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IntroductionMachine Learning
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A definition by Tom Mitchell
A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E.
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IntroductionObject Detection
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Task: say if an object is present or not in the image
Performance: number of errors
Experience: set of previously seen labeled images
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IntroductionArticle Clustering
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An article clustering algorithm:
Task: group articles corresponding to the same news
Performance: quality of the clusters
Experience: set of articles
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IntroductionSmart Grid Controler
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.A controler in its sensors in a home smart grid:
Task: control the devices
Performance: energy costs
Experience:

previous days
current environment and performed actions
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IntroductionThree Kinds of Learning
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Unsupervised Learning
Task:
Clustering/DR
Performance:
Quality
Experience:
Raw dataset
(No Ground Truth)

Supervised Learning
Task:
Prediction/Classification
Performance:
Average error
Experience:
Good Predictions
(Ground Truth)

Reinforcement Learning
Task:
Actions
Performance:
Total reward
Experience:
Reward from env.
(Interact. with env.)

Timing: Offline/Batch (learning from past data) vs Online (continuous learning)
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IntroductionSupervised and Unsupervised
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Supervised Learning (Imitation)
Goal: Learn a function f predicting a variable Y from an individual X .
Data: Learning set with labeled examples (X i , Yi)
Assumption: Future data behaves as past data!
Predicting is not explaining!

Unsupervised Learning (Structure Discovery)
Goal: Discover a structure within a set of individuals (X i).
Data: Learning set with unlabeled examples (X i)
Unsupervised learning is not a well-posed setting. . .
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IntroductionMachine Can and Cannot

Machine Can
Forecast (Prediction using the past)
Detect some changes
Memorize/Reproduce
Take a decision very quickly
Learn from huge dataset
Optimize a single task
Replace/Help some humans

Machine Cannot
Predict something never seen before
Detect any new behaviour
Create something brand new
Understand the world
Get smart really fast
Go beyond their task
Kill all humans

Some progresses but still very far from the singularity. . . 12



IntroductionMachine Learning
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Machine Learning Methods
Huge catalog of methods,
Need to define the performance,
Numerous tricks: feature design, hyperparameter selection. . .
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IntroductionUnder and Over Fitting

So
ur

ce
:

ge
ek

sf
or

ge
ek

s.
co
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What is best?

A simple model that is stable but false? (oversimplification)
A very complex model that could be correct but is unstable? (conspiracy theory)

Neither of them: tradeoff that depends on the dataset.
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IntroductionMachine Learning Pipeline
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Test and compare models.

Deployment pipeline is different!
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IntroductionData Science ̸= Machine Learning
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Main DS difficulties
Figuring out the problem,
Formalizing it,
Storing and accessing the data,
Deploying the solution,
Not (always) the Machine Learning part!
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IntroductionOptical Character Recognition
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Task: give a number from an image.
Experience: X = image / Y = corresponding number.
Performance measure: error rate.
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IntroductionBiology
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Predicting protein interaction
Task: Predict (unknown) interactions between proteins.
Experience: X = pair of proteins / Y = existence or no of interaction.
Performance measure: error rate.
Numerous similar questions in bio(informatics): genomic,. . .
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IntroductionDetection
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Face detection
Task: Detect the position of faces in an image
Different setting?
Reformulation as a supervised learning problem.
Task: Detect the presence of faces at several positions and scales.
Experience: X = sub image / Y = presence or no of a face. . .
Performance measure: error rate.
Lots of detections in an image: post processing required. . .
Performance measure: box precision.
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IntroductionEucalyptus
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Height estimation
Simple (and classical) dataset.
Task: predict the height from circumference.
Experience: X = circumference /
Y = height.
Performance measure: means squared error.
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A Practical ViewWhat is a Method?
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A Learning Method
Formula/Algorithm allowing to make predictions
Algorithm allowing to chose this formula/algorithm
Data preprocessing (cleansing, coding. . . )
Optimization criterion for the choice!
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A Practical ViewSimple Approach: Similarity
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Similarity
Imitate the answer to give by mixing answers to similar questions (k nearest
neighbors)
Require to search for those similar questions for each request
Not always very efficient but fast to build (less to use. . . )
Easy to understand and rather stable
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A Practical ViewSimple Formula: Linear Method
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Linear Method
Simple formula: a0 + a1X (1) + · · · + adX (d)

