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Risk Estimation

Data Science

Major Influences

- Tukey (1962)

Four major influences act today:
The formal theories of statistics
Accelerating developments in computers and display devices
The challenge, in many fields, of more and ever larger bodies of data
The emphasis on quantification in an ever wider variety of disciplines

He was talking of Data Analysis.
Data Mining, Machine Learning, Big Data, Data Science, Artificial Intelligence. . .
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Large Scale ML Is (Quite) Easy
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Algorithm implementation + copy/paste + cloud computing.
Machine learning on an arbitrary large dataset!

ML: Machine Learning 6
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Monthly KPI Dashboard
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Realtime Log Dashboard
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On-demand Legal Document Generation
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ER Waiting Time Prediction
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Weekly Churn Prediction
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Realtime Anomaly Detection
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On-demand Fraud Detection
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Prescriptive Maintenance
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Machine Learning
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Machine Learning
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A definition by Tom Mitchell
A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E.
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Object Detection
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Task: say if an object is present or not in the image
Performance: number of errors
Experience: set of previously seen labeled images
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Article Clustering
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An article clustering algorithm:
Task: group articles corresponding to the same news
Performance: quality of the clusters
Experience: set of articles
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Smart Grid Controler
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.A controler in its sensors in a home smart grid:
Task: control the devices
Performance: energy costs
Experience:

previous days
current environment and performed actions
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Three Kinds of Learning

So
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Unsupervised Learning
Task:
Clustering/DR/Generative
Performance:
Quality
Experience:
Raw dataset
(No Ground Truth)

Supervised Learning
Task:
Prediction/Classification
Performance:
Average error
Experience:
Good Predictions
(Ground Truth)

Reinforcement Learning
Task:
Actions
Performance:
Total reward
Experience:
Reward from env.
(Interact. with env.)

Timing: Offline/Batch (learning from past data) vs Online (continuous learning)
28
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Supervised and Unsupervised
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Supervised Learning (Imitation)
Goal: Learn a function f predicting a variable Y from an individual X .
Data: Learning set with labeled examples (X i , Yi)
Assumption: Future data behaves as past data!
Predicting is not explaining!

Unsupervised Learning (Structure Discovery)
Goal: Discover a structure within a set of individuals (X i).
Data: Learning set with unlabeled examples (X i)
Unsupervised learning is not a well-posed setting. . .
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Machine Can and Cannot

Machine Can
Forecast (Prediction using the past)
Detect expected changes
Memorize/Reproduce
Take a decision very quickly
Learn from huge dataset
Optimize a single task
Replace/Help some humans

Machine Cannot
Predict something never seen before
Detect any new behaviour
Create something brand new
Understand the world
Get smart really fast
Go beyond their task
Kill all humans

Some progresses but still very far from the singularity. . . 30



Statistical Learning:
Introduction, Setting and
Risk Estimation

Machine Learning
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Machine Learning Methods
Huge catalog of methods,
Need to define the performance,
Numerous tricks: feature design, hyperparameter selection. . .
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Under and Over Fitting
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What is best?

A simple model that is stable but false? (oversimplification)
A very complex model that could be correct but is unstable? (conspiracy theory)

Neither of them: tradeoff that depends on the dataset.
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Machine Learning Pipeline
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Test and compare models.

Deployment pipeline is different!
33



Statistical Learning:
Introduction, Setting and
Risk Estimation

Data Science ̸= Machine Learning
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Main DS difficulties
Figuring out the problem,
Formalizing it,
Storing and accessing the data,
Deploying the solution,
Not (always) the Machine Learning part!
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MAP 553 - Foundation of Machine Learning - Goal

Goal
Master the statistical learning framework and its challenges.
Know the inner machinery of the most classical supervised and unsupervised ML
methods in order to understand their strengths, limitations and connections.
Understand some optimization tools used in ML as well as some theoretical
aspects of ML.
Not a course on practical tricks to use machine learning in a data product!

Evaluation
A practical lab (5 pt)
A final exam or a project (15 pt)
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Erwan Le Pennec

Erwan.Le-Pennec@polytechnique.edu

Randal Douc

randal.douc@it-sudparis.eu
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Thierry Klein

thierry.klein@math.univ-toulouse.fr

Edouard Oyallon

edouard.oyallon@lip6.fr
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MAP 553 - Schedule

9 Lectures (8h30-10h30)
Mon. 19/09: Statistical Learning: Introduction, Setting and Risk Estimation
Mon. 26/09: ML Methods: Probabilistic Point of View
Mon. 03/10: ML Methods: Optimization Point of View
Mon. 10/10: Optimization: Gradient Descent Algorithms
Mon. 17/10: ML Methods: Neural Networks and Deep Learning
Mon. 24/10: ML Methods: Trees and Ensemble Methods
Mon. 07/11: Unsupervised Learning: Dimension Reduction
Mon. 14/11: Unsupervised Learning: Clustering
Mon. 21/11: Statistical Learning: PAC-Bayesian Approach and Complexity
Theory

Mon. ??/12: Exam (?)
37
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Supervised Learning
Supervised Learning Framework

Input measurement X ∈ X
Output measurement Y ∈ Y.
(X , Y ) ∼ P with P unknown.
Training data : Dn = {(X 1, Y1), . . . , (Xn, Yn)} (i.i.d. ∼ P)

Often
X ∈ Rd and Y ∈ {−1, 1} (classification)
or X ∈ Rd and Y ∈ R (regression).

A predictor is a function in F = {f : X → Y meas.}

Goal
Construct a good predictor f̂ from the training data.

Need to specify the meaning of good.
Classification and regression are almost the same problem!
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Loss and Probabilistic Framework

Loss function for a generic predictor
Loss function: ℓ(Y , f (X )) measures the goodness of the prediction of Y by f (X )
Examples:

0/1 loss: ℓ(Y , f (X )) = 1Y ̸=f (X)
Quadratic loss: ℓ(Y , f (X )) = |Y − f (X )|2

Risk function
Risk measured as the average loss for a new couple:

R(f ) = E(X,Y )∼P[ℓ(Y , f (X))]
Examples:

0/1 loss: E[ℓ(Y , f (X ))] = P(Y ̸= f (X ))
Quadratic loss: E[ℓ(Y , f (X ))] = E

[
|Y − f (X )|2

]
Beware: As f̂ depends on Dn, R(f̂ ) is a random variable!
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Best Solution

The best solution f ⋆ (which is independent of Dn) is
f ⋆ = arg min

f ∈F
R(f ) = arg min

f ∈F
E[ℓ(Y , f (X ))] = arg min

f ∈F
EX
[
EY |X [ℓ(Y , f (X ))]

]
Bayes Predictor (explicit solution)

In binary classification with 0− 1 loss:

f ⋆(X ) =


+1 if P(Y = +1|X ) ≥ P(Y = −1|X )

⇔ P(Y = +1|X ) ≥ 1/2
−1 otherwise

In regression with the quadratic loss
f ⋆(X ) = E[Y |X ]

Issue: Solution requires to know E[Y |X ] for all values of X !
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Goal
Machine Learning

Learn a rule to construct a predictor f̂ ∈ F from the training data Dn s.t. the
risk R(f̂ ) is small on average or with high probability with respect to Dn.

In practice, the rule should be an algorithm!

Canonical example: Empirical Risk Minimizer
One restricts f to a subset of functions S = {fθ, θ ∈ Θ}
One replaces the minimization of the average loss by the minimization of the
empirical loss

f̂ = f
θ̂

= argmin
fθ,θ∈Θ

1
n

n∑
i=1

ℓ(Yi , fθ(X i))

Examples:
Linear regression
Linear classification with

S = {x 7→ sign{x⊤β + β(0)} /β ∈ Rd , β(0) ∈ R} 43
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Example: TwoClass Dataset
Synthetic Dataset

Two features/covariates.
Two classes.

Dataset from Applied Predictive Modeling, M. Kuhn and K. Johnson, Springer
Numerical experiments with R and the {caret} package.
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Example: Linear Discrimination
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Example: More Complex Model
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Example: KNN
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Training Risk Issue
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Risk behaviour
Learning/training risk (empirical risk on the learning/training set) decays when
the complexity of the method increases.
Quite different behavior when the risk is computed on new observations
(generalization risk).
Overfit for complex methods: parameters learned are too specific to the learning
set!
General situation! (Think of polynomial fit. . . )
Need to use a different criterion than the training risk!
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Risk Estimation vs Method Selection
Predictor Risk Estimation

Goal: Given a predictor f assess its quality.
Method: Hold-out risk computation (/ Empirical risk correction).
Usage: Compute an estimate of the risk of a selected f using a test set to be
used to monitor it in the future.

Basic block very well understood.

Method Selection
Goal: Given a ML method assess its quality.
Method: Cross Validation (/ Empirical risk correction)
Usage: Compute risk estimates for several ML methods using
training/validation sets to choose the most promising one.

Estimates can be pointwise or better intervals.
Multiple test issues in method selection. 50
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Cross Validation and Empirical Risk Correction

Two Approaches
Cross validation: Use empirical risk criterion but on independent data, very
efficient (and almost always used in practice!) but slightly biased as its target uses
only a fraction of the data.
Correction approach: use empirical risk criterion but correct it with a term
increasing with the complexity of S

Rn(f̂S)→ Rn(f̂S) + cor(S)
and choose the method with the smallest corrected risk.

Which loss to use?
The loss used in the risk: most natural!
The loss used to estimate θ̂: penalized estimation!

Other performance measure can be used.
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Cross Validation
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Very simple idea: use a second learning/verification set to compute a verification
risk.
Sufficient to remove the dependency issue!
Implicit random design setting. . .

Cross Validation
Use (1− ϵ)× n observations to train and ϵ× n to verify!
Possible issues:

Validation for a learning set of size (1− ϵ)× n instead of n ?
Unstable risk estimate if ϵn is too small ?

Most classical variations:
Hold Out,
Leave One Out,
V -fold cross validation.
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Hold Out
Principle

Split the dataset D in 2 sets Dtrain and Dtest of size n × (1− ϵ) and n × ϵ.
Learn f̂ HO from the subset Dtrain.
Compute the empirical risk on the subset Dtest:

RHO
n (f̂ HO) = 1

nϵ

∑
(X i ,Yi )∈Dtest

ℓ(Yi , f̂ HO(X i))

Predictor Risk Estimation
Use f̂ HO as predictor.
Use RHO

n (f̂ HO) as an estimate of the risk of this estimator.

Method Selection by Cross Validation
Compute RHO

n (f̂ HO
S ) for all the considered methods,

Select the method with the smallest CV risk,
Reestimate the f̂S with all the data. 53
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Hold Out
Principle

Split the dataset D in 2 sets Dtrain and Dtest of size n × (1− ϵ) and n × ϵ.
Learn f̂ HO from the subset Dtrain.
Compute the empirical risk on the subset Dtest:

RHO
n (f̂ HO) = 1

nϵ

∑
(X i ,Yi )∈Dtest

ℓ(Yi , f̂ HO(X i))

Only possible setting for risk estimation.

Hold Out Limitation for Method Selection
Biased toward simpler method as the estimation does not use all the data initially.
Learning variability of RHO

n (f̂ HO) not taken into account.
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V -fold Cross Validation
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Principle
Split the dataset D in V sets Dv of almost equals size.
For v ∈ {1, .., V }:

Learn f̂ −v from the dataset D minus the set Dv .
Compute the empirical risk:

R−v
n (f̂ −v ) = 1

nv

∑
(X i ,Yi )∈Dv

ℓ(Yi , f̂ −v (X i))

Compute the average empirical risk:

RCV
n (f̂ ) = 1

V

V∑
v=1
R−v

n (f̂ −v )

Estimation of the quality of a method not of a given predictor.
Leave One Out : V = n.
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V -fold Cross Validation

Analysis (when n is a multiple of V )
The R−v

n (f̂ −v ) are identically distributed variable but are not independent!
Consequence:

E
[
RCV

n (f̂ )
]

= E
[
R−v

n (f̂ −v )
]

Var
[
RCV

n (f̂ )
]

= 1
V Var

[
R−v

n (f̂ −v )
]

+ (1− 1
V )Cov

[
R−v

n (f̂ −v ),R−v ′
n (f̂ −v ′)

]
Average risk for a sample of size (1− 1

V )n.
Variance term much more complex to analyze!
Fine analysis shows that the larger V the better. . .

Accuracy/Speed tradeoff: V = 5 or V = 10. . .
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Linear Regression and Leave One Out

Leave One Out = V fold for V = n: very expensive in general.

A fast LOO formula for the linear regression
Prop: for the least squares linear regression,

f̂ −i(X i) = f̂ (X i)− hiiYi
1− hii

with hii the ith diagonal coefficient of the hat (projection) matrix.
Proof based on linear algebra!
Leads to a fast formula for LOO:

RLOO
n (f̂ ) = 1

n

n∑
i=1

|Yi − f̂ (X i)|2
(1− hii)2
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Cross Validation
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Example: KNN (k̂ = 61 using cross-validation)
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Train/Validation/Test
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Selection Bias Issue:
After method selection, the cross validation is biased.
Furthermore, it qualifies the method and not the final predictor.

Need to (re)estimate the risk of the final predictor.
(Train/Validation)/Test strategy

Split the dataset in two a (Train/Validation) and Test.
Use CV with the (Train/Validation) to select a method.
Train this method on (Train/Validation) to obtain a single predictor.
Estimate the performance of this predictor on Test.

Every choice made from the data is part of the method! 59
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Risk Correction

Empirical loss of an estimator computed on the dataset used to chose it is biased!
Empirical loss is an optimistic estimate of the true loss.

Risk Correction Heuristic
Estimate an upper bound of this optimism for a given family.
Correct the empirical loss by adding this upper bound.

Rk: Finding such an upper bound can be complicated!
Correction often called a penalty.
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Penalization
Penalized Loss

Minimization of

argmin
θ∈Θ

1
n

n∑
i=1

ℓ(Yi , fθ(X i)) + pen(θ)

where pen(θ) is a risk correction (penalty).

Penalties
Upper bound of the optimism of the empirical loss
Depends on the loss and the framework!

Instantiation
Mallows Cp: Least Squares with pen(θ) = 2d

n σ2.
AIC Heuristics: Maximum Likelihood with pen(θ) = d

n .
BIC Heuristics: Maximum Likelohood with pen(θ) = log(n)d

n .
Structural Risk Minimization: Pred. loss and clever penalty. 61
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Comparison of Two Means
Means

Setting: r.v. e(l)
i with 1 ≤ i ≤ nl and l ∈ {1, 2} and their means

e(l) = 1
nl

nl∑
i=1

e(l)
i

Question: are the means e(l) statistically different?

Classical i.i.d setting
Assumption: e(l)

i are i.i.d. for each l .
Test formulation: Can we reject the null hypothesis that E

[
e(1)

]
= E

[
e(2)

]
?

Methods:
Gaussian (Student) test using asymptotic normality of a mean.
Non-parametric permutation test.

Gaussian approach is linked to confidence intervals.
The larger nl the smaller the confidence intervals. 63
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Comparison of Two Means

Non i.i.d. case
Assumption: e(l)

i are i.d. for each l but not necessarily independent.
Test formulation: Can we reject the null hypothesis that E

[
e(1)

]
= E

[
e(2)

]
?

Methods:
Gaussian (Student) test using asymptotic normality of a mean but variance is hard
to estimate.
Non-parametric permutation test but no confidence intervals.

Setting for Cross Validation (other than holdout).
Much more complicated than the i.i.d. case
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Comparison of Several Means

Several means
Assumption: e(l)

i are i.d. for each l but not necessarily independent.
Tests formulation:

Can we reject the null hypothesis that the E
[
e(l)] are different?

Is the smaller mean statistically smaller than the second one?
Methods:

Gaussian (Student) test using asymptotic normality of a mean with multiple tests
correction.
Non-parametric permutation test but no confidence intervals.

Setting for Cross Validation (other than holdout).
The more models one compares:

the larger the confidence intervals
the most probable the best model is a lucky winner

Justify the fallback to the simplest model that could be the best one.
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PAC Approach

CV Risk, Methods and Predictors
Cross-Validation risk: estimate of the average risk of a ML method.
No risk bound on the predictor obtained in practice.

Probabibly-Approximately-Correct (PAC) Approach
Replace the control on the average risk by a probabilistic bound

P
(
E
[
ℓ(Y , f̂ (X ))

]
> R

)
≤ ϵ

Requires estimating quantiles of the risk. 66



Statistical Learning:
Introduction, Setting and
Risk Estimation

Cross Validation and Confidence Interval
How to replace pointwise estimation by a confidence interval?
Can we use the variability of the CV estimates?
Negative result: No unbiased estimate of the variance!

Gaussian Interval (Comparison of the means and ∼ indep.)
Compute the empirical variance and divide it by the number of folds to construct
an asymptotic Gaussian confidence interval,
Select the simplest model whose value falls into the confidence interval of the
model having the smallest CV risk.

PAC approach (Quantile, ∼ indep. and small risk estim. error)
Compute the raw medians (or a larger raw quantiles)
Select the model having the smallest quantiles to ensure a small risk with high
probability.

Always reestimate the chosen model with all the data.
To obtain an unbiased risk estimate of the final predictor: hold out risk on
untouched test data. 67
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Cross Validation
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Motivation
Ozone pollution
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Data: Air Breizh, Summer 2001
Input: Temperature at 12h00
Output: max Ozone concentration
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Motivation

Credit Default, Credit Score, Bank Risk, Market Risk Management

So
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nData: Client profile, Client credit history. . .
Input: Client profile
Output: Credit risk
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Motivation
Marketing: advertisement, recommendation. . .
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Data: User profile, Web site history. . .
Input: User profile, Current web page
Output: Advertisement with price, recommendation. . .

Spam detection (Text classification)
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Data: email collection
Input: email
Output: Spam or No Spam

Face Detection
So
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ce

:
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Data: Annotated database of images
Input: Sub window in the image
Output: Presence or no of a face. . .

Number Recognition
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Data: Annotated database of images (each image is represented by a vector of
28× 28 = 784 pixel intensities)
Input: Image
Output: Corresponding number
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Machine Learning
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A definition by Tom Mitchell
A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E.
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Supervised Learning
Supervised Learning Framework

Input measurement X ∈ X
Output measurement Y ∈ Y.
(X , Y ) ∼ P with P unknown.
Training data : Dn = {(X 1, Y1), . . . , (Xn, Yn)} (i.i.d. ∼ P)

Often
X ∈ Rd and Y ∈ {−1, 1} (classification)
or X ∈ Rd and Y ∈ R (regression).

A predictor is a function in F = {f : X → Y meas.}

Goal
Construct a good predictor f̂ from the training data.

Need to specify the meaning of good.
Classification and regression are almost the same problem!
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Loss and Probabilistic Framework

Loss function for a generic predictor
Loss function: ℓ(Y , f (X )) measures the goodness of the prediction of Y by f (X )
Examples:

0/1 loss: ℓ(Y , f (X )) = 1Y ̸=f (X)
Quadratic loss: ℓ(Y , f (X )) = |Y − f (X )|2

Risk function
Risk measured as the average loss for a new couple:

R(f ) = E(X,Y )∼P[ℓ(Y , f (X))]
Examples:

0/1 loss: E[ℓ(Y , f (X ))] = P(Y ̸= f (X ))
Quadratic loss: E[ℓ(Y , f (X ))] = E

[
|Y − f (X )|2

]
Beware: As f̂ depends on Dn, R(f̂ ) is a random variable!
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Best Solution

The best solution f ⋆ (which is independent of Dn) is
f ⋆ = arg min

f ∈F
R(f ) = arg min

f ∈F
E[ℓ(Y , f (X ))] = arg min

f ∈F
EX
[
EY |X [ℓ(Y , f (X ))]

]
Bayes Predictor (explicit solution)

In binary classification with 0− 1 loss:

f ⋆(X ) =


+1 if P(Y = +1|X ) ≥ P(Y = −1|X )

⇔ P(Y = +1|X ) ≥ 1/2
−1 otherwise

In regression with the quadratic loss
f ⋆(X ) = E[Y |X ]

Issue: Solution requires to know E[Y |X ] for all values of X !
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Goal
Machine Learning

Learn a rule to construct a predictor f̂ ∈ F from the training data Dn s.t. the
risk R(f̂ ) is small on average or with high probability with respect to Dn.

In practice, the rule should be an algorithm!

Canonical example: Empirical Risk Minimizer
One restricts f to a subset of functions S = {fθ, θ ∈ Θ}
One replaces the minimization of the average loss by the minimization of the
empirical loss

f̂ = f
θ̂

= argmin
fθ,θ∈Θ

1
n

n∑
i=1

ℓ(Yi , fθ(X i))

Examples:
Linear regression
Linear classification with

S = {x 7→ sign{x⊤β + β(0)} /β ∈ Rd , β(0) ∈ R} 82
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Example: TwoClass Dataset
Synthetic Dataset

Two features/covariates.
Two classes.

Dataset from Applied Predictive Modeling, M. Kuhn and K. Johnson, Springer
Numerical experiments with R and the {caret} package.
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Example: Linear Discrimination

84



ML Methods: Probabilistic
Point of View

Example: More Complex Model
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Bias-Variance Dilemma

General setting:
F = {measurable functions X → Y}
Best solution: f ⋆ = argminf ∈F R(f )
Class S ⊂ F of functions
Ideal target in S: f ⋆

S = argminf ∈S R(f )
Estimate in S: f̂S obtained with some procedure

Approximation error and estimation error (Bias/Variance)

R(f̂S)−R(f ⋆) = R(f ⋆
S )−R(f ⋆)︸ ︷︷ ︸

Approximation error

+R(f̂S)−R(f ⋆
S )︸ ︷︷ ︸

Estimation error

Approx. error can be large if the model S is not suitable.
Estimation error can be large if the model is complex.
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Under-fitting / Over-fitting Issue

So
ur

ce
:

U
nk

no
w

n

Different behavior for different model complexity
Low complexity model are easily learned but the approximation error (bias) may
be large (Under-fit).
High complexity model may contain a good ideal target but the estimation error
(variance) can be large (Over-fit)

Bias-variance trade-off ⇐⇒ avoid overfitting and underfitting

Rk: Better to think in term of method (including feature engineering and specific
algorithm) rather than only of model.

87



ML Methods: Probabilistic
Point of View

Probabilistic and Optimization Framework
How to find a good function f with a small risk

R(f ) = E[ℓ(Y , f (X ))] ?
Canonical approach: f̂S = argminf ∈S

1
n
∑n

i=1 ℓ(Yi , f (X i))

Problems
How to choose S?
How to compute the minimization?

A Probabilistic Point of View
Solution: For X , estimate Y |X plug this estimate in the Bayes classifier:
(Generalized) Linear Models, Kernel methods, k-nn, Naive Bayes, Tree,
Bagging. . .

An Optimization Point of View
Solution: If necessary replace the loss ℓ by an upper bound ℓ and minimize the
empirical loss: SVR, SVM, Neural Network,Tree, Boosting. . .
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Three Classical Methods in a Nutshell

Logistic Regression
Let fθ(X ) = X⊤β + β(0) with θ = (β, β(0)).
Let Pθ(Y = 1|X ) = e−fθ(X)/(1 + efθ(X))
Estimate θ by θ̂ using a Maximum Likelihood.
Classify using Pθ̂(Y = 1|X ) > 1/2

k Nearest Neighbors
For any X ′, define VX ′ as the k closest samples Xi from the dataset.
Compute a score gk =

∑
Xi ∈VX ′ 1Yi =k

Classify using arg max gk (majority vote).
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Three Classical Methods in a Nutshell

Quadratic Discrimant Analysis
For each class, estimate the mean µk and the covariance matrix Σk .
Estimate the proportion P(Y = k) of each class.
Compute a score ln(P(X |Y = k)) + ln(P(Y = k))

gk(X ) =− 1
2(X − µk)⊤Σ−1

k (X − µk)

− d
2 ln(2π)− 1

2 ln(|Σk |) + ln(P(Y = k))

Classify using arg max gk

Those three methods rely on a similar heuristic: the probabilistic point of view!
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Best Solution

The best solution f ⋆ (which is independent of Dn) is
f ⋆ = arg min

f ∈F
R(f ) = arg min

f ∈F
E[ℓ(Y , f (X ))] = arg min

f ∈F
EX
[
EY |X [ℓ(Y , f (X )]

]
Bayes Predictor (explicit solution)

In binary classification with 0− 1 loss:

f ⋆(X ) =


+1 if P(Y = +1|X ) ≥ P(Y = −1|X )

⇔ P(Y = +1|X ) ≥ 1/2
−1 otherwise

In regression with the quadratic loss
f ⋆(X ) = E[Y |X ]

Issue: Explicit solution requires to know Y |X (or E[Y |X ]) for all values of X !
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Plugin Predictor

Idea: Estimate Y |X by Y |X
∧

and plug it the Bayes classifier.

Plugin Bayes Predictor
In binary classification with 0− 1 loss:

f̂ (X ) =


+1 if P(Y = +1|X )
∧

≥ P(Y = −1|X )
∧

⇔ P(Y = +1|X )
∧

≥ 1/2
−1 otherwise

In regression with the quadratic loss
f̂ (X ) = E

[
Y |X
∧]

Rk: Direct estimation of E[Y |X ] by E[Y |X ]
∧

also possible. . .
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Plugin Predictor

How to estimate Y |X?

Three main heuristics
Parametric Conditional modeling: Estimate the law of Y |X by a parametric
law Lθ(X ): (generalized) linear regression. . .
Non Parametric Conditional modeling: Estimate the law of Y |X by a non
parametric estimate: kernel methods, loess, nearest neighbors. . .
Fully Generative modeling: Estimate the law of (X , Y ) and use the Bayes
formula to deduce an estimate of Y |X : LDA/QDA, Naive Bayes. . .

Rk: Direct estimation of E[Y |X ] by E[Y |X ]
∧

also possible. . .
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Plugin Classifier

Input: a data set Dn
Learn Y |X or equivalently P(Y = k|X ) (using the data set) and plug this
estimate in the Bayes classifier

Output: a classifier f̂ : Rd → {−1, 1}

f̂ (X ) =

+1 if ̂P(Y = 1|X ) ≥ ̂P(Y = −1|X )
−1 otherwise

Can we guaranty that the classifier is good if Y |X is well estimated?
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Classification Risk Analysis

Theorem
If f̂ = sign(2p̂+1 − 1) then

E
[
ℓ0,1(Y , f̂ (X ))

]
− E

[
ℓ0,1(Y , f ⋆(X ))

]
≤ E

[
∥Ŷ |X − Y |X∥1

]
≤
(
E
[
2KL(Y |X , Ŷ |X

])1/2

If one estimates P(Y = 1|X ) well then one estimates f ⋆ well!
Link between a conditional density estimation task and a classification one!
Rk: In general, the conditional density estimation task is more complicated as one
should be good for all values of P(Y = 1|X ) while the classification task focus on
values around 1/2 for the 0/1 loss!
In regression, (often) direct control of the quadratic loss. . .
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Parametric Conditional Density Models
Idea: Estimate directly Y |X by a parametric conditional density Pθ(Y |X ).

Maximum Likelihood Approach
Classical choice for θ:

θ̂ = argmin
θ
−

n∑
i=1

logPθ(Yi |X i)

Goal: Minimize the Kullback-Leibler divergence between the conditional law of
Y |X and Pθ(Y |X )

E[KL (Y |X ,Pθ(Y |X ))]

Rk: This is often not (exactly) the learning task!
Large choice for the family {Pθ(Y |X )} but depends on Y (and X ).
Regression: One can also model directly E[Y |X ] by fθ(X ) and estimate it with a
least-squares criterion. . .
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Linear Conditional Density Models

Linear Models
Classical choice: θ = (θ′, φ)

Pθ(Y |X ) = PX⊤β,φ(Y )
Very strong assumption!

Classical examples:
Binary variable: logistic, probit. . .
Discrete variable: multinomial logistic regression. . .
Integer variable: Poisson regression. . .
Continuous variable: Gaussian regression. . .
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Binary Classifier

Plugin Linear Classification
Model P(Y = +1|X ) by h(X⊤β + β(0)) with h non decreasing.
h(X⊤β + β(0)) > 1/2⇔ X⊤β + β(0) − h−1(1/2) > 0
Linear Classifier: sign(X⊤β + β(0) − h−1(1/2))

Plugin Linear Classifier Estimation
Classical choice for h:

h(t) = et

1 + et logit or logistic

h(t) = FN (t) probit
h(t) = 1− e−et log-log

Choice of the best β from the data.
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Maximum Likelihood Estimate

Probabilistic Model
By construction, Y |X follows B(P(Y = +1|X ))
Approximation of Y |X by B(h(x⊤β + β(0)))
Natural probabilistic choice for β: maximum likelihood estimate.
Natural probabilistic choice for β: β approximately minimizing a distance between
B(h(x⊤β)) and B(P(Y = 1|X )).

