Foundations of Machine Learning

E. Le Pennec

e
W{\;

ECOLE
POLYTECHNIQUE

MAP553 - Foundations of Machine Learning - Spring 2023

Outline

o Statistical Learning: Introduction, Setting and Risk
Estimation
@ Introduction
@ Machine Learning
@ Supervised Learning
@ Risk Estimation and Model Selection
@ Cross Validation and Test
@ References
o ML Methods: Probabilistic Point of View
@ Motivation
@ Supervised Learning
@ A Probabilistic Point of View
@ Parametric Conditional Density Modeling
@ Non Parametric Conditional Density Modeling
@ Generative Modeling
@ Model Selection
@ Penalization
e ML Methods: Optimization Point of View
@ Supervised Learning
@ Optimization Point of View
@ SVM
@ Penalization
@ Cross Validation and Weights
o Optimization: Gradient Descent Algorithms
@ Introduction
@ Gradient Descent
@ Proximal Descent
@ Coordinate Descent
@ Gradient Descent Acceleration
@ Stochastic Gradient Descent

@ Gradient Descent Step
@ Non-Convex Setting
@ References
ML Methods: Neural Networks and Deep Learning
@ Introduction
@ From Logistic Regression to NN
@ NN Optimization
@ NN Regularization
@ Image and CNN
@ Text, Recurrent Neural Networks and
Transformers
@ NN Architecture
@ References
ML Methods: Trees and Ensemble Methods
@ Trees
@ Bagging and Random Forests
@ Bootstrap and Bagging
@ Randomized Rules and Random Forests
@ Boosting
@ AdaBoost as a Greedy Scheme
@ Boosting
@ Ensemble Methods
@ References
Unsupervised Learning: Dimension Reduction and
Clustering
@ Unsupervised Learning?
@ A First Glimpse
@ Clustering
@ Dimensionality Curse
@ Dimension Reduction
@ Generative Modeling

@ Dimension Reduction
@ Simplification
@ Reconstruction Error
@ Relationship Preservation
@ Comparing Methods?
@ Clustering
@ Prototype Approaches
@ Contiguity Approaches
@ Agglomerative Approaches
@ Other Approaches
@ Scalability
@ Generative Modeling
@ (Plain) Parametric Density Estimation
@ Latent Variables
@ Approximate Simulation
@ Diffusion Model
@ Generative Adversarial Network
@ Applications to Text
@ References

e Statistical Learning: PAC-Bayesian Approach and

Complexity Theory
@ Supervised Learning
@ Empirical Risk Minimization
@ Empirical Risk Minimization
@ ERM and PAC Analysis
@ Hoeffding and Finite Class
@ McDiarmid and Rademacher Complexity
@ VC Dimension
@ Structural Risk Minimization
@ References

e References

O Utl Ine Statistical Learning:
Introduction, Setting and
Risk Estimation

o Statistical Learning: Introduction, Setting and Risk
Estimation
@ Introduction
@ Machine Learning
@ Supervised Learning
@ Risk Estimation and Model Selection
@ Cross Validation and Test
@ References

O Utl | ne Statistical Learning:

Introduction, Setting and
Risk Estimation

o Statistical Learning: Introduction, Setting and Risk
Estimation
@ Introduction

Data SCIGHCG Statistical Learning:

Introduction, Setting and
Risk Estimation

Major Influences

Four major influences act today:
@ The formal theories of statistics
@ Accelerating developments in computers and display devices
@ The challenge, in many fields, of more and ever larger bodies of data

@ The emphasis on quantification in an ever wider variety of disciplines

Data SCIGHCG Statistical Learning:

Introduction, Setting and
Risk Estimation

Major Influences - Tukey (1962)
Four major influences act today:
@ The formal theories of statistics
@ Accelerating developments in computers and display devices
@ The challenge, in many fields, of more and ever larger bodies of data
°

The emphasis on quantification in an ever wider variety of disciplines

@ He was talking of Data Analysis.
e Data Mining, Machine Learning, Big Data, Data Science, Artificial Intelligence. ..

o
Y]
c

L
(v]

%)
4]

3
©

[a)]

—
o
£
o

>

=]

)
o

<
<]
c
S

[a)]

[a)]
o
2
3
(<]

%)

o1

Large Scale ML Is (Quite) Easy Statistcal Learming:

Introduction, Setting and
Risk Estimation

o
>
]
x
]
@
3
"

Apache project

Unknown

123rf.com

Q
Spor‘l'(\z |=] stackoverflow amazon

web services

Example of solutio

@ Algorithm implementation + copy/paste + cloud computing.

Sources: Unknown
Amazon

flow

@ Machine learning on an arbitrary large dataset!

<))

ML: Machine Learning

Data Science Is (Quite) Complex!

Statistical Learning:
Introduction, Setting and
Risk Estimation

usiness
Understanding

On-Premises vs Cloud

Data Source Database vs Files

Transform, Binning
Temporal, Text, Image

Feature Selection

Feature
Engineering

Streaming vs Batch

Pipeline (A

Algorithms, Ensemble
Parameter Tuning Model
[EUO0 Training

Model management

Data
Acquisition &
Understanding : On-premises vs Cloud
Environm Database vs Data Lake vs
‘Smallvs Medium vs Big Data
Cross Validation [NV PRI
Model Reporting
A/B Testing

MUEUTAILT-A structured vs Unstructured
[SCICIENILEA Data Validation and Cleanup
[SISTNTR Visualization

Evaluation

Deployment Customer
Acceptance

Scoring,

Performance

monitoring, etc.

Source: Microsoft

~

Introduction, Setting and .
Risk Estimation

. &
Data Ecosystem IS (QUIte) Complexl Statistical Learning: X

THE 023 MAD MACHIE EABAING ARTFCALITELIGEICE & TR NOSCHPE

AeRUCATON - ENTERPRSE

oamsouReEs AP

FIRSTMARK ms

H

s

H

£
Source: M. Turck

[ee]

Data Ecosystem IS (Quite) Complexl Statistical Learning:

Introduction, Setting and
Risk Estimation

=%
£
a
O
©
3
©
[a]
i}
o
2
3
o
(2]

The Periodic Table of Data Science

Symbl D
Name Datacamp

seach s Duta Manogement [N cotboraion

An overview of key companies, resources and tools in data science (as of 4/12/2017)

Ka o » on
Kaime | SpwkMILb PowerBl OrceBl

s o Bo A
LibsVM. MO menesobeas Aoy
S ™ » S

S8 Visal
Mahematica | Thewo Spotire Amalyics
M Anl @ »
e achine

Mahout | Lewmog | Qikview PowerPhx

s n @ b
Staa D3 Cognos Googl Chars
r uy n T

Adobe
Dato/Graphiab. Microstrtegy Analyics Tablesu

s o @ a
Stack

Reddi Owrlow Vdaed Quns Vidys Suck Exchange
Rim

DataCamp

(<]

Monthly KPI DaSh board Statistical Learning:

Introduction, Setting and
Risk Estimation

Planned Turmover and et Income: Cashfow and Woring Capa over the next 3 years

Source: decisyon

—_
o

KPI: Key Performance Index

Realtime Log Dashboard

Statistical Learning:
Introduction, Setting and
Risk Estimation

Collect &
Transform

Search &
Analyze

Visualize
& Manage

Source: edureka!

IT: Information Technology

[y
[

On-demand Legal Document Generation

Statistical Learning:
Introduction, Setting and
Risk Estimation

Source: Amicus Attorney

[y
N

AB Testing

picy
Cr—

37%

CONTROL

VARIATION

Statistical Learning: £,
Introduction, Setting and o

Risk Estimation (=

Source: Optimizely

[y
w

o
c
@
a0
c

s
b=
(g

%)
<

.2
5
o

3
o
<]
2
5
=

c
S
=]
@
£
B
B
w
X
]
@

Statistical Learning:

ER Waiting Time Prediction

ENT

RTM

EMERGENCY

DEPA

SUBA] ‘| :924n0g

<
i

ER: Emergency Room

Weekly ChUI'n PrediCtiOI"I Statistical Learning:

Introduction, Setting and
Risk Estimation

Customer Churn Prediction Accuracy

o ™ -
i e I

N\
\

o € &

Correct prediction Incorrect prediction

>
£
=
o
©
I
«
<
T
&
o
[
g
=
<]
%)

[y
o1

Realtime Automatic Fruit Sorting

Statistical Learning:
Introduction, Setting and
Risk Estimation

Source: BitRefine

—_
=]

Realtime Chatbot

Statistical Learning:
Introduction, Setting and
Risk Estimation

Source: M'Bufung

Ju
~

Customer Segmentation Statistical Learning:

Introduction, Setting and
Risk Estimation

. . . Qi
Data Science Project - Customer Segmentation
. Y p-4
2riamd ivia-@
s, s
P a3
dg LYY
[~
Sy —_— ——
F) & ~
2 333 243
4d:1b L T 4:p
Identifying the potential Implementing Clustering Selling product to
customer base for Algorithms to group the identified
selling the product the customer base customer group

Source: Data Flai

[y
[e2)

Realtime Anomaly Detection

Statistical Learning:
Introduction, Setting and
Risk Estimation

Source: Wikipedia

—_
©

O n_dema nd Fra UCI DeteCtlon Statistical Learning:

Introduction, Setting and
Risk Estimation

Source: MoneyKama

N
o

Statistical Learning:
Introduction, Setting and
Risk Estimation

Prescriptive Maintenance X

£ Limblecuvs THE EVOLUTION OF MAINTENANCE STRATEGIES

REACTIVE PREVENTIVE PREDICTIVE PRESCRIPTIVE

FiX IT WHEN IT BREAKS! MAINTAIN IT AT REGULAR

PREDICT EXACTLY WHEN IT WILL
INTERVALS SO IT DOESN'T BREAK!

BREAK AND MAINTAIN IT
ACCORDBINGLY!

LET THE MACHINES HELP YOU
DECIDE HOW TO AVOID
PREDICTED FAILURES!

Source: Limble

N
=

O Utl | ne Statistical Learning:

Introduction, Setting and
Risk Estimation

o Statistical Learning: Introduction, Setting and Risk
Estimation

@ Machine Learning

22

Machine Leal’nlng Statistical Learning:

Introduction, Setting and
Risk Estimation

= Google News a
Top Stories

[

mous

]

@ GoogleN

L]

& Restousi

i

x Inthe e

Sources: MyCarDoesWhat.org/theverge.com/Zhigiang Wan et al.

d -
A Tine Magazine it Trenp on thecove hangs nis gt o
cube. s fake. .
fro Battery Electrical vehicle

N
w

Machine Learnlng Statistical Learning:

Introduction, Setting and
Risk Estimation

Dat —
s Classical
. ——— Answers
Rules ——) Programming

Data ——>
Machine > Rules
Answers ——) Learning

A definition by Tom Mitchell

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E.

'm
®
e
e
&
o
O
o
2
3
o
(%]

N
~

ObJeCt DeteCtIOn Statistical Learning:

Introduction, Setting and
Risk Estimation

A detection algorithm:

@ Task: say if an object is present or not in the image
o Performance: number of errors

o Experience: set of previously seen labeled images

20
o
r
©
=
43
o
o
©
Q
>
=
@
e
5
[}
n

N
o1

Artlde C I UStel’I ng Statistical Learning:

Introduction, Setting and
Risk Estimation

= Google News Q

Top Stories

An article clustering algorithm:

@ Task: group articles corresponding to the same news

o Performance: quality of the clusters

o Experience: set of articles

£
I
s}
I
20
[
>
[
<
S
@
e
5
[}
n

N
(=)}

Smal't Grld COI’]tFOler Statistical Learning:

Introduction, Setting and
Risk Estimation

Battery Electrical vehicle

A controler in its sensors in a home smart grid:

@ Task: control the devices

o Performance: energy costs
o Experience:

e previous days
e current environment and performed actions

©
-
o
c
E
)
c
°
g
N
o
g
=
<]
%)

N
~

Three KlndS Of Learnlng Statistical Learning:

o Elicifalion Fravd . Refention In‘troduc.tlon,l Setting and
Detection ® Risk Estimation

Mearingful PoutEmaue

compresiion ®

OIMENSIONALY
REDUCTION

® Diagnostics
Big dat
Visvalfsation

o Forecasting

Recommended

UNSUPERVISED SUPERVISED

Systems ® LEARNING LEARNING @ Predictions
ey 3
B .
Customer New Insights
Segmentaton
p——
Real-Time Decisions ® ® Robot Nnvvjahon
Game Al ® ® Skill Aquisition
Unsupervised Learning Supervised Learning Reinforcement Learning
@ Task: @ Task: @ Task:
Clustering/DR/Generative Prediction/Classification Actions
@ Performance: @ Performance: @ Performance:
Quality Average error Total reward
. . - o
@ Experience: @ Experience: @ Experience: <
Raw dataset Good Predictions Reward from env. g
(No Ground Truth) (Ground Truth) (Interact. with env.) 3

@ Timing: Offline/Batch (learning from past data) vs Online (continuous learning)

N
[3)

SU pel’Vised a nd U nsu perVISGd Statistical Learning:

Introduction, Setting and
Risk Estimation

Supervised Learning (Imitation)

@ Goal: Learn a function f predicting a variable Y from an individual X.

e Data: Learning set with labeled examples (X;, Y)

Assumption: Future data behaves as past datal
Predicting is not explaining!

0
2
5]
a0
o)
3
c
[a)]
X
o
g
=
<]
%)

N
©

Supervised and Unsupervised Statistical Learning;

Introduction, Setting and
Risk Estimation

Supervised Learning (Imitation)
@ Goal: Learn a function f predicting a variable Y from an individual X.
e Data: Learning set with labeled examples (X;, Y)

@ Assumption: Future data behaves as past datal
@ Predicting is not explaining!
Unsupervised Learning (Structure Discovery)

@ Goal: Discover a structure within a set of individuals (X;).

0
8
©
00
o0
c
[a)]
X
@
e
5
<}
n

e Data: Learning set with unlabeled examples (X;)

N
©

@ Unsupervised learning is not a well-posed setting. ..

Machine Can and CannOt Statistical Learning:

Introduction, Setting and

—— | Risk Estimation
=MP(‘<1 g -n(Bnc) Y i

X-4x+5<5n~ b
A ("o
X-4x <0 i

Machine Cannot

Forecast (Prediction using the past) @ Predict something never seen before
Detect expected changes @ Detect any new behaviour
Memorize/Reproduce @ Create something brand new

Take a decision very quickly Understand the world
Get smart really fast
Go beyond their task

Kill all humans

Learn from huge dataset

Optimize a single task

®© 6 6 6 o o o

(*]
(]
(]
Replace/Help some humans °

@ Some progresses but still very far from the singularity. . .

30

Machine Leal’nlng Statistical Learning:

Introduction, Setting and
Risk Estimation

scikit-learn
algorithm cheat-sheet

classification

dimensionality
reduction

Machine Learning Methods

@ Huge catalog of methods,

@ Need to define the performance,

20
Q
£
&
<
=
=
Q
2
[
e
5
)
»

@ Numerous tricks: feature design, hyperparameter selection. . .

w
=

Under and OVGI’ Flttlng Statistical Learning:

Introduction, Setting and
Risk Estimation

Size Size Size
6o+ Bix Bo* Brx + Oyx2 Bo* Bix + Byx2 + Byx2+ Byx2

High bias (underfit) High variance
(overfit) o6

X X
X X
X X X
X "
X XXX XX X
XX X XX X
Under-fitting Appropriate-fitting Over-fitting
(too simple to (forcefitting--too
explain the variance) good to be'true) g

Finding the Right Complexity

@ What is best?

o A simple model that is stable but false? (oversimplification)
e A very complex model that could be correct but is unstable? (conspiracy theory)

@ Neither of them: tradeoff that depends on the dataset.

£
o
©
“
<
)
o
20
Qo
17
<
[}
o
)
o
o
5
[}
n

w
N

Machine Leal’nlng Pipellne Statistical Learning:

Introduction, Setting and
Risk Estimation

TRAINING

model training

Training
Set

Machine
Learning

Validation
Set

Raw data &
target

hyperparameters tuning
model selection

evaluation

Test Set

PREDICTING [

Feature .
New data Engil ing Predict Target

Learning pipeline

@ Test and compare models.

Source: CDiscount

@ Deployment pipeline is different!

w
w

Data Science # Machine Learning Statistcal Learning:

Introduction, Setting and
Risk Estimation

TRY AGAIN

LEGAL NDERSTAND LEI:N
..... /\)
YES' ACCESS
asitcat

QUESTION ALMOST
e DONE
» butryseain

Main DS difficulties

e Figuring out the problem, g
e Formalizing it, f
@ Storing and accessing the data, 2
@ Deploying the solution, E
o Not (always) the Machine Learning part! "

w
'S

Introduction, Setting and
Risk Estimation

MAP 553 - Foundation of Machine Learning - Goal Statistical Learning:

[B C0! F

@ Master the statistical learning framework and its challenges.

@ Know the inner machinery of the most classical supervised and unsupervised ML
methods in order to understand their strengths, limitations and connections.

@ Understand some optimization tools used in ML as well as some theoretical
aspects of ML.

@ Not a course on practical tricks to use machine learning in a data product!

@ A practical lab (5 pt)
@ A final exam or a project (15 pt)

35

MAP 553 - Team Statistical Learning:

Introduction, Setting and
Risk Estimation

@ Erwan Le Pennec

§## Erwan.Le-Pennec@polytechnique.edu
A:A
@ Randal Douc
-

.} » randal.douc@it-sudparis.eu

@ El Mahdi EI Mhamdi
elmahdi@elmhamdi.com
@ Thierry Klein
thierry.klein@math.univ-toulouse.fr

@ Edouard Oyallon

9 edouard.oyallon@lip6.fr
-

36

MAP 553 - Schedule Statistical Learning:

Introduction, Setting and
Risk Estimation

9 Lectures (8h30-10h30)

Mon.
Mon.
Mon.
Mon.
Mon.
Mon.
Mon.
Mon.
Mon.

19/09:
26/09:
03/10:
10,10:
17/10:
24/10:
07/11:
14/11:
21/11:

Theory

Mon.

?7/12:

Statistical Learning: Introduction, Setting and Risk Estimation
ML Methods: Probabilistic Point of View

ML Methods: Optimization Point of View

Optimization: Gradient Descent Algorithms

ML Methods: Neural Networks and Deep Learning

ML Methods: Trees and Ensemble Methods

Unsupervised Learning: Dimension Reduction

Unsupervised Learning: Clustering

Statistical Learning: PAC-Bayesian Approach and Complexity

Exam (?)

37

Refe rences Statistical Learning:

[—

Introduction, Setting and

T. Hastie, R. Tibshirani, and J. Friedman. Risk Estimation
The Elements of Statistical Learning.
Springer Series in Statistics, 2009

M. Mohri, A. Rostamizadeh, and A. Talwalkar.
Foundations of Machine Learning (2nd ed.)
MIT Press, 2018

A. Géron.

Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow (3rd ed.)
O'Reilly, 2022

Ch. Giraud.
Introduction to High-Dimensional Statistics.
CRC Press, 2014

S. Bubeck.
Convex Optimization: Algorithms and Complexity.
Now Publisher, 2015

38

O Utl | ne Statistical Learning:

Introduction, Setting and
Risk Estimation

o Statistical Learning: Introduction, Setting and Risk

Estimation

@ Supervised Learning

39

Supervised Learning Statistical Learning:

Introduction, Setting and
Ri imotion

Supervised Learning Framework

@ Input measurement X € X

o Output measurement Y €).
o (X,Y) ~ P with P unknown.
@ Training data : D, = {(X{, Y1),...,(X,, Ya)} (i.id. ~P)

e Often
o XeRYand Y € {—1,1} (classification)
o or X € RY and Y € R (regression).
@ A predictor is a function in F = {f : X —) meas.}

e Construct a good predictor f from the training data.

@ Need to specify the meaning of good.
o Classification and regression are almost the same problem!

40

Loss and Probabilistic Framework Statistical Learning:

Introduction, Setting and
Risk Estimation

Loss function for a generic predictor

@ Loss function: /(Y,f(X)) measures the goodness of the prediction of Y by f(X)
@ Examples:

o 0/1loss: £(Y,f(X)) = Lyxe(x)

o Quadratic loss: (Y, f(X)) =|Y — f(X)|?

@ Risk measured as the average loss for a new couple:
R(f) = Ex,v)~p[4(Y, f(X))]
@ Examples:
o 0/1 loss: E[(Y,f(X))] = (Y f(X))
e Quadratic loss: E[((Y,f(X))] =E[|Y — f(X)|]

e Beware: As f depends on D,,, R(f) is a random variable!

41

BeSt SOl Utlon Statistical Learning:

Introduction, Setting and
Risk Estimation

@ The best solution f* (which is independent of D,) is
f* = arg)rrng(f) = arg m|n]E[E(Y f(X))] = arg m|n Ex [Ey|X[E(Y f(X))]}
€

Bayes Predictor (explicit solution)

e In binary classification with 0 — 1 loss:
+1 if P(Y=+1X)>P(Y=-1X)
(X) = < P(Y =+1|X) >1/2
—1 otherwise

o In regression with the quadratic loss
F(X) = E[Y|X]

Issue: Solution requires to know E[Y|X] for all values of X!

42

Goal Statistical Learning:

Introduction. Setting and
Machine Learning

@ Learn a rule to construct a predictor f € F from the training data D, s.t. the

~

risk R(f) is small on average or with high probability with respect to D,,.

@ In practice, the rule should be an algorithm!

Canonical example: Empirical Risk Minimizer
@ One restricts f to a subset of functions S = {fp,0 € O}

@ One replaces the minimization of the average loss by the minimization of the
empirical loss

= 10
f=rf=argmin=>) LY fr(X;))
O fhco n ,Z::I ' :
@ Examples:
e Linear regression
e Linear classification with

S ={x+ sign{x" 8+ 59} /8 e R 5" € R} s

O Utl | ne Statistical Learning:

Introduction, Setting and
Risk Estimation

o Statistical Learning: Introduction, Setting and Risk
Estimation

@ Risk Estimation and Model Selection

44

Exa m ple TWOC | ass Dataset Statistical Learning:
Introduction, Setting and

Synthetic Dataset

e Two features/covariates.

@ Two classes.

o Dataset from Applied Predictive Modeling, M. Kuhn and K. Johnson, Springer
@ Numerical experiments with R and the {caret} package.

-
()

P

o, %
® L.
@ PYY L classes
P o0 ® \"”&C\; ® ou
o P o

45

Example: Linear Discrimination

Statistical Learning:
Introduction, Setting and

Di~l I:.-}:m«»:,\n
Logistic
Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ © classes
%04 . Class1 %0.4- > @ Classi
& B class2 £ @ Class2
02

02 0.4 06 0.2 04 06
PredictorA PredictorA

46

Example: More Complex Model

Statistical Learning:
Introduction, Setting and

Dicl, Ectimnting

Naive Bayes with kernel density estimates

Decision region Decision boundary
w
8]
0.8 06 > ® |
Cg classes % ’ classes
% 0.4 . Class1 % 0.4- @ Classi
& B class2 £ @ Class2
02

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA

47

Example: KNN

Statistical Learning:
Introduction, Setting and

Di~l I:.-;:m«;:,\n
k-NN with k=1
Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ © classes
% 0.4 . Class1 % 0.4~ > @ Classi
& B class2 £ @ Class2
02 02-
0.2 0.4 06 0.2 DIA DI.B
PredictorA PredictorA

48

Example: KNN

Statistical Learning:
Introduction, Setting and

Di~l I:.-;:m«;:,\n
k-NN with k=5
Decision region Decision boundary
w
8]
06 06- ® @
Cg classes % ’ © classes
% 0.4 . Class1 % 0.4~ > @ Classi
& B class2 £ @ Class2
02 02-
0.2 0.4 06 0.2 DIA DI.B
PredictorA PredictorA

48

Example: KNN

Statistical Learning:
Introduction, Setting and

Di~l I:.-;:m«;:,\n
k-NN with k=9
Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ © classes
% 0.4 . Class1 % 0.4- > @ Classi
& B class2 £ @ Class2
02 02-
0.2 0.4 06 0.2 DIA DI.B
PredictorA PredictorA

48

Example: KNN

Statistical Learning:
Introduction, Setting and

Di~l I:.-;:m«;:,\n
k-NN with k=13
Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ © classes
% 0.4 . Class1 % 0.4 > @ Classi
& B class2 £ @ Class2
02 02-
0.2 0.4 06 0.2 DIA DI.B
PredictorA PredictorA

48

Example: KNN

Statistical Learning:
Introduction, Setting and

Di~l I:.-;:m«;:,\n
k-NN with k=17
Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ © classes
% 0.4 . Class1 % 0.4 > @ Classi
& B class2 £ @ Class2
02 02-
0.2 0.4 06 0.2 DIA DI.B
PredictorA PredictorA

48

Example: KNN

k-NN with k=21

PredictorB

=
=3

=
IS

=
[}

Decision region

02 0.4
PredictorA

classes

B ciasst
B class2

PredictorB

Decision boundary

02

0.4
PredictorA

06

Statistical Learning:
Introduction, Setting and

Dicl, Ectimnting

classes
@ Classi
) Class2

48

Example: KNN

Statistical Learning:
Introduction, Setting and

Di~l I:.-;:m«;:,\n
k-NN with k=25
Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ © classes
% 0.4 . Class1 % 0.4+, > @ Classi
& B class2 £ @ Class2
02 02-
0.2 0.4 06 0.2 DIA ’ DI.B
PredictorA PredictorA

48

Example: KNN

k-NN with k=29

PredictorB

=
=3

=
IS

=
[}

Decision region

02 0.4
PredictorA

classes

B ciasst
B class2

PredictorB

06-

0.4~

02-

Decision boundary

®

02

04
PredictorA

N 1
06

Statistical Learning:
Introduction, Setting and

Dicl, Ectimnting

classes

@ Classi
) Class2

48

Example: KNN

k-NN with k=33

PredictorB

=
=3

=
IS

=
[}

Decision region

02 0.4
PredictorA

classes

B ciasst
B class2

PredictorB

06-

04

02-

Decision boundary

®

02

04
PredictorA

'
06

Statistical Learning:
Introduction, Setting and

Dicl, Ectimnting

classes

@ Classi
) Class2

48

Example: KNN

Statistical Learning:
Introduction, Setting and

Di~l I:.-;:m«;:,\n
k-NN with k=37
Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ © classes
% 0.4 . Class1 % 0.4+ > @ Classi
& B class2 £ @ Class2
02 02-
0.2 0.4 06 0.2 DIA) DI.B
PredictorA PredictorA

48

Example: KNN

k-NN with k=45

PredictorB

=
=3

=
IS

=
[}

Decision region

02 0.4
PredictorA

Decision boundary

06- ®

classes

B ciasst
B class2

04

PredictorB

02-

L

0.2 04 06
PredictorA

Statistical Learning:
Introduction, Setting and

Dicl, Ectimnting

classes

@ Classi
) Class2

48

Example: KNN

k-NN with k=53

PredictorB

=
=3

=
IS

=
[}

Decision region

02 0.4
PredictorA

classes

B ciasst
B class2

PredictorB

06-

04-

02-

Decision boundary

02

®

04
PredictorA

'
06

Statistical Learning:
Introduction, Setting and

Dicl, Ectimnting

classes

@ Classi
) Class2

48

Example: KNN

k-NN with k=61

PredictorB

=
=3

=
IS

=
[}

Decision region

02 0.4
PredictorA

classes

B ciasst
B class2

PredictorB

06-

04~

02-

Decision boundary

02

®

04
PredictorA

'
06

Statistical Learning:
Introduction, Setting and

Dicl, Ectimnting

classes

@ Classi
) Class2

48

Example: KNN

k-NN with k=69

PredictorB

=
=3

=
IS

=
[}

Decision region

02 0.4
PredictorA

classes

B ciasst
B class2

PredictorB

06-

04-

02-

Decision boundary

02

®

04
PredictorA

'
06

Statistical Learning:
Introduction, Setting and

Dicl, Ectimnting

classes

@ Classi
) Class2

48

Example: KNN

k-NN with k=77

PredictorB

=
=3

=
IS

=
[}

Decision region

02 0.4
PredictorA

classes

B ciasst
B class2

PredictorB

06-

04-

02-

Decision boundary

02

®

04
PredictorA

'
06

Statistical Learning:
Introduction, Setting and

Dicl, Ectimnting

classes

@ Classi
) Class2

48

Example: KNN

k-NN with k=85

PredictorB

=
=3

=
IS

=
[}

Decision region

02 0.4
PredictorA

classes

B ciasst
B class2

PredictorB

06-

04-

02-

Decision boundary

02

®

04
PredictorA

'
06

Statistical Learning:
Introduction, Setting and

Dicl, Ectimnting

classes

@ Classi
) Class2

48

Example: KNN

k-NN with k=101

PredictorB

=
=3

=
IS

=
[}

Decision region

02 0.4
PredictorA

classes

B ciasst
B class2

PredictorB

06-

04-

02-

Decision boundary

02

®

04
PredictorA

'
06

Statistical Learning:
Introduction, Setting and

Dicl, Ectimnting

classes

@ Classi
) Class2

48

Example: KNN

k-NN with k=109

PredictorB

=
=3

=
IS

=
[}

Decision region

02 0.4
PredictorA

classes

B ciasst
B class2

PredictorB

06-

04-

02-

Decision boundary

02

®

04
PredictorA

'
06

Statistical Learning:
Introduction, Setting and

Dicl, Ectimnting

classes

@ Classi
) Class2

48

Example: KNN

k-NN with k=117

PredictorB

=
=3

=
IS

=
[}

Decision region

02 0.4
PredictorA

classes

B ciasst
B class2

PredictorB

06-

04-

02-

Decision boundary

02

®

04
PredictorA

'
06

Statistical Learning:
Introduction, Setting and

Dicl, Ectimnting

classes

@ Classi
) Class2

48

Example: KNN

k-NN with k=125

PredictorB

=
=3

=
IS

=
[}

Decision region

02 0.4
PredictorA

classes

B ciasst
B class2

PredictorB

06-

04-

02-

Decision boundary

02

®

04
PredictorA

'
06

Statistical Learning:
Introduction, Setting and

Dicl, Ectimnting

classes

@ Classi
) Class2

48

Example: KNN

k-NN with k=133

PredictorB

=
=3

=
IS

=
[}

Decision region

02 0.4
PredictorA

classes

B ciasst
B class2

PredictorB

06-

04-

02-

Decision boundary

02

®

04
PredictorA

'
06

Statistical Learning:
Introduction, Setting and

Dicl, Ectimnting

classes

@ Classi
) Class2

48

Example: KNN

k-NN with k=141

PredictorB

=
=3

=
IS

=
[}

Decision region

02 0.4
PredictorA

classes

B ciasst
B class2

PredictorB

06-

04-

02-

Decision boundary

02

®

04
PredictorA

'
06

Statistical Learning:
Introduction, Setting and

Dicl, Ectimnting

classes

@ Classi
) Class2

48

Example: KNN

k-NN with k=149

PredictorB

=
=3

=
IS

=
[}

Decision region

02 0.4
PredictorA

classes

B ciasst
B class2

PredictorB

06-

04-

02-

Decision boundary

02

®

04
PredictorA

'
06

Statistical Learning:
Introduction, Setting and

Dicl, Ectimnting

classes

@ Classi
) Class2

48

Example: KNN

k-NN with k=157

PredictorB

=
=3

=
IS

=
[}

Decision region

02 0.4
PredictorA

classes

B ciasst
B class2

PredictorB

06-

04-

02-

Decision boundary

02

®

04
PredictorA

'
06

Statistical Learning:
Introduction, Setting and

Dicl, Ectimnting

classes

@ Classi
) Class2

48

Example: KNN

k-NN with k=165

PredictorB

=
=3

=
IS

=
[}

Decision region

02 0.4
PredictorA

classes

B ciasst
B class2

PredictorB

06-

04-

02-

Decision boundary

02

®

04
PredictorA

'
06

Statistical Learning:
Introduction, Setting and

Dicl, Ectimnting

classes

@ Classi
) Class2

48

Example: KNN

k-NN with k=173

PredictorB

=
=3

=
IS

=
[}

Decision region

02 0.4
PredictorA

classes

B ciasst
B class2

PredictorB

06-

04-

02-

Decision boundary

02

®

04
PredictorA

'
06

Statistical Learning:
Introduction, Setting and

Dicl, Ectimnting

classes

@ Classi
) Class2

48

Example: KNN

k-NN with k=181

PredictorB

=
=3

=
IS

=
[}

Decision region

02 0.4
PredictorA

classes

B ciasst
B class2

PredictorB

06-
04-

02-

Decision boundary

02

®

0.4
PredictorA

'
06

Statistical Learning:
Introduction, Setting and

Dicl, Ectimnting

classes

@ Classi
) Class2

48

Example: KNN

Statistical Learning:
Introduction, Setting and

Dicl, Ectimnting

k-NN with k=189

Decision region Decision boundary

-
o}

0.8 06- ® |
@ @ ’ @ classes
% 04 classes % 0.4 ®
= & Uas Classi1
3 Bcesst B (]
& &) Class2

0.2 02-

02 0.4 06
PredictorA

0.2 04 06
PredictorA

48

Example: KNN

Statistical Learning:
Introduction, Setting and

Dicl, Ectimnting

k-NN with k=197

Decision region Decision boundary

-
o}

0.8 06- ® |
@ @ ’ @ classes
% 04 classes % 0.4 ®
= & Uas Classi1
3 Bcesst B (]
& &) Class2

0.2 02-

02 0.4 06
PredictorA

0.2 04 06
PredictorA

48

Training Risk Issue

Statistical Learning:
Introduction, Setting and
Risk Estimation

Underfit

Generalization
High bi
(' IaS) error

Error

Overfit
(High
variance)

Training error

Model complexity

Risk behaviour

@ Learning/training risk (empirical risk on the learning/training set) decays when
the complexity of the method increases.

@ Quite different behavior when the risk is computed on new observations
(generalization risk).

@ Overfit for complex methods: parameters learned are too specific to the learning
set!

@ General situation! (Think of polynomial fit...)

@ Need to use a different criterion than the training risk!

o
=
=
I3
&
5
[}
n

»
©

Risk Estimation vs Method Selection Statistical Learning:

Introduction, Setting and
Ri imotion

Predictor Risk Estimation
@ Goal: Given a predictor f assess its quality.

@ Method: Hold-out risk computation (/ Empirical risk correction).
@ Usage: Compute an estimate of the risk of a selected f using a test set to be
used to monitor it in the future.

@ Basic block very well understood.

Method Selection
@ Goal: Given a ML method assess its quality.
@ Method: Cross Validation (/ Empirical risk correction)

o Usage: Compute risk estimates for several ML methods using
training/validation sets to choose the most promising one.

@ Estimates can be pointwise or better intervals.
@ Multiple test issues in method selection.

50

Cross Validation and Empirical Risk Correction Statistical Learning:

Introduction, Setting and
Risk Estimation

Two Approaches

@ Cross validation: Use empirical risk criterion but on independent data, very
efficient (and almost always used in practice!) but slightly biased as its target uses
only a fraction of the data.

@ Correction approach: use empirical risk criterion but correct it with a term
increasing with the complexity of S
Ro(fs) = Ra(fs) + cor(S)
and choose the method with the smallest corrected risk.

Which loss to use?
@ The loss used in the risk: most natural!

@ The loss used to estimate 0: penalized estimation!

@ Other performance measure can be used.

51

C ross Va | id atIO n Statistical Learning:

Introduction, Setting and

Purpose Modeling Performance Risk Estimation
Resample
< -m-mmeemsmmmeeeeeooo---- Random Data Groupings -------------===-------- >
e Very simple idea: use a second learning/verification set to compute a verification

risk.
o Sufficient to remove the dependency issue!
@ Implicit random design setting. . .

Cross Validation
@ Use (1 — €) x n observations to train and € x n to verify!

@ Possible issues:
e Validation for a learning set of size (1 — ¢) X n instead of n ?
o Unstable risk estimate if en is too small 7)

@ Most classical variations:
e Hold Out,
e Leave One Out,
e V-fold cross validation.

e
X
=
o
g
=
<]
%)

1
N

H Old O Ut Statistica! Learning:

Principle

@ Split the dataset D in 2 sets Dirain and Diest 0f size n X (1 —¢) and n X €.

o Learn £HO from the subset Dypain.

@ Compute the empirical risk on the subset Dieg::

LY v o))

RHO(?HO) =
(X;,Yi)EDxest

Predictor Risk Estimation

o Use FHO as predictor.
o Use RHMO(fHO) as an estimate of the risk of this estimator.

Method Selection by Cross Validation

e Compute R,,HO(?SHO) for all the considered methods,
@ Select the method with the smallest CV risk,
@ Reestimate the ?5 with all the data. 53

H Old O Ut Statistica! Learning:

Principle

@ Split the dataset D in 2 sets Dirain and Diest 0f size n X (1 —¢) and n X €.

o Learn £HO from the subset Dypain.

@ Compute the empirical risk on the subset Dieg::

LY v o))

RHO(?HO) =
n
ne (X;,Yi)EDxest

@ Only possible setting for risk estimation.

Hold Out Limitation for Method Selection
@ Biased toward simpler method as the estimation does not use all the data initially.

e Learning variability of RHO(£HO) not taken into account.

53

V-fold Cross Validation =" - Statistical Learning;

Introduction, Setting and
Risk Estimation

Principle
@ Split the dataset D in V sets D, of almost equals size.
@ Forve{l, . 6V}
o Learn £~V from the dataset D minus the set D,.
e Compute the empirical risk:

—V(T—Vv\ _ i - T—v
R == D UYL (X)
@ Compute the average empirical risk:

@ Estimation of the quality of a method not of a given predictor.
@ Leave One Qut : V = n.

=]
X
=
o
g
=
<]
%)

o1
>

V-fold Cross Validation Statistical Learning:

Introduction, Setting and

Analysis (when n is a multiple of V)

~

@ The R,Y(f~") are identically distributed variable but are not independent!

@ Consequence:
E[RSY(F)| = E[R;"(F™)]

Var {RSV(?)} = %Var {”R;V(?_V)}

+(1- %) Cov [Ry¥(F™), Ry (F)]

Average risk for a sample of size (1 — 4)n.

Variance term much more complex to analyze!

Fine analysis shows that the larger V the better. ..

Accuracy/Speed tradeoff: V =5 or V =10...

55

Linear Regression and Leave One Out Statistical Learnin:

Introduction, Setting and
Risk Estimation

@ Leave One Out = V fold for V = n: very expensive in general.

A fast LOO formula for the linear regression

@ Prop: for the least squares linear regression,
f(X;) — hiY;
1— hj
with hj; the ith diagonal coefficient of the hat (projection) matrix.

(X)) =

@ Proof based on linear algebra!
@ Leads to a fast formula for LOO:

56

Statistical Learning:

Cross Validation

Introduction, Setting and

Risk Estimation

1.0-00

09-

. Accuracy
. AccuracyCV

variable

8-

s
anjea

0.7~

0.6-

model

57

Example: KNN (k = 61 using cross-validation)

k-NN with k=61

Decision region

0.6
Cg classes
__g 0.4 . Class1
& B class2
0.2

02 0.4 06
PredictorA

PredictorB

Statistical Learning:
Introduction, Setting and

Dicl, Ectinmmatina n
Decision boundary
w
o ® «
’ © classes
® @ Classi
) Class2

0.2 04 06
PredictorA

58

Tl’a | n /Va | id atiO n/TeSt [Original set | Statistical Learning:

| Introduction, Setting and
Risk Estimation

[Training set [Testset

‘ Training set ‘ Validation set | Test set |

4

v
\U

@ Selection Bias Issue:
o After method selection, the cross validation is biased.
e Furthermore, it qualifies the method and not the final predictor.

o Need to (re)estimate the risk of the final predictor.
(Train/Validation)/Test strategy

@ Split the dataset in two a (Train/Validation) and Test.