Imitate the answer to give (linear regression) or a transformation of the
conditional probability of the category (logistic regression)
Numerous variations on the parameter optimization (penalization, SVM,. . . )
Pretty efficient and fast to build
Easy to understand and rather stable 26



A Practical ViewSimple Algorithm: Tree
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Tree
Construction of a decision tree
Impossible to really optimize but good tree can be obtained
Not always very efficient but very quick to build
Very easy to understand but not really stable
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A Practical ViewCombing Simple Things: Ensemble

So
ur

ce
:

J.
Ro

cc
a

Ensemble Methods
Strategy:

Bagging: construction of variations in parallel and averaging (random forest)
Boosting: construction of sequential improvements (XGBoost, Lightgbm)
Stacking: Use of a first set of predictors as features

Very good performance for structured data but quite slow to build
Stable but hard to understand
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A Practical ViewChain Simple Things: Deep Learning
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Deep Learning
Chain of simple formulae (Neural Network)
Joint optimization
Very good performance for unstructured data but slow to build
Mildly stable and very hard to understand
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A Practical ViewMethods: Pros and Cons

Method Performance Training Speed Inf. Speed Stability Interpretability
Similarity - ∅ – + +
Linear + ++ ++ ++ +
Tree - ++ ++ - ++
Ensemble ++ - + ++ -
Deep ++ – - - –

Take Away Message
No unanimously best solution
Impossible to guess which method is going to be the best!
A good practice is to always try a linear method as well as an ensemble one for
structured data or deep one for unstructured data
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A Practical ViewPreprocessing
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Preprocessing
Art of creating sophisticated representations of initial data
Key for good performances
Examples: individual transformation, variable combination, category (and text)
coding. . .

Important part of the learning method
31



A Practical ViewMethods/Models in Machine Learning
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ML Methods
Huge catalog of methods,
Need to define the performance,
Need to represent well the data
Need to choose the best method yielding a good model
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A Practical ViewUnder and Over Fitting

So
ur

ce
:

ge
ek

sf
or

ge
ek

s.
co

mFinding the Right Complexity
What is best?

A simple model that is stable but false? (oversimplification)
A very complex model that could be correct but is unstable? (conspiracy theory)

Neither of them: tradeoff that depends on the dataset.
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A Practical ViewWhich Method to Use?

Competition between several polynomial models.
Toy model where everuthing is known.
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A Practical ViewOver-fitting
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A Practical ViewML Pipeline
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ntLearning pipeline

Test and compare models.

Deployment pipeline is different!
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A Practical ViewCross Validation Principle

Train a model and check its quality on diffent pieces of the data.
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Check the quality of a method by repeating the previous approach.
Beware: a different predictor is learnt for each split.
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A Practical ViewThe Full Cross Validation Scheme
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Most important part of machine learning.
Automatic choice of model possible by (intelligent ?) exploration. . .
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A Practical ViewBest Polynomial

Competition results
The true model is not the winner!
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A Practical ViewInterpretation?
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Is this that easy?
Simple formula setting:

Y ≃ f (X ) = a0 + a1X (1) + a2X (2) + · · · + adX (d)

Beware of the interpretation!
Everything being equal. . . Correlation is not causality. . .
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A Practical ViewInterpretability
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Intepretability or Explainability
Interpretability: possibility to give a causal aspect to the formula.
Explainability: possibility to find the variables having an effect on the decision and
their effect.

