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Machine Learning
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Sources: MyCarDoesWhat.org/theverge.com/Zhigiang Wan et al.
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Machine Learnlng Introduction

Dat —
s Classical
. ——— Answers
Rules ——) Programming

Data ——>
Machine > Rules
Answers ——) Learning

A definition by Tom Mitchell

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E.
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ObJeCt DeteCtIOn Introduction

A detection algorithm:

@ Task: say if an object is present or not in the image
o Performance: number of errors

o Experience: set of previously seen labeled images
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Artlde ClUStel’Ing Introduction

= Google News Q

Top Stories

An article clustering algorithm:

@ Task: group articles corresponding to the same news
o Performance: quality of the clusters

o Experience: set of articles
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Smal't Grld COI’]tFOler Introduction

Grid
—

Smart meter

Battery Electrical vehicle

A controler in its sensors in a home smart grid:

@ Task: control the devices

o Performance: energy costs
o Experience:

e previous days
e current environment and performed actions
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Three KlndS Of Learnlng Introduction

o Elicitation  Fraud @ Refenfion
Detection ®

Mearingful PoutEmaue

compresiion ®

OIMENSIONALY
REDUCTION

® Diognostics
Big data
Visvalisation

o Forecasting

Recommended

UNSUPERVISED SUPERVISED

Systems ® LEARNING LEARNING @ Predictions
ey 3
. .
Customer New Insights
Segmentaton
p——
Real-Time Decisions ® ® Robot Nuvvjahon
Game Al ® ® Skill Aquisition
Unsupervised Learning Supervised Learning Reinforcement Learning
@ Task: @ Task: @ Task:
Clustering/DR Prediction/Classification Actions
@ Performance: @ Performance: @ Performance:
Quality Average error Total reward
. . - o
@ Experience: @ Experience: @ Experience: <
Raw dataset Good Predictions Reward from env. g
(No Ground Truth) (Ground Truth) (Interact. with env.) 3

@ Timing: Offline/Batch (learning from past data) vs Online (continuous learning)
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Supervised and Unsupervised Introduction

Supervised Learning (Imitation)
@ Goal: Learn a function f predicting a variable Y from an individual X.
e Data: Learning set with labeled examples (X;, Y)

Assumption: Future data behaves as past datal
Predicting is not explaining!
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Supervised and Unsupervised Introduction

Supervised Learning (Imitation)
@ Goal: Learn a function f predicting a variable Y from an individual X.
e Data: Learning set with labeled examples (X;, Y)

@ Assumption: Future data behaves as past datal
@ Predicting is not explaining!
Unsupervised Learning (Structure Discovery)

@ Goal: Discover a structure within a set of individuals (X;).
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e Data: Learning set with unlabeled examples (X;)
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@ Unsupervised learning is not a well-posed setting. ..



Machine Can and Cannot Introduction

Machine Cannot

Forecast (Prediction using the past) @ Predict something never seen before

Detect some changes Detect any new behaviour
Create something brand new

Understand the world

Memorize/Reproduce
Take a decision very quickly
Get smart really fast
Go beyond their task
Kill all humans

Learn from huge dataset
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Replace/Help some humans

@ Some progresses but still very far from the singularity. . .
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Machine Leal’nlng Introduction

scikit-learn
algorithm cheat-sheet

classification

dimensionality
reduction

Machine Learning Methods

@ Huge catalog of methods,

@ Need to define the performance,
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@ Numerous tricks: feature design, hyperparameter selection. . .
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Under and Over Fitting Introduction

e e B
B B1x B Byx + B2 B0 Bux * B2 * Byx2+ B2
High bias (underfit) Hig'ho::nla‘r;ze o6
% X
X X
X X X
X
X XXX X XXX X
XX X XX X
Under-fitting Appropriate-fitting Over-fitting
(too simple to (forcefitting-too
explain the variance) good to be true) DG

Finding the Right Complexity

@ What is best?

o A simple model that is stable but false? (oversimplification)
e A very complex model that could be correct but is unstable? (conspiracy theory)
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@ Neither of them: tradeoff that depends on the dataset.
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Machine Learning Pipeline Introduction

TRAINING

model training

Training
Set

Machine
Learning

Validation
Set

Raw data &
target

hyperparameters tuning
model selection

evaluation

Test Set

PREDICTING [

Feature .
New data Engil ing Predict Target

Learning pipeline

@ Test and compare models.

o
c
3
o
o

2

o

O
[
2
F
<3

]

@ Deployment pipeline is different!
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Data Science # Machine Learning Introducion

Main DS difficulties

@ Figuring out the problem,

Bourguignat

e Formalizing it,

@ Storing and accessing the data,

Source: Ch.

@ Deploying the solution,
o Not (always) the Machine Learning part!
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OUtI | ne Introduction

o Introduction

@ Motivation
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Optical Character Recognition Introduction
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Reading a ZIP code on an envelop
e Task: give a number from an image.

e Experience: X = image / Y = corresponding number.
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@ Performance measure: error rate.
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BiO | Ogy Introduction
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Task: Predict (unknown) interactions between proteins.
Experience: X = pair of proteins / Y = existence or no of interaction.

(]
@ Performance measure: error rate.
o

Source: Unknown

Numerous similar questions in bio(informatics): genomic,. ..
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DeteCtlon Introduction

New Algorithms for Complex Data
New Mexico, USA , 2015

Face detection

@ Task: Detect the position of faces in an image

Different setting?

Reformulation as a supervised learning problem.

Task: Detect the presence of faces at several positions and scales.
Experience: X = sub image / Y = presence or no of a face. ..
Performance measure: error rate.

Lots of detections in an image: post processing required. . .
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Performance measure: box precision.
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E Uca |ypt u S Introduction

Height estimation

Simple (and classical) dataset.

Task: predict the height from circumference.
Experience: X = circumference /
Y = height.

Performance measure: means squared error.
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O Utl | ne A Practical View

e A Practical View
@ Method or Models
@ Interpretability
@ Metric Choice
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O Utl | ne A Practical View

e A Practical View
@ Method or Models

23



What is a Method?

A Practical View

A Standard Machine Learning Pipeline
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A Learning Method

e Formula/Algorithm allowing to make predictions

@ Algorithm allowing to chose this formula/algorithm
e Data preprocessing (cleansing, coding. .. )
@ Optimization criterion for the choice!
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Simple Approach: Similarity A Practical View
. v
“occo ? ?

Similarity
@ Imitate the answer to give by mixing answers to similar questions (k nearest
neighbors)

@ Require to search for those similar questions for each request

o Not always very efficient but fast to build (less to use...)
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@ Easy to understand and rather stable
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Simple Formula: Linear Method A Practical View

¥ =0by+DbyX 4= LinearModel

P Logistic Model
oy
/ P =¥ emertin)

Linear Method

@ Simple formula: ag + aX® 4.4 adX(d)
@ Imitate the answer to give (linear regression) or a transformation of the
conditional probability of the category (logistic regression)

@ Numerous variations on the parameter optimization (penalization, SVM,. . .)
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@ Pretty efficient and fast to build

@ Easy to understand and rather stable
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Simple Algorithm: Tree

A Practical View

sex = mal @\

age>=9.5

N
died i _
660 136, sibsp >= 2.5
died survived
191 324

@ Construction of a decision tree

plass = 3rd
e

i - survived

sibsp >_is e
died age >=16
183 -

- Survived

pareh >_i5

died sibsp >= 1.5
81 ~
g'eg age >=28

o~
died
age <22
died survived
15 11 28 46

@ Impossible to really optimize but good tree can be obtained
@ Not always very efficient but very quick to build

@ Very easy to understand but not really stable
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Combing Simple Things: Ensemble A Practical View

Ensemble Methods

o Strategy:

e Bagging: construction of variations in parallel and averaging (random forest)
o Boosting: construction of sequential improvements (XGBoost, Lightgbm)
e Stacking: Use of a first set of predictors as features

@ Very good performance for structured data but quite slow to build
@ Stable but hard to understand
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Chain Simple Things: Deep Learning A Practical View

A mostly complete chart of

omewmea  Neural Networks [

EREIHS RS vl

e XX .:tf;s

e

Deep Learning

@ Chain of simple formulae (Neural Network)

@ Joint optimization
@ Very good performance for unstructured data but slow to build

e Mildly stable and very hard to understand
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Methods: Pros and Cons A Practical View

Method H Performance ‘ Training Speed ‘ Inf. Speed ‘ Stability ‘ Interpretability

Similarity - 0 - + +
Linear + ++ ++ ++ +
Tree - ++ ++ - ++
Ensemble ++ - + ++ -
Deep ++ - - - -

Take Away Message

@ No unanimously best solution
@ Impossible to guess which method is going to be the best!

@ A good practice is to always try a linear method as well as an ensemble one for
structured data or deep one for unstructured data

30



PI’epI’OCGSSI ng A Practical View

Preprocessing

@ Art of creating sophisticated representations of initial data
@ Key for good performances

@ Examples: individual transformation, variable combination, category (and text)
coding. . .

Source: inovex

o Important part of the learning method
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Methods/Models in Machine Learning

scikit-learn

algorithm cheat-sheet

classification

dimensionality
reduction

ssssssss

Huge catalog of methods,

°
@ Need to define the performance,
@ Need to represent well the data
°

Need to choose the best method yielding a good model

A Practical View
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Under and Over Fitting A Practical View

e e B
B B1x B By + Ox2 By Brx * Byx2 + Byx2e B2
High bias (underfit) Hig'ho::nla‘r;ze o6
% X
X X
XXox x X
X
X XXX X XXX X
XX X XX X
Under-fitting Appropriate-fitting Over-fitting
(too simple to (forcefitting-too
explain the variance) good to be true) DG

Finding the Right Complexity

@ What is best?

o A simple model that is stable but false? (oversimplification)
e A very complex model that could be correct but is unstable? (conspiracy theory)
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@ Neither of them: tradeoff that depends on the dataset.
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Which Method to Use? A Practical View

| degree
— 1

Competition between several polynomial models.

@ Toy model where everuthing is known.
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Over-fitting

Model Prediction Error

Wealth Wealth

Prediction Error
for New Data

Training Error

o 5 6

-

Model Complexity

A Practical View

Source: A. Ng
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M L Plpel | ne A Practical View

TRAINING

model training

Training
Set

Machine
Learning

Validation
Set

Raw data &
target

hyperparameters tuning
model selection

evaluation

Test Set

PREDICTING [

Feature

New data Engil ing Predict Target

Learning pipeline

@ Test and compare models.

Source: CDiscount

@ Deployment pipeline is different!
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CI’OSS Validation PrinCiple A Practical View

Purpose . Modeling . Performance

------------------------ Random Data Groupings -----============zzzzz==>

@ Train a model and check its quality on diffent pieces of the data.
Purpose . Modeling . Performance

Resample 1
Resample 2
Resample 3
Resample 4

Resample 5

@ Check the quality of a method by repeating the previous approach.

o Beware: a different predictor is learnt for each split.

Source: M. Kiihn
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The Full Cross Validation Scheme

A Practical View

‘ Original set

‘ Training set ‘ Test set

‘ Training set i Validation set ‘ Test set

Training, tuning, and

evaluation m
Machine learning u

algorithm

Predictive Model\lf.
—J Final performance estimate

@ Most important part of machine learning.

@ Automatic choice of model possible by (intelligent ?) exploration. . .
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Best Polynomial A Practical View

Competition results

@ The true model is not the winner!
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O Utl | ne A Practical View

e A Practical View

@ Interpretability
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I nterpl’etatlon ? A Practical View

1=0.791
P<0.0001

usion

Nobe Laaresesper 10 Wil

3 )
Chocsste Consumption keyr/cspts)

Is this that easy?

@ Simple formula setting:
Y ~ £(X) = ag + aiX® + apX® ... 4 g xX()

@ Beware of the interpretation!
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@ Everything being equal. .. Correlation is not causality. ..
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Interpl’eta blllty A Practical View

Today

- Why did you do that?
- why, 2

Training Machine Leamed
pata [ ™9 Funciion
Process

XAl

New
Training || Machine || Explainable | Explanation
Data Leaming Model | Interface
Process

Intepretability or Explainability

@ Interpretability: possibility to give a causal aspect to the formula.

@ Explainability: possibility to find the variables having an effect on the decision and
their effect.

@ Explainability is much easier than interpretability.
@ Transparency (on the datasets, the criterion optimized and the algorithms) yields
already a lot of information.
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eXplainable Al (XAl)

A Practical View

@ Data Explaination.
@ Use of explainable methods (linear?).
@ Use of black box methods:
o Global explanation (variable importance)
o Local explanation (linear approximationn, alternative scenario. . .)
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o Causality very hard to access without a real experimental plan with interventions!
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O Utl | ne A Practical View

e A Practical View

@ Metric Choice

44



Metric and Solution

A Practical View

Quality metric has a strong impact on the solution.

@ Implicite encoding rather than an explicit one!
@ Often simplified criterion in the optimization part.

@ More involved criterion can be used in evaluation.

Source: J. Marshall
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Supervised Performance Metrics A Practical View

Measure of the cost of not being perfect!

o Criterion used to optimize the predictor and/or evaluate its interest.

@ Classical metrics: quadratic error, zero/one error.

@ Many other possible choices, idealy encoding domain expertise (asymmetry. .. )
o

The criterion can be different between optimization and evaluation because of
computation requirements.
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Very important factor (too) often neglicted.
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Unsupervised Performance Metrics A Practical View

Measure the quality of the result!

e Dimension Reduction / Representation: reconstruction quality, relationship
preservation. . .

o Clustering: measure of intra-group proximity and inter-group difference?

@ Very subjective criterion!

@ Hard to define the right distances especially for discrete variables.

@ In practice, quality often evaluated by the a posteriori interest.
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Fairness

A Practical View

@ Very hard to specify criterion.
@ No consensus on its definition:
e faithful reproduction of the reality?
e correction of its bias?
@ Current approaches through constraints in the optimization.
@ A posteriori verification unavoidable!
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What About the Data Bias? A Practical View

Central assumption: representativity of the datal!

e Optimization made in this setting.
@ Possible training data bias:
e selection bias in the data
e population evolution
o (historical) bias in the targets
@ Correction possible at least up to a certain point for the 2 first cases if one is
aware of the situation.

Source: A. Damian

N
©



O Utl | ne A Better Point of View

e A Better Point of View
@ The Example of Univariate Linear Regression
@ Supervised Learning
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O Utl | ne A Better Point of View

e A Better Point of View
@ The Example of Univariate Linear Regression
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Euca |ythS A Better Point of View

@ Simple (and classical) dataset.

