−→ Ỹ |X ∼ P̃(·|X ) with dP̃(y |X ) = p̃(y |X )dλ

Heuristic
Estimate p by p̃ from an i.i.d. sample (X1, Y1), . . . , (Xn, Yn).
Simulate Ỹ |X having a law P̃(·|X ).

By construction, if p̃ is close from p, the law of Ỹ |X will be close from the law of
Y |X .

Issue: How to do it?
How to estimate p̃? Parametric, non-parametric? Maximum likelihood? Other
criteria?
How to simulate P̃? Parametric? One-step? Multi-step? Iterative?
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Parametric Conditional Density Estimation
Y |X ∼ P(·|X ) with dP(y |X ) = p(y |X )dλ

−→ Ỹ |X ∼ P̃
θ̃(X) with dP̃θ(X)(y) = p̃θ(X)(y)dλ

Maximum Likelihood Approach
Select a family P̃ and estimate p by p̃

θ̃
from an i.i.d. sample

(X1, Y1), . . . , (Xn, Yn) where θ̃ is now a function of X .
Simulate Ỹ |X having a law P̃

θ̃(X)

If p̃
θ̃

is close from p, the law of Ỹ |X will be close from the law of Y |X .

Issue: How to do it?
Which family P̃? Which function family for θ̃?
How to simulate P̃

θ̃(Y )? Parametric? Iterative?

Corresponds to ω ∼ Q̃(·|X ) = P̃
θ̃(X) and Ỹ = G(X , ω) = ω 518
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Direct Parametric Conditional Density Estimation

ω ∼ Q̃θ̃(X ) ∼ q̃θ̃(X )(y)dλ and Ỹ |X = G(X , ω) = ω

Estimation
By construction,

dP(Ỹ |X ) = q̃θ̃(X)(y)dλ

Maximum Likelihood approach:

θ̃ = argmax
θ

n∑
i=1

log q̃θ̃(Xi )(Yi)

Simulation
P̃ has been chosen so that this distribution is easy to sample. . .

Possible families: Gaussian, Multinomial, Exponential model. . .
Possible parametrizations for θ̃: linear, neural network. . .
Limited expressivity! 519
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Invertible Transform

ω ∼ Q̃
θ̃(X) ∼ q̃

θ̃(X)(y)dλ and Ỹ |X = G(ω) with G invertible.

Estimation
By construction,

dP̃
(
G−1(Ỹ )|X

)
= q̃θ̃(X)(G

−1(y))dλ

Maximum Likelihood approach:

θ̃ = argmax
θ

n∑
i=1

log q̃θ̃(Xi )(G
−1(Yi))

Simulation
Q̃ has been chosen so that this distribution is easy to sample. . .

Possible transform G : Change of basis, known transform. . .
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Flow
ω ∼ Q̃

θ̃(X) = q̃
θ̃(X)(y)dλ and Ỹ |X = G

θ̃G (X)(ω) with Gθ invertible.

Estimation
By construction,

dP̃
(
Ỹ |X

)
= |JacG−1

θ̃G (X)
(y)|q̃θ̃(X)(G

−1
θ̃G (X)

(y))dλ

where JacG−1
θG (X)(y) is the Jacobian of G−1

θG (X) at y
Maximum Likelihood approach:

θ̃, θ̃G = argmax
θ,θG

n∑
i=1

(
log |JacG−1

θG (Xi )(Yi)| + log q̃θ(Xi )(G
−1
θG (Xi )(Yi))

)

Simulation
Q̃ has been chosen so that this distribution is easy to sample. . .

Often, in practice, θ̃(X ) is independent of X . . .
Main issue: Gθ, its inverse and its Jacobian should be easy to compute.
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Possible Flows
Gθ?

Main issue: Gθ, its inverse and its Jacobian should be easy to compute.

Flow Models
Composition

Gθ = GθT ◦ GθT−1 ◦ Gθ1 ◦ Gθ0

|JacG−1
θ | =

∏
|JacG−1

θi
|

Real NVP

Gθ(y) =



y1
...

yd ′

yd ′+1esd′+1(y1,...,d′ ) + td(y1,...,d ′)
...

ydesd (y1,...,d′ + td(y1,...,d ′)


→ G−1

θ (y) =



y1
...

yd ′

(yd ′+1 − td(y1,...,d ′))e−sd′+1(y1,...,d′ )+
...