Maximum Likelihood Approach
Minimization of the negative log-likelihood:

−
n∑

i=1
log(P(Yi |X i)) = −

n∑
i=1

(
1Yi =1 log(h(X i

⊤β)) + 1Yi =−1 log(1− h(X i
⊤β))

)
Minimization possible if h is regular. . .
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Maximum Likelihood Estimate
KL Distance and negative log-likelihood

Natural distance: Kullback-Leibler divergence
KL(B(P(Y = 1|X )),B(h(X⊤β))

= EX

[
P(Y = 1|X ) log P(Y = 1|X )

h(X⊤β)

+P(Y = −1|X ) log 1− P(Y = 1|X )
1− h(X⊤β)

]
= EX

[
−P(Y = 1|X ) log(h(X⊤β))

−P(Y = −1|X ) log(1− h(X⊤β))
]

+ CX ,Y

Empirical counterpart = negative log-likelihood (up to 1/n factor):

− 1
n

n∑
i=1

(
1Yi =1 log(h(X i

⊤β)) + 1Yi =−1 log(1− h(X i
⊤β))

)
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Logistic Regression
Logistic Regression and Odd

Logistic model: h(t) = et

1+et (most natural choice. . . )
The Bernoulli law B(h(t)) satisfies then

P(Y = 1)
P(Y = −1) = et ⇔ log P(Y = 1)

P(Y = −1) = t

Interpretation in term of odd.
Logistic model: linear model on the logarithm of the odd

log P(Y = 1|X )
P(Y = −1|X ) = X⊤β

Associated Classifier
Plugin strategy:

fβ(X ) =

1 if eX⊤β

1+eX⊤β
> 1/2⇔ X⊤β > 0

−1 otherwise
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Logistic Regression and Minimization

Likelihood Rewriting
Negative log-likelihood:

− 1
n

n∑
i=1

(
1Yi =1 log(h(X i

⊤β)) + 1Yi =−1 log(1− h(X i
⊤β))

)

= −1
n

n∑
i=1

(
1Yi =1 log eX i

⊤β

1 + eX⊤
i β

+ 1Yi =−1 log 1
1 + eX i

⊤β

)

= 1
n

n∑
i=1

log
(
1 + e−Yi (X i

⊤β)
)

Convex and smooth function of β

Easy optimization.
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Example: Logistic
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Feature Design

Transformed Representation
From X to Φ(X )!
New description of X leads to a different linear model:

fβ(X ) = Φ(X )⊤β

Feature Design
Art of choosing Φ.
Examples:

Renormalization, (domain specific) transform
Basis decomposition
Interaction between different variables. . .
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Example: Quadratic Logistic

107



ML Methods: Probabilistic
Point of View

Gaussian Linear Regression

10

15

20

25

30

30 40 50 60 70
circ

ht

Gaussian Linear Model
Model: Y |X ∼ N (X⊤β, σ2) plus independence
Probably the most classical model of all time!
Maximum Likelihood with explicit formulas for the two parameters.

In regression, estimation of E[Y |X ] is sufficient: other/no model for the noise
possible.
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Extension of Gaussian Linear Regression

Generalized Linear Model
Model entirely characterized by its mean (up to a scalar nuisance parameter)
(v(Eθ[Y ]) = θ with v invertible).
Exponential family: Probability law family Pθ such that the density can be written

f (y , θ, φ) = e
yθ−v(θ)

φ
+w(y ,φ)

where φ is a nuisance parameter and w a function independent of θ.
Examples:

Gaussian: f (y , θ, φ) = e− yθ−θ2/2
φ − y2/2

φ

Bernoulli: f (y , θ) = eyθ−ln(1+eθ) (θ = ln p/(1− p))
Poisson: f (y , θ) = e(yθ−eθ)+ln(y !) (θ = ln λ)

Linear Conditional model: Y |X ∼ Px⊤β. . .

ML fit of the parameters
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Non Parametric Conditional Estimation

Idea: Estimate Y |X or E[Y |X ] directly without resorting to an explicit
parametric model.

Non Parametric Conditional Estimation
Two heuristics:

Y |X (or E[Y |X ]) is almost constant (or simple) in a neighborhood of X . (Kernel
methods)
Y |X (or E[Y |X ]) can be approximated by a model whose dimension depends on the
complexity and the number of observation. (Quite similar to parametric model plus
model selection. . . )

Focus on kernel methods!
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Kernel Methods

Idea: The behavior of Y |X is locally constant or simple!

Kernel
Choose a kernel K (think of a weighted neighborhood).
For each X̃ , compute a simple localized estimate of Y |X
Use this local estimate to take the decision

In regression, estimation of E[Y |X ] is sufficient.
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Example: k Nearest-Neighbors (with k = 3)
1 2

3 4
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Example: k Nearest-Neighbors (with k = 4)
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k Nearest-Neighbors

Neighborhood Vx of x : k learning samples closest from x .

k-NN as local conditional density estimate

̂P(Y = 1|X ) =
∑

X i ∈VX
1{Yi =+1}

|VX |

KNN Classifier:

f̂KNN(X ) =

+1 if ̂P(Y = 1|X ) ≥ ̂P(Y = −1|X )
−1 otherwise

Lazy learning: all the computations have to be done at prediction time.
Remark: You can also use your favorite kernel estimator. . .
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Example: KNN
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Regression and Local Averaging

A naive idea
E[Y |X ] can be approximated by a local average:

f̂ (X ) = 1
|{X i ∈ N (X )}|

∑
X i ∈N (X)

Yi

where B(X ) is a neighborhood of X .
Heuristic:

If X → E[Y |X ] is regular then
E[Y |X ] ≃ E

[
E
[
Y |X ′] |X ′ ∈ N (X )

]
= E

[
Y |X ′ ∈ N (X )

]
Replace an expectation by an empirical average:

E
[
Y |X ′ ∈ N (X )

]
≃ 1
|{X i ∈ N (X )}|

∑
X i ∈N (X)

Yi

117



ML Methods: Probabilistic
Point of View

Regression and Local Averaging

Neighborhood and Size
Most classical choice: N (X ) = {X ′, ∥X −X ′∥ ≤ h } where ∥.∥ is a (pseudo) norm
and h a size (bandwidth) parameter.
In principle, the norm and h could vary with X , and the norm can be replaced by
a (pseudo) distance.
Focus here on a fixed distance with a fixed bandwidth h cased.

Bandwidth Heuristic
A large bandwidth ensures that the average is taken on many samples and thus
the variance is small. . .
A small bandwidth is thus that the approximation E[Y |X ] ≃ E

[
Y |X ′ ∈ N (X )

]
is more accurate (small bias).
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Weighted Local Averaging
Weighted Local Average

Replace the neighborhood N (X ) by a decaying window function w(X , X ′).
E[Y |X ] can be approximated by a weighted local average:

f̂ (X ) =
∑

i w(X , X ′
i)Yi∑

i w(X , X ′
i)

.

Kernel
Most classical choice: w(X , X ′) = K

(
X−X ′

h

)
where h the bandwidth is a scale

parameter.
Examples:

Box kernel: K (t) = 1∥t∥≤1 (Neighborhood)
Triangular kernel: K (t) = max(1− ∥t∥, 0).
Gaussian kernel: K (t) = e−t2/2

Rk: K and λK yields the same estimate.
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Link with Density Estimation

Density Estimation
How to estimate the density p of X with respect to the Lebesgue measure from
an i.i.d. sample (X 1, . . . , Xn).
Parametric approach: density has a known parameterized shape and estimate
those parameters.
Nonparametric approach: density has a no known parameterized shape and

Approximate it by a parametric one, whose parameters can be estimated
Estimate directly the density

Important nonparametric statistic topic!
Used in generative modeling. . .
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Link with Density Estimation

Kernel Density Estimation (Parzen)
Choose a positive kernel K such that

∫
K (x)dx = 1

Use as an estimate

p̂(X ) = 1
n

n∑
i=1

K (X − X i)

If K = 1
Zh

1∥t∥≤h, easy interpretation as a local empirical density of samples!
General K corresponds to a smoothed version.
Often Kh(t) = 1

hd K (t/h) and let

p̂h(X ) = 1
n

n∑
i=1

Kh(X − X i)
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Link with Density Estimation

Properties
Error decomposition:

E
[
|p(X )− p̂h(X )|2

]
= E[p(X )− p̂h(X )]2 + Var [p(X )− p̂h(X )]

Bias:
E[p(X )− p̂h(X )] = p(X )− (Kh ∗ p)(X )

Variance: if p is upper bounded by pmax then

Var [p(X )− p̂h(X )] ≤ pmax
∫

K 2
h (x)dx

nhd

122



ML Methods: Probabilistic
Point of View

Link with Density Estimation

Bandwidth choice
A small h leads to a small bias but a large variance. . .
A large h leads to a small variance but a large bias. . .
Theoretical analysis possible!
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From Density Estimation to Regression

Nadaraya-Watson Heuristic
Provided all the densities exist

E[Y |X ] =
∫

Yp(X , Y )dY∫
p(Y , X )dY =

∫
Yp(X , Y )dY

p(X )
Replace the unknown densities by their estimates:

p̂(X ) = 1
n

n∑
i=1

K (X − X i)

p̂(X , Y ) = 1
n

n∑
i=1

K (X − X i)K ′(Y − Yi)

Now if K ′ is a kernel such that
∫

YK ′(Y )dY = 0 then∫
Y p̂(X , Y )dY = 1

n

n∑
i=1

K (X − X i)Yi
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From Density Estimation to Regression

Nadaraya-Watson
Resulting estimator of E[Y |X ]

f̂ (X ) =
∑n

i=1 YiKh(X − X i)∑n
i=1 Kh(X − X i)

Same local weighted average estimator!

Bandwidth Choice
Bandwidth h of K allows to balance between bias and variance.
Theoretical analysis of the error is possible.
The smoother the densities the easier the estimation but the optimal bandwidth
depends on the unknown regularity!
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Local Linear Estimation
Another Point of View on Kernel

Nadaraya-Watson estimator:

f̂ (X ) =
∑n

i=1 YiKh(X − X i)∑n
i=1 Kh(X − X i)

Can be view as a minimizer of
n∑

i=1
|Yi − β|2Kh(X − X i)

Local regression of order 0.

Local Linear Model
Estimate E[Y |X ] by f̂ (X ) = ϕ(X )⊤β̂(X ) where ϕ is any function of X and β̂(X )
is the minimizer of

n∑
i=1
|Yi − ϕ(X i)⊤β|2Kh(X − X i).
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LOESS: LOcal polynomial regrESSion
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1D Nonparametric Regression
Assume that X ∈ R and let ϕ(X ) = (1, X , . . . , Xd).
LOESS estimate: f̂ (X ) =

∑d
j=0 β̂(X (j))X j with β̂(X ) minimizing

n∑
i=1
|Yi −

d∑
j=0

β(j)X j
i |

2Kh(X − X i).

Most classical kernel used: Tricubic kernel
K (t) = max(1− |t|3, 0)3

Most classical degree: 2. . .
Local bandwidth choice such that a proportion of points belongs to the window.
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Fully Generative Modeling
Idea: If one knows the law of (X , Y ) everything is easy!

Bayes formula
With a slight abuse of notation,

P(Y |X ) = P((X , Y ))
P(X )

= P(X |Y )P(Y )
P(X )

Generative Modeling:
Propose a model for (X , Y ) (or equivalently X |Y and Y ),
Estimate it as a density estimation problem,
Plug the estimate in the Bayes formula
Plug the conditional estimate in the Bayes classifier.

Rk: Require to estimate (X , Y ) rather than only Y |X !
Great flexibility in the model design but may lead to complex computation.
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Fully Generative Modeling

Simpler setting in classification!

Bayes formula

P(Y = k|X ) = P(X |Y = k)P(Y = k)
P(X )

Binary Bayes classifier (the best solution)

f ⋆(X ) =
{

+1 if P(Y = 1|X ) ≥ P(Y = −1|X )
−1 otherwise

Heuristic: Estimate those quantities and plug the estimations.
By using different models/estimators for P(X |Y ), we get different classifiers.
Rk: No need to renormalize by P(X ) to take the decision!
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Discriminant Analysis

Discriminant Analysis (Gaussian model)
The densities are modeled as multivariate normal, i.e.,

P(X |Y = k) ∼ Nµk ,Σk

Discriminant functions: gk(X) = ln(P(X|Y = k)) + ln(P(Y = k))

gk(X ) =− 1
2(X − µk)⊤Σ−1

k (X − µk)

− d
2 ln(2π)− 1

2 ln(|Σk |) + ln(P(Y = k))

QDA (different Σk in each class) and LDA (Σk = Σ for all k)

Beware: this model can be false but the methodology remains valid!
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Discriminant Analysis
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Quadratic Discriminant Analysis
The probability densities are Gaussian
The effect of any decision rule is to divide the feature space into some decision
regions R1,R2

, . . . ,Rc

The regions are separated by decision boundaries
132
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Quadratic Discriminant Analysis
The probability densities are Gaussian
The effect of any decision rule is to divide the feature space into some decision
regions R1,R2, . . . ,Rc

The regions are separated by decision boundaries
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Discriminant Analysis

Estimation
In practice, we will need to estimate µk , Σk and Pk := P(Y = k)

The estimate proportion ̂P(Y = k) = nk
n = 1

n
∑n

i=1 1{Yi =k}

Maximum likelihood estimate of µ̂k and Σ̂k (explicit formulas)

DA classifier

f̂G(X ) =
{

+1 if ĝ+1(X ) ≥ ĝ−1(X )
−1 otherwise

Decision boundaries: quadratic = degree 2 polynomials.
If one imposes Σ−1 = Σ1 = Σ then the decision boundaries is a linear hyperplane.
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Discriminant Analysis
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Σω1 = Σω2 = Σ
The decision boundaries are linear hyperplanes
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Discriminant Analysis
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Σω1 ̸= Σω2

Arbitrary Gaussian distributions lead to Bayes decision boundaries that are general
quadratics.
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Example: LDA
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Example: QDA
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Naive Bayes

Naive Bayes
Classical algorithm using a crude modeling for P(X |Y ):

Feature independence assumption:

P(X |Y ) =
d∏

l=1
P
(

X (l)
∣∣∣Y)

Simple featurewise model: binomial if binary, multinomial if finite and Gaussian if
continuous

If all features are continuous, similar to the previous Gaussian but with a diagonal
covariance matrix!
Very simple learning even in very high dimension!
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Example: Naive Bayes
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Naive Bayes with Density Estimation
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Example: Naive Bayes
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Other Models

Other models of the world!

Bayesian Approach
Generative Model plus prior on the parameters
Inference thanks to the Bayes formula

Graphical Models
Markov type models on Graphs

Gaussian Processes
Multivariate Gaussian models

. . .
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Bias-Variance Dilemma

General setting:
F = {measurable functions X → Y}
Best solution: f ⋆ = argminf ∈F R(f )
Class S ⊂ F of functions
Ideal target in S: f ⋆

S = argminf ∈S R(f )
Estimate in S: f̂S obtained with some procedure

Approximation error and estimation error (Bias/Variance)

R(f̂S)−R(f ⋆) = R(f ⋆
S )−R(f ⋆)︸ ︷︷ ︸

Approximation error

+R(f̂S)−R(f ⋆
S )︸ ︷︷ ︸

Estimation error

Approx. error can be large if the model S is not suitable.
Estimation error can be large if the model is complex.
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Under-fitting / Over-fitting Issue
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Different behavior for different model complexity
Low complexity model are easily learned but the approximation error (bias) may
be large (Under-fit).
High complexity model may contain a good ideal target but the estimation error
(variance) can be large (Over-fit)

Bias-variance trade-off ⇐⇒ avoid overfitting and underfitting

Rk: Better to think in term of method (including feature engineering and specific
algorithm) rather than only of model.
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Training Risk Issue
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Risk behaviour
Learning/training risk (empirical risk on the learning/training set) decays when
the complexity of the method increases.
Quite different behavior when the risk is computed on new observations
(generalization risk).
Overfit for complex methods: parameters learned are too specific to the learning
set!
General situation! (Think of polynomial fit. . . )
Need to use a different criterion than the training risk!
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Risk Estimation vs Method Selection
Predictor Risk Estimation

Goal: Given a predictor f assess its quality.
Method: Hold-out risk computation (/ Empirical risk correction).
Usage: Compute an estimate of the risk of a selected f using a test set to be
used to monitor it in the future.

Basic block very well understood.

Method Selection
Goal: Given a ML method assess its quality.
Method: Cross Validation (/ Empirical risk correction)
Usage: Compute risk estimates for several ML methods using
training/validation sets to choose the most promising one.

Estimates can be pointwise or better intervals.
Multiple test issues in method selection. 147
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Cross Validation and Empirical Risk Correction

Two Approaches
Cross validation: Use empirical risk criterion but on independent data, very
efficient (and almost always used in practice!) but slightly biased as its target uses
only a fraction of the data.
Correction approach: use empirical risk criterion but correct it with a term
increasing with the complexity of S

Rn(f̂S)→ Rn(f̂S) + cor(S)
and choose the method with the smallest corrected risk.

Which loss to use?
The loss used in the risk: most natural!
The loss used to estimate θ̂: penalized estimation!

Other performance measure can be used.
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Cross Validation
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Very simple idea: use a second learning/verification set to compute a verification
risk.
Sufficient to remove the dependency issue!
Implicit random design setting. . .

Cross Validation
Use (1− ϵ)× n observations to train and ϵ× n to verify!
Possible issues:

Validation for a learning set of size (1− ϵ)× n instead of n ?
Unstable risk estimate if ϵn is too small ?

Most classical variations:
Hold Out,
Leave One Out,
V -fold cross validation.
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Hold Out
Principle

Split the dataset D in 2 sets Dtrain and Dtest of size n × (1− ϵ) and n × ϵ.
Learn f̂ HO from the subset Dtrain.
Compute the empirical risk on the subset Dtest:

RHO
n (f̂ HO) = 1

nϵ

∑
(X i ,Yi )∈Dtest

ℓ(Yi , f̂ HO(X i))

Predictor Risk Estimation
Use f̂ HO as predictor.
Use RHO

n (f̂ HO) as an estimate of the risk of this estimator.

Method Selection by Cross Validation
Compute RHO

n (f̂ HO
S ) for all the considered methods,

Select the method with the smallest CV risk,
Reestimate the f̂S with all the data. 150
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Hold Out
Principle

Split the dataset D in 2 sets Dtrain and Dtest of size n × (1− ϵ) and n × ϵ.
Learn f̂ HO from the subset Dtrain.
Compute the empirical risk on the subset Dtest:

RHO
n (f̂ HO) = 1

nϵ

∑
(X i ,Yi )∈Dtest

ℓ(Yi , f̂ HO(X i))

Only possible setting for risk estimation.

Hold Out Limitation for Method Selection
Biased toward simpler method as the estimation does not use all the data initially.
Learning variability of RHO

n (f̂ HO) not taken into account.
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V -fold Cross Validation
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Principle
Split the dataset D in V sets Dv of almost equals size.
For v ∈ {1, .., V }:

Learn f̂ −v from the dataset D minus the set Dv .
Compute the empirical risk:

R−v
n (f̂ −v ) = 1

nv

∑
(X i ,Yi )∈Dv

ℓ(Yi , f̂ −v (X i))

Compute the average empirical risk:

RCV
n (f̂ ) = 1

V

V∑
v=1
R−v

n (f̂ −v )

Estimation of the quality of a method not of a given predictor.
Leave One Out : V = n.
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V -fold Cross Validation

Analysis (when n is a multiple of V )
The R−v

n (f̂ −v ) are identically distributed variable but are not independent!
Consequence:

E
[
RCV

n (f̂ )
]

= E
[
R−v

n (f̂ −v )
]

Var
[
RCV

n (f̂ )
]

= 1
V Var

[
R−v

n (f̂ −v )
]

+ (1− 1
V )Cov

[
R−v

n (f̂ −v ),R−v ′
n (f̂ −v ′)

]
Average risk for a sample of size (1− 1

V )n.
Variance term much more complex to analyze!
Fine analysis shows that the larger V the better. . .

Accuracy/Speed tradeoff: V = 5 or V = 10. . .
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Linear Regression and Leave One Out

Leave One Out = V fold for V = n: very expensive in general.

A fast LOO formula for the linear regression
Prop: for the least squares linear regression,

f̂ −i(X i) = f̂ (X i)− hiiYi
1− hii

with hii the ith diagonal coefficient of the hat (projection) matrix.
Proof based on linear algebra!
Leads to a fast formula for LOO:

RLOO
n (f̂ ) = 1

n

n∑
i=1

|Yi − f̂ (X i)|2
(1− hii)2
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Train/Validation/Test
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Selection Bias Issue:
After method selection, the cross validation is biased.
Furthermore, it qualifies the method and not the final predictor.

Need to (re)estimate the risk of the final predictor.
(Train/Validation)/Test strategy

Split the dataset in two a (Train/Validation) and Test.
Use CV with the (Train/Validation) to select a method.
Train this method on (Train/Validation) to obtain a single predictor.
Estimate the performance of this predictor on Test.

Every choice made from the data is part of the method! 154
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Risk Correction

Empirical loss of an estimator computed on the dataset used to chose it is biased!
Empirical loss is an optimistic estimate of the true loss.

Risk Correction Heuristic
Estimate an upper bound of this optimism for a given family.
Correct the empirical loss by adding this upper bound.

Rk: Finding such an upper bound can be complicated!
Correction often called a penalty.
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Penalization
Penalized Loss

Minimization of

argmin
θ∈Θ

1
n

n∑
i=1

ℓ(Yi , fθ(X i)) + pen(θ)

where pen(θ) is a risk correction (penalty).

Penalties
Upper bound of the optimism of the empirical loss
Depends on the loss and the framework!

Instantiation
Mallows Cp: Least Squares with pen(θ) = 2d

n σ2.
AIC Heuristics: Maximum Likelihood with pen(θ) = d

n .
BIC Heuristics: Maximum Likelohood with pen(θ) = log(n)d

n .
Structural Risk Minimization: Pred. loss and clever penalty. 156
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Bias-Variance Dilemma

General setting:
F = {measurable functions X → Y}
Best solution: f ⋆ = argminf ∈F R(f )
Class S ⊂ F of functions
Ideal target in S: f ⋆

S = argminf ∈S R(f )
Estimate in S: f̂S obtained with some procedure

Approximation error and estimation error (Bias/Variance)

R(f̂S)−R(f ⋆) = R(f ⋆
S )−R(f ⋆)︸ ︷︷ ︸

Approximation error

+R(f̂S)−R(f ⋆
S )︸ ︷︷ ︸

Estimation error

Approx. error can be large if the model S is not suitable.
Estimation error can be large if the model is complex.
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Under-fitting / Over-fitting Issue
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Different behavior for different model complexity
Low complexity model are easily learned but the approximation error (bias) may
be large (Under-fit).
High complexity model may contain a good ideal target but the estimation error
(variance) can be large (Over-fit)

Bias-variance trade-off ⇐⇒ avoid overfitting and underfitting

Rk: Better to think in term of method (including feature engineering and specific
algorithm) rather than only of model.
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Simplified Models
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Bias-Variance Issue
Most complex models may not be the best ones due to the variability of the
estimate.

Naive idea: can we simplify our model without loosing too much?
by using only a subset of the variables?
by forcing the coefficients to be small?

Can we do better than exploring all possibilities?
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Linear Models
Setting: Gen. linear model = prediction of Y by h(x⊤β).

Model coefficients
Model entirely specified by β.
Coefficientwise:

β(i) = 0 means that the ith covariate is not used.
β(i) ∼ 0 means that the ith covariate as a low influence. . .

If some covariates are useless, better use a simpler model. . .

Submodels
Simplify the model through a constraint on β!
Examples:

Support: Impose that β(i) = 0 for i ̸∈ I.
Support size: Impose that ∥β∥0 =

∑d
i=1 1β(i) ̸=0 < C

Norm: Impose that ∥β∥p < C with 1 ≤ p (Often p = 2 or p = 1)
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Norms and Sparsity
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Sparsity
β is sparse if its number of non-zero coefficients (ℓ0) is small. . .
Easy interpretation in terms of dimension/complexity.

Norm Constraint and Sparsity
Sparsest solution obtained by definition with the ℓ0 norm.
No induced sparsity with the ℓ2 norm. . .
Sparsity with the ℓ1 norm (can even be proved to be the same as with the ℓ0
norm under some assumptions).
Geometric explanation.
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Constraint and Penalization
Constrained Optimization

Choose a constant C .
Compute β as

argmin
β∈Rd ,∥β∥p≤C

1
n

n∑
i=1

ℓ(Yi , h(x i
⊤β))

Lagrangian Reformulation
Choose λ and compute β as

argmin
β∈Rd

1
n

n∑
i=1

ℓ(Yi , h(x i
⊤β)) + λ∥β∥p′

p

with p′ = p except if p = 0 where p′ = 1.
Easier calibration. . . but no explicit model S.

Rk: ∥β∥p is not scaling invariant if p ̸= 0. . .
Initial rescaling issue. 163
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Penalization
Penalized Linear Model

Minimization of

argmin
β∈Rd

1
n

n∑
i=1

ℓ(Yi , h(x i
⊤β)) + pen(β)

where pen(β) is a (sparsity promoting) penalty
Variable selection if β is sparse.

Classical Penalties
AIC: pen(β) = λ∥β∥0 (non-convex / sparsity)
Ridge: pen(β) = λ∥β∥22 (convex / no sparsity)
Lasso: pen(β) = λ∥β∥1 (convex / sparsity)
Elastic net: pen(β) = λ1∥β∥1 + λ2∥β∥22 (convex / sparsity)

Easy optimization if pen (and the loss) is convex. . .
Need to specify λ to define a ML method! 164
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Penalization and Cross-Validation
Practical Selection Methodology

Choose a penalty family penλ.
Compute a CV risk for the penalty penλ for all λ ∈ Λ.
Determine λ̂ the λ minimizing the CV risk.
Compute the final model with the penalty pen

λ̂
.

CV allows to select a ML method, penalized estimation with a penalty pen
λ̂
, not a

single predictor hence the need of a final reestimation.

Why not using CV on a grid?
Grid size scales exponentially with the dimension!
If the penalized minimization is easy, much cheaper to compute the CV risk
for all λ ∈ Λ. . .
CV performs best when the set of candidates is not too big (or is structured. . . )
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Supervised Learning
Supervised Learning Framework

Input measurement X ∈ X
Output measurement Y ∈ Y.
(X , Y ) ∼ P with P unknown.
Training data : Dn = {(X 1, Y1), . . . , (Xn, Yn)} (i.i.d. ∼ P)

Often
X ∈ Rd and Y ∈ {−1, 1} (classification)
or X ∈ Rd and Y ∈ R (regression).

A predictor is a function in F = {f : X → Y meas.}

Goal
Construct a good predictor f̂ from the training data.

Need to specify the meaning of good.
Classification and regression are almost the same problem!
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Loss and Probabilistic Framework

Loss function for a generic predictor
Loss function: ℓ(Y , f (X )) measures the goodness of the prediction of Y by f (X )
Examples:

0/1 loss: ℓ(Y , f (X )) = 1Y ̸=f (X)
Quadratic loss: ℓ(Y , f (X )) = |Y − f (X )|2

Risk function
Risk measured as the average loss for a new couple:

R(f ) = E(X,Y )∼P[ℓ(Y , f (X))]
Examples:

0/1 loss: E[ℓ(Y , f (X ))] = P(Y ̸= f (X ))
Quadratic loss: E[ℓ(Y , f (X ))] = E

[
|Y − f (X )|2

]
Beware: As f̂ depends on Dn, R(f̂ ) is a random variable!
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Best Solution

The best solution f ⋆ (which is independent of Dn) is
f ⋆ = arg min

f ∈F
R(f ) = arg min

f ∈F
E[ℓ(Y , f (X ))] = arg min

f ∈F
EX
[
EY |X [ℓ(Y , f (X ))]

]
Bayes Predictor (explicit solution)

In binary classification with 0− 1 loss:

f ⋆(X ) =


+1 if P(Y = +1|X ) ≥ P(Y = −1|X )

⇔ P(Y = +1|X ) ≥ 1/2
−1 otherwise

In regression with the quadratic loss
f ⋆(X ) = E[Y |X ]

Issue: Solution requires to know E[Y |X ] for all values of X !
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Goal
Machine Learning

Learn a rule to construct a predictor f̂ ∈ F from the training data Dn s.t. the
risk R(f̂ ) is small on average or with high probability with respect to Dn.

In practice, the rule should be an algorithm!

Canonical example: Empirical Risk Minimizer
One restricts f to a subset of functions S = {fθ, θ ∈ Θ}
One replaces the minimization of the average loss by the minimization of the
empirical loss

f̂ = f
θ̂

= argmin
fθ,θ∈Θ

1
n

n∑
i=1

ℓ(Yi , fθ(X i))

Examples:
Linear regression
Linear classification with

S = {x 7→ sign{x⊤β + β(0)} /β ∈ Rd , β(0) ∈ R} 173
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Example: TwoClass Dataset
Synthetic Dataset

Two features/covariates.
Two classes.

Dataset from Applied Predictive Modeling, M. Kuhn and K. Johnson, Springer
Numerical experiments with R and the {caret} package.
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Example: Linear Discrimination
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Example: More Complex Model
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Bias-Variance Dilemma

General setting:
F = {measurable functions X → Y}
Best solution: f ⋆ = argminf ∈F R(f )
Class S ⊂ F of functions
Ideal target in S: f ⋆

S = argminf ∈S R(f )
Estimate in S: f̂S obtained with some procedure

Approximation error and estimation error (Bias/Variance)

R(f̂S)−R(f ⋆) = R(f ⋆
S )−R(f ⋆)︸ ︷︷ ︸

Approximation error

+R(f̂S)−R(f ⋆
S )︸ ︷︷ ︸

Estimation error

Approx. error can be large if the model S is not suitable.
Estimation error can be large if the model is complex.
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Under-fitting / Over-fitting Issue

So
ur

ce
:

U
nk

no
w

n

Different behavior for different model complexity
Low complexity model are easily learned but the approximation error (bias) may
be large (Under-fit).
High complexity model may contain a good ideal target but the estimation error
(variance) can be large (Over-fit)

Bias-variance trade-off ⇐⇒ avoid overfitting and underfitting

Rk: Better to think in term of method (including feature engineering and specific
algorithm) rather than only of model.
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Binary Classification Loss Issue

Empirical Risk Minimizer

f̂ = argmin
f ∈S

1
n

n∑
i=1

ℓ0/1(Yi , f (X i))

Classification loss: ℓ0/1(y , f (x)) = 1y ̸=f (x)
Not convex and not smooth!
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Probabilistic Point of View
Ideal Solution and Estimation

So
ur

ce
:

A
.F

er
m

in

The best solution f ⋆ (which is independent of Dn) is
f ⋆ = arg min

f ∈F
R(f ) = arg min

f ∈F
E[ℓ(Y , f (X ))] = arg min

f ∈F
EX
[
EY |X [ℓ(Y , f (x))]

]
Bayes Predictor (explicit solution)
In binary classification with 0− 1 loss:

f ⋆(X ) =
{

+1 if P(Y = +1|X ) ≥ P(Y = −1|X )
−1 otherwise

Issue: Solution requires to know E[Y |X ] for all values of X !
Solution: Replace it by an estimate.
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Optimization Point of View
Loss Convexification

Minimizer of the risk

f̂ = argmin
f ∈S

1
n

n∑
i=1

ℓ0/1(Yi , f (X i))

Issue: Classification loss is not convex or smooth.
Solution: Replace it by a convex majorant.
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Probabilistic and Optimization Framework
How to find a good function f with a small risk

R(f ) = E[ℓ(Y , f (X ))] ?
Canonical approach: f̂S = argminf ∈S

1
n
∑n

i=1 ℓ(Yi , f (X i))

Problems
How to choose S?
How to compute the minimization?