@ Goal: predict the height from circumference
@ X = circ = circumference.

e Y = ht = height.
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Euca |ythS A Better Point of View

Linear Model

@ Parametric model:

fa(circ) = BY 4 s@cire

@ How to choose = (8(1), g(2))?
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Least Sq uares A Better Point of View

Methodology

@ Natural goodness criterion:

oY= f(X)? = Iht; — fg(cire))?
i=1 i=1
=Y |ht; — (BY + gPcirc;)?
i=1

@ Choice of [ that minimizes this criterion!

n
B = argmin Z |hj — (5(1) + ﬁ(2)circ;)]2
BER? i1

@ Easy minimization with an explicit solution!
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P I’ed ICtIOn A Better Point of View

50
circ

@ Linear prediction for the height:
ht = fg(circ) =30 4+ g@circ

55



Heu ristic A Better Point of View

Linear Regression
e Statistical model: (circ;,ht;) i.i.d. with the same law as a generic (circ,ht).
e Performance criterion: Look for f with a small average error
E Uht - f(circ)|2}
@ Empirical criterion: Replace the unknown law by its empirical counterpart
1 n
= Z Int; — f(circ;)[?
n“
i=1
@ Predictor model: As the minimum over all function is 0 (if all the circ; are
different), restrict to the linear functions f(circ) = f(1) + @ circ to avoid
over-fitting.

e Model fitting: Explicit formula here.

@ This model can be too simple!
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Polynomial Regression A Better Point of View

30~

E20-

30 a0 50 60 70

Polynomial Model

@ Polynomial model: fz(circ) = >F ; fcirc!~?

@ Linear in £5.
@ Easy least squares estimation for any degree!
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Wh |Ch Degree7 A Better Point of View

@ Increasing degree = increasing complexity and better fit on the data
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Wh |Ch Degree7 A Better Point of View

@ Increasing degree = increasing complexity and better fit on the data

58



Wh |Ch Degree7 A Better Point of View

@ Increasing degree = increasing complexity and better fit on the data
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Wh |Ch Degree7 A Better Point of View

@ Increasing degree = increasing complexity and better fit on the data
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Wh |Ch Degree7 A Better Point of View

@ Increasing degree = increasing complexity and better fit on the data
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Wh |Ch Degree7 A Better Point of View

@ Increasing degree = increasing complexity and better fit on the data
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Wh |Ch Degree? A Better Point of View

@ How to choose among those solutions? 59



Over_flttl ng ISSUG A Better Point of View

Underfit
(High bias)

Generalization
error

Error

Overfit
(High
variance)

Training error

Model complexity

Risk behavior

@ Training error (empirical error on the training set) decays when the complexity of
the model increases.

@ Quite different behavior when the error is computed on new observations (true
risk / generalization error).

@ Overfit for complex models: parameters learned are too specific to the learning set!
@ General situation! (Think of polynomial fit...)
@ Need to use another criterion than the training error!
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Cross Validation and Penalization A Better Point of View

Two directions
@ How to estimate the generalization error differently?

e Find a way to correct the empirical error?

Two Approaches

@ Cross validation: Estimate the error on a different dataset:

o Very efficient (and almost always used in practice!)
e Need more data for the error computation.

@ Penalization approach: Correct the optimism of the empirical error:
o Require to find the correction (penalty).
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Univariate Regression A Better Point of View

How to build a model?

How to fit a model to the data?
How to assess its quality?

How to select a model among a collection?

How to guaranty the quality of the selected model?
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O Utl | ne A Better Point of View

e A Better Point of View

@ Supervised Learning

63



Supervised Learning A Better Point of View

Supervised Learning Framework

@ Input measurement X € X
o Output measurement Y € ).
o (X,Y) ~ P with P unknown.
@ Training data : D, = {(X{, Y1),...,(X,, Ya)} (i.id. ~P)
e Often
o XeRYand Y € {—1,1} (classification)
o or X € RY and Y € R (regression).
@ A predictor is a function in F = {f : X — ) meas.}

e Construct a good predictor f from the training data.

@ Need to specify the meaning of good.
o Classification and regression are almost the same problem!
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Loss and Probabilistic Framework A Better Point of View

Loss function for a generic predictor

@ Loss function: /(Y,f(X)) measures the goodness of the prediction of Y by f(X)
@ Examples:

o 0/1loss: £(Y,f(X)) = Lyxe(x)

o Quadratic loss: (Y, f(X)) =|Y — f(X)|?

@ Risk measured as the average loss for a new couple:
R(f) = Ex,v)~p[4(Y, f(X))]
@ Examples:
o 0/1 loss: E[(Y,f(X))] = (Y f(X))
e Quadratic loss: E[((Y,f(X))] =E[|Y — f(X)|]

e Beware: As f depends on D,,, R(f) is a random variable!
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Best SOl ution A Better Point of View

@ The best solution f* (which is independent of D,) is
f* = arg )rrng(f) = arg m|n ]E[E(Y f(X))] = arg m|n Ex [Ey|X[E(Y f(X ))]}
€

Bayes Predictor (explicit solution)

e In binary classification with 0 — 1 loss:
+1 if P(Y=+1X)>P(Y=-1X)
(X) = < P(Y =+1|X) >1/2
—1 otherwise

o In regression with the quadratic loss
F(X) = E[Y|X]

Issue: Solution requires to know E[Y|X] for all values of X!
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Goal A Better Point of View

Machine Learning

@ Learn a rule to construct a predictor f € F from the training data D, s.t. the

~

risk R(f) is small on average or with high probability with respect to D,,.

@ In practice, the rule should be an algorithm!

Canonical example: Empirical Risk Minimizer
@ One restricts f to a subset of functions S = {fp,0 € O}

@ One replaces the minimization of the average loss by the minimization of the
empirical loss

= 10
f=rf=argmin=>) LY fr(X;))
O fhco n ,Z::I ' :
@ Examples:
e Linear regression
e Linear classification with

S = {x > sign{x" 8+ 8O0} /3 e RY BO c R}
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Example: TwoClass Dataset A Better Point of View

Synthetic Dataset

e Two features/covariates.

@ Two classes.

Dataset from Applied Predictive Modeling, M. Kuhn and K. Johnson, Springer
Numerical experiments with R and the {caret} package.
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Example: Linear Discrimination

A Better Point of View

Logistic
Decision region Decision boundary
=
0.8 06- ® o |
Cg classes % ’ g ©  classes
% 0.4 . Class1 % 0.4- > @ Classi
& B class2 £ @ Class2

=
[}

02 0.4 06 0.2 04 06
PredictorA PredictorA
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Example: More Complex Model

A Better Point of View

Naive Bayes with kernel density estimates

Decision region Decision boundary

=
=3

=1
=1
U
]
o
-

Cg classes % classes

% 04 B ciasst % 04~ ® Classi

& B class2 £ @ Class2
02

=
b
'

0.2 04 06
PredictorA

02 0.4 06
PredictorA
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Euca |ythS A Better Point of View

circ

Dataset - P.A. Cornillon

@ Real dataset of 1429 eucalyptus obtained by P.A. Cornillon:
e X: circumference / Y: height
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Euca |ythS A Better Point of View

circ

Dataset - P.A. Cornillon

@ Real dataset of 1429 eucalyptus obtained by P.A. Cornillon:
e X: circumference / Y: height
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Euca |ythS A Better Point of View

circ

Dataset - P.A. Cornillon

@ Real dataset of 1429 eucalyptus obtained by P.A. Cornillon:
e X: circumference / Y: height
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Euca |ythS A Better Point of View

circ

Dataset - P.A. Cornillon

@ Real dataset of 1429 eucalyptus obtained by P.A. Cornillon:
e X: circumference, block, clone / Y: height

71



Under-fitting / Over-fitting Issue

ho(z) = g(0g + bhxy + Oax2) g(0y + 0171 + 212 9(6o '|2' 0z + 92_)12%
( g = sigmoid function) +632F + 0473 +03x7T0 + 042723
+05I1.I,'2)
UNDERFITTING OVERFITTING

(high variance)

(high bias)

Model Complexity Dilemna
@ What is best a simple or a complex model?
@ Too simple to be good? Too complex to be learned?

A Better Point of View

+O0s22x3 + Osaias + ...

Source: A. Ng
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Under-fitting / Over-fitting Issue A Better Point of View

High Bias Low Bias
Low Variance High Variance
S

Prediction Error

Test error
Training error

Underfitting Good models Overfitting

Low Complexity of the model High

Under-fitting / Over-fitting

e Under-fitting: simple model are too simple.

2
<]
<
=
>
o
g
=
<]
%)

@ Over-fitting: complex model are too specific to the training set.
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Bias-Variance Dilemma ‘ A Better Point of View
@ General setting:

o F = {measurable functions X — )}
o Best solution: f* = argming. » R(f)

e Class § C F of functions

o Ideal target in S: & = argmin,cs R(f)

e Estimate in S: ?3 obtained with some procedure

Approximation error and estimation error (Bias/Variance)

R(fs) — R(f*) = R(£) — R(F*) + R(fs) — R(£)

Approximation error Estimation error

@ Approx. error can be large if the model S is not suitable.

@ Estimation error can be large if the model is complex.

Agnostic approach

@ No assumption (so far) on the law of (X, Y).
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Under-fitting / Over-fitting Issue A Better Point of View

Underfit
(High bias)

Generalization
error

Error

Overfit
(High

variance)

Model complexity
@ Different behavior for different model complexity

e Low complexity model are easily learned but the approximation error (bias) may
be large (Under-fit).
@ High complexity model may contain a good ideal target but the estimation error
(variance) can be large (Over-fit)
Bias-variance trade-off <= avoid overfitting and underfitting J

@ Rk: Better to think in term of method (including feature engineering and specific
algorithm) rather than only of model.
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Theoretical Analysis A Better Point of View

Statistical Learning Analysis

@ Error decomposition:
R(fs) — R(f*) = R(£5) — R(f") + R(fs) — R(fs)
Approximation error Estimation error

Bound on the approximation term: approximation theory.

Probabilistic bound on the estimation term: probability theory!

Goal: Agnostic bounds, i.e. bounds that do not require assumptions on P!
(Statistical Learning?)

Often need mild assumptions on ... (Nonparametric Statistics?)
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Binary Classification Loss Issue A Better Point of View

2 -5 1 05 y*fEEX) 05 1 15 2
Empirical Risk Minimizer
~ 10
f = argmin — Zﬁo/l(Y;, f(X;))
fes n i=1

e Classification loss: ¢%/1(y, f(x)) = 1, (%)
@ Not convex and not smooth!

7



Probabilistic Point of View A Better Point of View
Ideal Solution and Estimation

@ The best solution f* (which is independent of D) is
f*=arg I';nI]r_lR(f) = arg m|n E[E(Y f(X))] = arg m|n Ex {EY‘X[E(Y f(x ))]]
€

Bayes Predictor (explicit solution)

In binary classification with 0 — 1 loss:
1 if P(Y=+1|X)>P(Y =-1|X
iy = [T B(Y = 11X) 2 B X)
—1 otherwise

@ Issue: Solution requires to know E[Y|X] for all values of X!

@
i
<
@
e
5
[}
n

@ Solution: Replace it by an estimate.
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Optimization Point Of VIeW A Better Point of View
Loss Convexification

E 05 1 18

0
bl

Minimizer of the risk

~ 1<
f = argmin = Zﬁo/l(yiv f(X5))
fes N4

@ Issue: Classification loss is not convex or smooth.

@ Solution: Replace it by a convex majorant.
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Probabilistic and Optimization Framework A Better Point of View
How to find a good function f with a small risk

R(F) = B[((Y, F(X))] 7
Canonical approach: fs = argminges 2 30 (Y5, F(X)))

Problems
@ How to choose §?

@ How to compute the minimization?

A Probabilistic Point of View

Solution: For X, estimate Y|X plug this estimate in the Bayes classifier:
(Generalized) Linear Models, Kernel methods, k-nn, Naive Bayes, Tree,

Bagging. . .

An Optimization Point of View

Solution: If necessary replace the loss ¢ by an upper bound Z and minimize the
empirical loss: SVR, SVM, Neural Network, Tree, Boosting. . .
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OUtI Ine Risk Estimation and Method 4
Choice

o Risk Estimation and Method Choice
@ Cross Validation
@ Cross Validation and Test
@ Cross Validation and Weights
@ Auto ML

81



OUtI Ine Risk Estimation and Method 4

Choice

o Risk Estimation and Method Choice
@ Cross Validation

82



Exa m ple TWOClaSS Dataset Risk Estimation and Method

Choice

Synthetic Dataset

e Two features/covariates.

@ Two classes.

Dataset from Applied Predictive Modeling, M. Kuhn and K. Johnson, Springer
Numerical experiments with R and the {caret} package.
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Example: Linear Discrimination

Decision region

PredictorB
o o
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Risk Estimation and Method 4

Decision boundary
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Example: More Complex Model

Naive Bayes with kernel density estimates

Decision region
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Decision boundary
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Risk Estimation and Method 4
Choice
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@ Classi
) Class2
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Example: KNN

k-NN with k=1
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Example: KNN

k-NN with k=5

Decision region
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Example: KNN

k-NN with k=9

Decision region
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Example: KNN

k-NN with k=13

Decision region
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Example: KNN

k-NN with k=17
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Example: KNN

k-NN with k=21

PredictorB
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Example: KNN

k-NN with k=25
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Example: KNN

k-NN with k=29
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Example: KNN

k-NN with k=33
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Example: KNN

k-NN with k=37

PredictorB

=
=3

=
IS

=
[}

Decision region

02 0.4
PredictorA

classes

B ciasst
B class2

PredictorB

06-

04~

02-

Decision boundary

02

04
PredictorA

~ og‘;

'
06

Risk Estimation and Method 4
Choice

classes

@ Classi
) Class2

86



Example: KNN

k-NN with k=45
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Example: KNN

k-NN with k=53
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Example: KNN

k-NN with k=61
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Example: KNN

k-NN with k=69
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Example: KNN

k-NN with k=77
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Example: KNN

k-NN with k=85
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Example: KNN

k-NN with k=101
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Example: KNN

k-NN with k=109
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Example: KNN

k-NN with k=117
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Example: KNN

k-NN with k=125
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Example: KNN

k-NN with k=133
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Example: KNN

k-NN with k=141
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Example: KNN

k-NN with k=149
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Example: KNN

k-NN with k=157
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Example: KNN

k-NN with k=165
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Example: KNN

k-NN with k=173
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Example: KNN

k-NN with k=181
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Example: KNN

Risk Estimation and Method 4
Choice

k-NN with k=189
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Example: KNN

Risk Estimation and Method 4
Choice

k-NN with k=197
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Training Risk Issue

Risk Estimation and Method 4
Choice

Underfit

Generalization
High bi
( ' IaS) error

Error

Overfit
(High
variance)

Training error

Model complexity

Risk behaviour

@ Learning/training risk (empirical risk on the learning/training set) decays when
the complexity of the method increases.

@ Quite different behavior when the risk is computed on new observations
(generalization risk).