Explainability is much easier than interpretability.
Transparency (on the datasets, the criterion optimized and the algorithms) yields
already a lot of information.
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A Practical VieweXplainable AI (XAI)
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A few directions
Data Explaination.
Use of explainable methods (linear?).
Use of black box methods:

Global explanation (variable importance)
Local explanation (linear approximationn, alternative scenario. . . )

Causality very hard to access without a real experimental plan with interventions!
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A Practical ViewMetric and Solution
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Quality metric has a strong impact on the solution.
Implicite encoding rather than an explicit one!
Often simplified criterion in the optimization part.
More involved criterion can be used in evaluation.
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A Practical ViewSupervised Performance Metrics
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Measure of the cost of not being perfect!
Criterion used to optimize the predictor and/or evaluate its interest.
Classical metrics: quadratic error, zero/one error.
Many other possible choices, idealy encoding domain expertise (asymmetry. . . )
The criterion can be different between optimization and evaluation because of
computation requirements.
Very important factor (too) often neglicted.
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A Practical ViewUnsupervised Performance Metrics
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Measure the quality of the result!
Dimension Reduction / Representation: reconstruction quality, relationship
preservation. . .
Clustering: measure of intra-group proximity and inter-group difference?
Very subjective criterion!
Hard to define the right distances especially for discrete variables.
In practice, quality often evaluated by the a posteriori interest.
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A Practical ViewFairness
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Fairness?
Very hard to specify criterion.
No consensus on its definition:

faithful reproduction of the reality?
correction of its bias?

Current approaches through constraints in the optimization.
A posteriori verification unavoidable!

48



A Practical ViewWhat About the Data Bias?
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Central assumption: representativity of the data!
Optimization made in this setting.
Possible training data bias:

selection bias in the data
population evolution
(historical) bias in the targets

Correction possible at least up to a certain point for the 2 first cases if one is
aware of the situation.
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A Better Point of ViewEucalyptus
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Simple (and classical) dataset.
Goal: predict the height from circumference
X = circ = circumference.
Y = ht = height.
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A Better Point of ViewEucalyptus
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Linear Model
Parametric model:

fβ(circ) = β(1) + β(2)circ

How to choose β = (β(1), β(2))?
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A Better Point of ViewLeast Squares

Methodology
Natural goodness criterion:

n∑
i=1

|Yi − fβ(X i)|2 =
n∑

i=1
|hti − fβ(circi)|2

=
n∑

i=1
|hti − (β(1) + β(2)circi)|2

Choice of β that minimizes this criterion!

β̂ = argmin
β∈R2

n∑
i=1

|hi − (β(1) + β(2)circi)|2

Easy minimization with an explicit solution!

54



A Better Point of ViewPrediction
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Prediction
Linear prediction for the height:

ĥt = f
β̂
(circ) = β̂(1) + β̂(2)circ
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A Better Point of ViewHeuristic

Linear Regression
Statistical model: (circi , hti) i.i.d. with the same law as a generic (circ, ht).
Performance criterion: Look for f with a small average error

E
[
|ht − f (circ)|2

]
Empirical criterion: Replace the unknown law by its empirical counterpart

1
n

n∑
i=1

|hti − f (circi)|2

Predictor model: As the minimum over all function is 0 (if all the circi are
different), restrict to the linear functions f (circ) = β(1) + β(2)circ to avoid
over-fitting.
Model fitting: Explicit formula here.

This model can be too simple!
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A Better Point of ViewPolynomial Regression
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Polynomial Model
Polynomial model: fβ(circ) =

∑p
l=1 β(l)circl−1

Linear in β.
Easy least squares estimation for any degree!
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A Better Point of ViewWhich Degree?
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Models
Increasing degree = increasing complexity and better fit on the data
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A Better Point of ViewWhich Degree?
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Best Degree?
How to choose among those solutions? 59



A Better Point of ViewOver-fitting Issue

Risk behavior
Training error (empirical error on the training set) decays when the complexity of
the model increases.
Quite different behavior when the error is computed on new observations (true
risk / generalization error).
Overfit for complex models: parameters learned are too specific to the learning set!
General situation! (Think of polynomial fit. . . )
Need to use another criterion than the training error! 60



A Better Point of ViewCross Validation and Penalization

Two directions
How to estimate the generalization error differently?
Find a way to correct the empirical error?

Two Approaches
Cross validation: Estimate the error on a different dataset:

Very efficient (and almost always used in practice!)
Need more data for the error computation.