A Probabilistic Point of View
Solution: For X , estimate Y |X plug this estimate in the Bayes classifier:
(Generalized) Linear Models, Kernel methods, k-nn, Naive Bayes, Tree,
Bagging. . .

An Optimization Point of View
Solution: If necessary replace the loss ℓ by an upper bound ℓ and minimize the
empirical loss: SVR, SVM, Neural Network,Tree, Boosting. . .
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Probabilistic and Optimization Framework
How to find a good function f with a small risk

R(f ) = E[ℓ(Y , f (X ))] ?
Canonical approach: f̂S = argminf ∈S

1
n
∑n

i=1 ℓ(Yi , f (X i))

Problems
How to choose S?
How to compute the minimization?

A Probabilistic Point of View
Solution: For X , estimate Y |X plug this estimate in the Bayes classifier:
(Generalized) Linear Models, Kernel methods, k-nn, Naive Bayes, Tree,
Bagging. . .

An Optimization Point of View
Solution: If necessary replace the loss ℓ by an upper bound ℓ and minimize the
empirical loss: SVR, SVM, Neural Network,Tree, Boosting. . .
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Three Classical Methods in a Nutshell

Penalized Logistic Regression
Let fθ(X ) = X⊤β + β(0) with θ = (β, β(0)).

Find θ̂ = arg min 1
n

n∑
i=1

log
(
1 + e−Yi fθ(X i )

)
+ λ∥β∥1

Classify using sign(fθ̂)

Deep Learning
Let fθ(X ) with f a feed forward neural network outputing two values with a
softmax layer as a last layer.

Optimize by gradient descent the cross-entropy −1
n

n∑
i=1

log
(
fθ(X i)(Yi )

)
Classify using sign(fθ̂)
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Three Classical Methods in a Nutshell

Support Vector Machine
Let fθ(X ) = X⊤β + β(0) with θ = (β, β(0)).

Find θ̂ = arg min 1
n

n∑
i=1

max (1− Yi fθ(X i), 0) + λ∥β∥22

Classify using sign(fθ̂)

Those three methods rely on a similar heuristic: the optimization point of view!
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Empirical Risk Minimization

The best solution f ⋆ is the one minimizing
f ⋆ = arg min R(f ) = arg minE[ℓ(Y , f (X ))]

Empirical Risk Minimization
One restricts f to a subset of functions S = {fθ, θ ∈ Θ}
One replaces the minimization of the average loss by the minimization of the
average empirical loss

f̂ = f
θ̂

= argmin
fθ,θ∈Θ

1
n

n∑
i=1

ℓ(Yi , fθ(X i))

Intractable for the ℓ0/1 loss!
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Convexification Strategy
Risk Convexification

Replace the loss ℓ(Y , fθ(X )) by a convex upperbound ℓ(Y , fθ(X )) (surrogate loss).
Minimize the average of the surrogate empirical loss

f̃ = f
θ̂

= argmin
fθ,θ∈Θ

1
n

n∑
i=1

ℓ(Yi , fθ(X i))

Use f̂ = sign(f̃ )

Much easier optimization.

Instantiation
Logistic (Revisited)
Support Vector Machine
(Deep) Neural Network
Boosting
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Classification Loss and Convexification

Convexification
Replace the loss ℓ0/1(Y , f (X )) by

ℓ(Y , f (X )) = l(Yf (X ))
with l a convex function.
Further mild assumption: l is decreasing, differentiable at 0 and l ′(0) < 0.
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Classification Loss and Convexification

Classical convexification
Logistic loss: ℓ(Y , f (X )) = log2(1 + e−Yf (X)) (Logistic / NN)
Hinge loss: ℓ(Y , f (X )) = (1− Yf (X ))+ (SVM)
Exponential loss: ℓ(Y , f (X )) = e−Yf (X) (Boosting. . . )
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Properties

The Target is the Bayes Classifier
The minimizer of

E
[
ℓ(Y , f (X ))

]
= E[l(Yf (X ))]

is the Bayes classifier f ⋆ = sign(2η(X )− 1)

Control of the Excess Risk
It exists a convex function Ψ such that

Ψ
(
E
[
ℓ0/1(Y , sign(f (X ))

]
− E

[
ℓ0/1(Y , f ⋆(X )

])
≤ E

[
ℓ(Y , f (X )

]
− E

[
ℓ(Y , f ⋆(X ))

]
Theoretical guarantee!

190



ML Methods: Optimization
Point of View

Logistic Revisited

Ideal solution:

f̂ = argmin
f ∈S

1
n

n∑
i=1

ℓ0/1(Yi , f (X i))

Logistic regression
Use f (X ) = X⊤β + β(0).
Use the logistic loss ℓ(y , f ) = log2(1 + e−yf ), i.e. the negative log-likelihood.

Different vision than the statistician but same algorithm!
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Logistic Revisited
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Support Vector Machine

fθ(X ) = X ⊤β + β(0) with θ = (β, β(0))

θ̂ = arg min 1
n

n∑
i=1

max (1− Yi fθ(X i), 0) + λ∥β∥2
2

Support Vector Machine
Convexification of the 0/1-loss with the hinge loss:

1Yi fθ(X i )<0 ≤ max (1− Yi fθ(X i), 0)
Penalization by the quadratic norm (Ridge/Tikhonov).
Solution can be approximated by gradient descent algorithms.

Revisit of the original point of view.
Original point of view leads to a different optimization algorithm and to some
extensions.
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Ideal Separable Case

So
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ce
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Linear classifier: sign(X⊤β + β(0))
Separable case: ∃(β, β(0)),∀i , Yi(X i

⊤β + β(0)) > 0

How to choose (β, β(0)) so that the separation is maximal?
Strict separation: ∃(β, β(0)), ∀i , Yi(X i

⊤β + β(0)) ≥ 1
Distance between X⊤β + β(0) = 1 and X⊤β + β(0) = −1:

2
∥β∥

Maximizing this distance is equivalent to minimizing 1
2∥β∥

2.
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Ideal Separable Case
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Separable SVM
Constrained optimization formulation:

min 1
2∥β∥

2 with ∀i , Yi(X i
⊤β + β(0)) ≥ 1

Quadratic Programming setting.
Efficient solver available. . .
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Non Separable Case

So
ur

ce
:
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What about the non separable case?

SVM relaxation
Relax the assumptions

∀i , Yi(X i
⊤β + β(0)) ≥ 1 to ∀i , Yi(X i

⊤β + β(0)) ≥ 1− si
with the slack variables si ≥ 0
Keep those slack variables as small as possible by minimizing

1
2∥β∥

2 + C
n∑

i=1
si

where C > 0 is the goodness-of-fit strength
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Non Separable Case

So
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:
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SVM
Constrained optimization formulation:

min 1
2∥β∥

2 + C
n∑

i=1
si with

{
∀i , Yi(X i

⊤β + β(0)) ≥ 1− si

∀i , si ≥ 0
Hinge Loss reformulation:

min 1
2∥β∥

2 + C
n∑

i=1
max(0, 1− Yi(X i

⊤β + β(0)))︸ ︷︷ ︸
Hinge Loss

Constrained convex optimization algorithms vs gradient descent algorithms. 196
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SVM as a Penalized Convex Relaxation

Convex relaxation:

argmin 1
2∥β∥

2 + C
n∑

i=1
max(1− Yi(X i

⊤β + β(0)), 0)

= argmin 1
n

n∑
i=1

max(1− Yi(X i
⊤β + β(0)), 0) + 1

Cn
1
2∥β∥

2

Prop: ℓ0/1(Yi , sign(X i
⊤β + β(0))) ≤ max(1− Yi(X i

⊤β + β(0)), 0)

Penalized convex relaxation (Tikhonov!)

1
n

n∑
i=1

ℓ0/1(Yi , sign(X i
⊤β + β(0))) + 1

Cn
1
2∥β∥

2

≤ 1
n

n∑
i=1

max(1− Yi(X i
⊤β + β(0)), 0) + 1

Cn
1
2∥β∥

2
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SVM
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The Kernel Trick

So
ur
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:
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Non linear separation: just replace X by a non linear Φ(X ). . .
Knowing ϕ(X i)⊤ϕ(X j) is sufficient to compute the SVM solution.

Kernel trick
Computing k(X , X ′) = ϕ(X )⊤ϕ(X ′) may be easier than computing ϕ(X ),
ϕ(X ′) and then the scalar product!
ϕ can be specified through its definite positive kernel k.
Examples: Polynomial kernel k(X , X ′) = (1 + X⊤X ′)d , Gaussian kernel
k(X , X ′) = e−∥X−X ′∥2/2,. . .
RKHS setting!
Can be used in (logistic) regression and more. . .
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SVM and Lagrangian

SVM
Constrained optimization formulation:

min 1
2∥β∥

2 + C
n∑

i=1
si with

{
∀i , Yi(X i

⊤β + β(0)) ≥ 1− si

∀i , si ≥ 0

SVM Lagrangian
Lagrangian:

L(β, β(0), s, α, µ) = 1
2∥β∥

2 + C
n∑

i=1
si

+
∑

i
αi(1− si − Yi(X i

⊤β + β(0)))−
∑

i
µisi
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SVM and KKT
KKT Optimality Conditions

Stationarity:
∇βL(β, β(0), s, α, µ) = β −

∑
i

αiYiX i = 0

∇β(0)L(β, β(0), s, α, µ) = −
∑

i
αi = 0

∇siL(β, β(0), s, α, µ) = C − αi − µi = 0
Primal and dual admissibility:

(1− si − Yi(X i
⊤β + β(0))) ≤ 0, si ≥ 0, αi ≥ 0, and µi ≥ 0

Complementary slackness:
αi(1− si − Yi(X i

⊤β + β(0))) = 0 and µisi = 0

Consequence
β⋆ =

∑
i αiYiX i and 0 ≤ αi ≤ C .

If αi ̸= 0, X i is called a support vector and either
si = 0 and Yi(X i

⊤β⋆ + β(0)∗) = 1 (margin hyperplane),
or αi = C (outliers).

β(0)∗ = Yi − X i
⊤β⋆ for any support vector with 0 < αi < C .
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SVM Dual
SVM Lagrangian Dual

Lagrangian Dual:
Q(α, µ) = min

β,β(0),s
L(β, β(0), s, α, µ)

Prop:
if
∑

i αiYi ̸= 0 or ∃i , αi + µi ̸= C ,
Q(α, µ) = −∞

if
∑

i αiYi = 0 and ∀i , αi + µi = C ,

Q(α, µ) =
∑

i
αi −

1
2
∑
i,j

αiαjYiYjX i
⊤X j

SVM Dual problem
Dual problem is a Quadratic Programming problem:

max
α≥0,µ≥0

Q(α, µ)⇔ max
0≤α≤C

∑
i

αi −
1
2
∑
i ,j

αiαjYiYjX i
⊤X j

Involves the X i only through their scalar products. 204
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Mercer Theorem
Mercer Representation Theorem

For any loss ℓ and any increasing function Φ, the minimizer in β of
n∑

i=1
ℓ(Yi , X i

⊤β + β(0)) + Φ(∥β∥2)

is a linear combination of the input points β⋆ =
n∑

i=1
α′

iX i .

Minimization problem in α′:
n∑

i=1
ℓ(Yi ,

∑
j

α′
jX i

⊤X j + β(0)) + Φ(∥β∥2)

involving only the scalar product of the data.

Optimal predictor requires only to compute scalar products.
f̂ ⋆(X ) = X⊤β⋆ + β(0),∗ =

∑
i

α′
iX i

⊤X

Transform a problem in dimension dim(X ) in a problem in dimension n.
Direct minimization in β can be more efficient. . . 205
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Feature Map
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Feature Engineering
Art of creating new features from the existing one X .
Example: add monomials (X (j))2, X (j)X (j′). . .
Adding feature increases the dimension.

Feature Map
Application ϕ : X → H with H an Hilbert space.
Linear decision boundary in H: ϕ(X )⊤β + β(0) = 0 is not an hyperplane
anymore in X .

Heuristic: Increasing dimension allows to make data almost linearly separable.
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Polynomial Mapping
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Polynomial Mapping of order 2
ϕ : R2 → R6

ϕ(X ) =
(
(X (1))2, (X (2))2,

√
2X (1)X (2),

√
2X (1),

√
2X (2), 1

)
Allow to solve the XOR classification problem with the hyperplane X (1)X (2) = 0.

Polynomial Mapping and Scalar Product
Prop:

ϕ(X )⊤ϕ(X ′) = (1 + X⊤X ′)2

207



ML Methods: Optimization
Point of View

SVM Primal and Dual
Primal, Lagrandian and Dual

Primal:

min ∥β∥2 + C
n∑

i=1
si with

{
∀i , Yi(ϕ(X i)⊤β + β(0)) ≥ 1− si

∀i , si ≥ 0
Lagrangian:

L(β, β(0), s, α, µ) = 1
2∥β∥

2 + C
n∑

i=1
si

+
∑

i
αi(1− si − Yi(ϕ(X i)⊤β + β(0)))−

∑
i

µisi

Dual:
max

α≥0,µ≥0
Q(α, µ)⇔ max

0≤α≤C

∑
i

αi −
1
2
∑
i ,j

αiαjYiYjϕ(X i)⊤ϕ(X j)

Optimal ϕ(X )⊤β⋆ + β(0),∗ =
∑

i αiYiϕ(X )⊤ϕ(X i)

Only need to know to compute ϕ(X )⊤ϕ(X ′) to obtain the solution. 208
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From Map to Kernel

Many algorithms (e.g. SVM) require only to be able to compute the scalar
product ϕ(X )⊤ϕ(X ′).

Kernel
Any application

k : X × X → R
is called a kernel over X .

Kernel Trick
Computing directly the kernel k(X , X ′) = ϕ(X )⊤ϕ(X ′) may be easier than
computing ϕ(X ), ϕ(X ′) and then the scalar product.

Here k is defined from ϕ.
Under some assumption on k, ϕ can be implicitly defined from k!
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PDS Kernel

Positive Definite Symmetric Kernels
A kernel k is PDS if and only if

k is symmetric, i.e.
k(X , X ′) = k(X ′, X )

for any N ∈ N and any (X 1, . . . , XN) ∈ XN ,
K = [k(X i , X j)]1≤i,j≤N

is positive semi-definite, i.e. ∀u ∈ RN

u⊤Ku =
∑

1≤i,j≤N
u(i)u(j)k(X i , X j) ≥ 0

or equivalently all the eigenvalues of K are non-negative.

The matrix K is called the Gram matrix associated to (X 1, . . . , XN).
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Reproducing Kernel Hilbert Space

Moore-Aronsajn Theorem
For any PDS kernel k : X × X → R, it exists a Hilbert space H ⊂ RX with a
scalar product ⟨·, ·⟩H such that

it exists a mapping ϕ : X → H satisfying
k(X , X ′) =

〈
ϕ(X ), ϕ(X ′)

〉
H

the reproducing property holds, i.e. for any h ∈ H and any X ∈ X
h(X ) = ⟨h, k(X , ·)⟩H .

By def., H is a reproducing kernel Hilbert space (RKHS).
H is called the feature space associated to k and ϕ the feature mapping.
No unicity in general.
Rk: if k(X , X ′) = ϕ′(X )⊤ϕ′(X ′) with ϕ′ : X → Rp then

H can be chosen as {X 7→ ϕ′(X )⊤
β, β ∈ Rp} and ∥X 7→ ϕ′(X )⊤

β∥2
H = ∥β∥2

2.
ϕ(X ′) : X 7→ ϕ′(X )⊤

ϕ′(X ′).
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Kernel Construction Machinery
Separable Kernel

For any function Ψ : X → R, k(X , X ′) = Ψ(X )Ψ(X ′) is PDS.

Kernel Stability
For any PDS kernels k1 and k2, k1 + k2 and k1k2 are PDS kernels.
For any sequence of PDS kernels kn converging pointwise to a kernel k, k is a
PDS kernel.
For any PDS kernel k such that |k| ≤ r and any power series

∑
n anzn with an ≥ 0

and a convergence radius larger than r ,
∑

n
ankn is a PDS kernel.

For any PDS kernel k, the renormalized kernel k ′(X , X ′) = k(X , X ′)√
k(X , X )k(X ′, X ′)

is

a PDS kernel.
Cauchy-Schwartz for k PDS: k(X , X ′)2 ≤ k(X , X )k(X ′, X ′)
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Classical Kernels

PDS Kernels
Vanilla kernel:

k(X , X ′) = X⊤X ′

Polynomial kernel:
k(X , X ′) = (1 + X⊤X ′)k

Gaussian RBF kernel:
k(X , X ′) = exp

(
−γ∥X − X ′∥2

)
Tanh kernel:

k(X , X ′) = tanh(aX⊤X ′ + b)

Most classical is the Gaussian RBF kernel. . .
Lots of freedom to construct kernel for non classical data.
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Representer Theorem

Representer Theorem
Let k be a PDS kernel and H its corresponding RKHS,
for any increasing function Φ and any function L : Rn → R, the optimization
problem

argmin
h∈H

L(h(X 1), . . . , h(Xn)) + Φ(∥h∥)

admits only solutions of the form
n∑

i=1
α′

ik(X i , ·).

Examples:
(kernelized) SVM
(kernelized) Penalized Logistic Regression (Ridge)
(kernelized) Penalized Regression (Ridge)
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Kernelized SVM
Primal

Constrained Optimization:

min
f ∈H,β(0),s

∥f ∥2H + C
n∑

i=1
si with

{
∀i , Yi(f (X i) + β(0)) ≥ 1− si

∀i , si ≥ 0
Hinge loss:

min
f ∈H,β(0)

∥f ∥2H + C
n∑

i=1
max(0, 1− Yi(f (X i) + β(0)))

Representer:
min

α′,β(0)

∑
i ,j

α′
iα

′
jk(X i , X j)

+ C
n∑

i=1
max(0, 1− Yi(

∑
j

α′
jk(X j , X i) + β(0)))

Dual
Dual: max

α≥0,µ≥0
Q(α, µ)⇔ max

0≤α≤C

∑
i

αi −
1
2
∑
i ,j

αiαjYiYjk(X i , X j)
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SVM
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Bias-Variance Dilemma

General setting:
F = {measurable functions X → Y}
Best solution: f ⋆ = argminf ∈F R(f )
Class S ⊂ F of functions
Ideal target in S: f ⋆

S = argminf ∈S R(f )
Estimate in S: f̂S obtained with some procedure

Approximation error and estimation error (Bias/Variance)

R(f̂S)−R(f ⋆) = R(f ⋆
S )−R(f ⋆)︸ ︷︷ ︸

Approximation error

+R(f̂S)−R(f ⋆
S )︸ ︷︷ ︸

Estimation error

Approx. error can be large if the model S is not suitable.
Estimation error can be large if the model is complex.

219



ML Methods: Optimization
Point of View

Under-fitting / Over-fitting Issue
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Different behavior for different model complexity
Low complexity model are easily learned but the approximation error (bias) may
be large (Under-fit).
High complexity model may contain a good ideal target but the estimation error
(variance) can be large (Over-fit)

Bias-variance trade-off ⇐⇒ avoid overfitting and underfitting

Rk: Better to think in term of method (including feature engineering and specific
algorithm) rather than only of model.
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Simplified Models
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Bias-Variance Issue
Most complex models may not be the best ones due to the variability of the
estimate.

Naive idea: can we simplify our model without loosing too much?
by using only a subset of the variables?
by forcing the coefficients to be small?

Can we do better than exploring all possibilities?
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Linear Models
Setting: Gen. linear model = prediction of Y by h(x⊤β).

Model coefficients
Model entirely specified by β.
Coefficientwise:

β(i) = 0 means that the ith covariate is not used.
β(i) ∼ 0 means that the ith covariate as a low influence. . .

If some covariates are useless, better use a simpler model. . .

Submodels
Simplify the model through a constraint on β!
Examples:

Support: Impose that β(i) = 0 for i ̸∈ I.
Support size: Impose that ∥β∥0 =

∑d
i=1 1β(i) ̸=0 < C

Norm: Impose that ∥β∥p < C with 1 ≤ p (Often p = 2 or p = 1)
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Norms and Sparsity
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Sparsity
β is sparse if its number of non-zero coefficients (ℓ0) is small. . .
Easy interpretation in terms of dimension/complexity.

Norm Constraint and Sparsity
Sparsest solution obtained by definition with the ℓ0 norm.
No induced sparsity with the ℓ2 norm. . .
Sparsity with the ℓ1 norm (can even be proved to be the same as with the ℓ0
norm under some assumptions).
Geometric explanation.
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Constraint and Penalization
Constrained Optimization

Choose a constant C .
Compute β as

argmin
β∈Rd ,∥β∥p≤C

1
n

n∑
i=1

ℓ(Yi , h(x i
⊤β))

Lagrangian Reformulation
Choose λ and compute β as

argmin
β∈Rd

1
n

n∑
i=1

ℓ(Yi , h(x i
⊤β)) + λ∥β∥p′

p

with p′ = p except if p = 0 where p′ = 1.
Easier calibration. . . but no explicit model S.

Rk: ∥β∥p is not scaling invariant if p ̸= 0. . .
Initial rescaling issue. 224



ML Methods: Optimization
Point of View

Penalization
Penalized Linear Model

Minimization of

argmin
β∈Rd

1
n

n∑
i=1

ℓ(Yi , h(x i
⊤β)) + pen(β)

where pen(β) is a (sparsity promoting) penalty
Variable selection if β is sparse.

Classical Penalties
AIC: pen(β) = λ∥β∥0 (non-convex / sparsity)
Ridge: pen(β) = λ∥β∥22 (convex / no sparsity)
Lasso: pen(β) = λ∥β∥1 (convex / sparsity)
Elastic net: pen(β) = λ1∥β∥1 + λ2∥β∥22 (convex / sparsity)

Easy optimization if pen (and the loss) is convex. . .
Need to specify λ to define a ML method! 225
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Penalization and Cross-Validation
Practical Selection Methodology

Choose a penalty family penλ.
Compute a CV risk for the penalty penλ for all λ ∈ Λ.
Determine λ̂ the λ minimizing the CV risk.
Compute the final model with the penalty pen

λ̂
.

CV allows to select a ML method, penalized estimation with a penalty pen
λ̂
, not a

single predictor hence the need of a final reestimation.

Why not using CV on a grid?
Grid size scales exponentially with the dimension!
If the penalized minimization is easy, much cheaper to compute the CV risk
for all λ ∈ Λ. . .
CV performs best when the set of candidates is not too big (or is structured. . . )
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Unbalanced and Rebalanced Dataset
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Unbalanced Class
Setting: One of the class is much more present than the other.
Issue: Classifier too attracted by the majority class!

Rebalanced Dataset
Setting: Class proportions are different in the training and testing set (stratified
sampling)
Issue: Training risks are not estimate of testing risks.
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Resampling Strategies
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Resampling
Modify the training dataset so that the classes are more balanced.
Two flavors:

Sub-sampling which spoils data,
Over-sampling which needs to create new examples.

Issues: Training data is not anymore representative of testing data
Hard to do it right! 229
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Resampling Effect
Testing

Testing class prob.: πt(k)
Testing risk target:
Eπt [ℓ(Y , f (X ))] =∑

k
πt(k)E[ℓ(Y , f (X ))|Y = k]

Training
Training class prob.: πtr (k)
Training risk target:
Eπtr [ℓ(Y , f (X ))] =∑

k
πtr (k)E[ℓ(Y , f (X ))|Y = k]

Implicit Testing Risk Using the Training One
Amounts to use a weighted loss:

Eπtr [ℓ(Y , f (X ))] =
∑

k
πtr (k)E[ℓ(Y , f (X ))|Y = k]

=
∑

k
πt(k)E

[
πtr (k)
πt(k) ℓ(Y , f (X ))

∣∣∣∣Y = k
]

= Eπt

[
πtr (Y )
πt(Y ) ℓ(Y , f (X ))

]
Put more weight on less probable classes! 230
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Weighted Loss

In unbalanced situation, often the cost of misprediction is not the same for all
classes (e.g. medical diagnosis, credit lending. . . )
Much better to use this explicitly than to do blind resampling!

Weighted Loss
Weighted loss:

ℓ(Y , f (X )) −→ C(Y )ℓ(Y , f (X ))
Weighted risk target:

E[C(Y )ℓ(Y , f (X ))]

Rk: Strong link with ℓ as C is independent of f .
Often allow reusing algorithm constructed for ℓ.
C may also depend on X . . .
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Weighted Loss, ℓ0/1 loss and Bayes Classifier

The Bayes classifier is now:
f ⋆ = argminE[C(Y )ℓ(Y , f (X ))] = argminEX

[
EY |X [C(Y )ℓ(Y , f (X ))]

]
Bayes Predictor

For ℓ0/1 loss,
f ⋆(X ) = argmax

k
C(k)P(Y = k|X )

Same effect than a threshold modification for the binary setting!

Allow putting more emphasis on some classes than others.
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Linking Weights and Proportions

Cost and Proportions
Testing risk target:

Eπt [Ct(Y )ℓ(Y , f (X ))] =
∑

k
πt(k)Ct(k)E[ℓ(Y , f (X ))|Y = k]

Training risk target
Eπtr [Ctr (Y )ℓ(Y , f (X ))] =

∑
k

πtr (k)Ctr (k)E[ℓ(Y , f (X ))|Y = k]

Coincide if
πt(k)Ct(k) = πtr (k)Ctr (k)

Lots of flexibility in the choice of Ct , Ctr or πtr .
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Combining Weights and Resampling

Weighted Loss and Resampling
Weighted loss: choice of a weight Ct ̸= 1.
Resampling: use a πtr ̸= πt .

Stratified sampling may be used to reduce the size of a dataset without loosing a
low probability class!

Combining Weights and Resampling
Weighted loss: use Ctr = Ct as πtr = πt .
Resampling: use an implicit Ct(k) = πtr (k)/πt(k).
Combined: use Ctr (k) = Ct(k)πt(k)/πtr (k)

Most ML methods allow such weights!
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ML Optimization Problem
Typical Optimization Problem in ML

ML Opt.: argmin
w∈Rd

G(w) with G(w) = F (w) + R(w) where

F a goodness-of-fit function: F (w) = 1
n

n∑
i=1

ℓ(Yi , fw(X i)⟩)

where ℓ is some loss and fw a parametric predictor,
R a regularizer: R(w) = λ pen(w)
where pen(·) is some penalization function.

Examples
Predictor:

Linear fw(X i) = X i
⊤w

Neural Nets. . .
Regularizer:

pen(w) = ∥w∥2
2 (ridge)

pen(w) = ∥w∥1 (Lasso)
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Losses

Classification
Logistic loss, ℓ(y , f ) = log(1 + e−yf )
Hinge loss, ℓ(y , f ) = (1− yf )+

Quadratic hinge loss, ℓ(y , f ) = 1
2(1− yf )2

+

Huber loss ℓ(y , f ) = −4yf 1yf <−1 + (1− yf )2
+1yf ≥−1

These losses are convex upper bound of the 0/1 loss ℓ(y , y ′) = 1yy ′≤0.
Regression

Quadratic loss, ℓ(y , f ) = 1
2(y − f )2

Absolute loss, ℓ(y , f ) = 1
2 |y − f |
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Linear Predictor
ML Problem

Minimization of

G(w) = F (w) + R(w) = 1
n

n∑
i=1

ℓ(Yi , ⟨X i , w⟩) + λ pen(w)

Gradient and Hessian of F
Gradient:

∇F (w) = 1
n

n∑
i=1

ℓ(Yi , ⟨X i , w⟩)X i

with ℓ(y , f ) = ∂ℓ(y , f )
∂f

Hessian matrix:
∇2F (w) = 1

n

n∑
i=1

ℓ′(Yi , ⟨X i , w⟩)X iX i
⊤

with ℓ′(y , f ) = ∂2ℓ(y , f )
∂f 2 241
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Zero Order Method
Zero Order Heuristic

Zero order approximation:
G(w) = G(w ′) + O(∥w −w ′∥)

Optimization in a Compact Set
Optimization problem:

w⋆ ∈ argmin
w∈[0,1]d

G(w).

Exhaustive Search
Algorithm:

Evaluate G on a grid,
Approximate the minimizer by the minimizer in the grid.

If G is C -Lipschitz, evaluating G on a grid of precision ϵ/(
√

dC) is sufficient to
find a ϵ-minimizer of G .
Required number of evaluation: Nϵ = O

(
(C
√

d/ϵ)d
)

Hardly usable even in moderate dimension!
Rk: Better zero order methods exist. . .
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First Order Method

So
ur

ce
:

Li
jia

Yu

First Order Heuristic
First order approximation:

G(w) = G(w ′) +∇G(w ′)⊤(w −w ′) + o(∥w −w ′∥)
Best descent direction: −∇G(w ′)

Gradient Descent Algorithm
Start from a point w [0] and let k = 0.
Repeat until convergence:

w [k+1] = w [k] − α[k]∇G(w [k])
k → k + 1

with α[k] a sequence of (small) steps.
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Do The Gradient Descent Converge?

vs

So
ur

ce
:

Li
jia

Yu

Not always!

Assumptions
Convexity assumption on G .
Regularity assumption on G
Size of the steps α[k].
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Convexity and Regularity

Convex function
A function G : Rd → R is convex on Rd if, for all x , y ∈ Rd , for all λ ∈ [0, 1],

G(λx + (1− λ)y) ≤ λG(x) + (1− λ)f (y).
If fw is linear, F (w) = 1

n
∑n

i=1 ℓ(Yi , fw(X i)) is convex iff
f 7→ ℓ(yi , f )

is convex for any i = 1, . . . , n.