(yd − td(y1,...,d ′))e−sd (y1,...,d′ )


→ |JacG(y)−1| =

d∏
d ′′=d ′+1

e−sd′′ (y1,...,d′ )

Combined with permutation along dimension or invertible transform across
dimension.

Not that much flexibility. . . 522
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Factorization
ω0 ∼ Q̃0(·|X ) and Ỹ0 = G0(ω0)
ωt+1 ∼ Q̃t+1

(
·|X , (Ỹl)l≤t

)
and Ỹt+1 = Gt+1(X , (Ỹl)l≤t , ωt+1)

Ỹ = (Ỹ0, . . . , Ỹd−1)

Factorization
Amounts to use a factorized representation

P̃
(
Ỹ |X

)
=

∏
0≤t<d

P̃
(
Ỹt |X , (Ỹl)l<t

)
Q̃t and Gt can be chosen as in the plain conditional density estimation case as the
Yt,i are observed.

Estimation
d generative models to estimate instead of one.

Simple generator by construction.
Can be combined with a final transform. 523
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Sequence and Markov Model

ωt+1 ∼ Q̃
(
·|X , (Ỹl)t≥l≥t−o

)
and Ỹt+1 = G(X , (Ỹl)t≥l≥t−o, ωt+1)

Ỹ = (Ỹ0, . . . , Ỹd−1)

Sequence and Markov Models
Sequence: sequence of similar objects with a translation invariant structure.
Translation invariant probability model of finite order (memory) o.
Requires an initial padding of the sequence.

Faster training as the parameters are shared for all t.
Model used in Text Generation!
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Large Language Model

Large Language Model (Encoder Only)
Sequence Model for tokens (rather than words) using a finite order (context).
Huge deep learning model (using transformers).
Trained on a huge corpus (dataset) to predict the next token. . .

Plain vanilla generative model?

Alignement
Stochastic parrot issue:

Pure imitation is not necessarily the best choice to generate good text.
Need also to avoid problematic prediction (even if they are the most probable given
the corpus)

Further finetuning on the model based on the quality of the output measured by
human through comparison of version on tailored input (RLHF).
Key for better quality.

RLHF: Reinforcement Learning by Human Feedback 525
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Latent Variable

ω0 ∼ Q̃0(·|X ) and Ỹ0 = G0(X , ω0)
ω1 ∼ Q̃1

(
·|X , Ỹ0

)
and Ỹ1 = G1(X , ω0)

Ỹ = Ỹ1
Most classical example:

Gaussian Mixture Model with Ỹ0 = ω0 ∼ M(π) and Ỹ = ω1 ∼ N(µỸ0
, ΣỸ0

).

Estimation
Still a factorized representation

P̃
(
Ỹ1, Ỹ0|X

)
= P̃0

(
Ỹ0|X

)
P̃1
(
Ỹ1|X , Ỹ0

)
but only Ỹ1 is observed.
Much more complex estimation!

Simple generator by construction provided that the Q̃t are easy to simulate.
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Log Likelihood and ELBO

log p̃(Ỹ |X ) = logEP̃
(

Ỹ0|X ,Ỹ
)[p̃(Ỹ , Ỹ0|X )

]
= sup

R(·|X ,Ỹ ])
ER(·|X ,Ỹ )

[
log p̃(Ỹ , Ỹ0|X ) − log r(Ỹ0|X , Ỹ )

]
︸ ︷︷ ︸

ELBO

Need to integrate over Ỹ0 using the conditional law P̃
(
Ỹ0|X , Ỹ

)
, which may be

hard to compute.

Evidence Lower BOund
Using log p̃(Ỹ |X ) = ER(·|X ,Ỹ )

[
log
(
p̃(Ỹ , Ỹ0|X )/p̃(Ỹ0|X , Ỹ )

)]
,

log p̃(Ỹ |X ) = ER(·|X ,Ỹ )

[
log p̃(Ỹ , Ỹ0|X ) − log r(Ỹ0|X , Ỹ )

]
− KLỸ0

(R(Ỹ0|X , Ỹ ), P̃
(
Ỹ0|X , Ỹ

)
)

ELBO is a lower bound with equality when R(·|X , Ỹ ) = P̃
(
Ỹ0|X , Ỹ

)
.