@ Overfit for complex methods: parameters learned are too specific to the learning
set!

@ General situation! (Think of polynomial fit...)

@ Need to use a different criterion than the training risk!
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Risk Estimation vs Method Selection Risk Estimation and Method /)

Choice

Predictor Risk Estimation
@ Goal: Given a predictor f assess its quality.
@ Method: Hold-out risk computation (/ Empirical risk correction).
@ Usage: Compute an estimate of the risk of a selected f using a test set to be
used to monitor it in the future.

@ Basic block very well understood.

Method Selection
@ Goal: Given a ML method assess its quality.
@ Method: Cross Validation (/ Empirical risk correction)

o Usage: Compute risk estimates for several ML methods using
training/validation sets to choose the most promising one.

@ Estimates can be pointwise or better intervals.

@ Multiple test issues in method selection. 88



Cross Validation and Empirical Risk Correction Risk Estimation and Method 2K

Choice

Two Approaches

@ Cross validation: Use empirical risk criterion but on independent data, very
efficient (and almost always used in practice!) but slightly biased as its target uses
only a fraction of the data.

@ Correction approach: use empirical risk criterion but correct it with a term
increasing with the complexity of S
Ro(fs) = Ra(fs) + cor(S)
and choose the method with the smallest corrected risk.

Which loss to use?
@ The loss used in the risk: most natural!

@ The loss used to estimate 0: penalized estimation!

@ Other performance measure can be used.
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C ross Va | id atIO n Risk Estimation and Method 4

Choice
Purpose Modeling Performance
Resample
< -m-mmeemsmmmeeeeeooo---- Random Data Groupings -------------===-------- >
e Very simple idea: use a second learning/verification set to compute a verification

risk.
o Sufficient to remove the dependency issue!
@ Implicit random design setting. . .
Cross Validation

@ Use (1 — €) x n observations to train and € x n to verify!

@ Possible issues:
e Validation for a learning set of size (1 — ¢) X n instead of n ?
o Unstable risk estimate if en is too small 7 )

@ Most classical variations:
e Hold Out,
e Leave One Out,
e V-fold cross validation.

Source: M. Kiihn
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Hold OUt Risk Estimation and Method é
Principle . o
@ Split the dataset D in 2 sets Dirain and Diest 0f size n X (1 —¢) and n X €.
o Learn MO from the subset Dirain.
@ Compute the empirical risk on the subset Dieg::

LY v o))

RHO(?HO) =
(X;,Yi)EDxest

Predictor Risk Estimation

o Use FHO as predictor.
o Use RHMO(fHO) as an estimate of the risk of this estimator.

Method Selection by Cross Validation

e Compute R,,HO(?SHO) for all the considered methods,
@ Select the method with the smallest CV risk,
@ Reestimate the ?5 with all the data. 01



Hold OUt Risk Estimation and Method é
Principle . o
@ Split the dataset D in 2 sets Dirain and Diest 0f size n X (1 —¢) and n X €.
o Learn MO from the subset Dirain.
@ Compute the empirical risk on the subset Dieg::

LY v o))

RHO(?HO) =
n
ne (X;,Yi)EDxest

@ Only possible setting for risk estimation.

Hold Out Limitation for Method Selection
@ Biased toward simpler method as the estimation does not use all the data initially.

e Learning variability of RHO(£HO) not taken into account.
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Choice

V-fold Cross Validation I - Risk Estimation and Method X

=]
X
=
o
g
=
<]
%)

Principle
@ Split the dataset D in V sets D, of almost equals size.
@ Forve{l, . 6V}
o Learn £~V from the dataset D minus the set D,.
e Compute the empirical risk:

—V(T—Vv\ _ i - T—v
R == D UYL (X)
@ Compute the average empirical risk:

@ Estimation of the quality of a method not of a given predictor.
@ Leave One Qut : V = n.
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V—fOld Cross Validation Risk Estimation and Method [“

Choice

Analysis (when n is a multiple of V)

~

@ The R,Y(f~") are identically distributed variable but are not independent!

@ Consequence:
E[RSY(F)| = E[R;"(F™)]

N 1 N
cv _ —Vv(f—vVv
Var [REV(F)] = 3 Var (R (F)]
o Average risk for a sample of size (1 — &)n.

@ Variance term much more complex to analyze!

@ Fine analysis shows that the larger V the better. ..
@ Accuracy/Speed tradeoff: V =5or V =10...
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Linear Regression and Leave One Out Risk Estimation and Method /YK

Choice

@ Leave One Out = V fold for V = n: very expensive in general.

A fast LOO formula for the linear regression

@ Prop: for the least squares linear regression,
f(X;) — hiY;
1— hj
with hj; the ith diagonal coefficient of the hat (projection) matrix.

(X)) =

@ Proof based on linear algebra!
@ Leads to a fast formula for LOO:
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Risk Estimation and Method

Choice

Cross Validation
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Example: KNN (k = 61 using cross-validation)

k-NN with k=61
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Tl’a | n /Va | id ation/TeSt [ Original set | Risk Estimation and Method /

| Choice

[ Training set [ Testset

‘ Training set ‘ Validation set | Test set |

4

v
\U

@ Selection Bias Issue:
o After method selection, the cross validation is biased.
e Furthermore, it qualifies the method and not the final predictor.

o Need to (re)estimate the risk of the final predictor.
(Train/Validation)/Test strategy

@ Split the dataset in two a (Train/Validation) and Test.

@ Use CV with the (Train/Validation) to select a method.

@ Train this method on (Train/Validation) to obtain a single predictor.

o Estimate the performance of this predictor on Test.
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@ Every choice made from the data is part of the method!
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RISk COI’I’eCtiOI"I Risk Estimation and Method 4

Choice

@ Empirical loss of an estimator computed on the dataset used to chose it is biased!

@ Empirical loss is an optimistic estimate of the true loss.

Risk Correction Heuristic
@ Estimate an upper bound of this optimism for a given family.

@ Correct the empirical loss by adding this upper bound.

@ Rk: Finding such an upper bound can be complicated!

@ Correction often called a penalty.
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Penalization Risk Estimation and Method £ 7

Choice

Penalized Loss

@ Minimization of

n
argmin 1 > U(Y;, f5(X;)) + pen(6)
gco N i=1

where pen(0) is a risk correction (penalty).

Penalties

@ Upper bound of the optimism of the empirical loss

@ Depends on the loss and the framework!

Instantiation

. : __nd 2
e Mallows Cp: Least Squares with pen(f) = 2907

@ AIC Heuristics: Maximum Likelihood with pen(§) = ¢

@ BIC Heuristics: Maximum Likelohood with pen(f) = log(n)¢

n-

@ Structural Risk Minimization: Pred. loss and clever penalty.
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OUtI Ine Risk Estimation and Method 4

Choice

o Risk Estimation and Method Choice

@ Cross Validation and Test

100



Comparison Of Two |\/|eans Risk Estimation and Method é"h

Choice _~,

Means

e Setting: r.v. e,-(l) with 1 </ < n;and / € {1,2} and their means
_ 1 /
e = =% e

@ Question: are the means e(/) statistically different?

Classical i.i.d setting

O]

@ Assumption: ¢; ’ are i.i.d. for each /.

o Test formulation: Can we reject the null hypothesis that E{e(l)} = E[e(z)}?

@ Methods:

o Gaussian (Student) test using asymptotic normality of a mean.
e Non-parametric permutation test.

@ Gaussian approach is linked to confidence intervals.

@ The larger n; the smaller the confidence intervals. 101



Com parison Of Two |\/|ea ns Risk Estimation and Method £ X

Choice

Non i.i.d. case

o Assumption: e,-(I) are i.d. for each / but not necessarily independent.

@ Test formulation: Can we reject the null hypothesis that E{e(l)} = E{e@)}?
e Methods:

o Gaussian (Student) test using asymptotic normality of a mean but variance is hard
to estimate.
e Non-parametric permutation test but no confidence intervals.

Setting for Cross Validation (other than holdout).

@ Much more complicated than the i.i.d. case
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Comparison of Several Means Risk Estimation and Method K

Choice

Several means

@ Assumption: e,-(l)

@ Tests formulation:

o Can we reject the null hypothesis that the E[e(’)] are different?
o Is the smaller mean statistically smaller than the second one?

Methods:
o Gaussian (Student) test using asymptotic normality of a mean with multiple tests

correction.
e Non-parametric permutation test but no confidence intervals.

are i.d. for each / but not necessarily independent.

Setting for Cross Validation (other than holdout).
The more models one compares:

e the larger the confidence intervals

e the most probable the best model is a lucky winner

Justify the fallback to the simplest model that could be the best one.
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PAC Approach Risk Estimation and Method

Choice

CV Risk, Methods and Predictors
@ Cross-Validation risk: estimate of the average risk of a ML method.

@ No risk bound on the predictor obtained in practice.

Probabibly-Approximately-Correct (PAC) Approach
@ Replace the control on the average risk by a probabilistic bound
P(E[(Y,F(X))| > R) <e

@ Requires estimating quantiles of the risk. 104



Cross Validation and Confidence Interval Risk Estimation and Method /)

Choice
@ How to replace pointwise estimation by a confidence interval?

@ Can we use the variability of the CV estimates?
o Negative result: No unbiased estimate of the variance!
Gaussian Interval (Comparison of the means and ~ indep.)
@ Compute the empirical variance and divide it by the number of folds to construct
an asymptotic Gaussian confidence interval,
@ Select the simplest model whose value falls into the confidence interval of the
model having the smallest CV risk.

PAC approach (Quantile, ~ indep. and small risk estim. error)

e Compute the raw medians (or a larger raw quantiles)

@ Select the model having the smallest quantiles to ensure a small risk with high
probability.

@ Always reestimate the chosen model with all the data.

@ To obtain an unbiased risk estimate of the final predictor: hold out risk on

105

untouched test data.



Risk Estimation and Method

Choice

Cross Validation
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OUtI Ine Risk Estimation and Method 4

Choice

o Risk Estimation and Method Choice

@ Cross Validation and Weights
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Unbalanced and Rebalanced Dataset Risk Estimation and Method /)

Choice

108

Unbalanced Class
@ Setting: One of the class is much more present than the other.

o lIssue: Classifier too attracted by the majority class!

Rebalanced Dataset

e Setting: Class proportions are different in the training and testing set (stratified
sampling)

@ Issue: Training risks are not estimate of testing risks.

Source: University of Granada



Resa m pl | ng Stl’ategies Risk Estimation and Method

Choice

Sampling: Rebalancing

the dataset Imbalanced Data

Under-sampling Over-sampling

Resampling

| ¥

@ Modify the training dataset so that the classes are more balanced.
@ Two flavors:

e Sub-sampling which spoils data,

o Over-sampling which needs to create new examples.

@ Issues: Training data is not anymore representative of testing data
e Hard to do it right!
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Resa m pl I ng Effect Risk Estimation and Method £ 7

(Toining |

@ Testing class prob.: (k) @ Training class prob.: 7 (k)
o Testing risk target: @ Training risk target:
Ex [L(Y, F(X)] = Er [E(Y, £(X))] =
Znt YE[L(Y, £(X))|Y = K] Zm, JE[(Y, F(X))|Y = K]

Implicit Testing Risk Using the Training One

@ Amounts to use a weighted loss:
Enr, [O(Y, f(X ]_Zmr JE[L(Y, F(X))|Y = K]

= Z (KE [””(k)e(v, f(X))’ Y = k}

) (k)
Ttr Y
_E, [ I f(X))]

@ Put more weight on less probable classes! 110




Welghted LOSS Risk Estimation and Method 4

Choice

@ In unbalanced situation, often the cost of misprediction is not the same for all
classes (e.g. medical diagnosis, credit lending. .. )

@ Much better to use this explicitly than to do blind resampling!

Weighted Loss

o Weighted loss:
(Y, £(X)) = (Y)Y, f(X))
o Weighted risk target:
E[C(Y)e(Y, f(X))]

@ Rk: Strong link with ¢ as C is independent of f.
o Often allow reusing algorithm constructed for /.

@ C may also depend on X. ..
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Weighted Loss, ¢%/! loss and Bayes Classifier Risk Estmation and Method X

Choice

@ The Bayes classifier is now:
f* = argmin E[C(Y){(Y, (X))] = argmin Ex [Ey x[C(Y)((Y, F(X))]]

Bayes Predictor

e For /%1 |oss,
*(X) = argmax C(k)P(Y = k|X)
k

@ Same effect than a threshold modification for the binary setting!

@ Allow putting more emphasis on some classes than others.
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Llnklng Welghts and Proportions Risk Estimation and Method /'“

Choice

Cost and Proportions

@ Testing risk target:

Er[C(YV)Y, F(X))] = D me(k) Ce(KE(Y, F(X))|Y = K]
k
@ Training risk target

Er, [Cer (V) =Y (k) Cer(K)E[L(Y, F(X))Y = K]
k
@ Coincide if

me(k) Ce(k) = mer (k) Cer (k)

@ Lots of flexibility in the choice of C;, Ci or .
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Combining Welghts and Resampling Risk Estimation and Method /'“

Choice

Weighted Loss and Resampling
@ Weighted loss: choice of a weight C; # 1.

@ Resampling: use a 7y # 7.

@ Stratified sampling may be used to reduce the size of a dataset without loosing a
low probability class!

Combining Weights and Resampling
o Weighted loss: use C;, = C; as 7y, = 7y
e Resampling: use an implicit Ci(k) = e (k)/me(k).
e Combined: use Ci (k) = Ce(k)me(k)/mer (k)

@ Most ML methods allow such weights!
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OUtI Ine Risk Estimation and Method 4

Choice

e Risk Estimation and Method Choice

@ Auto ML



AUtO M L Risk Estimation and Method 4

Choice

]
H Dataset —
EEm

AR S i
Optimization
Metric

Autornated Machine Learning
Machine Learning Meodel

_ Constraints
J | (Time/cost)

@ Automatically propose a good predictor

@ Rely heavily on risk evaluations

@ Pros: easy way to obtain an excellent baseline
@ Cons: black box that can be abused. ..

softwareengineeringdaily.com/2019/05/15 /introduction-to.

automated-machine-learning-automl/

Source
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Auto ML Task

Risk Estimation and Method 4
Choice

&£
o
2
<

=

=

o
o
5
[}

n

AutoML service User Compute et oswmiecc

3
o t
= &)

@ Input:
e adataset D = (X, Y))
e a loss function (Y, (X))

e a set of possible predictors f; 5 o corresponding to a method / in a list, with
hyperparameters h and parameters 6

o Output:

i High Quality
M viodel

e a predictor f equal to f; ; 5 or combining several such functions.
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Predictors

Risk Estimation and Method 4
Choice

A Standard Machine Learning Pipeline

[ &
=)

Predictors, a.k.a fitted pipelines

&£
o
2
<

=

=

I3
&
5
[}

n

@ Preprocessing:

o Feature design: normalization, coding, kernel. ..
e Missing value strategy
e Feature selection method

e ML Method:
e Method itself
e Hyperparameters and architecture
o Fitted parameters (includes optimization algorithm)

@ Quickly amounts to 20 to 50 design decisions!
e Bruteforce exploration impossible!
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Auto ML and Hyperparameter Optimization i Estmtion o ethod K

Choice

4
h=
@
@
<]
[a)
.
o
2
3
(<]
%

Most Classical Approach of Auto ML

@ Task rephrased as an optimization on the discrete/continous space of
methods/hyperparameters/parameters.