Regularity
G is L-smooth if it is continuously differentiable and if∥∥∇G(w)−∇G(w ′)

∥∥
2 ≤ L

∥∥w −w ′∥∥
2 for any w , w ′ ∈ Rd

If G is twice differentiable, this is equivalent to assuming
λmax(∇2G(w)) ≤ L for any w ∈ Rd

(largest eigenvalue of the Hessian matrix of G smaller than L)
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Least-Squares Regression
Formulation

Minimization of

G(w) = F (w) + R(w) = 1
2n

n∑
i=1

(Yi − X i
⊤w)2 + λ pen(w)

Gradient and Hessian of F
Gradient:

∇F (w) = 1
n

n∑
i=1

(X i
⊤w − Yi)X i

Hessian:

∇2F (w) = 1
n

n∑
i=1

X iX i
⊤

so that

L = λmax
(1

n

n∑
i=1

X iX i
⊤
)
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Logistic Regression
Formulation

Minimization of

G(w) = F (w) + R(w) = 1
n

n∑
i=1

log
(
1 + e(−Yi (X i

⊤w))
)

+ λ pen(w)

Gradient and Hessian of F
Gradient:

∇F (w) = 1
n

n∑
i=1

Yi(σ(YiX i
⊤w)− 1)X i

Hessian:
∇2F (w) = 1

n

n∑
i=1

σ(YiX i
⊤w)(1− σ(YiX i

⊤w))X iX i
⊤

so that F is L-smooth with
L ≤ 1

4λmax
(1

n

n∑
i=1

X iX i
⊤
)

σ(t) = e−t/(1 + e−t). 248
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Convergence of GD

Theorem
Let G : Rd → R be a L-smooth convex function. Let w⋆ be the minimum of f on
Rd . Then, Gradient Descent with step size α ≤ 1/L satisfies

G(w [k])− G(w⋆) ≤ ∥w
[0] −w⋆∥22

2αk .

In particular, for α = 1/L,
Nϵ = O(L∥w [0] −w⋆∥22/(2ϵ))

iterations are sufficient to get an ϵ-approximation of the minimal value of G .
Bound is independent of the dimension d .
Weak dependency hidden in the constant L. . .
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Descent Lemma
A key Property: the Descent Lemma.

If G is convex and L-smooth, then for any w , w ′ ∈ Rd

G(w) ≤ G(w ′) +∇G(w ′)⊤(w −w ′) + L
2
∥∥w −w ′∥∥2

2 .

Link with the Gradient Descent Algorithm
At step k, for any w ,

G(w) ≤ G(w [k]) +∇G(w [k])⊤(w −w [k]) + L
2

∥∥∥w −w [k]
∥∥∥2

2

≤ G(w [k]) + L
2

∥∥∥∥w − (w [k] − 1
L∇G(w [k]))

∥∥∥∥2
− 1

2L

∥∥∥∇G(w [k])
∥∥∥2

Optimizing the upper bound in w leads to
w [k+1] = w [k] − 1

L∇G(w [k])

Rk: Newton iteration comes from the approximation
G(w) = G(w ′) +∇G(w ′)⊤(w −w ′) + 1

2 (w −w ′)⊤∇2G(w ′)(w −w ′) + o(∥w −w ′∥2) 250
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Faster Rate - Strongly Convex Function
Strong convexity

A function G : Rd → R is µ-strongly convex if x 7→ G(x)− µ

2 ∥x∥
2
2 is convex.

If G is differentiable, this is equivalent to, for all x , y ∈ Rd ,
G(y) ≥ G(x) +∇G(x)⊤(y − x) + µ

2 ∥y − x∥22.

If G is twice differentiable, this is equivalent to
λmin(∇2G(x)) ≥ µ.

Theorem
Let G : Rd → R be a L-smooth, µ strongly convex function. Let w⋆ be the
minimum of G on Rd . Then, Gradient Descent with step size α ≤ 1/L satisfies

G(w [k])− G(w⋆) ≤ 1
2α

(
1− αµ

)k
∥G(w [0])− G(w⋆)∥22.

Rk: Nϵ = O(− log ϵ/(αµ)) iterations are sufficient to obtain an ϵ-minimizer.
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Lipschitz Convex Function - Slower Rate

Convexity
If G is a convex function then for any w ∈ Rd , there exists a (not necessarily
unique) subgradient δG(w) such that

G(w ′) ≥ G(w) + δG(w)⊤(w ′ −w) for any w ′ ∈ Rd

If G is differentiable then it is unique and equal to the gradient.

Subgradient Descent Algorithm: Gradient Descent with subgradient instead of
gradient.

Regularity
G is C-Lipschitz if

|G(w)− G(w ′)| ≤ C
∥∥w −w ′∥∥

2 for any w , w ′ ∈ Rd

If G is differentiable, this is equivalent to assuming
∥∇G(w)∥ ≤ C for any w ∈ Rd
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Lipschitz Convex Function - Slower Rate
Theorem

Let G : Rd → R be a convex function, C -Lipschitz in B(w⋆, R) where w⋆ be the
minimizer of f on Rd . Assume that

α[k] > 0, α[k] → 0,
∑

k
α[k] = +∞

and
∥∥∥w [0] −w⋆

∥∥∥ ≤ R Then, Subgradient Descent with step size α[k] satisfies

min
k′≤k

G(w [k′])− G(w⋆) ≤ C R2 +
∑k

k′=0(α[k′])2

2
∑k

k′=0 α[k′]

In particular, for α[k] = r√
k+1

min
k′≤k

G(w [k′])− G(w⋆) ≤ C R2 + r2 log(k + 1)
4r
√

k + 1
and

Nϵ = O
(
(C(− log ϵ)/ϵ)2

)
253



Optimization: Gradient
Descent Algorithms

In practice, how to choose α?
Theoretical setting of α = 1/L is a worst case scenario.

Exact line search
At each step, choose the best α by optimizing

α[k] = argmin
α>0

G(w − α∇G(w)).

Too costly!

Backtracking line search
Fix a parameter 0 < β < 1 and set α = αinit
At each iteration,

while G(w − α∇G(w)) > G(w)− α

2 ∥∇G(w)∥2,

modify α← βα.
Use the final α as the stepsize for this iteration.

Simple and work pretty well in practice.
Theoretical guarantees available.

254



Optimization: Gradient
Descent Algorithms

Outline
1 Statistical Learning: Introduction, Setting and Risk

Estimation
Introduction
Machine Learning
Supervised Learning
Risk Estimation and Model Selection
Cross Validation and Test
References

2 ML Methods: Probabilistic Point of View
Motivation
Supervised Learning
A Probabilistic Point of View
Parametric Conditional Density Modeling
Non Parametric Conditional Density Modeling
Generative Modeling
Model Selection
Penalization

3 ML Methods: Optimization Point of View
Supervised Learning
Optimization Point of View
SVM
Penalization
Cross Validation and Weights

4 Optimization: Gradient Descent Algorithms
Introduction
Gradient Descent
Proximal Descent
Coordinate Descent
Gradient Descent Acceleration
Stochastic Gradient Descent

Gradient Descent Step
Non-Convex Setting
References

5 ML Methods: Neural Networks and Deep Learning
Introduction
From Logistic Regression to NN
NN Optimization
NN Regularization
Image and CNN
Text, Recurrent Neural Networks and
Transformers
NN Architecture
References

6 ML Methods: Trees and Ensemble Methods
Trees
Bagging and Random Forests

Bootstrap and Bagging
Randomized Rules and Random Forests

Boosting
AdaBoost as a Greedy Scheme
Boosting

Ensemble Methods
References

7 Unsupervised Learning: Dimension Reduction and
Clustering

Unsupervised Learning?
A First Glimpse

Clustering
Dimensionality Curse
Dimension Reduction
Generative Modeling

Dimension Reduction
Simplification
Reconstruction Error
Relationship Preservation
Comparing Methods?

Clustering
Prototype Approaches
Contiguity Approaches
Agglomerative Approaches
Other Approaches
Scalability

Generative Modeling
(Plain) Parametric Density Estimation
Latent Variables
Approximate Simulation
Diffusion Model
Generative Adversarial Network

Applications to Text
References

8 Statistical Learning: PAC-Bayesian Approach and
Complexity Theory

Supervised Learning
Empirical Risk Minimization

Empirical Risk Minimization
ERM and PAC Analysis
Hoeffding and Finite Class
McDiarmid and Rademacher Complexity
VC Dimension
Structural Risk Minimization

References
9 References

255



Optimization: Gradient
Descent Algorithms

Function Decomposition and Descent
Function Decomposition: G = F + R

F convex and L-smooth
R convex and simple

Another Descent Algorithm
At step k, for any w ,

G(w) ≤ F (w) + R(w)

≤ F (w [k]) +∇F (w [k])⊤(w −w [k]) + L
2

∥∥∥w −w [k]
∥∥∥2

2
+ R(w)

≤ F (w [k]) + L
2

∥∥∥∥w − (w [k] − 1
L∇F (w [k]))

∥∥∥∥2
− 1

2L

∥∥∥∇F (w [k])
∥∥∥2

+ R(w)

Optimizing the upper bound in w leads to

w [k+1] = argmin
w

1
2

∥∥∥∥w − (w [k] − 1
L∇F (w [k]))

∥∥∥∥2
+ 1

LR(w)

R simple means that this minimization is easy.
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Proximal Operator and Proximal Gradient Descent
Proximal Operator

For any convex function R:
proxγ R(w ′) = argmin

w

1
2
∥∥w −w ′∥∥2 + γR(w)

Generalization of the projection operator:
R(w) = 1Ω: proxγ R(w ′) = PΩw ′

R(w) = 1
2∥w∥

2
2: proxγ R(w ′) = 1

1+γ w .
R(w) = ∥w∥1: proxγ R(w ′) = Tγ(w ′) with Tγ(w)i = sign(wi) max(0, |wi | − γ)
(soft thresholding).

Proximal Gradient Descent Algorithm for simple R
Start from a point w [0] and let k = 0.
Repeat until convergence:

w [k+1] = prox1/L R
(
w [k] − α[k]∇F (w [k])

)
k → k + 1

with α[k] a sequence of (small) steps. 257



Optimization: Gradient
Descent Algorithms

Theoretical Guarantees
Same as smooth case!

Rates
F L-smooth and R simple:

G(w [k])− G(w⋆) ≤ ∥w
[0] −w⋆∥22

2αk .

and Nϵ = O(L∥w [0] −w⋆∥22/2ϵ).
F L-smooth and µ-convex and R simple:

G(w [k])− G(w⋆) ≤ 1
2α

(
1− αµ

)k
∥G(w [0])− G(w⋆)∥22.

and Nϵ = O(− log ϵ/(αµ)).
F C -Lipschitz and R is the characteristic function of a convex set:

G(w [k])− G(w⋆) ≤ C R2 + r2 log(k + 1)
4r
√

k + 1
and Nϵ = O

(
(C(− log ϵ)/ϵ)2).
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Coordinate Descent
Heuristic

Is w a minimizer of a G when
G(w + tei) ≥ G(w) ∀t ∈ R and 1 ≤ i ≤ d ,

with G convex?
YES if G is smooth (C1), G is separable or G is a sum of a smooth (C1) and a
separable function (G(w) =

∑d
i=1 gi(w (i))).

NO otherwise.
Coordinate Descent Algorithm

Start from an arbitrary w [0]

Repeat until convergence:
Pick a coordinate i
Set w [k+1],(j) = w [k],(j) for j ̸= i .
Optimize only the ith coordinate to obtain w [k+1],(i)

k → k + 1
State-of-the art is several ML problems! 260
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Exact Coordinate Descent

Exact Coordinate Descent (CD)
Start from an arbitrary w [0]

Repeat until convergence:
Pick a coordinate i
Set w [k+1],(j) = w [k],(j) for j ̸= i .
Compute

w [k+1],(i) = argmin
z∈R

G(w [k],(1), . . . w [k],(i−1), z , w [k],(i+1), . . . , w [k],(d))

k → k + 1

Several way to choose the coordinate i : uniform sampling, deterministic cycle. . .
Only 1D optimization problems to solve. . . but probably a lot of them.

Theorem - Warga (1963)
If G is continuously differentiable and strictly convex, then exact coordinate
descent converges to a minimum.
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Coordinate Gradient Descent

Coordinate Gradient Descent (CGD)
Start from an arbitrary w [0]

Repeat until convergence:
Pick a coordinate i
Set w [k+1],(j) = w [k],(j) for j ̸= i .
Compute

w [k+1],(i) = w [k],(i) − α[k]∇(i)G(w [k])
k → k + 1

For smooth function, step-size α[k] can be taken as α[k] = 1/Li where i is the
coordinate chosen and Li the Lipschitz constant of

G i(z) = G(w + zei) = G(w (1), . . . , w (i−1), w (i) + z , w (i+1), . . . , w (d))
If G is L-smooth, Li ≤ L.
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Rate of Coordinate Gradient Descent

Theorem - Nesterov (2012)
Assume that G is convex and smooth and that each G i is Li -smooth.
Consider a sequence {w [k]} given by CGD with α[k] = 1/Lik and coordinates
i1, i2, . . . chosen at random: i.i.d and uniform distribution in {1, . . . , d}. Then

E
[
G(w [k+1])− G(w⋆)

]
≤ d

d + k
((

1− 1
d
)
(G(w [0])− G(w⋆)) + 1

2

∥∥∥w [0] −w⋆
∥∥∥2

L

)
,

with ∥w∥2L =
∑d

j=1 Ljw2
j .

Bound in expectation, since coordinates are taken at random.
For cycling coordinates ik = (k mod d) + 1 the bound is much worse.
Similar result when G = F + R with F smooth and R simple and separable.
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Comparison of Gradient Descent and Coordinate
Gradient Descent
Gradient Descent

Cost of an iteration O(d).
Number of iteration to obtain an ϵ-minimizer:

Nϵ =
L
∥∥∥w [0] −w⋆

∥∥∥2

2
2ϵ

Coordinate Gradient Descent
Cost of an iteration O(1).
Number of iteration to obtain an ϵ-minimizer:

Nϵ = d
ϵ

((
1− 1

d
)
(G(w [0])− G(w⋆)) + 1

2

∥∥∥w [0] −w⋆
∥∥∥2

L

)
Same order of complexity but smaller constant for CGD as soon as
(G(w [0])− G(w⋆))≪ L

∥∥∥w [0] −w⋆
∥∥∥2

2
.

In practice, often much faster (especially when dealing with anisotropic regularity). 264
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Gradient Descent Acceleration
Can we improve the number of iterations O(L/ϵ) (L-smooth) and O( L

µ log(1/ϵ))
(L-smooth and µ strongly-convex) ?
Heuristic: add some momentum to propagate gradients.

Polyak’s momentum algorithm - Heavy ball method
Input: starting point w [0], step size α[k] > 0, momentum β ∈ [0, 1]
While not converge do

w [k+1/2] = w [k] − α[k]∇G(w [k])
w [k+1] = w [k+1/2] + β(w [k] −w [k−1])
k ← k + 1

Return last w [k+1].

Most classical value for β: 0.9
When α[k] = α, the update equation can be written

w [k+1] = w [k] − α
k∑

t=1
βk−t∇G(w (t)).

266



Optimization: Gradient
Descent Algorithms

Polyak’s Momentum Failure

Counter Example
Polyak’s momentum algorithm fails to converge in some specific cases, for
instance:

∇G(x) =


25x if x < 1
x + 24 if 1 ≤ x < 2
25x − 24 if x ≥ 2

In that case, G is µ strongly convex and L-smooth with (µ, L) = (1, 25). However,
iterations given by Polyak’s algorithm cycles.
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Nesterov Accelerated Gradient Descent
Nesterov Method

Input: starting point w [0](= w [−1/2]), step size α[k] > 0, momentum β[k] ∈ [0, 1]
While not converge do

w [k+1/2] = w [k] − α[k]∇G(w [k])
w [k+1] = w [k+1/2] + β[k](w [k+1/2] −w [k−1/2])
k ← k + 1

Return last w [k+1].
Subtle difference with momentum method.
Not much freedom for β[k]:

Nesterov original choice:

β[k] = t [k] − 1
t [k+1] with

{
t [1] = 1

t [k+1] = 1+
√

1+4(t [k])2

2

Simpler equivalent choice β[k] = k
k + 3

Other choice possible for µ convex function.
Proximal version possible. 268
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Convergence Rate of Nesterov Accelerated Gradient
Theorem for L-smooth function

Assume that G is a L-smooth, convex function whose minimum is reached at w⋆.
Then, if β[k] = k/(k + 3),

G(w [k])− G(w⋆) ≤ 2∥w [0] −w⋆∥22
α(k + 1)2 .

Theorem for µ strongly convex function
Assume that G is a L-smooth, µ strongly convex function whose minimum is
reached at w⋆. Then, if β[k] = 1−

√
µ/L

1+
√

µ/L
,

G(w [k])− G(w⋆) ≤ ∥w
[0] −w⋆∥22

α

(
1−

√
µ

L
)k

.

Faster rates than respectively O(1/k) and O((1− µ/L)k).
Theorems holds for the proximal algorithm with G = F + R with F smooth and R
simple. 269
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Optimal Bounds
General First Order Method

Any iterative method that generates a sequence {w [k]} s.t.
w [k] ∈ w [0] + Span(∇f (w [0]), . . . ,∇f (w [k−1])).

Lower Bounds
For any w [0] ∈ Rd and any k satisfying 1 ≤ k ≤ (d − 1)/2, there exists a
L-smooth convex function f such that for any general first order method

G(w [k])− G(w⋆) ≥ 3L∥w [0] −w⋆∥22
32(k + 1)2 .

For any w [0] ∈ Rd and any k ≤ (d − 1)/2, there exists a L-smooth, µ strongly
convex function f such that for any general first order method

G(w [k])− G(w⋆) ≥ µ

2
(1−

√
µ/L

1 +
√

µ/L

)2k
∥w [0] −w⋆∥22.

Accelerated rates: best possible without further assumptions.
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Goodness-of-Fit and Stochastic Gradient Heuristic

Goodness-of-Fit Optimization
Minimizer of G = F + R with

F smooth and R simple (as before).
Empirical average structure for F :

F (w) = 1
n

n∑
i=1

Fi(w) = En[Fi(w)]

where each Fi is smooth.

Cost of evaluating ∇F is proportional to the dataset cardinality n (and the
dimension d).
If the dataset is large, this can be an issue.
Stochastic Gradient Heuristic: replace ∇F (w) = En[∇Fi(w)] by a Monte
Carlo approximation.
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Stochastic Gradient
Stochastic Gradient

Empirical average structure

∇F (w) = 1
n

n∑
i=1
∇Fi(w) = En[∇Fi(w)]

Monte Carlo approximation of an average:
draw uniformly m≪ n indices i1, . . . , im
Replace ∇F (w) by

∇̂F (w) = 1
m

m∑
j=1
∇Fij (w)

Prop: E
[
∇̂F (w)

]
= ∇F (w)

Extreme case m = 1: unbiased but quite noisy estimate of the true gradient.
Evaluation cost of ∇̂F (w) independent of n.
Question: Can we use this approximation of the true gradient in a descent
algorithm? 273
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Stochastic Gradient Descent Algorithm

Stochastic Gradient Descent Algorithm
Start from a point w [0] and let k = 0.
Repeat until convergence:

Draw m indices 1 ≤ ij ≤ n uniformly at random
Set ∇̂F (w [k]) = 1

m
∑m

j=1∇Fij (w [k])
w [k+1] = w [k] − α[k]

(
∇̂F (w [k]) +∇R(w [k])

)
k → k + 1

with α[k] a sequence of (small) steps.

Each iteration has complexity O(md) instead of O(nd) for full gradient methods
m is called the batch size.
Rk: no gain when using a batch size larger than 1, except if the sum can be
parallelized.
Proximal variant if R is simple instead of smooth.
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Convergence Rate of SGD
Theoretical analysis requires some modifications:

at each step w [k+1] should be projected intro a ball B(c, R) with R > 0.
G should be convex such that supi |∇Fi(w) +∇R(w)| ≤ b, ∀w ∈ B(c, r)
Polyak-Ruppert averaging: use SGD iterates w t but return an average.

SGD Rate
With α[k] = 2R/(b

√
k)

E

G
(1

k

k∑
j=1

w [j]
)− G(w⋆) ≤ 3rb√

k

If G is µ-strictly convex then with α[k] = 2/(µ(k + 1)),

E

G
( 2

k(k + 1)

k∑
j=1

jw [j]
)− G(w⋆) ≤ 2b2

µ(k + 1) .

Without averaging, logarithmic loss.
Same rate for proximal algorithm if F is at least L-smooth and R simple.
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Convergence Rate of SGD

Simplified Result for the (Averaged) SGD
If G is convex and gradients are bounded (∥∇Fi(w)∥2 ≤ b) then the convergence
rate is

O
( 1√

k

)
with α[k] = O

( 1√
k

)
G is µ-strongly convex, the rate is

O
( 1

µk
)

with α[k] = O
( 1

µk
)

Comparison with GD
Much slower rate:

for L smooth function: O(1/
√

k) vs O(1/k)
For µ convex function: O(1/k) vs O((1− µ/L)k)
Hidden factor σ in SGD measuring the variance of ∇̂F which decreases when m
increases.

Much cheaper cost per iteration: O(md) vs O(nd) 276
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SGD with Fixed Step Size

Stochastic Gradient Descent Algorithm
Start from a point w [0] and let k = 0.
Repeat until convergence:

Draw m indices 1 ≤ ij ≤ n uniformly at random
Set ∇̂F (w [k]) = 1

m
∑m

k=1∇Fij (w [k])
w [k+1] = w [k] − α

(
∇̂F (w [k]) +∇R(w [k])

)
k → k + 1

with α constant.

No convergence but for µ-convex function:
E
[∥∥∥w [k] −w⋆

∥∥∥2
]
→ O(α/µ)

SGD behavior in practice: very fast initially but much slower afterward.
Justify the use of decreasing step size when the error decay becomes slow.
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Stabilization

Difference due to the variance of the stochastic gradient.

Variance reduction of the gradient
In the iterations of SGD, replace ∇Fik (w [k−1]) by

∇Fik (w [k−1])−∇Fik (w̃) +∇F (w̃)
where w̃ is an old value of the iterate, namely use

w [k] ← w [k−1] − α[k]((∇Fik (w [k−1])−∇Fik (w̃)) +∇F (w̃)
)

Several instantiations
SVRG where w̃ and ∇F (w̃) is computed every few step.
SAGA where, instead of ∇Fi(w̃), one use Fi(w [ki ]), where ki is the last time the ith
coordinate has been updated, even to compute the equivalent of ∇F (w̃).

Lead to faster rate but requires more memory (3d for SVRG and nd for SAGA).
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Adaptive Step Size
Stochastic Gradient Descent Algorithm

Start from a point w (0) and let k = 0.
Repeat until convergence:

Draw m indices 1 ≤ ij ≤ n uniformly at random
Set ∇̂F (w [k]) = 1

m
∑m

k=1∇Fij (w [k])
w [k+1] = w [k] − α[k]

(
∇̂F (w [k]) +∇R(w [k])

)
k → k + 1

with α[k] a sequence of (small) steps.

Step sizes α[k] are crucial for convergence.
How to choose them? Decaying? Fixed? Adaptative?
Several algorithms available with no clear winner.
Determining a good learning rate becomes more of an art than science for
many problems.

M.D. Zeiler
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Gradient Descent, Step Size and Reparameterization
Gradient Descent and Reparameterization

Gradient Descent: w [k+1] = w [k] − α∇G(w [k]).
Reparameterization: w = W z.
Gradient Descent in z: z[k+1] = z[k] − αW ⊤∇G(W z[k]).
Implied Gradient Descent in w : w [k+1] = w [k] − αWW ⊤∇G(w [k]).
Different dynamics if WW ⊤ ̸= Id !

Gradient Descent and Norm
Descent lemma upperbound: f (w ′) ≤ f (w) +∇G(w)⊤(w ′ −w) + 1

2α∥w
′ −w∥2.

Uses the classical euclidean norm.
Using f (w ′) ≤ f (w) +∇G(w)⊤(w ′ −w) + 1

2α∥w
′ −w∥2Σ leads to

w [k+1] = w [k] − αΣ−1∇G(w [k]).
Different dynamics if Σ ̸= Id !
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Gradient Descent
Modified Gradient Descent Algorithm

w [k+1] = w [k] − αP∇G(w [k]) where P can be interpreted as WW ⊤ or Σ of the
previous slide.
Convergence holds if corresponding descent lemma holds.
P can even changes from one iteration to another.

Choices for P
Newton method:

P =
(
∇2G

)−1

Hard to compute and no descent lemma property.
Diagonal approximation:

P = D
Easy computation but no descent lemma in general.
Several strategies for the choice of D. . .

Coordinate Descent could be reframed in this framework! 282
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Self Normalized Gradient Descent Algoritm

w [k+1]
j = w [k]

j + α
[k]
b

d [k]
j

m[k]
j

Self Normalized Gradient Descent
Gradient: m[k] ≃ ∇G(w [k])
Renormalization factor: d [k]

j ≃ |∇G(w [k])|j
Base stepsize: α

[k]
b could be constant or decaying. . .

Makes the algorithm invariant to a diagonal rescaling.
Amounts to use

∥w ′ −w∥2Σ ≃
∑

j

|w ′
j −wj |2

|∇G(w)i |2
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ADAptive GRADient

w [k+1]
j = w [k]

j + α
[k]
b

d [k]
j

m[k]
j

ADAptive GRADient update
m[k] = ∇G(w [k])

d [k]
j =

√√√√ k∑
k′=1

(∇G(w [k′]))2
j

α
[k]
b = α

Step sizes grow as the inverse of the gradient magnitude.
Accumulation of the gradients acts as a decreasing learning rate.
Sensitive to initial condition and may require large initial parameter or restarts.
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ADAptive GRADient

w [k+1]
j = w [k]

j + α
[k]
b

d [k]
j

m[k]
j

ADAptive GRADient update reformulation
m[k] = ∇G(w [k])

d [k]
j =

√
v [k]

j with v [k]
j = 1

k

k∑
k′=1

(∇G(w [k′]))2
j

α
[k]
b = α/

√
k

Explicit averaging and decay.
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RMSprop

w [k+1]
j = w [k]

j + α
[k]
b

d [k]
j

m[k]
j

RMSprop update
m[k] = ∇G(w [k])

d [k]
j =

√
v [k]

j with v [k]
j = ρv [k−1]

j + (1− ρ)(∇G(w [k])2
j

α
[k]
b = α

Unpublished method!
Exponential average instead of classical one.
No step size decay.
Often very efficient (especially in a non stationary setting).
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ADAM: ADAptive Moment estimation

w [k+1]
j = w [k]

j + α
[k]
b

d [k]
j

m[k]
j

ADAM
Exponential averaging estimation: let m̃0 = ṽ0 = 0,

m̃[k] = βmm̃[k−1] + (1− βm)∇G(w [k]) and ṽ [k] = βv ṽ [k−1] + (1− βv )(∇G(w [k]))2

Bias correction: m[k] = m̃[k]

1− βk
m

and v [k] = ṽ [k]

1− βk
v

α
[k]
b = α.

Use a smoothed estimation of the first two moments of the gradients.
Often efficient.
ADAMax: v [k] = ṽ [k] = max(βv v [k−1], |∇G(w [k])|).
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AdaDelta

w [k+1]
j = w [k]

j + α
[k]
b

d [k]
j

m[k]
j

AdaDelta
m[k] = ∇G(w [k])

d [k]
j =

√
v [k]

j√
ṽ [k−1] with v [k]

j = ρv [k−1]
j + (1− ρ)(∇G(w [k])2

j and

ṽ [k]
j = ρṽ [k−1]

j + (1− ρ)

α
[
j [k]]

d [k]
k
∇G(w [k])j

2

α
[k]
b = 1

Only one parameter!
Based on a dimensional analysis. . . with a strange looking renormalization! 288
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AdaDelta

w [k+1]
j = w [k]

j + α
[k]
b

d [k]
j

m[k]
j

AdaDelta
m[k] = ∇G(w [k]) and d [k]

j = 1

α
[0]
j = α and α

[k]
j =

α
[k−1]
j√

ρ + (1− ρ)(∇G(w [k])2
j /v [k−1]

j )
with

v [k]
j = ρv [k−1]

j + (1− ρ)(∇G(w [k])2
j , and

v [k]
j = ρṽ [k−1]

j + (1− ρ)
(
α

[
j [k]]

)2 (
∇G(w [k]

)2

j
and α

[k−1]
j =

√
ṽ [k]

j /v [k]j

Better insight (and more flexible initial step)!
Quite different from the previous schemes. 289
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Latest Trends

Cyclic Learning Rate
Cycle between small and large learning rate with stopping when the learning rate
is small.
One cycle strategy seems possible!

Plain SGD with a constant step is also making a comeback!
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(S)GD and Non Convex Function

No global convergence result for non convex functions optimization (NP Hard
problem)
Nevertheless (Stochastic) Gradient Descent algorithm can be used.

Theoretical results?
Typical weak convergence results:

convergence to a stationary point
convergence to a local minimum. . .

Often in specific cases.

In practice: convergence depends a lot on the step size α choice strategy.
In general, more exploration than in the convex setting.
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Perceptron (Rosenblatt 1957)
Inspired from biology.
Very simple (linear) model!
Physical implementation and proof of concept.
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Very simple (linear) model!
Physical implementation and proof of concept.

298



ML Methods: Neural
Networks and Deep Learning

Artificial Neuron and Logistic Regression
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Artificial neuron
Structure:

Mix inputs with a weighted sum,
Apply a (non linear) activation
function to this sum,
Possibly threshold the result to make
a decision.

Weights learned by minimizing a loss
function.

Logistic unit
Structure:

Mix inputs with a weighted sum,
Apply the logistic function
σ(t) = et/(1 + et),
Threshold at 1/2 to make a decision!