Maximization over P̃ and R instead of only over P̃. . . 528
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ELBO and Stochastic Gradient Descent

sup
P̃

EX ,Ỹ

[
log p̃(Ỹ |X )

]
= sup

P̃,R
EX ,Ỹ ,Ỹ0∼R(·|X ,Ỹ )

[
log p̃(Ỹ , Ỹ0|X ) − log r(Ỹ0|X , Ỹ )

]
= sup

P̃,R
EX ,Ỹ ,Ỹ0∼R(·|X ,Ỹ )

[
log p̃(Ỹ |X , Ỹ0)

]
+ EX ,Ỹ ,Ỹ0∼R(·|X ,Ỹ )

[
log p̃(Ỹ0|X ) − log r(Ỹ0|X , Ỹ )

]
︸ ︷︷ ︸

E
X ,Ỹ[KL(R(·|X ,Ỹ ),P̃(Ỹ0|X))]

Parametric models for P̃(Ỹ0|X ), P̃(X̃ |X , Ỹ0) and R(Ỹ0|X , Ỹ ).

Stochastic Gradient Descent
Sampling on (X , Ỹ , Ỹ0 ∼ R) for EX ,Ỹ ,Ỹ0∼R(·|X ,Ỹ )

[
∇ log p̃(Ỹ |X , Ỹ0)

]
Sampling on (X , Y ) for EX ,Ỹ

[
∇ KL(R(·|X , Ỹ ), P̃(·|X ))

]
if closed formula.

Reparametrization trick for the second term otherwise. . .
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Reparametrization Trick
∇EZ [F (Z )]?

Z = G(ω) with ω ∼ Q(·) fixed −→∇EZ [F (Z )] = ∇Eω[F (G(ω))] = Eω[∇(F ◦ G)(ω)]

Reparametrization Trick
Define a random variable Z as the image by a parametric map G of a random
variable ω of fixed distribution Q.
Most classical case: Gaussian. . .
Allow to compute the derivative the expectation of a function of Z through a
sampling of ω.

Application for ELBO:
Ỹ0 = GR(X , Ỹ , ωR) with ωR ∼ Q(·|X , Ỹ ) a fixed probability law.
Sampling on ω to approximate:
∇EX ,Ỹ ,Ỹ0∼R(·|X ,Ỹ )

[
log p̃(Ỹ0|X ) − log r(Ỹ0|X , Ỹ )

]
= EX ,Ỹ ,ωR ∼Q(·|X ,Ỹ )

[
∇ log p̃(GR(X , Ỹ , ωR)|X ) − ∇ log r(GR(X , Ỹ , ωR)|X , Ỹ )

]
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Variational Auto Encoder

Generation: Ỹ0 ∼ P̃(·|X ) decoder−−−−→ Ỹ ∼ P̃(·|X , Ỹ0))

Training: Y ∼ P(·|X ) encoder−−−−→ Y0 ∼ R(·|X , Y ) decoder−−−−→ Ỹ ∼ P̃(·|X , Y0)

Variational Auto Encoder
Training structure similar to classical autoencoder. . . but matching on distributions
rather than samples.
Encoder interpretation of the approximate posterior R(·|X , Y ).
Implicit low dimension for Y0.
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Latent Variables

ω0 ∼ Q̃0(·|Y ) and Ỹ0 = G0(X , ω0)
ωt+1 ∼ Q̃t+1

(
·|X , Ỹt

)
and Ỹt+1 = Gt+1(X , Ỹt , ωt+1)

Ỹ = ỸT

Latent Variables
Deeper hierachy is possible. . .
ELBO scheme still applicable using decoders Ri

Ri(Ỹi |X , Ỹi+1) ≃ P̃
(
Ỹi |X , Ỹi+1

)
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Energy Based Model and MCMC Simulator

dP̃
(
Ỹ |X

)
∝eu(Ỹ ,X )dλ

−→ ωt+1 ∼ Q̃u
(
·|X , Ỹt

)
and Ỹt+1 = Gu(Y , Ỹt , ωt+1)

Ỹ ≃ lim Ỹt
Explicit conditional density model up to normalizing constant

Z (u, X ) =
∫

eu(X ,y)dλ(y)

Simulation
Several MCMC schemes to simulate the law without knowing Z (u, X )

Estimation
Not so easy as Z (u, X ) depends a lot on u.