@ Parameters obtained by classical minimization.

e Optimization of methods/hyperparameters much more challenging.
@ Approaches:

o Bruteforce: Grid search and random search
o Clever exploration: Evolutionary algorithm
e Surrogate based: Bayesian search and Reinforcement learning
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AUtO ML and Meta_l_earning Risk Estimation and Method /'V“

Choice S
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$ waining data

oD - e - "
<|m = <'m o ('m
betormance  berformance  erformance peformanc

Learn from other Learning Tasks
@ Consider the choice of the method from a dataset and a metric as a learning task.
@ Requires a way to describe the problems (or to compute a similarity).

@ Descriptor often based on a combination of dataset properties and fast method
results.

@ May output a list of candidates instead of a single method.

@ Promising but still quite experimental!
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AUtO M L a nd Tl me Budget Risk Estimation and Method /"L‘:

Choice S

Boston Housing

- RS
- TPE
- HB
e~ BOHB

negative log-likelihood

9
8
7
6
5
4
3

1

o* 10° 10°
MCMC steps

How to obtain a good result with a time constraint?

@ Brute force: Time out and methods screening with Meta-Learning (less
exploration at the beginning)

@ Surrogate based: Bayesian optimization (exploration/exploitation tradeoff)

@ Successive elimination: Fast but not accurate performance evaluation at the
beginning to eliminate the worst models (more exploration at the beginning)

Source: A. Biedenkapp

@ Combined strategy: Bandit strategy to obtain a more accurate estimate of risks
only for the promising models (exploration/exploitation tradeoff)
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Choice

AUtO M L benCh mark Risk Estimation and Method 4

Benchmark

@ Almost always (slightly) better than a good random forest or gradient boosting
predictor.

o Worth the try!
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O Utl Ine A Probabilistic Point of View

e A Probabilistic Point of View
@ Parametric Conditional Density Modeling
@ Non Parametric Conditional Density Modeling
@ Generative Modeling

123



Three Classical Methods in a Nutshell A Probabilstic Point of View ¥

Logistic Regression

o Let fy(X) = X5+ 8O with 6§ = (8, 3®).

o Let Pp(Y = 1|X) = e 7(X) /(1 + (X))

e Estimate 6 by  using a Maximum Likelihood.
o Classify using Py(Y = 1|X) > 1/2

k Nearest Neighbors

@ For any X', define Vy as the k closest samples X; from the dataset.
o Compute a score gk = > x.cv,, 1vi=k

o Classify using arg max gx (majority vote).
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Three Classical Methods in a Nutshell A Probabilstic Point of View ¥

Quadratic Discrimant Analysis

@ For each class, estimate the mean puyx and the covariance matrix > .
o Estimate the proportion P(Y = k) of each class.
e Compute a score In(P(X|Y = k)) + In(P(Y = k))

gk(X) = — %(K — ) T HX — k)
— g In(27) — % In(|Z«]) + In(P(Y = k))

o Classify using arg max gy

@ Those three methods rely on a similar heuristic: the probabilistic point of view!
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Best SOl ution A Probabilistic Point of View X

@ The best solution f* (which is independent of D) is
f* = arg 1rcn|]r_1 R(f) = arg m|n E[E(Y f(X))] = arg m|n Ex []EHX[E(Y f(X )]}
€

Bayes Predictor (explicit solution)

e In binary classification with 0 — 1 loss:
+1 if P(Y=+1X)>P(Y=-1X)
(X) = < P(Y =+1|X) >1/2
—1 otherwise

o In regression with the quadratic loss
F(X) = E[Y|X]

Issue: Explicit solution requires to know Y|X (or E[Y|X]) for all values of X!
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PIUgI n Pred ictor A Probabilistic Point of View X

@ ldea: Estimate Y|X by VIX and plug it the Bayes classifier.

Plugin Bayes Predictor

@ In binary classification with 0 — 1 loss:
+1 if P(Y =+1X) > P(Y = —1[X)
f(X) = & P(Y = +1[X) > 1/2
—1 otherwise

@ In regression with the quadratic loss
F(X) =E[VIX]

@ Rk: Direct estimation of E[Y|X] by m also possible. ..
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P I Ugl n P red ICtOI’ A Probabilistic Point of View

@ How to estimate Y|X?

Three main heuristics

e Parametric Conditional modeling: Estimate the law of Y|X by a parametric
law Lg(X): (generalized) linear regression. . .

@ Non Parametric Conditional modeling: Estimate the law of Y|X by a non
parametric estimate: kernel methods, loess, nearest neighbors. . .

o Fully Generative modeling: Estimate the law of (X, Y) and use the Bayes
formula to deduce an estimate of Y|X: LDA/QDA, Naive Bayes. ..

@ Rk: Direct estimation of E[Y|X] by ]ETYE also possible. ..
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P I ugl n C | aSSIfler A Probabilistic Point of View £

@ Input: a data set D,
Learn Y|X or equivalently P(Y = k|X) (using the data set) and plug this
estimate in the Bayes classifier

e Output: a classifier f : RY — {—1,1}

—

()=t if P(Y = 1)X) > P(Y = —1|X)
o —1 otherwise

¥

e Can we guaranty that the classifier is good if Y|X is well estimated?
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Classification RISk Analysis A Probabilistic Point of View /"“

o If f = sign(2ps1 — 1) then
E[4(Y,F(X))] - E[@1(Y, F(X))]

<E[|IVIX — YIX])1]

< (E[2KL(YIX, @Dm

@ If one estimates P(Y = 1|.X) well then one estimates * well!
@ Link between a conditional density estimation task and a classification one!

@ Rk: In general, the conditional density estimation task is more complicated as one
should be good for all values of P(Y = 1|X) while the classification task focus on
values around 1/2 for the 0/1 loss!

@ In regression, (often) direct control of the quadratic loss. . .
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O Utl Ine A Probabilistic Point of View

e A Probabilistic Point of View
@ Parametric Conditional Density Modeling
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Parametric Conditional Density MOdGIS A Probabilistic Point of View /"“

e ldea: Estimate directly Y|X by a parametric conditional density Py(Y|X).

Maximum Likelihood Approach

@ Classical choice for 6:
n
0 = argmin — > " log Py(Yi| X))
o i=1
Goal: Minimize the Kullback-Leibler divergence between the conditional law of
Y|X and Py(Y|X)

E[KL (Y|X,Pa(Y|X))]

Rk: This is often not (exactly) the learning task!
Large choice for the family {Py(Y|X)} but depends on Y (and X).

Regression: One can also model directly E[Y|X] by fy(X) and estimate it with a
least-squares criterion. . .
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Linear Conditional Density Models A Probabiistic Point of View K

Linear Models

e Classical choice: 6 = (¢', )
Py(Y|X) = IP’KT&@(Y)
e Very strong assumption!

@ Classical examples:

Binary variable: logistic, probit. . .

Discrete variable: multinomial logistic regression. . .
Integer variable: Poisson regression. . .

Continuous variable: Gaussian regression. . .
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BI nary Classifier A Probabilistic Point of View X

Plugin Linear Classification
e Model P(Y = +1|X) by A(X "8 + 5©) with h non decreasing.
o h(X"B+p0)>1/2e XT38+ 50 —h1(1/2) >0
o Linear Classifier: sign(X' 8+ 5 — h=1(1/2))

Plugin Linear Classifier Estimation

@ Classical choice for h: .

e : -

h(t) = T logit or logistic
h(t) = Fu(t) probit
h(t)=1—e* log-log

@ Choice of the best 3 from the data.
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|\/|aximum leellhOOd Estimate A Probabilistic Point of View [“

Probabilistic Model
@ By construction, Y|X follows B(P(Y = +1|X))
@ Approximation of Y|X by B(h(x' g + 5(©))
o Natural probabilistic choice for 8: maximum likelihood estimate.

@ Natural probabilistic choice for 5: 8 approximately minimizing a distance between

B(h(xT B)) and B(B(Y = 1|X)).

Maximum Likelihood Approach
° I\/I|n|m|zat|on of the negat|ve log-likelihood:
- Z 0g(B(Yi1X0)) = — 3 (v, log(h(X, 3) + Ly log(L — h(X, 5)
i=1
° M|n|m|zat|on possible if h is regular. . .
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|\/|aximum leellhOOd Estimate A Probabilistic Point of View é"h

KL Distance and negative log-likelihood S

o Natural distance: Kullback-Leibler divergence
KL(B(B(Y = 1|X)), B(h(X' 5))

= Ex [IP(Y = 1|X)lo P(:(X:T;')X)
+P(Y = —1|X) log 1= P( (X_T;J)X)]

= Ex [-P(Y = 1X) |og(h(fﬂ))
—P(Y = ~1X)log(1 — K(X"B))] + Cx.v

e Empirical counterpart = negative log-likelihood (up to 1/n factor):

= Z <1Y _1log(h(X; T B)) + 1y,—_1 log(1 — h(X; 5)))
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LOgiStiC Regression A Probabilistic Point of View 7

Logistic Regression and Odd s

@ Logistic model: h(t) = %tet (most natural choice. . .)

@ The Bernoulli law B(h(t)) satisfies then
P(Y =1)
P(Y =-1)
@ Interpretation in term of odd.

t I

Y=-1) '

@ Logistic model: linear model on the logarithm of the odd

P(Y=1X) -
| N = X
By ——1x) ~ 7
Associated Classifier
@ Plugin strategy: o X' T
F(X) 1 if 1+egﬁ>l/2@5 65>0
—1 otherwise
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LOgiStiC Regression and Minimization A Probabilistic Point of View [“

Likelihood Rewriting

o Negative log- Iikelihood
- —Z (1vi=110g(h(X;" B)) + 1y, 1 log(1 — h(X," 8)))

1 I s 1 I !
——*Z Y= 10g XT/3+ Yi=—1 Ogm

_ - ; log (1 + e—Yi(K,’TB))

@ Convex and smooth function of 3

e Easy optimization.
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Example: Logistic
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Featu re Design A Probabilistic Point of View X

Transformed Representation

e From X to ¢(X)!
@ New description of X leads to a different linear model:
f3(X) = o(X)' 8

Feature Design

@ Art of choosing .

@ Examples:

e Renormalization, (domain specific) transform
e Basis decomposition
o Interaction between different variables. . .
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Example: Quadratic Logistic

Quadratic Logistic
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Gaussian Linear Regression A Probabiistic Point of View K

Gaussian Linear Model

Model: Y|X ~ N(X'3,052) plus independence

Probably the most classical model of all time!

Maximum Likelihood with explicit formulas for the two parameters.

In regression, estimation of E[Y'|X] is sufficient: other/no model for the noise
possible.
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Extension of Gaussian Linear Regression A Probabiistic Point of View K

Generalized Linear Model

@ Model entirely characterized by its mean (up to a scalar nuisance parameter)
(v(Ep[Y]) = 6 with v invertible).
@ Exponential family: Probability law family Py such that the density can be written

f(y,0,0) =7 W0

where ¢ is a nuisance parameter and w a function independent of 6.
@ Examples:

y0=02/2 _ y%/2

o Gaussian: f(y,0,p) =€ = B
o Bernoulli: f(y,0) = //="1+¢") (9 = Inp/(1 — p))
o Poisson: f(y,0) = e0=¢)+n() (9 = In ))

o Linear Conditional model: Y[X ~ Py7j. ..

@ ML fit of the parameters
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O Utl Ine A Probabilistic Point of View

e A Probabilistic Point of View

@ Non Parametric Conditional Density Modeling
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Non Parametric Conditional Estimation A Probabilstic Point of View ¥

e ldea: Estimate Y|X or E[Y|X] directly without resorting to an explicit
parametric model.

Non Parametric Conditional Estimation

@ Two heuristics:
e Y|X (or E[Y|X]) is almost constant (or simple) in a neighborhood of X. (Kernel

methods)
o Y|X (or E[Y|X]) can be approximated by a model whose dimension depends on the

complexity and the number of observation. (Quite similar to parametric model plus
model selection. . .)

@ Focus on kernel methods!
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Kernel M ethOdS A Probabilistic Point of View

@ ldea: The behavior of Y|X is locally constant or simple!

Choose a kernel K (think of a weighted neighborhood).

For each X, compute a simple localized estimate of Y|X

Use this local estimate to take the decision

In regression, estimation of E[Y|X] is sufficient.
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Example: k Nearest-Neighbors (with k = 3)
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Example: k NeareSt_Nelghbors (Wlth k - 4) A Probabilistic Point of View /'%
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k Nea reSt— N elgh bOrS A Probabilistic Point of View

@ Neighborhood V, of x: k learning samples closest from x.

k-NN as local conditional density estimate

— Y ox.evy L{vi=+1
P(Y = 1)) = =X V=)
Vx|
@ KNN Classifier:
~ +1 ifP(Y =1|X)>P(Y = —-1|X
() — (V=110 2 (Y = -11X)
—1 otherwise

e Lazy learning: all the computations have to be done at prediction time.

@ Remark: You can also use your favorite kernel estimator. . .
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Example: KNN

k-NN with k=1
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Example: KNN

k-NN with k=5
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Example: KNN

k-NN with k=9
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Example: KNN

k-NN with k=13
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Example: KNN

k-NN with k=17
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Example: KNN

k-NN with k=21
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Example: KNN

k-NN with k=25
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Example: KNN

k-NN with k=29
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Example: KNN

k-NN with k=33
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Example: KNN

k-NN with k=37
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Example: KNN

k-NN with k=45
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Example: KNN

k-NN with k=53
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Example: KNN

k-NN with k=61
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Example: KNN

k-NN with k=69
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Example: KNN

k-NN with k=77
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Example: KNN

k-NN with k=85
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Example: KNN

k-NN with k=101
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Example: KNN

k-NN with k=109
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Example: KNN

k-NN with k=117
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Example: KNN

k-NN with k=125
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Example: KNN

k-NN with k=133
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Example: KNN

k-NN with k=141
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Example: KNN

k-NN with k=149
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Example: KNN

k-NN with k=157
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Example: KNN

k-NN with k=165
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Example: KNN

k-NN with k=173
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Example: KNN

k-NN with k=181
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Example: KNN

A Probabilistic Point of View £

k-NN with k=189

Decision region Decision boundary
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Example: KNN

A Probabilistic Point of View £

k-NN with k=197

Decision region Decision boundary
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Regression and LOC3| Averaging A Probabilistic Point of View é"“

A naive idea

@ E[Y|X] can be approximated by a local average:

~ 1
0= e moon , 22,
where B(X) is a neighborhood of X.
@ Heuristic:
o If X = E[Y|X] is regular then
E[Y|X] ~E[E[Y|X]|X € N(X)] =E[Y|X" € N(X)]
o Replace an expectation by an empirical average

E[Y|X' € N(X)] ~ I{XT >
X, eN(X)
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Regression and LOC3| Averaging A Probabilistic Point of View [“

Neighborhood and Size
@ Most classical choice: N(X) = {X',||X — X'|| < h } where ||.| is a (pseudo) norm
and h a size (bandwidth) parameter.

