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Google News

Top Stories

‘Sarah Huckabee Sanders rips CNN, media at heated biefing

A Time Magazine with Trump on the cover hangs i his golf
clubs. s ake.

Google N

IntheNe:

e

Battery

Water heater

Introduction, Error
Estimation, Cross Validation
and AutoML

Electrical vehicle

Zhigiang Wan et al.

theverge.com

/

Sources: MyCarDoesWhat.org
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Machine Learning

Data ——>
Rules ——)

Data ——>
Answers ——)

A definition by Tom Mitchell

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured

by P, improves with experience E.

Introduction, Error
Estimation, Cross Validation
and AutoML

Classical
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Programming swers
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Learning
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ObJeCt DeteCtIOn Introduction, Error

Estimation, Cross Validation
and AutoML

A detection algorithm:

@ Task: say if an object is present or not in the image
o Performance: number of errors

o Experience: set of previously seen labeled images

20
o
r
©
=
43
o
o
©
Q
>
=
@
e
5
[}
n

~



Artlde C I UStel’I ng Introduction, Error

Estimation, Cross Validation
and AutoML ”

= Google News Q

Top Stories

An article clustering algorithm:

@ Task: group articles corresponding to the same news

o Performance: quality of the clusters

o Experience: set of articles

Source: theverge.com
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Smal't Grld COI’]tFOler Introduction, Error

Estimation, Cross Validation
and AutoML

Battery Electrical vehicle

A controler in its sensors in a home smart grid:

@ Task: control the devices

o Performance: energy costs
o Experience:

e previous days
e current environment and performed actions
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Three Kinds of Learning

Mearingful
compression

Big dat

Visvalisation

Recommended

Systems ®

Targetted
Marketing ®

Unsupervised Learning

@ Task:
Clustering/DR/Generative

@ Performance:
Quality
@ Experience:

Raw dataset
(No Ground Truth)

.
Customer
Segmentation

Real-Time Decisions @

o Elicitation  Fraud

Derection @

OIMENSIONALY
REDUCTION

UNSUPERVISED
LEARNING

SUPERVISED
LEARNING

REINFORCEMNET

® Robot Novigation

GameAl ® ® Skill Aquisition

Task:
Prediction/Classification
Performance:

Average error
Experience:

Good Predictions
(Ground Truth)

@ Refenfion

Introduction, Error
Estimation, Cross Validation
and AutoML

® Diagnostics

o Forecasting
@ Predictions

® Process
Optimization
.
New Insights

Supervised Learning Reinforcement Learning

@ Task:
Actions

@ Performance:
Total reward

@ Experience:
Reward from env.
(Interact. with env.)

éource BCG

@ Timing: Offline/Batch (learning from past data) vs Online (continuous learning)
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SU pel’Vised a nd U nSU perVISGd Introduction, Error

Estimation, Cross Validation
and AutoML

Supervised Learning (Imitation)

@ Goal: Learn a function f predicting a variable Y from an individual X.

e Data: Learning set with labeled examples (X;, Y)

Assumption: Future data behaves as past datal
Predicting is not explaining!
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Supervised and Unsupervised Introduction, Error

Estimation, Cross Validation
and AutoML

Supervised Learning (Imitation)
@ Goal: Learn a function f predicting a variable Y from an individual X.
e Data: Learning set with labeled examples (X;, Y)

@ Assumption: Future data behaves as past datal
@ Predicting is not explaining!
Unsupervised Learning (Structure Discovery)

@ Goal: Discover a structure within a set of individuals (X;).
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e Data: Learning set with unlabeled examples (X;)
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@ Unsupervised learning is not a well-posed setting. ..



Machine Can and CannOt Introduction, Error

Estimation, Cross Validation
and AutoML

Jin P(‘O g -n(snc)

X-4x+5<5n~ b
A ("o
X-4x <0 i

Machine Cannot

Forecast (Prediction using the past) @ Predict something never seen before
Detect expected changes @ Detect any new behaviour
Memorize/Reproduce @ Create something brand new

Take a decision very quickly Understand the world
Get smart really fast
Go beyond their task

Kill all humans

Learn from huge dataset

Optimize a single task

®© 6 6 6 o o o

(*]
(]
(]
Replace/Help some humans °

@ Some progresses but still very far from the singularity. . .
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Machine Leal’nlng Introduction, Error

Estimation, Cross Validation
and AutoML

scikit-learn
algorithm cheat-sheet

classification

dimensionality
reduction

Machine Learning Methods

@ Huge catalog of methods,

@ Need to define the performance,
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@ Numerous tricks: feature design, hyperparameter selection. . .
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Under and OVGI’ Flttlng Introduction, Error

Estimation, Cross Validation
and AutoML ’

Size Size Size
6o+ Bix Bo* Brx + Oyx2 Bo* Bix + Byx2 + Byx2+ Byx2

High bias (underfit) High variance
(overfit) o6

X X
X X
X X X
X "
X XXX XX X
XX X XX X
Under-fitting Appropriate-fitting Over-fitting
(too simple to (forcefitting--too
explain the variance) good to be'true) g

Finding the Right Complexity

@ What is best?

o A simple model that is stable but false? (oversimplification)
e A very complex model that could be correct but is unstable? (conspiracy theory)

@ Neither of them: tradeoff that depends on the dataset.

Source: geeksforgeeks.com
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Machine Leal’nlng Pipellne Introduction, Error

Estimation, Cross Validation
and AutoML

TRAINING

model training

Training
Set

Machine
Learning

Validation
Set

Raw data &
target

hyperparameters tuning
model selection

evaluation

Test Set

PREDICTING [

Feature .
New data Engil ing Predict Target

Learning pipeline

@ Test and compare models.

Source: CDiscount

@ Deployment pipeline is different!
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Data Science # Machine Learning Introduction, Error

Estimation, Cross Validation
and AutoML

TRY AGAIN

LEGAL NDERSTAND LEI:N
..... /\ )
YES' ACCESS
asitcat

QUESTION ALMOST
e DONE
» butryseain

Main DS difficulties

e Figuring out the problem, g
e Formalizing it, f
@ Storing and accessing the data, 2
@ Deploying the solution, E
o Not (always) the Machine Learning part! "

[y
=)}



MAP 541 - ML 2 - Goal Introduction, Error

Estimation, Cross Validation
and AutoML

@ Complete your knowledge on classical supervised and non supervised method.
@ Introduce you to recommender systems and reinforcement learning.

@ Give you some basic idea on how to scale and deploy an algorithm.

@ A practical lab (5 pt)
@ A project (15 pt)

17



MAP 541 - Team
@ Erwan Le Pennec

it i ] Erwan.Le-Pennec@polytechnique.edu

A,
@ Marine Le Morvan

marine.le-morvan@polytechnique.edu

| S
@ Edouard Oyallon

e edouard.oyallon@cnrs.fr

b

@ Kevin Scaman

kevin.scaman@gmail.com

Introduction, Error
Estimation, Cross Validation
and AutoML
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MAP 541 - Schedule

Introduction, Error
Estimation, Cross Validation
and AutoML

7 Lectures (9h30-12h30)
@ Thu. 19/01: Introduction, Error Estimation, Cross Validation and Auto ML
@ Wed. 25/01: A Review of the Methods seen so far
@ Wed. 01/02: Trees and Ensemble Methods
@ Wed. 08/02: Unsupervised Learning: Beyond PCA and k-means
@ Wed. 15/02: Recommender System and Matrix Factorization
@ Wed. 22/02: Introduction to Reinforcement Learning
@ Tue. 08/03: At Scale Machine Learning and Deployment

Mon. 03/04: Deadline for the project
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O Utl | ne Introduction, Error

Estimation, Cross Validation
and AutoML

o Introduction, Error Estimation, Cross Validation and
AutoML

@ Supervised Learning
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Supervised Learning Introduction, Error

Estimation, Cross Validation

and Aptol
Supervised Learning Framework

@ Input measurement X € X

o Output measurement Y € ).
o (X,Y) ~ P with P unknown.
@ Training data : D, = {(X{, Y1),...,(X,, Ya)} (i.id. ~P)

e Often
o XeRYand Y € {—1,1} (classification)
o or X € RY and Y € R (regression).
@ A predictor is a function in F = {f : X — ) meas.}

e Construct a good predictor f from the training data.

@ Need to specify the meaning of good.
o Classification and regression are almost the same problem! -



Loss and Probabilistic Framework Introduction, Error

Estimation, Cross Validation
and AutoML

Loss function for a generic predictor

@ Loss function: /(Y,f(X)) measures the goodness of the prediction of Y by f(X)
@ Examples:

o 0/1loss: £(Y,f(X)) = Lyxe(x)

o Quadratic loss: (Y, f(X)) =|Y — f(X)|?

@ Risk measured as the average loss for a new couple:
R(f) = Ex,v)~p[4(Y, f(X))]
@ Examples:
o 0/1 loss: E[(Y,f(X))] = (Y f(X))
e Quadratic loss: E[((Y,f(X))] =E[|Y — f(X)|]

e Beware: As f depends on D,,, R(f) is a random variable!
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BeSt SOlUtIOﬂ Introduction, Error

Estimation, Cross Validation
and AutoML

@ The best solution f* (which is independent of D,) is
f* = arg )rrng(f) = arg m|n ]E[E(Y f(X))] = arg m|n Ex [Ey|X[E(Y f(X ))]}
€

Bayes Predictor (explicit solution)

e In binary classification with 0 — 1 loss:
+1 if P(Y=+1X)>P(Y=-1X)
(X) = < P(Y =+1|X) >1/2
—1 otherwise

o In regression with the quadratic loss
F(X) = E[Y|X]

Issue: Solution requires to know E[Y|X] for all values of X!
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Goal Introduction, Error

Estimation, Cross Validation

Machine Learning

@ Learn a rule to construct a predictor f € F from the training data D, s.t. the

~

risk R(f) is small on average or with high probability with respect to D,,.

@ In practice, the rule should be an algorithm!

Canonical example: Empirical Risk Minimizer
@ One restricts f to a subset of functions S = {fp,0 € O}
@ One replaces the minimization of the average loss by the minimization of the
empirical loss

N i
f=f=argmin— ) LY}, fp(X;
6 ffeeen,;( 5(X;))

@ Examples:

e Linear regression
e Linear classification with

S = {x > sign{x" 8+ 8O0} /3 e RY BO c R}

25



Optical Character Recognition Introduction, Error

Estimation, Cross Validation
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Reading a ZIP code on an envelop
e Task: give a number from an image.

e Experience: X = image / Y = corresponding number.
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@ Performance measure: error rate.
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BiO | O Introduction, Error
gy

Estimation, Cross Validation
g () and AutoML
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Task: Predict (unknown) interactions between proteins.
Experience: X = pair of proteins / Y = existence or no of interaction.

(]
@ Performance measure: error rate.
o

Source: Unknown

Numerous similar questions in bio(informatics): genomic,. ..
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DeteCtlon Introduction, Error

Estimation, Cross Validation

New Algorithms for Complex Data and AutoML
New Mexico, USA , 2015

Face detection

@ Task: Detect the position of faces in an image

Different setting?

Reformulation as a supervised learning problem.

Task: Detect the presence of faces at several positions and scales.
Experience: X = sub image / Y = presence or no of a face. ..
Performance measure: error rate.

Lots of detections in an image: post processing required. . .
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Performance measure: box precision.
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Euca |ythS Introduction, Error

Estimation, Cross Validation
and AutoML

Height estimation

Simple (and classical) dataset.

Task: predict the height from circumference.
Experience: X = circumference /
Y = height.

Performance measure: means squared error.

29



Eucalyptus

Dataset - P.A. Cornillon

Introduction, Error
Estimation, Cross Validation
and AutoML

40 50 60 70
circ

@ Real dataset of 1429 eucalyptus obtained by P.A. Cornillon:
e X: circumference / Y: height

30



Euca |ythS Introduction, Error

30- Estimation, Cross Validation
and AutoML

circ

Dataset - P.A. Cornillon

@ Real dataset of 1429 eucalyptus obtained by P.A. Cornillon:
e X: circumference / Y: height

30



Euca |ythS Introduction, Error

30- Estimation, Cross Validation
and AutoML

circ

Dataset - P.A. Cornillon

@ Real dataset of 1429 eucalyptus obtained by P.A. Cornillon:
e X: circumference / Y: height

30



Euca |ythS Introduction, Error

30- Estimation, Cross Validation
and AutoML

circ

Dataset - P.A. Cornillon

@ Real dataset of 1429 eucalyptus obtained by P.A. Cornillon:
e X: circumference, block, clone / Y: height

30



Under-fitting / Over-fitting Issue

ho(z) = g(0g + bhxy + Oax2) g(0y + 0171 + 212 9(6o '|2' 0z + 92_)12%
( g = sigmoid function) +632F + 0473 +03x7T0 + 042723
+05I1.I,'2)
UNDERFITTING OVERFITTING

(high variance)

(high bias)

Model Complexity Dilemna
@ What is best a simple or a complex model?
@ Too simple to be good? Too complex to be learned?

Introduction, Error
Estimation, Cross Validation

and AutoML

+O0s22x3 + Osaias + ...

Source: A. Ng
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Under_fltting / Ovel’—flttlng ISSUC Introduction, Error

Estimation, Cross Validation
and AutoML

High Bias Low Bias
Low Variance High Variance
S

Prediction Error

Test error
Training error

Underfitting Good models Overfitting

Low Complexity of the model High

Under-fitting / Over-fitting

e Under-fitting: simple model are too simple.
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@ Over-fitting: complex model are too specific to the training set.
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Bias-Variance Dilemma

@ General setting:
F = {measurable functions X — Y}
Best solution: f* = argmin,. » R(f)
Class & C F of functions

(]
]
]
o Ideal target in S: & = argmin,cs R(f)

e Estimate in S: ?3 obtained with some procedure

Approximation error and estimation error (Bias/Variance)

R(fs) — R(f*) = R(£) — R(F*) + R(fs) — R(£)

Approximation error Estimation error

@ Approx. error can be large if the model S is not suitable.

@ Estimation error can be large if the model is complex.

Agnostic approach

@ No assumption (so far) on the law of (X, Y).

33



Under_fltting / Ovel’—flttlng ISSUG Introduction, Error

Estimation, Cross Validation
and AutoML

Underfit
(High bias)

Generalization
error

Error

Overfit
(High

variance)

Model complexity
@ Different behavior for different model complexity

e Low complexity model are easily learned but the approximation error (bias) may
be large (Under-fit).
@ High complexity model may contain a good ideal target but the estimation error
(variance) can be large (Over-fit)
Bias-variance trade-off <= avoid overfitting and underfitting J

@ Rk: Better to think in term of method (including feature engineering and specific
algorithm) rather than only of model.
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Theoretical Analysis Introduction, Error

Estimation, Cross Validation
and AutoML

Statistical Learning Analysis

@ Error decomposition:
R(fs) — R(f*) = R(£5) — R(f") + R(fs) — R(fs)
Approximation error Estimation error

Bound on the approximation term: approximation theory.

Probabilistic bound on the estimation term: probability theory!

Goal: Agnostic bounds, i.e. bounds that do not require assumptions on P!
(Statistical Learning?)

Often need mild assumptions on ... (Nonparametric Statistics?)

35



Binary Classification Loss Issue Introduction, Error

Estimation, Cross Validation
and AutoML

Empirical Risk Minimizer

n
f = argmin ! Zﬁo/l(Y;, f(X;))
fes n i=1

e Classification loss: ¢%/1(y, f(x)) = 1, (%)
@ Not convex and not smooth!

36



PI’ObablllstIC P0|nt Of VIeW Introduction, Error

Estimation, Cross Validation

Ideal Solution and Estimation and AutoML

@ The best solution f* (which is independent of D) is
f*=arg I';nI]r_lR(f) = arg m|n E[E(Y f(X))] = arg m|n Ex {EY‘X[E(Y f(x ))]]
€

Bayes Predictor (explicit solution)

In binary classification with 0 — 1 loss:
1 if P(Y=+1|X)>P(Y =-1|X
iy = [T B(Y = 11X) 2 B X)
—1 otherwise

@ Issue: Solution requires to know E[Y|X] for all values of X!
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@ Solution: Replace it by an estimate.
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Optimization Point of View Introduction, Error
Estimation, Cross Validation
Loss Convexification

and AutoML

E 05 1 18

0
bl

Minimizer of the risk

~ 1<
f = argmin = Zﬁo/l(yiv f(X5))
fes N4

@ Issue: Classification loss is not convex or smooth.

@ Solution: Replace it by a convex majorant.

38



Probabilistic and Optimization Framework Introduction, Error

Estimation, Cross Validation

How to find a good function f with a small risk and AutoML
R(f) = E[(Y, F(X))] 7
Canonical approach: fs = argmingcs 2 271 £(Y;, f(X;))

Problems
@ How to choose §?

@ How to compute the minimization?

A Probabilistic Point of View

Solution: For X, estimate Y|X plug this estimate in the Bayes classifier:
(Generalized) Linear Models, Kernel methods, k-nn, Naive Bayes, Tree,

Bagging. . .

An Optimization Point of View

Solution: If necessary replace the loss ¢ by an upper bound Z and minimize the
empirical loss: SVR, SVM, Neural Network, Tree, Boosting. . .

39



O Utl | ne Introduction, Error

Estimation, Cross Validation
and AutoML

o Introduction, Error Estimation, Cross Validation and
AutoML

@ Risk Estimation

40



Exa m ple TWOClaSS Dataset Introduction, Error

Estimation, Cross Validation

Synthetic Dataset

e Two features/covariates.

@ Two classes.

o Dataset from Applied Predictive Modeling, M. Kuhn and K. Johnson, Springer
@ Numerical experiments with R and the {caret} package.

-
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P

o, %
® L.
@ PYY L classes
P o0 ® \"”&C\; ® ou
o P o
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Example: Linear Discrimination

Introduction, Error
Estimation, Cross Validation

Aand AdosalAl
Logistic
Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ ©  classes
%04 . Class1 %0.4- > @ Classi
& B class2 £ @ Class2
02

02 0.4 06 0.2 04 06
PredictorA PredictorA
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Example: More Complex Model

Introduction, Error
Estimation, Cross Validation

and Aosabll
Naive Bayes with kernel density estimates
Decision region Decision boundary
w
O
0.8 06 > ® |
Cg classes % ’ classes
% 0.4 . Class1 % 0.4- @ Classi
& B class2 £ @ Class2
0.2

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA
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Example: KNN

Introduction, Error

Estimation, Cross Validation
Aand AdosalAl

k-NN with k=1
Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ ©  classes
% 0.4 . Class1 % 0.4~ > @ Classi
& B class2 £ @ Class2
02 02-
0.2 0.4 06 0.2 DIA DI.B
PredictorA PredictorA
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Example: KNN

Introduction, Error

Estimation, Cross Validation
Aand AdosalAl

k-NN with k=5
Decision region Decision boundary
w
8]
06 06- ® @
Cg classes % ’ ©  classes
% 0.4 . Class1 % 0.4~ > @ Classi
& B class2 £ @ Class2
02 02-
0.2 0.4 06 0.2 DIA DI.B
PredictorA PredictorA
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Example: KNN

Introduction, Error

Estimation, Cross Validation
Aand AdosalAl

k-NN with k=9
Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ ©  classes
% 0.4 . Class1 % 0.4- > @ Classi
& B class2 £ @ Class2
02 02-
0.2 0.4 06 0.2 DIA DI.B
PredictorA PredictorA
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Example: KNN

Introduction, Error

Estimation, Cross Validation
Aand AdosalAl

k-NN with k=13
Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ ©  classes
% 0.4 . Class1 % 0.4 > @ Classi
& B class2 £ @ Class2
02 02-
0.2 0.4 06 0.2 DIA DI.B
PredictorA PredictorA

44



Example: KNN

Introduction, Error

Estimation, Cross Validation
Aand AdosalAl

k-NN with k=17
Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ ©  classes
% 0.4 . Class1 % 0.4 > @ Classi
& B class2 £ @ Class2
02 02-
0.2 0.4 06 0.2 DIA DI.B
PredictorA PredictorA
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Example: KNN

k-NN with k=21

PredictorB

=
=3

=
IS

=
[}

Decision region

02 0.4
PredictorA

classes

B ciasst
B class2

PredictorB

Decision boundary

02

0.4
PredictorA

06

Introduction, Error

Estimation, Cross Validation
Aand AdosalAl

classes
@ Classi
) Class2
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Example: KNN

Introduction, Error

Estimation, Cross Validation
Aand AdosalAl

k-NN with k=25
Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ ©  classes
% 0.4 . Class1 % 0.4+, > @ Classi
& B class2 £ @ Class2
02 02-
0.2 0.4 06 0.2 DIA ’ DI.B
PredictorA PredictorA

44



Example: KNN

k-NN with k=29

PredictorB

=
=3

=
IS

=
[}

Decision region

02 0.4
PredictorA

classes

B ciasst
B class2

PredictorB

06-

0.4~

02-

Decision boundary

®

02

04
PredictorA

N 1
06

Introduction, Error

Estimation, Cross Validation
Aand AdosalAl

classes

@ Classi
) Class2
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Example: KNN

k-NN with k=33

PredictorB

=
=3

=
IS

=
[}

Decision region

02 0.4
PredictorA

classes

B ciasst
B class2

PredictorB

06-

04

02-

Decision boundary

®

02

04
PredictorA

'
06

Introduction, Error

Estimation, Cross Validation
Aand AdosalAl

classes

@ Classi
) Class2
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Example: KNN

Introduction, Error

Estimation, Cross Validation
Aand AdosalAl

k-NN with k=37
Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ ©  classes
% 0.4 . Class1 % 0.4+ > @ Classi
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Example: KNN
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Example: KNN

k-NN with k=53
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Example: KNN

k-NN with k=61
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Example: KNN

k-NN with k=69
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Example: KNN

k-NN with k=77

PredictorB

=
=3

=
IS

=
[}

Decision region

02 0.4
PredictorA

classes

B ciasst
B class2

PredictorB

06-

04-

02-

Decision boundary

02

®

04
PredictorA

'
06

Introduction, Error

Estimation, Cross Validation
Aand AdosalAl

classes

@ Classi
) Class2

44



Example: KNN

k-NN with k=85
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Example: KNN

k-NN with k=101
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Example: KNN

k-NN with k=109
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Example: KNN

k-NN with k=117
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Example: KNN

k-NN with k=125

PredictorB

=
=3

=
IS

=
[}

Decision region

02 0.4
PredictorA

classes

B ciasst
B class2

PredictorB

06-

04-

02-

Decision boundary

02

®

04
PredictorA

'
06

Introduction, Error

Estimation, Cross Validation
Aand AdosalAl

classes

@ Classi
) Class2

44



Example: KNN

k-NN with k=133
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Example: KNN

k-NN with k=141
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Example: KNN

k-NN with k=149
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Example: KNN

k-NN with k=157
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Example: KNN

k-NN with k=165
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Example: KNN

k-NN with k=173
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Example: KNN

k-NN with k=181
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Example: KNN
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Example: KNN
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Training Risk Issue

Introduction, Error
Estimation, Cross Validation
and AutoML

Underfit

Generalization
High bi
( ' IaS) error

Error

Overfit
(High
variance)

Training error

Model complexity

Risk behaviour

@ Learning/training risk (empirical risk on the learning/training set) decays when
the complexity of the method increases.

@ Quite different behavior when the risk is computed on new observations
(generalization risk).

@ Overfit for complex methods: parameters learned are too specific to the learning
set!

@ General situation! (Think of polynomial fit...)

@ Need to use a different criterion than the training risk!
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Risk Estimation vs Method Selection Introduction, Error

Estimation, Cross Validation
Auiol]

Predictor Risk Estimation
@ Goal: Given a predictor f assess its quality.

@ Method: Hold-out risk computation (/ Empirical risk correction).
@ Usage: Compute an estimate of the risk of a selected f using a test set to be
used to monitor it in the future.

@ Basic block very well understood.

Method Selection
@ Goal: Given a ML method assess its quality.
@ Method: Cross Validation (/ Empirical risk correction)

o Usage: Compute risk estimates for several ML methods using
training/validation sets to choose the most promising one.

@ Estimates can be pointwise or better intervals.
@ Multiple test issues in method selection.
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Cross Validation and Empirical Risk Correction Introduction, Error

Estimation, Cross Validation
and AutoML

Two Approaches

@ Cross validation: Use empirical risk criterion but on independent data, very
efficient (and almost always used in practice!) but slightly biased as its target uses
only a fraction of the data.

@ Correction approach: use empirical risk criterion but correct it with a term
increasing with the complexity of S
Ro(fs) = Ra(fs) + cor(S)
and choose the method with the smallest corrected risk.

Which loss to use?
@ The loss used in the risk: most natural!

@ The loss used to estimate 0: penalized estimation!

@ Other performance measure can be used.
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C I’OSS Va | id atIO n Introduction, Error

Estimation, Cross Validation

Purpose Modeling Performance and AutoML
Resample
< -m-mmeemsmmmeeeeeooo---- Random Data Groupings -------------===-------- >
e Very simple idea: use a second learning/verification set to compute a verification

risk.
o Sufficient to remove the dependency issue!
@ Implicit random design setting. . .

Cross Validation
@ Use (1 — €) x n observations to train and € x n to verify!

@ Possible issues:
e Validation for a learning set of size (1 — ¢) X n instead of n ?
o Unstable risk estimate if en is too small 7 )

@ Most classical variations:
e Hold Out,
e Leave One Out,
e V-fold cross validation.
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HOld OUt Intrloduc?tion, Error o

Principle

@ Split the dataset D in 2 sets Dirain and Diest 0f size n X (1 —¢) and n X €.
o Learn £HO from the subset Dypain.
@ Compute the empirical risk on the subset Dieg::

LY v o))

RHO(?HO) =
(X;,Yi)EDxest

Predictor Risk Estimation

o Use FHO as predictor.
o Use RHMO(fHO) as an estimate of the risk of this estimator.

Method Selection by Cross Validation

e Compute R,,HO(?SHO) for all the considered methods,
@ Select the method with the smallest CV risk,
@ Reestimate the ?5 with all the data. 49



HOld OUt Intrloduc?tion, Error o

Principle

@ Split the dataset D in 2 sets Dirain and Diest 0f size n X (1 —¢) and n X €.
o Learn £HO from the subset Dypain.
@ Compute the empirical risk on the subset Dieg::

LY v o))

RHO(?HO) =
n
ne (X;,Yi)EDxest

@ Only possible setting for risk estimation.

Hold Out Limitation for Method Selection
@ Biased toward simpler method as the estimation does not use all the data initially.

e Learning variability of RHO(£HO) not taken into account.
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V—fOld CrOSS Valld atlon I - Introduction, Error

Estimation, Cross Validation
and AutoML

Principle
@ Split the dataset D in V sets D, of almost equals size.
@ Forve{l, . 6V}
o Learn £~V from the dataset D minus the set D,.
e Compute the empirical risk:

—V(T—Vv\ _ i - T—v
R == D UYL (X)
@ Compute the average empirical risk:

@ Estimation of the quality of a method not of a given predictor.
@ Leave One Qut : V = n.
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V—fOld CrOSS Valld atlon Introduction, Error

Estimation, Cross Validation
A

Analysis (when n is a multiple of V)

~

@ The R,Y(f~") are identically distributed variable but are not independent!

@ Consequence:
E[RSY(F)| = E[R;"(F™)]

Var {RSV(?)} = %Var {”R;V(?_V)}

Average risk for a sample of size (1 — 4)n.

Variance term much more complex to analyze!

Fine analysis shows that the larger V the better. ..

Accuracy/Speed tradeoff: V =5 or V =10...
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Linear Regression and Leave One Out Introduction, Error

Estimation, Cross Validation
and AutoML

@ Leave One Out = V fold for V = n: very expensive in general.

A fast LOO formula for the linear regression

@ Prop: for the least squares linear regression,
f(X;) — hiY;
1— hj
with hj; the ith diagonal coefficient of the hat (projection) matrix.

(X)) =

@ Proof based on linear algebra!
@ Leads to a fast formula for LOO:
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Cross Validation and Confidence Interval Introduction, Error

Estimation, Cross Validation

@ How to replace pointwise estimation by a confidence interval? and AutoML
@ Can we use the variability of the CV estimates?
o Negative result: No unbiased estimate of the variance!

Gaussian Interval (Comparison of the means and ~ indep.)

@ Compute the empirical variance and divide it by the number of folds to construct
an asymptotic Gaussian confidence interval,

@ Select the simplest model whose value falls into the confidence interval of the
model having the smallest CV risk.

PAC approach (Quantile, ~ indep. and small risk estim. error)

e Compute the raw medians (or a larger raw quantiles)

@ Select the model having the smallest quantiles to ensure a small risk with high
probability.

@ Always reestimate the chosen model with all the data.

@ To obtain an unbiased risk estimate of the final predictor: hold out risk on

53

untouched test data.
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Example: KNN (k = 61 using cross-validation)

k-NN with k=61
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BOOtSt ra p Introduction, Error

Estimation, Cross Validation
et [l [x e x = x]x] and AutoML
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Risk Estimation and Bootstrap

@ Bootstrap train/test splitting:
e Draw a bootstrap sample Dﬂai“ of size n (drawn from the original data with
replacement) as training set.
o Use the remaining samples to test DIt = D \ Diran,
e On average .632n distinct samples to train and .368n samples to test.

@ Basic bootstrap strategy:

o Learn f, from D2,

e Compute a risk estimate on the test:
A 1 ~
Ros(fs) = ey > Ui h(X)
b (X,,Y:)eDss

@ Looks similar to a 2/3 train and 1/3 test holdout!
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Bootstrap

Introduction, Error

Estimation, Cross Validation
N AT P A A Y EA and AutoML

Repeated Bootstrap Risk Estimation

o Compute several bootstrap risks R, b(?b) and average them

RBoot(f Z Rn b

@ Pessimistic (but stable) estimate of the r|sk as only .632n samples are used to
train.