@ Use CV with the (Train/Validation) to select a method.

@ Train this method on (Train/Validation) to obtain a single predictor.

o Estimate the performance of this predictor on Test.

)
©
|
]
3
©
[a]
)
[
S
I
;
]
<
%)
o
g
=
<]
%)

@ Every choice made from the data is part of the method!

a1
©

RISk CorreCtiO n Statistical Learning:

Introduction, Setting and
Risk Estimation

@ Empirical loss of an estimator computed on the dataset used to chose it is biased!

@ Empirical loss is an optimistic estimate of the true loss.

Risk Correction Heuristic
@ Estimate an upper bound of this optimism for a given family.

@ Correct the empirical loss by adding this upper bound.

@ Rk: Finding such an upper bound can be complicated!

@ Correction often called a penalty.

60

Pe na | |Zat|o n Statistical Learning:

Introduction, Setting and
Ri imotion

Penalized Loss

@ Minimization of
1 n
argmin = Y (Y;, f(X;)) + pen(6)
gco N i=1
where pen(0) is a risk correction (penalty).

@ Upper bound of the optimism of the empirical loss

@ Depends on the loss and the framework!

Instantiation

. : __nd 2
e Mallows Cp: Least Squares with pen(f) = 2907

@ AIC Heuristics: Maximum Likelihood with pen(§) = ¢

@ BIC Heuristics: Maximum Likelohood with pen(f) = log(n)¢

n-

@ Structural Risk Minimization: Pred. loss and clever penalty.

61

O Utl | ne Statistical Learning:

Introduction, Setting and
Risk Estimation

o Statistical Learning: Introduction, Setting and Risk
Estimation

@ Cross Validation and Test

62

Comparison of Two Means Statistical Learning:

InltroducFion,l Setting and
e Setting: r.v. e,-(l) with 1 </ < n;and / € {1,2} and their means
LS50

el = =
ny

i=1

@ Question: are the means e(/) statistically different?

Classical i.i.d setting

O]

@ Assumption: ¢; ’ are i.i.d. for each /.

o Test formulation: Can we reject the null hypothesis that E{e(l)} = E[e(z)}?

@ Methods:

o Gaussian (Student) test using asymptotic normality of a mean.
e Non-parametric permutation test.

@ Gaussian approach is linked to confidence intervals.
@ The larger n; the smaller the confidence intervals.

63

Comparison of Two Means Statistical Learning:

Introduction, Setting and
Risk Estimation

Non i.i.d. case

o Assumption: e,-(I) are i.d. for each / but not necessarily independent.

@ Test formulation: Can we reject the null hypothesis that E{e(l)} = E{e@)}?
e Methods:

o Gaussian (Student) test using asymptotic normality of a mean but variance is hard
to estimate.
e Non-parametric permutation test but no confidence intervals.

Setting for Cross Validation (other than holdout).

@ Much more complicated than the i.i.d. case

64

Comparison of Several Means Statistical Learning:

Introduction, Setting and
Risk imation

Several means

@ Assumption: e,-(l)

@ Tests formulation:

o Can we reject the null hypothesis that the E[e(’)] are different?
o Is the smaller mean statistically smaller than the second one?

Methods:
o Gaussian (Student) test using asymptotic normality of a mean with multiple tests
correction.
e Non-parametric permutation test but no confidence intervals.

are i.d. for each / but not necessarily independent.

Setting for Cross Validation (other than holdout).
The more models one compares:

e the larger the confidence intervals

e the most probable the best model is a lucky winner

Justify the fallback to the simplest model that could be the best one.

65

PAC ApproaCh Statistical Learning:

Introduction, Setting and
Risk Estimation

CV Risk, Methods and Predictors
@ Cross-Validation risk: estimate of the average risk of a ML method.

@ No risk bound on the predictor obtained in practice.

Probabibly-Approximately-Correct (PAC) Approach
@ Replace the control on the average risk by a probabilistic bound
P(E[(Y,F(X))| > R) <e

@ Requires estimating quantiles of the risk. 66

Cross Validation and Confidence Interval Statistical Learning:

Introduction, Setting and

@ How to replace pointwise estimation by a confidence interval? Risk Estimation
@ Can we use the variability of the CV estimates?
o Negative result: No unbiased estimate of the variance!

Gaussian Interval (Comparison of the means and ~ indep.)

@ Compute the empirical variance and divide it by the number of folds to construct
an asymptotic Gaussian confidence interval,

@ Select the simplest model whose value falls into the confidence interval of the
model having the smallest CV risk.

PAC approach (Quantile, ~ indep. and small risk estim. error)

e Compute the raw medians (or a larger raw quantiles)

@ Select the model having the smallest quantiles to ensure a small risk with high
probability.

@ Always reestimate the chosen model with all the data.

@ To obtain an unbiased risk estimate of the final predictor: hold out risk on

67

untouched test data.

%

7

Statistical Learning:

Cross Validation

Introduction, Setting and

Risk Estimation

1.0-00

09-

variable

. AccuracyCVPAC

. AccuracyCVinf
. Accuracy

. AccuracyCV

s
anjea

model

68

O Utl | ne Statistical Learning:

Introduction, Setting and
Risk Estimation

o Statistical Learning: Introduction, Setting and Risk
Estimation

@ References

69

Refe rences Statistical Learning:

[o—

Introduction, Setting and

T. Hastie, R. Tibshirani, and J. Friedman. Risk Estimation
The Elements of Statistical Learning.
Springer Series in Statistics, 2009

M. Mohri, A. Rostamizadeh, and A. Talwalkar.
Foundations of Machine Learning (2nd ed.)
MIT Press, 2018

A. Géron.
Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow (3rd ed.)
O'Reilly, 2022

Ch. Giraud.
Introduction to High-Dimensional Statistics.
CRC Press, 2014

S. Bubeck.
Convex Optimization: Algorithms and Complexity.
Now Publisher, 2015

70

Licence and Contributors Statistical Learning:

Introduction, Setting and
Risk Estimation

Creative Commons Attribution-ShareAlike (CC BY-SA 4.0)

@ You are free to:
@ Share: copy and redistribute the material in any medium or format
@ Adapt: remix, transform, and build upon the material for any purpose, even commercially.

@ Under the following terms:
@ Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in

any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
@ ShareAlike: If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the

original.
@ No additional restrictions: You may not apply legal terms or technological measures that legally restrict others from doing anything

the license permits.

Contributors
@ Main contributor: E. Le Pennec
@ Contributors: S. Boucheron, A. Dieuleveut, A.K. Fermin, S. Gadat, S. Gaiffas,
A. Guilloux, Ch. Keribin, E. Matzner, M. Sangnier, E. Scornet. 71

OUtI ine ML Methods: Probabilistic

Point of View

7

o ML Methods: Probabilistic Point of View
@ Motivation
@ Supervised Learning
@ A Probabilistic Point of View
@ Parametric Conditional Density Modeling
@ Non Parametric Conditional Density Modeling
@ Generative Modeling
@ Model Selection
@ Penalization

72

OUtI ine ML Methods: Probabilistic

Point of View

o ML Methods: Probabilistic Point of View
@ Motivation

73

Motivation ML Methods: Probabilistic £ 7

Point of View

Ozone pollution

max03

20 25
Ti2

@ Data: Air Breizh, Summer 2001
o Input: Temperature at 12h00

N
o
0
<
[
g
5
o
»

@ Output: max Ozone concentration

-
~

Motivation ML Methods: Probabilistic £ 7

Point of View

Credit Default, Credit Score, Bank Risk, Market Risk Management

e Data: Client profile, Client credit history. . .
@ Input: Client profile
@ Output: Credit risk

s
]
~
o
g
=
<]
%)

~
o1

ML Methods: Probabilistic

Motivation
Point of View

Marketing: advertisement, recommendation. ..

More Ideas Based on Your Browsing History

You looked at You might also consider
e Exhibit
i Labels
. |

Thriving in the Knowledge ~ Museum Administration: An Exhibit Labels: An
Age: New... Paperback by Introduction Paperback by Interpretive Approach

John H. Falk Hugh H. Genoways Paperback by Beverly Serrell
$29.95 $34.95 $28.75 $34.95 $27.85

s Roc ommandaions don't havefo be
about showing You more of Hhe same..

e Data: User profile, Web site history. ..
@ Input: User profile, Current web page

@ Qutput: Advertisement with price, recommendation. . .

Spam detection (Text classificati 76

%
U
o
2
3
o

(%]

I\/Iachine Learning ML Methods: Probabilistic

Point of View

Input

Training Data I
7L10414467 Learning

0b901597%4 Algorithm
65401401

SR SR VRO

A definition by Tom Mitchell

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E.

2
<]
<
=
>
o
g
=
<]
%)

~
~

OUtI ine ML Methods: Probabilistic

Point of View

5

o ML Methods: Probabilistic Point of View

@ Supervised Learning

78

7

SU pervised Learning ML Methods: Probabilistic

Point of View

Supervised Learning Framework

@ Input measurement X € X

o Output measurement Y €).

o (X,Y) ~ P with P unknown.

@ Training data : D, = {(X{, Y1),...,(X,, Ya)} (i.id. ~P)

e Often
o XeRYand Y € {—1,1} (classification)
o or X € RY and Y € R (regression).
@ A predictor is a function in F = {f : X —) meas.}

e Construct a good predictor f from the training data.

@ Need to specify the meaning of good.

o Classification and regression are almost the same problem! .

Point of View

LOSS and Probabilistic Framework ML Methods: Probabilistic [“

Loss function for a generic predictor

@ Loss function: /(Y,f(X)) measures the goodness of the prediction of Y by f(X)
@ Examples:

o 0/1loss: £(Y,f(X)) = Lyxe(x)

o Quadratic loss: (Y, f(X)) =|Y — f(X)|?

@ Risk measured as the average loss for a new couple:
R(f) = Ex,v)~p[4(Y, f(X))]
@ Examples:
o 0/1 loss: E[(Y,f(X))] = (Y f(X))
e Quadratic loss: E[((Y,f(X))] =E[|Y — f(X)|]

e Beware: As f depends on D,,, R(f) is a random variable!

80

Best Solution ML Methods: Probabilistic /'“

Point of View

@ The best solution f* (which is independent of D,) is
f* = arg)rrng(f) = arg m|n]E[E(Y f(X))] = arg m|n Ex [Ey|X[E(Y f(X))]}
€

Bayes Predictor (explicit solution)

e In binary classification with 0 — 1 loss:
+1 if P(Y=+1X)>P(Y=-1X)
(X) = < P(Y =+1|X) >1/2
—1 otherwise

o In regression with the quadratic loss
F(X) = E[Y|X]

Issue: Solution requires to know E[Y|X] for all values of X!

81

Goal ML Methods: Probabilistic
Point of View

Machine Learning

@ Learn a rule to construct a predictor f € F from the training data D, s.t. the

~

risk R(f) is small on average or with high probability with respect to D,,.

@ In practice, the rule should be an algorithm!

Canonical example: Empirical Risk Minimizer
@ One restricts f to a subset of functions S = {fp,0 € O}
@ One replaces the minimization of the average loss by the minimization of the
empirical loss

N i
f=f=argmin—) LY}, fp(X;
6 ffeeen,;(5(X;))

@ Examples:

e Linear regression
e Linear classification with

S = {x > sign{x" 8+ 8O0} /3 e RY BO c R}

82

Example: TwoClass Dataset ML Methods: Probabilsti

Point of View

Synthetic Dataset

e Two features/covariates.

@ Two classes.

Dataset from Applied Predictive Modeling, M. Kuhn and K. Johnson, Springer
Numerical experiments with R and the {caret} package.

83

Example: Linear Discrimination ML Methods: Probabilsti
Point of View

Logistic
Decision region Decision boundary
=

0.8 06- ® o |
Cg classes % ’ g © classes
% 0.4 . Class1 % 0.4- > @ Classi
& B class2 £ @ Class2

02

02 0.4 06 0.2 04 06
PredictorA PredictorA

84

Example: More Complex Model

ML Methods: Probabilistic

Point of View
Naive Bayes with kernel density estimates
Decision region Decision boundary
w
O
0.8 06 > ® |
Cg classes % ’ classes
% 0.4 . Class1 % 0.4- @ Classi
& B class2 £ @ Class2
0.2

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA

85

Bias—Varia nce D i Iem ma ‘ ML Methods: Probabilistic

Point of-v

o General setting:

F = {measurable functions X — Y}

Best solution: f* = argmins.» R(f)

Class § C F of functions

Ideal target in S: f& = argmingcs R(f)
Estimate in S: ?5 obtained with some procedure

Approximation error and estimation error (Bias/Variance)

R(fs) — R(F*) = R(£) — R(F*) + R(fs) — R(£)

Approximation error Estimation error

@ Approx. error can be large if the model S is not suitable.

@ Estimation error can be large if the model is complex.

86

Under—fitting / Over—fitting |SSU€ ML Methods: Probabilistic

Point of View

Underfit
(High bias)

Generalization
error

Error

Overfit
(High

variance)

Model complexity
@ Different behavior for different model complexity

e Low complexity model are easily learned but the approximation error (bias) may
be large (Under-fit).
@ High complexity model may contain a good ideal target but the estimation error
(variance) can be large (Over-fit)
Bias-variance trade-off <= avoid overfitting and underfitting J

@ Rk: Better to think in term of method (including feature engineering and specific
algorithm) rather than only of model.

c
2
<]
<

=
c

=}
o
g
=
<]
%)

[ee]
J

Probabilistic and Optimization Framework ML Methods: Probabilistic [“

Point of View

How to find a good function f with a small risk
R(f) =E[(Y, f(X))] 7?
Canonical approach: fs = argmingcs 2 271 £(Y;, f(X;))
Problems
@ How to choose §7

@ How to compute the minimization?

A Probabilistic Point of View

Solution: For X, estimate Y|X plug this estimate in the Bayes classifier:
(Generalized) Linear Models, Kernel methods, k-nn, Naive Bayes, Tree,

Bagging. . .

An Optimization Point of View

Solution: If necessary replace the loss ¢ by an upper bound Z and minimize the

empirical loss: SVR, SVM, Neural Network, Tree, Boosting. . . o6

OUtI ine ML Methods: Probabilistic

Point of View

7

o ML Methods: Probabilistic Point of View

@ A Probabilistic Point of View

89

Three Classical Methods in a Nutshell ML Methods: Probalstic /X

Point of View

Logistic Regression

o Let fy(X) = X5+ 8O with 6§ = (8, 3®).

o Let Pp(Y = 1|X) = e 7(X) /(1 + (X))

e Estimate 6 by using a Maximum Likelihood.
o Classify using Py(Y = 1|X) > 1/2

k Nearest Neighbors

@ For any X', define VK’ as the k closest samples X; from the dataset.

o Compute a score gk = > x.cv,, 1vi=k

o Classify using arg max gx (majority vote).

90

Three Classical Methods in a Nutshell ML Methods: Probalstic /X

Point of View

Quadratic Discrimant Analysis

@ For each class, estimate the mean puyx and the covariance matrix > .

o Estimate the proportion P(Y = k) of each class.
e Compute a score In(P(X|Y = k)) + In(P(Y = k))

gk(X) = — %(K —) T HX — k)
— g In(27) — % In(|Z«]) + In(P(Y = k))

o Classify using arg max gy

@ Those three methods rely on a similar heuristic: the probabilistic point of view!

91

Best Solution ML Methods: Probabilistic /'“

Point of View

@ The best solution f* (which is independent of D) is
f* = arg 1rcn|]r_1 R(f) = arg m|n E[E(Y f(X))] = arg m|n Ex []EHX[E(Y f(X)]}
€

Bayes Predictor (explicit solution)

e In binary classification with 0 — 1 loss:
+1 if P(Y=+1X)>P(Y=-1X)
(X) = < P(Y =+1|X) >1/2
—1 otherwise

o In regression with the quadratic loss
F(X) = E[Y|X]

Issue: Explicit solution requires to know Y|X (or E[Y|X]) for all values of X!

92

Plugin Predictor ML Methods: Probabilistic /'“

Point of View

@ ldea: Estimate Y|X by VIX and plug it the Bayes classifier.

Plugin Bayes Predictor

@ In binary classification with 0 — 1 loss:
+1 if P(Y =+1X) > P(Y = —1[X)
f(X) = & P(Y = +1[X) > 1/2
—1 otherwise

@ In regression with the quadratic loss
F(X) =E[VIX]

@ Rk: Direct estimation of E[Y|X] by m also possible. ..

93

Plugin Predictor ML Methods: Probabilistic /'V“

Point of View

@ How to estimate Y|X?

Three main heuristics

e Parametric Conditional modeling: Estimate the law of Y|X by a parametric
law Lg(X): (generalized) linear regression. . .

@ Non Parametric Conditional modeling: Estimate the law of Y|X by a non
parametric estimate: kernel methods, loess, nearest neighbors. . .

o Fully Generative modeling: Estimate the law of (X, Y) and use the Bayes
formula to deduce an estimate of Y|X: LDA/QDA, Naive Bayes. ..

@ Rk: Direct estimation of E[Y|X] by]ETYE also possible. ..

94

Plugin CIassifier ML Methods: Probabilistic

Point of View

@ Input: a data set D,
Learn Y|X or equivalently P(Y = k|X) (using the data set) and plug this
estimate in the Bayes classifier

e Output: a classifier f : RY — {—1,1}

—

()=t if P(Y = 1)X) > P(Y = —1|X)
o —1 otherwise

¥

e Can we guaranty that the classifier is good if Y|X is well estimated?

95

Classification RISk Analysis ML Methods: Probabilistic /"“

Point of View

o If f = sign(2ps1 — 1) then
E[4(Y,F(X))] - E[@1(Y, F(X))]

<E[|IVIX — YIX])1]

< (E[2KL(YIX, @Dm

@ If one estimates P(Y = 1|.X) well then one estimates * well!
@ Link between a conditional density estimation task and a classification one!

@ Rk: In general, the conditional density estimation task is more complicated as one
should be good for all values of P(Y = 1|X) while the classification task focus on
values around 1/2 for the 0/1 loss!

@ In regression, (often) direct control of the quadratic loss. . .

96

OUtI ine ML Methods: Probabilistic

Point of View

7

o ML Methods: Probabilistic Point of View

@ Parametric Conditional Density Modeling

97

Parametric Conditional Density MOdGIS ML Methods: Probabilistic /"“

Point of View

e ldea: Estimate directly Y|X by a parametric conditional density Py(Y|X).

Maximum Likelihood Approach

@ Classical choice for 6:
n
0 = argmin — > " log Py(Yi| X))
o i=1
Goal: Minimize the Kullback-Leibler divergence between the conditional law of
Y|X and Py(Y|X)

E[KL (Y|X,Pa(Y|X))]

Rk: This is often not (exactly) the learning task!
Large choice for the family {Py(Y|X)} but depends on Y (and X).

Regression: One can also model directly E[Y|X] by fy(X) and estimate it with a
least-squares criterion. . .

98

Linear Conditional Density Models ML Methods: Probabilstc

Point of View

Linear Models

e Classical choice: 6 = (¢',)
Py(Y|X) = IP’KT&@(Y)
e Very strong assumption!

@ Classical examples:

Binary variable: logistic, probit. . .

Discrete variable: multinomial logistic regression. . .
Integer variable: Poisson regression. . .

Continuous variable: Gaussian regression. . .

99

Point of View

Binary Classifier ML Methods: Probabilistic [“

Plugin Linear Classification
e Model P(Y = +1|X) by A(X "8 + 5©) with h non decreasing.
o h(X"B+p0)>1/2e XT38+ 50 —h1(1/2) >0
o Linear Classifier: sign(X' 8+ 5 — h=1(1/2))

Plugin Linear Classifier Estimation

@ Classical choice for h: .

e : -

h(t) = T logit or logistic
h(t) = Fu(t) probit
h(t)=1—e* log-log

@ Choice of the best 3 from the data.

100

|\/|aximum leellhOOd Estimate ML Methods: Probabilistic

Point of View

Probabilistic Model
@ By construction, Y|X follows B(P(Y = +1|X))
@ Approximation of Y|X by B(h(x' g + 5(©))
o Natural probabilistic choice for 8: maximum likelihood estimate.

@ Natural probabilistic choice for 5: 8 approximately minimizing a distance between

B(h(xT B)) and B(B(Y = 1|X)).

Maximum Likelihood Approach
° I\/I|n|m|zat|on of the negat|ve log-likelihood:
- Z 0g(B(Yi1X0)) = — 3 (v, log(h(X, 3) + Ly log(L — h(X, 5)
i=1
° M|n|m|zat|on possible if h is regular. . .

7

101

|\/|aximum leellhOOd Estimate ML Methods: Probabilistic é"h

Point of View

KL Distance and negative log-likelihood

o Natural distance: Kullback-Leibler divergence
KL(B(B(Y = 1|X)), B(h(X' 5))

= Ex [IP(Y = 1|X)lo P(:(X:T;')X)
+P(Y = —1|X) log 1= P((X_T;J)X)]

= Ex [-P(Y = 1X) |og(h(fﬂ))
—P(Y = ~1X)log(1 — K(X"B))] + Cx.v

e Empirical counterpart = negative log-likelihood (up to 1/n factor):

= Z <1Y _1log(h(X; T B)) + 1y,—_1 log(1 — h(X; 5)))

102

Point of View

LOgiStiC Regression ML Methods: Probabilistic £ 7

Logistic Regression and Odd

@ Logistic model: h(t) = %tet (most natural choice. . .)

@ The Bernoulli law B(h(t)) satisfies then
P(Y =1)
P(Y =-1)
@ Interpretation in term of odd.

t I

Y=-1) '

@ Logistic model: linear model on the logarithm of the odd

P(Y=1X) -
| N = X
By ——1x) ~ 7
Associated Classifier
@ Plugin strategy: o X' T
F(X) 1 if 1+egﬁ>l/2@5 65>0
—1 otherwise

103

LOgiStiC Regression and Minimization ML Methods: Probabilistic [“

Point of View

Likelihood Rewriting

o Negative log- Iikelihood
- —Z (1vi=110g(h(X;" B)) + 1y, 1 log(1 — h(X," 8)))

1 I s 1 I !
——*Z Y= 10g XT/3+ Yi=—1 Ogm

_ - ; log (1 + e—Yi(K,’TB))

@ Convex and smooth function of 3

e Easy optimization.

104

Exam pIe: LOgiStiC ML Methods: Probabilistic
Point of View

Logistic
Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ © classes
% 0.4 . Class1 % 0.4- > @ Classi
& B class2 £ @ Class2
02 02-
0.2 0.4 06 0.2 OIA Ol.ﬁ
PredictorA PredictorA

105

Featu re Design ML Methods: Probabilistic [“

Point of View

Transformed Representation

e From X to ¢(X)!
@ New description of X leads to a different linear model:
f3(X) = o(X)' 8

Feature Design

@ Art of choosing .

@ Examples:
e Renormalization, (domain specific) transform
e Basis decomposition
e Interaction between different variables. ..

106

Example: Quadratic Logistic

ML Methods: Probabilistic
Point of View

Quadratic Logistic

Decision region Decision boundary
0.6 06- |
Cg classes % classes
% 0.4 . Classi % 0.4~ @ Classi
& B class2 £ @ Class2
02

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA

107

Gaussian Linear Regression ML Methods: Probabilstc

Point of View

Gaussian Linear Model

Model: Y|X ~ N(X'3,052) plus independence

Probably the most classical model of all time!

Maximum Likelihood with explicit formulas for the two parameters.

In regression, estimation of E[Y'|X] is sufficient: other/no model for the noise
possible.

108

Extension of Gaussian Linear Regression ML Methods: Probabilisic K

Point of View

Generalized Linear Model

@ Model entirely characterized by its mean (up to a scalar nuisance parameter)
(v(Ep[Y]) = 6 with v invertible).
@ Exponential family: Probability law family Py such that the density can be written

f(y,0,0) =7 W0

where ¢ is a nuisance parameter and w a function independent of 6.
@ Examples:

y0=02/2 _ y%/2

o Gaussian: f(y,0,p) =€ = B
o Bernoulli: f(y,0) = //="1+¢") (9 = Inp/(1 — p))
o Poisson: f(y,0) = e0=¢)+n() (9 = In))

o Linear Conditional model: Y[X ~ Py7j. ..

@ ML fit of the parameters

109

OUtI ine ML Methods: Probabilistic

Point of View

7

o ML Methods: Probabilistic Point of View

@ Non Parametric Conditional Density Modeling

110

Non Parametric Conditional Estimation ML Methods: Probabilistic

Point of View

e ldea: Estimate Y|X or E[Y|X] directly without resorting to an explicit
parametric model.

Non Parametric Conditional Estimation

@ Two heuristics:
e Y|X (or E[Y|X]) is almost constant (or simple) in a neighborhood of X. (Kernel

methods)
o Y|X (or E[Y|X]) can be approximated by a model whose dimension depends on the

complexity and the number of observation. (Quite similar to parametric model plus
model selection. . .)

@ Focus on kernel methods!

111

Kernel I\/Iethods ML Methods: Probabilistic /'V“

Point of View

@ ldea: The behavior of Y|X is locally constant or simple!

@ Choose a kernel K (think of a weighted neighborhood).
e For each X, compute a simple localized estimate of Y|X

@ Use this local estimate to take the decision

@ In regression, estimation of E[Y|X] is sufficient.

112

Example: k Nearest-Neighbors (with k = 3)

®
L]
] L[]
[
[]
[]
L]
[]
[) []
!
e
[=
()

ML Methods: Probabilistic
Point of View

c
2
<]
<

=
c

=}
o
g
H]
<]
%)

[y
—_
w

Example k NeareSt_Nelghbors (Wlth k = 4) ML Methods: Probabilistic l'%

Point of View

c
2
<]
<

=
c

=}
o
g
=
<]
%)

L

—
—
IS

k Nearest—Neigh bOI’S ML Methods: Probabilistic £

Point of View

@ Neighborhood V, of x: k learning samples closest from x.

k-NN as local conditional density estimate

— Y ox.evy L{vi=+1
P(Y = 1)) = =X V=)
Vx|
@ KNN Classifier:
~ +1 ifP(Y =1|X)>P(Y = —-1|X
() — (V=110 2 (Y = -11X)
—1 otherwise

e Lazy learning: all the computations have to be done at prediction time.

@ Remark: You can also use your favorite kernel estimator. . .

Example: KNN

ML Methods: Probabilistic
Point of View

k-NN with k=1
Decision region Decision boundary
=

0.8 06- ® . |
Cg classes % ’ ? © classes
% 0.4 . Class1 % 0.4~ > @ Classi
& B class2 £ @ Class2

02

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA

116

Example: KNN

ML Methods: Probabilistic
Point of View

k-NN with k=5
Decision region Decision boundary
=

0.6 06- @ = @
Cg classes % ’ g © classes
% 0.4 . Class1 % 0.4~ > @ Classi
& B class2 £ @ Class2

02

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA

116

Example: KNN

ML Methods: Probabilistic
Point of View

k-NN with k=9
Decision region Decision boundary
=

0.8 06- ® o |
Cg classes % ’ g © classes
% 0.4 . Class1 % 0.4- > @ Classi
& B class2 £ @ Class2

02

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA

116

Example: KNN

ML Methods: Probabilistic
Point of View

k-NN with k=13
Decision region Decision boundary
=

0.8 06- ® o |
Cg classes % ’ g © classes
% 0.4 . Class1 % 0.4 > @ Classi
& B class2 £ @ Class2

02

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA

116

Example: KNN

ML Methods: Probabilistic
Point of View

k-NN with k=17
Decision region Decision boundary
=

0.8 06- ® o |
Cg classes % ’ g © classes
% 0.4 . Class1 % 0.4 > @ Classi
& B class2 £ @ Class2

02

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA

116

Example: KNN

k-NN with k=21

PredictorB

=
=3

=
IS

=
[}

Decision region

02 0.4
PredictorA

classes

B ciasst
B class2

ML Methods: Probabilistic
Point of View

Decision boundary

@ classes
@ Classi
) Class2

PredictorB

0.2 0.4 E).ﬁ
PredictorA

116

Example: KNN

ML Methods: Probabilistic
Point of View

k-NN with k=25
Decision region Decision boundary
=

0.8 06- ® o |
Cg classes % ’ g © classes
% 0.4 . Class1 % 0.4+, > @ Classi
& B class2 £ @ Class2

02

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA

116

Example: KNN

ML Methods: Probabilistic
Point of View

k-NN with k=29
Decision region Decision boundary
=

0.8 06- ® o |
Cg classes % ’ © classes
% 0.4 . Class1 % 0.4~ > @ Classi
& B class2 £ @ Class2

02

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA

116

Example: KNN

ML Methods: Probabilistic
Point of View

k-NN with k=33
Decision region Decision boundary
=

0.8 06- ® o |
Cg classes % ’ © classes
% 0.4 . Class1 % 0.4 > @ Classi
& B class2 £ @ Class2

02

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA

116

Example: KNN

ML Methods: Probabilistic
Point of View

k-NN with k=37
Decision region Decision boundary
=

0.8 06- ® o |
Cg classes % ’ g © classes
% 0.4 . Class1 % 0.4+ > @ Classi
& B class2 £ @ Class2

02

02-

02 0.4 06 0.2 04) 06
PredictorA PredictorA

116

Example: KNN

ML Methods: Probabilistic
Point of View

k-NN with k=45
Decision region Decision boundary
=

0.8 06- ® o |
Cg classes % ’ © classes
% 0.4 . Class1 % 0.4 > @ Classi
& B class2 £ @ Class2

02

02-

L

04 06
PredictorA PredictorA

02 04 06 02

116

Example: KNN

ML Methods: Probabilistic
Point of View

k-NN with k=53
Decision region Decision boundary
=

0.8 06- ® o |
Cg classes % ’ © classes
% 0.4 . Class1 % 0.4~ > @ Classi
& B class2 £ @ Class2

02

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA

116

Example: KNN

ML Methods: Probabilistic
Point of View

k-NN with k=61
Decision region Decision boundary
o

0.8 06- ® o |
Cg classes % ’ © classes
% 04 B ciasst % 04 @B ® Classi
& B class2 £ @ Class2

02

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA

116

Example: KNN

ML Methods: Probabilistic
Point of View

k-NN with k=69
Decision region Decision boundary
=

0.8 06- ® o |
Cg classes % ’ © classes
% 0.4 . Class1 % 0.4~ > @ Classi
& B class2 £ @ Class2

02

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA

116

Example: KNN

ML Methods: Probabilistic
Point of View

k-NN with k=77
Decision region Decision boundary
=

0.8 06- ® o |
Cg classes % ’ © classes
% 0.4 . Class1 % 0.4~ > @ Classi
& B class2 £ @ Class2

02

02-

02 0.4 06 02 04 06
PredictorA PredictorA

116

Example: KNN

ML Methods: Probabilistic
Point of View

k-NN with k=85
Decision region Decision boundary
=

0.8 06- ® o |
Cg classes % ’ © classes
% 0.4 . Class1 % 0.4~ > @ Classi
& B class2 £ @ Class2

02

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA

116

Example: KNN

ML Methods: Probabilistic
Point of View

k-NN with k=101

Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ © classes
% 0.4 . Class1 % 0.4- > @ Classi
& B class2 £ @ Class2
02

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA

116

Example: KNN

ML Methods: Probabilistic
Point of View

k-NN with k=109

Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ © classes
% 0.4 . Class1 % 0.4- > @ Classi
& B class2 £ @ Class2
02

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA

116

Example: KNN

ML Methods: Probabilistic
Point of View

k-NN with k=117

Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ © classes
% 0.4 . Class1 % 0.4- > @ Classi
& B class2 £ @ Class2
02

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA

116

Example: KNN

ML Methods: Probabilistic
Point of View

k-NN with k=125

Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ © classes
% 0.4 . Class1 % 0.4- > @ Classi
& B class2 £ @ Class2
02

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA

116

Example: KNN

ML Methods: Probabilistic
Point of View

k-NN with k=133

Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ © classes
% 0.4 . Class1 % 0.4- > @ Classi
& B class2 £ @ Class2
02

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA

116

Example: KNN

ML Methods: Probabilistic
Point of View

k-NN with k=141

Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ © classes
% 0.4 . Class1 % 0.4- > @ Classi
& B class2 £ @ Class2
02

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA

116

Example: KNN

ML Methods: Probabilistic
Point of View

k-NN with k=149

Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ © classes
% 0.4 . Class1 % 0.4- > @ Classi
& B class2 £ @ Class2
02

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA

116

Example: KNN

ML Methods: Probabilistic
Point of View

k-NN with k=157

Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ © classes
% 0.4 . Class1 % 0.4~ > @ Classi
& B class2 £ @ Class2
02

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA

116

Example: KNN

ML Methods: Probabilistic
Point of View

k-NN with k=165

Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ © classes
% 0.4 . Class1 % 0.4- > @ Classi
& B class2 £ @ Class2
02

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA

116

Example: KNN

ML Methods: Probabilistic
Point of View

k-NN with k=173

Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ © classes
% 0.4 . Class1 % 0.4- > @ Classi
& B class2 £ @ Class2
02

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA

116

Example: KNN

ML Methods: Probabilistic
Point of View

k-NN with k=181

Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ © classes
% 0.4 . Class1 % 0.4 > @ Classi
& B class2 £ @ Class2
02

02-

02 0.4 06 0.2 0.4 06
PredictorA PredictorA

116

Example: KNN

ML Methods: Probabilistic
Point of View

k-NN with k=189

Decision region Decision boundary

o}
0.8 06- ® |
@ @ ’ @ classes
% 04 classes % 0.4 ®
i) 2 U4= Classi1
3 Bcesst B (]
& &) Class2

=
[}

02-

02 0.4 06
PredictorA

0.2 04 06
PredictorA

116

Example: KNN

ML Methods: Probabilistic
Point of View

k-NN with k=197

Decision region Decision boundary

o}
0.8 06- ® |
@ @ ’ @ classes
% 04 classes % 0.4 ®
i) 2 U4= Classi1
3 Bcesst B (]
& &) Class2

=
[}

02-

02 0.4 06
PredictorA

0.2 04 06
PredictorA

116

Regression and LOC3| Averaging ML Methods: Probabilistic é"“

Point of View

A naive idea

@ E[Y|X] can be approximated by a local average:

~ 1
0= e moon , 22,
where B(X) is a neighborhood of X.
@ Heuristic:
o If X = E[Y|X] is regular then
E[Y|X] ~E[E[Y|X]|X € N(X)] =E[Y|X" € N(X)]
o Replace an expectation by an empirical average

E[Y|X' € N(X)] ~ I{XT >
X, eN(X)

Regression and LOC3| Averaging ML Methods: Probabilistic [“

Point of View

Neighborhood and Size
@ Most classical choice: N(X) = {X',||X — X'|| < h } where ||.| is a (pseudo) norm
and h a size (bandwidth) parameter.

@ In principle, the norm and h could vary with X, and the norm can be replaced by
a (pseudo) distance.

@ Focus here on a fixed distance with a fixed bandwidth h cased.

Bandwidth Heuristic

o A large bandwidth ensures that the average is taken on many samples and thus
the variance is small. ..

e A small bandwidth is thus that the approximation E[Y|X] ~ E[Y|X' € N(X)]
is more accurate (small bias).

118

Welghted Local Averaging ML Methods: Probabilistic é"h

Point of View

Weighted Local Average

@ Replace the neighborhood N (X) by a decaying window function w(X, X').

@ E[Y|X] can be approximated by a weighted local average:
/ .
>iw(X, X5)

Kernel

@ Most classical choice: w(X,X') =K (K_TX) where h the bandwidth is a scale
parameter.
@ Examples:

o Box kernel: K(t) =1 <1 (Neighborhood)
o Triangular kernel: K(t) = max(1 — ||¢|[,0).
o Gaussian kernel: K(t) = e t'/2

@ Rk: K and AK yields the same estimate.

119

Llnk Wlth Density Estimation ML Methods: Probabilistic

P
Point of View

Density Estimation

How to estimate the density p of X with respect to the Lebesgue measure from
an i.i.d. sample (Xy,...,X,)

Parametric approach: density has a known parameterized shape and estimate
those parameters.
Nonparametric approach: density has a no known parameterized shape and

e Approximate it by a parametric one, whose parameters can be estimated
o Estimate directly the density

Important nonparametric statistic topic!

Used in generative modeling. . .

120

Llnk Wlth Density Estimation ML Methods: Probabilistic [‘“"

Point of View

Kernel Density Estimation (Parzen)
@ Choose a positive kernel K such that [K(x)dx =1

@ Use as an estimate
1 n
==Y K(X-X)
|

o If K= Z%,1||t||§h' easy interpretation as a local empirical density of samples!
@ General K corresponds to a smoothed version.
o Often Kx(t) = 5 K(t/h) and let

Pr(X) = ZKhX X;)

121

Llnk Wlth Density Estimation ML Methods: Probabilistic /"V:

Point of View

Properties

o Error decomposition:
E|[|p(X) = Ba(X)2] = E[p(X) - p(X)]* + Var [p(X) — Ba(X)]
e Bias:
E[p(X) — B(X)] = p(X) — (K» * p)(X)

@ Variance: if p is upper bounded by pmax then

- X)ax
Var [p(X) ~ py()] < Prod Kel)d

122

Llnk Wlth Density Estimation ML Methods: Probabilistic

Point of View

Bandwidth choice
@ A small h leads to a small bias but a large variance. . .

@ A large h leads to a small variance but a large bias. ..

@ Theoretical analysis possible!

123

Point of View

From Density Estimation to Regression ML Methods: Probabilistic [“

Nadaraya-Watson Heuristic

@ Provided all the densities exist

E[Y|X] = I Yp(X, Y)dY _ I Yp(X, Y)dY
Jp(Y, X)dY p(X)
@ Replace the unknown densities by their estimates:

B0 = 23" K(X - X)
i=1

1 n
p(X,Y)=— K(X - X)K'(Y —-Y;
L Y) = KX = XOK'(Y = Y)
e Now if K’ is a kernel such that [YK'(Y)dY = 0 then

1 n
Yp(X,Y)dY = - K(X - X,)Yi
[Yex viay = T3 K(x - x)

124

From Density Estimation to Regression ML Methods: Probabilistic é"“

Point of View

Nadaraya-Watson

@ Resulting estimator of E[Y|X]
~ 1 YiKn(X — X;
f(K) _ 21771 h(f 7,)
" Kn(X - X))
@ Same local weighted average estimator!

Bandwidth Choice

@ Bandwidth h of K allows to balance between bias and variance.

@ Theoretical analysis of the error is possible.
@ The smoother the densities the easier the estimation but the optimal bandwidth
depends on the unknown regularity!

125

Point of View

Local Linear Estimation ML Methods: Probabilistic ['

Another Point of View on Kernel

@ Nadaraya-Watson estimator:
=1 Kn(X = X;)

@ Can be view as a minimizer of
n

D_1Yi = BPKn(X — X))
i=1
@ Local regression of order 0.