@ In principle, the norm and h could vary with X, and the norm can be replaced by
a (pseudo) distance.

@ Focus here on a fixed distance with a fixed bandwidth h cased.

Bandwidth Heuristic

o A large bandwidth ensures that the average is taken on many samples and thus
the variance is small. ..

e A small bandwidth is thus that the approximation E[Y|X] ~ E[Y|X' € N(X)]
is more accurate (small bias).
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Welghted Local Averaging A Probabilistic Point of View é"h

Weighted Local Average

@ Replace the neighborhood N (X) by a decaying window function w(X, X').

@ E[Y|X] can be approximated by a weighted local average:
/ .
>iw(X, X5)

Kernel

@ Most classical choice: w(X,X') =K (K_TX) where h the bandwidth is a scale
parameter.

@ Examples:

o Box kernel: K(t) =1 <1 (Neighborhood)

o Triangular kernel: K(t) = max(1 — ||¢|[,0).

o Gaussian kernel: K(t) = e t'/2
@ Rk: K and AK yields the same estimate.
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From Density Estimation to Regression A Probabilistic Point of View [“

Nadaraya-Watson Heuristic

@ Provided all the densities exist

E[Y|X] = I Yp(X, Y)dY _ I Yp(X, Y)dY
Jp(Y, X)dY p(X)
@ Replace the unknown densities by their estimates:

B0 = 23" K(X - X)
i=1

1 n
p(X,Y)=— K(X - X)K'(Y —-Y;
L Y) = KX = XOK'(Y = Y)
e Now if K’ is a kernel such that [ YK'(Y)dY = 0 then

1 n
Yp(X,Y)dY = - K(X - X,)Yi
[ Yex viay = T3 K(x - x)
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From Density Estimation to Regression A Probabilistic Point of View é"“

Nadaraya-Watson

@ Resulting estimator of E[Y|X]
~ 1 YiKn(X — X;
f(K) _ 21771 h(f 7,)
" Kn(X - X))
@ Same local weighted average estimator!

Bandwidth Choice

@ Bandwidth h of K allows to balance between bias and variance.

@ Theoretical analysis of the error is possible.
@ The smoother the densities the easier the estimation but the optimal bandwidth
depends on the unknown regularity!
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Local Linear Estimation A Probabilistic Point of View 7

Another Point of View on Kernel

@ Nadaraya-Watson estimator:
=1 Kn(X = X;)

@ Can be view as a minimizer of
n

D_1Yi = BPKn(X — X))
i=1
@ Local regression of order 0.

Local Linear Model

e Estimate E[Y|X] by f(X) = ¢(X)" B(X) where ¢ is any function of X and 3(X)
is the minimizer of

|

STV = (Xi) ' BPKa(X — X,).
i=1
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LOESS Local p0|ynomia| regrESSiOn A Probabilistic Point of View /'J:

1D Nonparametric Regression

@ Assume that X € R and let ¢(X) = (1, X,...,X%).
o LOESS estimate: f(X) = _]c'l:O B(XY) X/ with B(X) minimizing
n d

7Y = >0 BUXIPKA(X - X))

=1 j=0
@ Most classical kernel used: Tricubic kernel

K(t) = max(1 — |t[3,0)3

@ Most classical degree: 2...

@ Local bandwidth choice such that a proportion of points belongs to the window.
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O Utl Ine A Probabilistic Point of View Z,
e A Probabilistic Point of View

@ Generative Modeling
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FU”y Genel’atlve MOdellng A Probabilistic Point of View /

e Idea: If one knows the law of (X, Y') everything is easy!

Bayes formula

@ With a slight abuse of notation,
P((X,Y))
P(Y|X) = P(X)
_ PX|Y)P(Y)

P(X)

o Generative Modeling:
e Propose a model for (X, Y) (or equivalently X|Y and Y),
e Estimate it as a density estimation problem,
e Plug the estimate in the Bayes formula
e Plug the conditional estimate in the Bayes classifier.
e Rk: Require to estimate (X, Y) rather than only Y|X!

@ Great flexibility in the model design but may lead to complex computation.
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FU”y Genel’atlve MOdellng A Probabilistic Point of View /'V“

@ Simpler setting in classification!

Bayes formula

WY:Mer““nggw:k)

Binary Bayes classifier (the best solution)
1 ifP(Y=1X)>P(Y=-1X
mm:?"( X) 2 (Y = ~11X)

—1 otherwise
Heuristic: Estimate those quantities and plug the estimations.

By using different models/estimators for P(X|Y'), we get different classifiers.
Rk: No need to renormalize by P(X) to take the decision!
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D iIscriminant An a |ySiS A Probabilistic Point of View X

Discriminant Analysis (Gaussian model)

@ The densities are modeled as multivariate normal, i.e.,
P(X|Y = k) ~ Ny, 5,
@ Discriminant functions: gx(X) = In(P(X|Y = k)) + In(P(Y = k))

81(X) = — 5(X— ) X — )
- g In(2r) — % In(|Z4]) + In(B(Y = K))

o QDA (different X4 in each class) and LDA (X4 = X for all k)

e Beware: this model can be false but the methodology remains valid!
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DISCI’I m | na nt AnalySIS A Probabilistic Point of View
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Quadratic Discriminant Analysis

@ The probability densities are Gaussian

@ The effect of any decision rule is to divide the feature space into some decision
regions R1, Ro

@ The regions are separated by decision boundaries
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DISCI’I m | na nt AnalySIS A Probabilistic Point of View

Quadratic Discriminant Analysis

@ The probability densities are Gaussian

@ The effect of any decision rule is to divide the feature space into some decision
regions R1,Ra, ..., R¢

@ The regions are separated by decision boundaries

Source: A. Fermin
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DISCI’I m | na nt AnalySIS A Probabilistic Point of View

In practice, we will need to estimate g, Xy and Py :=P(Y = k)
@ The estimate proportion P(ﬁk) =% =1sw liyi—y

@ Maximum likelihood estimate of fix and Sk (explicit formulas)

@ DA classifier
~ 1 ifg(X)>g_1(X
F(X) = +1 i g+1(f.) > g-1(X)
—1 otherwise
@ Decision boundaries: quadratic = degree 2 polynomials.

If one imposes X1 = Y1 = X then the decision boundaries is a linear hyperplane.
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DISCI’I m | na nt AnalySIS A Probabilistic Point of View
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Linear Discriminant Analysis
0%, =%, =3

@ The decision boundaries are linear hyperplanes
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D ISCI’I m | na nt An a |ySIS A Probabilistic Point of View
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Quadratic Discriminant Analysis

@ X, #FXu,

@ Arbitrary Gaussian distributions lead to Bayes decision boundaries that are general
quadratics.
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Example: LDA

A Probabilistic Point of View £

Linear Discrimant Analysis

Decision region Decision boundary
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Example: QDA

A Probabilistic Point of View

Quadratic Discrimant Analysis

Decision region Decision boundary
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N aive Bayes A Probabilistic Point of View X

Naive Bayes

@ Classical algorithm using a crude modeling for P(X]|Y):
e Feature independence assumption:

P(X|Y) = HIP( ‘Y)
e Simple featurewise model: binomial if blnary, multinomial if finite and Gaussian if

continuous

o If all features are continuous, similar to the previous Gaussian but with a diagonal
covariance matrix!

@ Very simple learning even in very high dimension!
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Example: Naive Bayes

Naive Bayes with Gaussian model
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. . . o 3
Naive Bayes with Density Estimation A Probabilistic pointofVieWX
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Example: Naive Bayes

Naive Bayes with kernel density estimates

Decision region
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Other Models

@ Other models of the world!

Bayesian Approach
o Generative Model plus prior on the parameters

@ Inference thanks to the Bayes formula

Graphical Models

@ Markov type models on Graphs

Gaussian Processes
@ Multivariate Gaussian models

A Probabilistic Point of View £,
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O Utl Ine Optimization Point of View

e Optimization Point of View
@ Penalization
@ (Deep) Neural Networks
@ SVM
@ Tree Based Methods
@ Ensemble Methods
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Probabilistic and Optimization Framework Optimization Paint of View K

How to find a good function f with a small risk
R(f) =E[(Y, f(X))] 7?
Canonical approach: fs = argmingcs 2 271 £(Y;, f(X;))
Problems
@ How to choose §7

@ How to compute the minimization?

A Probabilistic Point of View

Solution: For X, estimate Y|X plug this estimate in the Bayes classifier:
(Generalized) Linear Models, Kernel methods, k-nn, Naive Bayes, Tree,

Bagging. . .

An Optimization Point of View

Solution: If necessary replace the loss ¢ by an upper bound Z and minimize the

empirical loss: SVR, SVM, Neural Network, Tree, Boosting. . . 74



Three Classical Methods in a Nutshell Optimization Paint of View ¥

Penalized Logistic Regression

o Let f(X) = X5+ 8O with 6 = (8, 30).
ind 6 — aremin LS iy (X))
oF|nd6—argm|nniz:1|og(1+e 9 )+)\||5”1

o Classify using sign(f;)

Deep Learning

@ Let fp(X) with f a feed forward neural network outputing two values with a
softmax layer as a last layer.

1 n
@ Optimize by gradient descent the cross-entropy - Z log (fg(&,)(y’)>
i=1

o Classify using sign(f;)

175



Three Classical Methods in a Nutshell Optimization Paint of View ¥

Support Vector Machine

o Let f(X) = X" B+ O with 0 = (8, ).
R 1
@ Find 6 = argmin . Z max (1 — Y;f(X;),0) + X 8|3
i=1

o Classify using sign(f;)

@ Those three methods rely on a similar heuristic: the optimization point of view!

176



Empirical RISk Minimization Optimization Point of View /"“

@ The best solution * is the one minimizing
f* = argmin R(f) = argmin E[{(Y, f(X))]

Empirical Risk Minimization

@ One restricts f to a subset of functions S = {fy,0 € ©}

@ One replaces the minimization of the average loss by the minimization of the
average empirical loss

1 n
f~=argmin — » (Y}, fp(X;
§ = aremin ;:1 (Yi, f5(X5))

¥

e Intractable for the ¢9/1 |oss!
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Convexification Strategy Optimization Point of View é"h

Risk Convexification

@ Replace the loss /(Y fy(X)) by a convex upperbound (Y, fy(X)) (surrogate loss).

@ Minimize the average of the surrogate empirical loss
. 10
f=f=argmin= > (Y fp(X;
0 £, 0cO n; ( / ( /))

o Use 7 = sign(f)

@ Much easier optimization.

Instantiation

@ Logistic (Revisited)
@ Support Vector Machine
@ (Deep) Neural Network

@ Boosting
178



Classification Loss and Convexification Optimization Point of View /)

T 05 0 05 1
¥y

e Replace the loss /2/1(Y, f(X)) by
oY, f(X)) = I(YF(X))
with / a convex function.

e Further mild assumption: / is decreasing, differentiable at 0 and /(0) < 0.
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Classification Loss and Convexification Optimization Paint of View ¥

T 05 0 05 1
¥y

Classical convexification

o Logistic loss: £(Y, (X)) = logy(1 4+ e~ Y (X)) (Logistic / NN)
@ Hinge loss: (Y, f(X)) = (1 - Yf(X))+ (SVM)
@ Exponential loss: /(Y f(X)) = e~ Y (X) (Boosting. . .)
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Properties Optimization Point of View 4

The Target is the Bayes Classifier

@ The minimizer of
E[U(Y, f(X))| = E[(YF(X))]
is the Bayes classifier f* = sign(2n(X) — 1)

Control of the Excess Risk

@ It exists a convex function W such that
W (E[@/(Y, sign(f(X))] — E[¢/*(Y, £(X)])

<E[{(Y, f(X)] - E[{(Y, F(X))]

@ Theoretical guarantee!
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LOgIStIC ReV|S|ted Optimization Point of View /4

@ ldeal solution:

n
f = argmin E ZEO/I(Y;, f(X;))
fes N3

Logistic regression

e Use f(X) = XT3+ 0,
@ Use the logistic loss £(y, f) = log,(1 + e™¥f), i.e. the negative log-likelihood.

@ Different vision than the statistician but same algorithm!
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Logistic Revisited

Optimization Point of View

Logistic
Decision region Decision boundary
w
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O Utl Ine Optimization Point of View

e Optimization Point of View
@ Penalization
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Simplified Models

Closest fit in population
Realization
[ Closest fit

MODEL
SPACE

 Shrusken fit

RESTRICTED
MODEL SPACE

Bias-Variance Issue

Optimization Point of View

@ Most complex models may not be the best ones due to the variability of the

estimate.

@ Naive idea: can we simplify our model without loosing too much?

e by using only a subset of the variables?
e by forcing the coefficients to be small?

@ Can we do better than exploring all possibilities?

P

Source: Tibshirani et al
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Linear |\/|ode|s Optimization Point of View [“

@ Setting: Gen. linear model = prediction of Y by h(x'f3).

Model coefficients
@ Model entirely specified by 3.
o Coefficientwise:

o ) =0 means that the ith covariate is not used.
o ) ~ 0 means that the ith covariate as a fow influence. . .

@ If some covariates are useless, better use a simpler model. ..

Submodels
e Simplify the model through a constraint on f3!
@ Examples:

e Support: Impose that () =0 for i & /.
e Support size: Impose that ||8][o = 27:1 1040 < C
e Norm: Impose that ||3||, < C with 1 < p (Often p =2 or p = 1)
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Norms a nd S parsity Optimization Point of View

Sparsity
@ [ is sparse if its number of non-zero coefficients ({p) is small. ..

e Easy interpretation in terms of dimension/complexity.

Norm Constraint and Sparsity
@ Sparsest solution obtained by definition with the ¢y norm.
@ No induced sparsity with the ¢ norm. ..

@ Sparsity with the ¢/; norm (can even be proved to be the same as with the ¢
norm under some assumptions).