Penalization approach: Correct the optimism of the empirical error:
Require to find the correction (penalty).
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A Better Point of ViewUnivariate Regression
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Questions
How to build a model?
How to fit a model to the data?
How to assess its quality?
How to select a model among a collection?
How to guaranty the quality of the selected model?
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A Better Point of ViewSupervised Learning
Supervised Learning Framework

Input measurement X ∈ X
Output measurement Y ∈ Y.
(X , Y ) ∼ P with P unknown.
Training data : Dn = {(X 1, Y1), . . . , (Xn, Yn)} (i.i.d. ∼ P)

Often
X ∈ Rd and Y ∈ {−1, 1} (classification)
or X ∈ Rd and Y ∈ R (regression).

A predictor is a function in F = {f : X → Y meas.}

Goal
Construct a good predictor f̂ from the training data.

Need to specify the meaning of good.
Classification and regression are almost the same problem!
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A Better Point of ViewLoss and Probabilistic Framework

Loss function for a generic predictor
Loss function: ℓ(Y , f (X )) measures the goodness of the prediction of Y by f (X )
Examples:

0/1 loss: ℓ(Y , f (X )) = 1Y ̸=f (X)
Quadratic loss: ℓ(Y , f (X )) = |Y − f (X )|2

Risk function
Risk measured as the average loss for a new couple:

R(f ) = E(X,Y )∼P[ℓ(Y , f (X))]
Examples:

0/1 loss: E[ℓ(Y , f (X ))] = P(Y ̸= f (X ))
Quadratic loss: E[ℓ(Y , f (X ))] = E

[
|Y − f (X )|2

]
Beware: As f̂ depends on Dn, R(f̂ ) is a random variable!
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A Better Point of ViewBest Solution

The best solution f ⋆ (which is independent of Dn) is
f ⋆ = arg min

f ∈F
R(f ) = arg min

f ∈F
E[ℓ(Y , f (X ))] = arg min

f ∈F
EX
[
EY |X [ℓ(Y , f (X ))]

]
Bayes Predictor (explicit solution)

In binary classification with 0 − 1 loss:

f ⋆(X ) =


+1 if P(Y = +1|X ) ≥ P(Y = −1|X )

⇔ P(Y = +1|X ) ≥ 1/2
−1 otherwise

In regression with the quadratic loss
f ⋆(X ) = E[Y |X ]

Issue: Solution requires to know E[Y |X ] for all values of X !
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A Better Point of ViewGoal
Machine Learning

Learn a rule to construct a predictor f̂ ∈ F from the training data Dn s.t. the
risk R(f̂ ) is small on average or with high probability with respect to Dn.

In practice, the rule should be an algorithm!

Canonical example: Empirical Risk Minimizer
One restricts f to a subset of functions S = {fθ, θ ∈ Θ}
One replaces the minimization of the average loss by the minimization of the
empirical loss

f̂ = f
θ̂

= argmin
fθ,θ∈Θ

1
n

n∑
i=1

ℓ(Yi , fθ(X i))

Examples:
Linear regression
Linear classification with

S = {x 7→ sign{x⊤β + β(0)} /β ∈ Rd , β(0) ∈ R} 67



A Better Point of ViewExample: TwoClass Dataset
Synthetic Dataset

Two features/covariates.
Two classes.

Dataset from Applied Predictive Modeling, M. Kuhn and K. Johnson, Springer
Numerical experiments with R and the {caret} package.
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A Better Point of ViewExample: Linear Discrimination
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A Better Point of ViewExample: More Complex Model
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A Better Point of ViewEucalyptus
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Dataset - P.A. Cornillon
Real dataset of 1429 eucalyptus obtained by P.A. Cornillon:

X : circumference / Y: height

Can we predict the height from the circumference?

by a line? by a more complex formula?
by also taking account of the block and the clone type?
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A Better Point of ViewEucalyptus
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Dataset - P.A. Cornillon
Real dataset of 1429 eucalyptus obtained by P.A. Cornillon:

X : circumference, block, clone / Y: height

Can we predict the height from the circumference?
by a line? by a more complex formula?
by also taking account of the block and the clone type?