Local Linear Model

e Estimate E[Y|X] by f(X) = ¢(X)" B(X) where ¢ is any function of X and 3(X)
is the minimizer of

|

STV = (Xi) ' BPKa(X — X,).
i=1

126

Point of View

LOESS Local p0|ynomia| regrESSion ML Methods: Probabilistic /‘J;

1D Nonparametric Regression

@ Assume that X € R and let ¢(X) = (1, X,...,X%).
o LOESS estimate: f(X) = _]c'l:O B(XY) X/ with B(X) minimizing
n d

7Y = >0 BUXIPKA(X - X))

=1 j=0
@ Most classical kernel used: Tricubic kernel

K(t) = max(1 — |t[3,0)3

@ Most classical degree: 2...

@ Local bandwidth choice such that a proportion of points belongs to the window.

127

OUtI ine ML Methods: Probabilistic

Point of View

o ML Methods: Probabilistic Point of View

@ Generative Modeling

128

FU”y Generative I\/lodeling ML Methods: Probabilistic /

Point of View

e Idea: If one knows the law of (X, Y') everything is easy!

Bayes formula

@ With a slight abuse of notation,
P((X,Y))
P(Y|X) = P(X)
_ PX|Y)P(Y)

P(X)

o Generative Modeling:
e Propose a model for (X, Y) (or equivalently X|Y and Y),
e Estimate it as a density estimation problem,
e Plug the estimate in the Bayes formula
e Plug the conditional estimate in the Bayes classifier.
e Rk: Require to estimate (X, Y) rather than only Y|X!

@ Great flexibility in the model design but may lead to complex computation.

129

FU”y Generative l\/lodeling ML Methods: Probabilistic /'?

Point of View

@ Simpler setting in classification!

Bayes formula

WY:Mer““nggw:k)

Binary Bayes classifier (the best solution)
1 ifP(Y=1X)>P(Y=-1X
mm:?"(X) 2 (Y = ~11X)

—1 otherwise
Heuristic: Estimate those quantities and plug the estimations.

By using different models/estimators for P(X|Y'), we get different classifiers.
Rk: No need to renormalize by P(X) to take the decision!

130

Point of View

Discriminant Analysis ML Methods: Probabilistic /'“

Discriminant Analysis (Gaussian model)

@ The densities are modeled as multivariate normal, i.e.,
P(X|Y = k) ~ Ny, 5,
@ Discriminant functions: gx(X) = In(P(X|Y = k)) + In(P(Y = k))

81(X) = — 5(X—) X —)
- g In(2r) — % In(|Z4]) + In(B(Y = K))

o QDA (different X4 in each class) and LDA (X4 = X for all k)

e Beware: this model can be false but the methodology remains valid!

131

Discriminant Analysis ML Methods: Probabilistic

Point of View

Quadratic Discriminant Analysis

@ The probability densities are Gaussian

@ The effect of any decision rule is to divide the feature space into some decision
regions R1, Ro

@ The regions are separated by decision boundaries

P

@
i
<
@
e
5
<}
n

[y
w
N

P

Discriminant Analysis ML Methods: Probabilistic

Point of View

Quadratic Discriminant Analysis

@ The probability densities are Gaussian

@ The effect of any decision rule is to divide the feature space into some decision
regions R1,Ra, ..., R¢

@ The regions are separated by decision boundaries

Source: A. Fermin

[y
w
N

Discriminant Analysis ML Methods: Probabilistic £

Point of View

In practice, we will need to estimate g, Xy and Py :=P(Y = k)
@ The estimate proportion P(ﬁk) =% =1sw liyi—y

@ Maximum likelihood estimate of fix and Sk (explicit formulas)

@ DA classifier
~ 1 ifg(X)>g_1(X
F(X) = +1 i g+1(f.) > g-1(X)
—1 otherwise
@ Decision boundaries: quadratic = degree 2 polynomials.

If one imposes X1 = Y1 = X then the decision boundaries is a linear hyperplane.

133

Discriminant Analysis ML Methods: Probabilistic

Point of View

Linear Discriminant Analysis
0%, =%, =3

@ The decision boundaries are linear hyperplanes

£
£
b5
i
<
[
e
5
)
»

—
w
'S

Discriminant Analysis ML Methods: Probabilistic

Point of View

Quadratic Discriminant Analysis

@ X, #FXu,

@ Arbitrary Gaussian distributions lead to Bayes decision boundaries that are general
quadratics.

£
£
@
i
<
@
e
5
[}
n

[y
w
o1

Example: LDA

ML Methods: Probabilistic
Point of View

Linear Discrimant Analysis

Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ © classes
% 0.4 . Class1 % 0.4- > @ Classi
& B class2 £ @ Class2
02 02-
0.2 0.4 06 0.2 DIA DI.B
PredictorA PredictorA

136

Example: QDA

ML Methods: Probabilistic
Point of View

Quadratic Discrimant Analysis

Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ © classes
% 0.4 . Class1 % 0.4- > @ Classi
& B class2 £ @ Class2
02 02-
0.2 0.4 06 0.2 DIA DI.B
PredictorA PredictorA

137

N aive Bayes ML Methods: Probabilistic

Point of View

Naive Bayes

@ Classical algorithm using a crude modeling for P(X]|Y):
e Feature independence assumption:

P(X|Y) = HIP(‘Y)
e Simple featurewise model: binomial if blnary, multinomial if finite and Gaussian if

continuous

o If all features are continuous, similar to the previous Gaussian but with a diagonal
covariance matrix!

@ Very simple learning even in very high dimension!

7

138

Exa m pIe: N aive Bayes ML Methods: Probabilistic
Point of View

Naive Bayes with Gaussian model

Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ © classes
% 0.4 . Class1 % 0.4 > @ Classi
& B class2 £ @ Class2
02

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA

139

. . . o 3
Naive Bayes with Density Estimation ML Methods: Probabilstc ><
Point of View o

e

PredictorB

04
PredictorA

140

Example: Naive Bayes

ML Methods: Probabilistic

Point of View
Naive Bayes with kernel density estimates
Decision region Decision boundary
w
O
0.8 06 > ® |
Cg classes % ’ classes
% 0.4 . Class1 % 0.4- @ Classi
& B class2 £ @ Class2
0.2

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA

141

Other Models

@ Other models of the world!

Bayesian Approach
o Generative Model plus prior on the parameters

@ Inference thanks to the Bayes formula

Graphical Models

@ Markov type models on Graphs

Gaussian Processes
@ Multivariate Gaussian models

ML Methods: Probabilistic
Point of View

142

OUtI ine ML Methods: Probabilistic

Point of View

o ML Methods: Probabilistic Point of View

@ Model Selection

143

Bias—Varia nce D i Iem ma ‘ ML Methods: Probabilistic

Point of-v

o General setting:

F = {measurable functions X — Y}

Best solution: f* = argmins.» R(f)

Class § C F of functions

Ideal target in S: f& = argmingcs R(f)
Estimate in S: ?5 obtained with some procedure

Approximation error and estimation error (Bias/Variance)

R(fs) — R(F*) = R(£) — R(F*) + R(fs) — R(£)

Approximation error Estimation error

@ Approx. error can be large if the model S is not suitable.

@ Estimation error can be large if the model is complex.

144

Under—fitting / Over—fitting |SSU€ ML Methods: Probabilistic

Point of View

Underfit
(High bias)

Generalization
error

Error

Overfit
(High

variance)

Model complexity
@ Different behavior for different model complexity

e Low complexity model are easily learned but the approximation error (bias) may
be large (Under-fit).
@ High complexity model may contain a good ideal target but the estimation error
(variance) can be large (Over-fit)
Bias-variance trade-off <= avoid overfitting and underfitting J

@ Rk: Better to think in term of method (including feature engineering and specific
algorithm) rather than only of model.

c
2
<]
<

=
c

=}
o
g
=
<]
%)

,_.
>
a1

Training Risk Issue

ML Methods: Probabilistic 4
Point of View

Underfit

Generalization
High bi
(' IaS) error

Error

Overfit
(High
variance)

Training error

Model complexity

Risk behaviour

@ Learning/training risk (empirical risk on the learning/training set) decays when
the complexity of the method increases.

@ Quite different behavior when the risk is computed on new observations
(generalization risk).

@ Overfit for complex methods: parameters learned are too specific to the learning
set!

@ General situation! (Think of polynomial fit...)

@ Need to use a different criterion than the training risk!

Source: JMP

,_.
>
<)

RISk Estimation VS |\/|ethod Selection ML Methods: Probabilistic

Point of View

Predictor Risk Estimation
@ Goal: Given a predictor f assess its quality.
@ Method: Hold-out risk computation (/ Empirical risk correction).
@ Usage: Compute an estimate of the risk of a selected f using a test set to be
used to monitor it in the future.

@ Basic block very well understood.

Method Selection
@ Goal: Given a ML method assess its quality.
@ Method: Cross Validation (/ Empirical risk correction)

o Usage: Compute risk estimates for several ML methods using
training/validation sets to choose the most promising one.

@ Estimates can be pointwise or better intervals.
@ Multiple test issues in method selection.

147

Cross Validation and Empirical Risk Correction ML Methods: Probabilsti

Point of View

Two Approaches

@ Cross validation: Use empirical risk criterion but on independent data, very
efficient (and almost always used in practice!) but slightly biased as its target uses
only a fraction of the data.

@ Correction approach: use empirical risk criterion but correct it with a term
increasing with the complexity of S
Ro(fs) = Ra(fs) + cor(S)
and choose the method with the smallest corrected risk.

Which loss to use?
@ The loss used in the risk: most natural!

@ The loss used to estimate 0: penalized estimation!

@ Other performance measure can be used.

148

CI’OSS Valld ation ML Methods: Probabilistic

Point of View

Purpose Modeling Performance
Resample
< -m-mmeemsmmmeeeeeooo---- Random Data Groupings -------------===-------- >
e Very simple idea: use a second learning/verification set to compute a verification

risk.
o Sufficient to remove the dependency issue!
@ Implicit random design setting. . .

Cross Validation

@ Use (1 — €) x n observations to train and € x n to verify!

@ Possible issues:
e Validation for a learning set of size (1 — ¢) X n instead of n ?
o Unstable risk estimate if en is too small 7

@ Most classical variations:
e Hold Out,
e Leave One Out,
e V-fold cross validation.

e
X
=
o
g
=
<]
%)

,_.
N
©

HOICI OUt ML Methods: Probabilistic

Principle

@ Split the dataset D in 2 sets Dirain and Diest 0f size n X (1 —¢) and n X €.
o Learn £HO from the subset Dypain.
@ Compute the empirical risk on the subset Dieg::

LY v o))

RHO(?HO) =
(X;,Yi)EDxest

Predictor Risk Estimation

o Use FHO as predictor.
o Use RHMO(fHO) as an estimate of the risk of this estimator.

Method Selection by Cross Validation

e Compute R,,HO(?SHO) for all the considered methods,
@ Select the method with the smallest CV risk,
@ Reestimate the ?5 with all the data. 150

HOICI OUt ML Methods: Probabilistic

Principle

@ Split the dataset D in 2 sets Dirain and Diest 0f size n X (1 —¢) and n X €.
o Learn £HO from the subset Dypain.
@ Compute the empirical risk on the subset Dieg::

LY v o))

RHO(?HO) =
n
ne (X;,Yi)EDxest

@ Only possible setting for risk estimation.

Hold Out Limitation for Method Selection
@ Biased toward simpler method as the estimation does not use all the data initially.

e Learning variability of RHO(£HO) not taken into account.

150

V-fold Cross Validation I - ML Methods: Probabilistic X

Point of View

Principle
@ Split the dataset D in V sets D, of almost equals size.
@ Forve{l, . 6V}
o Learn £~V from the dataset D minus the set D,.
e Compute the empirical risk:

—V(T—Vv\ _ i - T—v
R == D UYL (X)
@ Compute the average empirical risk:

@ Estimation of the quality of a method not of a given predictor.
@ Leave One Qut : V = n.

Source: M. Kiihn

[y
o1
iy

Point of View

V—fOld Cross Validation ML Methods: Probabilistic [“

Analysis (when n is a multiple of V)

~

@ The R,Y(f~") are identically distributed variable but are not independent!

@ Consequence:
E[RSY(F)| = E[R;"(F™)]

Var {RSV(?)} = %Var {”R;V(?_V)}

o Average risk for a sample of size (1 — &)n.
@ Variance term much more complex to analyze!

@ Fine analysis shows that the larger V the better. ..

@ Accuracy/Speed tradeoff: V =5or V =10...

152

Linear Regression and Leave One OUt ML Methods: Probabilistic /'“

Point of View

@ Leave One Out = V fold for V = n: very expensive in general.

A fast LOO formula for the linear regression

@ Prop: for the least squares linear regression,
f(X;) — hiY;
1— hj
with hj; the ith diagonal coefficient of the hat (projection) matrix.

(X)) =

@ Proof based on linear algebra!
@ Leads to a fast formula for LOO:

153

Trai n/Va lid ation/Test \ originalset | ML Methods: Probabilistic

| Point of View

[Training set [Testset

‘ Training set ‘ Validation set | Test set |

4

v
\U

@ Selection Bias Issue:
o After method selection, the cross validation is biased.
e Furthermore, it qualifies the method and not the final predictor.

o Need to (re)estimate the risk of the final predictor.
(Train/Validation)/Test strategy

@ Split the dataset in two a (Train/Validation) and Test.

@ Use CV with the (Train/Validation) to select a method.

@ Train this method on (Train/Validation) to obtain a single predictor.

o Estimate the performance of this predictor on Test.

)
©
|
]
3
©
[a]
)
[
S
I
;
]
<
%)
o
g
=
<]
%)

@ Every choice made from the data is part of the method!

—
o1
>

P

RISk Correction ML Methods: Probabilistic

Point of View

@ Empirical loss of an estimator computed on the dataset used to chose it is biased!

@ Empirical loss is an optimistic estimate of the true loss.

Risk Correction Heuristic
@ Estimate an upper bound of this optimism for a given family.

@ Correct the empirical loss by adding this upper bound.

@ Rk: Finding such an upper bound can be complicated!

@ Correction often called a penalty.

155

Penalization ML Methods: Probabilistic £ 7

Point of View

Penalized Loss

@ Minimization of

n
argmin 1 > U(Y;, f5(X;)) + pen(6)
gco N i=1

where pen(0) is a risk correction (penalty).

Penalties

@ Upper bound of the optimism of the empirical loss

@ Depends on the loss and the framework!

Instantiation

. : __nd 2
e Mallows Cp: Least Squares with pen(f) = 2907

@ AIC Heuristics: Maximum Likelihood with pen(§) = ¢

@ BIC Heuristics: Maximum Likelohood with pen(f) = log(n)¢

n-

@ Structural Risk Minimization: Pred. loss and clever penalty.

156

OUtI ine ML Methods: Probabilistic

Point of View

o ML Methods: Probabilistic Point of View

@ Penalization

157

Bias—Varia nce D i Iem ma ‘ ML Methods: Probabilistic

Point of-v

o General setting:

F = {measurable functions X — Y}

Best solution: f* = argmins.» R(f)

Class § C F of functions

Ideal target in S: f& = argmingcs R(f)
Estimate in S: ?5 obtained with some procedure

Approximation error and estimation error (Bias/Variance)

R(fs) — R(F*) = R(£) — R(F*) + R(fs) — R(£)

Approximation error Estimation error

@ Approx. error can be large if the model S is not suitable.

@ Estimation error can be large if the model is complex.

158

Under—fitting / Over—fitting |SSU€ ML Methods: Probabilistic

Point of View

Underfit
(High bias)

Generalization
error

Error

Overfit
(High

variance)

Model complexity
@ Different behavior for different model complexity

e Low complexity model are easily learned but the approximation error (bias) may
be large (Under-fit).
@ High complexity model may contain a good ideal target but the estimation error
(variance) can be large (Over-fit)
Bias-variance trade-off <= avoid overfitting and underfitting J

@ Rk: Better to think in term of method (including feature engineering and specific
algorithm) rather than only of model.

c
2
<]
<

=
c

=}
o
g
=
<]
%)

[y
a1
©

Slmpllfled MOdGlS ML Methods: Probabilistic £

Point of View

Closest fit in population
Realization
[Closest fit

MODEL
SPACE

 Shrusken fit

RESTRICTED
MODEL SPACE

Bias-Variance Issue

@ Most complex models may not be the best ones due to the variability of the
estimate.

@ Naive idea: can we simplify our model without loosing too much?
e by using only a subset of the variables?
e by forcing the coefficients to be small?

@ Can we do better than exploring all possibilities?

®
-
@
g
w
e
F
[
o
5
o
(%]

—
[=)]
o

Linear |\/|ode|s ML Methods: Probabilistic [“

Point of View

@ Setting: Gen. linear model = prediction of Y by h(x'f3).

Model coefficients
@ Model entirely specified by 3.
o Coefficientwise:

o) =0 means that the ith covariate is not used.
o) ~ 0 means that the ith covariate as a fow influence. . .

@ If some covariates are useless, better use a simpler model. ..

Submodels
e Simplify the model through a constraint on f3!
@ Examples:

e Support: Impose that () =0 for i & /.
e Support size: Impose that ||8][o = 27:1 1040 < C
e Norm: Impose that ||3||, < C with 1 < p (Often p =2 or p = 1)

161

Norms and Sparsity ML Methods: Probabilistic [“

Sparsity
@ [is sparse if its number of non-zero coefficients ({p) is small. ..

e Easy interpretation in terms of dimension/complexity.

Norm Constraint and Sparsity
@ Sparsest solution obtained by definition with the ¢y norm.

@ No induced sparsity with the ¢ norm. ..

@ Sparsity with the ¢/; norm (can even be proved to be the same as with the ¢
norm under some assumptions).

@ Geometric explanation.

Source: Tibshirani et al

[y
[
N

Constraint and Penalization

ML Methods: Probabilistic 4
Point of View

Constrained Optimization

@ Choose a constant C.

o Compute 3 as
n

1
argmin - = > (Y, h(x;' 8))
BERY,||Bll,<C M i=

Lagrangian Reformulation

@ Choose A\ and compute 3 as

1 /
argmin = " U(Y;, h(x;" 8)) + AlIBI15
Berd Moy
with p’ = p except if p = 0 where p’ = 1.

@ Easier calibration. .. but no explicit model S.

e Rk: ||3]| is not scaling invariant if p # 0. ..
@ Initial rescaling issue.

163

Penalization ML Methods: Probabilistic £ 7

Point of View

Penalized Linear Model

@ Minimization of
n

argmin 1 ZE(Y,-, h(x; " B)) + pen(B)
perd Mizy

where pen(f) is a (sparsity promoting) penalty
@ Variable selection if 3 is sparse.

Classical Penalties
@ AIC: pen(B) = A||B|lo (non-convex / sparsity)
o Ridge: pen(3) = A||3||3 (convex / no sparsity)
Lasso: pen(B) = Al|5]|1 (convex / sparsity)
o Elastic net: pen(3) = 1|81 + A2||B|3 (convex / sparsity)

Easy optimization if pen (and the loss) is convex. ..
Need to specify A to define a ML method!

164

Penalization and Cross—Validation ML Methods: Probabilistic [“

Point of View

Practical Selection Methodology

@ Choose a penalty family pen,.

o Compute a CV risk for the penalty pen, for all A € A.
o Determine \ the A minimizing the CV risk.

@ Compute the final model with the penalty pens.

o CV allows to select a ML method, penalized estimation with a penalty pens, not a
single predictor hence the need of a final reestimation.
Why not using CV on a grid?
o Grid size scales exponentially with the dimension!

o If the penalized minimization is easy, much cheaper to compute the CV risk
forall A € A. ..

@ CV performs best when the set of candidates is not too big (or is structured. ..)

165

References ML Methods: Probabilistic

Point of View
P T. Hastie, R. Tibshirani, and J. Friedman.
= The Elements of Statistical Learning.
Springer Series in Statistics, 2009

M. Mohri, A. Rostamizadeh, and A. Talwalkar.
Foundations of Machine Learning.
MIT Press, 2012

A. Géron.
Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow (2nd ed.)
O'Reilly, 2019

Ch. Giraud.
Introduction to High-Dimensional Statistics.
CRC Press, 2014

S. Bubeck.
Convex Optimization: Algorithms and Complexity.
Now Publisher, 2015

166

7

Licence and Contributors ML Methods: Probabilistic

Point of View

Creative Commons Attribution-ShareAlike (CC BY-SA 4.0)

@ You are free to:
@ Share: copy and redistribute the material in any medium or format
@ Adapt: remix, transform, and build upon the material for any purpose, even commercially.

@ Under the following terms:
@ Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in

any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
@ ShareAlike: If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the

original.
@ No additional restrictions: You may not apply legal terms or technological measures that legally restrict others from doing anything

the license permits.

Contributors
@ Main contributor: E. Le Pennec
@ Contributors: S. Boucheron, A. Dieuleveut, A.K. Fermin, S. Gadat, S. Gaiffas,
A. Guilloux, Ch. Keribin, E. Matzner, M. Sangnier, E. Scornet. 167

7

O Utl | ne ML Methods: Optimization

Point of View

e ML Methods: Optimization Point of View
@ Supervised Learning
@ Optimization Point of View
@ SVM
@ Penalization
@ Cross Validation and Weights

168

O Utl | ne ML Methods: Optimization

Point of View o

e ML Methods: Optimization Point of View
@ Supervised Learning

169

SU pervised Learning ML Methods: Optimization

Point of View

Supervised Learning Framework

@ Input measurement X € X
o Output measurement Y €).
o (X,Y) ~ P with P unknown.
@ Training data : D, = {(X{, Y1),...,(X,, Ya)} (i.id. ~P)
e Often
o XeRYand Y € {—1,1} (classification)
o or X € RY and Y € R (regression).
@ A predictor is a function in F = {f : X —) meas.}

e Construct a good predictor f from the training data.

@ Need to specify the meaning of good.
o Classification and regression are almost the same problem!

7

170

L oss and Probabilistic Framework ML Methods: Optimization X

Point of View

Loss function for a generic predictor

@ Loss function: /(Y,f(X)) measures the goodness of the prediction of Y by f(X)

@ Examples:
o 0/1 loss: E(Y, f(&)) = ly;éf(é)
o Quadratic loss: (Y, f(X)) =|Y — f(X)|?

@ Risk measured as the average loss for a new couple:
R(f) = Ex,v)~p[4(Y, f(X))]
@ Examples:
o 0/1 loss: E[(Y,f(X))] = (Y f(X))
e Quadratic loss: E[((Y,f(X))] =E[|Y — f(X)|]

e Beware: As f depends on D,,, R(f) is a random variable!

171

Best Solution ML Methods: Optimization /'“

Point of View

@ The best solution f* (which is independent of D,) is
f* = arg)rrng(f) = arg m|n]E[E(Y f(X))] = arg m|n Ex [Ey|X[E(Y f(X))]}
€

Bayes Predictor (explicit solution)

e In binary classification with 0 — 1 loss:
+1 if P(Y=+1X)>P(Y=-1X)
(X) = < P(Y =+1|X) >1/2
—1 otherwise

o In regression with the quadratic loss
F(X) = E[Y|X]

Issue: Solution requires to know E[Y|X] for all values of X!

172

Goal ML Methods: Optimization
Point of View

Machine Learning

@ Learn a rule to construct a predictor f € F from the training data D, s.t. the

~

risk R(f) is small on average or with high probability with respect to D,,.

@ In practice, the rule should be an algorithm!

Canonical example: Empirical Risk Minimizer
@ One restricts f to a subset of functions S = {fp,0 € O}
@ One replaces the minimization of the average loss by the minimization of the
empirical loss

N i
f=f=argmin—) LY}, fp(X;
6 ffeeen,;(5(X;))

@ Examples:

e Linear regression
e Linear classification with

S = {x > sign{x" 8+ 8O0} /3 e RY BO c R}

173

Example: TwoClass Dataset ML Methods: Optimization 2K

Point of View

Synthetic Dataset

e Two features/covariates.

@ Two classes.

o Dataset from Applied Predictive Modeling, M. Kuhn and K. Johnson, Springer
@ Numerical experiments with R and the {caret} package.

-
()

P

o, %
® L.
@ PYY L classes
P o0 ® \"”&C\; ® ou
o P o

174

Example: Linear Discrimination ML Methods: Optimization
Point of View

Logistic
Decision region Decision boundary
=

0.8 06- ® o |
Cg classes % ’ g © classes
% 0.4 . Class1 % 0.4- > @ Classi
& B class2 £ @ Class2

02

02 0.4 06 0.2 04 06
PredictorA PredictorA

175

Example: More Complex Model

ML Methods: Optimization

Point of View
Naive Bayes with kernel density estimates
Decision region Decision boundary
w
O
0.8 06 > ® |
Cg classes % ’ classes
% 0.4 . Class1 % 0.4- @ Classi
& B class2 £ @ Class2
0.2

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA

176

BiaS—VaI’IanCE Dllemma ' ML Metholds: Optimization

Point of-v

o General setting:

F = {measurable functions X — Y}

Best solution: f* = argmins.» R(f)

Class § C F of functions

Ideal target in S: f& = argmingcs R(f)
Estimate in S: ?5 obtained with some procedure

Approximation error and estimation error (Bias/Variance)

R(fs) — R(F*) = R(£) — R(F*) + R(fs) — R(£)

Approximation error Estimation error

@ Approx. error can be large if the model S is not suitable.

@ Estimation error can be large if the model is complex.

177

Under-fitting / Over-fitting Issue ML Methods: Optimization

Point of View

Underfit
(High bias)

Generalization
error

Error

Overfit
(High

variance)

Model complexity
@ Different behavior for different model complexity

e Low complexity model are easily learned but the approximation error (bias) may
be large (Under-fit).
@ High complexity model may contain a good ideal target but the estimation error
(variance) can be large (Over-fit)
Bias-variance trade-off <= avoid overfitting and underfitting J

@ Rk: Better to think in term of method (including feature engineering and specific
algorithm) rather than only of model.

c
2
<]
<

=
c

=}
o
g
=
<]
%)

—
~
[ee]

Binary Classification Loss Issue ML Methods: Optimization K

Point of View

Empirical Risk Minimizer

n
f = argmin ! Zﬁo/l(Y;, f(X;))
fes n i=1

e Classification loss: ¢%/1(y, f(x)) = 1, (%)
@ Not convex and not smooth!
179

Probabilistic Point Of VIeW ML Methods: Optimization /"“
Point of View
Ideal Solution and Estimation

@
i
<
@
e
5
[}
n

@ The best solution f* (which is independent of D) is
f*=arg I';nI]r_lR(f) = arg m|n E[E(Y f(X))] = arg m|n Ex {EY‘X[E(Y f(x))]]
€

Bayes Predictor (explicit solution)
In binary classification with 0 — 1 loss:
1 if P(Y=+1X)>P(Y =-1|X
gy = [F1 1 B(Y =411 2 P(Y = 1)
—1 otherwise

@ Issue: Solution requires to know E[Y|X] for all values of X!

@ Solution: Replace it by an estimate.

[y
9]
o

7

Optimization Point Of VIeW ML Methods: Optimization
Point of View
Loss Convexification

E 05 1 18

0
bl

Minimizer of the risk

~ 1<
f = argmin = Zﬁo/l(yiv f(X5))
fes N4

@ Issue: Classification loss is not convex or smooth.

@ Solution: Replace it by a convex majorant.
181

Probabilistic and Optimization Framework ML Methods: Optimization K

Point of View

How to find a good function f with a small risk
R(f) =E[(Y, f(X))] 7?
Canonical approach: fs = argmingcs 2 271 £(Y;, f(X;))
Problems
@ How to choose §7

@ How to compute the minimization?

A Probabilistic Point of View

Solution: For X, estimate Y|X plug this estimate in the Bayes classifier:
(Generalized) Linear Models, Kernel methods, k-nn, Naive Bayes, Tree,

Bagging. . .

An Optimization Point of View

Solution: If necessary replace the loss ¢ by an upper bound Z and minimize the

empirical loss: SVR, SVM, Neural Network, Tree, Boosting. . . -

O Utl | ne ML Methods: Optimization

Point of View o

e ML Methods: Optimization Point of View

@ Optimization Point of View

183

Probabilistic and Optimization Framework ML Methods: Optimization K

Point of View

How to find a good function f with a small risk
R(f) =E[(Y, f(X))] 7?
Canonical approach: fs = argmingcs 2 271 £(Y;, f(X;))
Problems
@ How to choose §7

@ How to compute the minimization?

A Probabilistic Point of View

Solution: For X, estimate Y|X plug this estimate in the Bayes classifier:
(Generalized) Linear Models, Kernel methods, k-nn, Naive Bayes, Tree,

Bagging. . .

An Optimization Point of View

Solution: If necessary replace the loss ¢ by an upper bound Z and minimize the

empirical loss: SVR, SVM, Neural Network, Tree, Boosting. . . 184

Three Classical Methods in a Nutshell ML Methods: Optimization X

Point of View

Penalized Logistic Regression

o Let f(X) = X5+ 8O with 6 = (8, 30).
ind 6 — aremin LS iy (X))
oF|nd6—argm|nniz:1|og(1+e 9)+)\||5”1

o Classify using sign(f;)

Deep Learning

@ Let fp(X) with f a feed forward neural network outputing two values with a
softmax layer as a last layer.

1 n
@ Optimize by gradient descent the cross-entropy - Z log (fg(&,)(y’)>
i=1

o Classify using sign(f;)

185

Three Classical Methods in a Nutshell ML Methods: Optimization X

Point of View

Support Vector Machine

o Let f(X) = X" B+ O with 0 = (8,).
R 1
@ Find 6 = argmin . Z max (1 — Y;f(X;),0) + X 8|3
i=1

o Classify using sign(f;)

@ Those three methods rely on a similar heuristic: the optimization point of view!

186

Empirical RISk Minimization ML Methods: Optimization /"“

Point of View

@ The best solution * is the one minimizing
f* = argmin R(f) = argmin E[{(Y, f(X))]

Empirical Risk Minimization

@ One restricts f to a subset of functions S = {fy,0 € ©}

@ One replaces the minimization of the average loss by the minimization of the
average empirical loss

1 n
f~=argmin — » (Y}, fp(X;
§ = aremin ;:1 (Yi, f5(X5))

¥

e Intractable for the ¢9/1 |oss!

187

Convexification Strategy ML Methods: Optimization é"h

Point of View

Risk Convexification

@ Replace the loss /(Y fy(X)) by a convex upperbound (Y, fy(X)) (surrogate loss).

@ Minimize the average of the surrogate empirical loss
. 10
f=f=argmin= > (Y fp(X;
0 £, 0cO n; (/ (/))

o Use 7 = sign(f)

@ Much easier optimization.

Instantiation

@ Logistic (Revisited)
@ Support Vector Machine
@ (Deep) Neural Network

@ Boosting
188

Classification Loss and Convexification ML Methods: Optimization X

Point of View /..

—1(yf()<0)
—aply0)
[)

a1y

0 05 1 15
¥y

Convexification

e Replace the loss /2/1(Y, f(X)) by
Y, f(X)) = I(YF(X))
with / a convex function.
e Further mild assumption: / is decreasing, differentiable at 0 and /(0) < 0.

189

Classification Loss and Convexification ML Methods: Optimization X

Point of View

T 05 0 05 1
¥y

Classical convexification

o Logistic loss: £(Y, (X)) = logy(1 4+ e~ Y (X)) (Logistic / NN)
@ Hinge loss: (Y, f(X)) = (1 - Yf(X))+ (SVM)
@ Exponential loss: /(Y f(X)) = e~ Y (X) (Boosting. . .)

189

Properties ML Methods: Optimization £

Point of View

The Target is the Bayes Classifier

@ The minimizer of
E[U(Y, f(X))| = E[(YF(X))]
is the Bayes classifier f* = sign(2n(X) — 1)

Control of the Excess Risk

@ It exists a convex function W such that
W (E[@/(Y, sign(f(X))] — E[¢/*(Y, £(X)])

<E[{(Y, f(X)] - E[{(Y, F(X))]

@ Theoretical guarantee!

190

LOgIStIC ReV|S|ted ML Methods: Optimization

Point of View

@ ldeal solution:

n
f = argmin E ZEO/I(Y;, f(X;))
fes N3

Logistic regression

e Use f(X) = XT3+ 0,
@ Use the logistic loss £(y, f) = log,(1 + e™¥f), i.e. the negative log-likelihood.

@ Different vision than the statistician but same algorithm!

191

Logistic Revisited

ML Methods: Optimization
Point of View

Logistic

Decision region Decision boundary

o
06- ® (
classes ’ g @ classes
0.4-
B classt > ® Class

B ciass2 @ Class2

PredictorB
PredictorB

02 04 06 02 04 06
PredictorA PredictorA

192

O Utl | ne ML Methods: Optimization

Point of View

e ML Methods: Optimization Point of View

@ SVM

193

SU pport VeCtor M aCh | ne ML Methods: Optimization /4

Point of View /.

f(X)= X8+ 89 with 0=(859)

N 1Z
0 = arg min - > max (1= Yify(X;),0) + Al 8]I3

i=1

Support Vector Machine

e Convexification of the 0/1-loss with the hinge loss:
ly.fx,)<0 < max (1 — Yifp(X;),0)
Penalization by the quadratic norm (Ridge/Tikhonov).

Solution can be approximated by gradient descent algorithms.

Revisit of the original point of view.

Original point of view leads to a different optimization algorithm and to some
extensions.

194

|deal Separable Case ML Methods: Optimization

Point of View

o Linear classifier: sign(X' g+ 5(0)
@ Separable case: 3(3, 8(9), Vi, Yi(X;T 8+ @) >0

How to choose (3, 3(?)) so that the separation is maximal?

@ Strict separation: 3(3, 3),Vi, Yi(X; "8 + 8©) > 1
o Distance between XT3+ 30 =1 and X" 3 + 30 = —1:
2

181l

o Maximizing this distance is equivalent to minimizing 3||3||2.

®
o
153
<
S
=
=
@
e
5
<}
n

[y
©
(&3]

|deal Separable Case ML Methods: Optimization 2K

Point of View

Separable SVM

@ Constrained optimization formulation:

min %Hﬂ”z with Vi, Yi(X;T 8+ B©) > 1

@ Quadratic Programming setting.

@ Efficient solver available. ..

®
o
153
<
S
=
=
@
e
5
<}
n

[y
©
o1

Non Separable Case ML Methods: Optimization /"“

Point of View

@ What about the non separable case?

SVM relaxation

@ Relax the assumptions
Vi, YiX; "B+ B89)>1 to Vi, Yi(X;"8+89)>1-5
with the slack variables s; > 0

@ Keep those slack variables as small as possible by minimizing
1 n
SIBIZ+ €Y
i=1

where C > 0 is the goodness-of-fit strength_

Source: M. Mohri et al.

[y
o
(o))

Non Separable Case ML Methods: Optimization

Point of View

o Constrained optimization formulation:
1 5 .
min = + C E s; with

@ Hinge Loss reformulation:

Vi, iX; T8+ 8@0) > 1 -
Vi, Si > 0

n
iy %Hmﬁ +CY max(0,1- V(X" 8+ B®))
i=1

Hinge Loss

@ Constrained convex optimization algorithms vs gradient descent algorithms.

7

Source: M. Mohri et al.

[y
o
(o))

SVM as a Penalized Convex Relaxation ML Methods: Optimization 2

Point of View

@ Convex relaxation:

argmin = HBHz—i-CZmaX (1-Yi(X; 8+ 89),0)

i=1

11
= argmmmeax (1—-Yi(X;" B+ 59),0) + 55\\6\\2

i=1
o Prop: (%/1(Y;,sign(X;" 3 + B®)) < max(1 — Yi(X;" 8 + B0),0)

Penalized convex relaxation (Tikhonov!)

1 n
- S O (Y, sign(X; T8 + B9)) + **||5H2
=il

Zmaxl— (X, T8+ B, 0)+ H5H2

197

SVM

ML Methods: Optimization
Point of View

Support Vector Machine

Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ © classes
% 0.4 . Class1 % 0.4- > @ Classi
& B class2 £ @ Class2
02 02-
0.2 0.4 06 0.2 DIA DI.B
PredictorA PredictorA

198

The Kernel Tl’iCk ML Methods: Optimization /'V“

Point of View

2:R? - R
(21,29) 1= (21,22, 23) = (af, V219, 03)

%5
X

g
-

@ Non linear separation: just replace X by a non linear ®(X)...
e Knowing <Z>(X,-)T¢(Xi) is sufficient to compute the SVM solution.
e Computing k(X, X') = ¢(X) " ¢(X’) may be easier than computing 6(X),
#(X') and then the scalar product!
¢ can be specified through its definite positive kernel k.
Examples: Polynomial kernel k(X,X") = (14 X' X')?, Gaussian kernel
k(X X') = e~ IX=XI/2
@ RKHS setting!
Can be used in (logistic) regression and more. ..

2
<]
<
=
>
o
g
=
<]
%)

®
—
©
©

SVM

ML Methods: Optimization
Point of View

Support Vector Machine with polynomial kernel

Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ classes
% 0.4 . Class1 % 0.4~ > @ Classi
& B class2 £ @ Class2
02 02-
0.2 0.4 06 0.2 DIA DI.B
PredictorA PredictorA

200

SVM

ML Methods: Optimization
Point of View

Support Vector Machine with Gaussian kernel

Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % classes
% 0.4 . Classi % 0.4~ @ Classi
& B class2 £ @ Class2

=
[}

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA

201

SVM and Lagrangian ML Methods: Optimization [“

Point of View

o Constrained optimization formulation:

1 4 Vi, Yi(X; ")y >1-s5
mmEHBH2+C;5/ with { I, (—/ B+ﬁ)_ S

Vi,S,' >0

SVM Lagrangian

@ Lagrangian:

1 n
£(8, 89, 5,0,) = SBIF + C Y5
i=1

+3 il = s = Yi(X; B+ B89) =3 s

202

Point of View

KKT Optimality Conditions

o Stationarity:
VLB, B9, s,0,1) = B =D i YiX; =0
v[&(o)‘c(ﬁa ﬂ(O)v S, 1“) = = Z Qj = 0

Vo L(B,89,s,0,1)=C—a;j—pj=0
@ Primal and dual admissibility:
(1—si—YiX;"8B+89) <0, 5>0, a;>0, andp; >0
o Complementary slackness:
ail—si = Yi(X;"8+BD) =0 and psi=0

SVM and KKT ML Methods: Optimization é"h

Consequence
o f*=3%;0;YiX;and 0 < a; < C.
o If aj # 0, X; is called a support vector and either
e s, =0 and Y,-(X,-TB* + B©)*) = 1 (margin hyperplane),
e or a; = C (outliers).
o B30% — y; — X, T 3* for any support vector with 0 < o < C.