@ Bootstrap predictions can be used to assess of the stability!
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BOOtSt ra p Introduction, Error

Estimation, Cross Validation
N AT P A A Y EA and AutoML

Corrected Bootstrap Risk Estimation

@ The training risk is an optimistic risk estimate:

N 1 ~
R”(fb) = ’Dtrain‘ Z 6(3/17 fb(il))
b (K“ y’,)epzrain

@ Combine both estimate for every b:
R,b(fb) = WRn,b(fb) = (1 — w)Rn(fb)
@ Choices for w:

e .632 rule: set w = .632 . . .
o 632+ rule: set w = .632/(1 — .368R) with R = (Ryb(F) — Ru($))/(7 — Ra())
where  is the risk of a predictor trained on the n? decoupled data samples (X, Y;).
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@ Works quite well in practice but heuristic justification not obvious.
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Tl’a | n /Va | id atiO n/TeSt [ Original set | Introduction, Error

| Estimation, Cross Validation
and AutoML

[ Training set [ Testset

‘ Training set ‘ Validation set | Test set |

4

v
\U

@ Selection Bias Issue:
o After method selection, the cross validation is biased.
e Furthermore, it qualifies the method and not the final predictor.

o Need to (re)estimate the risk of the final predictor.
(Train/Validation)/Test strategy

@ Split the dataset in two a (Train/Validation) and Test.

@ Use CV with the (Train/Validation) to select a method.

@ Train this method on (Train/Validation) to obtain a single predictor.

o Estimate the performance of this predictor on Test.
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@ Every choice made from the data is part of the method!

o1
g



RISk CorreCtiO n Introduction, Error

Estimation, Cross Validation
and AutoML

@ Empirical loss of an estimator computed on the dataset used to chose it is biased!

@ Empirical loss is an optimistic estimate of the true loss.

Risk Correction Heuristic
@ Estimate an upper bound of this optimism for a given family.

@ Correct the empirical loss by adding this upper bound.

@ Rk: Finding such an upper bound can be complicated!

@ Correction often called a penalty.
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Penallzatlon Introduction, Error

Estimation, Cross Validation
Auiol]

Penalized Loss

@ Minimization of
1 n
argmin = Y (Y;, f(X;)) + pen(6)
gco N i=1
where pen(0) is a risk correction (penalty).

@ Upper bound of the optimism of the empirical loss

@ Depends on the loss and the framework!

Instantiation

. : __nd 2
e Mallows Cp: Least Squares with pen(f) = 2907

@ AIC Heuristics: Maximum Likelihood with pen(§) = ¢

@ BIC Heuristics: Maximum Likelohood with pen(f) = log(n)¢

n-

@ Structural Risk Minimization: Pred. loss and clever penalty.
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O Utl | ne Introduction, Error

Estimation, Cross Validation
and AutoML

o Introduction, Error Estimation, Cross Validation and
AutoML

@ Cross Validation and Test
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Comparison of Two Means Introduction, Error

Estimation, Cross Validation

e Setting: r.v. e,-(l) with 1 </ < n;and / € {1,2} and their means

FOEER QWO
niz

@ Question: are the means e(/) statistically different?

Classical i.i.d setting

O]

@ Assumption: ¢; ’ are i.i.d. for each /.

o Test formulation: Can we reject the null hypothesis that E{e(l)} = E[e(z)}?

@ Methods:

o Gaussian (Student) test using asymptotic normality of a mean.
e Non-parametric permutation test.

@ Gaussian approach is linked to confidence intervals.
@ The larger n; the smaller the confidence intervals.
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Comparison of Two Means Introduction, Error

Estimation, Cross Validation
and AutoML

Non i.i.d. case

o Assumption: e,-(I) are i.d. for each / but not necessarily independent.

@ Test formulation: Can we reject the null hypothesis that E{e(l)} = E{e@)}?
e Methods:

o Gaussian (Student) test using asymptotic normality of a mean but variance is hard
to estimate.
e Non-parametric permutation test but no confidence intervals.

Setting for Cross Validation (other than holdout).

@ Much more complicated than the i.i.d. case
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Comparison of Several Means Introduction, Error

Estimation, Cross Validation
and AutolVl

Several means

@ Assumption: e,-(l)

@ Tests formulation:

o Can we reject the null hypothesis that the E[e(’)] are different?
o Is the smaller mean statistically smaller than the second one?

Methods:
o Gaussian (Student) test using asymptotic normality of a mean with multiple tests
correction.
e Non-parametric permutation test but no confidence intervals.

are i.d. for each / but not necessarily independent.

Setting for Cross Validation (other than holdout).
The more models one compares:

e the larger the confidence intervals

e the most probable the best model is a lucky winner

Justify the fallback to the simplest model that could be the best one.
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PAC ApproaCh Introduction, Error

Estimation, Cross Validation
and AutoML

CV Risk, Methods and Predictors
@ Cross-Validation risk: estimate of the average risk of a ML method.

@ No risk bound on the predictor obtained in practice.

Probabibly-Approximately-Correct (PAC) Approach
@ Replace the control on the average risk by a probabilistic bound
P(E[(Y,F(X))| > R) <e

@ Requires estimating quantiles of the risk. 64



Cross Validation and Confidence Interval Introduction, Error

Estimation, Cross Validation

@ How to replace pointwise estimation by a confidence interval? and AutoML
@ Can we use the variability of the CV estimates?
o Negative result: No unbiased estimate of the variance!

Gaussian Interval (Comparison of the means and ~ indep.)

@ Compute the empirical variance and divide it by the number of folds to construct
an asymptotic Gaussian confidence interval,

@ Select the simplest model whose value falls into the confidence interval of the
model having the smallest CV risk.

PAC approach (Quantile, ~ indep. and small risk estim. error)

e Compute the raw medians (or a larger raw quantiles)

@ Select the model having the smallest quantiles to ensure a small risk with high
probability.

@ Always reestimate the chosen model with all the data.

@ To obtain an unbiased risk estimate of the final predictor: hold out risk on

65

untouched test data.
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O Utl | ne Introduction, Error

Estimation, Cross Validation
and AutoML

o Introduction, Error Estimation, Cross Validation and
AutoML

@ Cross Validation and Weights
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Unbalanced and Rebalanced Dataset Introduction, Error

Estimation, Cross Validation
and AutoML

Unbalanced Class
@ Setting: One of the class is much more present than the other.

o lIssue: Classifier too attracted by the majority class!

Rebalanced Dataset

e Setting: Class proportions are different in the training and testing set (stratified
sampling)
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@ Issue: Training risks are not estimate of testing risks.
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Resampllng Stl’ategies Introduction, Error

Estimation, Cross Validation
and AutoML

Sampling: Rebalancing

the dataset Imbalanced Data

Under-sampling Over-sampling

Resampling

| ¥

@ Modify the training dataset so that the classes are more balanced.
@ Two flavors:

e Sub-sampling which spoils data,

o Over-sampling which needs to create new examples.

@ Issues: Training data is not anymore representative of testing data
e Hard to do it right!
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Resa m pl | ng EfFeCt Introduction, Error

Estimation, Cross Validation

Testing
@ Testing class prob.: (k) @ Training class prob.: 7 (k)
o Testing risk target: @ Training risk target:
Ex [L(Y, F(X)] = Er [E(Y, £(X))] =
Znt YE[L(Y, £(X))|Y = K] Zm, JE[(Y, F(X))|Y = K]

Implicit Testing Risk Using the Training One

@ Amounts to use a weighted loss:
Enr, [O(Y, f(X ]_Zmr JE[L(Y, F(X))|Y = K]

= Z (KE [””(k)e(v, f(X))’ Y = k}

) (k)
Ttr Y
_E, [ I f(X))]

@ Put more weight on less probable classes! 70




Welghted LOSS Introduction, Error

Estimation, Cross Validation
and AutoML

@ In unbalanced situation, often the cost of misprediction is not the same for all
classes (e.g. medical diagnosis, credit lending. .. )

@ Much better to use this explicitly than to do blind resampling!

Weighted Loss

o Weighted loss:
(Y, £(X)) = (Y)Y, f(X))
o Weighted risk target:
E[C(Y)e(Y, f(X))]

@ Rk: Strong link with ¢ as C is independent of f.
o Often allow reusing algorithm constructed for /.

@ C may also depend on X. ..
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Weighted Loss, ¢%/! loss and Bayes Classifier Itroduction, Err

Estimation, Cross Validation
and AutoML

@ The Bayes classifier is now:
f* = argmin E[C(Y){(Y, (X))] = argmin Ex [Ey x[C(Y)((Y, F(X))]]

Bayes Predictor

e For /%1 |oss,
*(X) = argmax C(k)P(Y = k|X)
k

@ Same effect than a threshold modification for the binary setting!

@ Allow putting more emphasis on some classes than others.

72



Linking Weights and Proportions Introduction, Error

Estimation, Cross Validation
and AutoML

Cost and Proportions

@ Testing risk target:

Er[C(YV)Y, F(X))] = D me(k) Ce(KE(Y, F(X))|Y = K]

k

@ Training risk target

Er, [Cer (V) =Y (k) Cer(K)E[L(Y, F(X))Y = K]
k
@ Coincide if

me(k) Ce(k) = mer (k) Cer (k)

@ Lots of flexibility in the choice of C;, Ci or .
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Combining Weights and Resampling

Introduction, Error
Estimation, Cross Validation
and AutoML

Weighted Loss and Resampling
@ Weighted loss: choice of a weight C; # 1.

@ Resampling: use a 7y # 7.

@ Stratified sampling may be used to reduce the size of a dataset without loosing a
low probability class!

Combining Weights and Resampling
o Weighted loss: use C;, = C; as 7y, = 7y
e Resampling: use an implicit Ci(k) = e (k)/me(k).
e Combined: use Ci (k) = Ce(k)me(k)/mer (k)

@ Most ML methods allow such weights!
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o Introduction, Error Estimation, Cross Validation and
AutoML

@ Auto ML
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AUtO M L Introduction, Error

Estimation, Cross Validation
and AutoML

]
H Dataset —
EEm

AR S i
Optimization
Metric

Autornated Machine Learning
Machine Learning Meodel

_ Constraints
J | (Time/cost)

@ Automatically propose a good predictor

softwareengineeringdaily.com/2019/05/15 /introduction-to.

@ Rely heavily on risk evaluations

@ Pros: easy way to obtain an excellent baseline

automated-machine-learning-automl/

Source

@ Cons: black box that can be abused. . .

~
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Auto ML Task

Introduction, Error
Estimation, Cross Validation
and AutoML

AutoML service User Compute (e, oswmecc)

i High Quality
M viodel

Userscript
IJ“py‘er AutomL fit

@ Input:
e adataset D = (X, Y))
e a loss function (Y, (X))

e a set of possible predictors f; 5 o corresponding to a method / in a list, with
hyperparameters h and parameters 6

o Output:

e a predictor f equal to f; ; 5 or combining several such functions.
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Predictors

Introduction, Error
Estimation, Cross Validation
and AutoML

A Standard Machine Learning Pipeline

[ &
=)

Predictors, a.k.a fitted pipelines

@ Preprocessing:
o Feature design: normalization, coding, kernel. ..
e Missing value strategy
o Feature selection method
e ML Method:
o Method itself
e Hyperparameters and architecture
o Fitted parameters (includes optimization algorithm)

&£
o
2
<

=

=

I3
&
5
[}

n

@ Quickly amounts to 20 to 50 design decisions!
e Bruteforce exploration impossible!
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Auto ML and Hyperparameter Optimization Introduction, Error

Estimation, Cross Validation
and AutoML

Most Classical Approach of Auto ML

@ Task rephrased as an optimization on the discrete/continous space of
methods/hyperparameters/parameters.

@ Parameters obtained by classical minimization.
e Optimization of methods/hyperparameters much more challenging.

@ Approaches:

o Bruteforce: Grid search and random search
o Clever exploration: Evolutionary algorithm
e Surrogate based: Bayesian search and Reinforcement learning
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AUtO ML and Meta_l_earning Introduction, Error

Estimation, Cross Validation
and AutoML

e
t t ] . o

$ waining data

oD - e - "
<|m = <'m o ('m
betormance  berformance  erformance peformanc

Learn from other Learning Tasks
@ Consider the choice of the method from a dataset and a metric as a learning task.
@ Requires a way to describe the problems (or to compute a similarity).

@ Descriptor often based on a combination of dataset properties and fast method
results.

@ May output a list of candidates instead of a single method.
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@ Promising but still quite experimental!
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AUtO ML and Tlme Budget Introduction, Error

Estimation, Cross Validation

Boston Housing and AutoML

- RS
- TPE
- HB
e~ BOHB

negative log-likelihood

9
8
7
6
5
4
3

1

o* 10° 10°
MCMC steps

How to obtain a good result with a time constraint?

@ Brute force: Time out and methods screening with Meta-Learning (less
exploration at the beginning)
@ Surrogate based: Bayesian optimization (exploration/exploitation tradeoff)

@ Successive elimination: Fast but not accurate performance evaluation at the
beginning to eliminate the worst models (more exploration at the beginning)
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@ Combined strategy: Bandit strategy to obtain a more accurate estimate of risks
only for the promising models (exploration/exploitation tradeoff)
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AUtO M L benCh mark Introduction, Error

Estimation, Cross Validation
and AutoML

Benchmark

@ Almost always (slightly) better than a good random forest or gradient boosting
predictor.

o Worth the try!

X~
]
£

<
3]
(o]

m

-

=
o
=

<
o
g
=
<]
%)

[o9)
N



O Utl | ne Introduction, Error

Estimation, Cross Validation
and AutoML

o Introduction, Error Estimation, Cross Validation and
AutoML

@ References
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e Review of the Methods seen so far
@ Supervised Learning
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SuperVised Learnlng Review of the Methods seen /"“

so far

@ Input measurement X € X

o Output measurement Y € ).

o (X,Y) ~ P with P unknown.

@ Training data : D, = {(X{, Y1),...,(X,, Ya)} (i.id. ~P)

e Often
o XeRYand Y € {—1,1} (classification)
o or X € RY and Y € R (regression).
@ A predictor is a function in F = {f : X — ) meas.}

e Construct a good predictor f from the training data.

@ Need to specify the meaning of good.

o Classification and regression are almost the same problem! -



L oss and Probabilistic Framework Review of the Methods seen ¥

so far

Loss function for a generic predictor

@ Loss function: /(Y,f(X)) measures the goodness of the prediction of Y by f(X)

@ Examples:
o 0/1 loss: E(Y, f(&)) = ly;éf(é)
o Quadratic loss: (Y, f(X)) =|Y — f(X)|?

@ Risk measured as the average loss for a new couple:
R(f) = Ex,v)~p[4(Y, f(X))]
@ Examples:
o 0/1 loss: E[(Y,f(X))] = (Y f(X))
e Quadratic loss: E[((Y,f(X))] =E[|Y — f(X)|]

e Beware: As f depends on D,,, R(f) is a random variable!
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Goal Review of the Methods seen 7
so far

Machine Learning

@ Learn a rule to construct a predictor f € F from the training data D, s.t. the

~

risk R(f) is small on average or with high probability with respect to D,,.

@ In practice, the rule should be an algorithm!

Canonical example: Empirical Risk Minimizer
@ One restricts f to a subset of functions S = {fp,0 € O}

@ One replaces the minimization of the average loss by the minimization of the
empirical loss

= 10
f=rf=argmin=>) LY fr(X;))
O fhco n ,Z::I ' :
@ Examples:
e Linear regression
e Linear classification with

S ={x —sign{x" B+ O} /B e R?, 3O c R} %



Exa m p | e TWOC | ass D ataset Review of the Methods seen

so far

Synthetic Dataset

e Two features/covariates.

@ Two classes.

Dataset from Applied Predictive Modeling, M. Kuhn and K. Johnson, Springer
Numerical experiments with R and the {caret} package.
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Example: Linear Discrimination

Decision region

PredictorB
o o
s [=:]

=
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classes

B ciasst
B class2

Review of the Methods seen 4

Decision boundary
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PredictorB



Example: More Complex Model

Naive Bayes with kernel density estimates

Decision region

06

r:g classes %

% 0.4 B ciasst %

& B class2 £
02

02 0.4 06
PredictorA

Decision boundary

06 -D’

04-

02-

0.2 04 06
PredictorA

|

Review of the Methods seen 4
so far

classes

@ Classi
) Class2
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Under-fitting / Over-fitting Issue

ho(z) = g(0g + bhxy + Oax2) g(0y + 0171 + 212 9(6o '|2' 0z + 92_)12%
( g = sigmoid function) +632F + 0473 +03x7T0 + 042723
+05I1.I,'2)
UNDERFITTING OVERFITTING

(high variance)

(high bias)

Model Complexity Dilemna
@ What is best a simple or a complex model?
@ Too simple to be good? Too complex to be learned?

Review of the Methods seen 4

so far

+O0s22x3 + Osaias + ...

Source: A. Ng
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Under_fltting / Over_flttlng Issue Review of the Methods seen /'%‘;

so far

2
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o
g
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%)

High Bias Low Bias
Low Variance High Variance
S

Prediction Error

Test error
Training error

Underfitting Good models Overfitting

Low Complexity of the model High

Under-fitting / Over-fitting

e Under-fitting: simple model are too simple.

@ Over-fitting: complex model are too specific to the training set.

©
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Binary Classification Loss Issue Reviw of the Methods seen -

so far

Empirical Risk Minimizer

n
f = argmin ! Zﬁo/l(Y;, f(X;))
fes n i=1

e Classification loss: ¢%/1(y, f(x)) = 1, (%)
@ Not convex and not smooth!
96



PI’ObablllstIC P0|nt Of VIeW Review of the Methods seen /'“
so far
Ideal Solution and Estimation

@
i
<
@
e
5
[}
n

@ The best solution f* (which is independent of D) is
f*=arg I';nI]r_lR(f) = arg m|n E[E(Y f(X))] = arg m|n Ex {EY‘X[E(Y f(x ))]]
€

Bayes Predictor (explicit solution)
In binary classification with 0 — 1 loss:
1 if P(Y=+1X)>P(Y =-1|X
gy = [F1 1 B(Y =411 2 P(Y = 1)
—1 otherwise

@ Issue: Solution requires to know E[Y|X] for all values of X!

@ Solution: Replace it by an estimate.
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Optlmlzatlon POlnt Of VleW Review of the Methods seen 7 X
so far
Loss Convexification

E 05 1 18

0
bl

Minimizer of the risk

~ 1<
f = argmin = Zﬁo/l(yiv f(X5))
fes N4

@ Issue: Classification loss is not convex or smooth.

@ Solution: Replace it by a convex majorant.
98



PI’ObablllstIC and Optlmlzatlon Framework Review of the Methods seen

so far

How to find a good function f with a small risk
R(f) =E[(Y, f(X))] 7?
Canonical approach: fs = argmingcs 2 271 £(Y;, f(X;))
Problems
@ How to choose §7

@ How to compute the minimization?

A Probabilistic Point of View

Solution: For X, estimate Y|X plug this estimate in the Bayes classifier:
(Generalized) Linear Models, Kernel methods, k-nn, Naive Bayes, Tree,

Bagging. . .

An Optimization Point of View

Solution: If necessary replace the loss ¢ by an upper bound Z and minimize the
empirical loss: SVR, SVM, Neural Network, Tree, Boosting. . .
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O Utl Ine Review of the Methods seen 4

so far o

e Review of the Methods seen so far

@ A Probabilistic Point of View
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Three Classical Methods in a Nutshell Review of the Methods seen ¥

so far

Logistic Regression

o Let fy(X) = X5+ 8O with 6§ = (8, 3®).

o Let Pp(Y = 1|X) = e 7(X) /(1 + (X))

e Estimate 6 by  using a Maximum Likelihood.
o Classify using Py(Y = 1|X) > 1/2

k Nearest Neighbors

@ For any X', define Vy as the k closest samples X; from the dataset.
o Compute a score gk = > x.cv,, 1vi=k

o Classify using arg max gx (majority vote).
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Three Classical Methods in a Nutshell Review of the Methods seen ¥

so far

Quadratic Discrimant Analysis

@ For each class, estimate the mean puyx and the covariance matrix > .
o Estimate the proportion P(Y = k) of each class.
e Compute a score In(P(X|Y = k)) + In(P(Y = k))

gk(X) = — %(K — ) T HX — k)
— g In(27) — % In(|Z«]) + In(P(Y = k))

o Classify using arg max gy

@ Those three methods rely on a similar heuristic: the probabilistic point of view!
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BeSt SOl Utlon Review of the Methods seen X

so far

@ The best solution f* (which is independent of D,) is
f* =arg min R(f) = arg fmelng[ﬁ(Y, f(X))] = arg ;T%{Q_E&[Ey|l[€(Y, f(K)”
Bayes Predictor (explicit solution)

e In binary classification with 0 — 1 loss:
+1 if P(Y =+41X)>P(Y = -1/X)
(X) = < P(Y =+11X) >1/2
—1 otherwise

Issue: Explicit solution requires to know Y |X for all values of X!
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P I Ugl n P red ICtOF Review of the Methods seen X

so far

e ldea: Estimate Y|X by 7|X and plug it the Bayes classifier.

Plugin Bayes Predictor

@ In binary classification with 0 — 1 loss:
+1 i (Y = +1[X) > P(Y = ~1[X)
f(X) = & P(Y = +11X) > 1/2
—1 otherwise
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P I Ugl n P red ICtOI’ Review of the Methods seen

so far

Three main heuristics

e Parametric Conditional modeling: Estimate the law of Y|X by a parametric
law Ly(X): Logistic regression

@ Non Parametric Conditional modeling: Estimate the law of Y|X by a non
parametric estimate: kernel methods, nearest neighbors. . .

e Fully Generative modeling: Estimate the law of (X, Y) and use the Bayes
formula to deduce an estimate of Y|X: LDA/QDA, Naive Bayes, Gaussian
Processes
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P I Ugl n C | aSSIfler Review of the Methods seen 4

sofar  Jf

@ Input: a data set D,
Learn Y|X or equivalently P(Y = k|X) (using the data set) and plug this
estimate in the Bayes classifier

e Output: a classifier f : RY — {—1,1}

—

()=t if P(Y = 1)X) > P(Y = —1|X)
o —1 otherwise

¥

e Can we guaranty that the classifier is good if Y|X is well estimated?
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ClaSSIflcathn RISk AnaIySIS Review of the Methods seen /'“

so far

o If f = sign(2ps1 — 1) then
E[4(Y,F(X))] - E[@1(Y, F(X))]

<E[|IVIX — YIX])1]

< (E[2KL(YIX, @Dm

@ If one estimates P(Y = 1|.X) well then one estimates * well!
@ Link between a conditional density estimation task and a classification one!

@ Rk: In general, the conditional density estimation task is more complicated as one
should be good for all values of P(Y = 1|X) while the classification task focus on
values around 1/2 for the 0/1 loss!

@ In regression, (often) direct control of the quadratic loss. . .
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O Utl Ine Review of the Methods seen 4

so far

9 Review of the Methods seen so far

@ A Probabilistic Point of View
@ Conditional Density Modeling
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LOgIStIC MOdellng Review of the Methods seen /'V“

sofar  Jf

@ Direct modeling of Y|x.

The Binary logistic model (Y € {—1,1})
eb(x)' 8

1 - ed’(é)Tﬁ
where ¢(x) is a transformation of the individual x

P(Y =1|x) =

o In this model, one verifies that P(Y = 1|x) > P(Y = —1|]x) < ¢(x)' 8>0
@ True Y|x may not belong to this model = maximum likelihood of /3 only finds a
good approximation!
@ Binary Logistic classifier:
~ +1 ifo(x)"B>0
() = { 6(x)

—1 otherwise

where B is estimated by maximum likelihood.
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LOgIStIC M Odel | ng Review of the Methods seen

so far

e Logistic model: approximation of B(P(Y = 1|x)) by B(h(¢(x) ' 3)) with

t

h(t) = Tret

Negative log-likelihood formula

—*Z( =1 log(h(#(x;)T#)) + 1.~ 1 log(1 — h(é(x;)")))

e¢(§i)-rﬁ 1
Z—*Z =il Ogﬁ"'lm:—l log ————

1+e (x;) 1+ e¢(£i) B
_ = Z log (1 4 efy,-(¢>(£,-)Tﬂ))
n i=1

@ Convex function in .

@ Remark: You can also use your favorite parametric model instead of the logistic
one...

7
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Example: Logistic

Review of the Methods seen

so far
Logistic
Decision region Decision boundary
w
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PredictorA PredictorA
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Example: Quadratic Logistic

Quadratic Logistic

PredictorB
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Decision region
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Review of the Methods seen 4

so far

classes

@ Classi
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112



O Utl Ine Review of the Methods seen 4

so far

9 Review of the Methods seen so far

@ A Probabilistic Point of View

@ Non Parametric Conditional Density Modeling
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Example: k Nearest-Neighbors (with k = 3)
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Example k NearESt_Nelghbors (Wlth k - 4) Review of the Methods seen /"};

so far
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k N €a reSt— N elgh bOrS Review of the Methods seen 4

so far

@ Neighborhood V, of x: k learning samples closest from x.

k-NN as local conditional density estimate

— Y ox.evy L{vi=+1
P(Y = 1)) = =X V=)
Vx|
@ KNN Classifier:
~ +1 ifP(Y =1|X)>P(Y = —-1|X
() — (V=110 2 (Y = -11X)
—1 otherwise

e Lazy learning: all the computations have to be done at prediction time.

@ Remark: You can also use your favorite kernel estimator. . .
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Example: KNN

k-NN with k=69

Decision region

PredictorB
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Review of the Methods seen 4
so far

Decision boundary
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O Utl Ine Review of the Methods seen 4

so far

9 Review of the Methods seen so far

@ A Probabilistic Point of View

@ Generative Modeling
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FU”y Genel’atlve MOdellng Review of the Methods seen /

so far

e Idea: If one knows the law of (X, Y') everything is easy!

Bayes formula

@ With a slight abuse of notation,
P((X,Y))
P(Y|X) = P(X)
_ PX|Y)P(Y)

P(X)

o Generative Modeling:
e Propose a model for (X, Y) (or equivalently X|Y and Y),
e Estimate it as a density estimation problem,
e Plug the estimate in the Bayes formula
e Plug the conditional estimate in the Bayes classifier.
e Rk: Require to estimate (X, Y) rather than only Y|X!

@ Great flexibility in the model design but may lead to complex computation.
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FU”y Genel’atlve MOdellng Review of the Methods seen /'V“

so far

@ Simpler setting in classification!

Bayes formula

WY:Mer““nggw:k)

Binary Bayes classifier (the best solution)
1 ifP(Y=1X)>P(Y=-1X
mm:?"( X) 2 (Y = ~11X)

—1 otherwise
Heuristic: Estimate those quantities and plug the estimations.

By using different models/estimators for P(X|Y'), we get different classifiers.
Rk: No need to renormalize by P(X) to take the decision!

120



DISCI’Imlnant AnalySIS Review of the Methods seen /"“

so far

Discriminant Analysis (Gaussian model)

@ The densities are modeled as multivariate normal, i.e.,
P(X|Y = k) ~ Ny, 5,
@ Discriminant functions: gx(X) = In(P(X|Y = k)) + In(P(Y = k))

81(X) = — 5(X— ) X — )
- g In(2r) — % In(|Z4]) + In(B(Y = K))

o QDA (different X4 in each class) and LDA (X4 = X for all k)

e Beware: this model can be false but the methodology remains valid!
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DISCI’Imlnant AnalySIS Review of the Methods seen /'V“

so far
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Quadratic Discriminant Analysis

@ The probability densities are Gaussian

@ The effect of any decision rule is to divide the feature space into some decision
regions R1, Ro

@ The regions are separated by decision boundaries
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DISCI’Imlnant AnalySIS Review of the Methods seen /'V“

so far

Quadratic Discriminant Analysis

@ The probability densities are Gaussian

@ The effect of any decision rule is to divide the feature space into some decision
regions R1,Ra, ..., R¢

@ The regions are separated by decision boundaries

Source: A. Fermin
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DISCI’Imlnant AnalySIS Review of the Methods seen /'V“

so far

In practice, we will need to estimate g, Xy and Py :=P(Y = k)
@ The estimate proportion P(ﬁk) =% =1sw liyi—y

@ Maximum likelihood estimate of fix and Sk (explicit formulas)

@ DA classifier
~ 1 ifg(X)>g_1(X
F(X) = +1 i g+1(f.) > g-1(X)
—1 otherwise
@ Decision boundaries: quadratic = degree 2 polynomials.

If one imposes X1 = Y1 = X then the decision boundaries is a linear hyperplane.
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DISCI’Imlnant AnalySIS Review of the Methods seen /"“

so far

£
£
b5
i
<
[
e
5
)
»

Linear Discriminant Analysis
0%, =%, =3

@ The decision boundaries are linear hyperplanes
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DISCI’Imlnant AnalySIS Review of the Methods seen

so far
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Quadratic Discriminant Analysis

@ X, #FXu,

@ Arbitrary Gaussian distributions lead to Bayes decision boundaries that are general
quadratics.
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Example: LDA

Review of the Methods seen 4

so far
Linear Discrimant Analysis
Decision region Decision boundary
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Example: QDA

Review of the Methods seen 4
so far

Quadratic Discrimant Analysis

Decision region Decision boundary
w
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N a |Ve BayeS Review of the Methods seen X

so far

Naive Bayes

@ Classical algorithm using a crude modeling for P(X]|Y):
e Feature independence assumption:

P(X|Y) = HIP( ‘Y)
e Simple featurewise model: binomial if blnary, multinomial if finite and Gaussian if

continuous

o If all features are continuous, similar to the previous Gaussian but with a diagonal
covariance matrix!