@ Geometric explanation.
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Constraint and Penalization

Optimization Point of View

Constrained Optimization

@ Choose a constant C.

o Compute 3 as
n

1
argmin - = > (Y, h(x;' 8))
BERY,||Bll,<C M i=

Lagrangian Reformulation

@ Choose A\ and compute 3 as
1 /
argmin = > £(Yi, h(x;" B)) + AlIBII5
Berd Moy
with p’ = p except if p = 0 where p’ = 1.
@ Easier calibration. .. but no explicit model S.

e Rk: ||3]| is not scaling invariant if p # 0. ..

@ Initial rescaling issue. 187



Pen a | ization Optimization Point of View 4

Penalized Linear Model

@ Minimization of
n

argmin 1 ZE(Y,-, h(x; " B)) + pen(B)
perd Mizy

where pen(f) is a (sparsity promoting) penalty
@ Variable selection if 3 is sparse.

Classical Penalties
@ AIC: pen(B) = A||B|lo (non-convex / sparsity)
o Ridge: pen(3) = A||3||3 (convex / no sparsity)
Lasso: pen(B) = Al|5]|1 (convex / sparsity)
o Elastic net: pen(3) = 1|81 + A2||B|3 (convex / sparsity)

Easy optimization if pen (and the loss) is convex. ..
Need to specify A to define a ML method!
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Penalized Gen. Linear Models Optimization Point of View

Classical Examples

Penalized Least Squares

Penalized Logistic Regression
Penalized Maximum Likelihood
SVM

Tree pruning

Sometimes used even if the parameterization is not linear. ..
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Penalization and Cross-Validation Optimization Paint of View ¥

Practical Selection Methodology

@ Choose a penalty family pen,.

o Compute a CV risk for the penalty pen, for all A € A.
o Determine \ the A minimizing the CV risk.

@ Compute the final model with the penalty pens.

o CV allows to select a ML method, penalized estimation with a penalty pens, not a
single predictor hence the need of a final reestimation.
Why not using CV on a grid?
o Grid size scales exponentially with the dimension!

o If the penalized minimization is easy, much cheaper to compute the CV risk
forall A € A. ..

@ CV performs best when the set of candidates is not too big (or is structured. .. )
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O Utl Ine Optimization Point of View

e Optimization Point of View

@ (Deep) Neural Networks
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Pe rcept ron Optimization Point of View

inputs  weights

weighted sum step function

S

Perceptron (Rosenblatt 1957)
@ Inspired from biology.

@ Very simple (linear) model!
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@ Physical implementation and proof of concept.
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Perceptron

Dendrites

Cell body

o0

Perceptron (Rosenblatt 1957)
@ Inspired from biology.
@ Very simple (linear) model!
@ Physical implementation and proof of concept.

Optimization Point of View

7

Source: Tikz
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Pe rcept ron Optimization Point of View

inputs  weights

weighted sum step function

S

Perceptron (Rosenblatt 1957)
@ Inspired from biology.

@ Very simple (linear) model!
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@ Physical implementation and proof of concept.
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Pe rce pt ron Optimization Point of View

@ Inspired from biology.

@ Very simple (linear) model!
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@ Physical implementation and proof of concept.
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Artificial Neuron and Logistic Regression Optimization Point of View

Activation Neuron Configuration

B1

1= Input
0= Output
B = Bias

Artificial neuron

@ Structure:
@ Mix inputs with a weighted sum,
o Apply a (non linear) activation
function to this sum,
o Possibly threshold the result to make
a decision.

@ Weights learned by minimizing a loss
function.

@ Equivalent to linear regression when

Activation Fonction
01

Logistic unit

@ Structure:
o Mix inputs with a weighted sum,
o Apply the logistic function
o(t) =e'/(1+¢),
@ Threshold at 1/2 to make a decision!
@ Logistic weights learned by minimizing
the -log-likelihood.

using a linear activation function!

7

Source: Unknown
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M u |t| | aye r Pe rce pt ron Optimization Point of View

Input Hidden Layer Output

B1 B2
i S
I = Input H1
H= Hidden 12
O = Output H2 01
B= Bias I3 =——
H3

MLP (Rumelhart, McClelland, Hinton - 1986)

@ Multilayer Perceptron: cascade of layers of artificial neuron units.

e Optimization through a gradient descent algorithm with a clever implementation
(Backprop).

@ Construction of a function by composing simple units.
@ MLP corresponds to a specific direct acyclic graph structure.
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@ Non convex optimization problem!

—
O
=



Multilayer Perceptron

Optimization Point of View

Neural Network

Decision region Decision boundary
w
@
06 06- ® |
Cg classes % ’ @ classes
% 0.4 . Classi % 0.4- > @ Classi
& B class2 £ © Class2
0.2

02-

02 04 06 02 04 06
PredictorA PredictorA
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Universal Approximation Theorem Optimization Point of View

Universal Approximation Theorem (Hornik, 1991)

o A single hidden layer neural network with a linear output unit can
approximate any continuous function arbitrarily well given enough hidden units.
W

@ Valid for most activation functions.
@ No bounds on the number of required units. .. (Asymptotic flavor)

@ A single hidden layer is sufficient but more may require less units.
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Deep N eura | N etWOI'k Optimization Point of View

DEEP NEURAL NETWORK

Deep Neural Network structure

@ Deep cascade of layers!

@ No conceptual novelty. ..

@ But a lot of tricks allowing to obtain a good solution: clever initialization, better
activation function, weight regularization, accelerated stochastic gradient descent,
early stopping. ..

@ Use of GPU and a lot of data. ..

@ Very impressive results!
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Deep Neural Network

Optimization Point of View

H20 NN
Decision region Decision boundary
=

06 06- ® ®
Cg classes % ’ @ classes
% 0.4 . Classi % 0.4+, > @ Classi
& B class2 £ © Class2

0.2

02-

02 04 06 02 04 06
PredictorA PredictorA
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Deep Learning

Conv 1: Edge+Blob Convy 3: Texture Conv 5: Object Parts Fe8: Object Classes

Family of Machine Learning algorithm combining:

@ a (deep) multilayered structure,

@ a clever optimization including initialization and regularization.

@ Examples: Deep NN, AutoEncoder, Recursive NN, GAN, Transformer. ..
@ Interpretation as a Representation Learning.

@ Transfer learning: use as initialization a pretrained net.

@ Very efficient and still evolving!

Source: J. Hays
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CO nVOl UtIO na | N etWOI’k Optimization Point of View

PROC. OF THE IEEE, NOVEMBER 1998 7

C3:f. maps 16@10x10
S4: 1. maps 16@5x5
$2:1. maps

6@14x14 r F e £ layer GUTPUT

C1: feature maps
INPUT
[ 6@28x28

|
| Full conflection ‘ Gaussian connections
c i [ i Ful

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

Le Net - Y. LeCun (1989)

@ 6 hidden layer architecture.

@ Drastic reduction of the number of parameters through a translation invariance
principle (convolution).

@ Required 3 days of training for 60 000 examples!
@ Tremendous improvement.
@ Representation learned through the task. 200
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Deep COHVOI UtIOn al NetWOFkS Optimization Point of View

zuaa' 078 \dense

2038 2048

128

128 Max
Max 5] Max poaling
pooling pooling

Alexnet - A. Krizhevsky, |. Sutskever, G. Hinton (2012)

@ Bigger and deeper layers and thus much more parameters. _
@ Clever intialization scheme, RELU, renormalization and use of GPU. ;2

<
@ 6 days of training for 1.2 millions images. z
@ Tremendous improvement. . . &
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Dee p CO n VOI u t | ona | N etWOF kS Optimization Point of View

s llullllllllllll'll iy
|=|i"| i1 I=:II l;:u

Inception 7a

'Going Deaper with Convalutions, [C. Szegedy e |, CVPR 2015)

@ Bigger and bigger networks! (GooglLeNet / Residual Neural Network / $

Transformers. . .) i
@ More computational power to learn better representation. :8;0
@ Work in Progess! H
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O Utl Ine Optimization Point of View

e Optimization Point of View

@ SVM

203



Su pport VeCtor M aCh | ne Optimization Point of View

f(X)= X8+ 89 with 0=(859)

N 1Z
0 = arg min - > max (1= Yify(X;),0) + Al 8]I3

i=1

Support Vector Machine

e Convexification of the 0/1-loss with the hinge loss:
ly.fx,)<0 < max (1 — Yifp(X;),0)
Penalization by the quadratic norm (Ridge/Tikhonov).

Solution can be approximated by gradient descent algorithms.

Revisit of the original point of view.

Original point of view leads to a different optimization algorithm and to some
extensions.
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|deal Separable Case Optimization Paint of View

o Linear classifier: sign(X' g+ 5(0)
@ Separable case: 3(3, 8(9), Vi, Yi(X;T 8+ @) >0

How to choose (3, 3(?)) so that the separation is maximal?

@ Strict separation: 3(3, 3),Vi, Yi(X; "8 + 8©) > 1
o Distance between XT3+ 30 =1 and X" 3 + 30 = —1:
2

181l

o Maximizing this distance is equivalent to minimizing 3||3||2.
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Ideal Se pa ra ble Case Optimization Point of View /4

Separable SVM

@ Constrained optimization formulation:

min %Hﬂ”z with Vi, Yi(X;T 8+ B©) > 1

@ Quadratic Programming setting.

@ Efficient solver available. ..

Source: M. Mohri et al.
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Non Separable Case Optimization Point of View 2

@ What about the non separable case?

SVM relaxation

@ Relax the assumptions
Vi, YiX; "B+ B89)>1 to Vi, Yi(X;"8+89)>1-5
with the slack variables s; > 0

@ Keep those slack variables as small as possible by minimizing
1 n
SIBIZ+ €Y
i=1

where C > 0 is the goodness-of-fit strength_

Source: M. Mohri et al.
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Non Separable Case Optimization Point of View 2

o Constrained optimization formulation:
1 5 .
min = + C E s;  with

@ Hinge Loss reformulation:

Vi, iX; T8+ 8@0) > 1 -
Vi, Si > 0

n
iy %Hmﬁ +CY max(0,1- V(X" 8+ B®))
i=1

Hinge Loss

Source: M. Mohri et al.

@ Constrained convex optimization algorithms vs gradient descent algorithms. 206



SVM as a Penalized Convex Relaxation Optimizaton Point of View K

@ Convex relaxation:

argmin = HBHz—i-CZmaX (1-Yi(X; 8+ 89),0)

i=1

11
= argmmmeax (1—-Yi(X;" B+ 59),0) + 55\\6\\2

i=1
o Prop: (%/1(Y;,sign(X;" 3 + B®)) < max(1 — Yi(X;" 8 + B0),0)

Penalized convex relaxation (Tikhonov!)

1 n
- S O (Y, sign(X; T8 + B9)) + **||5H2
=il

Zmaxl— (X, T8+ B, 0)+ H5H2
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SVM

Optimization Point of View

Support Vector Machine

Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ ©  classes
% 0.4 . Class1 % 0.4- > @ Classi
& B class2 £ @ Class2
02 02-
0.2 0.4 06 0.2 DIA DI.B
PredictorA PredictorA
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Constrained Minimization Optimization Point of View ['

Constrained Minimization

o Goal:

@ or rather with argmin!

Different Setting

e f, hj, gi differentiable

e f convex, h; affine and g; convex.

Feasibility
e x is feasible if hj(x) =0 and gj(x) < 0.
@ Rk: The set of feasible points may be empty 209



Lagra ngia n Optimization Point of View 4

Constrained Minimization

o Goal:
hi(x) =0, j=1,...p

* = min f(x) with
PE= i) {g;(X)SO, i=1,..q

o Def: P q
L0, 1) = F(x) + D Ahi(x) + > migi(x)
j=1 i=1

with A € RP and p € (RT)9.
@ The \; and p; are called the dual (or Lagrange) variables.

e Prop: f(x) if x is feasible

max L(x,\, ) =
a ( " {+oo otherwise

AERP, pe(RY)

min max L(x,\, pu) =p*
X XERP, pe(R*)9 ( M) P 210



Lagrangial Dual Optimization Point of View é"h

Lagrangian
o Def:

q
L(x, A\, 1) = f(x +ZAh )+ > nigi(x)

with A € RP and p € (RT)9.

Lagrangian Dual

@ Lagrangian dual function:
Q(A, 1) = min L(x, A, 1)
e Prop:
Q(\, 1) < f(x), for all feasible x
) < in f
AeRPm?é((Rﬂq Q) < x fensible (x)
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D ua | Ity Optimization Point of View

Primal

@ Primal:
hj(x):O, j=1...p

* = min f(x) with
pr= R () {gi(X)SO, i=1,...q

@ Dual:

q* = ma Q()‘vu)

= X max min L(x, A,
AERP, pe(R+)4 ( ,u)

- AERP, pe(RT)9 X

Duality

o Always weak duality:

g <p
ma min £(x, \, ) < min ma L(x, A,
AERP, ,uEX(]R*)q X (A ) < X AERP, ueX(]Rﬂq (2 1)

@ Not always strong duality g* = p*.

7

212



Strong Duallty Optimization Point of View 4 7

Strong Duality

e Strong duality:

q* _ P*
max min £(x, \ = min max L(x, A
AERP, pe(R+)d X SIRND X AERP, pe(RT)a (2 1)

@ Allow to compute the solution of one problem from the other.

@ Requires some assumptions!

Strong Duality under Convexity and Slater’s Condition

e f convex, h; affine and g; convex.

e Slater’s condition: it exists a feasible point such that hj(x) = 0 for all j and
gi(x) < 0 for all /.

o Sufficient to prove strong duality.

o Rk: If the g; are affine, it suffices to have hj(x) = 0 for all j and gj(x) < 0 for all
I. 213



K KT Optimization Point of View 7

Karush-Kuhn-Tucker Condition

@ Stationarity:

Vi L(x*, A, p) = ZAVh +Zu,Vg, *)=0
@ Primal admissibility:
hi(x*) =0 and gi(x*) <0
@ Dual admissibility:
i >0

@ Complementary slackness:
pigi(x*) =0

KKT Theorem

o If f convex, h; affine and g; convex, all are differentiable and strong duality
holds then x* is a solution of the primal problem if and only if the KKT
condition holds 214



SVM a nd Lagra ngl an Optimization Point of View 4 X

o Constrained optimization formulation:

1 4 Vi, Yi(X; " )y >1-s5
mmEHBH2+C;5/ with { I, (—/ B+ﬁ )_ S

Vi,S,' >0

SVM Lagrangian

@ Lagrangian:

1 n
£(8, 89, 5,0,) = SBIF + C Y5
i=1

+3 il = s = Yi(X; B+ B89) =3 s

215



SVM and KKT Optimization Point of View ['
KKT Optimality Conditions

o Stationarity:
VLB, B9, s,0,1) = B =D i YiX; =0
v[&(o)‘c(ﬁa ﬂ(O)v S, 1“) = = Z Qj = 0

Vo L(B,89,s,0,1)=C—a;j—pj=0
@ Primal and dual admissibility:
(1—si—YiX;"8B+89) <0, 5>0, a;>0, andp; >0
o Complementary slackness:
ail—si = Yi(X;"8+BD) =0 and psi=0

Consequence
o f*=3%;0;YiX;and 0 < a; < C.
o If aj # 0, X; is called a support vector and either
e s, =0 and Y,-(X,-TB* + B©)*) = 1 (margin hyperplane),
e or a; = C (outliers).
o B30% — y; — X, T 3* for any support vector with 0 < o < C.
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SVM Dual Optimization Point of View 4 7

SVM Lagrangian Dual

@ Lagrangian Dual:

Qa,p) = min £(8,89, 5,0, p)
8,805

@ Prop:
o if > .a;Y;#0or3i,a; +p; #C,
Qo p) = —o0
o if > .a;Y;=0and Vi,a; + pj = C,

DEDIIEE SN AP

ij

SVM Dual problem

@ Dual problem is a Quadratic Programming problem
max Q(a,pu) < [max Za, Za a;Y;YiX; TX

a>0,u>0 o

@ Involves the X; only through their scalar products. 217



Mercer Theorem Optimization Point of View /'“

Mercer Representation Theorem

@ For any loss 7 and any increasing function ®, the minimizer in 3 of
n

S UYL X8+ BO) + o(|8]12)
i=1

n
is a linear combination of the input points f* = Za?&i.
Minimization problem in o/ =1
n
DAY DX T X+ ) + o([1B]l2)
i=1 J
involving only the scalar product of the data.