203

SVM Dual ML Methods: Optimization £ 7

Point of View

SVM Lagrangian Dual

@ Lagrangian Dual:

Qa,p) = min £(8,89, 5,0, p)
8,805

@ Prop:
o if > .a;Y;#0or3i,a; +p; #C,
Qo p) = —o0
o if > .a;Y;=0and Vi,a; + pj = C,

DEDIIEE SN AP

ij

SVM Dual problem

@ Dual problem is a Quadratic Programming problem
max Q(a,pu) < [max Za, Za a;Y;YiX; TX

a>0,u>0 o

@ Involves the X; only through their scalar products. 204

Mercer Theorem ML Methods: Optimization /'“

Point of View

Mercer Representation Theorem

@ For any loss 7 and any increasing function ®, the minimizer in 3 of
n

S UYL X8+ BO) + o(|8]12)
i=1

n
is a linear combination of the input points f* = Za?&i.
Minimization problem in o/ =1
n
DAY DX T X+) + o([1B]l2)
i=1 J
involving only the scalar product of the data.

Optimal predictor requires only to compute scalar products.
P(X) = XT3+ 5O = 3" aiX X

1
Transform a problem in dimension dim(X’) in a problem in dimension n.
Direct minimization in 3 can be more efficient. .. 205

Featu re M ap ML Methods: Optimization £ X

Point of View

Feature Engineering
@ Art of creating new features from the existing one X.
@ Example: add monomials (K(j))z, XWxU

@ Adding feature increases the dimension.

Feature Map
@ Application ¢ : X — H with H an Hilbert space.

e Linear decision boundary in H: ¢(X)' 5+ 8 = 0 is not an hyperplane
anymore in X.

Source: Unknown

@ Heuristic: Increasing dimension allows to make data almost linearly separable.
206

Polynomial Mapplng ML Methods: Optimization /'“

Point of View

®
o
153
K
=
=
@
e
5
<}
n

T2 V21122
(-1,1) LD (11,4222 1) | (1,1,4v2,4+v2,+v2,1)
e ® °® e
\/51?1
Ty
] o @ (]
(-1,-1) (1,-1) (1,1, —v2,—v2,+v2,1) | (1,1, —v2,+v2,—v2,1)

Polynomial Mapping of order 2
® ¢ :R2 RS
H(X) = ((K(l))2, (K(2))27 VXM x@ ox® oax@, 1)

@ Allow to solve the XOR classification problem with the hyperplane xWx@ =,

Polynomial Mapping and Scalar Product

o Prop:

N
o
N

SVM Primal and Dual ML Methods: Optimization é"h

Point of View

Primal, Lagrandian and Dual

@ Primal:

n
min || 3]|* + C> s with

i=1

Vi, Yi(o(X)) B+ @) > 15
Vi, Si Z 0

Lagrangian:
(3,59, 5,0, = 16 + €35
+) il — s — Yi(d(X) "B+ B8O) = s
@ Dual: I |

1 T
agixzo Qa, p) & Orgnaagczi: o — 5 zj: ajo Y Yio(X;) ¢(KJ)

Optimal ¢(X)' 8% + SO = 3. ; Yie(X) " o(X;)

Only need to know to compute gb(K)Td)(K’) to obtain the solution. 208

From |\/|ap to Kernel ML Methods: Optimization /'“

Point of View

e Many algorlthms (e.g. SVM) require only to be able to compute the scalar
product ¢(X) " ¢(X").

@ Any application
k: XxX—>R
is called a kernel over X.

o Computing directly the kernel k(X, X') = ¢(X)" ¢(X’) may be easier than
computing ¢(X), ¢(X’') and then the scalar product.

@ Here k is defined from ¢.

@ Under some assumption on k, ¢ can be implicitly defined from k!

209

PDS Kernel ML Methods: Optimization /'“

Point of View

Positive Definite Symmetric Kernels
o A kernel k is PDS if and only if

e k is symmetric, i.e.

k(X,X') = k(X', X)
o for any N € N and any (Xi,...,Xy) € XV,
K = [k(X;, Xj)h<ij<n
is positive semi-definite, i.e. Yu € RN
u Ku= Z u(i)u(j)k(&,-,ij) >0
1<ij<N
or equivalently all the eigenvalues of K are non-negative.

@ The matrix K is called the Gram matrix associated to (Xi,...,Xp)-

210

Reproducing Kernel Hilbert Space ML Methods: Optimization K

Point of View

Moore-Aronsajn Theorem

@ For any PDS kernel k : X x X — R, it exists a Hilbert space H C R with a
scalar product (-,)y such that

e it exists a mapping ¢ : X — H satisfying

k(X, X") = (¢(X), &(X"))yg
e the reproducing property holds, i.e. for any h € H and any X € X

e By def., H is a reproducing kernel Hilbert space (RKHS).
e H is called the feature space associated to k and ¢ the feature mapping.
@ No unicity in general.
e Rk: if k(X,X') = ¢’(§)T¢’(§’) with ¢/ : X — RP then
o H can be chosen as {X — ¢/(X)' 3,3 € RP} and || X — QS’(K)TBH%H = ||8]I3.
o ¢(X'): X = ¢'(X) ¢'(X).

211

Kernel Construction Machinery ML Methods: Optimization K

Point of View

Separable Kernel

For any function W : X — R, k(X, X') = W(X)W(X') is PDS.

Kernel Stability

For any PDS kernels k1 and ko, ki + ko and kiko are PDS kernels.

For any sequence of PDS kernels k, converging pointwise to a kernel k, k is a
PDS kernel.

For any PDS kernel k such that |k| < r and any power series »_, a,z" with a, > 0

and a convergence radius larger than r, Z ank" is a PDS kernel.
n
k(X, X'
For any PDS kernel k, the renormalized kernel k'(X, X') = el is
VKX X)X, X')

a PDS kernel.
Cauchy-Schwartz for k PDS: k(X, X')? < k(X, X)k(X', X)
212

Classical Kernels ML Methods: Optimization é"“

Point of View

PDS Kernels

@ Vanilla kernel:
kX, X)=X"X

Polynomial kernel:
k(X, X') = (14 XTX)k
@ Gaussian RBF kernel:
K(X, X') = exp (—1IX — X'|I?)
@ Tanh kernel:
k(X,X') = tanh(aX " X’ + b)

Most classical is the Gaussian RBF kernel. ..

Lots of freedom to construct kernel for non classical data.

213

Representer Theorem ML Methods: Optimization /'“

Point of View

Representer Theorem

@ Let k be a PDS kernel and H its corresponding RKHS,
for any increasing function ® and any function L : R” — R, the optimization
problem

argmin L(h(X1), -, h(X,)) + ®([[A]])
€
admits only solutions of the form

Za:'k(lh)

@ Examples:

o (kernelized) SVM
o (kernelized) Penalized Logistic Regression (Ridge)
o (kernelized) Penalized Regression (Ridge)

214

Kernelized SVM ML Methods: Optimization £ 7

Point of View

Primal

@ Constrained Optimization:
n

min HfHIZHI—i-CZs; with {

feH,B0) s i1
@ Hinge loss:

Vi, Yi(F(X;)+ B8O)>1—5
Vi, Si Z 0

|yqu s CZmax 0,1 — Yi(F(X;) + BO))

feH,B -1

@ Representer:
min aiaik(X;, X))

o/,3(0) i
+CZmax(Zak)+ 8Oy
i=1
@ Dual:
L Q(a, 1) @O?Qaz(:Za, Za a; i Yik(X;, X;)

ij 215

SVM

ML Methods: Optimization
Point of View

Support Vector Machine with polynomial kernel

Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ classes
% 0.4 . Class1 % 0.4~ > @ Classi
& B class2 £ @ Class2
02 02-
0.2 0.4 06 0.2 DIA DI.B
PredictorA PredictorA

216

SVM

ML Methods: Optimization
Point of View

Support Vector Machine with Gaussian kernel

Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % classes
% 0.4 . Classi % 0.4~ @ Classi
& B class2 £ @ Class2

=
[}

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA

217

O Utl | ne ML Methods: Optimization

Point of View

e ML Methods: Optimization Point of View

@ Penalization

218

BiaS—VaI’IanCE Dllemma ' ML Metholds: Optimization

Point of-v

o General setting:

F = {measurable functions X — Y}

Best solution: f* = argmins.» R(f)

Class § C F of functions

Ideal target in S: f& = argmingcs R(f)
Estimate in S: ?5 obtained with some procedure

Approximation error and estimation error (Bias/Variance)

R(fs) — R(F*) = R(£) — R(F*) + R(fs) — R(£)

Approximation error Estimation error

@ Approx. error can be large if the model S is not suitable.

@ Estimation error can be large if the model is complex.

219

Under-fitting / Over-fitting Issue ML Methods: Optimization

Point of View

Underfit
(High bias)

Generalization
error

Error

Overfit
(High

variance)

Model complexity
@ Different behavior for different model complexity

e Low complexity model are easily learned but the approximation error (bias) may
be large (Under-fit).
@ High complexity model may contain a good ideal target but the estimation error
(variance) can be large (Over-fit)
Bias-variance trade-off <= avoid overfitting and underfitting J

@ Rk: Better to think in term of method (including feature engineering and specific
algorithm) rather than only of model.

c
2
<]
<

=
c

=}
o
g
=
<]
%)

220

SI m pl |f|ed M Odels ML Methods: Optimization

Point of View

Closest fit in population
Realization
[Closest fit

MODEL
SPACE

 Shrusken fit

RESTRICTED
MODEL SPACE

Bias-Variance Issue

@ Most complex models may not be the best ones due to the variability of the
estimate.

@ Naive idea: can we simplify our model without loosing too much?
e by using only a subset of the variables?
e by forcing the coefficients to be small?

@ Can we do better than exploring all possibilities?

®
-
@
g
w
e
F
[
o
5
o
(%]

221

Linear |\/|ode|s ML Methods: Optimization [“

Point of View

@ Setting: Gen. linear model = prediction of Y by h(x'f3).

Model coefficients
@ Model entirely specified by 3.
o Coefficientwise:

o) =0 means that the ith covariate is not used.
o) ~ 0 means that the ith covariate as a fow influence. . .

@ If some covariates are useless, better use a simpler model. ..

Submodels
e Simplify the model through a constraint on f3!
@ Examples:

e Support: Impose that () =0 for i & /.
e Support size: Impose that ||8][o = 27:1 1040 < C
e Norm: Impose that ||3||, < C with 1 < p (Often p =2 or p = 1)

222

Norms and Sparsity ML Methods: Optimization [“

Sparsity
@ [is sparse if its number of non-zero coefficients ({p) is small. ..

e Easy interpretation in terms of dimension/complexity.

Norm Constraint and Sparsity
@ Sparsest solution obtained by definition with the ¢y norm.

@ No induced sparsity with the ¢ norm. ..

@ Sparsity with the ¢/; norm (can even be proved to be the same as with the ¢
norm under some assumptions).

@ Geometric explanation.

Source: Tibshirani et al

223

Constraint and Penalization

ML Methods: Optimization /4
Point of View

Constrained Optimization

@ Choose a constant C.

o Compute 3 as
n

1
argmin - = > (Y, h(x;' 8))
BERY,||Bll,<C M i=

Lagrangian Reformulation

@ Choose A\ and compute 3 as

1 /
argmin = " U(Y;, h(x;" 8)) + AlIBI15
Berd Moy
with p’ = p except if p = 0 where p’ = 1.

@ Easier calibration. .. but no explicit model S.

e Rk: ||3]| is not scaling invariant if p # 0. ..
@ Initial rescaling issue.

224

Penalization ML Methods: Optimization £ 7

Point of View

Penalized Linear Model

@ Minimization of
n

argmin 1 ZE(Y,-, h(x; " B)) + pen(B)
perd Mizy

where pen(f) is a (sparsity promoting) penalty
@ Variable selection if 3 is sparse.

Classical Penalties
@ AIC: pen(B) = A||B|lo (non-convex / sparsity)
o Ridge: pen(3) = A||3||3 (convex / no sparsity)
Lasso: pen(B) = Al|5]|1 (convex / sparsity)
o Elastic net: pen(3) = 1|81 + A2||B|3 (convex / sparsity)

Easy optimization if pen (and the loss) is convex. ..
Need to specify A to define a ML method!

225

Penalization and Cross-Validation ML Methods: Optimization X

Point of View

Practical Selection Methodology

@ Choose a penalty family pen,.

o Compute a CV risk for the penalty pen, for all A € A.
o Determine \ the A minimizing the CV risk.

@ Compute the final model with the penalty pens.

o CV allows to select a ML method, penalized estimation with a penalty pens, not a
single predictor hence the need of a final reestimation.
Why not using CV on a grid?
o Grid size scales exponentially with the dimension!

o If the penalized minimization is easy, much cheaper to compute the CV risk
forall A € A. ..

@ CV performs best when the set of candidates is not too big (or is structured. ..)

226

O Utl | ne ML Methods: Optimization

Point of View o

e ML Methods: Optimization Point of View

@ Cross Validation and Weights

227

Unbalanced and Rebalanced Dataset ML Methods: Optimization

Point of View

Unbalanced Class
@ Setting: One of the class is much more present than the other.

o lIssue: Classifier too attracted by the majority class!

Rebalanced Dataset

e Setting: Class proportions are different in the training and testing set (stratified
sampling)

@ Issue: Training risks are not estimate of testing risks.

7

Source: University of Granada

228

Resa m pl | ng Stl’ategies ML Methods: Optimization 4

Point of View

Sampling: Rebalancing

the dataset Imbalanced Data

Under-sampling Over-sampling

Resampling

| ¥

@ Modify the training dataset so that the classes are more balanced.
e Two flavors:

e Sub-sampling which spoils data,
e Over-sampling which needs to create new examples.

o
]
j

o
o
g
=
<]

%)

229

@ Issues: Training data is not anymore representative of testing data
e Hard to do it right!

Resampling Effect ML Methods: Optimization £ 7

Point of View

Testing
@ Testing class prob.: (k) @ Training class prob.: 7 (k)
o Testing risk target: @ Training risk target:
Ex [L(Y, F(X)] = Er [E(Y, £(X))] =
Znt YE[L(Y, £(X))|Y = K] Zm, JE[(Y, F(X))|Y = K]

Implicit Testing Risk Using the Training One

@ Amounts to use a weighted loss:
Enr, [O(Y, f(X]_Zmr JE[L(Y, F(X))|Y = K]

= Z (KE [””(k)e(v, f(X))’ Y = k}

) (k)
Ttr Y
_E, [I f(X))]

@ Put more weight on less probable classes! 230

Welghted LOSS ML Methods: Optimization

Point of View

@ In unbalanced situation, often the cost of misprediction is not the same for all
classes (e.g. medical diagnosis, credit lending. ..)

@ Much better to use this explicitly than to do blind resampling!

Weighted Loss

o Weighted loss:
(Y, £(X)) = (Y)Y, f(X))
o Weighted risk target:
E[C(Y)e(Y, f(X))]

@ Rk: Strong link with ¢ as C is independent of f.
o Often allow reusing algorithm constructed for /.

@ C may also depend on X. ..

231

Weighted Loss, ¢%/! loss and Bayes Classifier ML Methods: Optimization X

Point of View

@ The Bayes classifier is now:
f* = argmin E[C(Y){(Y, (X))] = argmin Ex [Ey x[C(Y)((Y, F(X))]]

Bayes Predictor

e For /%1 |oss,
*(X) = argmax C(k)P(Y = k|X)
k

@ Same effect than a threshold modification for the binary setting!

@ Allow putting more emphasis on some classes than others.

232

Linking Weights and Proportions ML Methods Optimizaton K

Point of View

Cost and Proportions

@ Testing risk target:

Er[C(YV)Y, F(X))] = D me(k) Ce(KE(Y, F(X))|Y = K]
k
@ Training risk target

Er, [Cer (V) =Y (k) Cer(K)E[L(Y, F(X))Y = K]
k
@ Coincide if

me(k) Ce(k) = mer (k) Cer (k)

@ Lots of flexibility in the choice of C;, Ci or .

233

Combining Weights and Resampling ML Methods Optimizaton K

Point of View

Weighted Loss and Resampling
@ Weighted loss: choice of a weight C; # 1.

@ Resampling: use a 7y # 7.

@ Stratified sampling may be used to reduce the size of a dataset without loosing a
low probability class!

Combining Weights and Resampling
o Weighted loss: use C;, = C; as 7y, = 7y
e Resampling: use an implicit Ci(k) = e (k)/me(k).
e Combined: use Ci (k) = Ce(k)me(k)/mer (k)

@ Most ML methods allow such weights!

234

Refel’ences ML Methods: Optimization

[o—

Point of View

T. Hastie, R. Tibshirani, and J. Friedman. e
The Elements of Statistical Learning.
Springer Series in Statistics, 2009

M. Mohri, A. Rostamizadeh, and A. Talwalkar.
Foundations of Machine Learning (2nd ed.)
MIT Press, 2018

A. Géron.
Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow (3rd ed.)
O'Reilly, 2022

Ch. Giraud.
Introduction to High-Dimensional Statistics.
CRC Press, 2014

S. Bubeck.
Convex Optimization: Algorithms and Complexity.
Now Publisher, 2015

235

7

Licence and Contributors ML Methods: Optimization

Point of View

Creative Commons Attribution-ShareAlike (CC BY-SA 4.0)

@ You are free to:
@ Share: copy and redistribute the material in any medium or format
@ Adapt: remix, transform, and build upon the material for any purpose, even commercially.

@ Under the following terms:
@ Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in

any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
@ ShareAlike: If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the

original.
@ No additional restrictions: You may not apply legal terms or technological measures that legally restrict others from doing anything

the license permits.

Contributors
@ Main contributor: E. Le Pennec
@ Contributors: S. Boucheron, A. Dieuleveut, A.K. Fermin, S. Gadat, S. Gaiffas,
A. Guilloux, Ch. Keribin, E. Matzner, M. Sangnier, E. Scornet. 236

O Utl | ne Optimization: Gradient

Descent Algorithms

@ Gradient Descent Step
@ Non-Convex Setting
@ References

o Optimization: Gradient Descent Algorithms
@ Introduction
@ Gradient Descent
@ Proximal Descent
@ Coordinate Descent
@ Gradient Descent Acceleration
@ Stochastic Gradient Descent

237

O Utl | ne Optimization: Gradient

Descent Algorithms

o Optimization: Gradient Descent Algorithms
@ Introduction

238

M L Optlmlzatlon Problem Optimization: Gradient

Descent Algorithms

Typical Optimization Problem in ML

e ML Opt.: argmin G(w) with G(w) = F(w) + R(w) where
weRd

1 n
o F a goodness-of-fit function: F(w) = . ZZ(Y,-, fw (X))
i=1

where £ is some loss and f,, a parametric predictor,
o R a regularizer: R(w) = X pen(w)
where pen(-) is some penalization function.

@ Predictor:
o Linear f,(X,) =X, w
e Neural Nets. ..

@ Regularizer:
o pen(w) = [|w|3 (ridge)

= |
o pen(w) = ||w||; (Lasso)
239

LOSSGS Optimization: Gradient

Descent Algorithms

Classification
o Logistic loss, £(y, f) = log(1 + e~
@ Hinge loss, ¢(y,f) = (1 — yf)4
o Quadratic hinge loss, {(y, f) = 3(1 — yf)3
o Huber loss {(y,f) = —4yfl,re_1 + (1 — yf)%rlyfz—l

- /
| 6 /

@ These losses are convex upper bound of the 0/1 loss £(y,y") = 1,,/<o.
Regression

e Quadratic loss, {(y,f) = 1(y —f)

o Absolute loss, £(y, f) = 1|y — f|

|

240

I_l near P I’ed ICtOF Optimization: Gradient

Descent Algorithms

ML Problem

@ Minimization of

n

G(w) = F(w) + R(w) = = > (Y}, (X;, w)) + Apen(w)

Gradient and Hessian of F

o Gradient: n

oLy, f)
of

1M
2 — b w T
— V4)/,', X,', Ki&i
VZF(w) ;51 (Yi,)

with £(y, f) =

@ Hessian matrix:

2
with ' (y, f) = 812(;/2’0 -

O Utl | ne Optimization: Gradient

Descent Algorithms

o Optimization: Gradient Descent Algorithms

@ Gradient Descent

242

ZerO Order MethOd Optimization: Gradient

Descent Algorithms

Zero Order Heuristic

@ Zero order approximation:
G(w) = G(w') + O(||lw — w'|)

Optimization in a Compact Set

@ Optimization problem:
P P w* € argmin G(w).
welo,1]9

Exhaustive Search

o Algorithm:

e Evaluate G on a grid,
e Approximate the minimizer by the minimizer in the grid.

e If G is C-Lipschitz, evaluating G on a grid of precision ¢/(v/dC) is sufficient to
find a e-minimizer of G.
@ Required number of evaluation: N, = O ((Cﬂ/e)d) 013

FII’St Ordel’ MethOd Optimization: Gradient

Descent Algorithms

First Order Heuristic

@ First order approximation:
G(w) = G(w') + VG(w) (w—w') + of||w — w'|])
@ Best descent direction: —VG(w')

Gradient Descent Algorithm

e Start from a point wl% and let k = 0.

@ Repeat until convergence:
o wltl] — Wik _ oIy G(wlk)
o k— k+1

with ol a sequence of (small) steps.

>
0
5
o
2
3
(<]
%

244

Do The Gradient Descent Converge? Optimization: Gradient

Descent Algorithms

vs

o Not always!

@ Convexity assumption on G.
@ Regularity assumption on G

o Size of the steps alkl.

>
0
5
o
2
3
(<]
%)

245

Convexity and Regularity Optimization: Gradient

Descent Algorithms

Convex function
@ A function G : RY — R is convex on R if, for all x,y € RY, for all X € [0, 1],
G(Ax + (1= N)y) < AG(x) + (1 = N)f(y).
o If £, is linear, F(w) =137 4(Y;, fu(X;)) is convex iff
f =Ly, f)

is convex for any i =1,...,n.

Regularity
@ G is L-smooth if it is continuously differentiable and if
[VG(w) —VG(wW)||, < L|lw—w|, forany w,w R
o If G is twice differentiable, this is equivalent to assuming
Amax(V2G(w)) < L for any w € RY
(largest eigenvalue of the Hessian matrix of G smaller than L)

246

Least-Squares Regression Optimization: Gradient

Descent Algorithms

Formulation

@ Minimization of

Gw) = F(w) + R(w) = 53 (¥, = X;"w)? + A pen(w)

Gradient and Hessian of F

o Gradient:

@ Hessian:

so that

i=1 247

Logistic Regression Optimization: Gradient

Descent Algorithms

Formulation

@ Minimization of

G(w) = F(w) Zlog(—YilX; W))) + Apen(w)

Gradient and Hessian of F
e Gradient: 1
Fw)==S"Yia(Y:X;"w) — 1)X;
VE(W) = 3l (YiX,Tw) - 1)

@ Hessian: 1
VZF(w) = = > o(ViX; w)(1 = o(YiX; W) XX,
i=1
so that F is L-smooth With 1

=5 max(anxT)

eo(t)=et/(1+eh). 248

Convergence Of GD Optimization: Gradient

Descent Algorithms

@ Let G:R? — R be a L-smooth convex function. Let w* be the minimum of f on
RY. Then, Gradient Descent with step size a < 1/L satisfies

W w3
- 2ack ’

G(wl) — G(w*)

@ In particular, for « = 1/L,
Ne = O(L||w! — w[3/(2¢))
iterations are sufficient to get an e-approximation of the minimal value of G.
@ Bound is independent of the dimension d.

@ Weak dependency hidden in the constant L. ..

249

Descent Lemma Optimization: Gradient

Descent Algorithms

A Property: the Descent Lemma.

o If G is convex and L-smooth, then for any w, w’ € R

G(w) < G(w) + VG(w) (w—w') + é |w — w’Hg.

Link with the Gradient Descent Algorithm
@ At step k, for any w,

2
G(w) < Gwld) + VG (wi) (w— wik) + L HW _ W[k]H2

< G(wl) H (wlk — VG wlkl)) H HVG(W[k])H2

o Optimizing the upper bound in w leads to
Wikt Ik %V(;(W[k])

@ Rk: Newton iteration comes from the approximation

G(w) = G(w') + VG(w') (w— w') + S(w — w') T2G(w')(w — w') +o(|lw —w[?)

Faster Rate - Strongly Convex Function Optimization: Gradient

Descent Algorithms

Strong convexity

@ A function G : RY — R is u-strongly convex if x — G(x) — ngH% is convex.
e If G is differentiable, this is equivalent to, for all x,y € R,
[
G(y) = G(x) + VG(x) (v —x) + Sy = x5

o If G is twice differentiable, this is equivalent to
Amin(V2G(x)) > p.

o Let G:R?Y — R be a L-smooth, y strongly convex function. Let w* be the
minimum of G on R?. Then, Gradient Descent with step size aw < 1/L satisfies

Gwh) — G(w") < 5 (1 - an) 16(w) — G(w")[3.

@ Rk: N. = O(— loge/(ap)) iterations are sufficient to obtain an e-minimizer.

251

Lipschitz Convex Function - Slower Rate Optimization: Gradient

Descent Algorithms

Convexity

e If G is a convex function then for any w € RY, there exists a (not necessarily
unique) subgradient 6 G(w) such that
G(w') > G(w) +0G(w) (W —w) for any w’ € R?
o If G is differentiable then it is unique and equal to the gradient.
@ Subgradient Descent Algorithm: Gradient Descent with subgradient instead of
gradient.
Regularity
@ G is C-Lipschitz if
|G(w) — G(W)| < Cllw—w'|[, forany w,w' € R?
o If G is differentiable, this is equivalent to assuming
IVG(w)|| < C for any w € RY

252

Lipschitz Convex Function - Slower Rate Optimization: Gradient

Descent Algorithms

o Let G:RY — R be a convex function, C-Lipschitz in B(w*, R) where w* be the
minimizer of f on R?. Assume that

ol >0, of -0, Za[k] = +00

(K] satisfies

and H wlo]
R% + 3o (al¥1)?

i KTy _ *) <
Lpg}(G(w)—G(w*) < C

- 25K g alkl
e In particular, for alkl = \/h
' R? + r?log(k + 1)
in G(wlK) = G(w*) < C
pin G = oW < O T

and
Ne = O ((C(~loge)/e)?)

253

In practice, how to choose a7 Optimization: Gradient

Descent Algorithms

@ Theoretical setting of « = 1/L is a worst case scenario.

Exact line search

@ At each step, choose the best a by optimizing

ol = argmin G(w — aV G(w)).
a>0

o Too costly!

Backtracking line search

@ Fix a parameter 0 < 8 < 1 and set @ = «jpjr
@ At each iteration,
o while G(w — aVG(w)) > G(w) — %HVG(W)||2,
modify a + Ba.
e Use the final « as the stepsize for this iteration.

e Simple and work pretty well in practice.

@ Theoretical guarantees available.

254

O Utl | ne Optimization: Gradient

Descent Algorithms

o Optimization: Gradient Descent Algorithms

@ Proximal Descent

255

Function Decomposition and Descent Optimization: Gradient

Descent Algorithms

Function Decomposition: G = F + R
@ F convex and L-smooth

@ R convex and simple

Another Descent Algorithm

@ At step k, for any w,
G(w) < F(w) + R(w)

< F(w) + VE(wH) (w— wii) + £ HW _ W[lei + R(w)

gF(w[k])+é’w (wh — TV F(w H o [VE) |+ R(w)

@ Optimizing the upper bound in w Ieads to

2
wlk 1l — argmin % HW — (W[k] - %VF(W[k])) + %R(W)

@ R simple means that this minimization is easy.
256

Proximal Operator and Proximal Gradient Descent Optimization: Gradient

Descent Algorithms

Proximal Operator

@ For any convex function R:

prox., R(w') = argmin % |w — w'||> + yR(w)
w

@ Generalization of the projection operator:
o R(w) = 1q: prox, R(w') = Pow'
o R(w)=1|wl3: prox., R(w') = ﬁw.
o R(w) = |wl|: prox, R(w') = T, (w') with T, (w); = sign(w;) max(0, |w;| —)

(soft thresholding).

Proximal Gradient Descent Algorithm for simple R

e Start from a point wl and let k = 0.

@ Repeat until convergence:
o wlhktll = prox; ;. R (Wl — ol F(wlk))
o k— k+1

with o4l a sequence of (small) steps. 257

Theoretical Guarantees Optimization: Gradient

Descent Algorithms

@ Same as smooth case!

@ F L-smooth and R simple:
G(wl) — G(w")
and N, = O(L||w!® — w*|3/2e).
@ F L-smooth and p-convex and R simple:
G(wH) — G(w*) < o (1~ an) [G(wl) — G(w)]3
and N, = O(—loge/(au)).
@ F C-Lipschitz and R is the characteristic function of a convex set:

N R? + r?log(k + 1)
S = Bl £ ey
and N, = O ((C(—loge)/e)?).

_ WP - w3
- 2ack ’

258

O Utl | ne Optimization: Gradient

Descent Algorithms

o Optimization: Gradient Descent Algorithms

@ Coordinate Descent

259

Coordinate Descent Optimization: Gradient

Descent Algorithms

Heuristic

@ Is w a minimizer of a G when
G(w+te)>G(w) VtcRand1<i<d,
with G convex?
e YES if G is smooth (C!), G is separable or G is a sum of a smooth (C!) and a
separable function (G(w) = X%, gi(w()).
e NO otherwise.

Coordinate Descent Algorithm

e Start from an arbitrary wl!%
@ Repeat until convergence:

Pick a coordinate i

Set wlkt1.0) = wlkl.U) for j £ j.

Optimize only the ith coordinate to obtain wlk*+1.()
k— k+1

@ State-of-the art is several ML problems! 260

Exact Coordinate Descent Optimization: Gradient

Descent Algorithms

Exact Coordinate Descent (CD)

e Start from an arbitrary wl!%
@ Repeat until convergence:

o Pick a coordinate i
o Set wlkH10) — wlk0) for j £ i

e Compute
wlkt1() — argmin G(w[k]’(l), Cowlk D) KL GEY) W[k]-,(d))
zeR
o k> k+1

@ Several way to choose the coordinate i: uniform sampling, deterministic cycle. ..
@ Only 1D optimization problems to solve. .. but probably a lot of them.

Theorem - Warga (1963)

o If G is continuously differentiable and strictly convex, then exact coordinate
descent converges to a minimum.

261

Coordinate Gradient Descent Optimization: Gradient

Descent Algorithms

Coordinate Gradient Descent (CGD)

e Start from an arbitrary wl!%
@ Repeat until convergence:

o Pick a coordinate i
o Set wlkt1l0) = wlkl.0) for j +# j.
e Compute
wlkt1L0) — kL) a[k]v(i)G(W[kl)
o k > k-+1

@ For smooth function, step-size alkl can be taken as alkl = 1/L; where i is the
coordinate chosen and L; the Lipschitz constant of
G'(z) = G(w + ze)) = G(wW, ... wl™D) wl) 4z wl+D) ()
@ If Gis L-smooth, L; < L.

262

Rate of Coordinate Gradient Descent Optimization: Gradient

Descent Algorithms

Theorem - Nesterov (2012)

@ Assume that G is convex and smooth and that each G’ is L;-smooth.
Consider a sequence {wlKl} given by CGD with afXl = 1/L; and coordinates
i1, 2, ... chosen at random: i.i.d and uniform distribution in {1,...,d}. Then

E[G(wl 1) - G(w*)]

d 1 1 2
—_— E— oy _ * - [0] .. x

< (@ =6 — G(w) + 5 [w —w]|).

with [[wl[f = X7 Ljw?.

@ Bound in expectation, since coordinates are taken at random.
@ For cycling coordinates iy = (k mod d) + 1 the bound is much worse.

@ Similar result when G = F + R with F smooth and R simple and separable.

263

Comparison of Gradient Descent and Coordinate Optimization: Gradient
) Descent Algorithms
Gradient Descent

Gradient Descent
@ Cost of an iteration O(d).
@ Number of iteration to obtain an e-minimizer:
L HW[O] —wr

2¢

2

Ne

Coordinate Gradient Descent
@ Cost of an iteration O(1).
@ Number of iteratiorgj to obtalin an e-minimizer: .
_ Y _ - [0]y _ * S w0l — *
Ne = =((1 = 2)(G(w) - 6(w)) + 3 ||wl - w

2
)
@ Same order of complexity but smaller constant for CGD as soon as

2
(G(wl) - G(w*)) < L||wl® — w*| i
@ In practice, often much faster (especially when dealing with anisotropic regularity).

264

O Utl | ne Optimization: Gradient

Descent Algorithms

o Optimization: Gradient Descent Algorithms

@ Gradient Descent Acceleration

265

Gradient Descent Acceleration Optimization: Gradient

Descent Algorithms
e Can we improve the number of iterations O(L/¢) (L-smooth) and O(ﬁ log(1/€))
(L-smooth and p strongly-convex) ?
@ Heuristic: add some momentum to propagate gradients.

Polyak’'s momentum algorithm - Heavy ball method

o Input: starting point wl%, step size alXl > 0, momentum 3 € [0, 1]

@ While not converge do
o w12 — Wik _ oIy G(wlkl)
o wiktll = wlkt1/2l 4 g(wlkl — wlk-11)
o k<« k+1

e Return last wlk+1l,

@ Most classical value for 3: 0.9
@ When alkl = o, the update equation can be written

k
wlkttl — ylk _ aZ@k_tVG(W(t)).
t=1

266

POlya k’S Momentu m Fa | | ure Optimization: Gradient

Descent Algorithms

80

60

40

20

Counter Example

@ Polyak's momentum algorithm fails to converge in some specific cases, for
instance:
25x if x <1

VG(x) =< x+24if 1 < x <2
25x — 24 if x > 2
@ In that case, G is u strongly convex and L-smooth with (u, L) = (1,25). However,
iterations given by Polyak’s algorithm cycles.

267

Nesterov Accelerated Gradient Descent Optimization: Gradient

Descent Algorithms

Nesterov Method

o Input: starting point W[O](: w[*l/z]), step size aolkl > 0, momentum gl [0,1]

@ While not converge do
o wlkt1/2 — Ik _ o[y G(wlk)
o wiktl] — Wlk1/2l 4 glkl(ylk+1/2] _ lk-1/2])
o k+— k-+1

Return last wlk+1l,

Subtle difference with momentum method.
Not much freedom for Sl
o Nesterov original choice:

=1

. 7t[k]—1 . t

M = S with 3y _ 1T
- 2

k
e Simpler equivalent choice B[k] = 13

e Other choice possible for 11 convex function.
@ Proximal version possible. 268

Convergence Rate of Nesterov Accelerated Gradient — opsimization: Gradient

Descent Algorithms

Theorem for L-smooth function
@ Assume that G is a L-smooth, convex function whose minimum is reached at w*.
Then, if 8Kl = k/(k +3),

2[|wl — w3
[y _ *x o SN 7 ™ N2
G(w™) - 6(w") < a(k +1)?

Theorem for p strongly convex function
@ Assume that G is a L-smooth, p strongly convex function whose minimum is

reached at w*. Then, if gkl = vt V“/L,
14++/p/L

0] _ w*l2 k
G(W[k]) _ G(W*) < u@_ _ ﬂ) .

(07

o Faster rates than respectively O(1/k) and O((1 — p/L)¥).
@ Theorems holds for the proximal algorithm with G = F + R with F smooth and R

simple. 269

O ptl m al BOU ndS Optimization: Gradient

Descent Algorithms

General First Order Method ;

@ Any iterative method that generates a sequence {w!kl} s.t.
wlkl e wlo Span(VF(wl), ... vi(wl—1)).

Lower Bounds
o For any wl® € R? and any k satisfying 1 < k < (d — 1)/2, there exists a
L-smooth convex function f such that for any general first order method

3L||W[O] — W*”2
[K]y _ *) > 2
Gw™) - 6(w') =2 = 1)

e For any wl® € R? and any k < (d — 1)/2, there exists a L-smooth, y strongly
convex function f such that for any general first order method

_ 2k
G(wlH) - G(w") > 2 (F VALY ol 2

= 2\1 4 /L

@ Accelerated rates: best possible without further assumptions.

270

O Utl | ne Optimization: Gradient

Descent Algorithms

o Optimization: Gradient Descent Algorithms

@ Stochastic Gradient Descent

271

Goodness-of-Fit and Stochastic Gradient Heuristic Optimization: Gradient

Descent Algorithms

Goodness-of-Fit Optimization

@ Minimizer of G = F + R with
e F smooth and R simple (as before).
e Empirical average structure for F:

n

Fw) = Fi(w) = BolFi(w)]

where each F; is smooth.

e Cost of evaluating VF is proportional to the dataset cardinality n (and the
dimension d).

o If the dataset is large, this can be an issue.

@ Stochastic Gradient Heuristic: replace VF(w) = E,[VF;(w)] by a Monte
Carlo approximation.

272

StOChaStIC Gl’adlent Optimization: Gradient

Descent Algorithms

Stochastic Gradient

@ Empirical average structure

VF(w) = % > VFi(w) = En[VFi(w)]
i=1

Monte Carlo approximation of an average:

e draw uniformly m < n indices iy, ..., in
o Replace VF(w) by

FF(w) = %ZVF,}.(W)

Prop: E[@F(w)} = VF(w)

Extreme case m = 1: unbiased but quite noisy estimate of the true gradient.

Evaluation cost of VF(w) independent of n.

Question: Can we use this approximation of the true gradient in a descent

algorithm? 273

Stochastic Gradient Descent Algorithm Optimization: Gradient

Descent Algorithms

Stochastic Gradient Descent Algorithm

@ Start from a point wl% and let k = 0.
@ Repeat until convergence:

e Draw m indices 1 < j; < n uniformly at random
o Set VF(wll) = 57 VF(wl)

o wiktll — Wik _ ok (@F(W[kl) n VR(W[k]))
o k > k-+1

with alkl a sequence of (small) steps.

Each iteration has complexity O(md) instead of O(nd) for full gradient methods
m is called the batch size.

Rk: no gain when using a batch size larger than 1, except if the sum can be
parallelized.

Proximal variant if R is simple instead of smooth.

274

Convergence Rate of SGD Optimization: Gradient

Descent Algorithms

@ Theoretical analysis requires some modifications:
o at each step w1 should be projected intro a ball B(c, R) with R > 0.
e G should be convex such that sup; [VF;(w) + VR(w)| < b, Yw € B(c, r)
o Polyak-Ruppert averaging: use SGD iterates w' but return an average.

SGD Rate

o With ol = 2R/(bV/k)
k
E {G(ll(; wm)] - G(w*) <

o If G is p-strictly convex then with alkl = 2/(u(k + 1)),

3r

S8

k 2
| S)|~)= e
Jj=1

@ Without averaging, logarithmic loss.
@ Same rate for proximal algorithm if F is at least L-smooth and R simple.

275

Convergence Rate of SGD Optimization: Gradient

Descent Algorithms

Simplified Result for the (Averaged) SGD

e If G is convex and gradients are bounded (||VF;(w)]||, < b) then the convergence

rate is
0() with ol =0(Z)
e G is pu-strongly convex, the rate is
0(7) with ol =0(-)

Comparison with GD

@ Much slower rate:
o for L smooth function: O(1/v/'k) vs O(1/k)
o For u convex function: O(1/k) vs O((1 — /L))
o Hidden factor o in SGD measuring the variance of VF which decreases when m
increases.

@ Much cheaper cost per iteration: O(md) vs O(nd)

276

SGD Wlth FiXGd Step Size Optimization: Gradient

Descent Algorithms

Stochastic Gradient Descent Algorithm

o Start from a point wl% and let k = 0.

@ Repeat until convergence:
e Draw m indices 1 < j; < n uniformly at random
o Set VF(wl) = 15" VF (wl)
o Wil — wi — o (VF(wi) + VR(wlH))
o k> k+1
with a constant.