@ Very simple learning even in very high dimension!
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Example: Naive Bayes

Naive Bayes with Gaussian model
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. . . o 3
Naive Bayes with Density Estimation Review o the Methodsseenx
so far o
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Example: Naive Bayes

Naive Bayes with kernel density estimates
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O Utl Ine Review of the Methods seen 4

so far o

e Review of the Methods seen so far

@ Optimization Point of View
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PI’ObablllstIC and Optlmlzatlon Framework Review of the Methods seen

so far

How to find a good function f with a small risk
R(f) =E[(Y, f(X))] 7?
Canonical approach: fs = argmingcs 2 271 £(Y;, f(X;))
Problems
@ How to choose §7

@ How to compute the minimization?

A Probabilistic Point of View

Solution: For X, estimate Y|X plug this estimate in the Bayes classifier:
(Generalized) Linear Models, Kernel methods, k-nn, Naive Bayes, Tree,

Bagging. . .

An Optimization Point of View

Solution: If necessary replace the loss ¢ by an upper bound Z and minimize the
empirical loss: SVR, SVM, Neural Network, Tree, Boosting. . .
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Emplrical RISk Mlnlmlzatlon Review of the Methods seen /'“

so far

@ The best solution * is the one minimizing
f* = argmin R(f) = argmin E[(( Y, f(X))]

Empirical Risk Minimization

@ One restricts f to a subset of functions S = {fy,0 € ©}

@ One replaces the minimization of the average loss by the minimization of the
average empirical loss

~ 1<
f=fr=argmin— ) Ly, fo(x;
7 ff@ee”;( (xi))

@ Plus convexification/regularization of the risk. ..
e Examples: SVM, (Deep) Neural Networks. ..
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Classification Loss and Convexification Review of the Methods seen ¥

so far

35 =—{y"(<0)

—_—p ey

¥y
—— lag, (1 explyTi)

e max(,1-y71)

2 15 ] 05 0
bAL]

o Classification loss: £°/1(y, f(x)) = 1,200
@ Not convex and not smooth!

Classical convexification

o Logistic loss: #(y, f(x)) = logy(1 + e ¥7¥) (Logistic / NN)
@ Hinge loss: /(y, f(x)) = (1 — yf(x))+ (SVM)

@ Exponential loss: /(y, f(x)) = e ¥ () (Boosting. . .) -



P I’Opel’tleS Review of the Methods seen

so far

The Target is the Bayes Classifier

@ The minimizer of
E[U(Y, f(X))| = E[(YF(X))]
is the Bayes classifier f* = sign(2n(X) — 1)

Control of the Excess Risk

@ It exists a convex function W such that
W (E[@/(Y, sign(f(X))] — E[¢/*(Y, £(X)])

<E[{(Y, f(X)] - E[{(Y, F(X))]

@ Theoretical guarantee!
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LOgIStIC ReV|S|ted Review of the Methods seen 4

so far

@ ldeal solution:

n
f = argmin E ZEO/I(Y;, f(X;))
fes N3

Logistic regression

e Use f(X) = XT3+ 0,
@ Use the logistic loss £(y, f) = log,(1 + e™¥f), i.e. the negative log-likelihood.

@ Different vision than the statistician but same algorithm!
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Logistic Revisited

Logistic

PredictorB
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9 Review of the Methods seen so far

@ Optimization Point of View
@ Penalization
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Simplified Models

Closest fit in population
Realization
[ Closest fit

MODEL
SPACE

 Shrusken fit

RESTRICTED
MODEL SPACE

Bias-Variance Issue

Review of the Methods seen 4
so far

@ Most complex models may not be the best ones due to the variability of the

estimate.

@ Naive idea: can we simplify our model without loosing too much?

e by using only a subset of the variables?
e by forcing the coefficients to be small?

@ Can we do better than exploring all possibilities?
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Llnear MOCIG'S Review of the Methods seen /'W

so far

@ Setting: Gen. linear model = prediction of Y by h(x'f3).

Model coefficients
@ Model entirely specified by 3.
o Coefficientwise:

o ) =0 means that the ith covariate is not used.
o ) ~ 0 means that the ith covariate as a fow influence. . .

@ If some covariates are useless, better use a simpler model. ..

Submodels
e Simplify the model through a constraint on f3!
@ Examples:

e Support: Impose that () =0 for i & /.
e Support size: Impose that ||8][o = 27:1 1040 < C
e Norm: Impose that ||3||, < C with 1 < p (Often p =2 or p = 1)
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NOFmS a nd SparSIty Review of the Methods seen 7 X
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Sparsity
@ [ is sparse if its number of non-zero coefficients ({p) is small. ..

e Easy interpretation in terms of dimension/complexity.

Norm Constraint and Sparsity
@ Sparsest solution obtained by definition with the ¢y norm.
@ No induced sparsity with the ¢ norm. ..

@ Sparsity with the ¢/; norm (can even be proved to be the same as with the ¢
norm under some assumptions).

@ Geometric explanation.
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Constraint and Penalization

Review of the Methods seen
so far

Constrained Optimization

@ Choose a constant C.

o Compute 3 as
n

1
argmin - = > (Y, h(x;' 8))
BERY,||Bll,<C M i=

Lagrangian Reformulation

@ Choose A\ and compute 3 as
1 /
argmin = > £(Yi, h(x;" B)) + AlIBII5
Berd Moy
with p’ = p except if p = 0 where p’ = 1.
@ Easier calibration. .. but no explicit model S.

e Rk: ||3]| is not scaling invariant if p # 0. ..

@ Initial rescaling issue. 143



Pen a | Izatlon Review of the Methods seen

so far

Penalized Linear Model

@ Minimization of
n

argmin 1 ZE(Y,-, h(x; " B)) + pen(B)
perd Mizy

where pen(f) is a (sparsity promoting) penalty
@ Variable selection if 3 is sparse.

Classical Penalties
@ AIC: pen(B) = A||B|lo (non-convex / sparsity)
o Ridge: pen(3) = A||3||3 (convex / no sparsity)
Lasso: pen(B) = Al|5]|1 (convex / sparsity)
o Elastic net: pen(3) = 1|81 + A2||B|3 (convex / sparsity)

Easy optimization if pen (and the loss) is convex. ..
Need to specify A to define a ML method!
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Penallzed Gen I_Ineal’ MOdGlS Review of the Methods seen Z

so far

Classical Examples

Penalized Least Squares

Penalized Logistic Regression
Penalized Maximum Likelihood
SVM

Tree pruning

Sometimes used even if the parameterization is not linear. ..
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Penalization and Cross-Validation Review of the Methods seen ¥

so far

Practical Selection Methodology

@ Choose a penalty family pen,.

o Compute a CV risk for the penalty pen, for all A € A.
o Determine \ the A minimizing the CV risk.

@ Compute the final model with the penalty pens.

o CV allows to select a ML method, penalized estimation with a penalty pens, not a
single predictor hence the need of a final reestimation.
Why not using CV on a grid?
o Grid size scales exponentially with the dimension!

o If the penalized minimization is easy, much cheaper to compute the CV risk
forall A € A. ..

@ CV performs best when the set of candidates is not too big (or is structured. .. )
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9 Review of the Methods seen so far

@ Optimization Point of View

@ (Deep) Neural Networks
147



Review of the Methods seen 4

Perceptron
so far
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inputs  weights

weighted sum step function
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Perceptron (Rosenblatt 1957)
@ Inspired from biology.
@ Very simple (linear) model!
@ Physical implementation and proof of concept.

Source: Tikz



Review of the Methods seen

Perceptron
so far
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Perceptron (Rosenblatt 1957)
@ Inspired from biology.
@ Very simple (linear) model!
@ Physical implementation and proof of concept.

Source: Tikz
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Perceptron (Rosenblatt 1957)
@ Inspired from biology.
@ Very simple (linear) model!
@ Physical implementation and proof of concept.

Source: Tikz



so far

Pe rce pt ron Review of the Methods seen

@ Inspired from biology.

@ Very simple (linear) model!

Source: Avin Calspan Advanced Technology Center

@ Physical implementation and proof of concept.
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Artificial Neuron and Logistic Regression Reviw of the Methods seen -

Activation Neuron Configuration

B1

1= Input
0= Output 12
B = Bias

Artificial neuron

@ Structure:
e Mix inputs with a weighted sum,
e Apply a (non linear) activation
function to this sum,
@ Possibly threshold the result to make
a decision.

@ Weights learned by minimizing a loss
function.

so far

Activation Fonction
o1

Logistic unit

@ Structure:
@ Mix inputs with a weighted sum,
o Apply the logistic function
o(t) =e'/(1+ €,
@ Threshold at 1/2 to make a decision!
@ Logistic weights learned by minimizing
the -log-likelihood.

Source: Unknown
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M u |t| | aye r Pe rce pt ron Review of the Methods seen

so far

Input Hidden Layer Output

B1 B2
i S
I = Input H1
H= Hidden 12
O = Output H2 01
B= Bias I3 =——
H3

MLP (Rumelhart, McClelland, Hinton - 1986)

@ Multilayer Perceptron: cascade of layers of artificial neuron units.

e Optimization through a gradient descent algorithm with a clever implementation
(Backprop).

@ Construction of a function by composing simple units.
@ MLP corresponds to a specific direct acyclic graph structure.

3
o
X
[
©
5
o
(2]

@ Non convex optimization problem!
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Multilayer Perceptron

Review of the Methods seen
so far

Neural Network

Decision region Decision boundary
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Deep N eura | NetWOI'k Review of the Methods seen 4

so far

DEEP NEURAL NETWORK SoutEdinae

Deep Neural Network structure

@ Deep cascade of layers!

@ No conceptual novelty. ..

@ But a lot of tricks allowing to obtain a good solution: clever initialization, better
activation function, weight regularization, accelerated stochastic gradient descent,
early stopping. ..

@ Use of GPU and a lot of data. ..

@ Very impressive results!

Source: Nielsen, Bengio, Goodfellow and Courville
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Deep Neural Network

Review of the Methods seen
so far

H20 NN
Decision region Decision boundary
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Deep Lea rnm | ng Review of the Methods seen 4 ¢

so far

v
>
&)

I

=
v
e
5
o

(2]

Conv 5: Object Parts Fe8: Object Classes

Family of Machine Learning algorithm combining:

@ a (deep) multilayered structure,

@ a clever optimization including initialization and regularization.

@ Examples: Deep NN, AutoEncoder, Recursive NN, GAN, Transformer. ..
@ Interpretation as a Representation Learning.

@ Transfer learning: use as initialization a pretrained net.

@ Very efficient and still evolving!
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O Utl | ne Review of the Methods seen
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9 Review of the Methods seen so far

@ Optimization Point of View

@ SVM 155



SU pport VeCtor M aCh | ne Review of the Methods seen

sofar  Jf

f(X)= X8+ 89 with 0=(859)

N 1Z
0 = arg min - > max (1= Yify(X;),0) + Al 8]I3

i=1

Support Vector Machine

e Convexification of the 0/1-loss with the hinge loss:
ly.fx,)<0 < max (1 — Yifp(X;),0)
Penalization by the quadratic norm (Ridge/Tikhonov).

Solution can be approximated by gradient descent algorithms.

Revisit of the original point of view.

Original point of view leads to a different optimization algorithm and to some
extensions.
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Ideal Separable Case Review of the Methods seen /'“

so far
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o Linear classifier: sign(X' g+ 5(0)
@ Separable case: 3(3, 8(9), Vi, Yi(X;T 8+ @) >0

How to choose (3, 3(?)) so that the separation is maximal?

@ Strict separation: 3(3, 3),Vi, Yi(X; "8 + 8©) > 1
o Distance between XT3+ 30 =1 and X" 3 + 30 = —1:
2

181l

o Maximizing this distance is equivalent to minimizing 3||3||2.
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Ideal Separable Case Review of the Methods seen /'V“

so far
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Separable SVM

@ Constrained optimization formulation:

min %Hﬂ”z with Vi, Yi(X;T 8+ B©) > 1

@ Quadratic Programming setting.

@ Efficient solver available. ..
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NOn Separable Case Review of the Methods seen /'“

so far

@ What about the non separable case?

SVM relaxation

@ Relax the assumptions
Vi, YiX; "B+ B89)>1 to Vi, Yi(X;"8+89)>1-5
with the slack variables s; > 0

@ Keep those slack variables as small as possible by minimizing
1 n
SIBIZ+ €Y
i=1

where C > 0 is the goodness-of-fit strength_

Source: M. Mohri et al.
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NOn Separable Case Review of the Methods seen /"“

so far

o Constrained optimization formulation:
1 5 .
min = + C E s;  with

@ Hinge Loss reformulation:

Vi, iX; T8+ 8@0) > 1 -
Vi, Si > 0

n
iy %Hmﬁ +CY max(0,1- V(X" 8+ B®))
i=1

Hinge Loss

Source: M. Mohri et al.

@ Constrained convex optimization algorithms vs gradient descent algorithms.
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SVM as a Penalized Convex Relaxation Review o the Methods scen /X

so far

@ Convex relaxation:

argmin = HBHz—i-CZmaX (1-Yi(X; 8+ 89),0)

i=1

11
= argmmmeax (1—-Yi(X;" B+ 59),0) + 55\\6\\2

i=1
o Prop: (%/1(Y;,sign(X;" 3 + B®)) < max(1 — Yi(X;" 8 + B0),0)

Penalized convex relaxation (Tikhonov!)

1 n
- S O (Y, sign(X; T8 + B9)) + **||5H2
=il

Zmaxl— (X, T8+ B, 0)+ H5H2
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SVM

Review of the Methods seen 4
so far

Support Vector Machine

Decision region Decision boundary
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Mercer Theorem and Scalar Product Review of the Methods seen ¥

so far

o Mercer Theorem: the minimizer in of e

fzmaxl— Yi(X;" 8+ BO), )+ffHBH2

is a linear comblnatlon of the input points -7 ; o/ X.
e Duality theory: o} = a;Y; where

n
a:argmaxZa; Zaa Y,YJXTX
i=1 ij=1
under the constraints >_7 ; a;Y; =0and 0 < ; < C.

Dual formulation

e «; are Lagrangian multipliers and are equal to 0 as soon as y;(X; 5+ 5(?) > 1
o Explicit formula for (9.
e Data involved only through scalar product X X'!

@ Quadratic programming reformulation!

@ Suport Vectors are the ones for which «; # 0. 161



T he Ke rn el Tl’iC k Review of the Methods seen 4

so far
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(21,29) 1= (21,22, 23) = (af, V219, 03)
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@ Non linear separation: just replace X by a non linear ®(X)...
e Knowing <Z>(X,-)T¢(Xi) is sufficient to compute the SVM solution.
e Computing k(X, X') = ¢(X) " ¢(X’) may be easier than computing 6(X),
#(X') and then the scalar product!
¢ can be specified through its definite positive kernel k.
Examples: Polynomial kernel k(X,X") = (14 X' X')?, Gaussian kernel
k(X X') = e~ IX=XI/2
@ RKHS setting!
Can be used in (logistic) regression and more. ..
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SVM

Review of the Methods seen 4

so far
Support Vector Machine with polynomial kernel
Decision region Decision boundary
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SVM

Review of the Methods seen 4

so far
Support Vector Machine with Gaussian kernel
Decision region Decision boundary
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9 Review of the Methods seen so far

@ Optimization Point of View
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ClaSSIflcathn TreeS Review of the Methods seen 4

so far

Tree principle (CART by Breiman (85) / ID3 by Quinlan (86))

@ Construction of a recursive partition through a tree structured set of questions
(splits around a given value of a variable)

L

@ For a given partition, probabilistic approach and optimization approach yield the
same predictor!

A simple majority vote in each leaf

Quality of the prediction depends on the tree (the partition).
Intuitively:
e small leaves lead to low bias, but large variance
o large leaves lead to large bias, but low variance. ..
Issue: Minim. of the (penalized) empirical risk is NP hard!
Practical tree construction are all based on two steps:
o a top-down step in which branches are created (branching)
e a bottom-up in which branches are removed (pruning) 166



CART
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Review of the Methods seen 4
so far

{yes }-PredictorB >= 0.2-{no }——

PredictorB >= 0.32

Class?
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B ran Ch n Review of the Methods seen 4

so far

Greedy top-bottom approach
@ Start from a single region containing all the data

@ Recursively split those regions along a certain variable and a certain value

o No regret strategy on the choice of the splits!
@ Heuristic: choose a split so that the two new regions are as homogeneous
possible. . .

168



B ran Ch n Review of the Methods seen 4

so far

Greedy top-bottom approach
@ Start from a single region containing all the data

@ Recursively split those regions along a certain variable and a certain value

o No regret strategy on the choice of the splits!
@ Heuristic: choose a split so that the two new regions are as homogeneous
possible. . .
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B ran Ch n Review of the Methods seen 4

so far

X1<.5?
VAR

Xo < .77

7N

Greedy top-bottom approach
@ Start from a single region containing all the data

@ Recursively split those regions along a certain variable and a certain value

o No regret strategy on the choice of the splits!
@ Heuristic: choose a split so that the two new regions are as homogeneous
possible. . .
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B ran Ch n Review of the Methods seen

so far

X1 < .57
VR
X1 < .27 Xo <77

JX X

@ Start from a single region containing all the data

Greedy top-bottom approach

@ Recursively split those regions along a certain variable and a certain value

o No regret strategy on the choice of the splits!
@ Heuristic: choose a split so that the two new regions are as homogeneous
possible. . .

168



B ran Ch i n g Review of the Methods seen X

Various definition of inhomogeneous

@ CART: empirical loss based criterion (least squares/prediction error)
C(R.R) =" Uyiy(R)+ Y _ Uy, y(R))
X, ER iiEE
@ CART: Gini index (Classification)
C(R.R)=>_ p(R)(L —p(R))+ > p(R)(1 — p(R))

x;€R gfeﬁ
@ CA4.5: entropy based criterion (Information Theory)

C(R.R)=>_H(R)+ Y H(R)

X;€R x.€ER

o CART with Gini is probably the most used technique. ..

@ Other criterion based on 2 homogeneity or based on different local predictors
(generalized linear models. . . )
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B ran Ch i n g Review of the Methods seen 4

so far

Choice of the split in a given region

@ Compute the criterion for all features and all possible splitting points
(necessarily among the data values in the region)

Choose the split minimizing the criterion

Variations: split at all categories of a categorical variable using a clever category
ordering (ID3), split at a restricted set of points (quantiles or fixed grid)
e Stopping rules:

e when a leaf/region contains less than a prescribed number of observations
e when the region is sufficiently homogeneous. . .

May lead to a quite complex tree: over-fitting possible!

Additional pruning often use.
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P runi ng Review of the Methods seen

so far

e Rl

@ Model selection within the (rooted) subtrees of previous tree!

@ Number of subtrees can be quite large, but the tree structure allows to find the
best model efficiently.

Key idea
@ The predictor in a leaf depends only on the values in this leaf.

o Efficient bottom-up (dynamic programming) algorithm if the criterion used
satisfies an additive property

e Example: AIC / CV.
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P runi ng Review of the Methods seen

so far

Examples of criterion satisfying this assumptions

@ AIC type criterion:

nynfc X))+ ATI=Y (ny,,fﬁ +>\)

LET \x,EL
e Simple cross—Valldatlon (with (x}, y/) a different dataset):

Snatn - (3 o)

LET \xieL

@ Limit over-fitting for a single tree.

@ Rk: almost never used when combining several trees. ..

172



CART

CART

PredictorB

=
=3

=
IS

=
[}

Decision region

02 0.4
PredictorA

Review of the Methods seen 4

so far
Decision boundary
w
o
06- @ ¢
classes Eg ’ ©  classes
B ciasst %0-4' N ® Classi
B class2 £ @ Class2

02-

0.2 04 06
PredictorA

173



CA RT PFOS and COHS Review of the Methods seen 7

sofar  Jf

@ Leads to an easily interpretable model o Greedy optimization
@ Fast computation of the prediction @ Hard decision boundaries
o Easily deals with categorical features @ Lack of stability

(and missing values)
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Ensem ble methOdS Review of the Methods seen X

so far

@ Lack of robustness for single trees.

@ How to combine trees?

Parallel construction
@ Construct several trees from bootstrapped samples and average the responses
(Bagging)
@ Add more randomness in the tree construction (Random Forests)

Sequential construction

@ Construct a sequence of trees by reweighting sequentially the samples according
to their difficulties (AdaBoost)

@ Reinterpretation as a stagewise additive model (Boosting)
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Ensemble methods

Review of the Methods seen 4
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Ensemble methods

Review of the Methods seen

so far
Random Forest
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Ensemble methods

Review of the Methods seen 4

so far AT
AdaBoost
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9 Trees and Ensemble Methods
@ Trees
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Guess Who?

Trees and Ensemble Methods /4

A game of questions

o Game invented in 1979 in the UK.
@ Goal: discover the character chosen by your opponent before he discovers yours.

e Optimal strategy: choose at each step the question that splits the remaining
characters in two groups with the least possible difference in size.

o Information Theory!

@ Adaptive construction of a tree of questions!
@ Optimal tree of questions can be constructed without knowing the answers. . . but
during a game only a path of the tree is used. ..
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ClaSSIflcathn And Regl’eSSion Tl’eeS Trees and Ensemble Methods £,

Tree principle (CART by Breiman (85) / ID3 by Quinlan (86))
@ Construction of a recursive partition through a tree structured set of questions
(splits around a given value of a variable)

@ For a given partition, probabilistic approach and optimization approach yield the
same predictor!

A simple majority vote/averaging in each leaf

Quality of the prediction depends on the tree (the partition).
Intuitively:
e small leaves lead to low bias, but large variance
o large leaves lead to large bias, but low variance. . .
Issue: Minim. of the (penalized) empirical risk is NP hard!
Practical tree construction are all based on two steps:
e a top-down step in which branches are created (branching)
e a bottom-up in which branches are removed (pruning) 185
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Greedy top-bottom approach
@ Start from a single region containing all the data

@ Recursively split those regions along a certain variable and a certain value

o No regret strategy on the choice of the splits!
@ Heuristic: choose a split so that the two new regions are as homogeneous
possible. . .
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o No regret strategy on the choice of the splits!
@ Heuristic: choose a split so that the two new regions are as homogeneous
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X1<.5?
VAR

Xo < .77

7N

Greedy top-bottom approach
@ Start from a single region containing all the data

@ Recursively split those regions along a certain variable and a certain value

o No regret strategy on the choice of the splits!
@ Heuristic: choose a split so that the two new regions are as homogeneous
possible. . .
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X1 < .57
VR
X1 < .27 Xo <77

JX X

@ Start from a single region containing all the data

Greedy top-bottom approach

@ Recursively split those regions along a certain variable and a certain value

o No regret strategy on the choice of the splits!
@ Heuristic: choose a split so that the two new regions are as homogeneous
possible. . .

187



B ra nCh i ng Trees and Ensemble Methods 7 X

Various definition of inhomogeneous

@ CART: empirical loss based criterion (least squares/prediction error)
C(R.R) =" Uyiy(R)+ Y _ Uy, y(R))
X, ER iiEE
@ CART: Gini index (Classification)
C(R.R)=>_ p(R)(L —p(R))+ > p(R)(1 — p(R))

x;€R gfeﬁ
@ CA4.5: entropy based criterion (Information Theory)

C(R.R)=>_H(R)+ Y H(R)

X;€R x.€ER

o CART with Gini is probably the most used technique. ..

@ Other criterion based on 2 homogeneity or based on different local predictors
(generalized linear models. . . )
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Choice of the split in a given region

@ Compute the criterion for all features and all possible splitting points
(necessarily among the data values in the region)

Choose the split minimizing the criterion

Variations: split at all categories of a categorical variable using a clever category
ordering (ID3), split at a restricted set of points (quantiles or fixed grid)
e Stopping rules:

e when a leaf/region contains less than a prescribed number of observations
e when the region is sufficiently homogeneous. . .

May lead to a quite complex tree: over-fitting possible!

Additional pruning often use.
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P runi ng Trees and Ensemble Methods 7

e Rl

@ Model selection within the (rooted) subtrees of previous tree!

@ Number of subtrees can be quite large, but the tree structure allows to find the
best model efficiently.

Key idea
@ The predictor in a leaf depends only on the values in this leaf.

o Efficient bottom-up (dynamic programming) algorithm if the criterion used
satisfies an additive property

e Example: AIC / CV.
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P runi ng Trees and Ensemble Methods 7

Examples of criterion satisfying this assumptions

@ AIC type criterion:

nynfc X))+ ATI=Y (ny,,fﬁ +>\)

LET \x,EL
e Simple cross—Valldatlon (with (x}, y/) a different dataset):

Snatn - (3 o)

LET \xieL

@ Limit over-fitting for a single tree.

@ Rk: almost never used when combining several trees. ..
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Pruning and Dynamic Algorithm Trees and Ensemble Mathods -

o Key observation: at a given node, the best subtree is either the current node or
the union of the best subtrees of its child.

Dynamic programming algorithm

@ Compute the individual cost c(L£) of each node (including the leaves)

@ Scan all the nodes in reverse order of depth:

o If the node £ has no child, set its best subtree 7(£) to {£} and its current best
cost ¢’(L) to ¢(L)
o If the children £; and £, are such that ¢/(£1) + ¢’(£2) > ¢(L£), then prune the child
by setting T(£) = {L} and ¢'(£) = ¢(£)
o Otherwise, set T(L£) = T(£1) UT(L2) and ¢'(L) = /(L1) + ¢'(L2)
@ The best subtree is the best subtree T(R) of the root R.

@ Optimization cost proportional to the number of nodes and not the number of
subtrees!
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EXtenSIOnS Trees and Ensemble Methods /4 ‘

Local estimation of the proportions or of the conditional mean.
Recursive Partitioning methods:

e Recursive construction of a partition

e Use of simple local model on each part of the partition
Examples:

o CART, ID3, C4.5, C5

o MARS (local linear regression models)

o Piecewise polynomial model with a dyadic partition. ..

@ Book: Recursive Partitioning and Applications by Zhang and Singer
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@ Leads to an easily interpretable model o Greedy optimization
@ Fast computation of the prediction @ Hard decision boundaries
o Easily deals with categorical features @ Lack of stability

(and missing values)
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Ensem ble methOdS Trees and Ensemble Methods 7 X

@ Lack of robustness for single trees.

@ How to combine trees?

Parallel construction
@ Construct several trees from bootstrapped samples and average the responses
(Bagging)
@ Add more randomness in the tree construction (Random Forests)

Sequential construction

@ Construct a sequence of trees by reweighting sequentially the samples according
to their difficulties (AdaBoost)

@ Reinterpretation as a stagewise additive model (Boosting)
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Trees and Ensemble Methods /4

Bagging
Decision region Decision boundary
w
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Random Forest

Decision region Decision boundary
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% 0.4 . Class1 % 0.4- @ Classi
& B class2 £ @ Class2
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AdaBoost
Decision region Decision boundary
=
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Cg classes % ’ g ©  classes
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& B class2 £ @ Class2
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@ Bagging and Random Forests
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Independent Average Trees and Ensemble Methods 7 X

Stability through averaging

@ Very simple idea to obtain a more stable estimator.

e Vote/average of B predictors fi,. .., fg obtained with independent datasets of

size n!
B

1
fagr = sign <B Z fb> or fog = Z fp

Regression: E[fog(x)] = E[fs(x)] and Var [fog(x)] = w

Prediction: slightly more complex analysis

Averaging leads to variance reduction, i.e. stability!

Issue: cost of obtaining B independent datasets of size n!

202



Bagging and Bootstrap

“Vlethods

Strategy proposed by Breiman in 1994.

Stability through bootstrapping

Instead of using B independent datasets of size n, draw B datasets from a single
one using a uniform with replacement scheme (Bootstrap).

Rk: On average, a fraction of (1 — 1/e) ~ .63 examples are unique among each
drawn dataset. ..

The f, are still identically distributed but not independent anymore.

Price for the non independence: E[f,g(x)] = E[fp(x)] and

Var lfor() = 2 (1 2 ot

with p(x) = Cov [fp(x), fy (x)] < Var [fp(x)] with b # b'.
Bagging: Bootstrap Aggregation

Better aggregation scheme exists. . . 203
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Ra ndom |Zed P red ICtOFS Trees and Ensemble Methods /4

@ Correlation leads to less variance reduction:

Var g ()] = T (12 23 0

with p(x) = Cov [fp(x), fr (x)] with b # b'.

@ ldea: Reduce the correlation by adding more randomness in the predictor.

Randomized Predictors

@ Construct predictors that depend on a randomness source R that may be chosen
independently for all bootstrap samples.

@ This reduces the correlation between the estimates and thus the variance. . .

e But may modify heavily the estimates themselves!

e Performance gain not obvious from theory. ..
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Ra n d om FOI’eSt Trees and Ensemble Methods /4

@ Example of randomized predictors based on trees proposed by Breiman in 2001. ..

Random Forest

@ Draw B resampled datasets from a single one using a uniform with replacement
scheme (Bootstrap)

@ For each resampled dataset, construct a tree using a different randomly drawn
subset of variables at each split.

Most important parameter is the subset size:

e if it is too large then we are back to bagging
e if it is too small the mean of the predictors is probably not a good predictor. ..

@ Recommendation:

o Classification: use a proportion of 1/,/p
o Regression: use a proportion of 1/3

Sloppier stopping rules and pruning than in CART. ..
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EXt ra Tl’eeS Trees and Ensemble Methods 7 :

o Extremely randomized trees!

@ Variation of random forests.
@ Instead of trying all possible cuts, try only K cuts at random for each variable.

@ No bootstrap in the original article.

Cuts are defined by a threshold drawn uniformly in the feature range.

Much faster than the original forest and similar performance.

Theoretical performance analysis very challenging!
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EI’I’OF EStImate and Variable Ranklng Trees and Ensemble Methods 1

Out Of the Box Estimate
@ For each sample x;, a prediction can be made using only the resampled datasets
not containing Xx;. ..
@ The corresponding empirical prediction error is not prone to overfitting but does
not correspond to the final estimate. ..

@ Good proxy nevertheless.