Optimal predictor requires only to compute scalar products.
P(X) = XT3+ 5O = 3" aiX X

1
Transform a problem in dimension dim(X’) in a problem in dimension n.
Direct minimization in 3 can be more efficient. .. 718



Featu re M ap Optimization Point of View 4 X

Feature Engineering
@ Art of creating new features from the existing one X.
@ Example: add monomials (K(j))z, XWxU

@ Adding feature increases the dimension.

Feature Map
@ Application ¢ : X — H with H an Hilbert space.

e Linear decision boundary in H: ¢(X)' 5+ 8 = 0 is not an hyperplane
anymore in X.

Source: Unknown

@ Heuristic: Increasing dimension allows to make data almost linearly separable.
219



Polynom Ia | M a ppl ng Optimization Point of View 4 X

T2 V21122
(-1,1) LD (11,4222 1) | (1,1,4v2,4+v2,+v2,1)
e ® °® e
\/51?1
Ty
] o @ (]
(-1,-1) (1,-1) (1,1, —v2,—v2,+v2,1) | (1,1, —v2,+v2,—v2,1)

Polynomial Mapping of order 2
® ¢ :R2 RS
H(X) = ((K(l))2, (K(2))27 VXM x@ ox® oax@, 1)

@ Allow to solve the XOR classification problem with the hyperplane xWx@ =,

Polynomial Mapping and Scalar Product

o Prop:

Source: M. Mohri et al.
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SVM Primal and Dual Optimization Point of View é"h

Primal, Lagrandian and Dual

@ Primal:

n
min || 3]|* + C> s with

i=1

Vi, Yi(o(X)) B+ @) > 15
Vi, Si Z 0

Lagrangian:
(3,59, 5,0, = 16 + €35
+) il — s — Yi(d(X) "B+ B8O) = s
@ Dual: I |

1 T
agixzo Qa, p) & Orgnaagczi: o — 5 zj: ajo Y Yio(X;) ¢(KJ)

Optimal ¢(X)' 8% + SO = 3. ; Yie(X) " o(X;)

Only need to know to compute gb(K)Td)(K’) to obtain the solution. 291



From |\/|ap to Kernel Optimization Point of View /'“

e Many algorlthms (e.g. SVM) require only to be able to compute the scalar
product ¢(X) " ¢(X").

@ Any application
k: XxX—>R
is called a kernel over X.

o Computing directly the kernel k(X, X') = ¢(X)" ¢(X’) may be easier than
computing ¢(X), ¢(X’') and then the scalar product.

@ Here k is defined from ¢.

@ Under some assumption on k, ¢ can be implicitly defined from k!
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P DS Ke rnel Optimization Point of View 4 X

Positive Definite Symmetric Kernels
o A kernel k is PDS if and only if

e k is symmetric, i.e.

k(X,X') = k(X', X)
o for any N € N and any (Xi,...,Xy) € XV,
K = [k(X;, Xj)h<ij<n
is positive semi-definite, i.e. Yu € RN
u Ku= Z u(i)u(j)k(&,-,ij) >0
1<ij<N
or equivalently all the eigenvalues of K are non-negative.

@ The matrix K is called the Gram matrix associated to (Xi,...,Xp)-

223



ReprOdUCIHg Kernel Hllbel’t Space Optimization Point of View /

Moore-Aronsajn Theorem

@ For any PDS kernel k : X x X — R, it exists a Hilbert space H C R with a
scalar product (-, )y such that

e it exists a mapping ¢ : X — H satisfying

k(X, X") = (¢(X), &(X"))yg
e the reproducing property holds, i.e. for any h € H and any X € X

e By def., H is a reproducing kernel Hilbert space (RKHS).
e H is called the feature space associated to k and ¢ the feature mapping.
@ No unicity in general.
e Rk: if k(X,X') = ¢’(§)T¢’(§’) with ¢/ : X — RP then
o H can be chosen as {X — ¢/(X)' 3,3 € RP} and || X — QS’(K)TBH%H = ||8]I3.
o ¢(X'): X = ¢'(X) ¢'(X).
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Kernel Construction Machinery Optimization Paint of View K

Separable Kernel

For any function W : X — R, k(X, X') = W(X)W(X') is PDS.

Kernel Stability

For any PDS kernels k1 and ko, ki + ko and kiko are PDS kernels.

For any sequence of PDS kernels k, converging pointwise to a kernel k, k is a
PDS kernel.

For any PDS kernel k such that |k| < r and any power series »_, a,z" with a, > 0

and a convergence radius larger than r, Z ank" is a PDS kernel.
n
k(X, X'
For any PDS kernel k, the renormalized kernel k'(X, X') = el is
VKX X)X, X')

a PDS kernel.
Cauchy-Schwartz for k PDS: k(X, X')? < k(X, X)k(X', X)
225



Classical Kernels Optimization Paint of View ¥

PDS Kernels

@ Vanilla kernel:
kX, X)=X"X

Polynomial kernel:
k(X, X') = (14 XTX)k
@ Gaussian RBF kernel:
K(X, X') = exp (—1IX — X'|I?)
@ Tanh kernel:
k(X,X') = tanh(aX " X’ + b)

Most classical is the Gaussian RBF kernel. ..

Lots of freedom to construct kernel for non classical data.
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Representer Theorem Optimizstion Point of View 2K

Representer Theorem

@ Let k be a PDS kernel and H its corresponding RKHS,
for any increasing function ® and any function L : R” — R, the optimization
problem

argmin L(h(X1), -, h(X,)) + ®([[A]])
€
admits only solutions of the form

Za:'k(lh )

@ Examples:

o (kernelized) SVM
o (kernelized) Penalized Logistic Regression (Ridge)
o (kernelized) Penalized Regression (Ridge)
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Kernelized SVM Optimization Point of View 4 7

Primal

@ Constrained Optimization:
n

min HfHIZHI—i-CZs; with {

feH,B0) s i1
@ Hinge loss:

Vi, Yi(F(X;)+ B8O)>1—5
Vi, Si Z 0

|yqu s CZmax 0,1 — Yi(F(X;) + BO))

feH,B -1

@ Representer:
min aiaik(X;, X))

o/,3(0) i
+CZmax( Zak )+ 8Oy
i=1
@ Dual:
L Q(a, 1) @O?Qaz(:Za, Za a; i Yik(X;, X;)

ij 228



SVM

Optimization Point of View

Support Vector Machine with polynomial kernel

Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % ’ classes
% 0.4 . Class1 % 0.4~ > @ Classi
& B class2 £ @ Class2
02 02-
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PredictorA PredictorA
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SVM

Optimization Point of View

Support Vector Machine with Gaussian kernel

Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes % classes
% 0.4 . Classi % 0.4~ @ Classi
& B class2 £ @ Class2

=
[}

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA
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O Utl Ine Optimization Point of View

e Optimization Point of View

@ Tree Based Methods

231



Classification And Regression Trees Optimization Paint of View

Tree principle (CART by Breiman (85) / ID3 by Quinlan (86))
@ Construction of a recursive partition through a tree structured set of questions
(splits around a given value of a variable)

@ For a given partition, probabilistic approach and optimization approach yield the
same predictor!

A simple majority vote/averaging in each leaf

Quality of the prediction depends on the tree (the partition).
Intuitively:
e small leaves lead to low bias, but large variance
o large leaves lead to large bias, but low variance. . .
Issue: Minim. of the (penalized) empirical risk is NP hard!
Practical tree construction are all based on two steps:
e a top-down step in which branches are created (branching)
e a bottom-up in which branches are removed (pruning) 232



%

CA RT Optimization Point of View /4

{yes }-PredictorB >= 0.2-{no }——

Classi
0.25
58%

PredictorA >=0.13.

Classi
0.22
55%
PredictorA <0.31 PredictorB >= 0.32
ClassT
0.33
28%

PredictorB >= 0.29.

PredictorA < 0.62

Class3 Class?
067 077
429
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P

B ran Ch i n Optimization Point of View

Greedy top-bottom approach
@ Start from a single region containing all the data

@ Recursively split those regions along a certain variable and a certain value

o No regret strategy on the choice of the splits!
@ Heuristic: choose a split so that the two new regions are as homogeneous
possible. . .

234



P

B ran Ch i n Optimization Point of View

Greedy top-bottom approach
@ Start from a single region containing all the data

@ Recursively split those regions along a certain variable and a certain value

o No regret strategy on the choice of the splits!
@ Heuristic: choose a split so that the two new regions are as homogeneous
possible. . .
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P

B ran Ch i n Optimization Point of View

X1<.5?
VAR

Xo < .77

7N

Greedy top-bottom approach
@ Start from a single region containing all the data

@ Recursively split those regions along a certain variable and a certain value

o No regret strategy on the choice of the splits!
@ Heuristic: choose a split so that the two new regions are as homogeneous
possible. . .
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B ran Ch i n Optimization Point of View

X1 < .57
VR
X1 < .27 Xo <77

JX X

@ Start from a single region containing all the data

Greedy top-bottom approach

@ Recursively split those regions along a certain variable and a certain value

o No regret strategy on the choice of the splits!
@ Heuristic: choose a split so that the two new regions are as homogeneous
possible. . .
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Branching Optimization Point of View é"“

Various definition of inhomogeneous

@ CART: empirical loss based criterion (least squares/prediction error)
C(R.R) =" Uyiy(R)+ Y _ Uy, y(R))
X, ER iiEE
@ CART: Gini index (Classification)
C(R.R)=>_ p(R)(L —p(R))+ > p(R)(1 — p(R))

x;€R gfeﬁ
@ CA4.5: entropy based criterion (Information Theory)

C(R.R)=>_H(R)+ Y H(R)

X;€R x.€ER

o CART with Gini is probably the most used technique. ..

@ Other criterion based on 2 homogeneity or based on different local predictors
(generalized linear models. . . )
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B ran Ch i n g Optimization Point of View

Choice of the split in a given region

@ Compute the criterion for all features and all possible splitting points
(necessarily among the data values in the region)

Choose the split minimizing the criterion

Variations: split at all categories of a categorical variable using a clever category
ordering (ID3), split at a restricted set of points (quantiles or fixed grid)
e Stopping rules:

e when a leaf/region contains less than a prescribed number of observations
e when the region is sufficiently homogeneous. . .

May lead to a quite complex tree: over-fitting possible!

Additional pruning often use.
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P runing Optimization Point of View

e Rl

@ Model selection within the (rooted) subtrees of previous tree!

@ Number of subtrees can be quite large, but the tree structure allows to find the
best model efficiently.

Key idea
@ The predictor in a leaf depends only on the values in this leaf.

o Efficient bottom-up (dynamic programming) algorithm if the criterion used
satisfies an additive property

e Example: AIC / CV.
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P runing Optimization Point of View

Examples of criterion satisfying this assumptions

@ AIC type criterion:

nynfc X))+ ATI=Y (ny,,fﬁ +>\)

LET \x,EL
e Simple cross—Valldatlon (with (x}, y/) a different dataset):

Snatn - (3 o)

LET \xieL

@ Limit over-fitting for a single tree.

@ Rk: almost never used when combining several trees. ..
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CART

Optimization Point of View

CART
Decision region Decision boundary
w
8]
0.8 06- ® |
Cg classes Eg ’ ©  classes
% 0.4 . Class1 % 0.4- > @ Classi
& B class2 £ @ Class2
02 02-
0.2 0.4 06 0.2 DIA DI.B
PredictorA PredictorA
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CA RT P ros a nd COHS Optimization Point of View

@ Leads to an easily interpretable model o Greedy optimization
@ Fast computation of the prediction @ Hard decision boundaries
o Easily deals with categorical features @ Lack of stability

(and missing values)
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7

Ensem b|e methods Optimization Point of View

@ Lack of robustness for single trees.

@ How to combine trees?

Parallel construction
@ Construct several trees from bootstrapped samples and average the responses
(Bagging)
@ Add more randomness in the tree construction (Random Forests)

Sequential construction

@ Construct a sequence of trees by reweighting sequentially the samples according
to their difficulties (AdaBoost)

@ Reinterpretation as a stagewise additive model (Boosting)
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Ensemble methods

Optimization Point of View

Bagging
Decision region Decision boundary
w

0.6 06-
Cg classes % classes
% 0.4 . Classi % 0.4- @ Classi
& B class2 £ @ Class2

02

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA
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Ensemble methods

Optimization Point of View

Random Forest

Decision region Decision boundary
0.6 06-
Cg classes % classes
% 0.4 . Class1 % 0.4- @ Classi
& B class2 £ @ Class2
02

02-

02 0.4 06 0.2 04 06
PredictorA PredictorA
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Ensemble methods

Optimization Point of View

AdaBoost
Decision region Decision boundary
=

0.8 06- ® o |
Cg classes % ’ g ©  classes
% 0.4 . Class1 % 0.4- > @ Classi
& B class2 £ @ Class2

02

02 0.4 06 0.2 04 06
PredictorA PredictorA
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O Utl Ine Optimization Point of View

e Optimization Point of View

@ Ensemble Methods
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Ensem ble M ethOdS Optimization Point of View /4

Ensemble Methods
@ Averaging: combine several models by averaging (bagging, random forests,. . .)

e Boosting: construct a sequence of (weak) classifiers (XGBoost, LightGBM,
CatBoost)

@ Stacking: use the outputs of several models as features (tpot...)