71



A Better Point of ViewUnder-fitting / Over-fitting Issue

So
ur

ce
:

A
.N

gModel Complexity Dilemna
What is best a simple or a complex model?
Too simple to be good? Too complex to be learned?
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A Better Point of ViewUnder-fitting / Over-fitting Issue

So
ur

ce
:

U
nk

no
w

nUnder-fitting / Over-fitting
Under-fitting: simple model are too simple.
Over-fitting: complex model are too specific to the training set.
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A Better Point of ViewBias-Variance Dilemma
General setting:

F = {measurable functions X → Y}
Best solution: f ⋆ = argminf ∈F R(f )
Class S ⊂ F of functions
Ideal target in S: f ⋆

S = argminf ∈S R(f )
Estimate in S: f̂S obtained with some procedure

Approximation error and estimation error (Bias/Variance)

R(f̂S) − R(f ⋆) = R(f ⋆
S ) − R(f ⋆)︸ ︷︷ ︸

Approximation error

+ R(f̂S) − R(f ⋆
S )︸ ︷︷ ︸

Estimation error

Approx. error can be large if the model S is not suitable.
Estimation error can be large if the model is complex.

Agnostic approach
No assumption (so far) on the law of (X , Y ).
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A Better Point of ViewUnder-fitting / Over-fitting Issue

So
ur
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Different behavior for different model complexity
Low complexity model are easily learned but the approximation error (bias) may
be large (Under-fit).
High complexity model may contain a good ideal target but the estimation error
(variance) can be large (Over-fit)

Bias-variance trade-off ⇐⇒ avoid overfitting and underfitting

Rk: Better to think in term of method (including feature engineering and specific
algorithm) rather than only of model.
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A Better Point of ViewTheoretical Analysis

Statistical Learning Analysis
Error decomposition:

R(f̂S) − R(f ⋆) = R(f ⋆
S ) − R(f ⋆)︸ ︷︷ ︸

Approximation error

+ R(f̂S) − R(f ⋆
S )︸ ︷︷ ︸

Estimation error

Bound on the approximation term: approximation theory.
Probabilistic bound on the estimation term: probability theory!
Goal: Agnostic bounds, i.e. bounds that do not require assumptions on P!
(Statistical Learning?)

Often need mild assumptions on P. . . (Nonparametric Statistics?)
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A Better Point of ViewBinary Classification Loss Issue

Empirical Risk Minimizer

f̂ = argmin
f ∈S

1
n

n∑
i=1

ℓ0/1(Yi , f (X i))

Classification loss: ℓ0/1(y , f (x)) = 1y ̸=f (x)
Not convex and not smooth!

77



A Better Point of ViewProbabilistic Point of View
Ideal Solution and Estimation

So
ur

ce
:

A
.F

er
m

in

The best solution f ⋆ (which is independent of Dn) is
f ⋆ = arg min

f ∈F
R(f ) = arg min

f ∈F
E[ℓ(Y , f (X ))] = arg min

f ∈F
EX
[
EY |X [ℓ(Y , f (x))]

]
Bayes Predictor (explicit solution)
In binary classification with 0 − 1 loss:

f ⋆(X ) =
{

+1 if P(Y = +1|X ) ≥ P(Y = −1|X )
−1 otherwise

Issue: Solution requires to know E[Y |X ] for all values of X !
Solution: Replace it by an estimate.
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A Better Point of ViewOptimization Point of View
Loss Convexification

Minimizer of the risk

f̂ = argmin
f ∈S

1
n

n∑
i=1

ℓ0/1(Yi , f (X i))

Issue: Classification loss is not convex or smooth.
Solution: Replace it by a convex majorant.
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A Better Point of ViewProbabilistic and Optimization Framework
How to find a good function f with a small risk

R(f ) = E[ℓ(Y , f (X ))] ?
Canonical approach: f̂S = argminf ∈S

1
n
∑n

i=1 ℓ(Yi , f (X i))

Problems
How to choose S?
How to compute the minimization?

A Probabilistic Point of View
Solution: For X , estimate Y |X plug this estimate in the Bayes classifier:
(Generalized) Linear Models, Kernel methods, k-nn, Naive Bayes, Tree,
Bagging. . .