Forests and Variable Ranking
@ Importance: Number of use or criterion gain at each split can be used to rank
the variables.

e Permutation tests: Difference between OOB estimate using the true value of
the jth feature and a value drawn a random from the list of possible values.

@ Up to OOB error, the permutation technique is not specific to trees.
208
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@ Boosting
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AdaBoost

Trees and Ensemble Methods 7

o lIdea: learn a sequence of predictors trained on weighted dataset with weights
depending on the loss so far.

Iterative scheme proposed by Schapire and Freud
@ Setwy;=1/n;t=0and f =0
@ Fort=1tot=T

o hy = argmin,y >, Wt,iéo/l(}’ia h(x:))

o Seter =1, we il (yi, he(x;)) and ar = 3 log 12—f‘

o let w1, = %jhm where Z;.1 is a renormalization constant such that
27:1 Witil,i = 1

-] f = f—’—atht

@ Use f = Z;l Oétht

o Intuition: w;; measures the difficulty of learning the sample i at step t...
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e’ e *
o decision
. . boundary
.

. T
[I _ D 7
(b)
AdaBoost Intuition

@ h; obtained by minimizing a weighted loss
n
h; = argmin Z wt7,-€0/1(y,-, h(x;))
heH i=1
@ Update the current estimate with
fe = fe1+ achy
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e’ e *
o decision
. . boundary
.

t=1 t=2 t=3
(2)
Dq[l ‘Q2|:.WKD :
(b)

AdaBoost Intuition
@ Weight w; ; should be large if x; is not well-fitted at step t — 1 and small

otherwise.
o Use a weight proportional to e ¥ife-1(x/) so that it can be recursively updated by
e—ayihi(x;)
W . = W . >< e —
t+1,i t,i Zt

212



Ad a BOOSt Trees and Ensemble Methods /4

AdaBoost Intuition

@ Set «; such that
Z Wtt1,i = Z Wiet-1,i
yihe(xi)=1 yiht(xi)=—1
or equivalently

E Wt i e %t = g Wt i e

yihe(xi)=1 yihe(xi)=—1 212



AdaBoost

o o . °
. peated
% ° o Melehs
® °
t=1 t=2 t=3

@ Using
€t = Z Wt i
yihe(xi)=-1
leads to ] )
ar = = log %t and Zy = 2\/€er(1 —€4)
2 €t

Trees and Ensemble Methods /4
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Exponential Stagewise Additive Modeling

@ Sett=0and f =0.

@ Fort=1to T,
o (he, o) = argmin, o, 37, e Vilf(x)+ah(x;))
o f=f+ah,

@ Use f = ZZ—ZI ot h;

o Greedy optimization of a classifier as a linear combination of T classifier for the
exponential loss.

@ Those two algorithms are exactly the same!
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ReVISIted Ada BOOSt Trees and Ensemble Methods 7

@ Sett=0and f =0.

@ Fort=1to T,
o (hy,ar) = argminy, , 27:1 e~ Yi(f(x,)+ah(x,))
o f=1f+ah

o Use f =1 azh

o Greedy iterative scheme with only two parameters: the class H of weak
classifiers and the number of step T.

@ In the literature, one can read that Adaboost does not overfit! This is not true
and T should be chosen with care. ..
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Weak Lea rners Trees and Ensemble Methods 7 X

Weak Learner

@ Simple predictor belonging to a set H.
@ Easy to learn.

@ Need to be only slightly better than a constant predictor.

Weak Learner Examples

@ Decision Tree with few splits.
@ Stump decision tree with one split.

o (Generalized) Linear Regression with few variables.

Boosting
@ Sequential Linear Combination of Weak Learner
@ Attempt to minimize a loss.

@ Example of ensemble method.
@ Link with Generalized Additive Modeling. 216



Generic Boosting

Trees and Ensemble Methods 7

o Greedy optim. yielding a linear combination of weak learners.

Generic Boosting

@ Algorithm:
e Sett=0and f =0.
e Fort=1to T,
o (ht,on) = argmin, . > Uyi, f(xi) + ah(x))
o f=1Ff+aih:
o Use f =1 avh,
o AKA as Forward Stagewise Additive Modeling
AdaBoost with /(y, h) = e™¥"
LogitBoost with £(y, h) = log,(1 + e™")
LyBoost with £(y, h) = (y — h)? (Matching pursuit)
L;Boost with £(y, h) = |y — h|
HuberBoost with #(y, h) = |y — h[*1),_pj<c + (2ely — h| — €)1}y_p>e

@ Simple principle but no easy numerical scheme except for AdaBoost and
L>,Boost. ..
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G rad Ient BOOStI ng Trees and Ensemble Methods /

@ Issue: At each boosting step, one need to solve
n
(h¢, ar) = argmin Z Uyi, F(xi) + ah(x)) = L(y, f + ah)
ho =1
o ldea: Replace the function by a first order approximation
L(y,f +ah) ~ L(y,f) + o(VL(y,f), h)

Gradient Boosting

@ Replace the minimization step by a gradient descent step:

e Choose h; as the best possible descent direction in 7 according to the approximation
o Choose o that minimizes L(y, f + ah;) (line search)

@ Rk: Exact gradient direction often not possible!

@ Need to find efficiently this best possible direction. ..
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BeSt DlreCtiOI"I Trees and Ensemble Methods 7 X

@ Gradient direction:

VLi(y,f) with V;L(y,f) dfa (Zﬁy,, Xjr )

Best Direction within H

@ Direct formulation:

= iL af h i L ,f ,h
he < argmin = VLo D00 (_ (VLA D.0))
e i [h(xi)[? 1Al
@ Equivalent (least-squares) formulation: h; = —f;h; with

(B, Hy) € argmin 3" [Vil(y, f) — Bh(x)P (= |VL - 8h|]?)

(B,h)ERXH j—1

@ Choice of the formulation will depend on H. ..

219



Gradient Boosting of Classifiers Trees and Ensemble Mathods -
@ Assumptions:
e his a binary classifier, h(x) = %1 and thus ||h||*> = n.
o Uy, f(x)) = I(yf(x)) so that V;L(y, f) = yil'(yif (xi))-
@ Best direction h; in H using the first formulation

hy = argmlnzv L(y, f)h(x;)
her

AdaBoost Type Minimization

@ Best direction rewrltmg
t _argman/ y: XI y: X,)

heH i
= argmin (=) (yif (x))(2£" (v, h(x:) — 1)
heH f
e AdaBoost type weighted loss minimization as soon as (—/")(yif(x;) > 0:
he = argmin > _(=1")(vif (x)) €% (v, h(x:))
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Gradient Boosting of Classifiers Trees and Ensemble Mathods -

Gradient Boosting

o (Gradient) AdaBoost: /(y, f) = exp(—yf)
o I(x) = exp(—x) and thus (—/")(yif(x;)) = e™¥fx) >0
e h; is the same as in AdaBoost
e « also. .. (explicit computation)
e LogitBoost: /(y,f) = log,(1 4 ™)
—yif(xi)
e > 0

I(x) = logy(1 4+ e ) and thus (=/")(yif(x;)) = D) ey 2
o Less weight on misclassified samples than in AdaBoost. . .
e No explicit formula for cv; (line search)
o Different path than with the (non-computable) classical boosting!
e SoftBoost: /(y, ) = max(1 — yf,0)
o /(x) = max(1l —x,0) and (=/")(yif(x;)) = 1y,¢(x)<1 > 0
e Do not use the samples that are sufficiently well classified!
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Gradient Boosting and Least Squares Trees and Ensemble Methods /Y

@ Least squares formulation is often preferred when |h| # 1.

Least Squares Gradient Boosting

e Find ht = —/Bth; with

n

(Be, hy) € argmin Y |Vil(y,f) — Bh(x)[?
(B,h)ERXH =il

o Classical least squares if H is a finite dimensional vector space!

@ Not a usual least squares in general but a classical regression problem!

@ Numerical scheme depends on the loss. ..
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@ Gradient [,Boost:
o Uy,f)=ly—f*and ViL(y;, f(x;)) = —2(yi — f(x)):

n

(B, hy) € argmin Z\zy,—z(( i) — B/2h(x:))I?

(B;h)ERXH =

o ar = —f/2
e Equivalent to classical Ly-Boosting

o Gradient L;Boost:
o Uy, f)=l|y—f|and V;L(yi, f(x;)) = —sign(y; — f(xi)):

(B:, h,) € argmin Z | — sign(y; — f(x;)) — Bh(x;)|?

(B.h)ERXH T
o Robust to outliers. . .

o Classical choice for H: Linear Model in which each h depends on a small subset of
variables.
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@ Least squares formulation can also be used in classification!
@ Assumption:
o Uy, f(x)) = I(yf(x)) so that V;L(y;, f(x;)) = yil'(yif (x;))

Least Squares Gradient Boosting for Classifiers

@ Least Squares formulation:
n

(Be, hy) € argmin > |yil (vif (x;)) — Bh(x;)[?
(B,h)eERXH j—1

e Equivalent formulation:

(B, hy) € argmin Y [(=1)(yif (%)) — (—=B)yih(:)) >
(B,h)ERXH j—1

@ Intuition: Modify misclassified examples without modifying too much the
well-classified ones. . .

224



BOOStI ng Va rlatlonS Trees and Ensemble Methods 7 X

Stochastic Boosting

o ldea: change the learning set at each step.
@ Two possible reasons:

e Optimization over all examples too costly
e Add variability to use an averaged solution

@ Two different samplings:

e Use sub-sampling, if you need to reduce the complexity
e Use re-sampling, if you add variability. . .

@ Stochastic Gradient name mainly used for the first case. ..

Second Order Boosting

@ Replace the first order approximation by a second order one and avoid the line
search. ..
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o Very efficient boosting algorithm proposed by Chen and Guestrin in 2014.

eXtreme Gradient Boosting

@ Gradient boosting for a (penalized) smooth loss using a second order
approximation and the least squares approximation.

@ Reduced stepsize with a shrinkage of the optimal parameter.

o Feature subsampling.

@ Weak learners:
o Trees: limited depth, penalized size and parameters, fast approximate best split.
e Linear model: elastic-net penalization.

@ Excellent baseline!

@ Lightgbm and CatBoost are also excellent similar choices!
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@ Ensemble Methods

9 Trees and Ensemble Methods
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Ensem ble MethOdS Trees and Ensemble Methods /4

Ensemble Methods

@ Averaging: combine several models by averaging (bagging, random forests,. . .)
e Boosting: construct a sequence of (weak) classifiers (XGBoost, LightGBM,
CatBoost)

@ Stacking: use the outputs of several models as features (tpot...)

@ Loss of interpretability but gain in performance

@ Beware of overfitting with stacking: the second learning step should be done with
fresh data.

@ No end to end optimization as in deep learning!

Source: J. Rocca
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@ Time Series
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Tl me SerieS Trees and Ensemble Methods 7 ‘

905200

@ Sequence of values of the same entity across time.
@ Values taken at regular interval, most of the time

e Beware: time dependency in the values!

Source: Hyndman and Athanasopoulos
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Which Goals?

Estimation Window

Real and Fstimated States

@ Supervised:

e Predict a value in the future,
o Predict some values (a trajectory) in the future,
e Predict a category in the future.

@ Unsupervised:

e Find break points,
e Group some series together (possibly in real time)

@ Using future values to act at a given time not allowed!

Trees and Ensemble Methods 7

Source: N. Hashemian
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Tlme SerieS and Structured Slgnals Trees and Ensemble Methods /

class #1

Groundtruth e —

sensor channel #1 |
Sensor data sensor channel #2 |

sensor channel #n

t=1 siding &
window

label = class #1

label =

Structured Signals

@ Sequence of values of the same entity (spatially or temporaly).
@ Decision can be taken a posteriori.

@ No hard real-time constraints.

o Easier to deal with. .. but dependency with the data.
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Time SerieS and Valldathn Trees and Ensemble Methods /"“

Time Present Time Present

> rese

Pass 1 [N pass 1 I -

P | pass 2 I

Pass 3 | pass 3 [

Pass 4 | pass 4 I

Pass 5 ] pass 5 [N

Dropped - Training Forecasting Bl ining Forecasting

Cross Validation
@ Never use the future. . . including for the validation.

@ Classical Cross Validation is not working!

@ Backtesting principle. .
@ Loss choice remains important. :
@ For structured data, safety buffer required between training and testing data. )
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Tl’end and Seasonallty Trees and Ensemble Methods 7 »

mw MULTIPLCATIVE SEASONAL
(smpe)
N\ e

Constant Level
7 T 7
NN NA N

Linear Trend

Damped Trend
(095)

Exponential Trend
(1.05)

Trend and Seasonality

@ Trend: long term evolution of average behavior.

@ Seasonality: periodic variability around this mean.

@ Residual: values after subtraction of the trend and the seasonality

@ Need to estimate everything using only the past.
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Stationarlzatlon Trees and Ensemble Methods £,

iy US net elctnicty generaton
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Stability in time assumption

@ Required for learning. ..
@ but not necessarily true.

@ Often approximately correct after a transformation!
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Strongly data dependent!



Tlme SerieS MOdellng Trees and Ensemble Methods 7 :

paiophy

p—

@ 3-layers approach: trend, seasonality and residuals.
@ Decomposition not well specified. . .

@ Several approaches for each layer!

Source: Hyndman and Athanasopoulos
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Statistlcal ApproaCh Trees and Ensemble Methods /"“

XtNZ¢JXt 3‘|‘29th k‘|‘Zt

=i

Statistical Approach

@ Most classical modeling.

@ Combines past values of the sequence and a random noise.
@ Explicit modeling of the variability!

o Complex estimation. . .
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Machine Learning Approach

Datetime lag 1 lag 2 lag 3 lag 4 lag 5 lag 6 lag 7 Count
0 201208-25000000 NaN NaN NaN NaN NaN NaN NaN ]
1 2012-08-25010000 80 NaN NaN NaN NaN NaN  NaN 2
2 20120825020000 20 80 NaN NaN NaN NaN NaN 6
3 201208-25030000 60 20 80 NaN NaN NaN NaN 2
4 20120825040000 20 60 20 B0 NaN NaN NaN 2
5 2012-08-250500:00 20 20 60 20 80 NaN NaN 2
6 20120825060000 20 20 20 60 20 80 NaN 2
7 2012-08-250700:00 20 20 20 20 60 20 &0 2
8 201208-25080000 20 20 20 20 20 60 20 6
9 20120825080000 60 20 20 20 20 20 60 2

Trees and Ensemble Methods 7

Machine Learning Approach

@ Past taken into account only by feature engineering!

o Often using directly lagged values from the past.

e Variability not taken into account.

@ Estimation with classical ML tools.
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Deep Learnlng ApproaCh Trees and Ensemble Methods /4

(a) (b) (©

outputs 000 : ) ) @ oupus @@ @ @ outputs (& &) O O ¢ OX ) :[3{2[2::?;
(,()IlVO]ullOl’ld] attention ioht
layer recurrent . layer weights
1u)nvolunonal layer ' '- '- '- . encoder

ayer ‘ layer

inputs {: ‘ ‘ [ ) ‘ inpus Q@@ @O inputs . ‘ O

CNN model RNN model attention-based model

Deep Learning Approach

@ Past taken into account through the architecture.
@ Explicit use of past values.
@ Variability not taken into account.

@ Huge choice for the architecture.
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Refel’ences Trees and Ensemble Methods /4 ¢

M R. Hyndman and G. Athanopoulos.
Forecasting: principles and practice (3rd ed.)
OTexts, 2021
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Llcence and COntI’IbUtOI’S Trees and Ensemble Methods 7 7

Creative Commons Attribution-ShareAlike (CC BY-SA 4.0)

@ You are free to:
@ Share: copy and redistribute the material in any medium or format
@ Adapt: remix, transform, and build upon the material for any purpose, even commercially.

@ Under the following terms:
@ Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in

any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
@ ShareAlike: If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the

original.
@ No additional restrictions: You may not apply legal terms or technological measures that legally restrict others from doing anything

the license permits.

Contributors
@ Main contributor: E. Le Pennec
@ Contributors: S. Boucheron, A. Dieuleveut, A.K. Fermin, S. Gadat, S. Gaiffas,
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O Utl | ne Unsupervised Learning:

Beyond PCA and k-means

o Unsupervised Learning: Beyond PCA and k-means
@ Unsupervised Learning?
@ A First Glimpse

@ Dimension Reduction

@ Clustering

@ Applications to Text
@ References

245



O Utl Ine Unsupervised Learning:

Beyond PCA and k-means

o Unsupervised Learning: Beyond PCA and k-means
@ Unsupervised Learning?
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M OtlvatiO n Unsupervised Learning:

Beyond PCA and k-means

th

Up-down pose.

»
i

¥

What is possible with data without labels?

R
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L Y
Um ey

Leftright pose

@ To group them?

@ To visualize them in a 2 dimensional space?
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M a rketl n g an d G rou pS Unsupervised Learning:

Beyond PCA and k-means

iy 1t
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™
Sl 1

To group them?

o Data: Base of customer data containing their properties and past buying records
@ Goal: Use the customers similarities to find groups.
o Clustering: propose an explicit grouping of the customers

@ Visualization: propose a representation of the customers so that the groups are
visible. (Bonus)
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Image and Vlsuallzatlon Unsupervised Learning:

Beyond PCA and k-means

U g BN
e gbau ®
RS

pEAE E g
g B ¥dag

To visualize them?

o Data: Images of a single object
o Goal: Visualize the similarities between images.

o Visualization: propose a representation of the images so that similar images are
close.
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o Clustering: use this representation to cluster the images. (Bonus)
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Machine Learnlng Unsupervised Learning:

Beyond PCA and k-means

Input

L’—ﬂ
1

Training Data
7LIb4 19487 Learning
D6901597%% o Algorithm
1605 »Oﬂiol

\TLI0Y4 14869
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1547547401
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A definition by Tom Mitchell

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E.

2
<]
<
=
>
o
g
=
<]
%)

N
(&2
o



SUperVised Learnlng Unsupervised Learning:

Beyond PCA and k-means

Experience, Task and Performance measure
e Training data : D = {(X;, Y1),...,(X,, Yan)} (i.id. ~P)
@ Predictor: f : X — ) measurable
@ Cost/Loss function: ¢(f(X), Y) measure how well f(X) predicts Y
@ Risk:
R(F) = E[L(Y, F(X))] = Ex[Eyix[((Y, F(X))]]

e Often ((f(X),Y) = |f(X)— Y|? or £(f(X),Y) = yr(x)

@ Learn a rule to construct a predictor f € F from the training data D,, s.t. the

~

risk R(f) is small on average or with high probability with respect to D,,.
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UI"ISU perV|Sed Leal’nlng Unsupervised Learning:

Beyond PCA and k-means

Experience, Task and Performance measure
e Training data: D= {X,,...,X,} (iid. ~DP)
e Task: 777

@ Performance measure: 777

@ No obvious task definition!

Tasks for this lecture

@ Dimension reduction: construct a map of the data in a low dimensional space
without distorting it too much.

o Clustering (or unsupervised classification): construct a grouping of the data
in homogeneous classes.
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DlmenSIOn Red UCtIOﬂ Unsupervised Learning:

Beyond PCA and k-means

e Training data: D= {X,,...,X,} € X" (iid. ~P)
@ Space X of possibly high dimension.

Dimension Reduction Map

@ Construct a map ® from the space X into a space X’ of smaller dimension:
o X =X
X — o(X)

@ Map can be defined only on the dataset.

Motivations
@ Visualization of the data

@ Dimension reduction (or embedding) before further processing
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DlmenSIOn Red UCtIOﬂ Unsupervised Learning:

Beyond PCA and k-means

@ Need to control the distortion between D and (D) = {®(X;),...,P(X,)}

Distortion(s)

@ Reconstruction error:

o Construct ® from X’ to X B

o Control the error between X and its reconstruction ®($(X))
@ Relationship preservation:

o Compute a relation X; and X; and a relation between ®(X;) and ®(X})
o Control the difference between those two relations.

@ Lead to different constructions. ...
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Cl USte rl ng Unsupervised Learning:

Beyond PCA and k-means

e Training data: D= {X,,...,X,} € X" (iid. ~P)
@ Latent groups?

Clustering

e Construct a map f from D to {1,..., K} where K is a number of classes to be
fixed:
fo Xi— ki

@ Similar to classification except:
e no ground truth (no given labels)
e label only elements of the dataset!

Motivations

@ Interpretation of the groups

@ Use of the groups in further processing
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Cl USte rl ng Unsupervised Learning:

Beyond PCA and k-means

@ Need to define the quality of the cluster.

@ No obvious measure!

Clustering quality
@ Inner homogeneity: samples in the same group should be similar.

@ Outer inhomogeneity: samples in two different groups should be different.

Several possible definitions of similar and different.

Often based on the distance between the samples.

Example based on the Euclidean distance:

e Inner homogeneity = intra-class variance,
e Outer inhomogeneity = inter-class variance.

@ Beware: choice of the number of clusters K often complex!
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BOHUS TaSk Representathn Learnlng Unsupervised Learning:

Beyond PCA and k-means

@ General observation: most data do not have a label !

e Example: The number of images on which someone has described the content of
the image is a tiny fraction of the images online.

@ Labeling is very expensive and time consuming

@ A lot of information can be extracted from the structure of the data, before seeing
any label.

How can we leverage the large quantity of un-labeled data?

Learn relevant features (= representations) in an unsupervised fashion

Use those features to solve a supervised task with a fraction of labeled data.

Semi-supervised framework

% Very useful in practice, for images, time series, text.
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Sem i—SU perVised Fra meWOI'k Unsupervised Learning:

Beyond PCA and k-means

X1 X2 Label

Partially _| [ Supervised 08
Labelled Learning Model

M semi-Supervised < i
Learning Model 05 !

M Unsupervised 04 H
Learning Model

o
| . Percentage of labeled data

Mostly
Unlabeled |

Semu-Supervised Framework

@ With representation learned in an unsupervised fashion + a simple linear model,
one can achieve the same performance with 10% of data labeled than with a fully
annotated dataset.
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@ Complementary regularization based approaches also exist.
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Unsupervised Learning is a Versatile Approach! Unsupervised Learning:

Beyond PCA and k-means

@ A subjective measure of performance

@ Subjective choices for the algorithmic constraints (e.g., the type of transformation
of the data we allow for low-dimensional representation, type of groups in
clustering)

@ = Very difficult or impossible to tell which is the best method.

@ Yet:
e Extremely important in practice:

@ 90-99% of the data is un-labeled!
o the tasks themselves are fundamental

o Huge success in various fields (NLP, images. . .)
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Unsupervised Learning is a Versatile Approach! Unsupervised Learning:

Beyond PCA and k-means

for the two main tasks

@ Discussing possible choices of measures of performance and algorithmic
constraints

@ Understand the correspondences between those choices and a variety of classical
algorithms

@ For the simplest algorithms (PCA, k-means), get a precise mathematical
understanding of the learning process.
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O Utl | ne Unsupervised Learning:

Beyond PCA and k-means

o Unsupervised Learning: Beyond PCA and k-means

@ A First Glimpse
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i
Wh at S a grOU p? Unsupervised Learning:
Beyond PCA and k-means

4 X y X
[q o Cluster A i‘ 5\
o,

Final i
Boundary i

@ No simple or unanimous definition!
@ Require a notion of similarity/difference. . .

Three main approaches

@ A group is a set of samples similar to a prototype.
@ A group is a set of samples that can be linked by contiguity.
@ A group can be obtained by fusing some smaller groups. . .
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Prototype ApproaCh Unsupervised Learning:

Beyond PCA and k-means

Unlabelled Data Labelled Clusters
° LY e o
o © e o
o ® °
° e e K-means
A~

®
) @
[ I
® X = Centroid

A group is a set of samples similar to a prototype.

@ Most classical instance: k-means algorithm.

@ Principle: alternate prototype choice for the current groups and group update
based on those prototypes.
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Number of groups fixed at the beginning
No need to compare the samples between them!
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COntigUity ApprOaCh Unsupervised Learning:

Beyond PCA and k-means

Contiguity Approach

@ A group is the set of samples that can be linked by contiguity.
@ Most classical instance: DBScan
@ Principle: group samples by contiguity if possible (proximity and density) H
2
@ Some samples may remain isolated. g
@ Number of groups controlled by the scale parameter. &
265

DBSCAN: Density-Based Spatial Clustering of Applications with Noise



Agglomerative Approach

Unsupervised Learning:
Beyond PCA and k-means

Agglomerative Approach

@ A group can be obtained by fusing some smaller groups. ..

@ Hierachical clustering principle: sequential merging of groups according to a best
merge criterion

@ Numerous variations on the merging criterion. ..
@ Number of groups chosen afterward.
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Choice of the method and of the number of groups Unsupervised Learning:

Beyond PCA and k-means

Meanshift viard

©0eoe

8.7 %20

@ Criterion not necessarily explicit!

@ No cross validation possible
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@ Choice of the number of groups: a priori, heuristic, based on the final usage. . .
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D | menSIOn a | |ty C urse Unsupervised Learning:

Beyond PCA and k-means

o 0.2 1 0.45 1 0

o DISCLAIMER: Even if they are used everywhere beware of the usual
distances in high dimension!

Dimensionality Curse

@ Previous approaches based on distances.
@ Surprising behavior in high dimension: everything is ((often) as) far away.
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@ Beware of categories. ..




DlmenSIOnallty CUI’SG Unsupervised Learning:

Beyond PCA and k-means

o DISCLAIMER: Even if they are used everywhere beware of the usual
distances in high dimension!
High Dimensional Geometry Curse
@ Folks theorem: In high dimension, everyone is alone.

@ Theorem: If X;,..., X, in the hypercube of dimension d such that their
coordinates are i.i.d then

|
4-1/p <maX 1X; — X;llp — min || X; _gjnp) — 0+ Op ( og n)

d

min [1X: = X1, og n
=1 .

max X, XL, TP\

@ When d is large, all the points are almost equidistant. ..
@ Nearest neighbors are meaningless!
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Vlsuallzatlon and DlmenSiOI"I RedUCtIOn Unsupervised Learning:

Beyond PCA and k-means

Visualization and Dimension Reduction

@ How to view a dataset in high dimension !
@ High dimension: dimension larger than 2!

@ Projection onto a 2D space.
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Visualizatlon and DlmenSion RedUCtlon Unsupervised Learning:

Beyond PCA and k-means

Visualization and Dimension Reduction
@ How to view a dataset in high dimension !

@ High dimension: dimension larger than 2!
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@ Projection onto a 2D space.
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Vlsuallzatlon and DlmenSiOI"I RedUCtlon Unsupervised Learning:

Beyond PCA and k-means

Visualization and Dimension Reduction
@ How to view a dataset in high dimension !

@ High dimension: dimension larger than 2!
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@ Projection onto a 2D space.
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Visualizatlon and DlmenSion RedUCtlon Unsupervised Learning:

Beyond PCA and k-means

Visualization and Dimension Reduction
@ How to view a dataset in high dimension !

@ High dimension: dimension larger than 2!
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@ Projection onto a 2D space.
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Pl’lnCIPal Component AnaIySIS Unsupervised Learning:

Beyond PCA and k-means

Projection

,,,,,,,,,,,,

e Simple formula: X = P(X — m)
How to chose P?
@ Maximising the dispersion of the points?

o Allowing to well reconstruct X from X?
o Preserving the relationship between the X through those between the X?

o
20
=
.
o
2
3
(<]
%)

N
~
w



Pl’lnCIPal Component AnaIySIS Unsupervised Learning:

Beyond PCA and k-means

Projection

,,,,,,,,,,,,

e Simple formula: X = P(X — m)
How to chose P?
@ Maximising the dispersion of the points?

o Allowing to well reconstruct X from X?
o Preserving the relationship between the X through those between the X?

o
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@ The 3 approaches yield the same solution!
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Reconstruction Approaches Unsupervised Learning:

Beyond PCA and k-means

Reconstruction Approaches
@ Learn a formula to encode and one formula to decode.

@ Auto-encoder structure

@ Yields a formula for new points.
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RCCOnStrUCtiOH ApproaCheS Unsupervised Learning:

Beyond PCA and k-means

Reconstruction Approaches

@ Learn a formula to encode and one formula to decode.

@ Auto-encoder structure

@ Yields a formula for new points.
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Reconstruction Approaches Unsupervised Learning:

Beyond PCA and k-means

Reconstruction Approaches

@ Learn a formula to encode and one formula to decode.

@ Auto-encoder structure

@ Yields a formula for new points.
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Relationship Preservation Approaches Unsupervised Learning:

Beyond PCA and k-means

Relationship Preservation Approaches

@ Based on the definition of the relationship notion (in both worlds).

@ Huge flexibility

@ Not always yields a formula for new points.
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Choices of Methods and Dimension Unsupervised Learning:

Beyond PCA and k-means

% d’inertie

(=)

<

(=3

o

(=

N

= H\

- DDDD:::
1234 -

No Better Choice?

Different criterion for different methods: impossible to use cross-validation.

The larger the dimension the easier is to be faithful!

In visualization, dimension 2 is the only choice. 2
Heuristic criterion for the dimension choice: elbow criterion (no more gain), :
stability. . . <
Dimension Reduction is rarely used standalone but rather as a step in a §
predictive/prescriptive method. 7

276

The dimension becomes an hyper-parameter of this method.



Re presentation Lea rn | ng Unsupervised Learning:

Beyond PCA and k-means

Word2Vec

MaleFemale

luncle  jwoman /

ssazs A 2wl —

92804 — — - — —pnaheim

Representation Learning

@ How to transform arbitrary objects into numerical vectors?

@ Objects: Categorical variables, Words, Images/Sounds. . .

@ The two previous dimension reduction approaches can be used (given possibly a
first simple high dimensional representation)
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O Utl | ne Unsupervised Learning:

Beyond PCA and k-means

o Unsupervised Learning: Beyond PCA and k-means

@ Dimension Reduction
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D | menSIOn Red UCtIOﬂ Unsupervised Learning:

Beyond PCA and k-means

e Training data: D= {X,,...,X,} € X" (iid. ~P)
@ Space X of possibly high dimension.