MCMC: Monte Carlo Markov Chain 534
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MCMC Simulation - Metropolis-Hastings

ωt+1/2 ∼ Q̃u
(
·|X , Ỹt

)
Ỹt+1/2 = ωt+1/2

ωt+1 =
{

1 with proba αt

0 with proba 1 − αt
Ỹt+1 =

{
Ỹt+1/2 if ωt = 1
Ỹt otherwise

with αt = min

1,
eu(X ,Ỹt+1/2)Q̃u

(
Ỹt |X , Ỹt+1/2

)
eu(X ,Ỹt)Q̃u

(
Ỹt+1/2|X , Ỹt

)


Metropolis Hastings
Most classical algorithm.
Convergence guarantee under reversibility of the proposal.
Main issue is the choice of this proposal Q̃.

Many enhanced versions exist!
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MCMC Simulation - Langevin

ωt+1/2 ∼ N(0, 1) Ỹt+1/2 = Yt + γt∇Ỹ u(X , Ỹt) +
√

2γtωt

ωt+1 =
{

1 with proba αt

0 with proba 1 − αt
Ỹt+1 =

{
Ỹt+1/2 if ωt = 1
Ỹt otherwise

with αt = min

1,
eu(X ,Ỹt+1/2)e−∥Ỹt−Ỹt+1/2−γt∇

Ỹ
u(X ,Ỹt+1/2)∥2/γ2

t

eu(X ,Ỹt)e−∥Ỹt+1/2−Ỹt−γt∇
Ỹ

u(X ,Ỹt)∥2/γ2
t


Langevin

If γt = γ, Metropolis-Hasting algorithm.
With Ỹt+1 = Ỹt+1/2, convergence toward an approximation of the law.
Connection with SGD with decaying αt

Connection with a SDE: dỸ
dt = ∇Ỹ u(X , Ỹ ) +

√
2dBt where Bt is a Brownian

Motion. 536
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EBM Estimation

Y |X ∼ P(·|X ) −→ Ỹ |X ∼ P̃(·|X ) with dP̃(y |X ) = p̃(y |X )dλ ∝ eu(X ,y)dλ

Intractable log-likelihood:
log p̃(ỹ |X ) = u(X , ỹ) − log Z (u, X )

Estimation
Contrastive: simulate some P̃ at each step and use

∇ log p̃(ỹ |X ) = ∇u(X , ỹ) − ∇ log Z (u, X ) = ∇u(X , ỹ) − EP̃

[
∇u(X , Ỹ )

]
Noise contrastive: learn to discriminate W = Y from
W = Y ′ ∼ R(·|X ) ∼ er(X ,y)dλ with the parametric approximation

P(W = Y |X ) ≃ eu(X ,y)

eu(X ,y) + Z̃ (u, X )er(X ,y)

Score based: learn directly s(·|X ) = ∇Ỹ u(X , ·) = ∇Y log p(·|X ).
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Score Based Method

E
[
∥∇Y log p(Y |X ) − s(Y |X )∥2

]
= E

[1
2∥s(Y |X )∥2 + tr ∇Y s(Y |X )

]
+ cst.

Score Based Method
Non trivial formula based on partial integration.
Hard to use in high dimension

Yσ = Y + σϵ −→E
[
∥∇Yσ log pσ(Yσ|X ) − sσ(Yσ|X )∥2

]
= E

[
∥|∇Yσ log pσ(Yσ|X , Y ) − sσ(Yσ|X )∥2

]
+ cst.

Noisy Score
Connection to denoising through Tweedie formula for ϵ = N(0, 1)

E[Y |X , Yσ] = Yσ + σ2∇Yσ log pσ(Yσ|X , Y ) and thus sσ(Yσ|X ) ≃ E[Y |X , Yσ] − Yσ

σ2
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Better Exploration with Annealing and Noisy Score

Ỹ ∼ eu(X ,Y )dλ −→ỸT ∼ e 1
T u(X ,Y )

Annealing
Simulate a sequence of ỸT starting with T large and decaying to 1.

Yσ = Y + σϵ −→E
[
∥∇Yσ log pσ(Yσ|X ) − sσ(Yσ|X )∥2

]
= E

[
∥|∇Yσ log pσ(Yσ|X , Y ) − sσ(Yσ|X )∥2

]
+ cst.