@ Loss of interpretability but gain in performance

@ Beware of overfitting with stacking: the second learning step should be done with
fresh data.

@ No end to end optimization as in deep learning!
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O Utl Ine Empirical Risk Minimization

e Empirical Risk Minimization
@ Empirical Risk Minimization
@ ERM and PAC Bayesian Analysis
@ Hoeffding and Finite Class
@ McDiarmid and Rademacher Complexity
@ VC Dimension
@ Structural Risk Minimization
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O Utl Ine Empirical Risk Minimization

e Empirical Risk Minimization
@ Empirical Risk Minimization
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Empirical RISk Minimization Empirical Risk Minimization /"“

Empirical Risk Minimizer (ERM)
@ For any loss ¢ and function class S,
f = argmin E ZZ(Y,-, f(X;)) = argmin R,(f)
fes N4 fes
o Key property:
Ra(f) < Ra(f),¥f € S

@ Minimization not always tractable in practice!

@ Focus on the %/! case:

e only algorithm is to try all the functions,
e not feasible is there are many functions
e but interesting hindsight!
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O Utl Ine Empirical Risk Minimization

e Empirical Risk Minimization

@ ERM and PAC Bayesian Analysis
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ERM and PAC Analysis Empirical Risk Minimization /"k

@ Theoretical control of the random (error estimation) term:
R(f) = R(f5)

Probably Almost Correct Analysis

o Theoretical guarantee that
P(R(F) - R(f) < es(6)) >1-0
for a suitable es(9) > 0.
@ Implies:
. P(R(?) —R(F*) < R(£E) — R(F*) + 65(5)) >1-4

5 E[R(?) —R(fg)} < /O+OO 3s(€)de

@ The result should hold without any assumption on the law P!
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A General Decomposition Empirical Risk Minimization /'“

@ By construction:
R(F) = R(f5) =R

S
Four possible upperbounds

° R(f) — R(f§) < sup ((R(f) = R(£s)) — (Ra(f) = Ra(£s)))

o R(F) = R(f§) < sup (R(f) — Ra(f)) + (Ra(fF) — R(fZ))

fes
o R(F) —R(f§) < sup (R(f) = Ra(f)) + sup (Ra(f) = R(F))
o R(f) —R(f$) < 25up [R(f) = Ra(f)

@ Supremum of centered random variables!
@ Key: Concentration of each variable. .. 252



RISk BOU ndS Empirical Risk Minimization

@ By construction, for any ' € S,
R(f') = Ra(f') + (R(f') = Ra(f"))

A uniform upper bound for the risk

@ Simultaneously V' € S,

R(f') < Ra(f') + sup (R(f) — Ra(f))

@ Supremum of centered random variables!
e Key: Concentration of each variable. ..

@ Can be interpreted as a justification of the ERM!
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O Utl Ine Empirical Risk Minimization

e Empirical Risk Minimization

@ Hoeffding and Finite Class
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Concentration Of the Empirical LOSS Empirical Risk Minimization /'“

@ Empirical loss:

Rolf) = 23" (¥, £(X)
i=1

Properties
o O/1(Y; f(X;)) are i.i.d. random variables in [0, 1].

Concentration

) § E) Z 1— e—2ne2
P(Ra(f) = R(f) <€) > 1— e 2
|

IP)("R'n(f) — R(f) < 5) >1-— 2e—2ne2

@ Concentration of sum of bounded independent variables!
@ Hoeffding theorem.
o Equiv. to P(R(f) — Rn(f) < /log(1/3)/(2n)) > 1 — 6 255



HOeffd | ng Empirical Risk Minimization 7,

@ Let Z; be a sequence of ind. centered r.v. supported in [a;, b;] then
262

n - ¢
P(Z VA 6) <e 2imtima?
i=1

@ Proof ingredients:
e Chernov bounds:

Z" E[e* Y0, Z] [17, E[e*]

P I_IZ"Z€>S6/\; SIT
. A2(b;—3))?

e Exponential moment bounds: E[eAZf] <e @

e Optimization in A

e Prop:

n AT (bi—ap)?
B[S 2] < o =
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Hoeffd I ng Ineq ua | Ity Empirical Risk Minimization 4

@ Let Z; be a sequence of independent centered random variables supported in
[ai, bi] then

262
1l

n — 2
i=1

z =1 (B[O/(Y F(X))] - OV F(X,))
E[Z] =0and Z € [X (E[C4(Y,£(X))| — 1), LE @1 (Y, £(X))]]
Concentration:

P(R(f) — Ra(f) > €) < e72
e By symmetry,
P(Ra(f) — R(f) > €) < €72
Combining the two yields
P(|Rn(f) — R(F)| =€) < 22
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Finite Class Case Empirical Risk Minimization /'“

Concentration
e If S is finite of cardinality |S]|,

P <sup(7z(f) — Ra(F)) < \/ 0g 5] + log(1/ 5)) >1-6

f 2n
P (sup RalF) = R(F)| < \/ o881+ logll) ‘”) >1-25
f n

@ Control of the supremum by a quantity depending on the cardinality and the
probability parameter 4.

@ Simple combination of Hoeffding and a union bound.
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Finite Class Case Empirical Risk Minimization [“

PAC Bounds
o If S is finite of cardinality |S|, with proba greater than 1 — 26

R(?) _R(R) < \/Iog\S! + log(1/6) N \/Iog(l/é)

2n 2n

_ 2\/Iong + log(1/5)
- 2n

e If S is finite of cardinality |S|, with proba greater than 1 — 4, simultaneously
V' e S,

R(F) < Ro(F) + \/ o8 + log(1/9)

< Rl ) + \/ ogldl \/ og(1/9)

259



Finite Class Case Empirical Risk Minimization /'“

PAC Bounds
e If S is finite of cardinality |S|, with proba greater than 1 — 26

R(F) = R(F) < \/Ioi,];ﬂ n \/2|og(1/5)

n
e If S is finite of cardinality |S|, with proba greater than 1 — 4, simultaneously
V' e S,

R(F) < Rolf') + ¢ sls] | \/ (1)

@ Risk increases with the cardinality of S.
@ Similar issue in cross-validation!

@ No direct extension for an infinite S. ..
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O Utl Ine Empirical Risk Minimization

e Empirical Risk Minimization

@ McDiarmid and Rademacher Complexity
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Concentration of the Supremum of Empirical Losses  emprcal sk inimization ¥

@ Supremum of Empirical losses:
An(S) (X1, ..., Xp) = sup R(f) — Ra(f)
fes

= sup (E oy, f)] - 23S engy, f(x;)))
fes N

Properties

@ Bounded difference:
IAL(S)( Xy, Xy X)) — An(S)(Xq, .- Xy X)) < 1)/n

Concentration

P(An(S) —E[An(S)] <€) >1— e 2"

@ Concentration of bounded difference function.
@ Generalization of Hoeffding theorem: McDiarmid Theorem.
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MCDiarmid Inequality Empirical Risk Minimization [“

Bounded difference function
@ g: X" — R is a bounded difference function if it exist ¢; such that
Y(Xi)iz1, (XD € R,

|g(Klv"'aKi>"'7Kn)_g(ll"'wéi'v"wlnn S Ci

o If g is a bounded difference function and X; are independent random variables

then
—262
P(g(X1,. .., X,) —Blg(Xy, ..., X,)] > €) < e
—262
P(E[g(Xy, .- X)) — 8(X1, -, Xp) > €) < i

@ Proof ingredients:
e Chernov bounds
e Martingale decomposition. . .
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M C Dlarm Id I neq u a | Ity Empirical Risk Minimization 4

@ If g is a bounded difference function and X; are independent random variables
then

—2¢2

P(g(X1, .-, X,) —Elg(Xq, ..., X,)] > €) < e2im

@ Using g = A,(S) for which ¢; = 1/n yields immediately
—2e

P(An(S) — E[An(S)] > €) < e2uim1§ = e 20

@ We derive then

P(An(S) > E[An(S)] +¢€) < e2im1 G = e=20¢
@ It remains to upperbound

IE[An] =E [SUPR(f) - 7?'n(f)‘|
fes
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Rademacher Complexity

Empirical Risk Minimization 4

@ Let o; be a sequence of i.i.d. random symmetric Bernoulli variables (Rademacher
variables):

E [sup(R(f) —Rn(f))| <2E
fes

sup 1 z”: ol (Y, f(Xi))]

fes n i=1

Rademacher complexity

@ Let B C R”, the Rademacher complexity of B is defined as

R.(B)=E [sup E iaibi]

beB N7

@ Theorem gives an upper bound of the expectation in terms of the average
Rademacher complexity of the random set
Ba(S) = {(©/1(Y;, F(X;)))2y. f € S).

@ Back to finite setting: This set is at most of cardinality 2". 065



Flnlte Set RademaCher CompleXIty Bound Empirical Risk Minimization /

o If B is finite and such that Vb € B, 1||b||3 < M?, then

1 2M2 log |B|
Ra(B) =E|sup = > oib| </—=—
(B) lz:gn’;ab] ﬁ

o If B=B,(S) = {({%(Y;,f(X,)),,f €S}, we have M =1 and thus

Ro(B) < 2log |Bn(S)|
n
@ We obtain immediately
]E[sup(R(f)—R,,(f))} <E 8'°g|8"(5)|] .
fesS n
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Finite Set Rademacher Complexity Bound it sk Minimizason K

e With probability greater than 1 — 29,

R SE[ wlogwn(sn‘ . %mog(w)

n

o With probability greater than 1 — §, simultaneously Vf' € S

[810g1B.(S)1| |, [log(1/9)
n 2n

@ This is a direct consequence of the previous bound.

R(f') < Ru(f') + E
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Finite Set Rademacher Complexity Bound Empirical Risk Minimization /

Corollary
o If S is finite then with probability greater than 1 — 29

R(F) - R(f) < | 2oEISL, [20sl1/0)

n
@ If S is finite then with probability greater than 1 — ¢, simultaneously Vf’ € S

R(f") < Ra(f") + \/8 'Oi 5] + \/|og;/5)

@ It suffices to notice that
|Ba(S)] = (/1 (Y;, F(X;)))iey . f € SH < IS
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Flnlte Set RademaCher CompleXIty Bound Empirical Risk Minimization /

@ Same result with Hoeffding but with better constants!

R(F) — R(f§) < \/ 'Oil,S’ * % 2 logﬁl/é)

log |S] ¢ log(1/9)
2n

R(f) < R (f) + \/ T

@ Difference due to the crude upperbound of
E [sup (R(f) - Rn(f))]
fes

@ Why bother?: We do not have to assume that S is finite!
|Ba(S)| < 27
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O Utl Ine Empirical Risk Minimization

e Empirical Risk Minimization

@ VC Dimension
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Back to the Bound Empirical Risk Minimization 1' 

E[SUP(RU)_RHU))] SE[ ww]

fes

n

@ Key quantity: ]E{ 8'°gB”(S)|]
@ Hard to control due to its structure!

A first data dependent upperbound

E[ 8|0g’fn(3) <\/8IogE[’\78,,(S)\] (Jensen)

@ Depends on the unknown P!
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Shattering Coefficient Empirical Risk Minimization é"“

Shattering Coefficient (or Growth Function)

@ The shattering coefficient of the class S, s(S, n), is defined as

s(S,n) = sup  [{((Yi, F(X))ir, f € SY
(X1, Y1) (X, Ya) JE(X X {—1,1})"

@ By construction, |B,(S)| < s(S, n) < min(2",|S]).
A data independent upperbound

E[\/8|0g|8n(8)]‘ _ \/8|ogs(8,n)
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Shattering Coefficient Empirical Risk Minimization /'“

e With probability greater than 1 — 29,

R(f) = R(f§) < \/

@ With probability greater than 1 — §, simultaneously V' € S,

R(f,)SRn(f,)_i_\/8Iogs(8,n)+\/log(1/6)

n 2n

8logs(S, n) N \/2 log(1/0)

n n

@ Depends only on the class S!
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Vapnik—Chervonenkis Dimension Empirical Risk Minimization /"“

VC Dimension
@ The VC dimension d\¢ of S is defined as the largest integer d such that
s(S,d) =2¢
@ The VC dimension can be infinite!

VC Dimension and Dimension

@ Prop: If span(S) corresponds to the sign of functions in a linear space of
dimension d then dy¢ < d.

@ VC dimension similar to the usual dimension.
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VC Dimension and Sauer’'s Lemma

Sauer's Lemma
o If the VC dimension dy¢ of S is finite

s(S,n) < {2”

(ﬂ)dvc
dvc

@ Cor.: logs(S,n) < dyclog (de—fc) if n> dyc.

Empirical Risk Minimization 4

if n < dyc

if n> dyc
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VC Dimension and PAC Bounds Empirical Risk Minimization /'“

PAC Bounds

@ If S is of VC dimension dy then if n > d\¢
e With probability greater than 1 — 29,

8dvc log () L [21oe(1/9)
n n

R(F) = R(f§) < J

e With probability greater than 1 — §, simultaneously V' € S,

R(F) < Ro(F') + J S0 08 ). @) , og(L/0)

@ Rk: If dy¢c = +o0 no uniform PAC bounds exists!
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O Utl Ine Empirical Risk Minimization

e Empirical Risk Minimization

@ Structural Risk Minimization
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Countable Collection and Non Uniform PAC BOUHdS Empirical Risk Minimization [‘“"

PAC Bounds

@ Let m¢ > O such that } rcsmr =1
e With proba greater than 1 — 29,

R(F) — R(fL) < ¢ log(1/m¢) | V 2log(1/9)

2n n
@ With proba greater than 1 — §, simultaneously Vf’ € S,
log(1/m¢) | [log(1/6)
/ < !
R(f") _R,,(f)+\/ o aF on

@ Very similar proof than the uniform one!

@ Much more interesting idea when combined with several models. ..
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Models, Non Uniform Risk Bounds and SRM

@ Assume we have a countable collection of set (Spm)mem and let mp, be such that
Zmé/\/l Tm — 1
Non Uniform Risk Bound
@ With probability 1 — §, simultaneously for all m € M and all f € S,

8|og|Bn(sm)|] ) \/log(l/wm) ) wog(m)
n 2n 2n

R(f) < Rn(f)+E

Structural Risk Minimization

@ Choose f as the minimizer over m € M and f € S,, of

8log |Bn(Sm)| log(1/7m)

Rn(f) +E p o

@ Mimics the minimization of the integrated risk!
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SRM and PAC Bound Empirical Risk Minimization é"‘k

PAC Bound

o If f is the SRM minimizer then with probability 1—29,
meM feSy

@ The SRM minimizer balances the risk R(f) and the upper bound on the
estimation error E {\/Slog“g"(‘sf")} + \/|°g(;/7fm)_

R(f) < inf inf ( )+E

n n

° E{ Emgli"(s’")l} can be replaced by an upper bound (for instance a VC based
one)...
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