An Optimization Point of View
Solution: If necessary replace the loss ℓ by an upper bound ℓ and minimize the
empirical loss: SVR, SVM, Neural Network,Tree, Boosting. . .
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Risk Estimation and Method
Choice

Example: TwoClass Dataset
Synthetic Dataset

Two features/covariates.
Two classes.

Dataset from Applied Predictive Modeling, M. Kuhn and K. Johnson, Springer
Numerical experiments with R and the {caret} package.
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Choice

Example: Linear Discrimination
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Risk Estimation and Method
Choice

Example: More Complex Model
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Example: KNN
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Risk Estimation and Method
Choice

Training Risk Issue

So
ur

ce
:

JM
P

Risk behaviour
Learning/training risk (empirical risk on the learning/training set) decays when
the complexity of the method increases.
Quite different behavior when the risk is computed on new observations
(generalization risk).
Overfit for complex methods: parameters learned are too specific to the learning
set!
General situation! (Think of polynomial fit. . . )
Need to use a different criterion than the training risk!
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Risk Estimation and Method
Choice

Risk Estimation vs Method Selection
Predictor Risk Estimation

Goal: Given a predictor f assess its quality.
Method: Hold-out risk computation (/ Empirical risk correction).
Usage: Compute an estimate of the risk of a selected f using a test set to be
used to monitor it in the future.

Basic block very well understood.

Method Selection
Goal: Given a ML method assess its quality.
Method: Cross Validation (/ Empirical risk correction)
Usage: Compute risk estimates for several ML methods using
training/validation sets to choose the most promising one.

Estimates can be pointwise or better intervals.
Multiple test issues in method selection. 88



Risk Estimation and Method
Choice

Cross Validation and Empirical Risk Correction

Two Approaches
Cross validation: Use empirical risk criterion but on independent data, very
efficient (and almost always used in practice!) but slightly biased as its target uses
only a fraction of the data.
Correction approach: use empirical risk criterion but correct it with a term
increasing with the complexity of S

Rn(f̂S) → Rn(f̂S) + cor(S)
and choose the method with the smallest corrected risk.

Which loss to use?
The loss used in the risk: most natural!
The loss used to estimate θ̂: penalized estimation!

Other performance measure can be used.
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Risk Estimation and Method
Choice

Cross Validation

So
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:
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Very simple idea: use a second learning/verification set to compute a verification
risk.
Sufficient to remove the dependency issue!
Implicit random design setting. . .

Cross Validation
Use (1 − ϵ) × n observations to train and ϵ × n to verify!
Possible issues:

Validation for a learning set of size (1 − ϵ) × n instead of n ?
Unstable risk estimate if ϵn is too small ?

Most classical variations:
Hold Out,
Leave One Out,
V -fold cross validation.
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Risk Estimation and Method
Choice

Hold Out
Principle

Split the dataset D in 2 sets Dtrain and Dtest of size n × (1 − ϵ) and n × ϵ.
Learn f̂ HO from the subset Dtrain.
Compute the empirical risk on the subset Dtest:

RHO
n (f̂ HO) = 1

nϵ

∑
(X i ,Yi )∈Dtest

ℓ(Yi , f̂ HO(X i))

Predictor Risk Estimation
Use f̂ HO as predictor.
Use RHO

n (f̂ HO) as an estimate of the risk of this estimator.

Method Selection by Cross Validation
Compute RHO

n (f̂ HO
S ) for all the considered methods,

Select the method with the smallest CV risk,
Reestimate the f̂S with all the data. 91



Risk Estimation and Method
Choice

Hold Out
Principle

Split the dataset D in 2 sets Dtrain and Dtest of size n × (1 − ϵ) and n × ϵ.
Learn f̂ HO from the subset Dtrain.
Compute the empirical risk on the subset Dtest:

RHO
n (f̂ HO) = 1

nϵ

∑
(X i ,Yi )∈Dtest

ℓ(Yi , f̂ HO(X i))

Only possible setting for risk estimation.