Dimension Reduction Map

o Construct a map ® from the space X into a space X’ of smaller dimension:
o: X X
X — o(X)

Criterion
@ Reconstruction error

@ Relationship preservation
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H OW tO S | m pl |fy? Unsupervised Learning:

Beyond PCA and k-means

A Projection Based Approach
@ Observations: Xy,...,X, € Rd

e Simplified version: ®(X;),...,®(X,) € RY with ® an affine projection preserving
the mean ®(X) = P(X —m) +mwith PT =P =P2and m= 1%, X,.

How to choose P?

@ Inertia criterion:
maxz (X X))

@ Reconstruction criterion:
m|n Z | X; — ®(X \27

o Relationship criterion:
min ZI ) (X — m) = (D(X;) = m) " (&(X)) — m)[*?

@ Rk: Best solution is P = /! Need to reduce the rank of the projection to
d <d... 281



Inertla Cl’ltel’lon Unsupervised Learning:

Beyond PCA and k-means

@ Heuristic: a good representation is such that the projected points are far apart.

Two views on inertia

@ Inertia:
1 » 1 n 5
= 202 Z 1 X; —KJH = " Z | X; — m]|
ij i=1

@ 2 times the mean squared distance to the mean = Mean squared distance
between individual

Inertia criterion (Principal Component Analysis)

1

@ Criterion: maxzj: p IPX; — ngﬂz = max — z/: |PX; — m]|?

@ Solution: Choose P as a projection matrix on the space spanned by the d’ first
eigenvectors of & = 1 3°(X; — m)(X; — m)"
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FII’St Component Of the PCA Unsupervised Learning:

Beyond PCA and k-means

e X=m+a' (X—m)awith |ja| =1
1 n
Inertia: =" a'(X; — m)(X; —m)'
@ Inertia ni:la( ; )(X; ) a

Principal Component Analysis: optimization of the projection

-~ 1
e Maximization of | = . Z a'(X;—m)(X;—m) a=a'Tawith
i=1

1 n
Y == Z(X,— — m)(X; —m) ' the empirical covariance matrix.
n“
i=1

@ Explicit optimal choice given by the eigenvector of the largest eigenvalue of X.
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PCA Unsupervised Learning:

Beyond PCA and k-means

% d’inertie
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Principal Component Analysis : sequential optimization of the projection

@ Explicit optimal solution obtain by the projection on the eigenvectors of the
largest eigenvalues of ¥.

@ Projected inertia given by the sum of those eigenvalues.

@ Often fast decay of the eigenvalues: some dimensions are much more important
than others.

@ Not exactly the curse of dimensionality setting. . .

@ Yet a lot of small dimension can drive the distance!
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RGCO nSt ru CtIO n C rlterlon Unsupervised Learning:

Beyond PCA and k-means

@ Heuristic: a good representation is such that the projected points are close to the
original ones.

Reconstruction Criterion

o 1 2
e Criterion: mFl’nZi:;HK,-—(P(K m) + m)|]> = mlanH (I-P —m)||

@ Solution: Choose P as a projection matrix on the space spanned by the d’ first
eigenvectors of ¥ = 1 37,(X; — m)(X; — m)"

@ Same solution with a different heuristic!

@ Proof (Pythagora):
X = mi? =37 (IPCX; = m)[I2 + 111 = PY(X; = m)|?)
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PCA, RGCOHStI’UCtIOH and DIStanCGS Unsupervised Learning:

Beyond PCA and k-means

L

)

Close projection doesn’'t mean close individuals!

@ Same projections but different situations.
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@ Quality of the reconstruction measured by the angle with the projection space!



RelatlonShlp Crlterlon Unsupervised Learning:

Beyond PCA and k-means

@ Heuristic: a good representation is such that the projected points scalar products
are similar to the original ones.

Relationship Criterion (Multi Dimensional Scaling)

L T T 2
o Criterion: min Z |(X; —m) (X; — m) — (P(X;) — m) (P(X;) — m)|
ij
@ Solution: Choose P as a projection matrix on the space spanned by the d’ first
eigenvectors of ¥ = 1 Y°,(X; — m)(X; — m)"

@ Same solution with a different heuristic!

@ Much more involved justification!
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I_lnk Wlth SVD Unsupervised Learning:

Beyond PCA and k-means

@ PCA model: X — m=~ P(X — m)
e Prop: P = VVT with V an orthormal family in dimension d of size d’.
@ PCA model with V: X —m ~ VW T (X — m) where X = VT (X — m) e RY

. ST
@ Row vector rewriting: KT —m' ~ X vl

Matrix Rewriting and Low Rank Factorization

e Matrix rewriting

X, —m'| | X,

vT

2

X, T N mT X';T (d"xd)

(nxd) (nxd")
@ Low rank matrix factorization! (Truncated SVD solution. .. )
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SVD Unsupervised Learning:

Beyond PCA and k-means

SVD Decomposition

@ Any matrix n X d matrix A can be decomposed as

A = U D ||WT
(dxd)
(nxd) (nxn)  (nxd)
with U and W two orthonormal matrices and D a diagonal matrix with decreasing

values.
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SVD Unsupervised Learning:

Beyond PCA and k-means

Low Rank Approximation

@ The best low rank approximation or rank r is obtained by restriction of the
matrices to the first r dimensions:

A

12

Ue| DA W T
(rxr) (rxd)

(nxd) (nxr)
for both the operator norm and the Frobenius norm!

@ PCA: Low rank approximation with Frobenius norm, d’ = r and
X, —mT XIT

oA, | e U, View
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SVvD

Unsupervised Learning:
Beyond PCA and k-means

SVD Decompositions

@ Recentered data:

R= : = Ubw'’

@ Covariance matrix:
Yy =R'R=WD"DW
with DT D diagonal.
e Gram matrix (matrix of scalar products):
G=RR" =UDD"U
with DD diagonal.

@ Those are the same U, W and D, hence the link between all the approaches.
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ReCOHStrUCtIOH EI’FOI’ ApproaCh Unsupervised Learning:

Beyond PCA and k-means

@ Construct a map ® from the space X into a space X’ of smaller dimension:
o X=X
X — o(X)

e Construct ® from X’ to X

e Control the error between X and its reconstruction ®($(X))

@ Canonical example for X € RY: find ¢ and ®in a parametric family that minimize

ii 1X; — ®(P(X,))]]2
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PrlnCipal Component AnaIySIS Unsupervised Learning:

Beyond PCA and k-means

X € R? and X' =R
Affine model X ~ m+ 3%, X' v with (V) an orthonormal family.

Equivalent to:

O(X)=V'(X—m) and ®X)=m+ VX
Reconstruction error criterion:

1 n
n Z 1X; = (m+ W (X; — m)|]?
i=1

Explicit solution: m is the empirical mean and V is any orthonormal basis of the
space spanned by the d’ first eigenvectors (the one with largest eigenvalues) of
the empirical covariance matrix % n (X —m)(X;—m)".
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Pl’lnCIPal Component AnaIySIS Unsupervised Learning:

Beyond PCA and k-means

PCA Algorithm

Compute the empirical mean m =137 X;

Compute the empirical covariance matrix 1 37 (X; — m)(X; — m)".
Compute the d’ first eigenvectors of this matrix: V(1) ... v(d)

Set ®(X) = V(X —m)

o Complexity: O(n(d + d?) + d'd?)
@ Interpretation:

o ®(X) = V(X —m): coordinates in the restricted space.
o V(): influence of each original coordinates in the ith new one.

Scaling: This method is not invariant to a scaling of the variables! It is custom to
normalize the variables (at least within groups) before applying PCA.
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Unsupervised Learning: X

Beyond PCA and k-means
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Principal Component Analysis
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MUltIple FaCtOI’ AnalySIS Unsupervised Learning:
eyon CA and k-means
@ PCA assumes X = RYI Beyond PCA and k

@ How to deal with categorical values?

o MFA = PCA with clever coding strategy for categorical values.

Categorical value code for a single variable

@ Classical redundant dummy coding:
X e {]_,,V}'—} P(K): (1521,... ]-X \/)—r

e Compute the mean (i.e. the empirical proportions): P = 1 i1 P(X))

@ Renormalize P by 1/\/_71
Ix=1 1x—v
P(X)= (1x=1,...1x=v) — =
- Jov—op ﬁ

e 2 type distance!
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M u |tip|e FaCtor AnaIySIS Unsupervised Learning:

Beyond PCA and k-means

o PCA becomes the minimization of
— ZIIP' (m+ WT(P(X;) = m))|?

/ 2
Ly — (0 4+ X7 VOT(P(X;) — V()

(V - 1)ﬁv

*ZZ

i=1v=1
@ Interpretation:
oem =P
o ®(X) = VT(P"(X)— m): coordinates in the restricted space.
o V() can be interpreted s as a probability profile.

e Complexity: O(n(V + V?) + d'V?)
@ Link with Correspondence Analysis (CA)
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M u |t| ple FaCtOI’ AnaIySIS Unsupervised Learning:

Beyond PCA and k-means

MFA Algorithm

@ Redundant dummy coding of each categorical variable.

@ Renormalization of each block of dummy variable.

@ Classical PCA algorithm on the resulting variables

Interpretation as a reconstruction error with a rescaled/x? metric.

Interpretation:
o ®(X) = V(P (X)— m): coordinates in the restricted space.
o V(): influence of each modality/variable in the ith new coordinates.

Scaling: This method is not invariant to a scaling of the continuous variables! It
is custom to normalize the variables (at least within groups) before applying PCA.
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Multiple Factor Analysis

Dim 2 (12.35%)
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Unsupervised Learning:
Beyond PCA and k-means
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NOn Llnear PCA Unsupervised Learning:

Beyond PCA and k-means

PCA Model

o PCA: Linear model assumption

7~m—|—ZX’ VD =m+ vX’

@ with

o V() orthonormal
o X") without constraints.

@ Two directions of extension:

o Other constraints on V (or the coordinates in the restricted space): ICA, NMF,
Dictionary approach
e PCA on a non-linear image of X: kernel-PCA

@ Much more complex algorithm!
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Non Llnear PCA Unsupervised Learning:

Beyond PCA and k-means

ICA (Independent Component Analysis)

@ Linear model assumption

g~m+ZX’(’ Vv =m+ vX’

@ with =1

o V() without constraints.
o X"") independent
NMF (Non Negative Matrix Factorization)
@ (Linear) Model assumption

dl
X~ S xDy — yx!
o with e K X

o V) non-negative
o X") non-negative.
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Non Llnear PCA Unsupervised Learning:

Beyond PCA and k-means

@ (Linear) Model assumption

@ with

dl
X=m+ Y X0V =myvx
1=1

o V() without constraints
o X' sparse (with a lot of 0)

kernel PCA

@ Linear model assumption
@ with

d/
V(X —m)~Y xOvh = vx
=1

o V() orthonormal
o X without constraints.
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Non Linear PCA
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AUtO EnCOder Unsupervised Learning:

Beyond PCA and k-means

Deep Auto Encoder

o Construct a map ® with a NN from the space X into a space X’ of smaller
dimension:

o XX
X — d(X)
Construct ® with a NN from X" to X
Control the error between X and its reconstruction ®(®(X)):

%Z 1X; — (P(X,))]?
i=1

Optimization by gradient descent.

NN can be replaced by another parametric function. ..
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PaII’WISG Relatlon Unsupervised Learning:

Beyond PCA and k-means

@ Different point of view!
@ Focus on pairwise relation R(X;, X;).

Distance Preservation

@ Construct a map ® from the space X into a space X’ of smaller dimension:
d: X=X
X—=o(X)=X
@ such that
R(Khéj) ~ R/(X%Kj)
@ Most classical version (MDS):
e Scalar product relation: R(X;, X;) = (X; — m)T(Kj —m)
o Linear mapping X' = &(X) = V(X — m).
e Euclidean scalar product matching:
1 n n T 2
S| = m g - m) - (X)X
i=1 j=1
o ® often defined only on D. .. 310



M u |t| DlmenSIOnal Scaling Unsupervised Learning:

Beyond PCA and k-means

@ Match the scalar products:
I v T T
S0 |(Xi = m) (X m) - X/ X
i=1j=1
o Linear method: X' = UT(X — m) with U orthonormal

2

@ Beware: X can be unknown, only the scalar products are required!

@ Resulting criterion: minimization in U'(X; — m) of
1 n n 2
S| = m) (X = m) = (X = m) T OUT(X; - m)|

without using explicitly X in the algorithm. ..
@ Explicit solution obtained through the eigendecomposition of the know Gram

matrix (X; — m)T(Kj — m) by keeping only the d’ largest eigenvalues.
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M u |tiD|menS|Ona| Scaling Unsupervised Learning:

Beyond PCA and k-means

@ In this case, MDS yields the same result as the PCA (but with different inputs,
distance between observation vs correlations)!
@ Explanation: Same SVD problem up to a transposition:

e MDS . .
o .
X(n) K(n) ~ Xy UU Xy
o PCA
XX ~ U XyXm U

e Complexity: PCA O((n+ d’)d?) vs MDS O((d + d’)n?). ..
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Genera | |Zed M DS Unsupervised Learning:

Beyond PCA and k-means

@ Preserving the scalar products amounts to preserve the Euclidean distance.

o Easier generalization if we work in terms of distance!

Generalized MDS

o Generalized MDS:
o Distance relation: R(X, X;) = d(X;, X;)
o Linear mapping X' = CD(X) VI(X—m).
e Euclidean matching:
1 n n 5
530 Jd(X, X)) (X, X))
i=1 j=1

@ Strong connection (but no equivalence) with MDS when d(x,y) = ||x — y|/?!

e Minimization: Simple gradient descent can be used (can be stuck in local
minima).
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I S O M A P Unsupervised Learning:

Beyond PCA and k-means

e MDS: equivalent to PCA (but more expensive) if d(x,y) = ||x — y|/?!

@ ISOMAP: use a localized distance instead to limit the influence of very far point.

@ For each point X;, define a neighborhood A/; (either by a distance or a number of
points) and let

if X; ¢ N;

do(K”KJ) = +OO 2 I —J ¢N

| X; — XJH otherwise

@ Compute the shortest path distance for each pair.
@ Use the MDS algorithm with this distance
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Ra ndom PI’O_]GCT.IOI’] Unsupervised Learning:

Beyond PCA and k-means

Random Projection Heuristic

@ Draw at random d’ unit vector (direction) U;.
o Use X' = UT(X —m) withm=21%", X,

e Property: If X lives in a space of dimension d”, then, as soon as, d’ ~ d” log(d"),
d
1X; — X1 ~ ?H& - Xj|1?

@ Do not really use the data!
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t-Stochastic Neighbor Embedding Unsupervised Learning:

Beyond PCA and k-means

@ From X; € X, construct a set of conditional probability:
o I1Xi=X;1?/207

e s e X207 st
e Find X/ in RY such that the set of conditional probability:
e~ IIXi=XjI?/207
Qi = Qi =0

e o~ 1IX]=X}]12/202

is close from P.
o t-SNE: use a Student-t term (1 + [|X} — X}[|*)~! for X;
Pjli
Qjji

o Minimize the Kullback-Leibler divergence (> P;; log
ij

) by a simple gradient

descent (can be stuck in local minima).
@ Parameters o; such that H(P;) = — Z 1 P; il log P; j|i = cst.
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t-Stochastic Neighbor Embedding Unsupervised Learning:

Beyond PCA and k-means

@ Very successful/ powerful technique in practice
@ Convergence may be long, unstable, or strongly depending on parameters.

@ See this distill post for many impressive examples

Representation depending on t-SNE parameters
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U M A P Unsupervised Learning:

Beyond PCA and k-means

@ Topological Data Analysis inspired.

Uniform Manifold Approximation and Projection

@ Define a notion of asymmetric scaled local proximity between neighbors:

o Compute the k-neighborhood of X, its diameter o; and the distance p; between X;
and its nearest neighbor.
o Define
e (X X;)=pi)/oi £or X in the k-neighborhood
Wf(Kiafj) = .
0 otherwise
@ Symmetrize into a fuzzy nearest neighbor criterion
w(X;, X;) = wi(X;, X;) + wi( X, X;) — wi( X5, X;)w; (X, X5)
@ Determine the points X/ in a low dimensional space such that
w(X;, X;) (1 - w(X;, X))
X.. X)I Y 1— w(X..X))I N7 TG
2wl X) o8 <W/(x:-,><,'~)> + =l X)) oe ((1 —w (X, X))

@ Can be performed by local gradient descent.
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G ra p h based Unsupervised Learning:

Beyond PCA and k-means

Graph heuristic

e Construct a graph with weighted edges w;; measuring the proximity of X; and X;
(w;j large if close and 0 if there is no information).

e Find the points X} € RY minimizing

1 1 n n ;

i=1 j=1

@ Need of a constraint on the size of X/. ..

@ Explicit solution through linear algebra: d’ eigenvectors with smallest eigenvalues
of the Laplacian of the graph D — W, where D is a diagonal matrix with

Diji =3 wij.
@ Variation on the definition of the Laplacian. ..
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How to Compare Different Dimensionality Reduction  unsupenvised Learming:
Beyond PCA and k-means
Methods 7

o Difficult! Once again, the metric is very subjective.

@ Did we preserve a lot of inertia with only a few directions?
@ Do those directions make sense from an expert point of view?
@ Do the low dimension representation preserve some important information?

@ Are we better on subsequent task?
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A Challenging Example: MNIST Unsupervised Learning:

Beyond PCA and k-means

MNIST Dataset

@ Images of 28 x 28 pixels.
@ No label used!

o 4 different embeddings.
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A Challenging Example: MNIST Unsupervised Learning:

Beyond PCA and k-means

PCA autoencoder

MNIST Dataset

@ Images of 28 x 28 pixels.

@ No label used!

o 4 different embeddings.
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A Cha”englng Example MN'ST Unsupervised Learning:

Beyond PCA and k-means

PCA autoencoder

MNIST Dataset
@ Images of 28 x 28 pixels.

@ No label used!
o 4 different embeddings.

@ Quality evaluated by visualizing the true labels not used to obtain the
embeddings.

@ Only a few labels could have been used. 328



A Slmpler Example A 2D Set Unsupervised Learning:

Beyond PCA and k-means

©
O3 % 9@

At

Cluster Dataset
@ Set of points in 2D.

@ No label used!

o 3 different embeddings.
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A Slmpler Example A 2D Set Unsupervised Learning:

Beyond PCA and k-means

Cluster Dataset

@ Set of points in 2D.
@ No label used!

o 3 different embeddings.
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A Slmpler Example A 2D Set Unsupervised Learning:

Beyond PCA and k-means

#f@
Original

Cluster Dataset

@ Set of points in 2D.

@ No label used!

o 3 different embeddings.

@ Quality evaluated by stability. . .
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o Unsupervised Learning: Beyond PCA and k-means

@ Clustering
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Cl USte rl ng Unsupervised Learning:

Beyond PCA and k-means

e Training data: D= {X,,...,X,} € X" (iid. ~P)
o Latent groups?

Clustering

e Construct a map f from D to {1,..., K} where K is a number of classes to be
fixed:
fo Xi— ki

Motivations

@ Interpretation of the groups

@ Use of the groups in further processing

@ Several strategies possible!

@ Can use dimension reduction as a preprocessing.
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Pa I’tltlon Based Unsupervised Learning:

Beyond PCA and k-means

Partition Heuristic
o Clustering is defined by a partition in K classes. . .

@ that minimizes a homogeneity criterion.

o Cluster k defined by a center pu.

@ Each sample is associated to the closest center.

n
@ Centers defined as the minimizer of Z mkin 1X; — g2
i=1

e lterative scheme (Loyd):

Start by a (pseudo) random choice for the centers 4

Assign each samples to its nearby center

Replace the center of a cluster by the mean of its assigned samples.
Repeat the last two steps until convergence.
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Unsupervised Learning:
Beyond PCA and k-means

Partition Based X
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Pa I’tltlon based Unsupervised Learning:

Beyond PCA and k-means

@ Other schemes:

e McQueen: modify the mean each time a sample is assigned to a new cluster.
e Hartigan: modify the mean by removing the considered sample, assign it to the
nearby center and recompute the new mean after assignment.

A good initialization is crucial!

@ Initialize by samples.
@ k-Mean+-+: try to take them as separated as possible.

@ No guarantee to converge to a global optimum: repeat and keep the best result!

e Complexity : O(n x K x T) where T is the number of steps in the algorithm.
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Pa rtltlon based Unsupervised Learning:

Beyond PCA and k-means

@ k-Medoid: use a sample as a center
e PAM: for a given cluster, use the sample that minimizes the intra distance (sum of

the squared distance to the other points)
e Approximate medoid: for a given cluster, assign the point that is the closest to the

mean.

Complexity

e PAM: O(n? x T) in the worst case!
@ Approximate medoid: O(n x K x T) where T is the number of steps in the
algorithm.

@ Remark: Any distance can be used. .. but the complexity of computing the
centers can be very different.
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Model Based

Unsupervised Learning:
Beyond PCA and k-means

Model Heuristic

@ Use a generative model of the data:

K
P(X) =) mPo, (X[k)
k=1
where 7 are proportions and Py(X|k) are parametric probability models.

o Estimate those parameters (often by a ML principle).

@ Assign each observation to the class maximizing the a posteriori probability
(obtained by Bayes formula)
7Py, (X]K)

S TPy (XIK)

@ Link with Generative model in supervised classification!
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M Odel Based Unsupervised Learning:

Beyond PCA and k-means

@ Large choice of parametric models.

Gaussian Mixture Model

o Use
Py, (X|k) ~ N (i, T
with NV (i, X) the Gaussian law of mean u and covariance matrix X.

e Efficient optimization algorithm available (EM)

@ Often some constraint on the covariance matrices: identical, with a similar
structure. ..

@ Strong connection with K-means when the covariance matrices are assumed to be
the same multiple of the identity.
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M Odel Based Unsupervised Learning:

Beyond PCA and k-means

Probabilistic latent semantic analysis (PLSA)

@ Documents described by their word counts w

o Model:
K

P(w) = > mlPy, (wlk)
k=1
with k the (hidden) topic, 7, a topic probability and Py, (w|k) a multinomial law
for a given topic.
@ Clustering according to
TPy (wlk)

Xk TPy~ (wlk')
k/

P(K|w) =

@ Same idea than GMM!

@ Bayesian variant called LDA.
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M Odel Based Unsupervised Learning:

Beyond PCA and k-means

Parametric Density Estimation Principle

@ Assign a probability of membership.
@ Lots of theoretical studies. . .

@ Model selection principle can be used to select K the number of classes (or rather
to avoid using a nonsensical K...):

e AIC / BIC / MDL penalization
e Cross Validation is also possible!

e Complexity: O(nx K x T)
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Gaussian Mixture Models

Un

supervised Learning:
Beyond PCA and k-means
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(NOn ParametriC) DenSIty Based Unsupervised Learning:

Beyond PCA and k-means

Density Heuristic

@ Cluster are connected dense zone separated by low density zone.

@ Not all points belong to a cluster.

@ Basic bricks:

e Estimate the density.
e Find points with high densities.
o Gather those points according to the density.

@ Density estimation:
o Classical kernel density estimators. . .
e Gathering:

e Link points of high density and use the resulted component.
e Move them toward top of density hill by following the gradient and gather all the
points arriving at the same summit.
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(NOn ParametriC) DenSIty Based Unsupervised Learning:

Beyond PCA and k-means

e DBSCAN: link point of high densities using a very simple kernel.

o PdfCLuster: find connected zone of high density.

e Mean-shift: move points toward top of density hill following an evolving kernel density
estimate.

o Complexity: O(n? x T) in the worst case.

@ Can be reduced to O(nlog(n)T) if samples can be encoded in a tree structure
(n-body problem type approximation).
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Beyond PCA and k-means
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Agglomel’atlve Cl UStel’I ng Unsupervised Learning:

Beyond PCA and k-means

Agglomerative Clustering Heuristic

e Start with very small clusters (a sample by cluster?)

@ Sequential merging of the most similar clusters. . .

@ according to some greedy criterion A.

Generates a hierarchy of clustering instead of a single one.
Need to select the number of cluster afterwards.

Several choices for the merging criterion. ..

Examples:

e Minimum Linkage: merge the closest cluster in term of the usual distance
e Ward's criterion: merge the two clusters yielding the less inner inertia loss (k-means
criterion)
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Agglomeratlve Cl UStel’I ng Unsupervised Learning:

Beyond PCA and k-means

Algorithm

e Start with (C,-(O)) = ({X;}) the collection of all singletons.
@ At step s, we have n — s clusters (Cfs)):
e Find the two most similar clusters according to a criterion A:
(i,i") = argmin A(C}s),C}s))
(")

o Merge C**) and () into ™V

o Keep the n — s — 2 other clusters Cf,s,ﬂ) = Cf,s/)
@ Repeat until there is only one cluster.
o Complexity: O(n®) in general.
e Can be reduced to O(n?)

e if only a bounded number of merging is possible for a given cluster,
e for the most classical distances by maintaining a nearest neighbors list.
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Agglomeratlve Cl UStel’I ng Unsupervised Learning:

Beyond PCA and k-means

Merging criterion based on the distance between points

@ Minimum linkage:
A(C1,G1) = i, min d(X;, X;)

@ Maximum linkage:
A(Ci,Cj) = max max d(X;, X;)

X;€Ci X G
@ Average linkage:

Q.
—~
<
e
~
Source: E. Matzner-Léber

@ Clustering based on the proximity. . .
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Agglomeratlve Cl UStel’I ng Unsupervised Learning:

Beyond PCA and k-means

Merging criterion based on the inertia (distance to the mean)

@ Ward's criterion:

ACLC) = > (X newe) — 4 (X ;)
K,‘eci

T Z (d2(Kj,Mciucj) - dQ(KJ‘?”CJ‘))
KJ‘GCJ

o If d is the Euclidean distance: el
2 . .

A(C,C) = L dP(ue., pe,

( J) |Cl|+|c_]| (:U’C: :U’Cj)

@ Same criterion than in the k-means algorithm but greedy optimization.
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Gl’ld based Unsupervised Learning:

Beyond PCA and k-means

@ Split the space in pieces

@ Group those of high density according to their proximity

@ Similar to density based estimate (with partition based initial clustering)

@ Space splitting can be fixed or adaptive to the data.
@ Examples:
o STING (Statistical Information Grid): Hierarchical tree construction plus DBSCAN
type algorithm
o AMR (Adaptive Mesh Refinement): Adaptive tree refinement plus k-means type

assignment from high density leaves.
o CLIQUE: Tensorial grid and 1D detection.

@ Linked to Divisive clustering (DIANA)

354



OtherS Unsupervised Learning:

Beyond PCA and k-means

Graph based

@ Spectral clustering: dimension reduction + k-means.
@ Message passing: iterative local algorithm.

@ Graph cut: min/max flow.

@ Kohonen Map,
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@ Applications to Text
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TeXt and Representation Unsupervised Learning:

Beyond PCA and k-means
The elephant sneezed Teddy was teriblylost
atthe sight of potatoes. - inthe potato patch.

XS]]

SO
[ephant[poato]he  doorstucia ey [t

NN

"[ihe sight of potatoes the door to the stucio] terrbly lost | potato patch
N

Entity Keyphrase
Extraction [ Extraction

AN
DNEONnOERES

Modeling

Text and Representation

@ Need to transform a text into a numerical vector to reuse the previous algorithms!

@ Art still in progress.

@ Important steps:
o Token extraction
o Token vectorization
e Learning algorithm 357
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TOken EXtI’aCtlon Unsupervised Learning: 4"*7

Beyond PCA and k-means

Stemming Lemmatization

adjustable — adjust was — (to) be
formality — formaliti better — good
formaliti — formal meeting — meeting

airliner — airlin. A\
@ From a text to a sequence of tokens (words, characters, subwords. . .).

Need of cleaning or pre-processing: spelling checker, stemming, lemmatization. ..
Often with a further reduction of the number of possible tokens.
Beware to not oversimplify!

Source: Quora
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Bag Of WOI’CIS Unsupervised Learning: X

Beyond PCA and k-means

The Bag of Words Representation

Iove this moviel It's sweet,
but with satirical humor. The
dialogue is great and the
adventure scenes are fun

It manages to be whimsical
and romantic while laughing
at the conventions of the
fairy tale genre. | would
recommend it to just about
anyane. I've seen it several
times, and I'm always happy
to see it again whenever |
have a friend who hasn't
seen it yet!

15

Bag of Words

@ Most simple approach to transform a text into a vector.

@ Simple count of the words belonging to a predefined vocabulary.

e Counts preferably replaced by frequences (or tf-idf. . .)
@ Often combined with dimension reduction:
e restriction to an interesting vocabulary
e use of principal component analysis (latent semantic analysis)

Source: Programmer Sought

w
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td-idf: text frequency - inverse document frequency



Artlde C I UStel’I ng Unsupervised Learning:

Beyond PCA and k-means
"~ /«ah«wj’
/ % + wordsfiokens
-~ -

@ || |
\ P
Mha&mrf&;/ﬁdr«wma Document
TS
@-' EEEE
i

distriludion of lpioa

Article Clustering
o Clustering algorithms directly on the bag-of-words representation

@ Most used algorithm is a variation around the k-means algorithm.

Source: C. Doig
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WOI’CI Repl’esentatlon Unsupervised Learning:

Beyond PCA and k-means

Word2Vec

Word Representation

@ More accuracy by working at the token (word) scale.
@ Two approaches:
e Associate to a word the frequency of the other words in its neighborhood and
performing dimension reduction on this first representation.
o Learn for each word a vector allowing to predict by a simple formula (scalar product)
whether one word appears in the neighborhood of the other one.
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@ Similar results but the second approach is more flexible. 361



Deep Lea rn | ng Unsupervised Learning:

Beyond PCA and k-means
OSOSONTE My

Sentiment?

Next word?

Part-of-speech tags?