Logistic weights learned by minimizing
the -log-likelihood.

Equivalent to linear regression when using a linear activation function!
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Multilayer Perceptron
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MLP (Rumelhart, McClelland, Hinton - 1986)
Multilayer Perceptron: cascade of layers of artificial neuron units.
Optimization through a gradient descent algorithm with a clever implementation
(Backprop).

Construction of a function by composing simple units.
MLP corresponds to a specific direct acyclic graph structure.
Non convex optimization problem!
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Multilayer Perceptron
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Deep Neural Network
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Deep Neural Network structure
Deep cascade of layers!

No conceptual novelty. . .
But a lot of tricks allowing to obtain a good solution: clever initialization, better
activation function, weight regularization, accelerated stochastic gradient descent,
early stopping. . .
Use of GPU and a lot of data. . .
Very impressive results!
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Deep Neural Network

303



ML Methods: Neural
Networks and Deep Learning

Deep Learning
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Family of Machine Learning algorithm combining:
a (deep) multilayered structure,
a clever optimization including initialization and regularization.

Examples: Deep NN, AutoEncoder, Recursive NN, GAN, Transformer. . .
Interpretation as a Representation Learning.
Transfer learning: use as initialization a pretrained net.
Very efficient and still evolving!
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Logistic Regression as NN
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Binary Logistic Regression
Conditional probability model:

P(Y = 1|X ) = σ(w⊤X + b) = ew⊤X+b

1 + ew⊤X+b

Model weights w ∈ Rd and intercept (or bias) b ∈ R.

Artificial Neuron or Unit
X is the input (single feature vector).
z(X ) = w⊤X + b is called pre-activation.
y(X ) = σ(z(X )) is the output (in [0, 1] in this case)
w is weights and b is bias
σ is an activation function 306
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Softmax Regression
x1
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...

1
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Multinomial Logistic Model

Cond. prob. model: P(Y = k|X ) = ewk
⊤X+bk∑K

k′=1 ewk′ ⊤X+bk′

Model weights: k vector wk ∈ Rd or equivalently a model weight matrix W with
W•,k = wk

Softmax Regression (Softmax Layer)
zk(X ) = W•,k

⊤X + bk pre-activations or logits

yk(X ) = ezk (X)∑K
k′=1 ezk′ (X) coming out of the softmax activation

Matricially:
y(X ) = softmax(z(X )) = softmax(W ⊤X + b)
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One-Hidden Layer Neural Network
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One-Hidden Layer Neural Network - Neural Representation
Recursive definition:

y(X ) = softmax(z(O)) = softmax(W (O)⊤h + b(O))
= softmax(W (O)⊤g(z(H)) + b(O))
= softmax(W (O)⊤g(W (H)⊤x + b(H)) + b(O))

g is an activation function applied entrywise on zH
1 , . . . , zH

H

This neural network has a width-H hidden layer
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One-Hidden Layer Neural Network

g

W H
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One-Hidden Layer Neural Network - Vector Representation
Vector representation:

y(X ) = softmax(z(O)) = softmax(W (O)⊤h + b(O))

= softmax(W (O)⊤g(z(H)) + b(O))

= softmax(W (O)⊤g(W (H)⊤X + b(H)) + b(O))
g is an activation function applied entrywise

Equivalent representation focusing on layers.
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Activation Functions

Entrywise Activation Functions
Most classical: sigmoid, tanh and ReLU (rectified linear unit)

σ(z) = 1
1 + e−z , tanh(z) = e2z − 1

e2z + 1 , ReLU(z) = max(0, z)

Their derivatives are given by
σ′(z) = σ(z)(1− σ(z))

tanh(z) = 1− tanh(z)2,

ReLU′(z) = 1z>0

Note that tanh(z) = 2σ(2z)− 1
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Activation Functions
ReLU Activation

ReLU: z 7→ max(0, z)
Often the best choice for deep neural networks
Easier to optimize, since their behavior is closer to linear
Its gradient is not defined at z = 0: not a problem since, during training, it’s
unlikely that any input equals 0

In contrast to ReLu, Sigmoid activations σ and tanh (not recommended anymore)
saturate for large positive (or large negative values).

Identity Activation
Hidden layer:

Amount to use h = g(VU⊤z + b) instead of h = g(W ⊤z + b)
W is factorized as UV ⊤

Reduces the dimension of the model
Output layer: linear model on the last layer 311
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Activation Function

Softmax
Softmax is not an element-wise activation:

softmax(z) = 1∑K
k=1 ezk

ez1

...
ezK


Gradient:

softmax(z)k
∂xk′

=
{

softmax(z)k × (1− softmax(z)k) if k = k ′

−softmax(z)k × softmax(z)k′ otherwise
Maps z ∈ RK to the space of vector in [0, 1]K with entries that sum to 1
(probabilities)
The inputs of the softmax are called the logits in deep learning
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Feed-Forward Neural Network
Feed-Forward Neural Network

Heuristic: It’s easy to construct a complex function by composing simple elements
in some order.

Layerwise structure:
h(1) = g (1)(W (1)⊤x + b(1))
h(2) = g (2)(W (2)⊤h(1) + b(2))

...
h(L) = g (L)(W (L)⊤h(L−1) + b(L))

y = softmax(W (O)⊤h(L) + b(O))
Need to choose the width of each layer and the depth of the network.

The name comes from the fact that information flows through the layers.
For regression, replace the softmax by identity.
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Universal Approximation Theorem

Universal Approximation Theorem (Hornik, 1991)
A single hidden layer neural network with a linear output unit can
approximate any continuous function arbitrarily well, given enough hidden units

Valid for most activation functions.
No bounds on the number of required units. . . (Asymptotic flavor)
A single hidden layer is sufficient but more may require less units?
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Network Architecture
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What is best?
One hidden layer with large width?
. . . or several layers with smaller width ?

A Recipe
For the same number of parameters, several layers with a smaller width lead to
better generalization. (More abstract layers)
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How to Train a DNN

Use a differentiable loss.
Loss Minimization

Compute the prediction and the loss (forward-propagation)
Compute the gradients (back-propagation)
Use a Stochastic Gradient Descent algorithm

In practice, use
A nice open source library (tensorflow, keras, pyTorch)
A GPU. . . since training a DNN can benefit from massive parallel computations
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Neural Network Optimization Formulation
Feed-Forward Neural Network

Network structure:
h(1) = g (1)(W (1)⊤x + b(1)) h(2) = g (2)(W (2)⊤h(1) + b(2))

. . . h(L) = g (L)(W (L)⊤h(L−1) + b(L))
f (x , w) = softmax(W (O)⊤h(L) + b(O))

with w = (W (1), b(1), . . . , W (L), b(L), W (o), b(o))

Optimization Formulation
Minimization of

G(w) = 1
n

n∑
i=1

ℓ(Yi , f (X i , w))︸ ︷︷ ︸
F (w)

+ pen(w)︸ ︷︷ ︸
R(w)

with ℓ a loss function and pen a penalization.

Most classical choices:
ℓ is the cross entropy (-log-likelihood)
pen is a ridge penalty on the W . 318
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Optimization Algorithm

Optimization Formulation
Minimization of

G(w) = 1
n

n∑
i=1

ℓ(Yi , f (X i , w))︸ ︷︷ ︸
F (w)

+ pen(w)︸ ︷︷ ︸
R(w)

with ℓ a loss function and pen a penalization.

Optimization Algorithm
Non convex optimization problem.
Stochastic Gradient Descent algorithm.
Key issue: computing

∇Fi(w) = ∇ℓ(Yi , f (X i , w))
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Back-Propagation

Clever algorithm to compute ∇Fi(w) = ∇ℓ(Yi , f (X i , w)).

Heuristic
Key observation: f is obtained through a direct acyclic graph of composition.
Key lemma (Chain Rule): ∂

∂w f (g(x , w)) = ∂
∂g (g(x , w)) ∂g

∂w (x , w).

More generally: ∂z
∂xi

=
∑

j
∂z
∂yj

∂yj
∂xi

Back-propagation: use of this chain rule to compute the derivatives in ∇Fi(w)
starting from the parameters of the last layer and going backward to the ones of
the first one.
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Partial Derivative and Back Propagation
Set of Partial Derivative Linked ∇Fi(w) = ∇ℓ(Yi , f (X i , w))

Loss: ∂Fi
∂fj (w) = ∂ℓ

∂fj (Yi , f (X i , w)).
Output layer: Softmax: ∂fj

∂z(O)
k

(w) is known.
Pre-activation at the output layer:

Parameters:
∂z(O)

j

∂W (O)
j,k

= hL
k(w) and

∂z(O)
j

∂b(O) = 1

Previous Layer:
∂z(O)

j

∂h(L)
k

= W (0)
j,k

Layer l : Activation: ∂h(l)
l

∂z(l)
j

= g (l)′(z (l)
j )

Pre-activation:
Parameters:

∂z(l)
j

∂W (l)
j,k

= hl−1
k (w) and

∂z(l)
j

∂b(l) = 1

Previous Layer:
∂z(l)

j

∂h(l−1)
k

= W l)
j,k

Recurs. comput. with the chain rule ⇒ efficient comput. of ∂Fi
∂W (.)

j,k
and ∂Fi

∂b(.) . 321
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Back-Propagation Algorithm
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Back-Propagation Algorithm
This set is sufficient to compute ∇Fi(w) = ∇ℓ(Yi , f (X i , w)).
Those partial derivatives can be computed in a backward-pass. . .
provided all the intermediate values of h and z have been computed in a
forward-pass
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SGD and DNN
Nearly all of deep learning is powered by SGD.

Stochastic Gradient Descent for DNN
Regular Stochastic Gradient Algorithm with

adaptive step size (ADAM, RMSProp. . . ) or fixed size with or without restarts,
batch size larger than 1 to use GPU parallelism bit not too large.

Initialization
SGD does not work without a good initialization scheme.
Key properties:

Break symmetry by random initialization around 0.
Order of magnitude at layer l given by 1/

√
Hl + Hl−1 provided the input is

normalized.
Examples:

Normal with N (0, 2/(Hl + Hl−1))
Uniform with U(−

√
6/(Hl + Hl−1),

√
6/(Hl + Hl−1))
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A Challenging Optimization Problem
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Challenges
Non convex optimization in very high dimension.
SGD can be stuck around critical point and the gradient may not diminishes.
Several local minima due to invariance by permutation and scaling.
Some local minima may be bad.

Natural concerns but it seems that for sufficiently large network most of
the local minima have a similar low cost value.
Larger networks may be easier to train than smaller ones. . .
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Regularization by Penalization or Projection

Penalization or Projection
Regularization on weights and not on bias.
Mostly ℓ1 or ℓ2.
Two possibilities:

penalization: pen(W ) = λ∥W∥
projection: ∥W∥ ≤ r

Projection seems to work better as it only affects large weights.
Avoid dead units.
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Regularization by Early Stopping
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Early Stopping
SGD optimizes Train error but true goal is Test error.
Early Stopping: stop SGD when test error rises.
In practice, store the parameters each time the test error improves and use the
best set of parameters in the end.

Most widely used of regularization in DL.
Number of iterations becomes a method parameter.
For least-squares regression and gradient descent, early stopping ≃ ridge
penalization on the weights
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Regularization by Dropout
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Idea: At each step, disable temporarily some connections by modifying temporarily
the weights.
Importance sampling idea:

W̃ (·)
j,k =

0 with probability p
1

(1−p)W (·)
j,k with probability 1− p

The average value of the weights are preserved.
Interpretation in term of ensemble methods (bagging)

No dropout after training!
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Regularization by Batch Normalization
Idea: Maintain the scales of the neuron outputs during training.

Batch Normalization Layer
During training, at each step and for each neuron

Compute the mean value on the current batch

µ
(l)
k = 1

m

m∑
i=1

h(l)
k (X i , w)

Compute the variance on the current batch

σ
2,(l)
k = 1

m

m∑
i=1

(h(l)
k (X i , w)− µ

(l)
k )2

Renormalize the entries h̃(l)
k (X i , w) = h(l)

k (X i , w)− µ
(l)
k

σ
(l)
k

Train (update) the scale and shift parameters:
y (l+1)

k = γ
(l+1)
k h̃(l)

k (X i , w) + β
(l+1)
k

Differentiability in γ and β: SGD to train them.
Final freeze of the mean and the variance yield the final NN.
Helps a lot! 329
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Regularization by Pooling
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Idea: replace some outputs by a statistic.

Pooling
Replace values by a local summary statistic.
Most classical summary choice: maximum.
(Sub)Gradient can still be computed.
Often combine with a subsampling to reduce the network size.

Most useful when output position matters as in images.
Very useful to deal with pictures of various sizes.
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Regularization by Data Augmentation
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Idea: Augment artificially the number of samples

Data Augmentation
Augment the dataset by generating new samples from original ones.
Often mild variations of existing one: shift, rotation, zoom, noise. . .

Often very efficient if the variations used correspond to specific problem
invariance.
Not so easy to generate completely new samples (GAN?) 331
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Convolutional Neural Networks

So
ur

ce
:

G
ér

on

Convolutional Neural Networks (CNN)
Reduce number of network weights:

Use only local computation (locality of information),
Use the same weights everywhere (translation invariance)

Keep the hierarchical structure.
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Convolutional Layer
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Convolution
Filter structure:

Output is computed using only neighbors (locality of information)
Same computation with respect to the neighbors position everywhere (translation
invariance)

Translation invariance ⇔ convolution

Subsampling of resulting output possible (stride) but issues with high frequency
part of filters.
Better subsampling stability after pooling.
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CNN Layers
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Maps and Layers
Each layer contains a stack of outputs (3D tensor).
Filter : convolution in 2D but free along the stack direction.
Further reduction of the weight number using 2D spatial convolution followed by
arbitrary 1D filter along stack.
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CNN

LeNet (LeCun, 89)

AlexNet (Krishevsky et al., 12)
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CNN
Stack of convolutional layers followed by a fully connected one.

Key is to be able to learn in less than a few days! 336
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Text as Sequences

A recurrent neural network (RNN) is a class of artificial neural network where connections
between units form a directed cycle. This creates an internal state of the network which allows
it to exhibit dynamic temporal behavior. Unlike feedforward neural networks, RNNs can use
their internal memory to process arbitrary sequences of inputs. This makes them applicable
to tasks such as unsegmented connected handwriting recognition or speech recognition.
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Sequences
Word = sequence of letters.
Text = sequence of letters/words.

Capitalize on this structure.
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Recurrent Neural Networks
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Input seen as a sequence.
Simple computational units with shared weights.
Information transfer through a context!

Several architectures!
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Automatic Translation
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Word vectors, RNN, stacked structure.
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Automatic Translation
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Encoder/Decoder structure
Much more complex structure: asymmetric, attention order. . .
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Automatic Captioning
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Much more complex structure: asymmetric, attention order. . .
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Text as Graph
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More than just sequential dependency.
Each word is related to (all the) other words.
Graph structure with words and directed relations between words.
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Attention
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Attention between words
Words encoded by hi at layer l .
Compute individual value for each word: vi = V lhi

Compute combined value for each word: h′
i =

∑
j wi ,jvj

(Self) Attention: weight wi ,j defined by
wi ,j = SoftMax

(〈
Qlhi , K lhj

〉)
Qlhi is called a query and K lhj a key.
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Transformer
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Block combining several attention heads and a classical MLP.

Encoder/Decoder Architecture
Combine several transformers and more MLP in a task-adapted architecture.
End-to-end training is not easy (initialization, optimization. . . ).
Initial embedding at token level rather than word level to cope with new words!
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Basic CNN Architecture

So
ur

ce
:

G
oo

df
el

lo
w

,B
en

gi
o

an
d

Co
ur

vi
lle

Basic choices
Nb of layers, size of layers,
Activation function, pooling. . .
Optimization algorithm!
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CNN Architecture
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CNN Architecture
Lot of freedom! 348
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DNN Architecture
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Other Architectures
Several structures:

Different tasks. . .
Different inputs.

Representation Learning is everywhere

Key: Differentiability by composition of basic differentiable units.
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Guess Who?

A game of questions
Game invented in 1979 in the UK.
Goal: discover the character chosen by your opponent before he discovers yours.
Optimal strategy: choose at each step the question that splits the remaining
characters in two groups with the least possible difference in size.
Information Theory!

Adaptive construction of a tree of questions!
Optimal tree of questions can be constructed without knowing the answers. . . but
during a game only a path of the tree is used. . .
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Classification And Regression Trees

Tree principle (CART by Breiman (85) / ID3 by Quinlan (86))
Construction of a recursive partition through a tree structured set of questions
(splits around a given value of a variable)
For a given partition, probabilistic approach and optimization approach yield the
same predictor!
A simple majority vote/averaging in each leaf
Quality of the prediction depends on the tree (the partition).
Intuitively:

small leaves lead to low bias, but large variance
large leaves lead to large bias, but low variance. . .

Issue: Minim. of the (penalized) empirical risk is NP hard!
Practical tree construction are all based on two steps:

a top-down step in which branches are created (branching)
a bottom-up in which branches are removed (pruning) 357
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CART
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Branching

X1 < .5?

X1 < .2? X2 < .7?

Yes No

Yes NoYes No

Greedy top-bottom approach
Start from a single region containing all the data
Recursively split those regions along a certain variable and a certain value

No regret strategy on the choice of the splits!
Heuristic: choose a split so that the two new regions are as homogeneous
possible. . .
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Branching
Various definition of inhomogeneous

CART: empirical loss based criterion (least squares/prediction error)
C(R, R) =

∑
x i ∈R

ℓ(yi , y(R)) +
∑
x i ∈R

ℓ(yi , y(R))

CART: Gini index (Classification)
C(R, R) =

∑
x i ∈R

p(R)(1− p(R)) +
∑
x i ∈R

p(R)(1− p(R))

C4.5: entropy based criterion (Information Theory)
C(R, R) =

∑
x i ∈R

H(R) +
∑
x i ∈R

H(R)

CART with Gini is probably the most used technique. . .
Other criterion based on χ2 homogeneity or based on different local predictors
(generalized linear models. . . )
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Branching

Choice of the split in a given region
Compute the criterion for all features and all possible splitting points
(necessarily among the data values in the region)
Choose the split minimizing the criterion

Variations: split at all categories of a categorical variable using a clever category
ordering (ID3), split at a restricted set of points (quantiles or fixed grid)
Stopping rules:

when a leaf/region contains less than a prescribed number of observations
when the region is sufficiently homogeneous. . .

May lead to a quite complex tree: over-fitting possible!
Additional pruning often use.
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Pruning

→

Model selection within the (rooted) subtrees of previous tree!
Number of subtrees can be quite large, but the tree structure allows to find the
best model efficiently.

Key idea
The predictor in a leaf depends only on the values in this leaf.
Efficient bottom-up (dynamic programming) algorithm if the criterion used
satisfies an additive property

C(T ) =
∑
L∈T

c(L)

Example: AIC / CV.
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Pruning

Examples of criterion satisfying this assumptions
AIC type criterion:

n∑
i=1

ℓ(yi , fL(x i )(x i)) + λ|T | =
∑
L∈T

∑
x i ∈L

ℓ(yi , fL(x i)) + λ


Simple cross-Validation (with (x ′

i , y ′
i ) a different dataset):

n′∑
i=1

ℓ(y ′
i , fL(x ′

i)) =
∑
L∈T

∑
x ′

i ∈L
ℓ(y ′

i , fL(x ′
i))


Limit over-fitting for a single tree.
Rk: almost never used when combining several trees. . .
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Pruning and Dynamic Algorithm

Key observation: at a given node, the best subtree is either the current node or
the union of the best subtrees of its child.

Dynamic programming algorithm
Compute the individual cost c(L) of each node (including the leaves)
Scan all the nodes in reverse order of depth:

If the node L has no child, set its best subtree T (L) to {L} and its current best
cost c ′(L) to c(L)
If the children L1 and L2 are such that c ′(L1) + c ′(L2) ≥ c(L), then prune the child
by setting T (L) = {L} and c ′(L) = c(L)
Otherwise, set T (L) = T (L1) ∪ T (L2) and c ′(L) = c ′(L1) + c ′(L2)

The best subtree is the best subtree T (R) of the root R.

Optimization cost proportional to the number of nodes and not the number of
subtrees!
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Extensions

Local estimation of the proportions or of the conditional mean.
Recursive Partitioning methods:

Recursive construction of a partition
Use of simple local model on each part of the partition

Examples:
CART, ID3, C4.5, C5
MARS (local linear regression models)
Piecewise polynomial model with a dyadic partition. . .

Book: Recursive Partitioning and Applications by Zhang and Singer
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CART
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CART: Pros and Cons

Pros
Leads to an easily interpretable model
Fast computation of the prediction
Easily deals with categorical features
(and missing values)

Cons
Greedy optimization
Hard decision boundaries
Lack of stability
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Ensemble methods

Lack of robustness for single trees.
How to combine trees?

Parallel construction
Construct several trees from bootstrapped samples and average the responses
(Bagging)
Add more randomness in the tree construction (Random Forests)

Sequential construction
Construct a sequence of trees by reweighting sequentially the samples according
to their difficulties (AdaBoost)
Reinterpretation as a stagewise additive model (Boosting)
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Ensemble methods
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Independent Average

Stability through averaging
Very simple idea to obtain a more stable estimator.
Vote/average of B predictors f1, . . . , fB obtained with independent datasets of
size n!

fagr = sign
(

1
B

B∑
b=1

fb

)
or fagr = 1

B

B∑
i=1

fb

Regression: E[fagr(x)] = E[fb(x)] and Var [fagr(x)] = Var[fb(x)]
B

Prediction: slightly more complex analysis
Averaging leads to variance reduction, i.e. stability!

Issue: cost of obtaining B independent datasets of size n!
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Bagging and Bootstrap
Strategy proposed by Breiman in 1994.

Stability through bootstrapping
Instead of using B independent datasets of size n, draw B datasets from a single
one using a uniform with replacement scheme (Bootstrap).
Rk: On average, a fraction of (1− 1/e) ≃ .63 examples are unique among each
drawn dataset. . .
The fb are still identically distributed but not independent anymore.
Price for the non independence: E[fagr(x)] = E[fb(x)] and

Var [fagr(x)] = Var [fb(x)]
B +

(
1− 1

B

)
ρ(x)

with ρ(x) = Cov [fb(x), fb′(x)] ≤ Var [fb(x)] with b ̸= b′.
Bagging: Bootstrap Aggregation

Better aggregation scheme exists. . .
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Randomized Predictors

Correlation leads to less variance reduction:
Var [fagr(x)] = Var [fb(x)]

B +
(

1− 1
B

)
ρ(x)

with ρ(x) = Cov [fb(x), fb′(x)] with b ̸= b′.
Idea: Reduce the correlation by adding more randomness in the predictor.

Randomized Predictors
Construct predictors that depend on a randomness source R that may be chosen
independently for all bootstrap samples.
This reduces the correlation between the estimates and thus the variance. . .
But may modify heavily the estimates themselves!

Performance gain not obvious from theory. . .
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Random Forest
Example of randomized predictors based on trees proposed by Breiman in 2001. . .

Random Forest
Draw B resampled datasets from a single one using a uniform with replacement
scheme (Bootstrap)
For each resampled dataset, construct a tree using a different randomly drawn
subset of variables at each split.

Most important parameter is the subset size:
if it is too large then we are back to bagging
if it is too small the mean of the predictors is probably not a good predictor. . .

Recommendation:
Classification: use a proportion of 1/

√p
Regression: use a proportion of 1/3

Sloppier stopping rules and pruning than in CART. . .
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Extra Trees

Extremely randomized trees!

Extra Trees
Variation of random forests.
Instead of trying all possible cuts, try only K cuts at random for each variable.
No bootstrap in the original article.

Cuts are defined by a threshold drawn uniformly in the feature range.
Much faster than the original forest and similar performance.

Theoretical performance analysis very challenging!
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Error Estimate and Variable Ranking

Out Of the Box Estimate
For each sample xi , a prediction can be made using only the resampled datasets
not containing xi . . .
The corresponding empirical prediction error is not prone to overfitting but does
not correspond to the final estimate. . .
Good proxy nevertheless.

Forests and Variable Ranking
Importance: Number of use or criterion gain at each split can be used to rank
the variables.
Permutation tests: Difference between OOB estimate using the true value of
the jth feature and a value drawn a random from the list of possible values.

Up to OOB error, the permutation technique is not specific to trees.
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AdaBoost

Idea: learn a sequence of predictors trained on weighted dataset with weights
depending on the loss so far.

Iterative scheme proposed by Schapire and Freud
Set w1,i = 1/n; t = 0 and f = 0
For t = 1 to t = T

ht = argminh∈H
∑n

i=1 wt,iℓ
0/1(yi , h(xi))

Set ϵt =
∑n

i=1 wt,iℓ
0/1(yi , ht(xi)) and αt = 1

2 log 1−ϵt
ϵt

let wt+1,i = wt,i e−αt yi ht (xi )

Zt+1
where Zt+1 is a renormalization constant such that∑n

i=1 wt+1,i = 1
f = f + αtht

Use f =
∑T

i=1 αtht

Intuition: wt,i measures the difficulty of learning the sample i at step t. . .
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AdaBoost

AdaBoost Intuition
ht obtained by minimizing a weighted loss

ht = argmin
h∈H

n∑
i=1

wt,iℓ
0/1(yi , h(x i))

Update the current estimate with
ft = ft−1 + αtht
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AdaBoost

AdaBoost Intuition
Weight wt,i should be large if x i is not well-fitted at step t − 1 and small
otherwise.
Use a weight proportional to e−yi ft−1(x i ) so that it can be recursively updated by

wt+1,i = wt,i ×
e−αtyi ht(x i )

Zt
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AdaBoost

AdaBoost Intuition
Set αt such that ∑

yi ht(xi)=1
wt+1,i =

∑
yi ht(xi)=−1

wt+1,i

or equivalently  ∑
yi ht(xi)=1

wt,i

 e−αt =

 ∑
yi ht(xi)=−1

wt,i

 eαt
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AdaBoost

AdaBoost Intuition
Using

ϵt =
∑

yi ht(xi)=−1
wt,i

leads to
αt = 1

2 log 1− ϵt
ϵt

and Zt = 2
√

ϵt(1− ϵt)
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AdaBoost

Exponential Stagewise Additive Modeling
Set t = 0 and f = 0.
For t = 1 to T ,

(ht , αt) = argminh,α

∑n
i=1 e−yi (f (x i )+αh(x i ))

f = f + αtht

Use f =
∑T

t=1 αtht

Greedy optimization of a classifier as a linear combination of T classifier for the
exponential loss.
Those two algorithms are exactly the same!
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Revisited AdaBoost

AdaBoost
Set t = 0 and f = 0.
For t = 1 to T ,

(ht , αt) = argminh,α

∑n
i=1 e−yi (f (x i )+αh(x i ))

f = f + αtht

Use f =
∑T

t=1 αtht

Greedy iterative scheme with only two parameters: the class H of weak
classifiers and the number of step T .
In the literature, one can read that Adaboost does not overfit! This is not true
and T should be chosen with care. . .
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Weak Learners
Weak Learner

Simple predictor belonging to a set H.
Easy to learn.
Need to be only slightly better than a constant predictor.

Weak Learner Examples
Decision Tree with few splits.
Stump decision tree with one split.
(Generalized) Linear Regression with few variables.

Boosting
Sequential Linear Combination of Weak Learner
Attempt to minimize a loss.

Example of ensemble method.
Link with Generalized Additive Modeling. 388
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Generic Boosting
Greedy optim. yielding a linear combination of weak learners.

Generic Boosting
Algorithm:

Set t = 0 and f = 0.
For t = 1 to T ,

(ht , αt) = argminh,α

∑n
i=1 ℓ(yi , f (xi ) + αh(xi ))

f = f + αtht

Use f =
∑T

t=1 αtht

AKA as Forward Stagewise Additive Modeling
AdaBoost with ℓ(y , h) = e−yh

LogitBoost with ℓ(y , h) = log2(1 + e−yh)
L2Boost with ℓ(y , h) = (y − h)2 (Matching pursuit)
L1Boost with ℓ(y , h) = |y − h|
HuberBoost with ℓ(y , h) = |y − h|21|y−h|<ϵ + (2ϵ|y − h| − ϵ2)1|y−h|≥ϵ

Simple principle but no easy numerical scheme except for AdaBoost and
L2Boost. . . 389
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Gradient Boosting

Issue: At each boosting step, one need to solve

(ht , αt) = argmin
h,α

n∑
i=1

ℓ(yi , f (xi) + αh(xi)) = L(y , f + αh)

Idea: Replace the function by a first order approximation
L(y , f + αh) ∼ L(y , f ) + α⟨∇L(y , f ), h⟩

Gradient Boosting
Replace the minimization step by a gradient descent step:

Choose ht as the best possible descent direction in H according to the approximation
Choose αt that minimizes L(y , f + αht) (line search)

Rk: Exact gradient direction often not possible!
Need to find efficiently this best possible direction. . .
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Best Direction
Gradient direction:

∇L(y , f ) with ∇iL(y , f ) = ∂

df (xi)

( n∑
i ′=1

ℓ(yi ′ , f (xi ′))
)

= ∂

df (xi)
ℓ(yi , f (xi))

Best Direction within H
Direct formulation:

ht ∈ argmin
h∈H

∑n
i=1∇iL(y , f )h(xi)√∑n

i=1 |h(xi)|2

(
= ⟨∇L(y , f ), h⟩

∥h∥

)
Equivalent (least-squares) formulation: ht = −βth′

t with

(βt , h′
t) ∈ argmin

(β,h)∈R×H

n∑
i=1
|∇iL(y , f )− βh(xi)|2

(
= ∥∇L− βh∥2

)
Choice of the formulation will depend on H. . .
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Gradient Boosting of Classifiers
Assumptions:

h is a binary classifier, h(x) = ±1 and thus ∥h∥2 = n.
ℓ(y , f (x)) = l(yf (x)) so that ∇iL(y , f ) = yi l ′(yi f (xi)).