@ No convergence but for p-convex function:
2
E[Hw[k] —w } s 0(a/p)

@ SGD behavior in practice: very fast initially but much slower afterward.

@ Justify the use of decreasing step size when the error decay becomes slow.

277

Sta blllzatlon Optimization: Gradient

Descent Algorithms

o Difference due to the variance of the stochastic gradient.

Variance reduction of the gradient

@ In the iterations of SGD, replace VF;, (wl—1l) by
VF, (w1 — VF, (W) + VF(w)
where w is an old value of the iterate, namely use
wil — w1l _ (v F, (wlk—1) — VF, (W) + VF(W))
@ Several instantiations

e SVRG where w and VF(w) is computed every few step.
o SAGA where, instead of VF;(W), one use F,-(w[kf]), where k; is the last time the ith
coordinate has been updated, even to compute the equivalent of VF ().

@ Lead to faster rate but requires more memory (3d for SVRG and nd for SAGA).

278

O Utl | ne Optimization: Gradient

Descent Algorithms

@ Gradient Descent Step

o Optimization: Gradient Descent Algorithms

279

Adaptive Step Size

Optimization: Gradient
Descent Algorithms

Stochastic Gradient Descent Algorithm

e Start from a point w(® and let k = 0.

@ Repeat until convergence:
e Draw m indices 1 < j; < n uniformly at random
o Set VF(wi) =157 VF (wl)
o it = wll — ol (VF(wl) + VR(wl))
o k> k+1

with alkl a sequence of (small) steps.

o Step sizes alkl are crucial for convergence.

@ How to choose them? Decaying? Fixed? Adaptative?

@ Several algorithms available with no clear winner.
Determining a good learning rate becomes more of an art than science for
many problems.

M.D. Zeiler

280

Gradient Descent, Step Size and Reparameterization optimization: Gradient

Descent Algorithms

Gradient Descent and Reparameterization

o Gradient Descent: wlkt1 = wlkl — oV G(wlk).
@ Reparameterization: w = Wz.

o Gradient Descent in z: zkt1 = zIK — o W TV G(W2IH).

o Implied Gradient Descent in w: wlkt1l = wlkl — o WW TV G(wlH).
o Different dynamics if WW T #1d !

Gradient Descent and Norm

o Descent lemma upperbound: f(w') < f(w)+ VG(w)' (W — w) + =lw — wl?.
@ Uses the classical euclidean norm.
o Using f(w') < f(w) + VG(w) (W — w) + 1 ||w — w|% leads to
wltl] = wlkl — o7 =1V G(wlH).
e Different dynamics if ¥ # Id !

281

G I’ad |ent Descent Optimization: Gradient

Descent Algorithms

Modified Gradient Descent Algorithm

o wliktll = Wikl — o PV G(wlkl) where P can be interpreted as WW T or X of the
previous slide.

@ Convergence holds if corresponding descent lemma holds.

@ P can even changes from one iteration to another.

Choices for P

@ Newton method:
o P=(V2G)""
e Hard to compute and no descent lemma property.
@ Diagonal approximation:
e P=D
e Easy computation but no descent lemma in general.
e Several strategies for the choice of D. ..

@ Coordinate Descent could be reframed in this framework! 282

Self Normalized Gradient Descent Algoritm Optimization: Gradient

Descent Algorithms

[
M/J_[k+1] [k] L [k]

Self Normalized Gradient Descent

o Gradient: mlk] ~ VG(wlk])
@ Renormalization factor: d}k] ~ |V G(wlH)|;
[K]

@ Base stepsize: oy could be constant or decaying. ..
@ Makes the algorithm invariant to a diagonal rescaling.
@ Amounts to use

WJF

W||z —Z’

283

ADAptIVG GRADlent Optimization: Gradient

Descent Algorithms

4] l6 ml¥
W) e d[k]

ADAptive GRADient update

o mlkl = VG(w[k])

djlkl — J Zk:(VG(w[k’]))jZ

k'=1

) aLk] =

Step sizes grow as the inverse of the gradient magnitude.
Accumulation of the gradients acts as a decreasing learning rate.
Sensitive to initial condition and may require large initial parameter or restarts.

284

ADAptIVG GRADlent Optimization: Gradient [1“:’

Descent Algorithms

[k+1]

[k] [k]
w; —l—

d[k]

ADAptive GRADient update reformulation

o mlkl = VG(w[k])

k
o =\ it = £ 57 (vt);

° ab] =a/Vk

@ Explicit averaging and decay.

285

RMS ro Optimization: Gradient
prop

Descent Algorithms

4] _ ml¥
W += d[k]

RMSprop update

o mlkl = VG(w[k])

° dJ[k] = [k] with v[I— pvj[k_l] +(1- p)(VG(w[k])J2

° aLk] =

@ Unpublished method!

@ Exponential average instead of classical one.

@ No step size decay.

e Often very efficient (especially in a non stationary setting).

286

ADAM ADAptIVG Moment eStImatIOn Optimization: Gradient

Descent Algorithms

Wit [k] L9 [k]

@ Exponential averaging estimation: let my = ¥y = 0,
il = Bl + (1 =) VG(wl) and o = 5,0l + (1 - (V6 (wlH))?

k] plAl
o Bias correction: mid = " and M=
3 1 BF
0 ol =¢q
=
@ Use a smoothed estimation of the first two moments of the gradients.

Often efficient.
ADAMax: v = 7lK = max (8, vik— 11|V G(wlH]))).

287

Ad a Delta Optimization: Gradient

Descent Algorithms

4] l6 ml¥
W) e d[k]

AdaDelta

o mikl = VG(w[k])
(K]

° d}k] = \/% with v [k] = pv[k Uy (1- P)(VG(""[k])J2 and
» 2
T il]]
vj[]:pvj[1]+(1—p)(d[k] G(w!)J)
o ald

@ Only one parameter!
@ Based on a dimensional analysis. . . with a strange looking renormalization! 288

AdaDelta

Optimization: Gradient
Descent Algorithms

M/J_[k+1] [k] + [k]

AdaDelta
o ml = VG(wl) and dj[k] =1

@[-k_l]
° ozj[-O] =« and on[-k] = - k—1 with
Yo+ (=)V Gtz)
= o1 (1) (Vw2 and
Vj[k] :p\,/.J[kfl] ()([[k]]) (([k]) and a[k U= \/W

@ Better insight (and more flexible initial step)!
@ Quite different from the previous schemes.

289

LateSt TrendS Optimization: Gradient

Descent Algorithms

Learning rate
Learning rate

Learning rate

Iterations # Iterations # Iterations

Cyclic Learning Rate

@ Cycle between small and large learning rate with stopping when the learning rate
is small.

@ One cycle strategy seems possible!

@ Plain SGD with a constant step is also making a comeback!

290

O Utl | ne Optimization: Gradient

Descent Algorithms

@ Non-Convex Setting

o Optimization: Gradient Descent Algorithms

201

(S)GD and Non COnVGX FunCtlon Optimization: Gradient

Descent Algorithms

@ No global convergence result for non convex functions optimization (NP Hard
problem)

@ Nevertheless (Stochastic) Gradient Descent algorithm can be used.

Theoretical results?

@ Typical weak convergence results:

e convergence to a stationary point
e convergence to a local minimum. ..

o Often in specific cases.

@ In practice: convergence depends a lot on the step size « choice strategy.

@ In general, more exploration than in the convex setting.

292

O Utl | ne Optimization: Gradient

Descent Algorithms

@ References

o Optimization: Gradient Descent Algorithms

293

Refel’ences Optimization: Gradient

[o—

Descent Algorithms

T. Hastie, R. Tibshirani, and J. Friedman.
The Elements of Statistical Learning.
Springer Series in Statistics, 2009

M. Mohri, A. Rostamizadeh, and A. Talwalkar.
Foundations of Machine Learning (2nd ed.)
MIT Press, 2018

A. Géron.

Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow (3rd
ed.)

O’Reilly, 2022

Ch. Giraud.
Introduction to High-Dimensional Statistics.
CRC Press, 2014

S. Bubeck.
Convex Optimization: Algorithms and Complexity.
Now Publisher, 2015

294

Licence and Contributors Optimization: Gradient

Descent Algorithms

Creative Commons Attribution-ShareAlike (CC BY-SA 4.0)

@ You are free to:
@ Share: copy and redistribute the material in any medium or format
@ Adapt: remix, transform, and build upon the material for any purpose, even commercially.

@ Under the following terms:
@ Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in

any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
@ ShareAlike: If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the

original.
@ No additional restrictions: You may not apply legal terms or technological measures that legally restrict others from doing anything

the license permits.

Contributors
@ Main contributor: E. Le Pennec
@ Contributors: S. Boucheron, A. Dieuleveut, A.K. Fermin, S. Gadat, S. Gaiffas,
A. Guilloux, Ch. Keribin, E. Matzner, M. Sangnier, E. Scornet. 205

Outline ML Methods: Neural

Networks and Deep Learning

° ML Methods: Neural Networks and Deep Learning

@ Introduction

@ From Logistic Regression to NN

@ NN Optimization

@ NN Regularization

@ Image and CNN

@ Text, Recurrent Neural Networks and
Transformers

@ NN Architecture

@ References

296

Outline ML Methods: Neural

Networks and Deep Learning

e ML Methods: Neural Networks and Deep Learning
@ Introduction

297

Perceptron

inputs weights

weighted sum

step function

Perceptron (Rosenblatt 1957)
@ Inspired from biology.
@ Very simple (linear) model!
@ Physical implementation and proof of concept.

P
&

ML Methods: Neural
Networks and Deep Learning

N
=
F

o

o

5

o
%)

298

Perceptron

Dendrites

Cell body

o0

Perceptron (Rosenblatt 1957)

@ Inspired from biology.

@ Very simple (linear) model!

@ Physical implementation and proof of concept.

ML Methods: Neural
Networks and Deep Learning

N
=
F

o

o

5

o
%)

298

Perceptron

inputs weights

weighted sum

step function

Perceptron (Rosenblatt 1957)
@ Inspired from biology.
@ Very simple (linear) model!
@ Physical implementation and proof of concept.

P
&

ML Methods: Neural
Networks and Deep Learning

N
=
F

o

o

5

o
%)

298

Pe rce pt ron ML Methods: Neural

Networks and Deep Learning

@ Inspired from biology.

@ Very simple (linear) model!

Source: Avin Calspan Advanced Technology Center

@ Physical implementation and proof of concept.

298

Artificial Neuron and Logistic Regression ML Methods: Neural

Activation Neuron Configuration Networks and Deep Learning

B1

I= Input

0= Output Activation Fonction
B= Bias ——

12

|

Artificial neuron Logistic unit

@ Structure: @ Structure:

® Mix inputs with a weighted sum, o Mix inputs with a weighted sum,

° lf\pplty_a (zoqh'_mear) gelivaten o Apply the logistic function
unction to this sum, o(t) = et /(1 + &),

° POSSIPl.y threshold the result to make o Threshold at 1/2 to make a decision!
a decision.

@ Logistic weights learned by minimizing

@ Weights learned by minimizing a loss e Jerelc el

function.
@ Equivalent to linear regression when using a linear activation function!

Source: Unknown

299

M u Itilayer Perceptron ML Methods: Neural

Networks and Deep Learning

Input Hidden Layer Output

B1 B2
i S
I = Input H1
H= Hidden 12
O = Output H2 01
B= Bias I3 =——
H3

MLP (Rumelhart, McClelland, Hinton - 1986)

@ Multilayer Perceptron: cascade of layers of artificial neuron units.

e Optimization through a gradient descent algorithm with a clever implementation
(Backprop).

@ Construction of a function by composing simple units.
@ MLP corresponds to a specific direct acyclic graph structure.

3
o
X
[
©
5
o
(2]

300

@ Non convex optimization problem!

Multilayer Perceptron

ML Methods: Neural
Networks and Deep Learning

Neural Network

Decision region Decision boundary
w
o
06- ® ¢
Cg classes % ’ @ classes
% B ciasst % 04- g ® Class
& B class2 £ © Class2
02-
02 04 06 02 04 06
PredictorA PredictorA

301

Deep Neu raI Network ML Methods: Neural

Networks and Deep Learning

DEEP NEURAL NETWORK

Deep Neural Network structure

@ Deep cascade of layers!

@ No conceptual novelty. ..

@ But a lot of tricks allowing to obtain a good solution: clever initialization, better
activation function, weight regularization, accelerated stochastic gradient descent,
early stopping. ..

@ Use of GPU and a lot of data. ..

@ Very impressive results!

°
2
3
O
T
2
©
3
2
QL
T
o
o
o
g
oo
c
v
o0
<
Q
&
K
=
o
g
5
o
(2]

302

Deep Neural Network

ML Methods: Neural
Networks and Deep Learning

H20 NN
Decision region Decision boundary
=

06 06- ® ®
Cg classes % ’ @ classes
% 0.4 . Classi % 0.4+, > @ Classi
& B class2 £ © Class2

0.2

02-

02 04 06 02 04 06
PredictorA PredictorA

303

Deep Learning ML Methods: Neural

Networks and Deep Learning

Conv 1: Edge+Blob Conv 5: Object Parts Fe8: Object Classes

Family of Machine Learning algorithm combining:

a (deep) multilayered structure,

a clever optimization including initialization and regularization.

Examples: Deep NN, AutoEncoder, Recursive NN, GAN, Transformer. ..
Interpretation as a Representation Learning.

Transfer learning: use as initialization a pretrained net.

Very efficient and still evolving!

® 6 6 ¢
Source: J. Hays

w
o
=

Outline ML Methods: Neural

Networks and Deep Learning

e ML Methods: Neural Networks and Deep Learning

@ From Logistic Regression to NN

305

Logistic Regression as NN ML Methods: Neural

Networks and Deep Learning
L,
- T

e Conditional probability model:
P(Y =1X)=o(w' X+ b) =

Binary Logistic Regression
W' X+b
@ Model weights w € R9 and intercept (or bias) b € R.
e X is the input (single feature vector).
@ z(X) = w' X + b is called pre-activation.
o y(X) = o(z(X)) is the output (in [0, 1] in this case)

@ w is weights and b is bias

0
&
‘T
o
%)
o
g
=
<]
%)

@ o is an activation function 306

Softmax Regression ML Methods: Neural

Networks and Deep Learning

Multinomial Logistic Model

eWkTKerk
e Cond. prob. model: P(Y = k|X) = K owy Xtby
o Model weights: k vector wy € RY or equivalently a model weight matrix W with

W.7k = Wy

Softmax Regression (Softmax Layer)

e z(X)= W.,kTK—i- by pre-activations or logits

2z (X . o -
o yi(X) = % coming out of the softmax activation

Zf’:l €

Matricially:
[+ atricially)/(K) _ softmaX(Z(K)) = softmax(WTK‘*’ b)

0
&
‘T
()
%)
o
g
=
<]
%)

w
=]
N

One-Hidden Layer Neural Network ML Methods: Neural

Networks and Deep Learning

One-Hidden Layer Neural Network - Neural Representation

@ Recursive definition:
y(X) = softmax(2(9)) = softmax(W(O) T h 4 p(©))
= softmax(W(T g(z(H) 4 p(©))
= softmax(W(O T g(W T x 4+ p(H)y 4 p(0))

@ g is an activation function applied entrywise on z{", . ,z,f,’

@ This neural network has a width-H hidden layer

s
<°
&
©
O
9]
[
2
5
o}
(%)

308

One-Hidden Layer Neural Network

(@]

softmax

ML Methods: Neural
Networks and Deep Learning

o

g ¢

One-Hidden Layer Neural Network - Vector Representation

@ Vector representation:

y(X) = softmax(z{?)) = softmax(w© + b(0))

= softmax(W(O)Tg(z(H)) + b(9)

= softmax(W(O)Tg(wH x4 bty 1 p(0))

@ g is an activation function applied entrywise

@ Equivalent representation focusing on layers.

I
<°
E=]
©
V)
)
o
2
3
o
%]

309

Activation Functions ML Methods: Neural

Networks and Deep Learning

30 Main activation functions 20 Main activation gradients

25H— ¢ —
— tanh 15 — tanh’

2.0

— relu — rely
15 10
10
05 05

0.0

-05

-1.0 -05
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Entrywise Activation Functions

@ Most classical: sigmoid, tanh and ReLU (rectified linear unit)
2z

o(z) = 1t ez 222_’_1, ReLU(z) = max(0, z)

@ Their derivatives are given by
0'(z) = 0(2)(1 - o(2))
tanh(z) = 1 — tanh(z)?,
ReLU'(z)

e Note that tanh(z) = 20(2z) — 1

tanh(z) =

lz>0

310

Activation Functions ML Methods: Neural

Networks and Deep Learning

RelLU Activation
@ RelLU: z — max(0, z)

@ Often the best choice for deep neural networks
o Easier to optimize, since their behavior is closer to linear
°

Its gradient is not defined at z = 0: not a problem since, during training, it's
unlikely that any input equals 0

In contrast to ReLu, Sigmoid activations o and tanh (not recommended anymore)
saturate for large positive (or large negative values).

Identity Activation

o Hidden layer:

o Amount to use h = g(VU Tz + b) instead of h = g(W Tz + b)
o W is factorized as UV T
o Reduces the dimension of the model

@ Output layer: linear model on the last layer 311

Activation Function ML Methods: Neural

Networks and Deep Learning

@ Softmax is not an element-wise activation:

el
1

SOﬂ:maX(Z) = m

e’k

o Gradient:
softmax(z) {softmax(z)k X (1 —softmax(z)x) if k =K

Oxyr —softmax(z)x x softmax(z)x otherwise

@ Maps z € RK to the space of vector in [0, 1]% with entries that sum to 1
(probabilities)

@ The inputs of the softmax are called the logits in deep learning

312

Feed-Forward Neural Network ML Methods: Neural

Networks and Deep Learning

Feed-Forward Neural Network

@ Heuristic: It's easy to construct a complex function by composing simple elements
in some order.

Layerwise structure:
K1) — g(l)(W(l)TX + b(l))

h?) = g w@T M) 4 p(2))

A = g BT L1 4 p(h))
y = softmax(W(O) T p(t) 4 p(0))
Need to choose the width of each layer and the depth of the network.

The name comes from the fact that information flows through the layers.
For regression, replace the softmax by identity.

313

Universal Approximation Theorem ML Methods: Neural

Networks and Deep Learning

Universal Approximation Theorem (Hornik, 1991)

o A single hidden layer neural network with a linear output unit can
approximate any continuous function arbitrarily well, given enough hidden units
W

@ Valid for most activation functions.
@ No bounds on the number of required units. .. (Asymptotic flavor)

@ A single hidden layer is sufficient but more may require less units?

314

Network Architectu re ML Methods: Neural

Networks and Deep Learning

Effect of Number of Parameters

97 T T T ! L
96 |- e—e 3, convolutional
X +—+ 3, fully connected
95 |-) |
§ V—V¥ 11, convolutional
5 94 -
8
S o3} *\._’F i
8
ool |
91 1 L L 1 L
0.0 0.2 0.4 0.6 0.8 1.0

Number of parameters x108

@ What is best?
e One hidden layer with large width?
e ...or several layers with smaller width ?

A Recipe

@ For the same number of parameters, several layers with a smaller width lead to
better generalization. (More abstract layers)

Source: Goodfellow, Bengio and Courville

w
—_
o1

Outline ML Methods: Neural

Networks and Deep Learning

e ML Methods: Neural Networks and Deep Learning

@ NN Optimization

316

HOW to Train a DNN ML Methods: Neural

Networks and Deep Learning

Quadro

192 Cores

@ Use a differentiable loss.

Loss Minimization

e Compute the prediction and the loss (forward-propagation)

e Compute the gradients (back-propagation)

@ Use a Stochastic Gradient Descent algorithm

@ In practice, use
e A nice open source library (tensorflow, keras, pyTorch)
e A GPU. . .since training a DNN can benefit from massive parallel computations

317

Neural Network Optimization Formulation ML Methods: Neural

Networks and Deep Learning /.

Feed-Forward Neural Network

o Network structure:
A1) — g(l)(W(l)TX + b(l)) h2) — g(2)(W(2)Th(1) + b(2))
A = g BT L1 4 p(h))
f(x, w) = softmax(W(OT 4(L) 4 p(0))
with w = (W, p) wD) pL) wle) b))

Optimization Formulation

@ Minimization of 1
G(w) == U(Yi, f(X;, w)) + pen(w)
w

F(w)
with ¢ a loss function and pen a penalization.

@ Most classical choices:
e [is the cross entropy (-log-likelihood)

e pen is a ridge penalty on the W. 318

Optimization Algorlthm ML Methods: Neural

Networks and Deep Learning

Optimization Formulation

@ Minimization of

1 n
6(w) = ¢ 32 £, w) + pf:((v)«)

F(w)
with ¢ a loss function and pen a penalization.

Optimization Algorithm
@ Non convex optimization problem.
@ Stochastic Gradient Descent algorithm.

@ Key issue: computing
VFi(w) = VY, f(X;, w))

319

Back—Propagation ML Methods: Neural

Networks and Deep Learning

@ Clever algorithm to compute VFj(w) = V(Y] f(X;, w)).

@ Key observation: f is obtained through a direct acyclic graph of composition.
e Key lemma (Chain Rule): aiwf(g(x, w)) = %(g(x, W))g—f/(x, w).
Z 9z 9y

J dy; 0x;

@ Back-propagation: use of this chain rule to compute the derivatives in VF;(w)
starting from the parameters of the last layer and going backward to the ones of
the first one.

@ More generally: % =

320

Partial Derivative and Back Propagation ML Methods Neural
Set of Partial Derivative Linked VF;(w) = VI(Y;, f(X;, w))

@ Loss: %;(w) = 3f(Y:>f(XnW))

o Output layer: o Softmax: %(w) is known.
Zk
e Pre-activation at the output layer:
92(°) 0:(°)
o Parameters: (o = h(w) and —or =1
az(o) (0)
o Previous Layer: ﬁ(f) = W;,
o Oh) 10
o Layer I o Activation: —ty = g((z;")
zZ.
J

o Pre-activation:

o Parameters: —L—
ow
. ;)
- J —
o Previous Layer: oD = W',
k

OF; OF;
Wj('k) and 5507 - 1

@ Recurs. comput. with the chain rule = efficient comput. of 5

Back—Propagation Algorithm ML Methods: Neural

Networks and Deep Learning

——-
Forward Propagation

—
Error Estimation
—
IPUL —
variables Target
’ variables
— =
j"f Non-linear transformation
Input Hidden Output
layer layer layer

Backward Propagation
.

Back-Propagation Algorithm

@ This set is sufficient to compute VFj(w) = VI(Y;, f(X;, w)).
@ Those partial derivatives can be computed in a backward-pass. . .

@ provided all the intermediate values of h and z have been computed in a
forward-pass

@
4
|3
I

14
o
2
3
o

(%]

322

SG D and DNN ML Methods: Neural

Networks and Deep Learning

@ Nearly all of deep learning is powered by SGD.

Stochastic Gradient Descent for DNN

@ Regular Stochastic Gradient Algorithm with

o adaptive step size (ADAM, RMSProp...) or fixed size with or without restarts,
e batch size larger than 1 to use GPU parallelism bit not too large.

Initialization
@ SGD does not work without a good initialization scheme.

@ Key properties:

o Break symmetry by random initialization around 0.
o Order of magnitude at layer / given by 1/,/H; + H,_; provided the input is
normalized.
e Examples:
o Normal with N(0,2/(H; + Hi-1))
o Uniform with U(—+/6/(H; + Hi—1), \/6/(H| + Hi-1))

323

A Challenging Optimization Problem ML Methods: Neural

Networks and Deep Learning

Gradient norm

Challenges

@ Non convex optimization in very high dimension.

@ SGD can be stuck around critical point and the gradient may not diminishes.
@ Several local minima due to invariance by permutation and scaling.
°

Some local minima may be bad.

@ Natural concerns but it seems that for sufficiently large network most of
the local minima have a similar low cost value.

Source: Goodfellow, Bengio and Courville

Larger networks may be easier to train than smaller ones. ..

w
R
~

Outline ML Methods: Neural

Networks and Deep Learning

e ML Methods: Neural Networks and Deep Learning

@ NN Regularization

325

Regularization by Penalization or Projection ML Methods: Neural

Networks and Deep Learning

Penalization or Projection

@ Regularization on weights and not on bias.
@ Mostly ¢ or (2.
@ Two possibilities:

e penalization: pen(W) = \||W/||

e projection: |W| < r

Projection seems to work better as it only affects large weights.
Avoid dead units.

326

Regularization by Early Stopping ML Methods: Neural

Networks and Deep Learning

Learning curves
T

o

e— Training set loss
0.15] — Validation set loss|

Loss (negative log likelihood)

0 50 100 150 200 250
Time (epochs)

Early Stopping

SGD optimizes Train error but true goal is Test error.
Early Stopping: stop SGD when test error rises.

In practice, store the parameters each time the test error improves and use the
best set of parameters in the end.

Most widely used of regularization in DL.

Number of iterations becomes a method parameter.

For least-squares regression and gradient descent, early stopping ~ ridge
penalization on the weights

2
2
<]
o
°
®
.o
3]
o]
m
2
o
&L
°
<}
<]
o
o
g
=
<]
%)

w
N
B

Regularization by Dropout ML Methods: Neural

Networks and Deep Learning

o %50

P oloeRe®

(cXe)

>

$

MG a2

&
5%
fi
E

Figure 11-9. Dropout regularization

The average value of the weights are preserved.

Interpretation in term of ensemble methods (bagging)

Dropout 5
@ |dea: At each step, disable temporarily some connections by modifying temporarily S
the weights. P

@ Importance sampling idea: c‘E

2

0 0 with probability p =

il = ﬁvvj(k) with probability 1 — p 3

No dropout after training!
328

Regularization by Batch Normalization ML Methods: Neural

Networks and Deep Learning

@ Idea: Maintain the scales of the neuron outputs during training.

Batch Normalization Layer

@ During training, at each step and for each neuron
o Compute the mean value on the current batch

m
n 1 I
/j‘i) = ; Z hg()(&iv W)
i=1
e Compute the variance on the current batch

m
2,(/ 1 I I
eV = =3 (B (X w) —)2

i=1 () _ (0
e Renormalize the entries /"75(’)(&.7 w) = hi (X, w) — 1

()
Tk
o Train (update) the scale and shift parameters:

o Differentiability in v and 3: SGD to train them.
@ Final freeze of the mean and the variance yield the final NN.
@ Helps a lot!

329

Regularization by Pooling ML Methods: Neural

Networks and Deep Learning

POOLING STAGE

o¥oyo¥o!
BETE B S

DETECTOR STAGE
@ |dea: replace some outputs by a statistic.

Pooling

@ Replace values by a local summary statistic.

@ Most classical summary choice: maximum.

(Sub)Gradient can still be computed.
@ Often combine with a subsampling to reduce the network size.

2
2
<]
o
°
®
.o
3]
o]
m
2
o
&L
°
<}
<]
o
o
g
=
<]
%)

330

Most useful when output position matters as in images.
Very useful to deal with pictures of various sizes.

Regularization by Data Augmentation ML Methods: Neural

Networks and Deep Learning

@ Idea: Augment artificially the number of samples

Data Augmentation

@ Augment the dataset by generating new samples from original ones.

e Often mild variations of existing one: shift, rotation, zoom, noise. . .

@ Often very efficient if the variations used correspond to specific problem
invariance.
@ Not so easy to generate completely new samples (GAN?)

c
<
0
o
I3
o
5
[}
n

331

Outline ML Methods: Neural

Networks and Deep Learning

e ML Methods: Neural Networks and Deep Learning

@ Image and CNN

332

Convolutional Neural Networks ML Methods: Neural

Networks and Deep Learning

Convolutional

° layer 2
Ay Convolutional
AR\ layer 1

Input layer

Convolutional Neural Networks (CNN)

@ Reduce number of network weights:

o Use only local computation (locality of information),
o Use the same weights everywhere (translation invariance)

c
<
0
o
o
o
5
[}
n

333

@ Keep the hierarchical structure.

Convolutional Layer ML Methods: Neural

Networks and Deep Learning

y g1/ /7 /17 7 4
.A.".Y"- A —

o Filter structure:

e Output is computed using only neighbors (locality of information)
e Same computation with respect to the neighbors position everywhere (translation
invariance)

Translation invariance < convolution

Subsampling of resulting output possible (stride) but issues with high frequency
part of filters.
Better subsampling stability after pooling.

c
o
5
)
[
g
5
<}
n

(]
w
w
'S

CN N Layers ML Methods: Neural

Networks and Deep Learning

Convolutional

Feature layer 2

(BT wap

Filters

Convolutional
layer 1

7 v
T v

Input layer

Maps and Layers

@ Each layer contains a stack of outputs (3D tensor).
o Filter : convolution in 2D but free along the stack direction.

@ Further reduction of the weight number using 2D spatial convolution followed by
arbitrary 1D filter along stack.

c
<
0
o
o
o
5
[}
n

w
w
(&)

CNN

C3: 1. maps 16@1010

™ e T
/%:l_ | B o
p— rr

Fu
‘Subsampling Subsamping

Convolutions

Fig.2 a Comvol A Network, hre fo diits recogitior

L= =

ML Methods: Neural
Networks and Deep Learning

AlexNet (Krishevsky et al., 12) j

-

@ Stack of convolutional layers followed by a fully connected one. §
@ Key is to be able to learn in less than a few days! 336

Outline ML Methods: Neural

Networks and Deep Learning

e ML Methods: Neural Networks and Deep Learning

@ Text, Recurrent Neural Networks and
Transformers

337

Text as Sequences ML Methods: Neural

Networks and Deep Learning

A recurrent neural network (RNN) is a class of artificial neural network where connections
between units form a directed cycle. This creates an internal state of the network which allows
it to exhibit dynamic temporal behavior. Unlike feedforward neural networks, RNNs can use
their internal memory to process arbitrary sequences of inputs. This makes them applicable
to tasks such as unsegmented connected handwriting recognition or speech recognition.

Sequences

@ Word = sequence of letters.

@ Text = sequence of letters/words.

o Capitalize on this structure.

Source: Wikipedia

338

Recurrent Neural Networks ML Methods: Neural

Networks and Deep Learning

é Ot Ot
1w i J vT:
‘> ﬁ A5G O
i T T
o 088 0 JDD EDD
0 DGO 0O BRSO DO
0 O 000 000 fufN
Recurrent Neural Network Unit 5
@ Input seen as a sequence. :
@ Simple computational units with shared weights. ;
@ Information transfer through a context! >
@ Several architectures! &

339

Automatic Tra nslation ML Methods: Neural

Networks and Deep Learning

S~ (La, croissance, économique, s'est, ralentie, ces, demniéres, années, .)

10p02a(]

= (Economic, growth, has, slowed, down, in, recent, years, .)

Encoder/Decoder structure

@ Word vectors, RNN, stacked structure.

°
°
S
=z
o
g
=
<]
%)

w
>
o

Automatic Tra nslation ML Methods: Neural

Networks and Deep Learning

/= (La, croissance, économique, s'est, ralentie, ces, derniéres, années, .)

] 4N 4) INZIINA
&= (Economic, growth, has, slowed, down, in, recent, years, .)
= (Economic, growth, has, slowed, down, in, recent, years, .)

Encoder/Decoder structure

@ Much more complex structure: asymmetric, attention order. ..

Source: Nvidia

w
>
an

Automatic Ca ptioning ML Methods: Neural

Networks and Deep Learning

f=(a, man, is, jumping, into, a, lake, .)

Autention

Ta~1

Encoder/Decoder structure

@ Much more complex structure: asymmetric, attention order. ..

°
2
>
=z
o
2
3
o
]

w
>
)

Text as Graph ML Methods: Neural

Networks and Deep Learning
ONORONS

Sentiment?

Next word?

Part-of-speech tags?

Text as Graph

@ More than just sequential dependency.
@ Each word is related to (all the) other words.
@ Graph structure with words and directed relations between words.

=
@
o
2
@
>
]
E=
]
o
o
g
=
<]
%)

w
>
@

Attention ML Methods: Neural

Networks and Deep Learning

Attention between words

@ Words encoded by h; at layer /.
e Compute individual value for each word: v; = V/h;
o Compute combined value for each word: h} = 3= w; ;v;
(Self) Attention: weight w;; defined by
w;j = SoftMax ((Q'h;, K'h;))

v
o
2
@
>
]
E=
]
o
o
g
=
<]
%)

344

Q'h; is called a query and K’hj a key.

Tra nsformer ML Methods: Neural

Networks and Deep Learning

&
£
0
<
>
@
°

@ Block combining several attention heads and a classical MLP.

Encoder/Decoder Architecture
@ Combine several transformers and more MLP in a task-adapted architecture.
@ End-to-end training is not easy (initialization, optimization. ..).

@ Initial embedding at token level rather than word level to cope with new words!

Sources: Chaitanya Joshi

345

Outline ML Methods: Neural

Networks and Deep Learning

e ML Methods: Neural Networks and Deep Learning

@ NN Architecture

346

Basic CNN Architecture

Basic choices

1,000 class. 1,000 class

Output of softmax Output of soltmax:
pmlmlnllu(»

pnllm\nllhb

1,000 class

Output of sofmax:
probabilities

Output uf matrix
multiply: 1,000 units

Output .,r matrix
multiply: 1,000 units

Output of average
pooling: 1x1x1,000

Output of reshape 0] [[Owiput of mmp.» ©

vector: vector:

.\x units

Owtput of
convolution:
16x16x1,000

Output ur ooling

with stride & Output of pooling to

3x3 grid: 3x3x64

with stride 4;

| Output of poolg.

Ihxlbe 16x16x64
Output of Tutput of

convolution + ReLU: convolution-+ ReLU convolution + ReLU:
6 IXMKM 64x64x64 64x64x64

Outpit ul ToOTIE
with stride 4;

TWTpUt of pooTig
with stride 4

with stride 4:

| Tutput of pooTng

L
|
|
|
I

nmmm ummm Mxtv 64
()ulp\u o (lul;ml o ()ulpul o
convolution+ ReLU: | | convolution+ ReLU: convolution-+ ReLU:
25 mzmmm zm,xzm)xm z',r,xz 56x64
1..;,m age m,m image: (..pm

3 256x256x3

ML Methods: Neural
Networks and Deep Learning

@ Nb of layers, size of layers,

@ Activation function, pooling. ..

@ Optimization algorithm!

Source: Goodfellow, Bengio and Courville

347

CN N AI’Ch itecture ML Methods: Neural

Networks and Deep Learning

Stiayerpan 3edaer

Max
pooling

/ Microsoft

Inception 7a

'Going Deeper wiin Comvolutions, [C. Szegedy e1 al, CVPR 2015]

CNN Architecture

Sources: A. Krizhevsky / Google

@ Lot of freedom!

w
>
co

D N N Arch itecture ML Methods: Neural

Networks and Deep Learning

Amostly complete chart of

Neural Networks

s Peetod
‘a2 222 2 2]

e
e

Other Architectures

@ Several structures:

e Different tasks. ..
e Different inputs.

o Representation Learning is everywhere

Q
=
E
=
z
£
.
[*]
£
‘0
<
[
2
=
o
(%)

o Key: Differentiability by composition of basic differentiable units.

w
'S
©

Outline ML Methods: Neural

Networks and Deep Learning

e ML Methods: Neural Networks and Deep Learning

@ References

350

References ML Methods: Neural

[o—

Networks and Deep Learning

T. Hastie, R. Tibshirani, and J. Friedman.
The Elements of Statistical Learning.
Springer Series in Statistics, 2009

M. Mohri, A. Rostamizadeh, and A. Talwalkar.
Foundations of Machine Learning (2nd ed.)
MIT Press, 2018

A. Géron.

Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow (3rd
ed.)

O’Reilly, 2022

Ch. Giraud.
Introduction to High-Dimensional Statistics.
CRC Press, 2014

S. Bubeck.
Convex Optimization: Algorithms and Complexity.
Now Publisher, 2015

351

References ML Methods: Neural

Networks and Deep Learning

I. Goodfellow, Y. Bengio, and A. Courville.
Deep Learning.
MIT Press, 2016

F. Chollet.
Deep Learning with Python (2nd ed.)
Manning, 2021

i

waig . Chollet, T. Kalinowski, and J. J. Allaire.
R Deep Learning with R (2nd ed.)
Manning, 2022

A. Géron.

Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow (3rd
: ed.)
= O'Reilly, 2022

352

Licence and Contributors ML Methods: Neural

Networks and Deep Learning

Creative Commons Attribution-ShareAlike (CC BY-SA 4.0)

@ You are free to:
@ Share: copy and redistribute the material in any medium or format
@ Adapt: remix, transform, and build upon the material for any purpose, even commercially.

@ Under the following terms:
@ Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in

any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
@ ShareAlike: If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the

original.
@ No additional restrictions: You may not apply legal terms or technological measures that legally restrict others from doing anything

the license permits.

Contributors
@ Main contributor: E. Le Pennec
@ Contributors: S. Boucheron, A. Dieuleveut, A.K. Fermin, S. Gadat, S. Gaiffas,
A. Guilloux, Ch. Keribin, E. Matzner, M. Sangnier, E. Scornet. 353

O Utl | ne ML Methods: Trees and

Ensemble Methods

@ ML Methods: Trees and Ensemble Methods
@ Trees
@ Bagging and Random Forests

@ Boosting

@ Ensemble Methods
@ References

354

O Utl | ne ML Methods: Trees and

Ensemble Methods

@ ML Methods: Trees and Ensemble Methods
@ Trees

355

Guess Who?

ML Methods: Trees and
Ensemble Methods

A game of questions

@ Game invented in 1979 in the UK.

@ Goal: discover the character chosen by your opponent before he discovers yours.

e Optimal strategy: choose at each step the question that splits the remaining
characters in two groups with the least possible difference in size.

o Information Theory!

@ Adaptive construction of a tree of questions!

@ Optimal tree of questions can be constructed without knowing the answers. . . but

during a game only a path of the tree is used. ..

356

Classification And Regression Trees ML Methods: Trees and

Ensemble Methods

Tree principle (CART by Breiman (85) / ID3 by Quinlan (86))
@ Construction of a recursive partition through a tree structured set of questions
(splits around a given value of a variable)

@ For a given partition, probabilistic approach and optimization approach yield the
same predictor!

A simple majority vote/averaging in each leaf

Quality of the prediction depends on the tree (the partition).
Intuitively:
e small leaves lead to low bias, but large variance
o large leaves lead to large bias, but low variance. . .
Issue: Minim. of the (penalized) empirical risk is NP hard!
Practical tree construction are all based on two steps:
e a top-down step in which branches are created (branching)
e a bottom-up in which branches are removed (pruning) 357

CA RT ML Methods: Trees and

Ensemble Methods

{yes }-PredictorB >= 0.2-{no }——
Classi
025
58%
PredictorA >=0.13
Classt
022
55%
PredictorA <0.31 PredictorB >= 0.32

ClassT
0.33
28%

iPmd ictorB >= 0.29

PredictorA < 0.62

= ™

Class?
077

358

B ra I"ICh i n ML Methods: Trees and

Ensemble Methods

Greedy top-bottom approach
@ Start from a single region containing all the data

@ Recursively split those regions along a certain variable and a certain value

o No regret strategy on the choice of the splits!
@ Heuristic: choose a split so that the two new regions are as homogeneous
possible. . .