Deep Learning

@ Propose a formula allowing to do computations on the word starting by
associating vectors to each word.

@ Learning the best possible vectors for a given task: auto-prediction
(self-supervised) or prediction (supervised).
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@ Tremendous progress in the last years thanks to deep neural net architectures
(RNN, Transformer...).



Lal’ge Language MOCIGIS Unsupervised Learning:

Beyond PCA and k-means

A A

context context

bug 11 Fix 14
wug 1ine [ Encoder [-0.23, ..., 2.31] Decoder ix line
context context
Buggy Code Encoded Representation Fixed Code

a) NMT Repair Overview

‘ I want to build a repair I ‘ I want to build a repair

[_Decoder |

|1 want to build a repair ‘ ‘ I <mask> to build a <mask> | ‘ to repair I a build "'a"‘l

Decoder Only Encoder Only Encoder-Decoder
GPT BERT T5

Large Language Models

@ Huge neural networks relying on transformers and (pre)trained on huge corpus
with self-supervised tasks.
@ Three architectures:

o Decoder: prediction of next word (online). E
e Encoder: prediction of inner word(s) (offline). §
o Encoder/Decoder: prediction of a sentence from anotherv(offline). 3

363

@ Can be used as a basis for further specialized training or directly.



Sentlment AnalySIS Unsupervised Learning:

Beyond PCA and k-means

Document A ’ &
- v

L X

How to associate a sentiment to a text?

@ Four possible approaches:
e Simple approach (without learning) that averages the sentiments of the words used
in a text using a fixed table.
o Simple approach (supervised and linear) where this table is learned from examples.
o Direct approach (supervised) where one predicts directly the sentiment from

examples. i

e Zero-Shot approach (without learning?) where one uses directely a Large Language H
Model trained on a huge corpus (unrelated to the application). &

@ Direct approach more efficient provided one has sufficient data and one starts @
from a pretrained model. 364
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Recommender Systems

Recommender System and
Matrix Factorization

1 5
Rating prediction

Recommender Systems

@ Predict a rating for pairs of user/product,

@ Use this to rank the products and suggest them to the user.
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@ May predict only a ranking. ..
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D ata at H an d S Recommender System and

Matrix Factorization

Basic observation: Triple or Pair
@ Triple User/Item/Rating: (U, V,R)
e Natural interpretation as pair of User-ltem/Rating: ((U, V), R)

@ Similar to the supervised setting!

Data at Hands
e Collection of pairs ((U;, Vi), Ri)

@ User U may rate several items V and item V may be rated by several users U.

@ Not in the classical i.i.d. setting because the item ratings by an user are not
independent!
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Goals

Recommender System and
Matrix Factorization

User Product

— \
Ve ~

1 5

Rating prediction

@ Given a user U and an item V/, predict the rating R.
@ Rank the items V for a given user U.

@ Suggest an item V to a given user U.
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@ We will focus on the first question!



Some ISSUGS Recommender System and /4 X

Matrix Factorization

User
@ What is a user? An id? A detailed profile?

@ What about a new user?

@ What is an item? An id? A detailed description? A set of features?
@ What about a new item?

Rating

@ Can we believe them?

@ How to measure the error? Using the Euclidean norm?
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@ We will cover this. ..



More lIssues

Recommender System and
Matrix Factorization

Trends le%
Product
Uset
caillil] -

R d |
R System 1 7‘
[ —| Ranked list of items Next item
1 5 K {
\ > ~ ~ ~
Rating prediction Lell~d 1~y -~

@ How to take into account the temporality?

@ How to take into account indirect feedbacks?

@ How to propose directly a ranking?

o
o
-
v
=
.20
5
o
>
o
g
5
o
)

@ We won't cover that. ..
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@ Collaborative Filtering
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Collaborative Filtering

Recommender System and
Matrix Factorization

User-based \

Another user

— Similar

porey

Content item, Similar Item to N4
rated by the user recommend
K Item-based >

Collaborative Filtering

@ Use similarity between users or items to predict ratings.
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@ Similar idea than in supervised learning.
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User_based Fllterlng Recommender System and /"“

Matrix Factorization

Similar

User-based Filtering

o Given a target pair of user/item (U, V).
@ Choose a similarity measure w(U, U’) between users.
@ Define a neighborhood N (U) of similar users U; having rated V, ie. V;=V.
@ Compute a predicted rating by
- Y ueny w(U, UpR;:
Y uen(uyw(U, Uj)

Source: B. Kim

@ Choice of similarity and neighborhood will be discussed later.
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Item_based Fllterlng Recommender System and

Matrix Factorization

Item-based Filtering

Given a target pair of user/item (U, V).

Choose a similarity measure w'(V/, V') between items.

Define a neighborhood N(V) of similar items V; rated by U, i.e. U; = U.
Compute a predicted rating by

R =

Svienvyw' (V. ViR
2vien(vyw'(V, Vi)

Source: B. Kim

@ Choice of similarity and neighborhood will be discussed later. 280



Similarities and Neighborhood?

Similarities Based on Known Features

Recommender System and
Matrix Factorization

@ Same setting than kernel density technique in supervised /unsupervised learning.

Similarities Based on Ratings

@ Similarity based on (common) rated items/users.

Neighborhood

@ Same setting than kernel density technique in supervised /unsupervised learning.
@ Most classical approaches:

o local — k closest neighbors or neighbors whose similarity is larger than a threshold. ..
o non-local — based on a prior clustering of the users (items).
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Reminder on Similarity Measures Recommender System and K

Matrix Factorization

o Formula: d 1/p
(X, X') = (Z XU) — x'0)y )

@ Renormalized version:

1/p
dp ( Z — x'0)) )

Inverse Distance and Exponential Minus Distance

e Inverse Distance: 1/d(X, X’)
@ Exponential Minus Distance: exp(—d(X, X))
@ Distance may be raised to a certain power.
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Remlnder on Slmllarlty MeaSUI’eS Recommender System and /

Matrix Factorization

Cosine Similarity

e Formula:

Z xU) x’0)
(Srs (x0) ) (S () 2) "

cos(X, X') =

@ All those formulas require a coding of categorical variables.

@ Other similarities exist!
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Similarities Based on Features

Recommender System and
Matrix Factorization

H

Classical Features

@ Usual (difficult) supervised/unsupervised setting!

@ (Inverse/Exponential Minus) Distance,. ..

Content Based Approach

@ User/Item described by a text.
@ NLP setting.

@ Often based on a bag-of-word / keywords approach.

@ (Inverse/Exponential Minus) Distance, Cosine,. ..

7

Source: K. Falk
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Similarities Based on Ratings

Recommender System and
Matrix Factorization

@ Not necessarily the same number of ratings for different users or items!

Similarity Based on Ratings

@ Similarity based on the vector of rating of common rated items/rating users.
@ Renormalization needed.

@ (Inverse/Exponential Minus) Renormalized Distance, Cosine,.. .

@ All the similarities can be combined. ..
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Local Neighborhood

Recommender System and
Matrix Factorization

@ Precompute the similarity for each pair of users (items) sharing an item (user)

@ For any user U and item V/, define the user (item) neighborhood as the k most

similar users (items) sharing item V (user U) or the ones with similarity above the
threshold.

@ Localized neighborhood as in nearest neighbors in supervised learning.
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Non-local Neighborhood

Recommender System and
Matrix Factorization

Prior Clustering

@ Precompute a clustering of the users (items).
Use the group to which user U (item V') belongs as initial neighborhood.
Restrict it to the users (items) sharing the item V (user U)

Non-local neighborhood as in partition based method in supervised learning.

Strong connection with classical marketing approach!
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Rati n gS ISSU es Recommender System and 4

Matrix Factorization

A A A A
FX VN VN ’(

ToNG TAIL

TEM INDEX OROERED BY DEGRES

Ratings Issues

@ User rating bias: different users may have different rating scale.

@ Long tail phenomena: different users (items) may have very different number of
ratings (and most users (items) have few)

Sources: Unknown/C. Aggarwal
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User B | as Recommender System and

Matrix Factorization
12 WY 2 WY 20 WY <0\ ’(
User Bias

o Different users may have different rating scale.
@ Possible solution:
e Find a formula to obtain debiased ratings Dy (R(U, V))
o Predict debiased rating DU(F(—U\,V)) using only debiased ratings
o Compute the biased rating using the inverse formula D;,* (DU(E(-U\,V)))

o Classical formulas:
o Mean corrected: Dy(R(U, V)) = R(U, V) — R(U) with R(U) the mean rating for

user U. so that D" (DU(@V))) _ D(R(U, V)) + R(U)

e Standardize: Dy(R(U, V)) = (R(U, V) — R(U))/o(R(U)) with o(R(U)) the
standard deviation of the ratings of user U so that

Dg* (Du(R(U; V) = o(R(U)D(R(U, V) + R(U) .



Long_tail Phenomena Recommender System and /'“

Matrix Factorization

Long-tail Phenomena

e Different users/items may have very different number of ratings (and most
users/items have few)

@ Similarity may be biased by few items/users having a lot of ratings

@ Possible solution:
o Use a weighted similarity with a weight — log(N(U)/(3,, N(U"))
(—log(N(V)/(>_\ N(V"))) where N(U) (N(V)) is the number of ratings of user U
(item V)

Source: C. Aggarwal

@ Information theory approach similar to tf-idf in NLP.
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COld Sta I’t ISSUG Recommender System and

Matrix Factorization

o e ® >
—pe —pe =R =D

Cold Start Issue
@ Many users (items) have very few ratings.

@ Some users (items) are new. . .

@ Not an issue for feature based or content based approaches!

Possible Solutions
@ Population approach: average based recommendation.

@ Demographic approach: simple feature based recommendation.

Source: B. Kim

@ Scarce information approach: seeded recommendation.
301



TOp |temS Recommender System and /4

Matrix Factorization

o

b/
t

Population Approach

@ For a new user, one can use the population average to estimate R(U, V)

@ Amount to use a constant similarity and a neighborhood equal to the whole
population.

@ No equivalent approach for a new item!

Demographic Approach
@ If one has a demographic group information on the user, one may compute the
average on the group.

@ Amount to use a constant similarity and a neighborhood equal to the
demographic group.

Source: B. Kim

@ Similar idea for a new item!
392



Seeded Recommendations and Blending Recommender System and

Matrix Factorization

Seeded Recommendations
@ Compute the average on a group depending on the user behavior

@ Most classical choice: compute an average on the users having given a good
rating to the current viewed item

@ Amount to use a constant similarity and a neighborhood equal to the group of
users having given a good rating to the current viewed item.

Blending

@ For user (item) with few ratings, it is often better to blend a collaborative solution
with a cold start one.
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P ros an d COI’] S Recommender System and

Matrix Factorization

@ Intuitive idea @ Require an (expensive) neighborhood
@ Easy to explain search!

@ Can handle features and text @ Require a lot of ratings to use them in
@ Can be degraded to handle cold start similarities

394
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@ Matrix Factorization and Model Based
Recommender Systems
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Recommendation as MatI’IX Completlon Recommender System and

Matrix Factorization

Items

5 . -
8

-
9

* 10 10 4

o]

m 8 9 10 8

User-item

Users £ 10 5 4 9 " Interaction

® matrix

£ 9 | 10 3

-4

4 6 8 10

User-ltem Interaction Matrix

@ Matrix of ratings!
@ Often most of the ratings are unknown

@ Predicting the missing recommendation can be seen as completing the whole
user-item interaction matrix.

E
X
o
@
e
5
[}
n

396

@ Approach based only on the ratings. ..



MatriX FaCtorlzatlon PrlnC|p|e Recommender System and /'V“

Matrix Factorization

:r/: A e
o BB -
o A

71
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ft ~ X
P
> 4
User-item Interaction Matrix User Matrix Item Matrix
(@ (P)

Matrix Factorization Principle

@ To fill the voids, we need to add some regularity assumption.

@ Simplest assumption: the n x p matrix R is (approximately) low rank, i.e
R~ UV with U a n x k matrix and V a p x k matrix.

Source: B. Kim
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Matrix Factorization Principle

User-item
interactions
matrix

n users

m items

The

sser-item interations matrix is
‘assumed to bo equal to

Strong Link with SVD

—
[

Recommender System and
Matrix Factorization

|:I:j latent dmensions

[ |

Reconstructed
interactions
matrix

O

Reconstruction
error matrix

the dot product of a user matrix and
atransposed item matrix.

plus some

@ Any n x p matrix R. can be written UDV T where U and V are orthogonal

matrices and D is diagonal

@ The best low rank approximation is obtain by restricting those matrix to the

singular values with the largest eigenvalues in D.

@ Here R is not fully known so that we can’t use the raw SVD!

P

Source: S. Canu
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Practical Factorization with SVD Recommender System and

Matrix Factorization

@ Formulation:

argmin  ||[R—UVT|3
UeM, ,VeM, «

& argmin (Ri Vi.T)?
UeM, k,VEMpk; e

@ Explicit solution through the SVD of the unknown R.

@ May be used to obtain a baseline factorization by applying SVD to a completed R
with simple replacement of the missing ratings by the mean(s).
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Practical Factorization with Weighted SVD Recommender System and

Matrix Factorization

Weighted SVD

@ Idea: Use a weight to mask the missing values in the fit

@ Formulation:

argmin IW o (R-UVT|3
UEM"’k,VEMP’k

& argmin Y WA(Ri; - UV T)?
UeMp i, VEMp k' ;

@ No explicit solution!
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@ Non convex optimization problem!



Practical Factorization with lterative Masked SVD Recommender System and

Matrix Factorization

7

Iterative Masked SVD

@ When W is a mask, i.e. W;; € {0,1}, there exists a simple descent algorithm!

@ Algorithm:

e Start by an initial factorization Uy Vo!.
o lIterate T time:

o Compute the completed matrix R: = W @ R+ (1 — W) ® (U:V: ")
@ Use the SVD to obtain a factorization of R: by Usi1 Vt+1T

o Use the last factorization Ur V7 .
@ Instance of a MM algorithm without any global optimality result.

@ Previous use of the SVD on the completed ratings corresponds to one step of this
algorithm.

Source: S. Canu

e Computing the SVD can be very expensive!
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Practical Factorization with Alternate Least Square Recommender System and

Matrix Factorization

Alternate Least Square

@ Weighted SVD formulation:

argmin IWo (R-UVT|3 < argmin Z VV,-?J-(R,-J — U
UEM,,yk,VEMP’k UEMnyk,VGMpyk ij

T)2

@ Optimization on U (V) corresponds to n (p) classical least-squares optimizations.
@ Lead to an alternate least-squares descent algorithm without any global optimality
result:

e Start by an initial factorization Uy Vo
o lterate T times

o Solve U1 = argmingepr  [|W O (R — UV "3
® Solve Vi1 = argminycp , [W O (R — Uk VT3

®
O
%)
o
g
=
<]
%)

o Use Ut VTT as final factorization.

o Computing those solutions may remain expensive! 402



Practical Factorization with SGD Recommender System and /X

Matrix Factorization

Stochastic Gradient Descent

@ Weighted SVD formulation:
argmin  [Wo(R-UV|3<  argmin > W,%-(R,-J —U;. V. T)?
UEMmk,VEMP,k UGM,,’k,VEMpJ( ij
@ Look at this problem as an optimization on U;. and V. and use a stochastic
gradient scheme without any global optimality result:
o Start by some initial U;. and V.
o lterate
e Pick uniformly a pair (7, )
o Update U;. by Ui, + W2y (Rij — Ui V5. ")V,
o Update V;. by V. + W>y(Rij — Ui.V;,. T)Ui..
o Use UV'T as final factorization.

Source: S. Canu

@ As in any SGD scheme, the choice of the stepsize ~ is very important.
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Extension of Practical Factorization Recommender System and /X

Matrix Factorization

Unbiased Rating

@ Better results if one replace R with an unbiased version:

o by subtracting the global mean (and adding it afterward)
o by subtracting the user means (and adding them afterward)

Regularization

@ Regularized Weighted SVD formulation:

argmin W e (R=UV|3+AUIZ+ VI3
UEMn,k,VEMp,k

n p
& agmin S WE(Ry = U Vi TP A DD IULIE D1V
UeM, ,VeEM, « ij =il j=1

Source: S. Canu

@ Alternate Least-Squares and SGD can be extended to this setting.
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Practical Factorization and Funk's Algorithm Recommender System and K

Matrix Factorization

Funk's Algorithm

@ Funk’'s formulation:

argmin ZW —(ptuit+vi+U. V. T))>
UEMp 1, VE My 1, pER, UER, v ERP

p

A2+ SR+ 10 1B) + 307 + 1ViIB)
IS

j=1
@ Explicit formula including the user and item bias!
@ SGD can be used in this setting!

o Lead to state of the art results!

Source: S. Canu
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Pros and Cons

@ Quite efficient even if the rating
matrix is sparse.

o Lead to an explicit formula for any
pair of user/item.

o Efficient numerical algorithm.

Recommender System and
Matrix Factorization

@ No straightforward explanation of the
prediction.

@ Do not use features or text.

@ No way to handle cold start.
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Recom mend atiOI"I as Pred ICtIOﬂ Recommender System and

Matrix Factorization

Matrix Factorization Deep Matrix Factorization
Prediction

==

Factorization as a Prediction Algorithm

@ Optimization of a formula
R(Ui, Vi) = p+ui+vi + UiV, T
with a least-squares criterion.

Other formulas are probably possible. . .

Key: representation learning 7 Can we use Deep Learning?

Not easy to do better than matrix factorization with a classical DNN!
Explicit scalar product seems required!
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Model Based Recommendation

Recommender System and /4
Matrix Factorization

Model Based Recommandation

@ Optimization of a formula:
R(Ui7 VJ) = f(Ui7 VJ)
where U; and V; can be a combination of an id (one hot encoding) and features.

@ Simple additive models:

R(U:, Vi) = fu(U;) + fv(V})
@ Models with explicit interactions:

R(U;, Vi) = fu(Ui) + fv(V)) + Fuv (Ui, V))

@ Possible extension of factorization based on

Fuv (U, Vi) = MyUi(M, V)"
@ Link with transformers. . .

Source: DeepAl
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Deep Recom mend atlon Recommender System and 4

Matrix Factorization

Going Deeper - Beyond MF

score (fo)+——(o0E— 3. Taret
e

~ . — =l
e ayer \
Comeotenaion
P ayer X
e Cover
P ayer2
fementwie
s 4 Rew Add user and item (profile)
P ayer 3 ‘
= ) characteristics
N i =
| Item Metadata
<z, E S \ﬁ/ o wou | o e
o o[ofolo 0 ololofd ol -] il ° ”
User (u) Item (i) 1225 040 F 44044 | Dama’ | 120

Deep Recommendation

@ Combine an explicit dot product structure with a classical DNN.
@ Allow to learn a representation and to add features / text content directly.

@ Large flexibility in the architecture.
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P ros an d COI’] S Recommender System and /4 X

Matrix Factorization

Pros Cons

@ Combine the strength of the @ Not so easy to construct a good
factorization based and the feature formula/architecture. . .
based methods @ Not so easy to train. ..

o Best performances. . . @ Not easy to beat raw matrix

factorization (when using only
user/item interactions)!
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@ Hybrid Recommender Systems and Evaluation Issue
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Hybrid Recommender

Recommender System and
Matrix Factorization

Hybrid Recommender
@ Combine the scores of several recommendation algorithms.

@ Can be casted as an ensemble method where the number of interactions is used.

_
o Lots of flexibility o Lots of flexibility!
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Pe I’fOrm ance M easure Recommender System and

Matrix Factorization

CASE 1; Evenly distributed errors CASE 2: small variance in errors CASE 3: Large error outlier
iD Error __|Error| _ Eroraz D Error | Error| _ Errorn2 D Error | Error| _ Errorn2
1 2 2 a 1 1 1 1 1 o o o
2 2 2 4 2 1 1 2 0 0 o
3 2 2 4 3 1 1 1 3 0 0 [
4 2 2 4 4 1 1 1 4 0 0 [
5 2 2 4 5 1 1 1 5 o o o
2 2 2 4 3 3 3 9 6 ) ) [
7 2 2 4 7 3 3 9 7 o o o
8 2 2 4 g 3 3 9 8 0 0 0
9 2 2 a 9 3 3 ] ] o o o
10 2 2 4 10 3 3 9 10 20 20 a00
MAE  RMSE MAE  RMSE MAE  RMSE
2000 2.000 2000 2236 2.000 6325

@ Need of a metric to measure the performance!

Metric on the ratings

e RMSE:

e Most classical choice
o Implicitly used in collaborative filtering and explicitly in matrix factorization.
e Easy to use.

@ MAE: more robust to outliers. . .
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Va | id atiO n Recommender System and 4

Matrix Factorization

Traditional ML ‘R jation S
Train
Original % . Original
7 :
x —~ : —~
X % X Test Test
X x :
X !

@ Need of validation technique!

Validation Scheme

@ Much more complicated that the usual supervised setting.
@ Lack of independence of the observations.

@ Most classical choice: random partition of the ratings!
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@ No strong theoretical support!



M et I’iC VS Goa IS Recommender System and

Matrix Factorization

@ Are those metrics really the right thing to optimize?

Better Goals

@ Diversity : do not always suggest the same items.

o Coverage: suggest most of the items to at least some users.
@ Serendipity: suggest surprising items.
o

Business Goal: Sell more! Earn more money!

@ Explain why there is a lot of post-processing to go from the ratings to the
suggested item list!

@ For instance: use of lift instead of ratings, use of localization, use of
randomization. . .
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A/ B TeStI ng Recommender System and 4

Matrix Factorization

23%
ﬁ

C ) ( )

CONTROL

A/B Testing

@ No direct way to estimate the performance according to non trivial metric.

@ Solution: perform experiment to test whether a method is good or not!
@ A/B Testing: classical hypothesis testing on the means (or the proportions).

@ Bandit approach: real-time optimization of the allocation (not much used in
practice).

Source: Optimizely
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@ References

417
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@ Text, Words and Vectors

420
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TeXt and Bag Of WOI'CIS Recommender System and

Matrix Factorization

@ How to transform a text into a vector of numerical features?

Bag of Words strategy

@ Make a list of words.

@ Compute a weight for each word.

List building
@ Make the list of all used words with their number of occurrence.
@ Gather the words in the list having the same stem (stemming).

e Compute the histogram h,,(d).
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TeXt a nd Bag Of WOI'CIS Recommender System and /4 X

Matrix Factorization

Weight computation

@ Apply a renormalization:

e tf transform (word profile): hy(d
( P ) tfw(d) = #
ZW hW(d)
so that tf,,(d) is the frequency within the document d.
o tf-idf transform (word profile weighted by rarity):
tf —idf,,(d) = idf,, x tf,(d)
with idf a corpus dependent weight

n

idf,, = log =7
> iz1 L, (d)0

Use the vector tf(d) (or tf — idf(d)) to describe a document.
Most classical text preprocessing!
Latent Semantic Analysis: PCA of this representation.

Hashing can be used to reduce the number of words.

423



Stemming and Lemmatization Recommender System and )R

Matrix Factorization

Stemming Lemmatization
adjustable — adjust was — (to) be
formality — formaliti better — good

formaliti — formal meeting — meeting

airliner — airlin A\

Text Preprocessing

@ Very important step in text processing.
@ Art of obtaining good tokens.

@ Spelling correction, Stemming, Lemmatization. .. 3
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Matrix Factorization

Okapl BM25 fOI' TeXt Retrleval Recommender System and /

Okapi BM25

@ Representation (smoothed tf-idf):
. (ki + 1)tf,,(d)
bm25,(d) = idf,, x ~—————+
m25w(d) = idf > = e
@ Match quality for a set of words @ measured by a simple scalar product:

BM25(d, Q) = ) bm25,
weR

o Extensively used in text retrieval.
@ Can be traced back to 1976!
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Matrix Factorization

Unsupervised Text Clustering Recommender System and K

Probabilistic latent semantic analysis (PLSA)
@ Model:

P(tf) = ZIP’ ) P(tf| k)

with k the (hidden) topic, P(k) a toplc probablllty and P(tf|k) a multinomial law
for a given topic.
o Clustering according to a mixture model
P(tf|k
(i) - FRIPCITR)
> P(K)P(tH[K)

@ Same idea than GMM!

@ Bayesian variant called LDA.
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WOI’CI VeCtOFS Recommender System and

Matrix Factorization
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Word Embedding

@ Map from the set of words to RY.
@ Each word is associated to a vector.

@ Hope that the relationship between two vectors is related to the relationship
between the corresponding words!
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WOI’CI And ConteXt Recommender System and /4 X

Matrix Factorization
Look ! single ’wordHandHits\ context

Word And Context

o ldea: characterize a word w through its relation with words ¢ appearing in its
context. ..
o Probabilistic description:
e Joint distribution: f(w,c) =P(w, c)
e Conditional distribution(s): f(w,c) = P(w|c) or f(w,c) = P(c|w).
o Pointwise mutual information: f(w, c) = P(w, c) /(P(w)P(c))

@ Word w characterized by the vector C,, = (f(w, c))c or Cy, = (log f(w, ¢))e.

@ In practice, C is replaced by an estimate on large corpus.

@ Very high dimensional model!
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A ( N alve) SVD ApproaCh Recommender System and /"L“:’

Matrix Factorization

Serl| Ve
C ~ | U, | (rxr) (rxnc)

(nwxne) (nwxr)

Truncated SVD Approach
@ Approximate the embedding matrix C using the truncated SVD decomposition
(best low rank approximation).
@ Use as a code
C, = UrwX?,
with o € [0, 1].

@ Variation possible on C.
@ State of the art results but computationally intensive. . . 430



A Least_Sq uares ApproaCh Recommender System and 4

Matrix Factorization

@ All the previous models correspond to
—logP(w, c) ~ CEC! + any + Be

GloVe (Global Vectors)
@ Enforce such a fit through a (weighted) least-squares formulation:
Z h(P ) | —logP(w, c) — (CLiCl + aw + BC)H2

with h a increasmg weight.

e Minimization by alternating least square or stochastic gradient descent. . .

@ Much more efficient than SVD.

@ Similar idea in recommendation system.
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A Lea rn | ng ApproaCh Recommender System and 4

Matrix Factorization

Supervised Learning Formulation

@ True pairs (w, c) are positive examples.

@ Artificially generate negative examples (w’, ¢’) (for instance by drawing ¢’ and w’
independently in the same corpus.)

@ Model the probability of being a true pair (w, c¢) as a (simple) function of the
codes C/, and C/.

@ Word2vec: logistic modeling
ReiXel
IP>(1|W7 C) - 1 + eC{/f/Cé/
@ State of the art and efficient computation.
e Similar to a factorization of —log(P(w, c) /(P(w)P(c))) but without requiring
the estimation of the probabilities!
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TeXt as Seq uences Recommender System and

Matrix Factorization

A recurrent neural network (RNN) is a class of artificial neural network where connections
between units form a directed cycle. This creates an internal state of the network which allows
it to exhibit dynamic temporal behavior. Unlike feedforward neural networks, RNNs can use
their internal memory to process arbitrary sequences of inputs. This makes them applicable
to tasks such as unsegmented connected handwriting recognition or speech recognition.

Sequences

@ Word = sequence of letters.

@ Text = sequence of letters/words.

o Capitalize on this structure.
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Recurrent Neural Networks

é Ot Ot
e 4 VL

o » ﬁ A5G O

f T T

gog 0 JDD EDD

b0 O DU G
0 000 ooo o ooo

i B I

Recurrent Neural Network Unit

@ Input seen as a sequence.
@ Simple computational units with shared weights.

@ Information transfer through a context!

@ Several architectures!

Recommender System and
Matrix Factorization
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AUtOI’T'I atIC Tra nS|at|0n Recommender System and 4

Matrix Factorization

S~ (La, croissance, économique, s'est, ralentie, ces, demniéres, années, .)

10p02a(]

= (Economic, growth, has, slowed, down, in, recent, years, .)

Encoder/Decoder structure

@ Word vectors, RNN, stacked structure.

Source: Nvidia
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AUtOI’T'I atIC Tra nS| atlon Recommender System and

Matrix Factorization

/= (La, croissance, économique, s'est, ralentie, ces, derniéres, années, .)

] 4N 4 ) INZIINA
&= (Economic, growth, has, slowed, down, in, recent, years, .)
= (Economic, growth, has, slowed, down, in, recent, years, .)

Encoder/Decoder structure

@ Much more complex structure: asymmetric, attention order. ..
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AUtom atIC Ca ptioning Recommender System and

Matrix Factorization

f=(a, man, is, jumping, into, a, lake, .)

Autention

Ta~1

Encoder/Decoder structure

@ Much more complex structure: asymmetric, attention order. ..
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TeXt as G ra p h Recommender System and 4

Matrix Factorization
@ ° ° @ TranSIatiDn?

Sentiment?

Next word?

Part-of-speech tags?

Text as Graph

@ More than just sequential dependency.
@ Each word is related to (all the) other words.
@ Graph structure with words and directed relations between words.

Source: Chaitanya Joshi
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Attentlon Recommender System and

Matrix Factorization

7

Attention between words

@ Words encoded by h; at layer /.
e Compute individual value for each word: v; = V/h;
o Compute combined value for each word: h} = 3= w; ;v;
(Self) Attention: weight w;; defined by
w;j = SoftMax ((Q'h;, K'h; ) )

Source: Chaitanya Joshi

Q'h; is called a query and K’hj a key. .
44
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Matrix Factorization
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@ Block combining several attention heads and a classical MLP.

Encoder/Decoder Architecture
@ Combine several transformers and more MLP in a task-adapted architecture.
@ End-to-end training is not easy (initialization, optimization. .. ).

@ Initial embedding at token level rather than word level to cope with new words!