Best direction ht in H using the first formulation
ht = argmin

h∈H

∑
i
∇iL(y , f )h(xi)

AdaBoost Type Minimization
Best direction rewriting

ht = argmin
h∈H

∑
i

l ′(yi f (xi))yih(xi)

= argmin
h∈H

∑
i

(−l ′)(yi f (xi))(2ℓ0/1(yi , h(xi))− 1)

AdaBoost type weighted loss minimization as soon as (−l ′)(yi f (xi) ≥ 0:
ht = argmin

∑
i

(−l ′)(yi f (xi))ℓ0/1(yi , h(xi))
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Gradient Boosting of Classifiers

Gradient Boosting
(Gradient) AdaBoost: ℓ(y , f ) = exp(−yf )

l(x) = exp(−x) and thus (−l ′)(yi f (xi)) = e−yi f (xi ) ≥ 0
ht is the same as in AdaBoost
αt also. . . (explicit computation)

LogitBoost: ℓ(y , f ) = log2(1 + e−yf )
l(x) = log2(1 + e−x ) and thus (−l ′)(yi f (xi)) = e−yi f (xi )

log(2)(1+e−yi f (xi )) ≥ 0
Less weight on misclassified samples than in AdaBoost. . .
No explicit formula for αt (line search)
Different path than with the (non-computable) classical boosting!

SoftBoost: ℓ(y , f ) = max(1− yf , 0)
l(x) = max(1− x , 0) and (−l ′)(yi f (xi)) = 1yi f (xi )≤1 ≥ 0
Do not use the samples that are sufficiently well classified!
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Gradient Boosting and Least Squares

Least squares formulation is often preferred when |h| ≠ 1.

Least Squares Gradient Boosting
Find ht = −βth′

t with

(βt , h′
t) ∈ argmin

(β,h)∈R×H

n∑
i=1
|∇iL(y , f )− βh(xi)|2

Classical least squares if H is a finite dimensional vector space!
Not a usual least squares in general but a classical regression problem!

Numerical scheme depends on the loss. . .
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Gradient Boosting and Least Squares
Examples

Gradient L2Boost:
ℓ(y , f ) = |y − f |2 and ∇iL(yi , f (xi)) = −2(yi − f (xi)):

(βt , h′
t) ∈ argmin

(β,h)∈R×H

n∑
i=1
|2yi − 2(f (xi)− β/2h(xi))|2

αt = −βt/2
Equivalent to classical L2-Boosting

Gradient L1Boost:
ℓ(y , f ) = |y − f | and ∇iL(yi , f (xi)) = −sign(yi − f (xi)):

(βt , h′
t) ∈ argmin

(β,h)∈R×H

n∑
i=1
| − sign(yi − f (xi))− βh(xi)|2

Robust to outliers. . .

Classical choice for H: Linear Model in which each h depends on a small subset of
variables.
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Gradient Boosting and Least Squares
Least squares formulation can also be used in classification!
Assumption:

ℓ(y , f (x)) = l(yf (x)) so that ∇iL(yi , f (xi)) = yi l ′(yi f (xi))

Least Squares Gradient Boosting for Classifiers
Least Squares formulation:

(βt , h′
t) ∈ argmin

(β,h)∈R×H

n∑
i=1
|yi l ′(yi f (xi))− βh(xi)|2

Equivalent formulation:

(βt , h′
t) ∈ argmin

(β,h)∈R×H

n∑
i=1
|(−l ′)(yi f (xi))− (−β)yih(xi))|2

Intuition: Modify misclassified examples without modifying too much the
well-classified ones. . .
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Boosting Variations

Stochastic Boosting
Idea: change the learning set at each step.
Two possible reasons:

Optimization over all examples too costly
Add variability to use an averaged solution

Two different samplings:
Use sub-sampling, if you need to reduce the complexity
Use re-sampling, if you add variability. . .

Stochastic Gradient name mainly used for the first case. . .

Second Order Boosting
Replace the first order approximation by a second order one and avoid the line
search. . .
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XGBoost

Very efficient boosting algorithm proposed by Chen and Guestrin in 2014.

eXtreme Gradient Boosting
Gradient boosting for a (penalized) smooth loss using a second order
approximation and the least squares approximation.
Reduced stepsize with a shrinkage of the optimal parameter.
Feature subsampling.
Weak learners:

Trees: limited depth, penalized size and parameters, fast approximate best split.
Linear model: elastic-net penalization.

Excellent baseline!
Lightgbm and CatBoost are also excellent similar choices!
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Ensemble Methods
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Ensemble Methods
Averaging: combine several models by averaging (bagging, random forests,. . . )
Boosting: construct a sequence of (weak) classifiers (XGBoost, LightGBM,
CatBoost)
Stacking: use the outputs of several models as features (tpot. . . )

Loss of interpretability but gain in performance
Beware of overfitting with stacking: the second learning step should be done with
fresh data.
No end to end optimization as in deep learning!
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What is possible with data without labels?
To group them?
To visualize them in a 2 dimensional space?
To generate more data?
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Marketing and Groups
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To group them?
Data: Base of customer data containing their properties and past buying records
Goal: Use the customers similarities to find groups.
Clustering: propose an explicit grouping of the customers
Visualization: propose a representation of the customers so that the groups are
visible. (Bonus)
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Image and Visualization
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To visualize them?
Data: Images of a single object
Goal: Visualize the similarities between images.
Visualization: propose a representation of the images so that similar images are
close.
Clustering: use this representation to cluster the images. (Bonus)
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Images and Generation
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To generate more data?
Data: Images.
Goal: Generate images similar to the ones in the dataset.
Generative Modeling: propose (and train) a generator.
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Machine Learning
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A definition by Tom Mitchell
A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E.
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Supervised Learning

Experience, Task and Performance measure
Training data : D = {(X 1, Y1), . . . , (Xn, Yn)} (i.i.d. ∼ P)
Predictor: f : X → Y measurable
Cost/Loss function: ℓ(f (X ), Y ) measure how well f (X ) predicts Y
Risk:

R(f ) = E[ℓ(Y , f (X ))] = EX
[
EY |X [ℓ(Y , f (X ))]

]
Often ℓ(f (X ), Y ) = ∥f (X )− Y ∥2 or ℓ(f (X ), Y ) = 1Y ̸=f (X)

Goal
Learn a rule to construct a predictor f̂ ∈ F from the training data Dn s.t. the
risk R(f̂ ) is small on average or with high probability with respect to Dn.
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Unsupervised Learning

Experience, Task and Performance measure
Training data : D = {X 1, . . . , Xn} (i.i.d. ∼ P)
Task: ???
Performance measure: ???

No obvious task definition!

Tasks for this lecture
Dimension reduction: construct a map of the data in a low dimensional space
without distorting it too much.
Clustering (or unsupervised classification): construct a grouping of the data
in homogeneous classes.
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Dimension Reduction

Training data : D = {X 1, . . . , Xn} ∈ X n (i.i.d. ∼ P)
Space X of possibly high dimension.

Dimension Reduction Map
Construct a map Φ from the space X into a space X ′ of smaller dimension:

Φ : X → X ′

X 7→ Φ(X )

Map can be defined only on the dataset.

Motivations
Visualization of the data
Dimension reduction (or embedding) before further processing
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Dimension Reduction

Need to control the distortion between D and Φ(D) = {Φ(X 1), . . . , Φ(Xn)}

Distortion(s)
Reconstruction error:

Construct Φ̃ from X ′ to X
Control the error between X and its reconstruction Φ̃(Φ(X ))

Relationship preservation:
Compute a relation X i and X j and a relation between Φ(X i) and Φ(X j)
Control the difference between those two relations.

Lead to different constructions. . . .
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Clustering
Training data : D = {X 1, . . . , Xn} ∈ X n (i.i.d. ∼ P)
Latent groups?

Clustering
Construct a map f from D to {1, . . . , K} where K is a number of classes to be
fixed:

f : X i 7→ ki

Similar to classification except:
no ground truth (no given labels)
label only elements of the dataset!

Motivations
Interpretation of the groups
Use of the groups in further processing
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Clustering

Need to define the quality of the cluster.
No obvious measure!

Clustering quality
Inner homogeneity: samples in the same group should be similar.
Outer inhomogeneity: samples in two different groups should be different.

Several possible definitions of similar and different.
Often based on the distance between the samples.
Example based on the Euclidean distance:

Inner homogeneity = intra-class variance,
Outer inhomogeneity = inter-class variance.

Beware: choice of the number of clusters K often complex!
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Generative Modeling
Training data : D = {(X 1, Y 1), . . . , (Xn, Y n)} ∈ (X × Y)n (i.i.d. ∼ P)
Same kind of data than for supervised learning if Y ̸= ∅.

Generative Modeling
Construct a map G from the product of Y and a randomness source Ω to X

G :Y × Ω→ X
(Y , ω) 7→ X

Unconditional model if Y = ∅. . .

Motivation
Generate plausible novel conditional samples based on a given dataset.

Sample Quality
Related to the proximity between the law of G(Y , ω) and the law of X |Y .

Most classical choice is the Kullback-Leibler divergence.
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Generative Modeling

Ingredients
Generator Fθ(Y , ω) and cond. density prob. pθ(X |Y ) (Explicit vs implicit link)
Simple / Complex / Approximate estimation. . .

Some Possible Choices
Probabilistic model Generator Estimation

Base Simple (parametric) Explicit Simple (ML)
Flow Image of simple model Explicit Simple (ML)

Factorization Factorization of simple model Explicit Simple (ML)
VAE Simple model with latent var. Explicit Approximate (ML)
EBM Arbitrary Implicit (MCMC) Complex (ML/score/discrim.)

Diffusion Continuous noise Implicit (MCMC) Complex (score)
Discrete Noise with latent var. Explicit Approximate (ML)

GAN Implicit Explicit Complex (Discrimination)

SOTA: Diffusion based approach!

ML: Maximum Likelihood/VAE: Variational AutoEncoder/EBM: Energy Based Model/MCMC: Monte Carlo Markov Chain/GAN: Generative Aversarial
Network 419
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Bonus Task: Representation Learning

General observation: most data do not have a label !
Example: The number of images on which someone has described the content of
the image is a tiny fraction of the images online.
Labeling is very expensive and time consuming
A lot of information can be extracted from the structure of the data, before seeing
any label.

How can we leverage the large quantity of un-labeled data?
Learn relevant features (= representations) in an unsupervised fashion
Use those features to solve a supervised task with a fraction of labeled data.

Semi-supervised framework
↬ Very useful in practice, for images, time series, text.
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Semi-supervised Framework
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Semu-Supervised Framework
With representation learned in an unsupervised fashion + a simple linear model,
one can achieve the same performance with 10% of data labeled than with a fully
annotated dataset.

Complementary regularization based approaches also exist.
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Unsupervised Learning is a Versatile Approach!

Except for generative modeling, the learner is always right
A subjective measure of performance
Subjective choices for the algorithmic constraints (e.g., the type of transformation
of the data we allow for low-dimensional representation, type of groups in
clustering)
⇒ Very difficult or impossible to tell which is the best method.

Yet:
Extremely important in practice:

90-99% of the data is un-labeled!
the tasks themselves are fundamental

Huge success in various fields (NLP, images. . . )
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Unsupervised Learning is a Versatile Approach!

Lecture goals for the three main tasks
Discussing possible choices of measures of performance and algorithmic
constraints
Understand the correspondences between those choices and a variety of classical
algorithms
For the simplest algorithms (PCA, k-means), get a precise mathematical
understanding of the learning process.
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What’s a group?
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No simple or unanimous definition!
Require a notion of similarity/difference. . .

Three main approaches
A group is a set of samples similar to a prototype.
A group is a set of samples that can be linked by contiguity.
A group can be obtained by fusing some smaller groups. . .
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Prototype Approach
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Prototype Approach
A group is a set of samples similar to a prototype.
Most classical instance: k-means algorithm.
Principle: alternate prototype choice for the current groups and group update
based on those prototypes.

Number of groups fixed at the beginning
No need to compare the samples between them! 427



Unsupervised Learning:
Dimension Reduction and
Clustering

Contiguity Approach
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Contiguity Approach
A group is the set of samples that can be linked by contiguity.
Most classical instance: DBScan
Principle: group samples by contiguity if possible (proximity and density)

Some samples may remain isolated.
Number of groups controlled by the scale parameter.

DBSCAN: Density-Based Spatial Clustering of Applications with Noise 428
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Agglomerative Approach
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Agglomerative Approach
A group can be obtained by fusing some smaller groups. . .
Hierachical clustering principle: sequential merging of groups according to a best
merge criterion

Numerous variations on the merging criterion. . .
Number of groups chosen afterward.
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Choice of the method and of the number of groups
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Criterion not necessarily explicit!
No cross validation possible
Choice of the number of groups: a priori, heuristic, based on the final usage. . .
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DISCLAIMER: Even if they are used everywhere beware of the usual
distances in high dimension!

Dimensionality Curse
Previous approaches based on distances.
Surprising behavior in high dimension: everything is ((often) as) far away.
Beware of categories. . .
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Dimensionality Curse
DISCLAIMER: Even if they are used everywhere beware of the usual
distances in high dimension!

High Dimensional Geometry Curse
Folks theorem: In high dimension, everyone is alone.
Theorem: If X 1, . . . , Xn in the hypercube of dimension d such that their
coordinates are i.i.d then

d−1/p
(
max ∥X i − X j∥p −min ∥X i − X j∥p

)
= 0 + OP

√ log n
d


min ∥X i − X j∥p
max ∥X i − X j∥p

= 1 + OP

√ log n
d

 .

When d is large, all the points are almost equidistant. . .
Nearest neighbors are meaningless!
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Visualization and Dimension Reduction
How to view a dataset in high dimension !
High dimension: dimension larger than 2!
Projection onto a 2D space.
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Simple formula: X̃ = P(X −m)

How to chose P?
Maximising the dispersion of the points?
Allowing to well reconstruct X from X̃?
Preserving the relationship between the X through those between the X̃?

The 3 approaches yield the same solution!
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Reconstruction Approaches

Reconstruction Approaches
Learn a formula to encode and one formula to decode.
Auto-encoder structure

Yields a formula for new points.
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Relationship Preservation Approaches

Relationship Preservation Approaches
Based on the definition of the relationship notion (in both worlds).
Huge flexibility

Not always yields a formula for new points.
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Choices of Methods and Dimension
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No Better Choice?
Different criterion for different methods: impossible to use cross-validation.
The larger the dimension the easier is to be faithful!
In visualization, dimension 2 is the only choice.
Heuristic criterion for the dimension choice: elbow criterion (no more gain),
stability. . .

Dimension Reduction is rarely used standalone but rather as a step in a
predictive/prescriptive method.
The dimension becomes an hyper-parameter of this method. 439
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Representation Learning
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Representation Learning
How to transform arbitrary objects into numerical vectors?
Objects: Categorical variables, Words, Images/Sounds. . .

The two previous dimension reduction approaches can be used (given possibly a
first simple high dimensional representation)
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Generative Modeling
Generate new samples similar to the ones in an original dataset.
Generation may be conditioned by a input.

Key for image generation. . . and chatbot! 442
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Density Estimation and Simulation
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Heuristic: If we can estimate the (conditional) law P of the data and can
simulate it, we can obtain new samples similar to the input ones.

Estimation and Simulation
How to estimate the density?
How to simulate the estimate density?

Other possibilities?
443
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Simple Estimation and Simple Simulation
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Parametric Model, Image and Factorization
Use

a simple parametric model,. . .
or the image of a parametric model (flow),. . .
or a factorization of a parametric model (recurrent model)

as they are simple to estimate and to simulate.

Estimation by Maximum Likelihood principle.
Recurrent models are used in Large Language Models! 444
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Complex Estimation and Simple Simulation
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Latent Variable
Introduce a latent variable Z from which X is easy to sample.
Estimation based on approximate Maximum Likelihood (VAE/ELBO)

The latent variable Z often lives in a smaller dimensional space.
It can be generated by a simple method (or a more complex one. . . ).
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Complex Estimation and Complex Simulation
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Monte Carlo Markov Chain
Rely on much more complex probability model. . .
which can only be simulated numerically.
Often combined with noise injection to stabilizes the numerical scheme
(Diffusion).

Much more expensive to simulate than with Latent Variable approaches.
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Complex (non)Estimation and Simple Simulation
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Generative Adversarial Network
Bypass the density estimation problem, by transforming the problem into a
competition between the generator and a discriminator.
The better the generator, the harder it is for the generator to distinguish true
samples from synthetic ones.
No explicit density!

Fast simulator but unstable training. . . 447
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Dimension Reduction

Training data : D = {X 1, . . . , Xn} ∈ X n (i.i.d. ∼ P)
Space X of possibly high dimension.

Dimension Reduction Map
Construct a map Φ from the space X into a space X ′ of smaller dimension:

Φ : X → X ′

X 7→ Φ(X )

Criterion
Reconstruction error
Relationship preservation
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How to Simplify?
A Projection Based Approach

Observations: X 1, . . . , Xn ∈ Rd

Simplified version: Φ(X 1), . . . , Φ(Xn) ∈ Rd with Φ an affine projection preserving
the mean Φ(X ) = P(X −m) + m with P⊤ = P = P2 and m = 1

n
∑

i X i .

How to choose P?
Inertia criterion: max

P

∑
i ,j
∥Φ(X i)− Φ(X j)∥2?

Reconstruction criterion:
min

P

∑
i
∥X i − Φ(X i)∥2?

Relationship criterion:
min

P

∑
i ,j
|(X i −m)⊤(X j −m)− (Φ(X i)−m)⊤(Φ(X j)−m)|2?

Rk: Best solution is P = I! Need to reduce the rank of the projection to
d ′ < d . . . 451



Unsupervised Learning:
Dimension Reduction and
Clustering

Inertia criterion
Heuristic: a good representation is such that the projected points are far apart.

Two views on inertia
Inertia:

I = 1
2n2

∑
i ,j
∥X i − X j∥2 = 1

n

n∑
i=1
∥X i −m∥2

2 times the mean squared distance to the mean = Mean squared distance
between individual

Inertia criterion (Principal Component Analysis)

Criterion: max
P

∑
i ,j

1
2n2 ∥PX i − PX j∥2 = max

P

1
n
∑

i
∥PX i −m∥2

Solution: Choose P as a projection matrix on the space spanned by the d ′ first
eigenvectors of Σ = 1

n
∑

i(X i −m)(X i −m)⊤
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First Component of the PCA
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X̃ = m + a⊤(X −m)a with ∥a∥ = 1

Inertia: 1
n

n∑
i=1

a⊤(X i −m)(X i −m)⊤a

Principal Component Analysis: optimization of the projection

Maximization of Ĩ = 1
n

n∑
i=1

a⊤(X i −m)(X i −m)⊤a = a⊤Σa with

Σ = 1
n

n∑
i=1

(X i −m)(X i −m)⊤ the empirical covariance matrix.

Explicit optimal choice given by the eigenvector of the largest eigenvalue of Σ.
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PCA
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Principal Component Analysis : sequential optimization of the projection
Explicit optimal solution obtain by the projection on the eigenvectors of the
largest eigenvalues of Σ.
Projected inertia given by the sum of those eigenvalues.

Often fast decay of the eigenvalues: some dimensions are much more important
than others.
Not exactly the curse of dimensionality setting. . .
Yet a lot of small dimension can drive the distance!
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Reconstruction Criterion

Heuristic: a good representation is such that the projected points are close to the
original ones.

Reconstruction Criterion

Criterion: min
P

∑
i

1
n∥X i − (P(X i −m) + m)∥2 = min

P

1
n
∑

i
∥(I − P)(X i −m)∥2

Solution: Choose P as a projection matrix on the space spanned by the d ′ first
eigenvectors of Σ = 1

n
∑

i(X i −m)(X i −m)⊤

Same solution with a different heuristic!
Proof (Pythagora):∑

i
∥X i −m∥2 =

∑
i

(
∥P(X i −m)∥2 + ∥(I − P)(X i −m)∥2

)
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PCA, Reconstruction and Distances
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Close projection doesn’t mean close individuals!
Same projections but different situations.
Quality of the reconstruction measured by the angle with the projection space!
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Relationship Criterion

Heuristic: a good representation is such that the projected points scalar products
are similar to the original ones.

Relationship Criterion (Multi Dimensional Scaling)
Criterion: min

P

∑
i ,j
|(X i −m)⊤(X j −m)− (Φ(X i)−m)⊤(Φ(X j)−m)|2

Solution: Choose P as a projection matrix on the space spanned by the d ′ first
eigenvectors of Σ = 1

n
∑

i(X i −m)(X i −m)⊤

Same solution with a different heuristic!
Much more involved justification!
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Link with SVD
PCA model: X −m ≃ P(X −m)
Prop: P = VV ⊤ with V an orthormal family in dimension d of size d ′.
PCA model with V : X −m ≃ VV ⊤(X −m) where X̃ = V ⊤(X −m) ∈ Rd ′

Row vector rewriting: X⊤ −m⊤ ≃ X̃⊤V ⊤

Matrix Rewriting and Low Rank Factorization
Matrix rewriting

X 1
⊤ −m⊤

...

...
Xn

⊤ −m⊤

(n×d)

≃

X̃ 1
⊤

...

...
X̃n

⊤

(n×d ′)

V⊤

(d ′×d)

Low rank matrix factorization! (Truncated SVD solution. . . )
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SVD

SVD Decomposition
Any matrix n × d matrix A can be decomposed as

A

(n×d)

= U

(n×n)

D

(n×d)

W⊤

(d×d)

with U and W two orthonormal matrices and D a diagonal matrix with decreasing
values.
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SVD
Low Rank Approximation

The best low rank approximation or rank r is obtained by restriction of the
matrices to the first r dimensions:

A

(n×d)

≃ Ur

(n×r)

Dr ,r
(r×r)

Wr
⊤

(r×d)

for both the operator norm and the Frobenius norm!
PCA: Low rank approximation with Frobenius norm, d ′ = r and

X 1
⊤ −m⊤

...

...
Xn

⊤ −m⊤

↔ A,


X̃ 1

⊤

...

...
X̃n

⊤

↔ UrDr ,r , V⊤ ↔W⊤
r
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SVD

SVD Decompositions
Recentered data:

R =


X 1

⊤ −m⊤

...
Xn

⊤ −m⊤

 = UDW ⊤

Covariance matrix:
Σ = R⊤R = WD⊤DW

with D⊤D diagonal.
Gram matrix (matrix of scalar products):

G = RR⊤ = UDD⊤U
with DD⊤ diagonal.

Those are the same U, W and D, hence the link between all the approaches.
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Reconstruction Error Approach

Goal
Construct a map Φ from the space X into a space X ′ of smaller dimension:

Φ : X → X ′

X 7→ Φ(X )
Construct Φ̃ from X ′ to X
Control the error between X and its reconstruction Φ̃(Φ(X ))

Canonical example for X ∈ Rd : find Φ and Φ̃ in a parametric family that minimize
1
n

n∑
i=1
∥X i − Φ̃(Φ(X i))∥2
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Principal Component Analysis

X ∈ Rd and X ′ = Rd ′

Affine model X ∼ m +
∑d ′

l=1 X ′(l)V (l) with (V (l)) an orthonormal family.
Equivalent to:

Φ(X ) = V ⊤(X −m) and Φ̃(X ′) = m + V X ′

Reconstruction error criterion:
1
n

n∑
i=1
∥X i − (m + VV ⊤(X i −m)∥2

Explicit solution: m is the empirical mean and V is any orthonormal basis of the
space spanned by the d ′ first eigenvectors (the one with largest eigenvalues) of
the empirical covariance matrix 1

n
∑n

i=1(X i −m)(X i −m)⊤.
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Principal Component Analysis

PCA Algorithm
Compute the empirical mean m = 1

n
∑n

i=1 X i

Compute the empirical covariance matrix 1
n
∑n

i=1(X i −m)(X i −m)⊤.
Compute the d ′ first eigenvectors of this matrix: V (1), . . . , V (d ′)

Set Φ(X ) = V ⊤(X −m)

Complexity: O(n(d + d2) + d ′d2)
Interpretation:

Φ(X ) = V ⊤(X −m): coordinates in the restricted space.
V (i): influence of each original coordinates in the ith new one.

Scaling: This method is not invariant to a scaling of the variables! It is custom to
normalize the variables (at least within groups) before applying PCA.
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Decathlon

466



Unsupervised Learning:
Dimension Reduction and
Clustering

Swiss Roll
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Principal Component Analysis

Decathlon Decathlon Swiss Roll
Renormalized
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Multiple Factor Analysis
PCA assumes X = Rd !
How to deal with categorical values?
MFA = PCA with clever coding strategy for categorical values.

Categorical value code for a single variable
Classical redundant dummy coding:

X ∈ {1, . . . , V } 7→ P(X ) =
(
1X=1, . . . , 1X=V

)⊤
Compute the mean (i.e. the empirical proportions): P = 1

n
∑n

i=1 P(X i)

Renormalize P(X ) by 1/
√

(V − 1)P:

P(X ) =
(
1X=1, . . . 1X=V

)
7→

 1X=1√
(V − 1)P1

, . . . ,
1X=V√

(V − 1)PV
= Pr (X )


χ2 type distance!
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Multiple Factor Analysis

PCA becomes the minimization of
1
n

n∑
i=1
∥Pr (X i)− (m + VV ⊤(Pr (X i)−m))∥2

= 1
n

n∑
i=1

V∑
v=1

∣∣∣1X i =v − (m′ +
∑d ′

l=1 V (l)⊤(P(X i)−m′)V (l ,v))
∣∣∣2

(V − 1)Pv

Interpretation:
m′ = P
Φ(X ) = V ⊤(P r (X )−m): coordinates in the restricted space.
V (l) can be interpreted s as a probability profile.

Complexity: O(n(V + V 2) + d ′V 2)
Link with Correspondence Analysis (CA)
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Multiple Factor Analysis

MFA Algorithm
Redundant dummy coding of each categorical variable.
Renormalization of each block of dummy variable.
Classical PCA algorithm on the resulting variables

Interpretation as a reconstruction error with a rescaled/χ2 metric.
Interpretation:

Φ(X ) = V ⊤(P r (X )−m): coordinates in the restricted space.
V (l): influence of each modality/variable in the ith new coordinates.

Scaling: This method is not invariant to a scaling of the continuous variables! It
is custom to normalize the variables (at least within groups) before applying PCA.
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Multiple Factor Analysis
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Non Linear PCA

PCA Model
PCA: Linear model assumption

X ≃ m +
d ′∑

l=1
X ′,(l)V (l) = m + V X ′

with
V (l) orthonormal
X ′,(l) without constraints.

Two directions of extension:
Other constraints on V (or the coordinates in the restricted space): ICA, NMF,
Dictionary approach
PCA on a non-linear image of X : kernel-PCA

Much more complex algorithm!
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Non Linear PCA

ICA (Independent Component Analysis)
Linear model assumption

X ≃ m +
d ′∑

l=1
X ′,(l)V (l) = m + V X ′

with
V (l) without constraints.
X ′,(l) independent

NMF (Non Negative Matrix Factorization)
(Linear) Model assumption

X ≃
d ′∑

l=1
X ′,(l)V (l) = V X ′

with
V (l) non-negative
X ′,(l) non-negative.
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Non Linear PCA
Dictionary

(Linear) Model assumption

X ≃ m +
d ′∑

l=1
X ′,(l)V (l) = m + V X ′

with
V (l) without constraints
X ′ sparse (with a lot of 0)

kernel PCA
Linear model assumption

Ψ(X −m) ≃
d ′∑

l=1
X ′,(l)V (l) = V X ′

with
V (l) orthonormal
X ′

l without constraints.
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Non Linear PCA

Decathlon

Swiss Roll

ICA NMF Kernel PCA
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Auto Encoder

Deep Auto Encoder
Construct a map Φ with a NN from the space X into a space X ′ of smaller
dimension:

Φ : X → X ′

X 7→ Φ(X )
Construct Φ̃ with a NN from X ′ to X
Control the error between X and its reconstruction Φ̃(Φ(X )):

1
n

n∑
i=1
∥X i − Φ̃(Φ(X i))∥2

Optimization by gradient descent.
NN can be replaced by another parametric function. . .
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Deep Auto Encoder

Shallow Auto Encoder Deep Auto Encoder
(PCA)
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Pairwise Relation
Different point of view!
Focus on pairwise relation R(X i , X j).

Distance Preservation
Construct a map Φ from the space X into a space X ′ of smaller dimension:

Φ : X → X ′

X 7→ Φ(X ) = X ′

such that
R(X i , X j) ∼ R′(X ′

i , X ′
j)

Most classical version (MDS):
Scalar product relation: R(X i , X j) = (X i −m)⊤(X j −m)
Linear mapping X ′ = Φ(X ) = V ⊤(X −m).
Euclidean scalar product matching:

1
n2

n∑
i=1

n∑
j=1

∣∣∣(X i −m)⊤(X j −m)− (X ′
i)

⊤X ′
j

∣∣∣2
Φ often defined only on D. . . 480
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MultiDimensional Scaling

MDS Heuristic
Match the scalar products:

1
n2

n∑
i=1

n∑
j=1

∣∣∣(X i −m)⊤(X j −m)− X i
′⊤X ′

j

∣∣∣2
Linear method: X ′ = U⊤(X −m) with U orthonormal

Beware: X can be unknown, only the scalar products are required!
Resulting criterion: minimization in U⊤(X i −m) of

1
n2

n∑
i=1

n∑
j=1

∣∣∣(X i −m)⊤(X j −m)− (X i −m)⊤UU⊤(X j −m)
∣∣∣2

without using explicitly X in the algorithm. . .
Explicit solution obtained through the eigendecomposition of the know Gram
matrix (X i −m)⊤(X j −m) by keeping only the d ′ largest eigenvalues.
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MultiDimensional Scaling

In this case, MDS yields the same result as the PCA (but with different inputs,
distance between observation vs correlations)!
Explanation: Same SVD problem up to a transposition:

MDS
X (n)

⊤X (n) ∼ X (n)
⊤UU⊤X (n)

PCA
X (n)X (n)

⊤ ∼ U⊤X (n)X (n)
⊤U

Complexity: PCA O((n + d ′)d2) vs MDS O((d + d ′)n2). . .
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MultiDimensional Scaling

Decathlon

Swiss Roll

PCA MDS
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Generalized MDS

Preserving the scalar products amounts to preserve the Euclidean distance.
Easier generalization if we work in terms of distance!