359

B ra I"ICh i n ML Methods: Trees and

Ensemble Methods

Greedy top-bottom approach
@ Start from a single region containing all the data

@ Recursively split those regions along a certain variable and a certain value

o No regret strategy on the choice of the splits!
@ Heuristic: choose a split so that the two new regions are as homogeneous
possible. . .

359

B ra I"ICh i n ML Methods: Trees and

Ensemble Methods

X1<.5?
VAR

Xo < .77

7N

Greedy top-bottom approach
@ Start from a single region containing all the data

@ Recursively split those regions along a certain variable and a certain value

o No regret strategy on the choice of the splits!
@ Heuristic: choose a split so that the two new regions are as homogeneous
possible. . .

359

B ra I"ICh i n ML Methods: Trees and

Ensemble Methods

X1 < .57
VR
X1 < .27 Xo <77

JX X

@ Start from a single region containing all the data

Greedy top-bottom approach

@ Recursively split those regions along a certain variable and a certain value

o No regret strategy on the choice of the splits!
@ Heuristic: choose a split so that the two new regions are as homogeneous
possible. . .

359

Bra nCh i ng ML Methods: Trees and 4 »
Various definition of inhomogeneous

@ CART: empirical loss based criterion (least squares/prediction error)
C(R,R) = Uyiy(R)+ Y Ui y(R))
X;ER x,ER
@ CART: Gini index (Classification)
C(RR) = 3 p(R)L - p(R) + 3 p(R)(1 - p(R))
x;€R gfeﬁ
@ CA4.5: entropy based criterion (Information Theory)

C(R.R)=>_H(R)+ Y H(R)

X;€R x.€ER

o CART with Gini is probably the most used technique. ..

@ Other criterion based on 2 homogeneity or based on different local predictors
(generalized linear models. . .)

360

Branching ML Methods: Trees and

Ensemble Methods

Choice of the split in a given region

@ Compute the criterion for all features and all possible splitting points
(necessarily among the data values in the region)

Choose the split minimizing the criterion

Variations: split at all categories of a categorical variable using a clever category
ordering (ID3), split at a restricted set of points (quantiles or fixed grid)
e Stopping rules:

e when a leaf/region contains less than a prescribed number of observations
e when the region is sufficiently homogeneous. . .

May lead to a quite complex tree: over-fitting possible!

Additional pruning often use.

361

Ensemble Methods

Prunlng ML Methods: Trees and 4

e Rl

@ Model selection within the (rooted) subtrees of previous tree!

@ Number of subtrees can be quite large, but the tree structure allows to find the
best model efficiently.

Key idea
@ The predictor in a leaf depends only on the values in this leaf.

o Efficient bottom-up (dynamic programming) algorithm if the criterion used
satisfies an additive property

e Example: AIC / CV.

362

Prunlng ML Methods: Trees and 4

Ensemble Methods

Examples of criterion satisfying this assumptions

@ AIC type criterion:

nynfc X))+ ATI=Y (ny,,fﬁ +>\)

LeT \x;,eL
e Simple cross—Valldatlon (with (x}, y/) a different dataset):

Snatn - (3 o)

LET \xieL

@ Limit over-fitting for a single tree.

@ Rk: almost never used when combining several trees. ..

363

Pruning and Dynamic Algorithm ML Methods: Trees and K

Ensemble Methods

o Key observation: at a given node, the best subtree is either the current node or
the union of the best subtrees of its child.

Dynamic programming algorithm

@ Compute the individual cost c(L£) of each node (including the leaves)

@ Scan all the nodes in reverse order of depth:
o If the node £ has no child, set its best subtree 7(£) to {£} and its current best
cost ¢’(L) to ¢(L)
o If the children £; and £, are such that ¢/(£1) + ¢’(£2) > ¢(L£), then prune the child
by setting T(£) = {L} and ¢'(£) = ¢(£)
o Otherwise, set T(L£) = T(£1) UT(L2) and ¢'(L) = /(L1) + ¢'(L2)
@ The best subtree is the best subtree T(R) of the root R.

@ Optimization cost proportional to the number of nodes and not the number of
subtrees!

364

EXtenSIOnS ML Methods: Trees and

Ensemble Methods

Local estimation of the proportions or of the conditional mean.
Recursive Partitioning methods:

e Recursive construction of a partition

e Use of simple local model on each part of the partition
Examples:

o CART, ID3, C4.5, C5

o MARS (local linear regression models)

o Piecewise polynomial model with a dyadic partition. ..

@ Book: Recursive Partitioning and Applications by Zhang and Singer

365

CART

CART

PredictorB

=
=3

=
IS

=
[}

Decision region

02 0.4
PredictorA

ML Methods: Trees and
Ensemble Methods

Decision boundary

-
@
06- ® .
classes Eg ’ © classes
B ciasst %0-4' N ® Classi
B class2 £ @ Class2

02-

0.2 04 06
PredictorA

366

CART PFOS and COHS ML Methods: Trees and

Ensemble Methods

@ Leads to an easily interpretable model o Greedy optimization
@ Fast computation of the prediction @ Hard decision boundaries
o Easily deals with categorical features @ Lack of stability

(and missing values)

367

Ensem ble methOdS ML Methods: Trees and

Ensemble Methods

@ Lack of robustness for single trees.

@ How to combine trees?

Parallel construction
@ Construct several trees from bootstrapped samples and average the responses
(Bagging)
@ Add more randomness in the tree construction (Random Forests)

Sequential construction

@ Construct a sequence of trees by reweighting sequentially the samples according
to their difficulties (AdaBoost)

@ Reinterpretation as a stagewise additive model (Boosting)

368

Ensemble methOdS ML Methods: Trees and
Ensemble Methods

Bagging
Decision region Decision boundary
w

0.6 06-
Cg classes % classes
% 0.4 . Classi % 0.4- @ Classi
& B class2 £ @ Class2

02

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA

369

Ensemble methOdS ML Methods: Trees and
Ensemble Methods

Random Forest

Decision region Decision boundary
0.6 06-
Cg classes % classes
% 0.4 . Classi % 0.4- @ Classi
& B class2 £ @ Class2
02 02-
0.2 0.4 06 0.2 {JIA OI.B
PredictorA PredictorA

370

Ensemble methOdS ML Methods: Trees and
Ensemble Methods

AdaBoost
Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ © classes
% 0.4 . Class1 % 0.4- > @ Classi
& B class2 £ @ Class2
02 02-
0.2 0.4 06 0.2 OIA Ol.ﬁ
PredictorA PredictorA

371

O Utl | ne ML Methods: Trees and

Ensemble Methods

@ ML Methods: Trees and Ensemble Methods

@ Bagging and Random Forests

372

O Utl | ne ML Methods: Trees and

Ensemble Methods

373

Independent Average ML Methods: Trees and /"“

Ensemble Methods

Stability through averaging

@ Very simple idea to obtain a more stable estimator.

e Vote/average of B predictors fi,. .., fg obtained with independent datasets of

size n!
B

1
fagr = sign <B Z fb> or fog = Z fp

Regression: E[fog(x)] = E[fs(x)] and Var [fog(x)] = w

Prediction: slightly more complex analysis

Averaging leads to variance reduction, i.e. stability!

Issue: cost of obtaining B independent datasets of size n!

374

Bagging and Bootstrap

Strategy proposed by Breiman in 1994.

Stability through bootstrapping

Instead of using B independent datasets of size n, draw B datasets from a single
one using a uniform with replacement scheme (Bootstrap).

Rk: On average, a fraction of (1 — 1/e) ~ .63 examples are unique among each
drawn dataset. ..

The f, are still identically distributed but not independent anymore.

Price for the non independence: E[f,g(x)] = E[fp(x)] and

Var lfor() = 2 (1 2 ot

with p(x) = Cov [fp(x), fy (x)] < Var [fp(x)] with b # b'.
Bagging: Bootstrap Aggregation

Better aggregation scheme exists. . .

375

O Utl | ne ML Methods: Trees and

Ensemble Methods

376

Randomlzed PredICtOFS ML Methods: Trees and

Ensemble Methods

@ Correlation leads to less variance reduction:

Var g ()] = T (12 23 0

with p(x) = Cov [fp(x), fr (x)] with b # b'.

@ ldea: Reduce the correlation by adding more randomness in the predictor.

Randomized Predictors

@ Construct predictors that depend on a randomness source R that may be chosen
independently for all bootstrap samples.

@ This reduces the correlation between the estimates and thus the variance. . .

e But may modify heavily the estimates themselves!

e Performance gain not obvious from theory. ..

377

Ra n d om FOI’eSt ML Methods: Trees and

Ensemble Methods

@ Example of randomized predictors based on trees proposed by Breiman in 2001. ..

Random Forest

@ Draw B resampled datasets from a single one using a uniform with replacement
scheme (Bootstrap)

@ For each resampled dataset, construct a tree using a different randomly drawn
subset of variables at each split.

Most important parameter is the subset size:

e if it is too large then we are back to bagging
e if it is too small the mean of the predictors is probably not a good predictor. ..

@ Recommendation:

o Classification: use a proportion of 1/,/p
o Regression: use a proportion of 1/3

Sloppier stopping rules and pruning than in CART. ..

378

EXt ra Tl’eeS ML Methods: Trees and

Ensemble Methods

o Extremely randomized trees!

@ Variation of random forests.
@ Instead of trying all possible cuts, try only K cuts at random for each variable.

@ No bootstrap in the original article.

Cuts are defined by a threshold drawn uniformly in the feature range.

Much faster than the original forest and similar performance.

Theoretical performance analysis very challenging!

379

Error Estimate and Variable Ranking ML Methods: Trees and

Ensemble Methods

Out Of the Box Estimate
@ For each sample x;, a prediction can be made using only the resampled datasets
not containing Xx;. ..
@ The corresponding empirical prediction error is not prone to overfitting but does
not correspond to the final estimate. ..

@ Good proxy nevertheless.

Forests and Variable Ranking
@ Importance: Number of use or criterion gain at each split can be used to rank
the variables.

e Permutation tests: Difference between OOB estimate using the true value of
the jth feature and a value drawn a random from the list of possible values.

@ Up to OOB error, the permutation technique is not specific to trees.

380

O Utl | ne ML Methods: Trees and

Ensemble Methods

@ ML Methods: Trees and Ensemble Methods

@ Boosting

381

O Utl | ne ML Methods: Trees and

Ensemble Methods

382

AdaBoost

ML Methods: Trees and
Ensemble Methods

o lIdea: learn a sequence of predictors trained on weighted dataset with weights
depending on the loss so far.

Iterative scheme proposed by Schapire and Freud
@ Setwy;=1/n;t=0and f =0
@ Fort=1tot=T

o hy = argmin,y >, Wt,iéo/l(}’ia h(x:))

o Seter =1, we il (yi, he(x;)) and ar = 3 log 12—f‘

o let w1, = %jhm where Z;.1 is a renormalization constant such that
27:1 Witil,i = 1

-] f = f—’—atht

@ Use f = Z;l Oétht

o Intuition: w;; measures the difficulty of learning the sample i at step t...

383

AdaBoost

ML Methods: Trees and
Ensemble Methods

. T
(b)
AdaBoost Intuition

@ h; obtained by minimizing a weighted loss
n
h; = argmin Z wt7,-€0/1(y,-, h(x;))
heH i=1
@ Update the current estimate with

fr = fi_1 + ache

384

Ad a BOOSt ML Methods: Trees and

Ensemble Methods
oo
2 R
5

t=1 t=2 t=3
(2)
Dq[l ‘Q2|:.WKD :
(b)

AdaBoost Intuition
@ Weight w; ; should be large if x; is not well-fitted at step t — 1 and small

otherwise.
o Use a weight proportional to e ¥ife-1(x/) so that it can be recursively updated by
e—ayihi(x;)
W . = W . >< e —
t+1,i t,i Zt

384

Ad a BOOSt ML Methods: Trees and

Ensemble Methods

AdaBoost Intuition

@ Set «; such that
Z Wtt1,i = Z Wiet-1,i
yihe(xi)=1 yiht(xi)=—1
or equivalently

E Wt i e %t = g Wt i e

yihe(xi)=1 yihe(xi)=—-1 384

Ad a BOOSt ML Methods: Trees and

Ensemble Methods

AdaBoost Intuition

@ Using
€t = Z Wt i
yihe(xi)==1
leads to])
ar = = log % and Zy = 2\/€er(1 —€4)
2 €t

384

Ad a BOOSt ML Methods: Trees and

Ensemble Methods

Exponential Stagewise Additive Modeling

@ Sett=0and f =0.

@ Fort=1to T,
o (he, o) = argmin, o, 37, e Vilf(x)+ah(x;))
o f=f+ah,

@ Use f = ZZ—ZI ot h;

o Greedy optimization of a classifier as a linear combination of T classifier for the
exponential loss.

@ Those two algorithms are exactly the same!

385

ReVISIted Ada BOOSt ML Methods: Trees and

Ensemble Methods

@ Sett=0and f =0.

@ Fort=1to T,
o (hy,ar) = argminy, , 27:1 e~ Yi(f(x,)+ah(x,))
o f=1f+ah

o Use f =1 azh

o Greedy iterative scheme with only two parameters: the class H of weak
classifiers and the number of step T.

@ In the literature, one can read that Adaboost does not overfit! This is not true
and T should be chosen with care. ..

386

O Utl | ne ML Methods: Trees and

Ensemble Methods

387

Weak Leal’nerS ML Methods: Trees and

Ensemble Methods

Weak Learner

@ Simple predictor belonging to a set H.
@ Easy to learn.

@ Need to be only slightly better than a constant predictor.

Weak Learner Examples

@ Decision Tree with few splits.
@ Stump decision tree with one split.

o (Generalized) Linear Regression with few variables.

Boosting
@ Sequential Linear Combination of Weak Learner
@ Attempt to minimize a loss.

@ Example of ensemble method.
@ Link with Generalized Additive Modeling. 388

GeneI’IC BOOSting ML Methods: Trees and

Ensemble Methods

o Greedy optim. yielding a linear combination of weak learners.

Generic Boosting

@ Algorithm:
e Sett=0and f =0.
e Fort=1to T,
o (ht,on) = argmin, . > Uyi, f(xi) + ah(x))
o f=1Ff+aih:
o Use f =1 avh,
o AKA as Forward Stagewise Additive Modeling
AdaBoost with /(y, h) = e™¥"
LogitBoost with £(y, h) = log,(1 + e™")
LyBoost with £(y, h) = (y — h)? (Matching pursuit)
L;Boost with £(y, h) = |y — h|
HuberBoost with #(y, h) = |y — h[*1),_pj<c + (2ely — h| — €)1}y_p>e

@ Simple principle but no easy numerical scheme except for AdaBoost and
L>,Boost. ..

389

Gl’adlent BOOStlng ML Methods: Trees and

Ensemble Methods

@ Issue: At each boosting step, one need to solve
n
(h¢, ar) = argmin Z Uyi, F(xi) + ah(x)) = L(y, f + ah)
ho =1
o ldea: Replace the function by a first order approximation
L(y,f +ah) ~ L(y,f) + o(VL(y,f), h)

Gradient Boosting

@ Replace the minimization step by a gradient descent step:

e Choose h; as the best possible descent direction in 7 according to the approximation
o Choose o that minimizes L(y, f + ah;) (line search)

@ Rk: Exact gradient direction often not possible!

@ Need to find efficiently this best possible direction. ..

390

Ensemble Methods

BeSt DlreCtiOI"I ML Methods: Trees and 4 X

@ Gradient direction:

VLi(y,f) with V;L(y,f) dfa (Zﬁy,, Xjr)

Best Direction within H

@ Direct formulation:

= iL af h i L ,f ,h
he < argmin = VLo D00 (_ (VLA D.0))
e i [h(xi)[? 1Al
@ Equivalent (least-squares) formulation: h; = —f;h; with

(B, Hy) € argmin 3" [Vil(y, f) — Bh(x)P (= |VL - 8h|]?)

(B,h)ERXH j—1

@ Choice of the formulation will depend on H. ..

391

Ensemble Methods

Gradient Boosting of Classifiers ML Methods: Trees and K

@ Assumptions:
e his a binary classifier, h(x) = £1 and thus | h||* = n.
o Uy, f(x)) = I(yf(x)) so that V;L(y, f) = yil'(yif (xi))-
@ Best direction h; in H using the first formulation

hy = argmlnzv L(y, f)h(x;)
her

AdaBoost Type Minimization

@ Best direction rewrltmg
t _argman/ y: XI y: X,)

heH i
= argmin (=) (yif (x))(2£" (v, h(x:) — 1)
heH f
e AdaBoost type weighted loss minimization as soon as (—/")(yif(x;) > 0:
he = argmin > _(=1")(vif (x)) €% (v, h(x:))

392

Gradient Boosting of Classifiers ML Methods: Trees and

Ensemble Methods

Gradient Boosting

o (Gradient) AdaBoost: /(y, f) = exp(—yf)
o I(x) = exp(—x) and thus (—/")(yif(x;)) = e™¥fx) >0
e h; is the same as in AdaBoost
e « also. .. (explicit computation)
e LogitBoost: /(y,f) = log,(1 4 ™)
—yif(xi)
e > 0

I(x) = logy(1 4+ e) and thus (=/")(yif(x;)) = D) ey 2
o Less weight on misclassified samples than in AdaBoost. . .
e No explicit formula for cv; (line search)
o Different path than with the (non-computable) classical boosting!
e SoftBoost: /(y,) = max(1 — yf,0)
o /(x) = max(1l —x,0) and (=/")(yif(x;)) = 1y,¢(x)<1 > 0
e Do not use the samples that are sufficiently well classified!

393

Gradient Boosting and Least Squares ML Methods: Trees and

Ensemble Methods

@ Least squares formulation is often preferred when |h| # 1.

Least Squares Gradient Boosting

e Find ht = —/Bth; with

n

(Be, hy) € argmin Y |Vil(y,f) — Bh(x)[?
(B,h)ERXH =il

o Classical least squares if H is a finite dimensional vector space!

@ Not a usual least squares in general but a classical regression problem!

@ Numerical scheme depends on the loss. ..

394

Gradient Boosting and Least Squares ML Methods: Tressand K

Ensemble Methods

@ Gradient [,Boost:
o Uy,f)=ly—f*and ViL(y;, f(x;)) = —2(yi — f(x)):

n

(B, hy) € argmin Z\zy,—z((i) — B/2h(x:))I?

(B;h)ERXH =

o ar = —f/2
e Equivalent to classical Ly-Boosting

o Gradient L;Boost:
o Uy, f)=l|y—f|and V;L(yi, f(x;)) = —sign(y; — f(xi)):

(B:, h,) € argmin Z | — sign(y; — f(x;)) — Bh(x;)|?

(B.h)ERXH T
o Robust to outliers. . .

o Classical choice for H: Linear Model in which each h depends on a small subset of
variables.

395

Gradient Boosting and Least Squares ML Methods: Tressand K

Ensemble Methods

@ Least squares formulation can also be used in classification!
@ Assumption:
o Uy, f(x)) = I(yf(x)) so that V;L(y;, f(x;)) = yil'(yif (x;))

Least Squares Gradient Boosting for Classifiers

@ Least Squares formulation:
n

(Be, hy) € argmin > |yil (vif (x;)) — Bh(x;)[?
(B,h)eERXH j—1

e Equivalent formulation:

(B, hy) € argmin Y [(=1)(yif (%)) — (—=B)yih(:)) >
(B,h)ERXH j—1

@ Intuition: Modify misclassified examples without modifying too much the
well-classified ones. . .

396

BOOStlng Va rlatlonS ML Methods: Trees and

Ensemble Methods

Stochastic Boosting

o ldea: change the learning set at each step.
@ Two possible reasons:

e Optimization over all examples too costly
e Add variability to use an averaged solution

@ Two different samplings:

e Use sub-sampling, if you need to reduce the complexity
e Use re-sampling, if you add variability. . .

@ Stochastic Gradient name mainly used for the first case. ..

Second Order Boosting

@ Replace the first order approximation by a second order one and avoid the line
search. ..

397

XG BOOSt ML Methods: Trees and

Ensemble Methods

o Very efficient boosting algorithm proposed by Chen and Guestrin in 2014.

eXtreme Gradient Boosting

@ Gradient boosting for a (penalized) smooth loss using a second order
approximation and the least squares approximation.

@ Reduced stepsize with a shrinkage of the optimal parameter.

o Feature subsampling.

@ Weak learners:
o Trees: limited depth, penalized size and parameters, fast approximate best split.
e Linear model: elastic-net penalization.

@ Excellent baseline!

@ Lightgbm and CatBoost are also excellent similar choices!

398

O Utl | ne ML Methods: Trees and

Ensemble Methods

@ ML Methods: Trees and Ensemble Methods

@ Ensemble Methods

399

Ensem ble MethOdS ML Methods: Trees and

Ensemble Methods

Ensemble Methods
@ Averaging: combine several models by averaging (bagging, random forests,. . .)

e Boosting: construct a sequence of (weak) classifiers (XGBoost, LightGBM,
CatBoost)

@ Stacking: use the outputs of several models as features (tpot...)

@ Loss of interpretability but gain in performance

@ Beware of overfitting with stacking: the second learning step should be done with
fresh data.

@ No end to end optimization as in deep learning!

4]
9
0
e}
o
.
o
2
3
<]
%)

400

O Utl | ne ML Methods: Trees and

Ensemble Methods

@ ML Methods: Trees and Ensemble Methods

@ References

401

Refe rences ML Methods: Trees and

[o—

Ensemble Methods

T. Hastie, R. Tibshirani, and J. Friedman.
The Elements of Statistical Learning.
Springer Series in Statistics, 2009

M. Mohri, A. Rostamizadeh, and A. Talwalkar.
Foundations of Machine Learning (2nd ed.)
MIT Press, 2018

A. Géron.

Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow (3rd
ed.)

O’Reilly, 2022

Ch. Giraud.
Introduction to High-Dimensional Statistics.
CRC Press, 2014

S. Bubeck.
Convex Optimization: Algorithms and Complexity.
Now Publisher, 2015

402

Refe rences ML Methods: Trees and

Ensemble Methods

T. Hastie, R. Tibshirani, and J. Friedman.
The Elements of Statistical Learning.
Springer Series in Statistics, 2009

H. Zhang and B. Singer.

Recursive Partitioning and Applications.
Springer, 2010

A. Géron.

Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow (2nd
ed.)
== O'Reilly, 2019

403

Licence and Contributors ML Methods: Trees and

Ensemble Methods

Creative Commons Attribution-ShareAlike (CC BY-SA 4.0)

@ You are free to:
@ Share: copy and redistribute the material in any medium or format
@ Adapt: remix, transform, and build upon the material for any purpose, even commercially.

@ Under the following terms:
@ Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in

any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
@ ShareAlike: If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the

original.
@ No additional restrictions: You may not apply legal terms or technological measures that legally restrict others from doing anything

the license permits.

Contributors
@ Main contributor: E. Le Pennec
@ Contributors: S. Boucheron, A. Dieuleveut, A.K. Fermin, S. Gadat, S. Gaiffas,
A. Guilloux, Ch. Keribin, E. Matzner, M. Sangnier, E. Scornet. 404

O Utl | ne Unsupervised Learning:

Dimension Reduction and
Clustering
@ Dimension Reduction

@ Clustering

@ Generative Modeling

@ Applications to Text
@ References

o Unsupervised Learning: Dimension Reduction and
Clustering
@ Unsupervised Learning?
@ A First Glimpse

405

O Utl | ne Unsupervised Learning:

Dimension Reduction and
Clustering

o Unsupervised Learning: Dimension Reduction and
Clustering
@ Unsupervised Learning?

406

M OtlvatiO n Unsupervised Learning:

Dimension Reduction and
Clustering

Up-down pose
BS

?‘U"a;a o E,-!_E

N8
I b B
_'_c !

B

E

w :ﬁ' P e

Lighting direction Left-right pose

What is possible with data without labels?

@ To group them?

@ To visualize them in a 2 dimensional space?

E
S
L
2
£
S
c
5
o
iy
T
g
©
-
19
£
5
a
Qo
c
5
3]
=
=
2
3
c
£
c
=}
i
[
e
5
)
»

407

@ To generate more data?

M a rketl n g an d G rou pS Unsupervised Learning:

Dimension Reduction and
Clustering

iy 1t

‘ ’
™
Sl 1

To group them?

o Data: Base of customer data containing their properties and past buying records
@ Goal: Use the customers similarities to find groups.
o Clustering: propose an explicit grouping of the customers

@ Visualization: propose a representation of the customers so that the groups are
visible. (Bonus)

3
o
X
)
[
©
5
o
(2]

408

Image and Vlsuallzatlon Unsupervised Learning:

Dimension Reduction and

g 3 . Clustering
i gy BW

e gbau ®

BeE 9 gl
G UEE EoE

g B ¥dEaq

To visualize them?

o Data: Images of a single object
o Goal: Visualize the similarities between images.

o Visualization: propose a representation of the images so that similar images are
close.

®
o
5}
©
8
9]
c
[
&
@
e
5
[}
n

409

o Clustering: use this representation to cluster the images. (Bonus)

ImageS and Generatlon Unsupervised Learning:

Dimension Reduction and
Clustering

Timeline of images gencrated by artificial intelligence R

2014 2015 2016

o

2020 202

To generate more data?

o Data: Images.
@ Goal: Generate images similar to the ones in the dataset.

e Generative Modeling: propose (and train) a generator.

£
2
S
[
2
£
<]
<
o
o
w
©
g
o
g
=
<]
%)

410

Machine Learnlng Unsupervised Learning:

Dimension Reduction and
Clustering

Input

L’—ﬂ
1

Training Data
7LIb4 19487 Learning
D6901597%% o Algorithm
1605 »Oﬂiol

\TLI0Y4 14869

Urgage9dY
1547547401
;owoﬂlyl
72712 (V444
35\A4y

7L
Db
77L/o
30690
lg6bs
3134
124~

A definition by Tom Mitchell

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E.

2
<]
<
=
>
o
g
=
<]
%)

411

SUperVised Learnlng Unsupervised Learning:

Dimension Reduction and
Clustering

Experience, Task and Performance measure
e Training data : D = {(X;, Y1),...,(X,, Yan)} (i.id. ~P)
@ Predictor: f : X —) measurable
@ Cost/Loss function: ¢(f(X), Y) measure how well f(X) predicts Y
@ Risk:
R(F) = E[L(Y, F(X))] = Ex[Eyix[((Y, F(X))]]

e Often ((f(X),Y) = |f(X)— Y|? or £(f(X),Y) = yr(x)

@ Learn a rule to construct a predictor f € F from the training data D,, s.t. the

~

risk R(f) is small on average or with high probability with respect to D,,.

412

UI"ISU perV|Sed Leal’nlng Unsupervised Learning:

Dimension Reduction and
Clustering

Experience, Task and Performance measure
e Training data: D= {X,,...,X,} (iid. ~DP)
e Task: 777

@ Performance measure: 777

@ No obvious task definition!

Tasks for this lecture

@ Dimension reduction: construct a map of the data in a low dimensional space
without distorting it too much.

o Clustering (or unsupervised classification): construct a grouping of the data
in homogeneous classes.

413

DlmenSIOn Red UCtIOﬂ Unsupervised Learning:

Dimension Reduction and
Clustering

e Training data: D= {X,,...,X,} € X" (iid. ~P)
@ Space X of possibly high dimension.

Dimension Reduction Map

@ Construct a map ® from the space X into a space X’ of smaller dimension:
o X =X
X — o(X)

@ Map can be defined only on the dataset.

Motivations
@ Visualization of the data

@ Dimension reduction (or embedding) before further processing

414

DlmenSIOn Red UCtIOﬂ Unsupervised Learning:

Dimension Reduction and
Clustering

@ Need to control the distortion between D and (D) = {®(X;),...,P(X,)}

Distortion(s)

@ Reconstruction error:

o Construct ® from X’ to X B

o Control the error between X and its reconstruction ®($(X))
@ Relationship preservation:

o Compute a relation X; and X; and a relation between ®(X;) and ®(X})
o Control the difference between those two relations.

@ Lead to different constructions. ...

415

Cl USte rl ng Unsupervised Learning:

Dimension Reduction and
Clustering

e Training data: D= {X,,...,X,} € X" (iid. ~P)
@ Latent groups?

Clustering

e Construct a map f from D to {1,..., K} where K is a number of classes to be
fixed:
fo Xi— ki

@ Similar to classification except:
e no ground truth (no given labels)
e label only elements of the dataset!

Motivations

@ Interpretation of the groups

@ Use of the groups in further processing

416

Cl USte rl ng Unsupervised Learning:

Dimension Reduction and
Clustering

@ Need to define the quality of the cluster.

@ No obvious measure!

Clustering quality
@ Inner homogeneity: samples in the same group should be similar.

@ Outer inhomogeneity: samples in two different groups should be different.

Several possible definitions of similar and different.

Often based on the distance between the samples.

Example based on the Euclidean distance:

e Inner homogeneity = intra-class variance,
e Outer inhomogeneity = inter-class variance.

@ Beware: choice of the number of clusters K often complex!

417

Genel’atlve MOdel | ng Unsupervised Learning:

Dimension Reduction and
e Training data: D = {(Xy,Y;),...,(X,,Y,))} € (X x V)" (iLid=EP)
@ Same kind of data than for supervised learning if) # ().

Generative Modeling

@ Construct a map G from the product of) and a randomness source 2 to X
GYxQ— X

(Y,w)— X

@ Unconditional model if Y = 0. ..

@ Generate plausible novel conditional samples based on a given dataset.

Sample Quality
@ Related to the proximity between the law of G(Y,w) and the law of X|Y.

@ Most classical choice is the Kullback-Leibler divergence.

418

Genel’atlve MOdel | ng Unsupervised Learning:

Dimension Reduction and

Clustering
Ingredients

@ Generator Fy(Y,w) and cond. density prob. pg(X|Y') (Explicit vs implicit link)

@ Simple / Complex / Approximate estimation. ..

Some Possible Choices

Probabilistic model Generator Estimation
Base Simple (parametric) Explicit Simple (ML)
Flow Image of simple model Explicit Simple (ML)
Factorization | Factorization of simple model Explicit Simple (ML)
VAE Simple model with latent var. Explicit Approximate (ML)
EBM Arbitrary Implicit (MCMC) | Complex (ML /score/discrim.)
Diffusion Continuous noise Implicit (MCMCQ) Complex (score)
Discrete Noise with latent var. Explicit Approximate (ML)
GAN Implicit Explicit Complex (Discrimination)

@ SOTA: Diffusion based approach!

ML: Maximum Likelihood/VAE: Variational AutoEncoder/EBM: Energy Based Model/MCMC: Monte Carlo Markov Chain/GAN: Generative Aversarial 419
Network

BOHUS TaSk Representathn Learnlng Unsupervised Learning:

Dimension Reduction and
Clustering

@ General observation: most data do not have a label !

e Example: The number of images on which someone has described the content of
the image is a tiny fraction of the images online.

@ Labeling is very expensive and time consuming

@ A lot of information can be extracted from the structure of the data, before seeing
any label.

How can we leverage the large quantity of un-labeled data?

Learn relevant features (= representations) in an unsupervised fashion

Use those features to solve a supervised task with a fraction of labeled data.

Semi-supervised framework

% Very useful in practice, for images, time series, text.

420

Sem i—SU perVised Fra meWOI'k Unsupervised Learning:

Dimension Reduction and
Clustering

X1 X2 Label

Partially _| [Supervised 08
Labelled Learning Model

M semi-Supervised < i
Learning Model 05 !

M Unsupervised 04 H
Learning Model

o
| . Percentage of labeled data

Mostly
Unlabeled |

Semu-Supervised Framework

@ With representation learned in an unsupervised fashion + a simple linear model,
one can achieve the same performance with 10% of data labeled than with a fully
annotated dataset.

©
-
3]
=
o
@
o
Y]
c
e
w
>
.
g
>
<
°
c
<
o
2
3
(<]
%)

421

@ Complementary regularization based approaches also exist.

Unsupervised Learning is a Versatile Approach! Unsupervised Learning:

Dimension Reduction and
Clustering

@ A subjective measure of performance

@ Subjective choices for the algorithmic constraints (e.g., the type of transformation
of the data we allow for low-dimensional representation, type of groups in
clustering)

@ = Very difficult or impossible to tell which is the best method.

@ Yet:
e Extremely important in practice:

@ 90-99% of the data is un-labeled!
o the tasks themselves are fundamental

o Huge success in various fields (NLP, images. . .)

422

Unsupervised Learning is a Versatile Approach! Unsupervised Learning:

Dimension Reduction and
Clustering

for the three main tasks

@ Discussing possible choices of measures of performance and algorithmic
constraints

@ Understand the correspondences between those choices and a variety of classical
algorithms

@ For the simplest algorithms (PCA, k-means), get a precise mathematical
understanding of the learning process.

423

O Utl | ne Unsupervised Learning:

Dimension Reduction and
Clustering

o Unsupervised Learning: Dimension Reduction and
Clustering

@ A First Glimpse

424

O Utl | ne Unsupervised Learning:

Dimension Reduction and
Clustering

425

i
Wh at S a grOU p? Unsupervised Learning:
Dimension Reduction and

4 X y X
[q o Cluster A i‘ 5\
o,

Final i
Boundary i

@ No simple or unanimous definition!
@ Require a notion of similarity/difference. . .

Three main approaches

@ A group is a set of samples similar to a prototype.
@ A group is a set of samples that can be linked by contiguity.
@ A group can be obtained by fusing some smaller groups. . .

©
x
a
.
o
2
3
<]
%)

426

Prototype ApproaCh Unsupervised Learning:

Dimension Reduction and

Clustering
Unlabelled Data Labelled Clusters
° LY e o
o © e o
o ® °
° e e K-means
A~

®
) @
[I
® X = Centroid

A group is a set of samples similar to a prototype.

@ Most classical instance: k-means algorithm.

@ Principle: alternate prototype choice for the current groups and group update
based on those prototypes.

0
o
i
£
[
<
<
o
g
=
<]
%)

427

Number of groups fixed at the beginning
No need to compare the samples between them!

COntigUity ApprOaCh Unsupervised Learning:

Dimension Reduction and
Clustering

Contiguity Approach

A group is the set of samples that can be linked by contiguity.

Most classical instance: DBScan

Principle: group samples by contiguity if possible (proximity and density)

Some samples may remain isolated.
Number of groups controlled by the scale parameter.

0
o
53
o
2
o
g
=
<]
%)

DBSCAN: Density-Based Spatial Clustering of Applications with Noise 428

Agglomerative Approach

Unsupervised Learning:
Dimension Reduction and
Clustering

Agglomerative Approach

@ A group can be obtained by fusing some smaller groups. ..

@ Hierachical clustering principle: sequential merging of groups according to a best
merge criterion

@ Numerous variations on the merging criterion. ..
@ Number of groups chosen afterward.

°
o

Q
o
o
g
=
<]

%)

429

Choice of the method and of the number of groups Unsupervised Learning:

Dimension Reduction and
Clustering

Meanshift viard

©0eoe

8.7 %20

@ Criterion not necessarily explicit!

@ No cross validation possible

£
&
3
-
=
=
5
»
[
e
5
)
»

430

@ Choice of the number of groups: a priori, heuristic, based on the final usage. . .

O Utl | ne Unsupervised Learning:

Dimension Reduction and
Clustering

431

D | menSIOn a | |ty C urse Unsupervised Learning:

Dimension Reduction and

Clust, ring
L
. a&
AL “
0;":‘;'- :»g!':‘.’"i'),),
o 0.2 1 0.45 1 0

o DISCLAIMER: Even if they are used everywhere beware of the usual
distances in high dimension!

Dimensionality Curse

@ Previous approaches based on distances.
@ Surprising behavior in high dimension: everything is ((often) as) far away.

>
£
£
S
[a]
c
.2
o
>
v
e
5
o
(2]

432

@ Beware of categories. ..

DlmenSIOnallty CUI’SG Unsupervised Learning:

Dimension Reduction and
Clustering

o DISCLAIMER: Even if they are used everywhere beware of the usual
distances in high dimension!

High Dimensional Geometry Curse
@ Folks theorem: In high dimension, everyone is alone.

@ Theorem: If X;,..., X, in the hypercube of dimension d such that their
coordinates are i.i.d then

|
4-1/p <maX 1X; — X;llp — min || X; _gjnp) — 0+ Op (og n)

d

min [1X: = X1, og n
=1 .

max X, XL, TP\

@ When d is large, all the points are almost equidistant. ..
@ Nearest neighbors are meaningless!

433

O Utl | ne Unsupervised Learning:

Dimension Reduction and
Clustering

434

Vlsuallzatlon and DlmenSiOI"I RedUCtIOn Unsupervised Learning:

Dimension Reduction and
Clustering

Visualization and Dimension Reduction

@ How to view a dataset in high dimension !
@ High dimension: dimension larger than 2!

@ Projection onto a 2D space.

5
o
o]
m
w
o
g
=
<]
%)

N
w
&

Visua | izatlon a nd D | menSion Red UCtIOFI Unsupervised Learning:
Dimension Reduction and
Clustering

Visualization and Dimension Reduction
@ How to view a dataset in high dimension !

@ High dimension: dimension larger than 2!

5
o
©
m
w
o
o
5
o
(2]

@ Projection onto a 2D space.

N
w
&

Vlsuallzatlon and DlmenSiOI"I RedUCtlon Unsupervised Learning:

Dimension Reduction and
Clustering

Visualization and Dimension Reduction
@ How to view a dataset in high dimension !

@ High dimension: dimension larger than 2!

5
o
[}
o
w
o
2
3
o
]

@ Projection onto a 2D space.

N
w
&

Visua | izatlon a nd D | menSion Red UCtIOFI Unsupervised Learning:
Dimension Reduction and
Clustering

Visualization and Dimension Reduction
@ How to view a dataset in high dimension !

@ High dimension: dimension larger than 2!

5
o
©
m
w
o
o
5
o
(2]

@ Projection onto a 2D space.

N
w
&

Pl’lnCIPal Component AnaIySIS Unsupervised Learning:

Dimension Reduction and
Clustering

Projection

,,,,,,,,,,,,

e Simple formula: X = P(X — m)
How to chose P?
@ Maximising the dispersion of the points?

o Allowing to well reconstruct X from X?
o Preserving the relationship between the X through those between the X?

o
20
=
.
o
2
3
(<]
%)

436

Pl’lnCIPal Component AnaIySIS Unsupervised Learning:

Dimension Reduction and
Clustering

Projection

,,,,,,,,,,,,

e Simple formula: X = P(X — m)
How to chose P?
@ Maximising the dispersion of the points?

o Allowing to well reconstruct X from X?
o Preserving the relationship between the X through those between the X?

o
20
=
.
o
2
3
(<]
%)

436

@ The 3 approaches yield the same solution!

Reconstruction Approaches Unsupervised Learning:

Dimension Reduction and
Clustering

Reconstruction Approaches
@ Learn a formula to encode and one formula to decode.

@ Auto-encoder structure

@ Yields a formula for new points.

437

RCCOnStrUCtiOH ApproaCheS Unsupervised Learning:

Dimension Reduction and
Clustering

Reconstruction Approaches

@ Learn a formula to encode and one formula to decode.

@ Auto-encoder structure

@ Yields a formula for new points.