Sources: Chaitanya Joshi
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Matrix Factorization

Creative Commons Attribution-ShareAlike (CC BY-SA 4.0)

@ You are free to:
@ Share: copy and redistribute the material in any medium or format
@ Adapt: remix, transform, and build upon the material for any purpose, even commercially.
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Reinforcement Learning

e Introduction to Reinforcement Learning
@ Machine Learning
@ Sequential Decisions
@ Markov Decision Processes
@ Dynamic Programing
@ Reinforcement Setting
@ Reinforcement and Approximation
@ AlphaGo
@ References
@ Time Series
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e Introduction to Reinforcement Learning
@ Machine Learning
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Machine Learning

= Google News a
Top Stories
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A Time Magazine with Trump on the cover hangs i his golf
clubs. s ake.

Introduction to
Reinforcement Learning

Google N

IntheNe:

fro Battery Electrical vehicle

Sources: MyCarDoesWhat.org/theverge.com/Zhigiang Wan et al.

~
N
o



Machine Learnlng Introduction to

Reinforcement Learning

Dat —
s Classical
. ——— Answers
Rules ——) Programming

Data ——>
Machine > Rules
Answers ——) Learning

A definition by Tom Mitchell

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E.
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ObJeCt DeteCtIOn Introduction to

Reinforcement Learning

A detection algorithm:

@ Task: say if an object is present or not in the image
o Performance: number of errors

o Experience: set of previously seen labeled images
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Artlde ClUStel’Ing Introduction to

Reinforcement Learning

= Google News Q

Top Stories

An article clustering algorithm:

@ Task: group articles corresponding to the same news

o Performance: quality of the clusters

o Experience: set of articles
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Smal't Grld COI’]tFOler Introduction to

Reinforcement Learning

Grid
—

Smart meter

Battery Electrical vehicle

A controler in its sensors in a home smart grid:

@ Task: control the devices

o Performance: energy costs
o Experience:

e previous days
e current environment and performed actions
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Three KlndS Of Learnlng Introduction to

Reinforcement Learning

comprerion @ 2l » gl et
o (e A
Vsvataion
o Forecasting
Recommended UNSUPERVISED. SUPERVISED
Systems LEARNING LEARNING @ Predictions
ey 3
B .
Customer New Insights
Segmentaton
p——
Real-Time Decisions ® ® Robot Nuvvjahon
Game Al ® ® Skill Aquisition
Unsupervised Learning Supervised Learning Reinforcement Learning
@ Task: @ Task: @ Task:
Clustering/DR/Generative Prediction/Classification Actions
@ Performance: @ Performance: @ Performance:
Quality Average error Total reward
. . - o
@ Experience: @ Experience: @ Experience: <
Raw dataset Good Predictions Reward from env. g
(No Ground Truth) (Ground Truth) (Interact. with env.) 3

@ Timing: Offline/Batch (learning from past data) vs Online (continuous learning) 450



Reinforcement Learning Introduction to

Reinforcement Learning

state | | rewar d action

R
| <5 Environment fe——

Reinforcement Learning Setting
@ Env.: provides a reward and a new state for any action.
@ Agent policy 7: choice of an action A; from the state S;.

e Total reward: (discounted) sum of the rewards.

@ Policy evaluation: how to evaluate the expected reward of a policy knowing the
environment?

@ Planning: how to find the best policy knowing the environment?

@ Reinforcement Learning: how to find the best policy without knowing the
environment?
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Outline

Introduction to
Reinforcement Learning

e Introduction to Reinforcement Learning

@ Sequential Decisions
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Decision or Decisions

Introduction to
Reinforcement Learning
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Sequential Decision Setting

Introduction to
Reinforcement Learning

Sequential Decision Setting

@ In many (most?) settings, not a single decision but a sequence of decisions.

@ Need to take into account the (not necessarily immediate) consequences of the
sequence of decisions/actions rather than of each decisions.

e Different framework than supervised learning (no immediate feedback here) and
unsupervised learning (well defined goal here).
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From Sequential Decision to Reinforcement Learning  inoduction to

Reinforcement Learning

Sequential Decision

Sequential Decision
@ Sequence of action A; as a response of an environment S;
@ Feedback through a reward R;

@ Is my current way of choosing actions good?
@ How to make it better?
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From Sequential Decision to Reinforcement Learning  inoduction to

Reinforcement Learning

Sequent|a| Decision MDP Modeling

Markov Decision Process Modeling
@ Specific modeling of the environment.

@ Goal as as a (weighted) sum of a scalar reward.

@ Is my current way of choosing actions good?

@ How to make it better?
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From Sequential Decision to Reinforcement Learning  inoduction to

Reinforcement Learning

Sequential Decision MDP Modeling Reinforcement Learning

Reinforcement Learning

@ Same modeling. ..
@ But no direct knowledge of the MDP.

@ Is my current way of choosing actions good?
@ How to make it better?
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Sequential Decision Settings Introduction to

Reinforcement Learning

@ MDP / Reinforcement Learning:

max E, [ E Rt]
t
@ Optimal Control:

min £ [Z C(xt, ut)]

t
@ (Stochastic) Search:
mgaxE[F(H, W)

@ Online Regret:
max Y _E[F (0, W)]
k
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Outline

Introduction to
Reinforcement Learning

e Introduction to Reinforcement Learning

@ Markov Decision Processes
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The Agent-Environment Interface

state

reward
Rr

R

.l
S. | Environment [€———

Introduction to
Reinforcement Learning

action
A

Markovian Decision Processes

@ At time step t € N:

State S; € S: representation of the environment

o Action A; € A(S;): action chosen
e Reward R:y; € R: instantaneous real valued reward
]

New state S; 1

@ Main assumption: dynamic entirely defined by
P(Sey1 =5, Rey1 = r|Se = s, Ay = a) = p(s', r|s, a)

@ Finite MDP: S, A and R are finite.
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Returns and Episodes Introduction to

Reinforcement Learning

o (Discounted) Return:

t'=t+1
@ Finiteness if |R| < M
Gl < {EVIT;(tH))M if T <oo
I—y
=1

otherwise
@ Not well-defined if T = oo and v

@ Recursive property
Gt = Rey1 +7Get1
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Policies and Value Functions Introduction to

Reinforcement Learning

Policy and Value Functions
e Policy: m(als)
@ Value function:

va(s) = Ex[Gi|S: = 5] = Ex [Z Y Repkt1
k=0

St:S]

@ Action value function:
qﬂ—(S, a) = EW[Gt|St = S,At = a]

Two natural problems

@ Policy evaluation: compute v, given 7.

@ Planning: find 7* such that v«(s) > vz(s) for all s and 7.

@ Those objects may not exist in general!
@ Can be traced back to the 50s!
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MDP vs Discrete Control

Introduction to
Reinforcement Learning

iop W Discrete Contra

@ State s and action a

@ Dynamic model:
P(s']s, a)

@ Reward r defined by P(r|s’, s, a).

o PO|ICy I: dy = 7'1'1—(,5157 Ht)

o Goal:

max En lzt: Rt]

@ State x and control u
@ Dynamic model:
x' = f(x,u, W)
with W a stochastic perturbation.
e Cost: C(x,u, W).
o Control strategy U: uy = u(x¢, Hy)
o Goal:

inlE C W,
lejn U[Zt: (Xtauta t)]

@ Almost the same setting but with a different vocabulary!
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Outline

Introduction to
Reinforcement Learning

e Introduction to Reinforcement Learning

@ Dynamic Programing
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Policy Evaluation by Bellman Backup Introduction to

Reinforcement Learning

Fixed Point Property
@ Bellman Equation

ve(s) =Y _m(als) D D p(s', rls, a) [r + yva(s)] = Ta(vz)(s)

a

@ Linear equation that can be solved.

Policy Evaluation by Dynamic Programming

e Fixed point iterative algorithm: vi11(s) = Tx(vk)(s)

@ Convergeif T < ocory <1,
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Planning by Policy Improvement Introduction to

Reinforcement Learning

Policy Improvement Property

o If 7' is such that Vs, g (s, 7'(s)) > vx(s) then v > v;.

Policy Iteration Algorithm

o Compute vy,

o Greedy update:
Tk+1(s) = argmax g, (s, a)
a

= argmax Y _ p(s’,rls, a) (r + yva,(s))
a

s'r

o If 7’ = 7 after a greedy update vy, ,, = v, = vi.

@ Convergence in finite time in the finite setting.
@ c-greedy improvement among e-policy: classical improvement degraded by picking

uniformly the action with probability €
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Planning by Bellman Backup Introduction to

Reinforcement Learning

Fixed Point Property

@ Bellman Equation
vi(s) = max S (s rls, a) [r+yvi(s)] = Ta(vs)(s)

@ Linear programming problem that can be solved.

Policy Evaluation by Dynamic Programming

@ lterative algorithm: vi11(s) = Ti(vk)(s)

@ Converge if T < oo ory<1.

@ Amount to improve the policy after only one step of policy evaluation.
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Planning by Bellman Backup Introduction to

Reinforcement Learning

Q-value and enhancement
@ Q-value:
ZZps r|s, a) f+’YZ a'ls")qx (s, a)]

o Easy policy enhancement. 7'(s) = argmax gx(s, a)
a

Fixed Point Property

@ Bellman Equation

.(5,0) = ¥ S p(s' rls, ) |+ ymax (o, )] = Te(a)(s.)

s r

@ Linear programming problem that can be solved.

Policy Evaluation by Dynamic Programming

@ lterative algorithm: qxy1(s,a) = T.(qk)(s, a)
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Generalized Policy lteration Introduction to

Reinforcement Learning

Generalized Policy lteration

@ Consists of two simultaneous interacting processes:

e one making a value function consistent with the current policy (policy evaluation)
e one making the policy greedy with respect to the current value function (policy
improvement)

@ Stabilizes only if one reaches the optimal value/policy pair.

@ Asynchronous update are possible provided every state(/action) is visited infinitely
often.

@ Very efficient but requires the knowledge of the transition probabilities.
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Outline

Introduction to
Reinforcement Learning

e Introduction to Reinforcement Learning

@ Reinforcement Setting
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Reinforcement Learning Introduction to

Reinforcement Learning
Agent

state reward action
S, R, A,

Rm
_S. | Environment |[¢———

Reinforcement Learning - Sutton (98)

@ An agent takes actions in a sequential way, receives rewards from the environment
and tries to maximize his long-term (cumulative) reward.

Reinforcement Learning
@ MDP setting with cumulative reward.
@ Planning problem.

@ Environment known only through interaction, i.e. some sequences
- StA R4 15e41 A 41 -
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RL: More than planning? Introduction to

Reinforcement Learning

Prediction

@ Known 7 and access to interactions with MDP and estimation of v;.

Planning

@ Access to interactions with MDP and estimation of a good (optimal?) policy 7.

Imitation Learning

@ Observation of interactions with an unknown policy and estimation of this policy.

@ Back to Supervised Learning setting.

Inverse Reinforcement Learning

@ Observation of interactions following a policy m and estimation of rewards so that
this (implicitly Gibbs type) policy is (almost) optimal.

e Focus on prediction/planning!
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Monte Cal’lo Introduction to

Reinforcement Learning

@ Back to v,(s) = E;[G¢|S: = s].
@ Monte Carlo:

e Play several episodes using policy 7.
e Average the returns obtained after any state s.

@ Online algorithm: V/(S;) < V(S;) + a(G: — V(5t)).

@ Good theoretical properties provided every states are visited asymptotically
infinitely often.

e Off-policy setting (behavior policy b # target policy 7) with importance sampling.

@ Planning with policy improvement steps (estimating g, instead of v; )

@ No theoretical results for the last case.
@ Need to wait until the end of an episode to update anything. ..
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Bootstrap and TD Prediction Introduction to

Reinforcement Learning

Bootstrap and TD
@ Bootstrap idea: Replace G; by Rii1 + yvir(Se+1)-

@ Temporal Difference: stochastic approximation scheme
V(S:) « V(St) + a(Res1 +vV(St+1) — V(S:))

@ Update occurs at each time step.
@ Rely on
Vr(s) = Trvx(s)
= E[Re+1 + Y (St41)|St = $]
@ Can be proved to converge (under some assumption on «).

Combine the best of Dynamic Programing and MC.
@ Can be written in term of Q:
Q(St, Ar) < Q(St, Ar) + a (Rey1 + 7Q(Se41, Arv1) — Q(St, Ar))

472



SARSA and Q Learning Introduction to

Reinforcement Learning

@ How to use this principle to obtain the best policy?

SARSA: Planning by Prediction and Improvement (online)

e Update Q following the current policy 7
Q(St, At) < Q(St, At) + o (Reg1 + vQ(Se41, Arg1) — Q(St, Ar))
e Update 7 by policy improvement.

@ May not converge if one use a greedy policy update

Q Learning: Planning by Bellman Backup (off-line)
@ Update Q following the behavior policy b
Q(St, Ae) < Q(St, Ae) + o (Rt+1 +ymax Q(St41,3) — Q(St, At))
@ No need to use importance sampling correction for depth 1 update.

e Final policy deduced from Q.

@ Proof of convergence in both cases.
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Va I’I atIOnS Introduction to

Reinforcement Learning

Temporal- Q of update Dynamic
difference A Aprogvammmg
learning ¢y 3bd b
dopth
(length)

of update

2. search

Monte ?

Carlo 9
.

@ Number of steps in the update.

. Exhaustive
»

T -

@ Number of states/actions considered at each step.
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Planning and Learning

value/policy
acting
planning direct
RL
model experience
model
learning

Planning and Models

Introduction to
Reinforcement Learning

L»Se\echon —— Expansion —— Simulation ——— Backup —J

) 2 2 Q
& { &

o ! g )8
4’\ \ CA Y PR LD S
)} s (R
AN / N N P
v o £ b d ) b
SN IN N
1
Tree Rollout
Polcy Policy
|
A “

@ Planning can combine model estimation (DP) and direct learning (RL).

Real Time Planning

@ Planning can be made online starting from the current state.

@ Curse of dimensionality: methods are hard to use when the cardinality of the

states and the actions are large!
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Outline

Introduction to
Reinforcement Learning

e Introduction to Reinforcement Learning

@ Reinforcement and Approximation
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Value Function Approximation Introduction to

Reinforcement Learning

Value Function Approximation

@ ldea: replace v(s) by a parametric ¥(s, w).

@ Issues:

e Which approximation functions?
e How to define the quality of the approximation?
e How to estimate w?

Approximation functions

@ Any parametric (or kernel based) approximation could be used.
@ Most classical choice:

e Linear approximation.
o Deep Neural Nets. ..
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Approximation Quality Introduction to

Reinforcement Learning

@ How define when ¥(-, w) is close to v, (or vy)

Prediction(/Control)

@ Prediction objective:

> u(s)(va(s) = 0(s, w))?

ZM )(Tx0(s, w) — (s, w))?

@ Bellman Residual:

or its projection. ..

o Issues:
o Neither v, nor 7, are known. ..
e No connection between a policy associated to ¥ and ... 478



Online Gradient and Semi-Gradient Introduction to

Reinforcement Learning

Online Prediction

@ SGD algorithm on w:
Wi = we + o (va(Se) — U(Se, we)) VI(St, we)
e MC approximation (still SGD):
W1 = we +a (G — U(Se, we)) VI(Se, we)
@ TD approximation (not SGD anymore):
Wir1 = W + a (Rep1 + YU(Se1, we) — 0(St, we)) VU(St, wy)

@ Deeper or wider scheme possible.

Online Control

@ SARSA-like algorithm:
e Prediction step as previously with the current policy
Wi = Wi + a (Repr +7G(St11, Arrs we) — G(St, A, w)) VG(St, Ar, we)
e c-greedy update of the current policy
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Offline Control with Approximation Introduction to

Reinforcement Learning

Watkins's Q(\)
A S ol
I
IR
s .

Offline Control

@ Q-Learning like algorithm:
Wil = Wt +« (Rt+1 + ¥ max 4(St+1,a, wr) — 4(St, A, Wt))
X V&(St,At, Wt)
with an arbitrary policy b.
@ Deeper formulation using importance sampling possible.

@ Issue: Hard to make it converge in general!
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Dead Iy Tl’lad Introduction to

Reinforcement Learning

Sutton-Barto’s Deadly Triad

@ Function Approximation

o Bootstrapping
e Off-policy training

Deep Q-Learning Stabilization Tricks

@ Memory replay: sample from a set of episodes (sampled model)
@ Frozen Q:

e use previous weights in the max (two-scales algorithms)
e Amount to an approximate value iteration algorithm!

@ Good mathematical heuristics lead to better practical results!
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Policy Based Approach Introduction to

Reinforcement Learning

@ Other approach with a parametric policy.
Parametric Policy Setting
o New goal:
J(0) =D iy (5)Vimy (5)
S|

= Z'U’We (s) Z 7T9(3|5)q7r9 (s,a)

@ Stochastic gradient:
VI(0) =D 7V log mo(AelSt)(dry (ST, AT) — vy (St))
t

>4V log mo(A¢| St)ar, (ST, AT)
t

@ On policy algorithm if we can estimate ar,(St, A1) = qr,(ST,AT) — Vi, (St) for
instance by MC.
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ACtOF— C rItIC Introduction to

Reinforcement Learning

@ Simultaneous parameterization of

e the policy 7 by 0,
o the value function Q (and V(s) = E,[Q(s,")]) by w

Simultaneous update:
0t = Re + YV (St41, we) — G(Se, Ae, we)
Wil = W + ad:V§(Se, Ar, wy)
0:11 =0+ B (Quw(St, At) — Vw(S:)) V log mg(alSt, 0:+)

Two-scales algorithm.
Can be adapted to continuous actions.
Basis for SOTA algorithm.

But close to on-line algorithm. ..
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O Utl | ne Introduction to

Reinforcement Learning

e Introduction to Reinforcement Learning

@ AlphaGo
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Al phaGO Introduction to

Reinforcement Learning

117 KE JIE

@ 024652

ALPHAGO
¢ 02:54:17

AlphaGo
@ Enhanced MCTS technique using a Deep NN for both the value function and the
policy.
@ Rollout policy and initial value network by supervised learning on a huge database.

@ Enhancement of the value network using Actor/Critic RL on self-play.
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Al phaGO Introduction to

Reinforcement Learning

173% KE JIE
@ 024652

ALPHAGO
¢ 02:54:17

AlphaGo Zero

@ No supervised initialization but only self-play.
o Alternate

e MCTS with a current policy.
o Gradient descent toward the resulting MCTS policy

@ Much shorter training time and better performance!
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Outline

Introduction to
Reinforcement Learning

e Introduction to Reinforcement Learning

@ References
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O Utl | ne Introduction to

Reinforcement Learning

e Introduction to Reinforcement Learning

@ Time Series
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Tl me SerieS Introduction to

Reinforcement Learning

905200

@ Sequence of values of the same entity across time.
@ Values taken at regular interval, most of the time

e Beware: time dependency in the values!

Source: Hyndman and Athanasopoulos
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WhICh Goals? Introduction to

Reinforcement Learning

Estimation Window

Real and Fstimated States

@ Supervised:

e Predict a value in the future,
o Predict some values (a trajectory) in the future,
e Predict a category in the future.

@ Unsupervised:

e Find break points,
e Group some series together (possibly in real time)

g
2
w
«
I
=z
o
g
=
<]
%)

@ Using future values to act at a given time not allowed! 491



Time Series and Structured Signals Introduction to

Reinforcement Learning

class #1

Groundtruth e —

sensor channel #1 |
Sensor data sensor channel #2 |

sensor channel #n

t=1 siding &
window

label = class #1

label =

Structured Signals

@ Sequence of values of the same entity (spatially or temporaly).
@ Decision can be taken a posteriori.

@ No hard real-time constraints.

@
)
&)
o
@
[a]
o
g
=
<]
%)

492

o Easier to deal with. .. but dependency with the data.



Time Series and Validation Introduction to

Reinforcement Learning

Time Present Time Present

> rese

Pass 1 [N pass 1 I -

P | pass 2 I

Pass 3 | pass 3 [

Pass 4 | pass 4 I

Pass 5 ] pass 5 [N

Dropped - Training Forecasting Bl ining Forecasting

Cross Validation
@ Never use the future. . . including for the validation.

@ Classical Cross Validation is not working!

@ Backtesting principle. .
@ Loss choice remains important. :
@ For structured data, safety buffer required between training and testing data. )
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Trend and Seasonality Introduction to

Reinforcement Learning

mw MULTIPLCATIVE SEASONAL
(smpe)
N\ e

Constant Level
7 T 7
NN NA N

Linear Trend

Damped Trend
(095)

Exponential Trend
(1.05)

Trend and Seasonality

@ Trend: long term evolution of average behavior.

@ Seasonality: periodic variability around this mean.

@ Residual: values after subtraction of the trend and the seasonality

>
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]
>
2
1]
=
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o
g
=
<]
%)
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@ Need to estimate everything using only the past.



Stationarlzatlon Introduction to

Reinforcement Learning

iy US net elctnicty generaton

WJJuW«'u‘uWu'ul“"M'ﬂ'ﬂh
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Stability in time assumption

@ Required for learning. ..
@ but not necessarily true.

@ Often approximately correct after a transformation!
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Strongly data dependent!
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Tlme SerieS MOdellng Introduction to

Reinforcement Learning

paiophu

p—

@ 3-layers approach: trend, seasonality and residuals.
@ Decomposition not well specified. . .

@ Several approaches for each layer!

Source: Hyndman and Athanasopoulos
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Statistical Approach Introduction to

Reinforcement Learning

XtNZ¢JXt 3‘|‘29th k‘|‘Zt

=i

Statistical Approach

@ Most classical modeling.

@ Combines past values of the sequence and a random noise.
@ Explicit modeling of the variability!

o Complex estimation. . .
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Machine Learning Approach

Introduction to
Reinforcement Learning

Datetime lag 1 lag 2 lag 3 lag 4 lag 5 lag 6 lag 7 Count

2012-08-2500:00:00 MNaN NaN NaN NaN NaN NaN NaN
2012-08-25010000 80 NaN NaN NaN NaN NaN NaN
2012-08-25020000 20 80 NaN NaN NaN NaN NaN
2012-08-25030000 60 20 80 NaN NaN NaN NaN
2012-08-2504:0000 20 60 20 B8O NaN NaN NaN
2012-08-25 05:00:00 20 20 6.0 20 80 NaN NaN
2012-08-25060000 20 20 20 60 20 80 NaN
2012-08-25 07:00:00 20 20 20 20 6.0 20 a0

2012-08-25080000 20 20 20 20 20 60 20

© @ W o e A @ N o= o
L S SR O O I R S Y

2012-08-2509:0000 60 20 20 20 20 20 60

Machine Learning Approach

@ Past taken into account only by feature engineering!
o Often using directly lagged values from the past.
e Variability not taken into account.

@ Estimation with classical ML tools.

60
&
<
o
o
5
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Deep Learning Approach Introduction to

Reinforcement Learning

(a) (b) (©

outputs 000 : ) ) @ oupus @@ @ @ outputs (& &) O O ¢ OX ) :[3{2[2::?;
(,()IlVO]ullOl’ld] attention ioht
layer recurrent . layer weights
1u)nvolunonal layer ' '- '- '- . encoder

ayer ‘ layer

inputs {: ‘ ‘ [ ) ‘ inpus Q@@ @O inputs . ‘ O

CNN model RNN model attention-based model

Deep Learning Approach

@ Past taken into account through the architecture.
@ Explicit use of past values.
@ Variability not taken into account.

@ Huge choice for the architecture.
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@ Often trade-off performance/interpretability!



Refel’ences Introduction to

Reinforcement Learning

M R. Hyndman and G. Athanopoulos.
Forecasting: principles and practice (3rd ed.)
OTexts, 2021
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Licence and Contributors Introduction to

Reinforcement Learning

Creative Commons Attribution-ShareAlike (CC BY-SA 4.0)

@ You are free to:
@ Share: copy and redistribute the material in any medium or format
@ Adapt: remix, transform, and build upon the material for any purpose, even commercially.

@ Under the following terms:
@ Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in

any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
@ ShareAlike: If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the

original.
@ No additional restrictions: You may not apply legal terms or technological measures that legally restrict others from doing anything

the license permits.

Contributors
@ Main contributor: E. Le Pennec
@ Contributors: S. Boucheron, A. Dieuleveut, A.K. Fermin, S. Gadat, S. Gaiffas,
A. Guilloux, Ch. Keribin, E. Matzner, M. Sangnier, E. Scornet. 501




O Utl | ne At Scale Machine Learning

and Deployment

e At Scale Machine Learning and Deployment
@ Motivation(s)
@ Code and Computer

@ Data and Computers

@ Deployment

@ References
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O Utl | ne At Scale Machine Learning

and Deployment o

e At Scale Machine Learning and Deployment
@ Motivation(s)
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TOO SIOW? TOO big? At Scale Machine Learning

and Deployment

A frustrated Data Practicionner. ..
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Big Data? At Scale Machine Learning

and Deployment

o
I

R

Unknown /

Hardware Constraints

@ All the computations are done in a core using data stored somewhere nearby.
o Constraints:

o Data access / storage (Locality of Reference).
o Multiple core architecture (Parallelization).
o Cluster (Distribution)

Sources: storageioblog.com /

(&)
o
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What COUld be ||m|t|ng7 At Scale Machine Learning 7

and Deployment

Possible Issues

o Coding issue?
[/O issue?
Processing issue?

Data storage issue?

Enhancement?

@ Better algorithm/language/library? (code optimization)
Better memory usage? (locality of reference)
Better CPU usage? (parallelization)

(]
]
@ Better data storage? (database)
@ More computers? (distribution)
o

Better computing infrastructure? (hardware)

1/0O: Input/Output / CPU: Central Processing Unit 506



Sampling Trick

At Scale Machine Learning
and Deployment

‘/‘\

@ Speed is linked to data size
@ Much faster with a smaller dataset!

Data Sampling

@ Similar idea than polling. . .

@ Similar techniques to do it well (stratification!)

@ Always a good idea when working with a large dataset. ..
@ At least during a first exploration!

@ Rule of thumb: Sample your data so that any experiment takes less than 5
minutes. 507
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From POC tO PrOd UCtIOﬂ At Scale Machine Learning

and Deployment

TRL 6 TRL 7
Application Development  Integrations
TRL @ TRL 5 Robustification of ML ML infrastructure, TRL 8
First Principles Machine Learning “Capability” modules, specifically product platform, Mission-ready
A stage for greenfield  The R&D to product transition. towards one or more data  pipelines, Tha snd of Systam
research use-cases security protocols development.
TRL 1 Proof of Concept (PoC) TRL 9 Deployment
Development Monitoring the current

Goal-oriented Research
Moving from basic
principles to practical use.

Demonstration in a real scenario, version, improving the next

Proof of Principle (PoP) Systems Development
Development Sound software engineering.
Active R&D is initiated.

From POC to Productio
e POC: only first step(s)!

@ Moving to production requires much more work: usability, scaling, IT
integration. . .

e Main difficulty outside academia!

POC: Proof of Concept

b5

Source: Lavin et al.
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O Utl | ne At Scale Machine Learning

and Deployment

7

e At Scale Machine Learning and Deployment

@ Code and Computer
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What COUld be ||m|t|ng7 At Scale Machine Learning 7

and Deployment

Possible Issues

o Coding issue?
[/O issue?
Processing issue?

Data storage issue?

Enhancement?

@ Better algorithm/language/library? (code optimization)
Better memory usage? (locality of reference)
Better CPU usage? (parallelization)

(]
]
@ Better data storage? (database)
@ More computers? (distribution)
o

Better computing infrastructure? (hardware)

1/0O: Input/Output / CPU: Central Processing Unit 511



What COUld be ||m|t|ng7 At Scale Machine Learning 4;7

and Deployment

Possible Issues

e Coding issue?
[/O issue?
Processing issue?

Data storage issue?

Enhancement?

o Better algorithm/language/library? (code optimization)
Better memory usage? (locality of reference)
Better CPU usage? (parallelization)

(]
]
@ Better data storage? (database)
@ More computers? (distribution)
o

Better computing infrastructure? (hardware)

1/O: Input/Output / CPU: Central Processing Unit 512



and Deployment

Wh at |S SlOW? At Scale Machine Learning

from random import random

Bl def estimate_pi(n=1e7) -> "area"
in_circle = 0

# inside the circle

return 4 * in_circle / total

i)l estimate_pi(1e5)

Profiling

@ Use a profiler to find out.

@ Don't (over)optimize otherwise.
@ Profiler in RStudio.
°

Profiler in Jupyter (line_profiler/py-heat-magick), in another IDE or
standalone (yappi/py-spy/austin).

Source: RStudio/Serifovic

@ Think of using a debugger in case of incorrect results (and of making tests). 513



I_l brarleS At Scale Machine Learning /4

and Deployment

@ Avoid coding as much as possible. . .

@ Pick a good implementation (often packaged in a library) based on:
e capability,
e product development,
e community health.

@ Choice may depend on goal/ecosystem!

Sources: storybench.org/IBM

e {tidyverse} is often a good starting point in R.
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{data . table} = Dat at able At Scale Machine Learning /"LH

and Deployment
General form: DT[]., j, ]
A

Grouped by
what?

Speed and memory optimized data.frame

@ Complete rewrite of the R - Python structure.

On which rows What to do?

@ Standalone and optimized C code.
@ Allow in place modification, grouping and fast indexing. ..
e {dplyr} is optimized for expressivity and connectivity.

@ pandas is optimized for expressivity and speed.
@ polars is another interesting option.
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b5

Algorlth m |C DeSIgn At Scale Machine Learning

and Deployment o

Time
Sort \Average Best Worst Space Stability||Remarks
Bubble sort  ||O(n"2) 0O(n~2) o(n~2) Constant|[Stable |[|Always use a modified bubble sort
Madified ~ ~ i
Bubble sort o(n~2) o(n) o(n~2) Constant|[Stable ||Stops after reaching a sorted array
gi‘imm o(n~2) o(n~2) o(n~2) Constant|[Stable ||[Even a perfectly sorted input requires scanning the entire array
IS?:mD" o(n~2) o(n) o(n~2) Constant|[Stable |[|In the best case (already sorted), every insert requires constant time

By using input array as storage for the heap, it is possible to achieve constant

Heap Sort O(n*log(n))||O(n*leg(n})|{0(n*leg(n))||Constant|[Instable| cpace

On arrays, merge sort requires O(n) space; on linked lists, merge sort requires
constant space

Randemly picking a pivot value (or shuffling the array prior to sorting) can
help aveid worst case scenarios such as a perfectly sorted array.