Generalized MDS
Generalized MDS:

Distance relation: R(X i , X j) = d(X i , X j)
Linear mapping X ′ = Φ(X ) = V ⊤(X −m).
Euclidean matching:

1
n2

n∑
i=1

n∑
j=1

∣∣d(X i , X j)− d ′(X ′
i , X ′

j)
∣∣2

Strong connection (but no equivalence) with MDS when d(x , y) = ∥x − y∥2!
Minimization: Simple gradient descent can be used (can be stuck in local
minima).
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ISOMAP

MDS: equivalent to PCA (but more expensive) if d(x , y) = ∥x − y∥2!
ISOMAP: use a localized distance instead to limit the influence of very far point.

ISOMAP
For each point X i , define a neighborhood Ni (either by a distance or a number of
points) and let

d0(X i , X j) =
{

+∞ if X j /∈ Ni

∥X i − X j∥2 otherwise
Compute the shortest path distance for each pair.
Use the MDS algorithm with this distance
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ISOMAP

Decathlon Swiss Roll
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Random Projection

Random Projection Heuristic
Draw at random d ′ unit vector (direction) Ui .
Use X ′ = U⊤(X −m) with m = 1

n
∑n

i=1 X i

Property: If X lives in a space of dimension d ′′, then, as soon as, d ′ ∼ d ′′ log(d ′′),

∥X i − X j∥2 ∼
d
d ′ ∥X

′
i − X ′

j∥2

Do not really use the data!
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Random Projection

Decathlon Swiss Roll
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t-Stochastic Neighbor Embedding
SNE heuristic

From X i ∈ X , construct a set of conditional probability:

Pj|i = e−∥X i −X j ∥2/2σ2
i∑

k ̸=i e−∥X i −Xk∥2/2σ2
i

Pi |i = 0

Find X ′
i in Rd ′ such that the set of conditional probability:

Qj|i = e−∥X ′
i −X ′

j ∥2/2σ2
i∑

k ̸=i e−∥X ′
i −X ′

k∥2/2σ2
i

Qi |i = 0

is close from P.

t-SNE: use a Student-t term (1 + ∥X ′
i − X ′

j∥2)−1 for X ′
i

Minimize the Kullback-Leibler divergence (
∑
i ,j

Pj|i log
Pj|i
Qj|i

) by a simple gradient

descent (can be stuck in local minima).
Parameters σi such that H(Pi) = −

∑n
j=1 Pj|i log Pj|i = cst.
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t-Stochastic Neighbor Embedding

Very successful/ powerful technique in practice
Convergence may be long, unstable, or strongly depending on parameters.
See this distill post for many impressive examples

Representation depending on t-SNE parameters
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t-SNE

Decathlon Swiss Roll
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UMAP
Topological Data Analysis inspired.

Uniform Manifold Approximation and Projection
Define a notion of asymmetric scaled local proximity between neighbors:

Compute the k-neighborhood of X i , its diameter σi and the distance ρi between X i
and its nearest neighbor.
Define

wi(X i , X j) =
{

e−(d(X i ,X j )−ρi )/σi for X j in the k-neighborhood
0 otherwise

Symmetrize into a fuzzy nearest neighbor criterion
w(X i , X j) = wi(X i , X j) + wj(X j , X i)− wi(X i , X j)wj(X j , X i)

Determine the points X ′
i in a low dimensional space such that∑

i ̸=j
w(X i , X j) log

(
w(X i , X j)
w ′(X ′

i , X ′
j)

)
+ (1− w(X i , X j)) log

(
(1− w(X i , X j))
(1− w ′(X ′

i , X ′
j))

)

Can be performed by local gradient descent. 492



Unsupervised Learning:
Dimension Reduction and
Clustering

UMAP

Decathlon Swiss Roll
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Graph based

Graph heuristic
Construct a graph with weighted edges wi ,j measuring the proximity of X i and X j
(wi ,j large if close and 0 if there is no information).
Find the points X ′

i ∈ Rd ′ minimizing
1
n

1
n

n∑
i=1

n∑
j=1

wi ,j∥X ′
i − X ′

j∥2

Need of a constraint on the size of X ′
i . . .

Explicit solution through linear algebra: d ′ eigenvectors with smallest eigenvalues
of the Laplacian of the graph D −W , where D is a diagonal matrix with
Di ,i =

∑
j wi ,j .

Variation on the definition of the Laplacian. . .
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Graph

Decathlon Swiss Roll
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How to Compare Different Dimensionality Reduction
Methods ?

Difficult! Once again, the metric is very subjective.

However, a few possible attempts
Did we preserve a lot of inertia with only a few directions?
Do those directions make sense from an expert point of view?
Do the low dimension representation preserve some important information?
Are we better on subsequent task?
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A Challenging Example: MNIST

PCA autoencoder t-SNE UMAP

MNIST Dataset
Images of 28× 28 pixels.
No label used!
4 different embeddings.

Quality evaluated by visualizing the true labels not used to obtain the
embeddings.
Only a few labels could have been used.
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A Challenging Example: MNIST

PCA autoencoder t-SNE UMAP

MNIST Dataset
Images of 28× 28 pixels.
No label used!
4 different embeddings.

Quality evaluated by visualizing the true labels not used to obtain the
embeddings.
Only a few labels could have been used.
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A Challenging Example: MNIST

PCA autoencoder t-SNE UMAP

MNIST Dataset
Images of 28× 28 pixels.
No label used!
4 different embeddings.

Quality evaluated by visualizing the true labels not used to obtain the
embeddings.
Only a few labels could have been used. 498
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A Simpler Example: A 2D Set

Original

PCA t-SNE UMAP

Cluster Dataset
Set of points in 2D.
No label used!
3 different embeddings.

Quality evaluated by stability. . .
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A Simpler Example: A 2D Set

Original

PCA t-SNE UMAP

Cluster Dataset
Set of points in 2D.
No label used!
3 different embeddings.

Quality evaluated by stability. . .
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A Simpler Example: A 2D Set

Original PCA t-SNE UMAP

Cluster Dataset
Set of points in 2D.
No label used!
3 different embeddings.

Quality evaluated by stability. . .
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Clustering
Training data : D = {X 1, . . . , Xn} ∈ X n (i.i.d. ∼ P)
Latent groups?

Clustering
Construct a map f from D to {1, . . . , K} where K is a number of classes to be
fixed:

f : X i 7→ ki

Motivations
Interpretation of the groups
Use of the groups in further processing

Several strategies possible!
Can use dimension reduction as a preprocessing.
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Partition Based
Partition Heuristic

Clustering is defined by a partition in K classes. . .
that minimizes a homogeneity criterion.

K- Means
Cluster k defined by a center µk .
Each sample is associated to the closest center.

Centers defined as the minimizer of
n∑

i=1
min

k
∥X i − µk∥2

Iterative scheme (Loyd):
Start by a (pseudo) random choice for the centers µk
Assign each samples to its nearby center
Replace the center of a cluster by the mean of its assigned samples.
Repeat the last two steps until convergence.
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Partition Based
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Partition based

Other schemes:
McQueen: modify the mean each time a sample is assigned to a new cluster.
Hartigan: modify the mean by removing the considered sample, assign it to the
nearby center and recompute the new mean after assignment.

A good initialization is crucial!
Initialize by samples.
k-Mean++: try to take them as separated as possible.
No guarantee to converge to a global optimum: repeat and keep the best result!

Complexity : O(n × K × T ) where T is the number of steps in the algorithm.
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Partition based

k-Medoid: use a sample as a center
PAM: for a given cluster, use the sample that minimizes the intra distance (sum of
the squared distance to the other points)
Approximate medoid: for a given cluster, assign the point that is the closest to the
mean.

Complexity
PAM: O(n2 × T ) in the worst case!
Approximate medoid: O(n × K × T ) where T is the number of steps in the
algorithm.

Remark: Any distance can be used. . . but the complexity of computing the
centers can be very different.
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K-Means

k = 4 k = 10 k = 10
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Model Based

Model Heuristic
Use a generative model of the data:

P(X ) =
K∑

k=1
πkPθk (X |k)

where πk are proportions and Pθ(X |k) are parametric probability models.
Estimate those parameters (often by a ML principle).
Assign each observation to the class maximizing the a posteriori probability
(obtained by Bayes formula)

π̂kPθ̂k
(X |k)∑K

k′=1 π̂k′P
θ̂k′

(X |k ′)

Link with Generative model in supervised classification!
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Model Based

Large choice of parametric models.

Gaussian Mixture Model
Use

Pθk

(
X⃗ |k

)
∼ N (µk , Σk)

with N (µ, Σ) the Gaussian law of mean µ and covariance matrix Σ.

Efficient optimization algorithm available (EM)
Often some constraint on the covariance matrices: identical, with a similar
structure. . .
Strong connection with K -means when the covariance matrices are assumed to be
the same multiple of the identity.
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Model Based

Probabilistic latent semantic analysis (PLSA)
Documents described by their word counts w
Model:

P(w) =
K∑

k=1
πkPθk (w |k)

with k the (hidden) topic, πk a topic probability and Pθk (w |k) a multinomial law
for a given topic.
Clustering according to

P(k|w) =
π̂kPθ̂k

(w |k)∑
k′ π̂k′P

θ̂k′
(w |k ′)

Same idea than GMM!
Bayesian variant called LDA.
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Model Based

Parametric Density Estimation Principle
Assign a probability of membership.
Lots of theoretical studies. . .
Model selection principle can be used to select K the number of classes (or rather
to avoid using a nonsensical K . . . ):

AIC / BIC / MDL penalization
Cross Validation is also possible!

Complexity: O(n × K × T )
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Gaussian Mixture Models

k = 4 k = 10 k = 10
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(Non Parametric) Density Based

Density Heuristic
Cluster are connected dense zone separated by low density zone.
Not all points belong to a cluster.

Basic bricks:
Estimate the density.
Find points with high densities.
Gather those points according to the density.

Density estimation:
Classical kernel density estimators. . .

Gathering:
Link points of high density and use the resulted component.
Move them toward top of density hill by following the gradient and gather all the
points arriving at the same summit.
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(Non Parametric) Density Based

Concepts

2 paramètres:
� Eps: rayon maximum de voisinage

� MinPts: nb minimum de pts pour que V(p) soit un voisinage de taille Eps du pts p

Exemple avec MinPts = 4 et Eps = 1cm

x
y objet de coeur car V(y) existe (au moins MinPts objets dans le voisinage

de y de rayon Eps)x

y

de y de rayon Eps)

x objet de bord (d’une classe) car V(x) n’existe pas (moins de MinPts dans

son voisinnage de rayon eps)

x est directement densité atteignable depuis y car V(y) existe et x  

appartient à V(y); y n’est pas directement atteignable depuis x car V(x) 

n’existe pas

Concepts

x est densité-atteignable depuis y s’il existe une chaîne de points (de 

longueur quelconque) partant de y et allant jusqu’à x et telle que le 

point pi+1 est densité atteignable depuis pi. 

p1 appartient à V(y), p2 appartient à V(p1),  x appartient à V(p2)

x

p2

X et y sont densité-connectés s’il existe un point z tel que x soit atteignable

depuis z et y soit atteignable depuis z (sur ce schéma, on voit que sans 

x

p1
y

le point)

Une classe C doit vérifier les 2 conditions suivantes :

1) Si un point x appartient à C alors tout point atteignable depuis x 

appartient à C. 

2) Tous les points d’une classe sont densité-connectés. 

Les points pleins appartiennent à une même classe, les points vides a une

autre classe. Le point z appartient à deux classes. Par convention, on 

l’affecte à la première classe à laquelle il est affecté.

x

y

z

Concepts

x est densité-atteignable depuis y s’il existe une chaîne de points (de 

longueur quelconque) partant de y et allant jusqu’à x et telle que le 

point pi+1 est densité atteignable depuis pi. 

p1 appartient à V(y), p2 appartient à V(p1),  x appartient à V(p2)

x

p2

X et y sont densité-connectés s’il existe un point z tel que x soit atteignable

depuis z et y soit atteignable depuis z (sur ce schéma, on voit que sans 

x

p1
y

le point)

Une classe C doit vérifier les 2 conditions suivantes :

1) Si un point x appartient à C alors tout point atteignable depuis x 

appartient à C. 

2) Tous les points d’une classe sont densité-connectés. 

Les points pleins appartiennent à une même classe, les points vides a une

autre classe. Le point z appartient à deux classes. Par convention, on 

l’affecte à la première classe à laquelle il est affecté.

x

y

z

Examples
DBSCAN: link point of high densities using a very simple kernel.

PdfCLuster: find connected zone of high density.

Mean-shift: move points toward top of density hill following an evolving kernel density
estimate.

Complexity: O(n2 × T ) in the worst case.
Can be reduced to O(n log(n)T ) if samples can be encoded in a tree structure
(n-body problem type approximation).
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DBSCAN

ϵ = .45 ϵ = .2 ϵ = .1

516



Unsupervised Learning:
Dimension Reduction and
Clustering

Outline
1 Statistical Learning: Introduction, Setting and Risk Estimation

Introduction
Machine Learning
Supervised Learning
Risk Estimation and Model Selection
Cross Validation and Test
References

2 ML Methods: Probabilistic Point of View
Motivation
Supervised Learning
A Probabilistic Point of View
Parametric Conditional Density Modeling
Non Parametric Conditional Density Modeling
Generative Modeling
Model Selection
Penalization

3 ML Methods: Optimization Point of View
Supervised Learning
Optimization Point of View
SVM
Penalization
Cross Validation and Weights

4 Optimization: Gradient Descent Algorithms
Introduction
Gradient Descent
Proximal Descent
Coordinate Descent
Gradient Descent Acceleration
Stochastic Gradient Descent
Gradient Descent Step
Non-Convex Setting
References

5 ML Methods: Neural Networks and Deep Learning
Introduction
From Logistic Regression to NN
NN Optimization
NN Regularization
Image and CNN
Text, Recurrent Neural Networks and Transformers
NN Architecture
References

6 ML Methods: Trees and Ensemble Methods
Trees
Bagging and Random Forests

Bootstrap and Bagging
Randomized Rules and Random Forests

Boosting
AdaBoost as a Greedy Scheme
Boosting

Ensemble Methods
References

7 Unsupervised Learning: Dimension Reduction and Clustering
Unsupervised Learning?
A First Glimpse

Clustering
Dimensionality Curse
Dimension Reduction
Generative Modeling

Dimension Reduction
Simplification
Reconstruction Error
Relationship Preservation
Comparing Methods?

Clustering
Prototype Approaches
Contiguity Approaches
Agglomerative Approaches
Other Approaches
Scalability

Generative Modeling
(Plain) Parametric Density Estimation
Latent Variables
Approximate Simulation
Diffusion Model
Generative Adversarial Network

Applications to Text
References

8 Statistical Learning: PAC-Bayesian Approach and Complexity Theory
Supervised Learning
Empirical Risk Minimization

Empirical Risk Minimization
ERM and PAC Analysis
Hoeffding and Finite Class
McDiarmid and Rademacher Complexity
VC Dimension
Structural Risk Minimization

References
9 References

517



Unsupervised Learning:
Dimension Reduction and
Clustering

Agglomerative Clustering

Agglomerative Clustering Heuristic
Start with very small clusters (a sample by cluster?)
Sequential merging of the most similar clusters. . .
according to some greedy criterion ∆.

Generates a hierarchy of clustering instead of a single one.
Need to select the number of cluster afterwards.
Several choices for the merging criterion. . .
Examples:

Minimum Linkage: merge the closest cluster in term of the usual distance
Ward’s criterion: merge the two clusters yielding the less inner inertia loss (k-means
criterion)
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Agglomerative Clustering
Algorithm

Start with (C(0)
i ) = ({X i}) the collection of all singletons.

At step s, we have n − s clusters (C(s)
i ):

Find the two most similar clusters according to a criterion ∆:
(i , i ′) = argmin

(j,j′)
∆(C(s)

j , C(s)
j′ )

Merge C(s)
i and C(s)

i′ into C(s+1)
i

Keep the n − s − 2 other clusters C(s+1)
i′′ = C(s)

i′′

Repeat until there is only one cluster.

Complexity: O(n3) in general.
Can be reduced to O(n2)

if only a bounded number of merging is possible for a given cluster,
for the most classical distances by maintaining a nearest neighbors list.
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Agglomerative Clustering
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Merging criterion based on the distance between points
Minimum linkage:

∆(Ci , Cj) = min
X i ∈Ci

min
X∈Cj

d(X i , X j)

Maximum linkage:
∆(Ci , Cj) = max

X i ∈Ci
max
X∈Cj

d(X i , X j)

Average linkage:
∆(Ci , Cj) = 1

|Ci ||Cj |
∑

X i ∈Ci

∑
X∈Cj

d(X i , X j)

Clustering based on the proximity. . .
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Agglomerative Clustering

Merging criterion based on the inertia (distance to the mean)
Ward’s criterion:

∆(Ci , Cj) =
∑

X i ∈Ci

(
d2(X i , µCi ∪Cj )− d2(X i , µCi )

)
+
∑

X j ∈Cj

(
d2(X j , µCi ∪Cj )− d2(X j , µCj )

)
If d is the Euclidean distance:

∆(Ci , Cj) = 2|Ci ||Cj |
|Ci |+ |Cj |

d2(µCi , µCj )

Same criterion than in the k-means algorithm but greedy optimization.
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Agglomerative Clustering

Single

Complete

Ward

Dendogram k = 4 k = 10 k = 20 522
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Grid based

Grid heuristic
Split the space in pieces
Group those of high density according to their proximity

Similar to density based estimate (with partition based initial clustering)
Space splitting can be fixed or adaptive to the data.
Examples:

STING (Statistical Information Grid): Hierarchical tree construction plus DBSCAN
type algorithm
AMR (Adaptive Mesh Refinement): Adaptive tree refinement plus k-means type
assignment from high density leaves.
CLIQUE: Tensorial grid and 1D detection.

Linked to Divisive clustering (DIANA)
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Others

Graph based
Spectral clustering: dimension reduction + k-means.
Message passing: iterative local algorithm.
Graph cut: min/max flow.

Kohonen Map,
. . .
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Scalability

Large dataset issue
When n is large, a O(nα log n) with α > 1 is not acceptable!
How to deal with such a situation?

Beware: Computing all the pairwise distance requires O(n2) operations!

Ideas
Sampling
Online processing
Simplification
Parallelization
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Sampling

Sampling heuristic
Use only a subsample to construct the clustering.
Assign the other points to the constructed clusters afterwards.

Requires a clustering method that can assign new points (partition, model. . . )
Often repetition and choice of the best clustering
Example:

CLARA: K-medoid with sampling and repetition
Two-steps algorithm:

Generate a large number n′ of clusters using a fast algorithm (with n′ ≪ n)
Cluster the clusters with a more accurate algorithm.
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Online

Online heuristic
Modify the current clusters according to the value of a single observation.

Requires compactly described clusters.
Examples:

Add to an existing cluster (and modify it) if it is close enough and create a new
cluster otherwise (k-means without reassignment)
Stochastic descent gradient (GMM)

May leads to far from optimal clustering.
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Simplification

Simplification heuristic
Simplify the algorithm to be more efficient at the cost of some precision.

Algorithm dependent!
Examples:

Replace groups of observation (preliminary cluster) by the (approximate) statistics.
Approximate the distances by cheaper ones.
Use n-body type techniques.
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Parallelization

Parallelization heuristic
Split the computation on several computers.

Algorithm dependent!
Examples:

Distance computation in k-means, parameter gradient in model based clustering
Grid density estimation, Space splitting strategies

Classical batch sampling not easy to perform as partitions are not easily merged. . .
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Generative Modeling
Training data : D = {(X 1, Y 1), . . . , (Xn, Y n)} ∈ (X × Y)n (i.i.d. ∼ P)
Same kind of data than for supervised learning if Y ̸= ∅.

Generative Modeling
Construct a map G from the product of Y and a randomness source Ω to X

G :Y × Ω→ X
(Y , ω) 7→ X

Unconditional model if Y = ∅. . .

Motivation
Generate plausible novel conditional samples based on a given dataset.

Sample Quality
Related to the proximity between the law of G(Y , ω) and the law of X |Y .

Most classical choice is the Kullback-Leibler divergence.
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Generative Modeling

Ingredients
Generator Fθ(Y , ω) and cond. density prob. pθ(X |Y ) (Explicit vs implicit link)
Simple / Complex / Approximate estimation. . .

Some Possible Choices
Probabilistic model Generator Estimation

Base Simple (parametric) Explicit Simple (ML)
Flow Image of simple model Explicit Simple (ML)

Factorization Factorization of simple model Explicit Simple (ML)
VAE Simple model with latent var. Explicit Approximate (ML)
EBM Arbitrary Implicit (MCMC) Complex (ML/score/discrim.)

Diffusion Continuous noise Implicit (MCMC) Complex (score)
Discrete Noise with latent var. Explicit Approximate (ML)

GAN Implicit Explicit Complex (Discrimination)

SOTA: Diffusion based approach!

ML: Maximum Likelihood/VAE: Variational AutoEncoder/EBM: Energy Based Model/MCMC: Monte Carlo Markov Chain/GAN: Generative Aversarial
Network 534
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Density Estimation
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Flow
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Factorization

538



Unsupervised Learning:
Dimension Reduction and
Clustering

Outline
1 Statistical Learning: Introduction, Setting and Risk Estimation

Introduction
Machine Learning
Supervised Learning
Risk Estimation and Model Selection
Cross Validation and Test
References

2 ML Methods: Probabilistic Point of View
Motivation
Supervised Learning
A Probabilistic Point of View
Parametric Conditional Density Modeling
Non Parametric Conditional Density Modeling
Generative Modeling
Model Selection
Penalization

3 ML Methods: Optimization Point of View
Supervised Learning
Optimization Point of View
SVM
Penalization
Cross Validation and Weights

4 Optimization: Gradient Descent Algorithms
Introduction
Gradient Descent
Proximal Descent
Coordinate Descent
Gradient Descent Acceleration
Stochastic Gradient Descent
Gradient Descent Step
Non-Convex Setting
References

5 ML Methods: Neural Networks and Deep Learning
Introduction
From Logistic Regression to NN
NN Optimization
NN Regularization
Image and CNN
Text, Recurrent Neural Networks and Transformers
NN Architecture
References

6 ML Methods: Trees and Ensemble Methods
Trees
Bagging and Random Forests

Bootstrap and Bagging
Randomized Rules and Random Forests

Boosting
AdaBoost as a Greedy Scheme
Boosting

Ensemble Methods
References

7 Unsupervised Learning: Dimension Reduction and Clustering
Unsupervised Learning?
A First Glimpse

Clustering
Dimensionality Curse
Dimension Reduction
Generative Modeling

Dimension Reduction
Simplification
Reconstruction Error
Relationship Preservation
Comparing Methods?

Clustering
Prototype Approaches
Contiguity Approaches
Agglomerative Approaches
Other Approaches
Scalability

Generative Modeling
(Plain) Parametric Density Estimation
Latent Variables
Approximate Simulation
Diffusion Model
Generative Adversarial Network

Applications to Text
References

8 Statistical Learning: PAC-Bayesian Approach and Complexity Theory
Supervised Learning
Empirical Risk Minimization

Empirical Risk Minimization
ERM and PAC Analysis
Hoeffding and Finite Class
McDiarmid and Rademacher Complexity
VC Dimension
Structural Risk Minimization

References
9 References

539



Unsupervised Learning:
Dimension Reduction and
Clustering

Latent

540



Unsupervised Learning:
Dimension Reduction and
Clustering

Outline
1 Statistical Learning: Introduction, Setting and Risk Estimation

Introduction
Machine Learning
Supervised Learning
Risk Estimation and Model Selection
Cross Validation and Test
References

2 ML Methods: Probabilistic Point of View
Motivation
Supervised Learning
A Probabilistic Point of View
Parametric Conditional Density Modeling
Non Parametric Conditional Density Modeling
Generative Modeling
Model Selection
Penalization

3 ML Methods: Optimization Point of View
Supervised Learning
Optimization Point of View
SVM
Penalization
Cross Validation and Weights

4 Optimization: Gradient Descent Algorithms
Introduction
Gradient Descent
Proximal Descent
Coordinate Descent
Gradient Descent Acceleration
Stochastic Gradient Descent
Gradient Descent Step
Non-Convex Setting
References

5 ML Methods: Neural Networks and Deep Learning
Introduction
From Logistic Regression to NN
NN Optimization
NN Regularization
Image and CNN
Text, Recurrent Neural Networks and Transformers
NN Architecture
References

6 ML Methods: Trees and Ensemble Methods
Trees
Bagging and Random Forests

Bootstrap and Bagging
Randomized Rules and Random Forests

Boosting
AdaBoost as a Greedy Scheme
Boosting

Ensemble Methods
References

7 Unsupervised Learning: Dimension Reduction and Clustering
Unsupervised Learning?
A First Glimpse

Clustering
Dimensionality Curse
Dimension Reduction
Generative Modeling

Dimension Reduction
Simplification
Reconstruction Error
Relationship Preservation
Comparing Methods?

Clustering
Prototype Approaches
Contiguity Approaches
Agglomerative Approaches
Other Approaches
Scalability

Generative Modeling
(Plain) Parametric Density Estimation
Latent Variables
Approximate Simulation
Diffusion Model
Generative Adversarial Network

Applications to Text
References

8 Statistical Learning: PAC-Bayesian Approach and Complexity Theory
Supervised Learning
Empirical Risk Minimization

Empirical Risk Minimization
ERM and PAC Analysis
Hoeffding and Finite Class
McDiarmid and Rademacher Complexity
VC Dimension
Structural Risk Minimization

References
9 References

541



Unsupervised Learning:
Dimension Reduction and
Clustering

EBM

542



Unsupervised Learning:
Dimension Reduction and
Clustering

Outline
1 Statistical Learning: Introduction, Setting and Risk Estimation

Introduction
Machine Learning
Supervised Learning
Risk Estimation and Model Selection
Cross Validation and Test
References

2 ML Methods: Probabilistic Point of View
Motivation
Supervised Learning
A Probabilistic Point of View
Parametric Conditional Density Modeling
Non Parametric Conditional Density Modeling
Generative Modeling
Model Selection
Penalization

3 ML Methods: Optimization Point of View
Supervised Learning
Optimization Point of View
SVM
Penalization
Cross Validation and Weights

4 Optimization: Gradient Descent Algorithms
Introduction
Gradient Descent
Proximal Descent
Coordinate Descent
Gradient Descent Acceleration
Stochastic Gradient Descent
Gradient Descent Step
Non-Convex Setting
References

5 ML Methods: Neural Networks and Deep Learning
Introduction
From Logistic Regression to NN
NN Optimization
NN Regularization
Image and CNN
Text, Recurrent Neural Networks and Transformers
NN Architecture
References

6 ML Methods: Trees and Ensemble Methods
Trees
Bagging and Random Forests

Bootstrap and Bagging
Randomized Rules and Random Forests

Boosting
AdaBoost as a Greedy Scheme
Boosting

Ensemble Methods
References

7 Unsupervised Learning: Dimension Reduction and Clustering
Unsupervised Learning?
A First Glimpse

Clustering
Dimensionality Curse
Dimension Reduction
Generative Modeling

Dimension Reduction
Simplification
Reconstruction Error
Relationship Preservation
Comparing Methods?

Clustering
Prototype Approaches
Contiguity Approaches
Agglomerative Approaches
Other Approaches
Scalability

Generative Modeling
(Plain) Parametric Density Estimation
Latent Variables
Approximate Simulation
Diffusion Model
Generative Adversarial Network

Applications to Text
References

8 Statistical Learning: PAC-Bayesian Approach and Complexity Theory
Supervised Learning
Empirical Risk Minimization

Empirical Risk Minimization
ERM and PAC Analysis
Hoeffding and Finite Class
McDiarmid and Rademacher Complexity
VC Dimension
Structural Risk Minimization

References
9 References

543



Unsupervised Learning:
Dimension Reduction and
Clustering

Diffusion

544



Unsupervised Learning:
Dimension Reduction and
Clustering

Outline
1 Statistical Learning: Introduction, Setting and Risk Estimation

Introduction
Machine Learning
Supervised Learning
Risk Estimation and Model Selection
Cross Validation and Test
References

2 ML Methods: Probabilistic Point of View
Motivation
Supervised Learning
A Probabilistic Point of View
Parametric Conditional Density Modeling
Non Parametric Conditional Density Modeling
Generative Modeling
Model Selection
Penalization

3 ML Methods: Optimization Point of View
Supervised Learning
Optimization Point of View
SVM
Penalization
Cross Validation and Weights

4 Optimization: Gradient Descent Algorithms
Introduction
Gradient Descent
Proximal Descent
Coordinate Descent
Gradient Descent Acceleration
Stochastic Gradient Descent
Gradient Descent Step
Non-Convex Setting
References

5 ML Methods: Neural Networks and Deep Learning
Introduction
From Logistic Regression to NN
NN Optimization
NN Regularization
Image and CNN
Text, Recurrent Neural Networks and Transformers
NN Architecture
References

6 ML Methods: Trees and Ensemble Methods
Trees
Bagging and Random Forests

Bootstrap and Bagging
Randomized Rules and Random Forests

Boosting
AdaBoost as a Greedy Scheme
Boosting

Ensemble Methods
References

7 Unsupervised Learning: Dimension Reduction and Clustering
Unsupervised Learning?
A First Glimpse

Clustering
Dimensionality Curse
Dimension Reduction
Generative Modeling

Dimension Reduction
Simplification
Reconstruction Error
Relationship Preservation
Comparing Methods?