437

Reconstruction Approaches Unsupervised Learning:

Dimension Reduction and
Clustering

Reconstruction Approaches

@ Learn a formula to encode and one formula to decode.

@ Auto-encoder structure

@ Yields a formula for new points.

437

Relationship Preservation Approaches Unsupervised Learning:

Dimension Reduction and
Clustering

Relationship Preservation Approaches

@ Based on the definition of the relationship notion (in both worlds).

@ Huge flexibility

@ Not always yields a formula for new points.

438

Choices of Methods and Dimension Unsupervised Learning:

Dimension Reduction and

. . Clusterin,
% d’inertie &
=)
53
o
o
o
N
= H\
- DDDD:::
1234 -

No Better Choice?
@ Different criterion for different methods: impossible to use cross-validation.
@ The larger the dimension the easier is to be faithful!
@ In visualization, dimension 2 is the only choice.
°

Heuristic criterion for the dimension choice: elbow criterion (no more gain),
stability. . .

3
o
)
A
[}
N
N
©
=
i
@
e
5
<}
n

@ Dimension Reduction is rarely used standalone but rather as a step in a
predictive/prescriptive method.
@ The dimension becomes an hyper-parameter of this method. 439

Re presentation Lea rn | ng Unsupervised Learning:

Dimension Reduction and

Clustering
Word2Vec
A
3
A o
o K
I
Ml Femle Vet Tense
Glove
iince jwoman 1 S
jon| o T,
FFF R I P
Man - 95623 8o
P
92804 — — — — —Anaheim
m king

company - ceo city - 7ip code omparative - superlative

Representation Learning

@ How to transform arbitrary objects into numerical vectors?

@ Objects: Categorical variables, Words, Images/Sounds. . .

@ The two previous dimension reduction approaches can be used (given possibly a
first simple high dimensional representation)

©
=
]
©
]
<
X
4
o
g
=
<]
%)

440

O Utl | ne Unsupervised Learning:

Dimension Reduction and
Clustering

441

Generatlve MOdel | ng Unsupervised Learning:

Dimension Reduction and

Timeline of i
These peopl

2014

sampiing

Training data
2017

el Vil
|
N One pixel of an observation,
E with RGB valle (136, 141, 78)
[——

Generative Modeling

£
2
5
i
2
£
S
c
S
53
i
=)
g
3
3
I3
<}
i
o

@ Generate new samples similar to the ones in an original dataset.

@ Generation may be conditioned by a input.

Sources::

@ Key for image generation. .. and chatbot! 442

DenSIty EStI m atiOI"I a nd S | mu | atlon Unsupervised Learning:
Dimension Reduction and

Clictaving
)

Density Estimation Sample Generation
- 0
2 TS
= | I -
i u g n
F |
samples . - Input samples Generated samples
Training data ~ Pyqeq () Generated ~ Ppoger (X)

How can we learn Pppger(x) similar to Pygiq (x)?

e Heuristic: If we can estimate the (conditional) law P of the data and can
simulate it, we can obtain new samples similar to the input ones.

Estimation and Simulation
@ How to estimate the density?

@ How to simulate the estimate density?

o
2
©
[
o
o
o
[
g
=
<]
%)

443

@ Other possibilities?

Slmple EStImatlon and Slmple SImUIatlon Unsupervised Learning:

Dimension Reduction and

Radial
K=2 K=10
5 r -
: L
L™ 4
L. 4
£ .

Parametric Model, Image and Factorization

o Use

e a simple parametric model,. . .
e or the image of a parametric model (flow),. ..
e or a factorization of a parametric model (recurrent model)

as they are simple to estimate and to simulate.

©
o
3]
o
s}
c
9]
N
13)
[\4
]
e
5
o
(2]

444

@ Estimation by Maximum Likelihood principle.
@ Recurrent models are used in Large Language Models!

Complex EStlmatlon and Slmple SImUIatlon Unsupervised Learning:

Dimension Reduction and
Clustering

Sample Generation

/a =gl
/ \
[2o '»(Zo) ‘]

9(2%) T~~_
Generation Space Representation Space

&

(a) bl Representation Inference

Latent Variable
@ Introduce a latent variable Z from which X is easy to sample.
e Estimation based on approximate Maximum Likelihood (VAE/ELBO)

@ The latent variable Z often lives in a smaller dimensional space.

g
)
I}
w
)
o
o
5
[}
n

@ It can be generated by a simple method (or a more complex one.. .).

~
N
o

Complex EStlmatlon and CompleX SImU|at|0n Unsupervised Learning:

Dimension Reduction and

Clustering
o)]’(371—1\1%) P(ﬂfr‘THl) p(-vl'—l‘l‘j')
N~—7" N—T 7 N~—7"
q(x1|wo) q(@elre) (@l q(er|er—1)

Monte Carlo Markov Chain

@ Rely on much more complex probability model. ..
@ which can only be simulated numerically.

@ Often combined with noise injection to stabilizes the numerical scheme
(Diffusion).

o
3
I
£
=
©
o
o
g
=
<]
%)

446

@ Much more expensive to simulate than with Latent Variable approaches.

Complex (non)Estimation and Simple Simulation

Unsupervised Learning:

Dimension Reduction and
Clustering

Real examples

Judges which
Discriminator images are
real/fake

Fake images/noise

=

Generative Adversarial Network

Fake generated
example

@ Bypass the density estimation problem, by transforming the problem into a
competition between the generator and a discriminator.

@ The better the generator, the harder it is for the generator to distinguish true
samples from synthetic ones.

@ No explicit density!

=
o
o
g
=
<]
%)

447

@ Fast simulator but unstable training. ..

O Utl | ne Unsupervised Learning:

Dimension Reduction and
Clustering

@ Dimension Reduction

o Unsupervised Learning: Dimension Reduction and
Clustering

448

D | menSIOn Red UCtIOﬂ Unsupervised Learning:

Dimension Reduction and
Clustering

e Training data: D= {X,,...,X,} € X" (iid. ~P)
@ Space X of possibly high dimension.

Dimension Reduction Map

o Construct a map ® from the space X into a space X’ of smaller dimension:
o: X X
X — o(X)

Criterion
@ Reconstruction error

@ Relationship preservation

449

O Utl | ne Unsupervised Learning:

Dimension Reduction and
Clustering

450

H OW tO S | m pl |fy? Unsupervised Learning:

Dimension Reduction and

A Projection Based Approach
@ Observations: Xy,...,X, € Rd

e Simplified version: ®(X;),...,®(X,) € RY with ® an affine projection preserving
the mean ®(X) = P(X —m) +mwith PT =P =P2and m= 1%, X,.

How to choose P?

@ Inertia criterion:
maxz (X X))

@ Reconstruction criterion:
m|n Z | X; — ®(X \27

o Relationship criterion:
min ZI) (X — m) = (D(X;) = m) " (&(X)) — m)[*?

@ Rk: Best solution is P = /! Need to reduce the rank of the projection to
d <d... 451

Inertla Cl’ltel’lon Unsupervised Learning:

Dimension Reduction and

Clusterin

@ Heuristic: a good representation is such that the projected points are far apart.

Two views on inertia

@ Inertia:
1 » 1 n 5
= 202 Z 1 X; —KJH = " Z | X; — m]|
ij i=1

@ 2 times the mean squared distance to the mean = Mean squared distance
between individual

Inertia criterion (Principal Component Analysis)

1

@ Criterion: maxzj: p IPX; — ngﬂz = max — z/: |PX; — m]|?

@ Solution: Choose P as a projection matrix on the space spanned by the d’ first
eigenvectors of & = 1 3°(X; — m)(X; — m)"

452

FII’St Component Of the PCA Unsupervised Learning:

Dimension Reduction and
Clustering

e X=m+a' (X—m)awith |ja| =1
1 n
Inertia: =" a'(X; — m)(X; —m)'
@ Inertia ni:la(;)(X;) a

Principal Component Analysis: optimization of the projection

i=1
@ Explicit optimal choice given by the eigenvector of the largest eigenvalue of X.

-~ 1. 5

@ Maximization of [= = E a'(X;—m)(X;—m) a=a'Tawith £
o 5

1< 8

Y == E (X; — m)(X; — m)" the empirical covariance matrix. =

n w

453

PCA Unsupervised Learning:

Dimension Reduction and

.. . Clustering
% d’inertie
(=3
=
(=1
o
(=1
N
= ——
- DDDDD::
1234 -

Principal Component Analysis : sequential optimization of the projection

@ Explicit optimal solution obtain by the projection on the eigenvectors of the
largest eigenvalues of ¥.

@ Projected inertia given by the sum of those eigenvalues.

@ Often fast decay of the eigenvalues: some dimensions are much more important
than others.

@ Not exactly the curse of dimensionality setting. . .

@ Yet a lot of small dimension can drive the distance!

3
o
)
A
[}
N
N
©
=
i
@
e
5
<}
n

454

RGCO nSt ru Ctl on C rlterlon Unsupervised Learning:
Dimension Reduction and
Clustering

@ Heuristic: a good representation is such that the projected points are close to the
original ones.

Reconstruction Criterion

o 1 2
e Criterion: mFl’nZi:;HK,-—(P(K m) + m)|]> = mlanH (I-P —m)||

@ Solution: Choose P as a projection matrix on the space spanned by the d’ first
eigenvectors of ¥ = 1 37,(X; — m)(X; — m)"

@ Same solution with a different heuristic!

@ Proof (Pythagora):
X = mi? =37 (IPCX; = m)[I2 + 111 = PY(X; = m)|?)

455

PCA, RGCOHStI’UCtIOH and DIStanCGS Unsupervised Learning:

Dimension Reduction and
Clustering

L

)

Close projection doesn’'t mean close individuals!

@ Same projections but different situations.

@ Quality of the reconstruction measured by the angle with the projection space!

3
o
)
A
[}
N
N
©
=
i
@
e
5
[}
n

456

RelatlonShlp Crlterlon Unsupervised Learning:

Dimension Reduction and
Clustering

@ Heuristic: a good representation is such that the projected points scalar products
are similar to the original ones.

Relationship Criterion (Multi Dimensional Scaling)

L T T 2
o Criterion: min Z |(X; —m) (X; — m) — (P(X;) — m) (P(X;) — m)|
ij
@ Solution: Choose P as a projection matrix on the space spanned by the d’ first
eigenvectors of ¥ = 1 Y°,(X; — m)(X; — m)"

@ Same solution with a different heuristic!

@ Much more involved justification!

457

I_lnk Wlth SVD Unsupervised Learning:

Dimension Reduction and
Clustering

@ PCA model: X — m=~ P(X — m)
e Prop: P = VVT with V an orthormal family in dimension d of size d’.
@ PCA model with V: X —m ~ VW T (X — m) where X = VT (X — m) e RY

. ST
@ Row vector rewriting: KT —m' ~ X vl

Matrix Rewriting and Low Rank Factorization

e Matrix rewriting

X, —m'| | X,

vT

2

X, T N mT X';T (d"xd)

(nxd) (nxd")
@ Low rank matrix factorization! (Truncated SVD solution. ..)

458

SVD Unsupervised Learning:

Dimension Reduction and
Clustering

SVD Decomposition

@ Any matrix n X d matrix A can be decomposed as

A = U D ||WT
(dxd)
(nxd) (nxn) (nxd)
with U and W two orthonormal matrices and D a diagonal matrix with decreasing

values.

459

SVD Unsupervised Learning:

Dimension Reduction and

Low Rank Approximation N

@ The best low rank approximation or rank r is obtained by restriction of the

matrices to the first r dimensions:

A

12

Ue| DA W T
(rxr) (rxd)

(nxd) (nxr)
for both the operator norm and the Frobenius norm!

@ PCA: Low rank approximation with Frobenius norm, d’ = r and
X, —mT XIT

oA, | e U, View

460

SVD Unsupervised Learning:

Dimension Reduction and
Clustering

SVD Decompositions

@ Recentered data:

R= : = Ubw'’

@ Covariance matrix:
Yy =R'R=WD"DW
with DT D diagonal.
e Gram matrix (matrix of scalar products):
G=RR" =UDD"U
with DD diagonal.

@ Those are the same U, W and D, hence the link between all the approaches.

461

O Utl | ne Unsupervised Learning:

Dimension Reduction and
Clustering

462

ReCOHStrUCtIOH EI’FOI’ ApproaCh Unsupervised Learning:

Dimension Reduction and
Clustering

@ Construct a map ® from the space X into a space X’ of smaller dimension:
o X=X
X — o(X)

e Construct ® from X’ to X

e Control the error between X and its reconstruction ®($(X))

@ Canonical example for X € RY: find ¢ and ®in a parametric family that minimize

ii 1X; — ®(P(X,))]]2

463

P rl nCi pa | COI’T'I ponent An a IySIS Unsupervised Learning:
Dimension Reduction and
Clustering

X € R? and X' =R
Affine model X ~ m+ 3%, X' v with (V) an orthonormal family.

Equivalent to:

O(X)=V'(X—m) and ®X)=m+ VX
Reconstruction error criterion:

1 n
n Z 1X; = (m+ W (X; — m)|]?
i=1

Explicit solution: m is the empirical mean and V is any orthonormal basis of the
space spanned by the d’ first eigenvectors (the one with largest eigenvalues) of
the empirical covariance matrix % n (X —m)(X;—m)".

464

Pl’lnCIPal Component AnaIySIS Unsupervised Learning:

Dimension Reduction and
Clustering

PCA Algorithm

@ Compute the empirical mean m = %E,’-’:l X;

o Compute the empirical covariance matrix + 37, (X; — m)(X; — m)"
o Compute the d’ first eigenvectors of this matrix: V1), ... V()
o Set ®(X)= V(X —m)

o Complexity: O(n(d + d?) + d'd?)
@ Interpretation:
o ®(X) = V(X —m): coordinates in the restricted space.
o V(): influence of each original coordinates in the ith new one.
@ Scaling: This method is not invariant to a scaling of the variables! It is custom to
normalize the variables (at least within groups) before applying PCA.

465

Decathlon

100m

GEaEr
e A

104081216 7.07.581QBBHEHS10202.1 435052 140456065 40444852 4550 505560657 QGBSO

%
Unsupervised Learning: £,
Dimension Reduction and o

Clustering

466

Unsupervised Learning: X

Dimension Reduction and

Clictavine

Swiss Roll

";‘ Tm s R

2
=
x

467

Principal Component Analysis

oo

Korkizoglou

) rasvomno g @RV it
sevie
e sy
ek L
[Gt

X
N * 20 sy
. i % ®
Uidal 1
o oo arpor
PR — °
(J
oo @ STS O
.
. Wamers
o

Decathlon

oo

Korkizoglou

ooy @ WRKOY St
HERNU 5 Yy Maces
Torek Land

e g @

oo ® o
w %
vt ,

Hern
a_ ¢
BOURGUIGNON Karvan: 4

o
Lorenzo @ BATRAS O

NooL Warners.

Decathlon
Renormalized

Sebrie
/

\
Clay

\!

Karpou

Unsupervised Learning: £,
Dimension Reduction and
Clustering

Swiss Roll

468

M u |t| ple FaCtOI’ AnalySIS Unsupervised Learning:
Dimension Reduction and

@ PCA assumes X = RY! Clustering

@ How to deal with categorical values?

o MFA = PCA with clever coding strategy for categorical values.

Categorical value code for a single variable

@ Classical redundant dummy coding:
X e {]_,,V}'—} P(K): (1521,...]-X \/)—r

e Compute the mean (i.e. the empirical proportions): P = 1 i1 P(X))

@ Renormalize P by 1/\/_71
Ix=1 1x—v
P(X)= (1x=1,...1x=v) — =
- Jov—op ﬁ

e 2 type distance!

469

M u |tip|e FaCtor AnaIySIS Unsupervised Learning:

Dimension Reduction and
Clustering

o PCA becomes the minimization of

- ZIIP’ (m+ VW (P(X;) —m))|?

‘lx._v —(m' + ¢, VOT(P(X;) — m)vv)
(V o 1)ﬁv

‘ 2

*ZZ

i=1v=1
@ Interpretation:
oem =P
o ®(X) = VT(P"(X)— m): coordinates in the restricted space.
o V() can be interpreted s as a probability profile.

e Complexity: O(n(V + V?) + d'V?)
@ Link with Correspondence Analysis (CA)

470

M u |t| ple FaCtOI’ AnaIySIS Unsupervised Learning:

Dimension Reduction and
Clustering

MFA Algorithm

@ Redundant dummy coding of each categorical variable.

@ Renormalization of each block of dummy variable.

@ Classical PCA algorithm on the resulting variables

Interpretation as a reconstruction error with a rescaled/x? metric.

Interpretation:
o ®(X) = V(P (X)— m): coordinates in the restricted space.
o V(): influence of each modality/variable in the ith new coordinates.

Scaling: This method is not invariant to a scaling of the continuous variables! It
is custom to normalize the variables (at least within groups) before applying PCA.

471

Multiple Factor Analysis

Dim 2 (12.35%)

S

Unsupervised Learning:
Dimension Reduction and
Clustering

Individual factor map

b

I |

| |

v

[

—

N

N

'Fish_n —= desc
poe

' i“ —=— desc2
Vo —=— symptom
[

b = eat
b

Lo

w

‘¥
Icecream,_n
/ -
o I
25 0.0 25

Dim 1 (32.75%)

472

NOn Llnear PCA Unsupervised Learning:

Dimension Reduction and
Clustering

PCA Model

o PCA: Linear model assumption

7~m—|—ZX’ VD =m+ vX’

@ with

o V() orthonormal
o X") without constraints.

@ Two directions of extension:

o Other constraints on V (or the coordinates in the restricted space): ICA, NMF,
Dictionary approach
e PCA on a non-linear image of X: kernel-PCA

@ Much more complex algorithm!

473

Non Llnear PCA Unsupervised Learning:

Dimension Reduction and

Clustering
ICA (Independent Component Analysis)

@ Linear model assumption

g~m+ZX’(’ Vv =m+ vX’

@ with =1

o V() without constraints.
o X"") independent
NMF (Non Negative Matrix Factorization)

@ (Linear) Model assumption

dl
X~ S xDy — yx!
o with e K X

o V) non-negative
o X") non-negative.

474

Non Llnear PCA Unsupervised Learning:

Dimension Reduction and

@ (Linear) Model assumption

@ with

dl
X=m+ Y X0V =myvx
1=1

o V() without constraints
o X' sparse (with a lot of 0)

kernel PCA

@ Linear model assumption

@ with

d/
V(X —m)~Y xOvh = vx
=1

o V() orthonormal
o X without constraints.

475

Non Linear PCA

Casarsa BOURGUIGNON

>

Decathlon

SEBRLE
Baras- Sopro
smitClay

oy

o
LAY

Swiss Roll

ICA NMF

3 _—
. mm\ o SEsLE St saras s
Mac LAY
< by Tuig

Unsupervised Learning:
Dimension Reduction and
Clustering

F—
_p
wiers— & o

Speer, i

i o ® —
Bomard NoolSchoonbock & ‘-_,‘h

PogoreloMcMULLENSERNARD ‘BARRAS

Karpoy Zsvoozky Terek

’ c../\ Fotzoioe. "}mm'\mnrmu\: A

Sebde YURKSY. 'BOURGUIGNON

Casarsa

Kernelx PCA

476

AUtO EnCOder Unsupervised Learning:

Dimension Reduction and
Clustering

Deep Auto Encoder

o Construct a map ® with a NN from the space X into a space X’ of smaller
dimension:

o XX
X — d(X)
Construct ® with a NN from X" to X
Control the error between X and its reconstruction ®(®(X)):

%Z 1X; — (P(X,))]?
i=1

Optimization by gradient descent.

NN can be replaced by another parametric function. ..

477

Deep Auto Encoder

190 o
2
Lorenzo
BOURGUIGNON Karlivans ’ >
Uidal ° ae Warners
o Jue
>0 MARTINEAU g Barras® Hernu
LN
HERNU Terek’ M&AU%EN Bemard
B Smith
Korkizoglou clayy
Parkhomenko Zsivoozky &M
? YURKOV lacey
Casarsa \
2
p 5 5 -
x

Shallow Auto Encoder
(PCA)

Karpov
/

Sebrle

Unsupervised Learning:
Dimension Reduction and

Clustering
3
2
Lorenzo,
BOURGUIGNON Karlivans ’ o
Uldal ° ae Warners
° Tui @
>0 MARTINEAU ~g Barras® Hernu
HERNU P ®®uuen S soma
Terek
@ Karpov
. Smith {
Korkizoglou clayy
Parkhomenko Zsivoozky KM
? YURKOV lacey
Casarsa \suore
3
% 2 : > :
X

Deep Auto Encoder

478

O Utl | ne Unsupervised Learning:

Dimension Reduction and
Clustering

479

PaII’WISG Relatlon Unsupervised Learning:

Dimension Reduction and
Clustering

@ Different point of view!
@ Focus on pairwise relation R(X;, X;).

Distance Preservation

@ Construct a map ® from the space X into a space X’ of smaller dimension:
d: X=X
X—=o(X)=X
@ such that
R(Khéj) ~ R/(X%Kj)
@ Most classical version (MDS):
e Scalar product relation: R(X;, X;) = (X; — m)T(Kj —m)
o Linear mapping X' = &(X) = V(X — m).
e Euclidean scalar product matching:
1 n n T 2
S| = m g - m) - (X)X
i=1 j=1
o ® often defined only on D. .. 480

M u |t| DlmenSIOnal Scaling Unsupervised Learning:

Dimension Reduction and
Clustering

@ Match the scalar products:
I v T T
S0 |(Xi = m) (X m) - X/ X
i=1j=1
o Linear method: X' = UT(X — m) with U orthonormal

2

@ Beware: X can be unknown, only the scalar products are required!

@ Resulting criterion: minimization in U'(X; — m) of
1 n n 2
S| = m) (X = m) = (X = m) T OUT(X; - m)|

without using explicitly X in the algorithm. ..
@ Explicit solution obtained through the eigendecomposition of the know Gram

matrix (X; — m)T(Kj — m) by keeping only the d’ largest eigenvalues.

481

M u |tiD|menS|Ona| Scaling Unsupervised Learning:

Dimension Reduction and
Clustering

@ In this case, MDS yields the same result as the PCA (but with different inputs,
distance between observation vs correlations)!
@ Explanation: Same SVD problem up to a transposition:

e MDS . .
o .
X(n) K(n) ~ Xy UU Xy
o PCA
XX ~ U XyXm U

e Complexity: PCA O((n+ d’)d?) vs MDS O((d + d’)n?). ..

482

MultiDimensional Scaling

4 ‘Caiavu
e b
Terek [& . \
Y WE il
Decathlon ™ w® L i e® U 2
o o g Karpov
BOURGUIGNON Karlivant .’
Lorenzo @ BARRAS %
.
—s
}

Swiss Roll

Unsupervised Learning:
Dimension Reduction and

Clictavine

P

Korkizoglou
YURKOV.

Srith 9 g-Parkhomenko
Sebrl
b ey 2 [
hd Torek
» g @ RTNER

/
oy g @59 o

&
o] T Y A
o p P sounchoon
S e
Wk -
‘
(] q
ol
5‘.‘
@ of
L 4 os

483

Genera | |Zed M DS Unsupervised Learning:

Dimension Reduction and
Clustering

@ Preserving the scalar products amounts to preserve the Euclidean distance.

o Easier generalization if we work in terms of distance!

Generalized MDS

o Generalized MDS:
o Distance relation: R(X, X;) = d(X;, X;)
o Linear mapping X' = CD(X) VI(X—m).
e Euclidean matching:
1 n n 5
530 Jd(X, X)) (X, X))
i=1 j=1

@ Strong connection (but no equivalence) with MDS when d(x,y) = ||x — y|/?!

e Minimization: Simple gradient descent can be used (can be stuck in local
minima).

484

I S O M A P Unsupervised Learning:

Dimension Reduction and
Clustering

e MDS: equivalent to PCA (but more expensive) if d(x,y) = ||x — y|/?!

@ ISOMAP: use a localized distance instead to limit the influence of very far point.

@ For each point X;, define a neighborhood A/; (either by a distance or a number of
points) and let

if X; ¢ N;

do(K”KJ) = +OO 2 I —J ¢N

| X; — XJH otherwise

@ Compute the shortest path distance for each pair.
@ Use the MDS algorithm with this distance

485

ISOMAP

Macey
T Smith
Karpav/ ZS“"’””? ZSIVOCZKY J
Gomez
sebrie” Bernard

URKOV. o @ NoaL

a9 ® ®-Loenzo
_Clay Hernu °
[] BARRAS
M 's

Warners IcMULLEN ' & arivans
» S.c/hoenbeck i Udalg

[

SEBRLE
cLav® Pogorelov HERNU’ BOURGUIGNON
[3
KARPO,

Casarsa
Terek

EJ

4 o 4
X

Decathlon

Korkizoglou

Unsupervised Learning:
Dimension Reduction and
Clustering

Swiss Roll

486

Ra ndom PI’O_]GCT.IOI’] Unsupervised Learning:

Dimension Reduction and
Clustering

Random Projection Heuristic

@ Draw at random d’ unit vector (direction) U;.
o Use X' = UT(X —m) withm=21%", X,

e Property: If X lives in a space of dimension d”, then, as soon as, d’ ~ d” log(d"),
d
1X; — X1 ~ ?H& - Xj|1?

@ Do not really use the data!

487

Random Projection

YURKOV,
’ Sebr\e/
SEBRLE Macey
, HERNU
® Parkhomenko N
Casarsa WARNES: MoMuLLE.— Bernard
> BOURGUIGNON ./
o £} o« ¥ © e S e ramPov
Udal @ g el &3z Karpov
) . Terek—® o Schwarz! &L\ amers
- orenzo
Smirnov
/..\Smith
Averyanov .\D
rews
2 o 2

X

Decathlon

Unsupervised Learning:
Dimension Reduction and
Clustering

Swiss Roll

488

t-Stochastic Neighbor Embedding Unsupervised Learning:

Dimension Reduction and

@ From X; € X, construct a set of conditional probability:
o I1Xi=X;1?/207

e s e X207 st
e Find X/ in RY such that the set of conditional probability:
e~ IIXi=XjI?/207
Qi = Qi =0

e o~ 1IX]=X}]12/202

is close from P.
o t-SNE: use a Student-t term (1 + [|X} — X}[|*)~! for X;
Pjli
Qjji

o Minimize the Kullback-Leibler divergence (> P;; log
ij

) by a simple gradient

descent (can be stuck in local minima).
@ Parameters o; such that H(P;) = — Z 1 P; il log P; j|i = cst.

489

t-Stochastic Neighbor Embedding Unsupervised Learning:

Dimension Reduction and
Clustering

@ Very successful/ powerful technique in practice
@ Convergence may be long, unstable, or strongly depending on parameters.

@ See this distill post for many impressive examples

- 0©0 © OOO

Original Perplesty: 2 perplecty: 5 Perplesty: 30 Perplsity: 50 Perpleity: 100
Step: 5000 Step: 5000 Step: 5000 Step: 5000 Step: 5000

Original perplesiy: 2 perplecty: 5 perpleity: 30 perplxity: S0 Perplesiy: 100
Step: 5000 Step: 5000 Step: 5000 Step: 5000 Step: 5000

Representation depending on t-SNE parameters

490

https://distill.pub/2016/misread-tsne/

t_S N E Unsupervised Learning:

Dimension Reduction and

Clustering
5 30
Casarsa, Ojaniemi ‘D“EWS Nool
®
Parkhomenko Smith, Gomez Averyanov BERNARD 20
3
» 2% oY
YURKOV o Barras~—_ o @ wamers ™ sonugrz .\ &
Hermu—g SEBRLE\S.chosnbeck‘ KARPOV © ‘Q
o Macey IVOCZKY
> Smirnoy [¢ Pogorelov Terek >
Bomard~—_ o) G o
HERNU
Lorenzo
Sebrl 2 &
ebriey McMULLEN P ./Uld ! Korkizoglou
2 [-10
Clay/ Karpov NOOL/. LN
BOURGUIGNON
Karivans| Barras .
20
N waRTINEAU——"® .\Turi
-0 - ° ° 30 20 10 0 10 20
x x

491

U M A P Unsupervised Learning:

Dimension Reduction and
Clustering

@ Topological Data Analysis inspired.

Uniform Manifold Approximation and Projection

@ Define a notion of asymmetric scaled local proximity between neighbors:

o Compute the k-neighborhood of X, its diameter o; and the distance p; between X;
and its nearest neighbor.
o Define
e (X X;)=pi)/oi £or X in the k-neighborhood
Wf(Kiafj) = .
0 otherwise
@ Symmetrize into a fuzzy nearest neighbor criterion
w(X;, X;) = wi(X;, X;) + wi(X, X;) — wi(X5, X;)w; (X, X5)
@ Determine the points X/ in a low dimensional space such that
w(X;, X;) (1 - w(X;, X))
X.. X)I Y 1— w(X..X))I N7 TG
2wl X) o8 <W/(x:-,><,'~)> + =l X)) oe ((1 —w (X, X))

@ Can be performed by local gradient descent.

492

UMAP

Sebrle Wamers. .WARN ERS

\ ’c\ay o /Schwarzl
Pogorelov

Drews
Kar{)ov Averyanagy CLAY. >
Bemard Nool @ MARPGV

¢
ﬁgvoczky Ojaniomi - &
®

ERNARD
Macey SEBRLE! erek

[]
Hemy MEMULLEN YURKOWorkizoglou

ws‘voczwkhamenkn‘Tun Casarsa
Smimoy
&—q 8ARRA§AART|NEAU

Barras
/Larenz?rhvan. HERNU

Gomez’
NOOL Uidat .\BOURGU\GNON
X
Decathlon

Swiss Roll

Unsupervised Learning:
Dimension Reduction and
Clustering

493

G ra ph based Unsupervised Learning:
Dimension Reduction and
Clustering

Graph heuristic

e Construct a graph with weighted edges w;; measuring the proximity of X; and X;
(w;j large if close and 0 if there is no information).

e Find the points X} € RY minimizing

1 1 n n ;

i=1 j=1

@ Need of a constraint on the size of X/. ..

@ Explicit solution through linear algebra: d’ eigenvectors with smallest eigenvalues
of the Laplacian of the graph D — W, where D is a diagonal matrix with

Diji =3 wij.
@ Variation on the definition of the Laplacian. ..

494

Graph

JURGAIGNON
010 L

WarsRPOV

Macey

C\ay’K{pov

0,18 0.16 0,14 0.12
X

8

Decathlon

Unsupervised Learning:
Dimension Reduction and
Clustering

-0.aBEBABER028
X

Swiss Roll

495

O Utl | ne Unsupervised Learning:

Dimension Reduction and
Clustering

496

How to Compare Different Dimensionality Reduction unsupenvised Learming:

Dimension Reduction and

M et hod S ? Clustering

o Difficult! Once again, the metric is very subjective.

@ Did we preserve a lot of inertia with only a few directions?
@ Do those directions make sense from an expert point of view?
@ Do the low dimension representation preserve some important information?

@ Are we better on subsequent task?

497

A Challenging Example: MNIST Unsupervised Learning:

Dimension Reduction and
Clustering

MNIST Dataset

@ Images of 28 x 28 pixels.
@ No label used!

o 4 different embeddings.

498

A Challenging Example: MNIST Unsupervised Learning:

Dimension Reduction and
Clustering

PCA autoencoder

MNIST Dataset

@ Images of 28 x 28 pixels.

@ No label used!

o 4 different embeddings.

498

A Cha”englng Example MN'ST Unsupervised Learning:

Dimension Reduction and
Clustering

PCA autoencoder

MNIST Dataset
@ Images of 28 x 28 pixels.

@ No label used!
o 4 different embeddings.

@ Quality evaluated by visualizing the true labels not used to obtain the
embeddings.

@ Only a few labels could have been used. 498

A Slmpler Example A 2D Set Unsupervised Learning:

Dimension Reduction and

©
O3 % 9@

At

Cluster Dataset
@ Set of points in 2D.

@ No label used!

o 3 different embeddings.

499

A Slmpler Example A 2D Set Unsupervised Learning:

Dimension Reduction and
Clustering

Cluster Dataset

@ Set of points in 2D.
@ No label used!

o 3 different embeddings.

499

A Simpler Example: A 2D Set

*©Q)

Original

Unsupervised Learning:
Dimension Reduction and
Clustering

Cluster Dataset

@ Set of points in 2D.
@ No label used!

o 3 different embeddings.

@ Quality evaluated by stability. . .

499

Outline

o Unsupervised Learning: Dimension Reduction and
Clustering

Unsupervised Learning:
Dimension Reduction and
Clustering

@ Clustering

500

Cl USte rl ng Unsupervised Learning:

Dimension Reduction and
Clustering

e Training data: D= {X,,...,X,} € X" (iid. ~P)
o Latent groups?

Clustering

e Construct a map f from D to {1,..., K} where K is a number of classes to be
fixed:
fo Xi— ki

Motivations

@ Interpretation of the groups

@ Use of the groups in further processing

@ Several strategies possible!

@ Can use dimension reduction as a preprocessing.

501

O Utl | ne Unsupervised Learning:

Dimension Reduction and
Clustering

502

Pa I’tltlon Based Unsupervised Learning:

Dimension Reduction and

Partition Heuristic
o Clustering is defined by a partition in K classes. . .

@ that minimizes a homogeneity criterion.

o Cluster k defined by a center pu.

@ Each sample is associated to the closest center.

n
@ Centers defined as the minimizer of Z mkin 1X; — g2
i=1

e lterative scheme (Loyd):

Start by a (pseudo) random choice for the centers 4

Assign each samples to its nearby center

Replace the center of a cluster by the mean of its assigned samples.
Repeat the last two steps until convergence.

503

Unsupervised Learning:
Dimension Reduction and
Clustering

Partition Based X

K-means, step 0 - 4
25-

Petal.Width

4
Petal.Length

(=]

504

Pa I’tltlon based Unsupervised Learning:

Dimension Reduction and
Clustering

@ Other schemes:

e McQueen: modify the mean each time a sample is assigned to a new cluster.
e Hartigan: modify the mean by removing the considered sample, assign it to the
nearby center and recompute the new mean after assignment.

A good initialization is crucial!

@ Initialize by samples.
@ k-Mean+-+: try to take them as separated as possible.

@ No guarantee to converge to a global optimum: repeat and keep the best result!

e Complexity : O(n x K x T) where T is the number of steps in the algorithm.

505

Pa rtltlon based Unsupervised Learning:

Dimension Reduction and
Clustering

@ k-Medoid: use a sample as a center
e PAM: for a given cluster, use the sample that minimizes the intra distance (sum of

the squared distance to the other points)
e Approximate medoid: for a given cluster, assign the point that is the closest to the

mean.

Complexity

e PAM: O(n? x T) in the worst case!
@ Approximate medoid: O(n x K x T) where T is the number of steps in the
algorithm.

@ Remark: Any distance can be used. .. but the complexity of computing the
centers can be very different.

506

&
K_ M ea nS Unsupervised Learning: £,

Dimension Reduction and
Clustering

oo

507

Model Based

Unsupervised Learning:
Dimension Reduction and
Clustering

Model Heuristic

@ Use a generative model of the data:

K
P(X) =) mPo, (X[k)
k=1
where 7 are proportions and Py(X|k) are parametric probability models.

o Estimate those parameters (often by a ML principle).

@ Assign each observation to the class maximizing the a posteriori probability
(obtained by Bayes formula)
7Py, (X]K)

S TPy (XIK)

@ Link with Generative model in supervised classification!

508

M Odel Based Unsupervised Learning:

Dimension Reduction and
Clustering

@ Large choice of parametric models.

Gaussian Mixture Model

o Use
Py, (X|k) ~ N (i, T
with NV (i, X) the Gaussian law of mean u and covariance matrix X.

e Efficient optimization algorithm available (EM)

@ Often some constraint on the covariance matrices: identical, with a similar
structure. ..

@ Strong connection with K-means when the covariance matrices are assumed to be
the same multiple of the identity.

509

M Odel Based Unsupervised Learning:

Dimension Reduction and

Probabilistic latent semantic analysis (PLSA)

@ Documents described by their word counts w

o Model:
K

P(w) = > mlPy, (wlk)
k=1
with k the (hidden) topic, 7, a topic probability and Py, (w|k) a multinomial law
for a given topic.
@ Clustering according to
TPy (wlk)

Xk TPy~ (wlk')
k/

P(K|w) =

@ Same idea than GMM!

@ Bayesian variant called LDA.

510

M Odel Based Unsupervised Learning:

Dimension Reduction and
Clustering

Parametric Density Estimation Principle

@ Assign a probability of membership.

@ Lots of theoretical studies. ..

@ Model selection principle can be used to select K the number of classes (or rather
to avoid using a nonsensical K...):

e AIC / BIC / MDL penalization
e Cross Validation is also possible!

e Complexity: O(nx K x T)

511

Gaussian Mixture Models

Unsupervised Learning:
Dimension Reduction and
Clustering

512

O Utl | ne Unsupervised Learning:

Dimension Reduction and
Clustering

513

(NOn ParametriC) DenSIty Based Unsupervised Learning:

Dimension Reduction and
Clustering

Density Heuristic

@ Cluster are connected dense zone separated by low density zone.

@ Not all points belong to a cluster.

@ Basic bricks:

e Estimate the density.
e Find points with high densities.
o Gather those points according to the density.

@ Density estimation:
o Classical kernel density estimators. . .
e Gathering:

e Link points of high density and use the resulted component.
e Move them toward top of density hill by following the gradient and gather all the
points arriving at the same summit.

514

(NOn ParametriC) DenSIty Based Unsupervised Learning:

Dimension Reduction and
Clustering

e DBSCAN: link point of high densities using a very simple kernel.

o PdfCLuster: find connected zone of high density.

e Mean-shift: move points toward top of density hill following an evolving kernel density
estimate.

o Complexity: O(n? x T) in the worst case.

@ Can be reduced to O(nlog(n)T) if samples can be encoded in a tree structure
(n-body problem type approximation).

515

&
D B S CA N Unsupervised Learning: £,

Dimension Reduction and
Clustering

oo

516

O Utl | ne Unsupervised Learning:

Dimension Reduction and
Clustering

517

Agglomel’atlve Cl UStel’I ng Unsupervised Learning:

Dimension Reduction and
Clustering

Agglomerative Clustering Heuristic

e Start with very small clusters (a sample by cluster?)

@ Sequential merging of the most similar clusters. . .

@ according to some greedy criterion A.

Generates a hierarchy of clustering instead of a single one.
Need to select the number of cluster afterwards.

Several choices for the merging criterion. ..

Examples:

e Minimum Linkage: merge the closest cluster in term of the usual distance
e Ward's criterion: merge the two clusters yielding the less inner inertia loss (k-means
criterion)

518

Agglomeratlve Cl UStel’I ng Unsupervised Learning:

Dimension Reduction and -

Algorithm

e Start with (C,-(O)) = ({X;}) the collection of all singletons.
@ At step s, we have n — s clusters (Cfs)):

e Find the two most similar clusters according to a criterion A:

(i,i") = argmin A(C}s),C}s))
GJ")

o Merge C**) and () into ™V

o Keep the n — s — 2 other clusters Cf,s,ﬂ) = Cf,s/)
@ Repeat until there is only one cluster.

o Complexity: O(n®) in general.
e Can be reduced to O(n?)

e if only a bounded number of merging is possible for a given cluster,
e for the most classical distances by maintaining a nearest neighbors list.