Merge Sort  ||O(n*log(n))|[O(n*leg(n))||O(n *leg(n))||Depends ||Stable

Quicksort O(n*log(n))||O(n*leg(n))|{O(n~2) Constant|[Stable

@ Algorithm choice can have a huge impact.

@ Sorting algorithm example!
@ Approximated/Stochastic variants. ..

Source: StackOverflow
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ane Algocithm T wte cfoce s/s/7¢6
© AL geneval
(FORTRANY
o.\a..;x\...

YARC: FORTRAN
subreutiae to
Provide 'u\‘\'tf&xl‘(
between ARC &
L"‘s\“ﬁ\e m-J,“‘
"“\H'Q R egrams
xAsc (TNSTR  OUTSTRY

xXADC

Interpreted vs Compiled

@ R and Python are interpreted languages. ..

@ constructed as a glue between libraries.
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@ Use compiled (and optimized) libraries. . . or compile code.
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«ef] fibonacci.cpp =
) SourceonSave | O /- _ Source

1 #include <Rcpp.h=
Z
B
4~ int fibonacci{const int x) {
5 if (x <2)
B return x;
7 else
8 return (fibonacci(x - 1)) + fibonacci(x - 2);
9 1
11 s+ R
12 # Call the fibenacci function defined in C++
13 fibonacci(1@)
14 */

17:1 C/C++ =

@ Easy way to write functions in C++ and use them in R.

e Similar package to incorporate code from Python, Julia, Java, Scala...

e}
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math libc math

def f(x): cdef double f(double x):
math.exp(-(x math.exp(—(x ))

def integrate_f(a, b, N): def integrate_f(double a, double b, int N):
S cdef double s
dx (b - a) /N cdef double dx (b - a) N
i range(N): cdef int i

S f(a + 1 * dx) i range(N):
dx s f(a + i * dx)
dx

C/C++ from Python
@ Easy way to write C/C++ code using a syntax a la Python

@ Based on a static compiler.

@ numba/jax are also interesting.
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What COUld be ||m|t|ng7 At Scale Machine Learning 7

and Deployment

Possible Issues

o Coding issue?
[/O issue?
Processing issue?

Data storage issue?

Enhancement?

@ Better algorithm/language/library? (code optimization)
Better memory usage? (locality of reference)
Better CPU usage? (parallelization)

(]
]
@ Better data storage? (database)
@ More computers? (distribution)
o

Better computing infrastructure? (hardware)

1/0O: Input/Output / CPU: Central Processing Unit 521



What COUld be ||m|t|ng7 At Scale Machine Learning 4;7

and Deployment

Possible Issues

o Coding issue?
1/0 issue?

o
@ Processing issue?
o

Data storage issue?

Enhancement?

@ Better algorithm/language/library? (code optimization)
Better memory usage? (locality of reference)

Better CPU usage? (parallelization)

(]
]
@ Better data storage? (database)
@ More computers? (distribution)
o

Better computing infrastructure? (hardware)

1/O: Input/Output / CPU: Central Processing Unit 522



Computer Architecture

Internal memory

Central Processing Unit CPU

At Scale Machine Learning
and Deployment

Output devices

Contraol Unit rtﬂ.rithmetic—
Input devices :> Lagic Unit
cu ALl
Memory
Registers J Cache

External memory

Central Processing Unit

@ Everything should go through the CPU.

P

Source: Unknown
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Memories

CPU: Central Processing Unit

Servers

At Scale Machine Learning X
and Deployment _

(aka computers)

Faster, more expensive
Generally non persistent

DRAI

0.S. Virtual & physical ~ NVRAM
Memory map/range NAND/Flash

Higher capacity
Lower cost

Persistent
Distance

Processor core(s) L1/L2/L3 cache
Processors memory map
Direct address range

e.g. 16/32/64 bit

External memory (storage)
Beyond memory map
Utilize file system
DAS, SAN, NAS
Block, file
Objects

Locality of reference  Source: StoagelOblog.com

Size hierarchy

CPU register

Level 1 cache access
Level 2 cache access
Level 3 cache access
Main memory access
Solid-state disk 1/0

Rotational disk 1/0

1/0O: Input/Output

64 b x 16
32-65 kb per core
256-512 kb per core

8-32 MB shared g
4GB-2TB 3
120 GB - 300 TB ¢
250 GB - 20 TB 3

524
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and Deployment

Speed hierarchy

1 CPU cycle 03ns 1s

Level 1 cache access 09ns 3s

Level 2 cache access 28ns 9s CPU bound latency
Level 3 cache access 129 ns 43s

Main memory access 120 ns 6 min

Solid-state disk 1/0 50 us 2 days

Local network 120 us 3 days

Rotational disk 1/0 10 ms 12 months 10 bound latency
Internet: SF to NYC 40 ms 4 years

Internet: SF to Australia 183 ms 19 years

Read 1 MB sequentially from RAM 250 us 10 days

Read 1 MB sequentially from SSD disk 1 ms 40 days 10 bound bandwidth

Read 1 MB sequentially from HD disk 20 ms 2 years
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CPU: Central Processing Unit / 1/O: Input/Output / OS: Operating System



Locallty Of Reference At Scale Machine Learning /4
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Servers
(aka computers)
Faster, more expensive Processor core(s) L1/L2/L3 cache
Generally non persistent
£ Processors memory map
O.S. Virtual & physical  NVRAM Blrectiaddress range 7 7 e
Wemory mapirange -~ NAND/Flash ©.g. 16/32/64 bit fg |
External memory (storage) 3

Beyond memory map

Higher capacity Utilize file system
Lower cost DAS, SAN, NAS
Persistent _~ " Bloc

Block, file

Distance Objects

Networked, local, remote, cloud

Locality of reference

Memory Issue

@ Data should be as close as possible from the core.

©
x
L=
@
[a N

Sz.

o ldeal case: dataset in the memory of a single computer.
@ Useless if data used only once. .. (bottleneck = I/O)

@ Memory required may be

o larger than raw dataset (interactions. . .)
o smaller than raw dataset (split. . .)

Sources: storageioblog.com

@ Memory growth faster than data growth (fewer big data limitation in ML?)
526
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and Deployment

c
5
&
15}
I
T
I3
&
5
[}
n

Split Apply Combine
I
s | 2?2
3
a|2 a | 4
T
a | 4
. a 3
b|o b|o
25 b | 25
b |5 b |5
c 75
cls T
c |10 c|s
75

o Very simple strategy!
@ Load in the memory only the data you need for the computation.

@ Often much easier for production than for the learning part. . .

1
N
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I/O Optl m Izatlon At Scale Machine Learning

and Deployment

. FetchX ._FetchY
Load X Load Y

L FetehY
L FetthX .

Prefetch X ‘

PrefetchY  LoadX Load Y

Prefetching
@ Pre-load data in background.

Zero Copy

@ Avoid any copy/translation of data.
@ Single representation of objects.
@ Apache Arrow (combined with Parquet) is becoming a de facto standard.

Sources:: Arc Community/Arrow
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What COUld be ||m|t|ng7 At Scale Machine Learning 7

and Deployment

Possible Issues

o Coding issue?
[/O issue?
Processing issue?

Data storage issue?

Enhancement?

@ Better algorithm/language/library? (code optimization)
Better memory usage? (locality of reference)
Better CPU usage? (parallelization)

(]
]
@ Better data storage? (database)
@ More computers? (distribution)
o

Better computing infrastructure? (hardware)

1/0O: Input/Output / CPU: Central Processing Unit 530
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Possible Issues

o Coding issue?
[/O issue?
Processing issue?

Data storage issue?

Enhancement?

@ Better algorithm/language/library? (code optimization)
Better memory usage? (locality of reference)
Better CPU usage? (parallelization)

(]
]
@ Better data storage? (database)
@ More computers? (distribution)
o

Better computing infrastructure? (hardware)
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Pa ra | |e| Izatlon At Scale Machine Learning

and Deployment

Microprocessor trends over the last 48 years

Speed Issue

o Parallelization: Modern computer have several cores. s
e HPC / DS (HPDA) setting: CPU bound tasks / |/O bound tasks. ji
e Data science: Often embarrassingly parallel setting ;

(no interaction between tasks). g
o Not always acceleration due to I/O limitation! 3

HPC: High Performance Computing / DS: Data Science / HPDA: High Performance Data Analysis / CPU: Central Processing Unit / 1/O: Input/Output 532
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Para”el Computing Wlth R At Scale Machine Learning

and Deployment

Parallel R

OREILLY" 0 pan biccalium & Stphen Wasion

Embarassingly Parallel Algorithm

e Family of packages with a similar syntax to parallelize %
o the apply family, e

e the do/dopar loop. 3

o Different backends/implementations: thread/fork, MPI, client/slave. .. f
o {future} proposes a high-level abstraction implementing a generic parallelization ¢
framework. @
533

MPI: Message Parsing Interface



Pa ra | |e| Izatlon |n Python At Scale Machine Learning

and Deployment
Task Queue

-~ (@@ — O

Thread
(o) ([¢] (] [ [@){[e]
Completed Tasks

-~ ([@@@@@@@@©O «— O

Parallelization Tools
Global Interpreter Lock makes thread less interesting for CPU bound tasks.

multiprocessing library provides Pool and Process to parallelize tasks.
Pool uses a map/apply approach with a fixed number of processes.
Built-in in Scikit-Learn (n_jobs parameter) using joblib.

Advanced functionalities (distribution/DAG) available in Dask/Ray

o
o
53
o
2
2
o
g
=
<]
%)
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CPU: Central Processing Unit / DAG: Directed Acyclic Graph
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7

e At Scale Machine Learning and Deployment

@ Data and Computers
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What COUld be ||m|t|ng7 At Scale Machine Learning 7

and Deployment

Possible Issues

o Coding issue?
[/O issue?
Processing issue?

Data storage issue?

Enhancement?

@ Better algorithm/language/library? (code optimization)
Better memory usage? (locality of reference)
Better CPU usage? (parallelization)

(]
]
@ Better data storage? (database)
@ More computers? (distribution)
o

Better computing infrastructure? (hardware)

1/0O: Input/Output / CPU: Central Processing Unit 537
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Possible Issues

o Coding issue?
[/O issue?

o
@ Processing issue?
o

Data storage issue?

Enhancement?

@ Better algorithm/language/library? (code optimization)
Better memory usage? (locality of reference)
Better CPU usage? (parallelization)

(]
]
o Better data storage? (database)
@ More computers? (distribution)

o

Better computing infrastructure? (hardware)

1/O: Input/Output / CPU: Central Processing Unit 538



Databases
ORACLE"
DATABASE

& gﬁéo’Ll Server PostqrcSQL
TERADATA

No |cDB

7 M<I§by "
SQthe (@) Hypersal

At Scale Machine Learning /4
and Deployment

(SQL?) Databases E
@ Most convenient tool to store/access data. :f

@ Abstraction of the implementation that eases the use. g

@ Lot of knowledge inside. 7
539

SQL: Structured Query Language



{DB I } At Scale Machine Learning

and Deployment
Your R
code

R package providing
generic database
interface

DBMS-specific R
packages

[
Database management
system G iz database

{DBI}, a DB AP

Standardized API for database.

@ Several database specific packages.
@ Connection with dbConnect (). .
@ Allow to send a request and retrieve the result dbGetQuery (). f
@ Can be used almost as easily as a local dataframe tb1() / collect() / :
compute (). ) 2
540

DB: Data Base / API: Application Programming Interface



DB API At Scale Machine Learning

and Deployment

lA),-;+'ma Code. with DB -APTL

.(annec‘f{' - ) commi'}'[)
conn = sqlite3.connect("Cookies") \J/ %ro”kack()

cursor = conn.cursor() CONLec‘i'\'o/\ . cursor ()

cursor.execute(

"select host_key from cookies limit 10")

[ - /
results = cursor.fetchall() ,evecoﬁ(filuef‘() *de’noa!()
fetehall()

import sqlite3

print results

conn. close()

DB API
@ Standardized API for database.
@ Several database specific libraries. . .
o Allow to send a request and retrieve the result.

@ SQLAlchemy allows to interact in a more pythonic way.

>
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DB: Data Base / API: Application Programming Interface 541



MOI’e than one SOlutlon SQL/NOSQL At Scale Machine Learning

and Deployment

Data Hodels
Comparion) Avaiasiey

Consistency
Alciens aays  igranie 08
View  Paperatle Torasire

of the data

@ Most classical design,

@ Limitations linked to the CAP theorem: Hard to distribute without asking less. ..

NoSQL (Not only SQL!) §
@ Relaxation to ease distribution. -

e Simplification/modification of the stored data type to ease the use. 3
542

SQL: Structured Query Language / CAP: Consistency/Availability /Partition Tolerance



Why Not Always Use a (Meta) Database? PR ¥

and Deployment
O IERLEm . mongo

&
HEBRASE AN A\
) %ﬁ:

24 openstack
amazon|§ 3

B8 Windows Azure

Unified (DB) interface

@ Query (almost) any datastore from as single place.

@ Drill/Trino supports a variety of relational databases, NoSQL databases and file
systems.

@ Both use SQL-like requests
o with {sergeant}/{RPresto}, drill/Trino can be used in R.
@ with py-drill/trino-python-client, drill/Trino can be used in Python.

o
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@ duckdb is a lighter interesting option which supports local dataframe, local files
and few databases including duckdb itself! 543
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What COUld be ||m|t|ng7 At Scale Machine Learning 7

and Deployment

Possible Issues

o Coding issue?
[/O issue?
Processing issue?

Data storage issue?

Enhancement?

@ Better algorithm/language/library? (code optimization)
Better memory usage? (locality of reference)
Better CPU usage? (parallelization)

(]
]
@ Better data storage? (database)
@ More computers? (distribution)
o

Better computing infrastructure? (hardware)

1/0O: Input/Output / CPU: Central Processing Unit 545
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Possible Issues

o Coding issue?
1/0 issue?

o
@ Processing issue?
o

Data storage issue?

Enhancement?

@ Better algorithm/language/library? (code optimization)
Better memory usage? (locality of reference)
Better CPU usage? (parallelization)

(]

]

@ Better data storage? (database)

@ More computers? (distribution)
o

Better computing infrastructure? (hardware)
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and Deployment

R SR \ B: \
oo || — | }r ! = i
\ {1 = G .

| Machine T ! groupBy
i 5 T R
| , Lc D; F:
i P
i B
Machine 1

———\
Parallel achine
Transform | © 3

True Big Data Setting

o Computation in a cluster:
o Distribution of the data (DS / HPDA),

E join
{

i % stage2 = union S Stage 3 !

e or/and distribution of the computation (HPC) E

@ Hadoop/Spark realm. -
@ Locally parallel in memory computation are faster. . . if data used more than 0
once. ;

@ Real challenge when not embarrassingly parallel (interaction. . .) ;

DS: Data Science / HPDA: High Performance Data Analysis / HPC: High Performance Computing 547



HadO Op a nd M a p/ Red uce At Scale Machine Learning /4

and Deployment

input
HDFS
output
sort H HDFS
map (= S0Py
i merge
reduce part0 HDFS
............................................... T replication
vy |
| ospitt > map | ——
R
reduce part 1 4 HDFS
™ replication
ARERSRTE V
| osplit2 | map |
st

@ Implementation of (classical) Map/Reduce algorithm.
@ Data transfer through disk and networked file system!

@ Main contribution: Node failure handling and ecosystem.

Source: Cloudera

HDFS: HaDoop File System 548



Spark D,

At Scale Machine Learning
and Deployment

@ More flexible algorithm structure (DAG).

@ In Memory: cache some objects in memory. ..

-
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DAG: Directed Acyclic Graph 549



DIStI’I bUtIOn Of U D F At Scale Machine Learning 4

and Deployment

% Machine [

RDD
N

Vv
Parallel r
Transform
Spark as a a generic engine

@ From single machine Spark usage to huge cluster.
e Dataframe APl (/ RDD API)
@ User Defined Function (UDF) can be applied.
v

Source: R. Ho

550

API: Application Programming Interface / RDD: Resilient Distributed Dataset



Distributed ML with Spark ML

At Scale Machine Learning
and Deployment

Training Testing
DataFrame
¥ v
Transformer [ Extract features ] [ Extract features ]
Estimator [ Train model ] [ Predict using model ]
l 1
v

v

Evaluator

o Full distributed power of Spark
e ML Lib

x
o
I

=
o
2
3
o

]
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ML: Machine Learning



DIStI’I bUted M I_ Wlth HQO At Scale Machine Learning

and Deployment

H20 Software Stack

Rapids Expression Evaluation

Customer
Scala Algorithm

Customer
Algorithm
b

Fluid Vector Frame Jo
Distributed K/V Store MRTask
Non-blocking Hash Map Fork/Join
Spark Hadoop Standalone H20

ai

Distributed ML system

e Standalone or Spark based

®
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e Easy to use.

ML: Machine Learning



{SparkR} At Scale Machine Learning

and Deployment

Architecture
Local ’— Worker
SPAK | gy R
RJVM Executor
— brﬂg:' Java :\— -
parl arl H
R Context G?J’;te:t Worker
| Spark )
Executor exec

Official Spark R interface

@ Allow working on DataFrame (data.frame like structure).

@ Parallelized list apply with User Defined Functions available.
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{Sparklyr} At Scale Machine Learning

and Deployment

sparklyr

ML Extensions

Apache Spark

e Convenient ML interface to Spark (or h20).

e Convenient {dplyr} interface to Spark. 5
@ Allow using more or less the same code as with {dplyr}. ¢
@ User Defined Functions also available. 7

554

ML: Machine Learning



and Deployment

Pyspark At Scale Machine Learning X

@ Provide access to both the DataFrame and RDD API.
@ Access through pyspark rather than the usual python shell.

@ User Defined Functions are available.

Source: K. Keshari
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RDD: Resilient Distributed Dataset / API: Application Programming Interface



D B or DIStI’i bUted SyStem7 At Scale Machine Learning

and Deployment

e e
Ind . = . \
SQL&R m |I A : B
|
1
1
\

S ST

‘ < MASTER NODE

STANDBY-MASTER, -
NODE‘ ==

(1)

R I S I I S © Join
ARRRARARARRRS | (gt :
W Y Y ] N A 5
SEGMENTS Person desiged by Pao S Fe o
rom TheNoun Project =
., z
Database vs Distributed System
3
@ DB: focus on data then computation. £
o)
@ Distributed System: focus on computation then data. i

@ Are they that different?

556



U D F D B as a DIStrl bUted System At Scale Machine Learning /'f:‘:

and Deployment

e
e ()

» >
STANDBY-MASTER -

wooe MASTER NODE

Database and User Defined Function

@ Allow to defined complex function that can be run in the server of the DB.
@ Idea: minimize the data transport by moving only the answer.
@ PostGreSQL, SqlServer, Oracle, Teradata, HAWQ, SAP Hana...

@ Require some priviledges. . .

3
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SparkSQL a DIStrlbUted System as a DB At Scale Machine Learning

and Deployment

1
I
I
I
b I
I
N l
e ~ !
lic: D: F:
¢ | JY
e Spark® saL
|: E: " join :
i : |
\ Sage2 wion [ stage3

Spark as a DB engine

@ Store data files in disk/memory (caching).

@ Use SparkSQL to request data from it.
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nghtel’ DIStI’IbUtIOI’] EnglneS At Scale Machine Learning

and Deployment

@ Hadoop/Spark are often seen as complex to use. ..

Lighter Distribution Engines
@ Based on the idea of chunking data and using a DAG to organize the
computations.

@ Several instantiations:
e dask, ray, vaex, PyArrow in Python
o {future}/{targets}, {arrow} in R

@ Perform operations on dataset of arbitrary size using from 1 to 100 computers.

e Different implementation choices/maturities but promising direction.

Source: M. Rocklin
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D&Sk / Ray / vaeXx / PYAIIOW [ At Scale Machine Learning

and Deployment

Dask / Ray / vaex / PyArrow ...

@ Construct a task DAG on chunked data from a regular Python code (API a la
Pandas/NumPy/scikit-learn).

@ Execute this DAG on various parallel /distributed architecture.
@ No connection with Spark ecosystem. .. but much more flexibility!

@ Single computer out of core computations.
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{future}, {targets} and {arrow} At Scale Machine Learning

and Deployment

>
¥
(R
LR A

B D i i @ i
>
.
doovssse

{Future} and promises
o Create {future} variable whose construction is not blocking until its further use..

@ Abstraction used to implement a generic parallelization backend.

Source: ropensci.github.io/drake

{targets}
@ Build dependencies graph (a la make).

@ Cache and parallelization!

{arrow}
@ Chunked data.frame.

7
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What COUld be ||m|t|ng7 At Scale Machine Learning 7

and Deployment

Possible Issues

o Coding issue?
[/O issue?
Processing issue?

Data storage issue?

Enhancement?

@ Better algorithm/language/library? (code optimization)
Better memory usage? (locality of reference)
Better CPU usage? (parallelization)

(]
]
@ Better data storage? (database)
@ More computers? (distribution)
o

Better computing infrastructure? (hardware)

1/0O: Input/Output / CPU: Central Processing Unit 563
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Possible Issues

o Coding issue?
1/0 issue?

o
@ Processing issue?
o

Data storage issue?

Enhancement?

@ Better algorithm/language/library? (code optimization)
Better memory usage? (locality of reference)
Better CPU usage? (parallelization)

(]
]
@ Better data storage? (database)
@ More computers? (distribution)
o

Better computing infrastructure? (hardware)
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5

RAM and SSD
@ The larger and the faster the better. .. E

@ Quite cheap nowadays. g
565

RAM: Random Access Memory / SSD: Solid-State Drive



P I’OCGSSi ng U n ItS At Scale Machine Learning

and Deployment

Control ALY | ALY
ALU | ALY

CcPU GPU

PU: CPU, GPU, FPGA, ASICS

@ More than one processor architecture.

@ Flexibility vs performance.
e Parallelism: CPU < GPU < FPGA < ASIC.

@ More computers. ..

£
o
©
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o
°
51
I§]
®
>
o
@

Source: Nvidia

@ |/0 is important!
PU: Processing Unit / CPU: Central Processing Unit / GPU: Graphical Processing Unit / FPGA. Field Programmable Gate Array / ASIC: Application- 566
Specific Integrated Circuit
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From POC tO PrOd UCtIOﬂ At Scale Machine Learning

and Deployment

TRL 6 TRL 7
Application Development  Integrations
TRL @ TRL 5 Robustification of ML ML infrastructure, TRL 8
First Principles Machine Learning “Capability” modules, specifically product platform, Mission-ready
A stage for greenfield  The R&D to product transition. towards one or more data  pipelines, Tha snd of Systam
research use-cases security protocols development.
TRL 1 Proof of Concept (PoC) TRL 9 Deployment
Development Monitoring the current

Goal-oriented Research
Moving from basic
principles to practical use.

Demonstration in a real scenario, version, improving the next

Proof of Principle (PoP) Systems Development
Development Sound software engineering.
Active R&D is initiated.

From POC to Productio
e POC: only first step(s)!

@ Moving to production requires much more work: usability, scaling, IT
integration. . .

e Main difficulty outside academia!

POC: Proof of Concept

b5

Source: Lavin et al.
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Data Products

At Scale Machine Learning
and Deployment

oz

For Human - Insight (Study)

For Machine - Automation (Product)
e Data / Analysis @ Prediction / Modeling.
@ Most classical variations:
e Report,
e Static dashboard,
o Interactive dashboard.

@ Most classical variations:

e Batch update,
e On-demand

More Factors

@ Data, Users, Temporal aspect, Location. ..

Source: E. Mandel
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°

For Human - Insight

e Data / Analysis
@ Most classical variations:

e Report,
e Static dashboard,
o Interactive dashboard.

Source: Appsilon

@ No sophisticated algorithms are required to yield value!
@ Huge data quality challenge! 571
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K
Lod

Report
@ Analysis, AB testing, KPI. ..
@ Word processor / Literate programming (Rmd/Notebook)

Static Dashboard

e Graph / Automatic summary. ..
o Literate programming (Rmd/Notebook) / Dataviz tools / Static web page

Interactive Dashboard
@ Graph / Automatic summary with user interaction. . .
@ Javascript / Client/server ({Shiny}/Flask/Dash)

Source: Appsilon
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Expectation Reality

Data
Data Machine
D Machine Verific R
el Resource Configuration | Data Collection Management Serving

Management Infrastructure
ML Code Analysis Tools
Configurstion

-
Serving Menagement Tools
= Infrastructure Maxicng
Extraction
Process
Analysis
Management
:

Tools

For Machine - Automation
@ Prediction / Modeling.

@ Most classical variations: Batch update and On-demand

@ Much more demanding!
@ Going from POC to production is not easy.
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POC: Proof Of Concept 573



Automation
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M@ {vna > model Qe\/alva’m
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live

Using an algorithm in production

@ Not the same hardware requirements for dev, training and prediction (CPU/RAM
vs latency/availability /scalability).

@ Better to use the same language/code everywhere.

@ Often require data (cleaning) duplication.

@ Two quite different scenarios:

e Batch scoring (easier)
o On-demand (REST API, Stream...)

7

©
X
=

©
a

Source: Sz.
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scoring
environment

- Y

object/ archive

deploy model
job m@
N

training
environment

User Inferface to
ML product

Business
Processes

production
database

development
environment

data
warehouse

Data Science Architecture

<

@ Usage dependent architecture! &

e Finding a good architecture is difficult 2

n

DS: Data Science / ETL: Extract/Transform/Load / REST: REpresentational State Transfer / VCS: Version Control System 575



O Utl | ne At Scale Machine Learning

and Deployment o

576



MOre tOOIS At Scale Machine Learning

and Deployment

Much more tools!

@ Much more tools than analytics, database and distribution!

e Bl/Dataviz, Prediction delivery, DS platform, Data Pipeline, Orchestration. . .

577



Bl/DataViz

At Scale Machine Learning
and Deployment

e Bl/Dataviz dedicated tools.

@ Specific development with R and Python (Niche?).

Source: OSDC

@ Quite mature ecosystem. ..
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APPI ication

— C}(\d\

&, [MCVioaet "o
How to deliver the predictions?

@ By running the code. ..

@ By delivering the code. 0
e By delivering the model (PMML/PFA) 7 -
@ By delivering an API s
@ Should not be done manually? 3

579

PMML: Portable Model Markup Language/PFA: Portable Format for Analytics



Data Science Platform

At Scale Machine Learning
and Deployment

Ideate & Explore Experiment

v.

Operationalize

Data Science Platform

@ Development and deployment.
@ Code / low code / No code.
@ Library / Style choices.

o Key to efficient delivery!

9]
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o
o
2
3
o
]
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Orchestration

@ Training/Predicting/Monitoring.
@ Stream.

e Hardware/Software optimization.

581
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ko3 osa
EXTRACT | TRANSFORM WAREHOUSE

Key Focus.

Mask Filter

[ B

Join

Key Focus.

TRANSFORM

dbt

Schama creson ||| amazon

Data Pipeline

@ Data preparation.

@ Scaling issues.

@ Data Management aspect!
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DataOps/MLOps Approach

Testing and

c o ion ing a
menitoring
Lifecycle Programming Version control, Trigger jobsand | Continuous tests,
management, language support, | continuous transformations, log collection and
knowledge sharing, | ID| integration and provision resources | workflow
communication continuous monitoring
deployment CI/CD .
DataOps Insights>
Data Data Data Data Data
Capture Storages Integration Governance Analytics
Batch jobs, file Hot and cold ETL/ELT, MDM, data | Data lineage, Reports,
transfer, change storages, serving, | validation, profiling | metadata, data dashboards,
data capture, archival and transformation | catalog machine leaming
replication, platforms, BI tools
streaming

DataOps/MLOps

@ Inspired by DevOps and Lean Management

@ Mindset + tools to deal with Data products

At Scale Machine Learning
and Deployment

P

Source: V. Maksimavicius
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DevOps?

DevOps

e Combination of Software Development and IT Operations.
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At Scale Machine Learning
and Deployment

@ a set of practices intended to reduce the time between committing a change to a
system and the change being placed into normal production, while ensuring high

quality

@ Combine tools and mindset!
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OPS

4

Culture: Cooperation / Learning / Blamelessness / Empowerment

Much more than technical tools!

Automation: Tools / Tests / Package / Configuration
Monitoring: Dashboard / Post Mortem

Source: Wikipedia

Sharing: Goals / Practice / Learning
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Lots of tools for each step!

Collaborate: Lifecycle mgmt, Communication, Knowledge sharing
e Build: SCM/VCS, Cl, Build, DB mgmt

o Test: Testing
°
°

Deploy: Deployment, Config mgmt, Artifact mgmt

Run: Cloud/*aas, Orchestration, Monitoring
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Tool choice depends on the context.
Good usage is more important that the tool itself. 587
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e Code are meant to be used/shared/reused.

Versioning (Code),

Documentation,

Packaging,

°
°

@ Testing,
°

e Continuous Integration/Continuous Deployment,
°

Human Training
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Prepare Experiment | Deploy

@ Models are meant to be used/shared/reused.

Good practice
Versioning (Models/Code/Dataset),
Artifact mgmt,

Training/Testing/Monitoring,

°

°

@ Documentation,
°

@ Human Training,
°
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Continuous Integration/Continuous Deployment



Data and DataOps

Data are meant to be used/shared/reused.

Versioning (Data/Processing),
Documentation/Governance,
Testing/Monitoring,
Packaging (Feature store),
Human Training,

Continuous Integration/Continuous Deployment.

At Scale Machine Learning
and Deployment

7

Source: Valdas Maksimavicuis
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