Noisy Score
Simulate a noisy sequence of Ỹσ with σ decaying to 0.
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Noisy Model: Generation and Corruption

Generation: Ỹ0 ∼ N(0, s2
0 ) → ωt ∼ N(0, 1) and Ỹt+1 = Ỹt + γtss2

t
(Ỹt |X ) +

√
2γtωt

Corruption: ωt ∼ N(0, 1) and Yt−1 = Yt + σtωt → Yt |YT ∼ N(YT , s2
t =

∑
t′≥t

σ2
t′)

Noisy Model
Approximate sequential Langevin approach to obtain Ỹ = ỸT ∼ P̃(Y |X ) from
Ỹ0 ∼ N(0, s2

T ).
Reverse construction is a sequence of noisy version Yt (corruption).
Each Yt is easily sampled from Y0 so that the scores us2

t
can be estimated.

Lot of approximations everywhere.
Dependency on X removed from now on for sake of simplicity.

541



Unsupervised Learning,
Generative Learning and More

Diffusion with a Forward Point of View
Forward: ωt ∼ N(0, 1) and Yt+δt = (1 + αtδt)Yt +

√
2βtδtωt

−→dY (t) = α(t)Y (t)dt +
√

2β(t)dB(t)

Forward diffusion from Ỹ (0) ∼ X to Ỹ (T )
Generalization of noisy model:

Y (t)|Y (0) = N
(

Y (0) exp
∫ t

0
α(u)du,

∫ t

0
2β(u) exp

(∫ t

u
α(v)dvdu

))
Reverse: dY (t) = (−2β(t)∇Y log P(Y , t) − α(t)Y (t)) dt +

√
2β(t)dB(t)

−→ ωt ∼ N(0, 1) and Yt−δt = (1 − αtδt)Yt + 2βt∇Y log p(Y , t)δt +
√

2βtδtωt

Reverse diffusion: from Ỹ (T )to Ỹ (0) ∼ X
Allow to sample back in time Yt |YT .
Quite involved derivation. . . but Langevin type scheme starting from YT .
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Noise Conditioned Score and Denoising Diffusion

αt = 0 → Y (t)|Y (0) = N
(

Y (0), 2
∫ t

0
β(u)du

)
Noise Conditioned Score (Variance Exploding)

Direct extension of noisy model.
Better numerical scheme but numerical explosion for Y (t).

(1 + αtδt) =
√

1 − 2βtδt ≃ 1 − βtδt

−→ Y (t)|Y (0) = N
(

Y (0)e−
∫ t

0 β(u)du, 2
(

1 − e−
∫ t

0 β(u)
))

Denoising Diffusion Probabilistic Model (Variance Preserving)
Explicit decay of the dependency on P(Y ) and control on the variance.
Better numerical results.

Scores ∇Y log p(Y , t) estimated using the denoising trick as Y (t)|Y (0) is explicit.
Choice of β(t) has a numerical impact. 543
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Numerical Diffusion and Simulation

YT ∼ N(0, σ2
T )

→ ωt ∼ N(0, 1) and Yt−δt = (1 − αtδt)Yt + 2βts(x , t)δt +
√

2βtδtωt

→ Ỹ = Y0

Reverse indexing with respect to VAE. . .

Numerical Diffusion and Simulation
Start with a centered Gaussian approximation of XT .
Apply a discretized backward diffusion with the estimated score
s(x , t) ≃ ∇Y log p(Y , t)
Use Y0 as a generated sample.

Very efficient in practice.
Better sampling scheme may be possible.
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A Possible Shortcut ?

Forward (SDE): dY (t) = α(t)Y (t)dt +
√

2β(t)dBt

Backward (ODE): dY (t) = (−2β(t)∇Y log P(Y , t) − α(t)Y (t)) dt

Deterministic Reverse Equation
If Y (T ) is initialized with the law resulting from the forward distribution, the
marginal of the reverse diffusion are the right ones.
No claim on the trajectories. . . but irrelevant in the generative setting.
Much faster numerical scheme. . . but less stable.

Stability results on the score estimation error and the numerical scheme exist for
both the stochastic and deterministic case.
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Connection between Diffusion and VAE

Y ∼ P
R(Y1|Y )

GGGGGGGGGGGBFGGGGGGGGGGG

P(Y |Y1)
Y1

R(Y2|Y1)
GGGGGGGGGGGGBFGGGGGGGGGGGG

P(Y1|Y2)
Y2 . . .

R(Yt+1|Yt)
GGGGGGGGGGGGGBFGGGGGGGGGGGGG

P(Yt |Yt+1)
. . . YT−1

R(YT |YT−1)
GGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGG

P(YT−1|YT )
YT ∼ PT

Gen. of Y from YT using P(Yt |Yt+1) with an encoder/forward diff. R(Yt+1|Yt).