519

Agglomeratlve Cl UStel’I ng Unsupervised Learning:

Dimension Reduction and
Clustering

Merging criterion based on the distance between points

@ Minimum linkage:
A(C1,G1) = i, min d(X;, X;)

@ Maximum linkage:
A(Ci,Cj) = max max d(X;, X;)

X;€Ci X G
@ Average linkage:

Q.
—~
<
e
~
Source: E. Matzner-Léber

@ Clustering based on the proximity. . .

520

Agglomeratlve Cl UStel’I ng Unsupervised Learning:

Dimension Reduction and

Clustering
Merging criterion based on the inertia (distance to the mean)
e Ward’s criterion:
ACLC) = > (X newe) — 4 (X ;)
K,‘eci
+) (d2(Kj,Mc,-ucj)—dQ(KJw#cJ—))
KJ—GCJ

o If d is the Euclidean distance: el
2 . .

A(C,C) = L dP(ue., pe,

(J) |Cl|+|c_]| (:U’C: :U’Cj)

@ Same criterion than in the k-means algorithm but greedy optimization.

521

. . %
Agglomeratlve ClUSterlng Unsupervised Learning: X
ion Reduction and o

Single

Complete.

Dendogram 520

O Utl | ne Unsupervised Learning:

Dimension Reduction and
Clustering

523

Gl’ld based Unsupervised Learning:

Dimension Reduction and
Clustering

@ Split the space in pieces

@ Group those of high density according to their proximity

@ Similar to density based estimate (with partition based initial clustering)

@ Space splitting can be fixed or adaptive to the data.
@ Examples:
o STING (Statistical Information Grid): Hierarchical tree construction plus DBSCAN
type algorithm
o AMR (Adaptive Mesh Refinement): Adaptive tree refinement plus k-means type

assignment from high density leaves.
o CLIQUE: Tensorial grid and 1D detection.

@ Linked to Divisive clustering (DIANA)

524

OtherS Unsupervised Learning:

Dimension Reduction and
Clustering

Graph based

@ Spectral clustering: dimension reduction + k-means.
@ Message passing: iterative local algorithm.

@ Graph cut: min/max flow.

@ Kohonen Map,

525

O Utl | ne Unsupervised Learning:

Dimension Reduction and
Clustering

526

Sca | a bl | |ty Unsupervised Learning:

Dimension Reduction and
Clustering

Large dataset issue

@ When nis large, a O(n“log n) with « > 1 is not acceptable!

@ How to deal with such a situation?

e Beware: Computing all the pairwise distance requires O(n?) operations!

Sampling
Online processing

Simplification

Parallelization

527

Sa m pl | ng Unsupervised Learning:

Dimension Reduction and
Clustering

Sampling heuristic

@ Use only a subsample to construct the clustering.

@ Assign the other points to the constructed clusters afterwards.

Requires a clustering method that can assign new points (partition, model. . .)

Often repetition and choice of the best clustering

Example:
o CLARA: K-medoid with sampling and repetition

Two-steps algorithm:

o Generate a large number n’ of clusters using a fast algorithm (with n” < n)
o Cluster the clusters with a more accurate algorithm.

528

O n I Ine Unsupervised Learning:

Dimension Reduction and
Clustering

Online heuristic
@ Modify the current clusters according to the value of a single observation.

v

@ Requires compactly described clusters.
@ Examples:

e Add to an existing cluster (and modify it) if it is close enough and create a new
cluster otherwise (k-means without reassignment)
e Stochastic descent gradient (GMM)

@ May leads to far from optimal clustering.

529

Slmpllflcatlon Unsupervised Learning:

Dimension Reduction and
Clustering

Simplification heuristic
@ Simplify the algorithm to be more efficient at the cost of some precision.

@ Algorithm dependent!
@ Examples:

o Replace groups of observation (preliminary cluster) by the (approximate) statistics.
e Approximate the distances by cheaper ones.
e Use n-body type techniques.

530

Para”ellzatlon Unsupervised Learning:

Dimension Reduction and
Clustering

Parallelization heuristic
@ Split the computation on several computers.

v

@ Algorithm dependent!
@ Examples:

e Distance computation in k-means, parameter gradient in model based clustering
e Grid density estimation, Space splitting strategies

o Classical batch sampling not easy to perform as partitions are not easily merged. ..

531

Outline

o Unsupervised Learning: Dimension Reduction and
Clustering

Unsupervised Learning:
Dimension Reduction and
Clustering

@ Generative Modeling

532

Genel’atlve MOdel | ng Unsupervised Learning:

Dimension Reduction and
e Training data: D = {(Xy,Y;),...,(X,,Y,))} € (X x V)" (iLid=EP)
@ Same kind of data than for supervised learning if) # ().

Generative Modeling

@ Construct a map G from the product of) and a randomness source 2 to X
GYxQ— X

(Y,w)— X

@ Unconditional model if Y = 0. ..

@ Generate plausible novel conditional samples based on a given dataset.

Sample Quality
@ Related to the proximity between the law of G(Y,w) and the law of X|Y.

@ Most classical choice is the Kullback-Leibler divergence.

533

Genel’atlve MOdel | ng Unsupervised Learning:

Dimension Reduction and

Clustering
Ingredients

@ Generator Fy(Y,w) and cond. density prob. pg(X|Y') (Explicit vs implicit link)

@ Simple / Complex / Approximate estimation. ..

Some Possible Choices

Probabilistic model Generator Estimation
Base Simple (parametric) Explicit Simple (ML)
Flow Image of simple model Explicit Simple (ML)
Factorization | Factorization of simple model Explicit Simple (ML)
VAE Simple model with latent var. Explicit Approximate (ML)
EBM Arbitrary Implicit (MCMC) | Complex (ML /score/discrim.)
Diffusion Continuous noise Implicit (MCMCQ) Complex (score)
Discrete Noise with latent var. Explicit Approximate (ML)
GAN Implicit Explicit Complex (Discrimination)

@ SOTA: Diffusion based approach!

ML: Maximum Likelihood/VAE: Variational AutoEncoder/EBM: Energy Based Model/MCMC: Monte Carlo Markov Chain/GAN: Generative Aversarial 534
Network

O Utl | ne Unsupervised Learning:

Dimension Reduction and
Clustering

535

DenSIty EStlmatiOI"I Unsupervised Learning:

Dimension Reduction and
Clustering

536

FIOW Unsupervised Learning:

Dimension Reduction and
Clustering

537

FaCtOl’Izatlon Unsupervised Learning:

Dimension Reduction and
Clustering

538

O Utl | ne Unsupervised Learning:

Dimension Reduction and
Clustering

539

Latent Unsupervised Learning:

Dimension Reduction and
Clustering

540

O Utl | ne Unsupervised Learning:

Dimension Reduction and
Clustering

541

E B M Unsupervised Learning:

Dimension Reduction and
Clustering

542

O Utl | ne Unsupervised Learning:

Dimension Reduction and
Clustering

543

D Iﬂ:USIOn Unsupervised Learning:

Dimension Reduction and
Clustering

544

O Utl | ne Unsupervised Learning:

Dimension Reduction and
Clustering

545

GAN Unsupervised Learning:

Dimension Reduction and
Clustering

546

Outline

o Unsupervised Learning: Dimension Reduction and
Clustering

Unsupervised Learning:
Dimension Reduction and
Clustering

@ Applications to Text

547

TeXt and Representation Unsupervised Learning:

Dimension Reduction and
The elephant sneezed Teddywas terribly lost
at the sight of potatoes. o in'the potato patch.

Clustering
N

[eestant[ptatashe] cor o] ey [t

NN

"[ihe sight of potatoes the door to the stucio] terrbly lost | potato patch
N

Entity Keyphrase
Extraction [Extraction

AN
DNEONnOERES

Modeling

Text and Representation

@ Need to transform a text into a numerical vector to reuse the previous algorithms!

@ Art still in progress.

@ Important steps:
o Token extraction
o Token vectorization
e Learning algorithm 548

£
L
)
[}
m
o
@
e
5
[}
n

TOken EXtI’aCtlon Unsupervised Learning:
Dlmensmn Reduction and

..........

Stemming Lemmatization
adjustable — adjust was — (to) be
formality — formaliti better — good

formaliti — formal meeting — meeting

airliner — airlin. A\
@ From a text to a sequence of tokens (words, characters, subwords. . .).

Need of cleaning or pre-processing: spelling checker, stemming, lemmatization. ..
Often with a further reduction of the number of possible tokens.
Beware to not oversimplify!

o
S
S
o
o
g
=
<]
%)

549

Bag Of WOI’CIS Unsupervised Learning: X

Dimension Reduction and
Clustering

The Bag of Words Representation

Iove this moviel It's sweet,
but with satirical humor. The
dialogue is great and the
adventure scenes are fun

It manages to be whimsical
and romantic while laughing
at the conventions of the
fairy tale genre. | would
recommend it to just about
anyane. I've seen it several
times, and I'm always happy
to see it again whenever |
have a friend who hasn't
seen it yet!

15

Bag of Words

@ Most simple approach to transform a text into a vector.

@ Simple count of the words belonging to a predefined vocabulary.

e Counts preferably replaced by frequences (or tf-idf. . .)
@ Often combined with dimension reduction:
e restriction to an interesting vocabulary
e use of principal component analysis (latent semantic analysis)

Source: Programmer Sought

td-idf: text frequency - inverse document frequency 550

Artlde C I UStel’I ng U!wsupe‘rvised Lear.ning:

Dimension Reduction and
Clustering
"~ /«ah«wj’
— - o || I
/w«fmu/ of coondle
collection rf&;ﬁdr«wm(ﬁ: Document

distriludion of lpioa

Article Clustering
o Clustering algorithms directly on the bag-of-words representation

Source: C. Doig

@ Most used algorithm is a variation around the k-means algorithm.

551

WOI’CI Repl’esentatlon Unsupervised Learning:
Dimension Reduction and
Clustering

Word2Vec

Word Representation

@ More accuracy by working at the token (word) scale.
@ Two approaches:
e Associate to a word the frequency of the other words in its neighborhood and
performing dimension reduction on this first representation.
o Learn for each word a vector allowing to predict by a simple formula (scalar product)
whether one word appears in the neighborhood of the other one.

©
=
]
©
]
<
X
4
o
g
=
<]
%)

@ Similar results but the second approach is more flexible. 552

Deep Lea rn | ng Unsupervised Learning:

Dimension Reduction and
OSOSONTE My

Clustering
Sentiment?

Next word?

Part-of-speech tags?

Deep Learning

@ Propose a formula allowing to do computations on the word starting by
associating vectors to each word.

@ Learning the best possible vectors for a given task: auto-prediction
(self-supervised) or prediction (supervised).

=
@
o
2
@
>
]
E=
]
o
o
g
=
<]
%)

553

@ Tremendous progress in the last years thanks to deep neural net architectures
(RNN, Transformer...).

Lal’ge Language MOCIGIS Unsupervised Learning:

Dimension Reduction and

Clustering
A A
context context
bug 1 Fix 1
wug 1ine [Encoder [-0.23, ..., 2.31] Decoder ix line
context context
Buggy Code Encoded Representation Fixed Code

a) NMT Repair Overview

‘ I want to build a repair I ‘ I want to build a repair

[_Decoder |

|1 want to build a repair ‘ ‘ I <mask> to build a <mask> | ‘ to repair I a build "'a"‘l

Decoder Only Encoder Only Encoder-Decoder
GPT BERT T5

Large Language Models

@ Huge neural networks relying on transformers and (pre)trained on huge corpus
with self-supervised tasks.
@ Three architectures:

o Decoder: prediction of next word (online). E
e Encoder: prediction of inner word(s) (offline). §
o Encoder/Decoder: prediction of a sentence from anotherv(offline). 3

554

@ Can be used as a basis for further specialized training or directly.

Sentlment AnalySIS Unsupervised Learning:
Dimension Reduction and
Clustering

Document A ’ &
- v

L X

How to associate a sentiment to a text?

@ Four possible approaches:
e Simple approach (without learning) that averages the sentiments of the words used
in a text using a fixed table.
o Simple approach (supervised and linear) where this table is learned from examples.
o Direct approach (supervised) where one predicts directly the sentiment from

examples. i

e Zero-Shot approach (without learning?) where one uses directely a Large Language H
Model trained on a huge corpus (unrelated to the application). &

@ Direct approach more efficient provided one has sufficient data and one starts @
from a pretrained model. 555

O Utl | ne Unsupervised Learning:

Dimension Reduction and
Clustering

@ References

o Unsupervised Learning: Dimension Reduction and
Clustering

556

Refe rences Unsupervised Learning:

[o—

Dimension Reduction and

T. Hastie, R. Tibshirani, and J. Friedman. Clustering
The Elements of Statistical Learning.
Springer Series in Statistics, 2009

M. Mohri, A. Rostamizadeh, and A. Talwalkar.
Foundations of Machine Learning (2nd ed.)
MIT Press, 2018

A. Géron.

Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow (3rd
ed.)

O’Reilly, 2022

Ch. Giraud.
Introduction to High-Dimensional Statistics.
CRC Press, 2014

S. Bubeck.
Convex Optimization: Algorithms and Complexity.
Now Publisher, 2015

557

References

F. Husson, S. Le, and J. Pages.
Exploratory Multivariate Analysis by
Example Using R (2nd ed.)
Chapman and Hall/CRC, 2017

B. Ghojogh, M. Crowley, F. Karray, and
A. Ghodsi.

Elements of Dimensionality Reduction and pg
Manifold Learning.
Springer, 2023

Chapman and Hall/CRC, 2013

Ch. Hennig, M. Meila, F. Murtagh, and
R. Rocci.

Handbook of Cluster Analysis.
Chapman and Hall/CRC, 2015

Ch. Aggarwal and Ch. Reddy. ﬁpﬁfu“en;
Data Clustering: Algorithms and ;@
Applications.

Unsupervised Learning:
Dimension Reduction and
Clustering

Ch. Bouveyron, G. Celeux,”B. Murphy,
and A. Raftery.

Model-Based Clustering and Classification
for Data Science.

Cambridge University Press, 2019

J. Tomczak.
Deep Generative Modeling.
Springer, 2021

D. Foster.
Generative Deep Learning (2nd ed.)
O'Reilly, 2023

A. Géron.
Hands-On Machine Learning with
Scikit-Learn, Keras and Tensorflow (3rd
ed.)
O'Reilly, 2022

558

Llcence and COntI’IbUtOI’S Unsupervised Learning:

Dimension Reduction and
Clustering

Creative Commons Attribution-ShareAlike (CC BY-SA 4.0)

@ You are free to:
@ Share: copy and redistribute the material in any medium or format
@ Adapt: remix, transform, and build upon the material for any purpose, even commercially.

@ Under the following terms:
@ Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in

any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
@ ShareAlike: If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the

original.
@ No additional restrictions: You may not apply legal terms or technological measures that legally restrict others from doing anything

the license permits.

Contributors
@ Main contributor: E. Le Pennec
@ Contributors: S. Boucheron, A. Dieuleveut, A.K. Fermin, S. Gadat, S. Gaiffas,
A. Guilloux, Ch. Keribin, E. Matzner, M. Sangnier, E. Scornet. 550

Outline

Statistical Learning:
PAC-Bayesian Approach and
Complexity Theory

e Statistical Learning: PAC-Bayesian Approach and
Complexity Theory
@ Supervised Learning
@ Empirical Risk Minimization

@ References

560

Outline

Statistical Learning:
PAC-Bayesian Approach and
Complexity Theory

e Statistical Learning: PAC-Bayesian Approach and
Complexity Theory
@ Supervised Learning

561

Supervised Learning Statistical Learning:

PAC-Bayesian Approach and
amplexi neg

Supervised Learning Framework

@ Input measurement X € X

o Output measurement Y €).
o (X,Y) ~ P with P unknown.
@ Training data : D, = {(X{, Y1),...,(X,, Ya)} (i.id. ~P)

e Often
o XeRYand Y € {—1,1} (classification)
o or X € RY and Y € R (regression).
@ A predictor is a function in F = {f : X —) meas.}

e Construct a good predictor f from the training data.

@ Need to specify the meaning of good.

o Classification and regression are almost the same problem! 562

Loss and Probabilistic Framework Statistical Learning:

PAC-Bayesian Approach and
Complexity Theor

Loss function for a generic predictor

@ Loss function: /(Y,f(X)) measures the goodness of the prediction of Y by f(X)
@ Examples:

o 0/1loss: £(Y,f(X)) = Lyxe(x)

o Quadratic loss: (Y, f(X)) =|Y — f(X)|?

@ Risk measured as the average loss for a new couple:
R(f) = Ex,v)~p[4(Y, f(X))]
@ Examples:
o 0/1 loss: E[(Y,f(X))] = (Y f(X))
e Quadratic loss: E[((Y,f(X))] =E[|Y — f(X)|]

e Beware: As f depends on D,,, R(f) is a random variable!

563

BeSt SOl Utlon Statistical Learning:

PAC-Bayesian Approach and
Complexity Theory

@ The best solution f* (which is independent of D,) is
f* = arg)rrng(f) = arg m|n]E[E(Y f(X))] = arg m|n Ex [Ey|X[E(Y f(X))]}
€

Bayes Predictor (explicit solution)

e In binary classification with 0 — 1 loss:
+1 if P(Y=+1X)>P(Y=-1X)
(X) = < P(Y =+1|X) >1/2
—1 otherwise

o In regression with the quadratic loss
F(X) = E[Y|X]

Issue: Solution requires to know E[Y|X] for all values of X!

564

Goal Statistical Learning:

PAC-Bavesian Approach and
Machine Learning

@ Learn a rule to construct a predictor f € F from the training data D, s.t. the

~

risk R(f) is small on average or with high probability with respect to D,,.

@ In practice, the rule should be an algorithm!

Canonical example: Empirical Risk Minimizer
@ One restricts f to a subset of functions S = {fp,0 € O}
@ One replaces the minimization of the average loss by the minimization of the
empirical loss

N i
f=f=argmin—) LY}, fp(X;
6 ffeeen,;(5(X;))

@ Examples:

e Linear regression
e Linear classification with

S = {x > sign{x" 8+ 8O0} /3 e RY BO c R}

565

BiaS—VaI’IanCE Dllemma ' Statistical Il_earning:

PAC-Bayestan-Approach and
omplexity T@ry

o General setting:

F = {measurable functions X — Y}

Best solution: f* = argmins.» R(f)

Class § C F of functions

Ideal target in S: f& = argmingcs R(f)
Estimate in S: ?5 obtained with some procedure

Approximation error and estimation error (Bias/Variance)

R(fs) — R(F*) = R(£) — R(F*) + R(fs) — R(£)

Approximation error Estimation error

@ Approx. error can be large if the model S is not suitable.

@ Estimation error can be large if the model is complex.

566

Under_fltting / Ovel’—flttlng ISSUG Statistical Learning:

PAC-Bayesian Approach and
Complexity Theory

Underfit
(High bias)

Generalization
error

Error

Overfit
(High

variance)

Model complexity
@ Different behavior for different model complexity

e Low complexity model are easily learned but the approximation error (bias) may
be large (Under-fit).
@ High complexity model may contain a good ideal target but the estimation error
(variance) can be large (Over-fit)
Bias-variance trade-off <= avoid overfitting and underfitting J

@ Rk: Better to think in term of method (including feature engineering and specific
algorithm) rather than only of model.

c
2
<]
<

=
c

=}
o
g
=
<]
%)

567

Outline

Statistical Learning:
PAC-Bayesian Approach and
Complexity Theory

e Statistical Learning: PAC-Bayesian Approach and
Complexity Theory

@ Empirical Risk Minimization

568

O Utl | ne Statistical Learning:

PAC-Bayesian Approach and
Complexity Theory

569

Emplrical RISk Mlnlmlzatlon Statistical Learning:

PAC-Bayesian Approach and
Complexity Theory

Empirical Risk Minimizer (ERM)
@ For any loss ¢ and function class S,
f = argmin E ZZ(Y,-, f(X;)) = argmin R,(f)
fes N4 fes
o Key property:
Ra(f) < Ra(f),¥f €S

@ Minimization not always tractable in practice!

@ Focus on the %/! case:

e only algorithm is to try all the functions,
e not feasible is there are many functions
e but interesting hindsight!

570

O Utl | ne Statistical Learning:

PAC-Bayesian Approach and
Complexity Theory

571

ERM and PAC Analysis Statistical Learning:

PAC-Bayesian Approach and
Complexity Theory

@ Theoretical control of the random (error estimation) term:
R(f) = R(f5)

Probably Almost Correct Analysis

o Theoretical guarantee that
P(R(F) - R(f) < es(6)) >1-0
for a suitable es(9) > 0.
@ Implies:
. P(R(?) —R(F*) < R(£E) — R(F*) + 65(5)) >1-4

5 E[R(?) —R(fg)} < /O+OO 3s(€)de

@ The result should hold without any assumption on the law P!

572

A General Decomposition Statistical Learning:

PAC-Bayesian Approach and
Complexity Theory

@ By construction:

R(F) - R(fE) =R n(F) = Ra(£3) + Ra(£5) — R(£S)

S
Four possible upperbounds

° R(f) — R(f§) < sup ((R(f) = R(£s)) — (Ra(f) = Ra(£s)))

o R(F) = R(f§) < sup (R(f) — Ra(f)) + (Ra(fF) — R(fZ))

fes
o R(F) —R(f§) < sup (R(f) = Ra(f)) + sup (Ra(f) = R(F))
o R(f) —R(f$) < 25up [R(f) = Ra(f)

Supremum of centered random variables!
Key: Concentration of each variable. .. 573

RISk BOU ndS Statistical Learning:

PAC-Bayesian Approach and
Complexity Theory

@ By construction, for any ' € S,
R(f') = Ra(f') + (R(f') = Ra(f"))

A uniform upper bound for the risk

@ Simultaneously V' € S,
R(f') < Ra(F') + sup (R(f) — Ra(f))
fes
@ Supremum of centered random variables!
e Key: Concentration of each variable. ..

@ Can be interpreted as a justification of the ERM!

574

O Utl | ne Statistical Learning:

PAC-Bayesian Approach and
Complexity Theory

575

Concentration of the Empirical Loss Statistical Learning:

PAC-Bayesian Approach and
Complexity Theory

@ Empirical loss:

Rolf) = 23" (¥, £(X)
i=1

Properties
o O/1(Y; f(X;)) are i.i.d. random variables in [0, 1].

Concentration

) § E) Z 1— e—2ne2
P(Ra(f) = R(f) <€) > 1— e 27
|

IP)("R'n(f) — R(f) < 5) >1-— 2e—2ne2

@ Concentration of sum of bounded independent variables!
@ Hoeffding theorem.
o Equiv. to P(R(f) — Rn(f) < /log(1/3)/(2n)) > 1 — 6 576

H Oeffd | ng Statistical Learning:
PAC-Bayesian Approach and
Complexity Theory

@ Let Z; be a sequence of ind. centered r.v. supported in [a;, b;] then
262

n - ¢
P(Z VA 6) <e 2imtima?
i=1

@ Proof ingredients:
e Chernov bounds:
. E[e* Y1, Zi] [, E[e\4]
P Z; Zi > e) < SR < I, B[]
2(p;—a;)2
e Exponential moment bounds: E[eAZ,-] < JralE
e Optimization in A
e Prop:

n AT (bi—ap)?
B[S 2] < o =

577

H Oeffd | ng I n eq ua | Ity Statistical Learning:

PAC-Bayesian Approach and

Theorem

@ Let Z; be a sequence of independent centered random variables supported in
[ai, bi] then

262
1l

n — 2
i=1

z =1 (B[O/(Y F(X))] - OV F(X,))
E[Z] =0and Z € [X (E[C4(Y,£(X))| — 1), LE @1 (Y, £(X))]]
Concentration:

P(R(f) — Ra(f) > €) < e72
e By symmetry,
P(Ra(f) — R(f) > €) < €72
Combining the two yields
P(|Rn(f) — R(F)| =€) < 22

578

Finite Class Case Statistical Learning:

PAC-Bayesian Approach and
Complexity Theory

Concentration
e If S is finite of cardinality |S]|,

P <sup(7z(f) — Ra(F)) < \/ 0g 5] + log(1/ 5)) >1-6

f 2n
P (sup RalF) = R(F)| < \/ o881+ logll) ‘”) >1-25
f n

@ Control of the supremum by a quantity depending on the cardinality and the
probability parameter 4.

@ Simple combination of Hoeffding and a union bound.

579

Finite Class Case Statistical Learning:

PAC-Bayesian Approach and

PAC Bounds
o If S is finite of cardinality |S|, with proba greater than 1 — 26

R(?) _R(R) < \/Iog\S! + log(1/6) N \/Iog(l/é)

2n 2n

_ 2\/Iong + log(1/5)
- 2n

e If S is finite of cardinality |S|, with proba greater than 1 — 4, simultaneously
V' e S,

R(F) < Ro(F) + \/ o8 + log(1/9)

< Rl) + \/ ogldl \/ og(1/9)

580

Finite Class Case Statistical Learning:

PAC-Bayesian Approach and
Complexity Theory

PAC Bounds
e If S is finite of cardinality |S|, with proba greater than 1 — 26

R(F) = R(F) < \/Ioi,];ﬂ n \/2|og(1/5)

n

e If S is finite of cardinality |S|, with proba greater than 1 — 4, simultaneously
V' e S,

R(F) < Rolf') + ¢ sls] | \/ (1)

@ Risk increases with the cardinality of S.
@ Similar issue in cross-validation!

@ No direct extension for an infinite S. ..

581

O Utl | ne Statistical Learning:

PAC-Bayesian Approach and
Complexity Theory

582

Concentration of the Supremum of Empirical Losses susiical Learning:

PAC-Bayesian Approach and
Complexity Theory

@ Supremum of Empirical losses:
An(S) (X1, ..., Xp) = sup R(f) — Ra(f)
fes

= sup (E oy, f)] - 23S engy, f(x;)))
fes N

Properties

@ Bounded difference:
IAL(S)(Xy, Xy X)) — An(S)(Xq, .- Xy X)) < 1)/n

Concentration

P(An(S) —E[An(S)] <€) >1— e 2"

@ Concentration of bounded difference function.
@ Generalization of Hoeffding theorem: McDiarmid Theorem.

583

MCDIaI’mId Inequallty Statistical Learning:

PAC-Bayesian Approach and
amplexi alTe}

Bounded difference function

@ g: X" — R is a bounded difference function if it exist ¢; such that
Y(Xi)io1, (X))o € R,

—I

|g(Klv"'aKi>"'7Kn)_g(ll"'wéi'v"wlnn S Ci

o If g is a bounded difference function and X; are independent random variables

then
—262
P(g(X1,. .., X,) —Blg(Xy, ..., X,)] > €) < e
—262
P(E[g(Xy, .- X)) — 8(X1, -, Xp) > €) < i

@ Proof ingredients:
e Chernov bounds
e Martingale decomposition. . .

584

MCDiaI’mld Inequallty Statistical Learning:

PAC-Bayesian Approach and
Complexity Theor

@ If g is a bounded difference function and X; are independent random variables
then

—2¢2

P(g(X1, .-, X,) —Elg(Xq, ..., X,)] > €) < e2im

@ Using g = A,(S) for which ¢; = 1/n yields immediately
—2e

P(An(S) — E[An(S)] > €) < e2uim1§ = e 20

@ We derive then

P(An(S) > E[An(S)] +¢€) < e2im1 G = e=20¢
@ It remains to upperbound

IE[An] =E [SUPR(f) - 7?'n(f)‘|
fes

585

Rademacher Complexity

Statistical Learning:
PAC-Bayesian Approach and
amplexi neg

Theorem

@ Let o; be a sequence of i.i.d. random symmetric Bernoulli variables (Rademacher
variables):

E [sup(R(f) —Rn(f))| <2E
fes

sup 1 z”: ol (Y, f(Xi))]

fes n i=1
Rademacher complexity
@ Let B C R”, the Rademacher complexity of B is defined as

R.(B)=E [sup E iaibi]

beB N7

Theorem gives an upper bound of the expectation in terms of the average
Rademacher complexity of the random set

Ba(S) = {(¢H (Y1, F(X))))iey, f € S}
@ Back to finite setting: This set is at most of cardinality 2".

586

Flnlte Set RademaCher CompleXIty Bound Statistical Learning:

PAC-Bayesian Approach and
Complexity Theory

o If B is finite and such that Vb € B, 1||b||3 < M?, then

1< 2M2 log | B|
Ra(B) =E|sup =) oibj| </ ———
(&) lzzzné”lv :

o If B=B,(S) = {({%(Y;,f(X,)),,f €S}, we have M =1 and thus

Ro(B) < 2log |Bn(S)|
n
@ We obtain immediately
]E[sup(R(f)—R,,(f))} <E 8'°g|8"(5)|] .
fesS n

587

Finite Set Rademacher Complexity Bound Statistical Learning:

PAC-Bayesian Approach and
Complexity Theory

e With probability greater than 1 — 29,

R SE[wlogwn(sn‘ . %mog(w)

n

o With probability greater than 1 — §, simultaneously Vf' € S

[810g1B.(S)1| |, [log(1/9)
n 2n

@ This is a direct consequence of the previous bound.

R(f') < Ru(f') + E

588

Finite Set Rademacher Complexity Bound Statistical Learning:

PAC-Bayesian Approach and
Complexity Theory

Corollary
o If S is finite then with probability greater than 1 — 29

R(F) - R(f) < | 2oEISL, [20sl1/0)

n

@ If S is finite then with probability greater than 1 — ¢, simultaneously Vf’ € S

R(f") < Ra(f") + \/8 'Oi 5] + \/|og;/5)

@ It suffices to notice that
|Ba(S)] = (/1 (Y;, F(X;)))iey . f € SH < IS

589

Flnlte Set RademaCher CompleXIty Bound Statistical Learning:

PAC-Bayesian Approach and
Complexity Theory

@ Same result with Hoeffding but with better constants!

R(F) — R(f§) < \/ 'Oil,S’ * \/ 2 logﬁl/é)

log |S] \/ log(1/9)
2n

') < Ra(f'
R(F) < Ro(f") + \/ e
@ Difference due to the crude upperbound of
E [SUP(R(’C) - Rn(f))]
fes

@ Why bother?: We do not have to assume that S is finite!
|Ba(S)| < 27

590

O Utl | ne Statistical Learning:

PAC-Bayesian Approach and
Complexity Theory

591

BaCk tO the Bound Statistical Learning:

PAC-Bayesian Approach and
Complexity Theory

E[SUP(RU)_RHU))] SE[ww]

fes

n

@ Key quantity:]E{ 8'°gB”(S)|]
@ Hard to control due to its structure!

A first data dependent upperbound

E[8|0g’fn(3) <\/8IogE[’\78,,(S)\] (Jensen)

@ Depends on the unknown P!

592

Shatterlng Coeﬂ:ICIGHt Statistical Learning:

PAC-Bayesian Approach and
Complexity Theory

Shattering Coefficient (or Growth Function)

@ The shattering coefficient of the class S, s(S, n), is defined as

s(S,n) = sup [{((Yi, F(X))ir, f € SY
(X1, Y1) (X, Ya) JE(X X {—1,1})"

@ By construction, |B,(S)| < s(S, n) < min(2",|S]).
A data independent upperbound

E[\/8|0g|8n(8)]‘ _ \/8|ogs(8,n)

593

Shatterlng Coeﬂ:ICIGHt Statistical Learning:

PAC-Bayesian Approach and
Complexity Theory

e With probability greater than 1 — 29,
~ I 2log(1
R(F) - R(£E) < \/8 ogsn(S, n) +\/ og,(7 /)

@ With probability greater than 1 — §, simultaneously V' € S,

R(f,)SRn(f,)_i_\/8Iogs(8,n)+\/log(1/6)

n 2n

@ Depends only on the class S!

594

Vapnik-Chervonenkis Dimension Statistical Learning:

PAC-Bayesian Approach and
Complexity Theory

VC Dimension
@ The VC dimension d\¢ of S is defined as the largest integer d such that
s(S,d) =2¢

@ The VC dimension can be infinite!

VC Dimension and Dimension

@ Prop: If span(S) corresponds to the sign of functions in a linear space of
dimension d then dy¢ < d.

@ VC dimension similar to the usual dimension.

595

VC Dimension and Sauer’'s Lemma

Sauer's Lemma
o If the VC dimension dy¢ of S is finite
2I'l
5(87 ”) < (en)dvc

dvc

@ Cor.: logs(S,n) < dyclog (de—fc) if n> dyc.

Statistical Learning:
PAC-Bayesian Approach and
Complexity Theory

if n < dyc

if n> dyc

596

VC DlmenSIOn and PAC BOUHdS Statistical Learning:

PAC-Bayesian Approach and
Complexity Theory

PAC Bounds

@ If S is of VC dimension dy then if n > d\¢
e With probability greater than 1 — 29,

8dvc log () L [21oe(1/9)
n n

R(F) = R(f§) < J

e With probability greater than 1 — §, simultaneously V' € S,

R(F) < Ro(F') + J S0 08). @) , og(L/0)

@ Rk: If dy¢c = +o0 no uniform PAC bounds exists!

597

O Utl | ne Statistical Learning:

PAC-Bayesian Approach and
Complexity Theory

598

Countable Collection and Non Uniform PAC Bounds sutstical Learning:

PAC-Bayesian Approach and
Complexity Theory

PAC Bounds

@ Let m¢ > O such that } rcsmr =1

e With proba greater than 1 — 29,
- log(1/m 2log(1/d
R(f) — R(f) < \/Og(zr{ f) \/ Og,(1 /9)

@ With proba greater than 1 — §, simultaneously Vf’ € S,

R(F) < RA(F) + ¢ ogll/nr) | ¢ og(1/9)

@ Very similar proof than the uniform one!

@ Much more interesting idea when combined with several models. ..

599

Models, Non Uniform Risk Bounds and SRM Statistical Learning:

PAC-Bayesian Approach and
. Complexity Theory
@ Assume we have a countable collection of set (Spm)mem and let mp, be such that

ZmeM Tm = 1.
Non Uniform Risk Bound
@ With probability 1 — §, simultaneously for all m € M and all f € S,

8|og|Bn(sm)|]) \/log(l/wm)) wog(m)
n 2n 2n

R(f) < Rn(f)+E

Structural Risk Minimization

@ Choose f as the minimizer over m € M and f € S,, of

8log |Bn(Sm)| log(1/7m)

f E
R"()+ n 2n

@ Mimics the minimization of the integrated risk!

600

SRM and PAC Bound Statistical Learning:

PAC-Bayesian Approach and
Complexity Theory

PAC Bound

e If is the SRM minimizer then with probability 1 — 26,
meM feSy

/8Iog|B [log(1/7rm)
N /2|ogn1/6

@ The SRM minimizer balances the risk R(f) and the upper bound on the
estimation error E {\/Slog“g"(‘sf")} + \/|°g(;/7fm)_

R(F) < inf inf ()+E

n n

° E{ Emg“i"(s’")l} can be replaced by an upper bound (for instance a VC based

one)...

601

Outline

Statistical Learning:
PAC-Bayesian Approach and
Complexity Theory

e Statistical Learning: PAC-Bayesian Approach and
Complexity Theory

@ References

602

Refe rences Statistical Learning:

PAC-Bayesian Approach and
Complexity Theory

Ch. Giraud.
Introduction to High-Dimensional Statistics.
CRC Press, 2014

M. Mohri, A. Rostamizadeh, and A. Talwalkar.
Foundations of Machine Learning (2nd ed.)
MIT Press, 2018

S. Shalev-Shwartz and S. Ben-David.
Understanding Machine Learning.
Cambridge University Press, 2014

UNDERSTANDIN
MACHINE
LEARNING

603

Licence and Contributors Statistical Learning:

PAC-Bayesian Approach and
Complexity Theory

Creative Commons Attribution-ShareAlike (CC BY-SA 4.0)

@ You are free to:
@ Share: copy and redistribute the material in any medium or format
@ Adapt: remix, transform, and build upon the material for any purpose, even commercially.

@ Under the following terms:
@ Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in

any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
@ ShareAlike: If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the

original.
@ No additional restrictions: You may not apply legal terms or technological measures that legally restrict others from doing anything

the license permits.

Contributors
@ Main contributor: E. Le Pennec
@ Contributors: S. Boucheron, A. Dieuleveut, A.K. Fermin, S. Gadat, S. Gaiffas,
A. Guilloux, Ch. Keribin, E. Matzner, M. Sangnier, E. Scornet. 604

O Utl | ne References

e References

605

Refe rences References

[o—

T. Hastie, R. Tibshirani, and J. Friedman.
The Elements of Statistical Learning.
Springer Series in Statistics, 2009

M. Mohri, A. Rostamizadeh, and A. Talwalkar.
Foundations of Machine Learning (2nd ed.)
MIT Press, 2018

A. Géron.

Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow (3rd
ed.)

O’Reilly, 2022

Ch. Giraud.
Introduction to High-Dimensional Statistics.
CRC Press, 2014

S. Bubeck.
Convex Optimization: Algorithms and Complexity.
Now Publisher, 2015

606

Licence and Contributors

Creative Commons Attribution-ShareAlike (CC BY-SA 4.0)

@ You are free to:
@ Share: copy and redistribute the material in any medium or format
@ Adapt: remix, transform, and build upon the material for any purpose, even commercially.

@ Under the following terms:
@ Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in

any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
@ ShareAlike: If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the

original.
@ No additional restrictions: You may not apply legal terms or technological measures that legally restrict others from doing anything

the license permits.

Contributors
@ Main contributor: E. Le Pennec
@ Contributors: S. Boucheron, A. Dieuleveut, A.K. Fermin, S. Gadat, S. Gaiffas,
A. Guilloux, Ch. Keribin, E. Matzner, M. Sangnier, E. Scornet. 607

	Statistical Learning: Introduction, Setting and Risk Estimation
	Introduction
	Machine Learning
	Supervised Learning
	Risk Estimation and Model Selection
	Cross Validation and Test
	References
	

	ML Methods: Probabilistic Point of View
	Motivation
	Supervised Learning
	A Probabilistic Point of View
	Parametric Conditional Density Modeling
	Non Parametric Conditional Density Modeling
	Generative Modeling
	Model Selection
	Penalization
	

	ML Methods: Optimization Point of View
	Supervised Learning
	Optimization Point of View
	SVM
	Penalization
	Cross Validation and Weights
	

	Optimization: Gradient Descent Algorithms
	Introduction
	Gradient Descent
	Proximal Descent
	Coordinate Descent
	Gradient Descent Acceleration
	Stochastic Gradient Descent
	Gradient Descent Step
	Non-Convex Setting
	References
	

	ML Methods: Neural Networks and Deep Learning
	Introduction
	From Logistic Regression to NN
	NN Optimization
	NN Regularization
	Image and CNN
	Text, Recurrent Neural Networks and Transformers
	NN Architecture
	References
	

	ML Methods: Trees and Ensemble Methods
	Trees
	Bagging and Random Forests
	Boosting
	Ensemble Methods
	References
	

	Unsupervised Learning: Dimension Reduction and Clustering
	Unsupervised Learning?
	A First Glimpse
	Dimension Reduction
	Clustering
	Generative Modeling
	Applications to Text
	References
	

	Statistical Learning: PAC-Bayesian Approach and Complexity Theory
	Supervised Learning
	Empirical Risk Minimization
	References
	

	References
	

	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