Clustering
Prototype Approaches
Contiguity Approaches
Agglomerative Approaches
Other Approaches
Scalability

Generative Modeling
(Plain) Parametric Density Estimation
Latent Variables
Approximate Simulation
Diffusion Model
Generative Adversarial Network

Applications to Text
References

8 Statistical Learning: PAC-Bayesian Approach and Complexity Theory
Supervised Learning
Empirical Risk Minimization

Empirical Risk Minimization
ERM and PAC Analysis
Hoeffding and Finite Class
McDiarmid and Rademacher Complexity
VC Dimension
Structural Risk Minimization

References
9 References

545



Unsupervised Learning:
Dimension Reduction and
Clustering

GAN

546



Unsupervised Learning:
Dimension Reduction and
Clustering

Outline
1 Statistical Learning: Introduction, Setting and Risk

Estimation
Introduction
Machine Learning
Supervised Learning
Risk Estimation and Model Selection
Cross Validation and Test
References

2 ML Methods: Probabilistic Point of View
Motivation
Supervised Learning
A Probabilistic Point of View
Parametric Conditional Density Modeling
Non Parametric Conditional Density Modeling
Generative Modeling
Model Selection
Penalization

3 ML Methods: Optimization Point of View
Supervised Learning
Optimization Point of View
SVM
Penalization
Cross Validation and Weights

4 Optimization: Gradient Descent Algorithms
Introduction
Gradient Descent
Proximal Descent
Coordinate Descent
Gradient Descent Acceleration
Stochastic Gradient Descent

Gradient Descent Step
Non-Convex Setting
References

5 ML Methods: Neural Networks and Deep Learning
Introduction
From Logistic Regression to NN
NN Optimization
NN Regularization
Image and CNN
Text, Recurrent Neural Networks and
Transformers
NN Architecture
References

6 ML Methods: Trees and Ensemble Methods
Trees
Bagging and Random Forests

Bootstrap and Bagging
Randomized Rules and Random Forests

Boosting
AdaBoost as a Greedy Scheme
Boosting

Ensemble Methods
References

7 Unsupervised Learning: Dimension Reduction and
Clustering

Unsupervised Learning?
A First Glimpse

Clustering
Dimensionality Curse
Dimension Reduction
Generative Modeling

Dimension Reduction
Simplification
Reconstruction Error
Relationship Preservation
Comparing Methods?

Clustering
Prototype Approaches
Contiguity Approaches
Agglomerative Approaches
Other Approaches
Scalability

Generative Modeling
(Plain) Parametric Density Estimation
Latent Variables
Approximate Simulation
Diffusion Model
Generative Adversarial Network

Applications to Text
References

8 Statistical Learning: PAC-Bayesian Approach and
Complexity Theory

Supervised Learning
Empirical Risk Minimization

Empirical Risk Minimization
ERM and PAC Analysis
Hoeffding and Finite Class
McDiarmid and Rademacher Complexity
VC Dimension
Structural Risk Minimization

References
9 References

547



Unsupervised Learning:
Dimension Reduction and
Clustering

Text and Representation
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Text and Representation
Need to transform a text into a numerical vector to reuse the previous algorithms!
Art still in progress.

Important steps:
Token extraction
Token vectorization
Learning algorithm 548
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Token Extraction
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Token Extraction
From a text to a sequence of tokens (words, characters, subwords. . . ).

Need of cleaning or pre-processing: spelling checker, stemming, lemmatization. . .
Often with a further reduction of the number of possible tokens.
Beware to not oversimplify!
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Bag of Words
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Bag of Words
Most simple approach to transform a text into a vector.
Simple count of the words belonging to a predefined vocabulary.

Counts preferably replaced by frequences (or tf-idf. . . )
Often combined with dimension reduction:

restriction to an interesting vocabulary
use of principal component analysis (latent semantic analysis)

td-idf: text frequency - inverse document frequency 550
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Article Clustering
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Article Clustering
Clustering algorithms directly on the bag-of-words representation
Most used algorithm is a variation around the k-means algorithm.
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Word Representation
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Word Representation
More accuracy by working at the token (word) scale.
Two approaches:

Associate to a word the frequency of the other words in its neighborhood and
performing dimension reduction on this first representation.
Learn for each word a vector allowing to predict by a simple formula (scalar product)
whether one word appears in the neighborhood of the other one.

Similar results but the second approach is more flexible. 552
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Deep Learning
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Deep Learning
Propose a formula allowing to do computations on the word starting by
associating vectors to each word.
Learning the best possible vectors for a given task: auto-prediction
(self-supervised) or prediction (supervised).

Tremendous progress in the last years thanks to deep neural net architectures
(RNN, Transformer. . . ).
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Large Language Models
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Large Language Models
Huge neural networks relying on transformers and (pre)trained on huge corpus
with self-supervised tasks.
Three architectures:

Decoder: prediction of next word (online).
Encoder: prediction of inner word(s) (offline).
Encoder/Decoder: prediction of a sentence from anotherv(offline).

Can be used as a basis for further specialized training or directly. 554
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Sentiment Analysis
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How to associate a sentiment to a text?
Four possible approaches:

Simple approach (without learning) that averages the sentiments of the words used
in a text using a fixed table.
Simple approach (supervised and linear) where this table is learned from examples.
Direct approach (supervised) where one predicts directly the sentiment from
examples.
Zero-Shot approach (without learning?) where one uses directely a Large Language
Model trained on a huge corpus (unrelated to the application).

Direct approach more efficient provided one has sufficient data and one starts
from a pretrained model. 555
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Supervised Learning
Supervised Learning Framework

Input measurement X ∈ X
Output measurement Y ∈ Y.
(X , Y ) ∼ P with P unknown.
Training data : Dn = {(X 1, Y1), . . . , (Xn, Yn)} (i.i.d. ∼ P)

Often
X ∈ Rd and Y ∈ {−1, 1} (classification)
or X ∈ Rd and Y ∈ R (regression).

A predictor is a function in F = {f : X → Y meas.}

Goal
Construct a good predictor f̂ from the training data.

Need to specify the meaning of good.
Classification and regression are almost the same problem!
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Loss and Probabilistic Framework

Loss function for a generic predictor
Loss function: ℓ(Y , f (X )) measures the goodness of the prediction of Y by f (X )
Examples:

0/1 loss: ℓ(Y , f (X )) = 1Y ̸=f (X)
Quadratic loss: ℓ(Y , f (X )) = |Y − f (X )|2

Risk function
Risk measured as the average loss for a new couple:

R(f ) = E(X,Y )∼P[ℓ(Y , f (X))]
Examples:

0/1 loss: E[ℓ(Y , f (X ))] = P(Y ̸= f (X ))
Quadratic loss: E[ℓ(Y , f (X ))] = E

[
|Y − f (X )|2

]
Beware: As f̂ depends on Dn, R(f̂ ) is a random variable!
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Best Solution

The best solution f ⋆ (which is independent of Dn) is
f ⋆ = arg min

f ∈F
R(f ) = arg min

f ∈F
E[ℓ(Y , f (X ))] = arg min

f ∈F
EX
[
EY |X [ℓ(Y , f (X ))]

]
Bayes Predictor (explicit solution)

In binary classification with 0− 1 loss:

f ⋆(X ) =


+1 if P(Y = +1|X ) ≥ P(Y = −1|X )

⇔ P(Y = +1|X ) ≥ 1/2
−1 otherwise

In regression with the quadratic loss
f ⋆(X ) = E[Y |X ]

Issue: Solution requires to know E[Y |X ] for all values of X !

564



Statistical Learning:
PAC-Bayesian Approach and
Complexity Theory

Goal
Machine Learning

Learn a rule to construct a predictor f̂ ∈ F from the training data Dn s.t. the
risk R(f̂ ) is small on average or with high probability with respect to Dn.

In practice, the rule should be an algorithm!

Canonical example: Empirical Risk Minimizer
One restricts f to a subset of functions S = {fθ, θ ∈ Θ}
One replaces the minimization of the average loss by the minimization of the
empirical loss

f̂ = f
θ̂

= argmin
fθ,θ∈Θ

1
n

n∑
i=1

ℓ(Yi , fθ(X i))

Examples:
Linear regression
Linear classification with

S = {x 7→ sign{x⊤β + β(0)} /β ∈ Rd , β(0) ∈ R} 565
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Bias-Variance Dilemma

General setting:
F = {measurable functions X → Y}
Best solution: f ⋆ = argminf ∈F R(f )
Class S ⊂ F of functions
Ideal target in S: f ⋆

S = argminf ∈S R(f )
Estimate in S: f̂S obtained with some procedure

Approximation error and estimation error (Bias/Variance)

R(f̂S)−R(f ⋆) = R(f ⋆
S )−R(f ⋆)︸ ︷︷ ︸

Approximation error

+R(f̂S)−R(f ⋆
S )︸ ︷︷ ︸

Estimation error

Approx. error can be large if the model S is not suitable.
Estimation error can be large if the model is complex.
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Under-fitting / Over-fitting Issue

So
ur

ce
:
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n

Different behavior for different model complexity
Low complexity model are easily learned but the approximation error (bias) may
be large (Under-fit).
High complexity model may contain a good ideal target but the estimation error
(variance) can be large (Over-fit)

Bias-variance trade-off ⇐⇒ avoid overfitting and underfitting

Rk: Better to think in term of method (including feature engineering and specific
algorithm) rather than only of model.

567



Statistical Learning:
PAC-Bayesian Approach and
Complexity Theory

Outline
1 Statistical Learning: Introduction, Setting and Risk

Estimation
Introduction
Machine Learning
Supervised Learning
Risk Estimation and Model Selection
Cross Validation and Test
References

2 ML Methods: Probabilistic Point of View
Motivation
Supervised Learning
A Probabilistic Point of View
Parametric Conditional Density Modeling
Non Parametric Conditional Density Modeling
Generative Modeling
Model Selection
Penalization

3 ML Methods: Optimization Point of View
Supervised Learning
Optimization Point of View
SVM
Penalization
Cross Validation and Weights

4 Optimization: Gradient Descent Algorithms
Introduction
Gradient Descent
Proximal Descent
Coordinate Descent
Gradient Descent Acceleration
Stochastic Gradient Descent

Gradient Descent Step
Non-Convex Setting
References

5 ML Methods: Neural Networks and Deep Learning
Introduction
From Logistic Regression to NN
NN Optimization
NN Regularization
Image and CNN
Text, Recurrent Neural Networks and
Transformers
NN Architecture
References

6 ML Methods: Trees and Ensemble Methods
Trees
Bagging and Random Forests

Bootstrap and Bagging
Randomized Rules and Random Forests

Boosting
AdaBoost as a Greedy Scheme
Boosting

Ensemble Methods
References

7 Unsupervised Learning: Dimension Reduction and
Clustering

Unsupervised Learning?
A First Glimpse

Clustering
Dimensionality Curse
Dimension Reduction
Generative Modeling

Dimension Reduction
Simplification
Reconstruction Error
Relationship Preservation
Comparing Methods?

Clustering
Prototype Approaches
Contiguity Approaches
Agglomerative Approaches
Other Approaches
Scalability

Generative Modeling
(Plain) Parametric Density Estimation
Latent Variables
Approximate Simulation
Diffusion Model
Generative Adversarial Network

Applications to Text
References

8 Statistical Learning: PAC-Bayesian Approach and
Complexity Theory

Supervised Learning
Empirical Risk Minimization

Empirical Risk Minimization
ERM and PAC Analysis
Hoeffding and Finite Class
McDiarmid and Rademacher Complexity
VC Dimension
Structural Risk Minimization

References
9 References

568



Statistical Learning:
PAC-Bayesian Approach and
Complexity Theory

Outline
1 Statistical Learning: Introduction, Setting and Risk Estimation

Introduction
Machine Learning
Supervised Learning
Risk Estimation and Model Selection
Cross Validation and Test
References

2 ML Methods: Probabilistic Point of View
Motivation
Supervised Learning
A Probabilistic Point of View
Parametric Conditional Density Modeling
Non Parametric Conditional Density Modeling
Generative Modeling
Model Selection
Penalization

3 ML Methods: Optimization Point of View
Supervised Learning
Optimization Point of View
SVM
Penalization
Cross Validation and Weights

4 Optimization: Gradient Descent Algorithms
Introduction
Gradient Descent
Proximal Descent
Coordinate Descent
Gradient Descent Acceleration
Stochastic Gradient Descent
Gradient Descent Step
Non-Convex Setting
References

5 ML Methods: Neural Networks and Deep Learning
Introduction
From Logistic Regression to NN
NN Optimization
NN Regularization
Image and CNN
Text, Recurrent Neural Networks and Transformers
NN Architecture
References

6 ML Methods: Trees and Ensemble Methods
Trees
Bagging and Random Forests

Bootstrap and Bagging
Randomized Rules and Random Forests

Boosting
AdaBoost as a Greedy Scheme
Boosting

Ensemble Methods
References

7 Unsupervised Learning: Dimension Reduction and Clustering
Unsupervised Learning?
A First Glimpse

Clustering
Dimensionality Curse
Dimension Reduction
Generative Modeling

Dimension Reduction
Simplification
Reconstruction Error
Relationship Preservation
Comparing Methods?

Clustering
Prototype Approaches
Contiguity Approaches
Agglomerative Approaches
Other Approaches
Scalability

Generative Modeling
(Plain) Parametric Density Estimation
Latent Variables
Approximate Simulation
Diffusion Model
Generative Adversarial Network

Applications to Text
References

8 Statistical Learning: PAC-Bayesian Approach and Complexity Theory
Supervised Learning
Empirical Risk Minimization

Empirical Risk Minimization
ERM and PAC Analysis
Hoeffding and Finite Class
McDiarmid and Rademacher Complexity
VC Dimension
Structural Risk Minimization

References
9 References

569



Statistical Learning:
PAC-Bayesian Approach and
Complexity Theory

Empirical Risk Minimization

Empirical Risk Minimizer (ERM)
For any loss ℓ and function class S,

f̂ = argmin
f ∈S

1
n

n∑
i=1

ℓ(Yi , f (X i)) = argmin
f ∈S

Rn(f )

Key property:
Rn(f̂ ) ≤ Rn(f ),∀f ∈ S

Minimization not always tractable in practice!
Focus on the ℓ0/1 case:

only algorithm is to try all the functions,
not feasible is there are many functions
but interesting hindsight!
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ERM and PAC Analysis

Theoretical control of the random (error estimation) term:
R(f̂ )−R(f ⋆

S )

Probably Almost Correct Analysis
Theoretical guarantee that

P
(
R(f̂ )−R(f ⋆

S ) ≤ ϵS(δ)
)
≥ 1− δ

for a suitable ϵS(δ) ≥ 0.
Implies:

P
(
R(f̂ )−R(f ⋆) ≤ R(f ⋆

S )−R(f ⋆) + ϵS(δ)
)
≥ 1− δ

E
[
R(f̂ )−R(f ⋆

S )
]
≤
∫ +∞

0
δS(ϵ)dϵ

The result should hold without any assumption on the law P!
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A General Decomposition
By construction:
R(f̂ )−R(f ⋆

S ) = R(f̂ )−Rn(f̂ ) +Rn(f̂ )−Rn(f ⋆
S ) +Rn(f ⋆

S )−R(f ⋆
S )

≤ R(f̂ )−Rn(f̂ ) +Rn(f ⋆
S )−R(f ⋆

S )

≤
(
R(f̂ )−R(f ⋆

S )
)
−
(
Rn(f̂ )−Rn(f ⋆

S )
)

Four possible upperbounds
R(f̂ )−R(f ⋆

S ) ≤ sup
f ∈S

((R(f )−R(f ⋆
S ))− (Rn(f )−Rn(f ⋆

S )))

R(f̂ )−R(f ⋆
S ) ≤ sup

f ∈S
(R(f )−Rn(f )) + (Rn(f ⋆

S )−R(f ⋆
S ))

R(f̂ )−R(f ⋆
S ) ≤ sup

f ∈S
(R(f )−Rn(f )) + sup

f ∈S
(Rn(f )−R(f ))

R(f̂ )−R(f ⋆
S ) ≤ 2 sup

f ∈S
|R(f )−Rn(f )|

Supremum of centered random variables!
Key: Concentration of each variable. . . 573
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Risk Bounds

By construction, for any f ′ ∈ S,
R(f ′) = Rn(f ′) +

(
R(f ′)−Rn(f ′)

)
A uniform upper bound for the risk

Simultaneously ∀f ′ ∈ S,
R(f ′) ≤ Rn(f ′) + sup

f ∈S
(R(f )−Rn(f ))

Supremum of centered random variables!
Key: Concentration of each variable. . .
Can be interpreted as a justification of the ERM!
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Concentration of the Empirical Loss
Empirical loss:

Rn(f ) = 1
n

n∑
i=1

ℓ0/1(Yi , f (X i))

Properties
ℓ0/1(Yi , f (X i)) are i.i.d. random variables in [0, 1].

Concentration

P(R(f )−Rn(f ) ≤ ϵ) ≥ 1− e−2nϵ2

P(Rn(f )−R(f ) ≤ ϵ) ≥ 1− e−2nϵ2

P(|Rn(f )−R(f )| ≤ ϵ) ≥ 1− 2e−2nϵ2

Concentration of sum of bounded independent variables!
Hoeffding theorem.
Equiv. to P

(
R(f )−Rn(f ) ≤

√
log(1/δ)/(2n)

)
≥ 1− δ 576
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Hoeffding

Theorem
Let Zi be a sequence of ind. centered r.v. supported in [ai , bi ] then

P
( n∑

i=1
Zi ≥ ϵ

)
≤ e

− 2ϵ2∑n
i=1(bi −ai )2

Proof ingredients:
Chernov bounds:

P

( n∑
i=1

Zi ≥ ϵ

)
≤

E
[
eλ
∑n

i=1 Zi
]

eλϵ
≤
∏n

i=1 E
[
eλZi

]
eλϵ

Exponential moment bounds: E
[
eλZi

]
≤ e

λ2(bi −ai )2
8

Optimization in λ

Prop:

E
[
eλ
∑n

i=1 Zi
]
≤ e

λ2∑n
i=1(bi −ai )2

8 .
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Hoeffding Inequality
Theorem

Let Zi be a sequence of independent centered random variables supported in
[ai , bi ] then

P
( n∑

i=1
Zi ≥ ϵ

)
≤ e

− 2ϵ2∑n
i=1(bi −ai )2

Zi = 1
n

(
E
[
ℓ0/1(Y , f (X ))

]
− ℓ0/1(Yi , f (X i))

)
E[Zi ] = 0 and Zi ∈ [ 1

n

(
E
[
ℓ0/1(Y , f (X ))

]
− 1

)
, 1

nE
[
ℓ0/1(Y , f (X ))

]
]

Concentration:
P(R(f )−Rn(f ) ≥ ϵ) ≤ e−2nϵ2

By symmetry,
P(Rn(f )−R(f ) ≥ ϵ) ≤ e−2nϵ2

Combining the two yields
P(|Rn(f )−R(f )| ≥ ϵ) ≤ 2e−2nϵ2
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Finite Class Case

Concentration
If S is finite of cardinality |S|,

P

sup
f

(R(f )−Rn(f )) ≤

√
log |S|+ log(1/δ)

2n

 ≥ 1− δ

P

sup
f
|Rn(f )−R(f )| ≤

√
log |S|+ log(1/δ)

2n

 ≥ 1− 2δ

Control of the supremum by a quantity depending on the cardinality and the
probability parameter δ.
Simple combination of Hoeffding and a union bound.
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Finite Class Case
PAC Bounds

If S is finite of cardinality |S|, with proba greater than 1− 2δ

R(f̂ )−R(f ⋆
S ) ≤

√
log |S|+ log(1/δ)

2n +

√
log(1/δ)

2n

≤ 2

√
log |S|+ log(1/δ)

2n
If S is finite of cardinality |S|, with proba greater than 1− δ, simultaneously
∀f ′ ∈ S,

R(f ′) ≤ Rn(f ′) +

√
log |S|+ log(1/δ)

2n

≤ Rn(f ′) +

√
log |S|

2n +

√
log(1/δ)

2n

580



Statistical Learning:
PAC-Bayesian Approach and
Complexity Theory

Finite Class Case

PAC Bounds
If S is finite of cardinality |S|, with proba greater than 1− 2δ

R(f̂ )−R(f ⋆
S ) ≤

√
log |S|

2n +

√
2 log(1/δ)

n
If S is finite of cardinality |S|, with proba greater than 1− δ, simultaneously
∀f ′ ∈ S,

R(f ′) ≤ Rn(f ′) +

√
log |S|

2n +

√
log(1/δ)

2n

Risk increases with the cardinality of S.
Similar issue in cross-validation!
No direct extension for an infinite S. . .
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Concentration of the Supremum of Empirical Losses
Supremum of Empirical losses:

∆n(S)(X 1, . . . , Xn) = sup
f ∈S
R(f )−Rn(f )

= sup
f ∈S

(
E
[
ℓ0/1(Y , f (X ))

]
− 1

n

n∑
i=1

ℓ0/1(Yi , f (X i))
)

Properties
Bounded difference:

|∆n(S)(X 1, . . . , X i , . . . Xn)−∆n(S)(X 1, . . . X ′
i , . . . , Xn)| ≤ 1/n

Concentration

P(∆n(S)− E[∆n(S)] ≤ ϵ) ≥ 1− e−2nϵ2

Concentration of bounded difference function.
Generalization of Hoeffding theorem: McDiarmid Theorem.
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McDiarmid Inequality
Bounded difference function

g : X n → R is a bounded difference function if it exist ci such that
∀(X i)n

i=1, (X ′
i)n

i=1 ∈ R,∣∣g(X 1, . . . , X i , . . . , Xn)− g(X 1, . . . , X ′
i , . . . , Xn)

∣∣ ≤ ci

Theorem
If g is a bounded difference function and X i are independent random variables
then

P(g(X 1, . . . , Xn)− E[g(X 1, . . . , Xn)] ≥ ϵ) ≤ e
−2ϵ2∑n

i=1 c2
i

P(E[g(X 1, . . . , Xn)]− g(X 1, . . . , Xn) ≥ ϵ) ≤ e
−2ϵ2∑n

i=1 c2
i

Proof ingredients:
Chernov bounds
Martingale decomposition. . .
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McDiarmid Inequality

Theorem
If g is a bounded difference function and X i are independent random variables
then

P(g(X 1, . . . , Xn)− E[g(X 1, . . . , Xn)] ≥ ϵ) ≤ e
−2ϵ2∑n

i=1 c2
i

Using g = ∆n(S) for which ci = 1/n yields immediately

P(∆n(S)− E[∆n(S)] ≥ ϵ) ≤ e
−2ϵ2∑n

i=1 c2
i = e−2nϵ2

We derive then

P(∆n(S) ≥ E[∆n(S)] + ϵ) ≤ e
−2ϵ2∑n

i=1 c2
i = e−2nϵ2

It remains to upperbound

E[∆n] = E
[
sup
f ∈S
R(f )−Rn(f )

]
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Rademacher Complexity
Theorem

Let σi be a sequence of i.i.d. random symmetric Bernoulli variables (Rademacher
variables):

E
[
sup
f ∈S

(R(f )−Rn(f ))
]
≤ 2E

[
sup
f ∈S

1
n

n∑
i=1

σiℓ
0/1(Yi , f (X i))

]

Rademacher complexity
Let B ⊂ Rn, the Rademacher complexity of B is defined as

Rn(B) = E
[

sup
b∈B

1
n

n∑
i=1

σibi

]

Theorem gives an upper bound of the expectation in terms of the average
Rademacher complexity of the random set
Bn(S) = {(ℓ0/1(Yi , f (X i)))n

i=1, f ∈ S}.
Back to finite setting: This set is at most of cardinality 2n. 586
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Finite Set Rademacher Complexity Bound

Theorem
If B is finite and such that ∀b ∈ B, 1

n∥b∥
2
2 ≤ M2, then

Rn(B) = E
[

sup
b∈B

1
n

n∑
i=1

σibi

]
≤

√
2M2 log |B|

n

If B = Bn(S) = {(ℓ0/1(Yi , f (X i)))n
i=1, f ∈ S}, we have M = 1 and thus

Rn(B) ≤

√
2 log |Bn(S)|

n
We obtain immediately

E
[
sup
f ∈S

(R(f )−Rn(f ))
]
≤ E

√8 log |Bn(S)|
n

 .
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Finite Set Rademacher Complexity Bound

Theorem
With probability greater than 1− 2δ,

R(f̂ )−R(f ⋆
S ) ≤ E

√8 log |Bn(S)|
n

+

√
2 log(1/δ)

n

With probability greater than 1− δ, simultaneously ∀f ′ ∈ S

R(f ′) ≤ Rn(f ′) + E

√8 log |Bn(S)|
n

+

√
log(1/δ)

2n

This is a direct consequence of the previous bound.
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Finite Set Rademacher Complexity Bound

Corollary
If S is finite then with probability greater than 1− 2δ

R(f̂ )−R(f ⋆
S ) ≤

√
8 log |S|

n +

√
2 log(1/δ)

n
If S is finite then with probability greater than 1− δ, simultaneously ∀f ′ ∈ S

R(f ′) ≤ Rn(f ′) +

√
8 log |S|

n +

√
log(1/δ)

2n

It suffices to notice that
|Bn(S)| = |{(ℓ0/1(Yi , f (X i)))n

i=1, f ∈ S}| ≤ |S|
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Finite Set Rademacher Complexity Bound

Same result with Hoeffding but with better constants!

R(f̂ )−R(f ⋆
S ) ≤

√
log |S|

2n +

√
2 log(1/δ)

n

R(f ′) ≤ Rn(f ′) +

√
log |S|

2n +

√
log(1/δ)

2n
Difference due to the crude upperbound of

E
[
sup
f ∈S

(R(f )−Rn(f ))
]

Why bother?: We do not have to assume that S is finite!
|Bn(S)| ≤ 2n
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Back to the Bound

Theorem

E
[
sup
f ∈S

(R(f )−Rn(f ))
]
≤ E

√8 log |Bn(S)|
n


Key quantity: E

[√
8 log |Bn(S)|

n

]
Hard to control due to its structure!

A first data dependent upperbound

E

√8 log |Bn(S)|
n

 ≤
√

8 logE[|Bn(S)|]
n (Jensen)

Depends on the unknown P!
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Shattering Coefficient

Shattering Coefficient (or Growth Function)
The shattering coefficient of the class S, s(S, n), is defined as

s(S, n) = sup
((X1,Y1),...,(Xn,Yn))∈(X ×{−1,1})n

|{(ℓ0/1(Yi , f (X i)))n
i=1, f ∈ S}|

By construction, |Bn(S)| ≤ s(S, n) ≤ min(2n, |S|).

A data independent upperbound

E

√8 log |Bn(S)|
n

 ≤
√

8 log s(S, n)
n
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Shattering Coefficient

Theorem
With probability greater than 1− 2δ,

R(f̂ )−R(f ⋆
S ) ≤

√
8 log s(S, n)

n +

√
2 log(1/δ)

n
With probability greater than 1− δ, simultaneously ∀f ′ ∈ S,

R(f ′) ≤ Rn(f ′) +

√
8 log s(S, n)

n +

√
log(1/δ)

2n

Depends only on the class S!
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Vapnik-Chervonenkis Dimension

VC Dimension
The VC dimension dVC of S is defined as the largest integer d such that

s(S, d) = 2d

The VC dimension can be infinite!

VC Dimension and Dimension
Prop: If span(S) corresponds to the sign of functions in a linear space of
dimension d then dVC ≤ d .

VC dimension similar to the usual dimension.
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VC Dimension and Sauer’s Lemma

Sauer’s Lemma
If the VC dimension dVC of S is finite

s(S, n) ≤

2n if n ≤ dVC(
en

dVC

)dVC if n > dVC

Cor.: log s(S, n) ≤ dVC log
(

en
dVC

)
if n > dVC .
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VC Dimension and PAC Bounds

PAC Bounds
If S is of VC dimension dVC then if n > dVC

With probability greater than 1− 2δ,

R(f̂ )−R(f ⋆
S ) ≤

√√√√8dVC log
(

en
dVC

)
n +

√
2 log(1/δ)

n
With probability greater than 1− δ, simultaneously ∀f ′ ∈ S,

R(f ′) ≤ Rn(f ′) +

√√√√8dVC log
(

en
dVC

)
n +

√
log(1/δ)

2n

Rk: If dVC = +∞ no uniform PAC bounds exists!
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Countable Collection and Non Uniform PAC Bounds

PAC Bounds
Let πf > 0 such that

∑
f ∈S πf = 1

With proba greater than 1− 2δ,

R(f̂ )−R(f ⋆
S ) ≤

√
log(1/πf )

2n +

√
2 log(1/δ)

n
With proba greater than 1− δ, simultaneously ∀f ′ ∈ S,

R(f ′) ≤ Rn(f ′) +

√
log(1/πf )

2n +

√
log(1/δ)

2n

Very similar proof than the uniform one!
Much more interesting idea when combined with several models. . .
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Models, Non Uniform Risk Bounds and SRM
Assume we have a countable collection of set (Sm)m∈M and let πm be such that∑

m∈M πm = 1.

Non Uniform Risk Bound
With probability 1− δ, simultaneously for all m ∈M and all f ∈ Sm,

R(f ) ≤ Rn(f ) + E

√8 log |Bn(Sm)|
n

+

√
log(1/πm)

2n +

√
log(1/δ)

2n

Structural Risk Minimization
Choose f̂ as the minimizer over m ∈M and f ∈ Sm of

Rn(f ) + E

√8 log |Bn(Sm)|
n

+

√
log(1/πm)

2n

Mimics the minimization of the integrated risk!
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SRM and PAC Bound

PAC Bound
If f̂ is the SRM minimizer then with probability 1− 2δ,

R(f̂ ) ≤ inf
m∈M

inf
f ∈Sm

R(f ) + E

√8 log |Bn(Sm)|
n

+

√
log(1/πm)

2n


+

√
2 log(1/δ)

n

The SRM minimizer balances the risk R(f ) and the upper bound on the
estimation error E

[√
8 log |Bn(Sm)|

n

]
+
√

log(1/πm)
2n .

E
[√

8 log |Bn(Sm)|
n

]
can be replaced by an upper bound (for instance a VC based

one). . .
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