Variational Auto-Encoder
PT is chosen as Gaussian.
Both generative P(Yt |Yt+1) and encoder R(Yt+1|Yt) have to be learned.

Approximated Diffusion Model
R(Yt+1|Yt) is known and PT is approximately Gaussian.
Generative P(Yt |Yt+1) has to be learned.
Same algorithm than with Diffusion but different (more flexible?) heuristic.

Denoising trick ≃ an ELBO starting from R(Yt+1|Yt) = R(Yt+1|Yt , Y ). . .
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Another Formula for the Score

∇Y logP(Y |X ) = ∇Y logP(X |Y ) − ∇Y logP(Y )

Classifier version of the score
Classifier: knowledge of P(X |Y ) (reverse problem)
Bayes formula:

P(Y |X ) = P(X |Y )P(Y )
P(X )

Consequence:
∇Y logP(Y |X ) = ∇Y logP(X |Y ) + ∇Y logP(Y )

Leads to
∇Y logP(Y |X ) → (1 − θ)∇Y logP(Y |X ) + θ (∇Y logP(X |Y ) + ∇Y logP(Y ))

Issue: Require two more probabilistic models P(X |Y ) and P(Y ) for the same
goal!
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Guidance

From ∇Y logP(Y |X ) to

γ∇Y logP(X |Y ) + ∇Y logP(Y ) (guidance)

γ∇Y logP(Y |X ) + (1 − γ)∇Y logP(Y ) (classifier-free guidance)

Guidance
Replace the score by

θY |X ∇Y logP(Y |X ) + θX |Y ∇Y logP(X |Y ) + θY ∇Y logP(Y )
Amount to sample from
P(Y |X )θY |X P(X |Y )θX |Y P(Y )θY /Z (X ) = P(X |Y )θX |Y +θY |X P(Y )θY +θY |X /Z ′(X )

Classical choices given above correspond to sample from
P(X |Y )γ P(Y ) /Z (X ) = P(X |Y )γ P(Y ) /Z ′(X )

Better visual result for images for γ > 1!
Raise the question of the target in generative modeling!
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Generative Adversarial Network

ω ∼ Q̃(·|X ) and Ỹ = G(X , ω)
Non density based approach

Can we optimize G without thinking in term of density (or score)?

(X , Y , Z ) =
(X , Y , 1) with proba 1/2

(X , G(X , ω), 0) otherwise
GAN Approach

Can we guess Z with a discriminator D(X , Y ) ?
No if G is perfect!
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GAN Program

max
G

min
D

EX ,Y

[
ℓ(D(X , Y ), Z )

]
= max

G
min

D

(1
2EX ,Y [ℓ(D(X , Y ), 1)] + 1

2Eω[ℓ(D(X , G(X , ω)), 0)]
)

Discrimination
Similar idea than the noise contrastive approach in EBM.
If ℓ is a convexification of the ℓ0/1 loss then the optimal classifier is given by

D(X , Y ) =
{

1 if p(Y |X ) > p̃(Y |X )
0 otherwise.

If ℓ is the log-likelihood
max

G
min

D
EX ,Y

[
ℓ(D(X , Y ), Z )

]
= max

G
log2 −EX

[
JKL1/2(p(·|X ), p̃(·|X ))

]
Direct (approximate) optimization using only samples (with the reparametrization
trick). 551
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Extensions to f Divergences

Df (P, Q) =
∫

f
(p(y)

q(y)

)
q(y)

= supTEY ∼P [T (Y )] − EG∼Q[f ⋆(T (G))]

f -GAN
Optimization of

min
G

sup
T

(EX ,Y [T (Y )] − Eω,X [f ⋆(T (G(X , ω)))])

Direct (approximate) optimization using only samples (with the reparametrization
trick).

Direct extension of the previous scheme.
T is not a discriminator, but there is an explicit link when f (u) = log(u).
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Wasserstein GAN

W (P, Q) = inf
ξ∈π(P,Q)

E(p,q)∼ξ[∥p − q∥]

= 1
K sup∥f ∥L≤KEY ∼P [f (Y )] − EG∼Q[f (G))]

Wasserstein GAN
Optimization of

min
G

sup
∥f ∥L≤1

EX ,Y [f (Y )] − Eω,X [f (G(X , ω))]

Direct (approximate) optimization using only samples (with the reparametrization
trick).

More stability but hard to optimize on all the 1-Lipschitz functions.
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