Hold Out Limitation for Method Selection
Biased toward simpler method as the estimation does not use all the data initially.
Learning variability of RHO

n (f̂ HO) not taken into account.
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Risk Estimation and Method
Choice

V -fold Cross Validation

So
ur

ce
:
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Principle
Split the dataset D in V sets Dv of almost equals size.
For v ∈ {1, .., V }:

Learn f̂ −v from the dataset D minus the set Dv .
Compute the empirical risk:

R−v
n (f̂ −v ) = 1

nv

∑
(X i ,Yi )∈Dv

ℓ(Yi , f̂ −v (X i))

Compute the average empirical risk:

RCV
n (f̂ ) = 1

V

V∑
v=1

R−v
n (f̂ −v )

Estimation of the quality of a method not of a given predictor.
Leave One Out : V = n.
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Risk Estimation and Method
Choice

V -fold Cross Validation

Analysis (when n is a multiple of V )
The R−v

n (f̂ −v ) are identically distributed variable but are not independent!
Consequence:

E
[
RCV

n (f̂ )
]

= E
[
R−v

n (f̂ −v )
]

Var
[
RCV

n (f̂ )
]

= 1
V Var

[
R−v

n (f̂ −v )
]

+ (1 − 1
V )Cov

[
R−v

n (f̂ −v ), R−v ′
n (f̂ −v ′)

]
Average risk for a sample of size (1 − 1

V )n.
Variance term much more complex to analyze!
Fine analysis shows that the larger V the better. . .

Accuracy/Speed tradeoff: V = 5 or V = 10. . .
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Risk Estimation and Method
Choice

Linear Regression and Leave One Out

Leave One Out = V fold for V = n: very expensive in general.

A fast LOO formula for the linear regression
Prop: for the least squares linear regression,

f̂ −i(X i) = f̂ (X i) − hiiYi
1 − hii

with hii the ith diagonal coefficient of the hat (projection) matrix.
Proof based on linear algebra!
Leads to a fast formula for LOO:

RLOO
n (f̂ ) = 1

n

n∑
i=1

|Yi − f̂ (X i)|2
(1 − hii)2
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Cross Validation

95



Risk Estimation and Method
Choice

Example: KNN (k̂ = 61 using cross-validation)
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Risk Estimation and Method
Choice

Train/Validation/Test
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Selection Bias Issue:
After method selection, the cross validation is biased.
Furthermore, it qualifies the method and not the final predictor.

Need to (re)estimate the risk of the final predictor.
(Train/Validation)/Test strategy

Split the dataset in two a (Train/Validation) and Test.
Use CV with the (Train/Validation) to select a method.
Train this method on (Train/Validation) to obtain a single predictor.
Estimate the performance of this predictor on Test.

Every choice made from the data is part of the method! 97



Risk Estimation and Method
Choice

Risk Correction

Empirical loss of an estimator computed on the dataset used to chose it is biased!
Empirical loss is an optimistic estimate of the true loss.

Risk Correction Heuristic
Estimate an upper bound of this optimism for a given family.
Correct the empirical loss by adding this upper bound.

Rk: Finding such an upper bound can be complicated!
Correction often called a penalty.
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Risk Estimation and Method
Choice

Penalization
Penalized Loss

Minimization of

argmin
θ∈Θ

1
n

n∑
i=1

ℓ(Yi , fθ(X i)) + pen(θ)

where pen(θ) is a risk correction (penalty).

Penalties
Upper bound of the optimism of the empirical loss
Depends on the loss and the framework!

Instantiation
Mallows Cp: Least Squares with pen(θ) = 2d

n σ2.
AIC Heuristics: Maximum Likelihood with pen(θ) = d

n .
BIC Heuristics: Maximum Likelohood with pen(θ) = log(n)d

n .
Structural Risk Minimization: Pred. loss and clever penalty. 99
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Risk Estimation and Method
Choice

Comparison of Two Means
Means

Setting: r.v. e(l)
i with 1 ≤ i ≤ nl and l ∈ {1, 2} and their means

e(l) = 1
nl

nl∑
i=1

e(l)
i

Question: are the means e(l) statistically different?

Classical i.i.d setting
Assumption: e(l)

i are i.i.d. for each l .
Test formulation: Can we reject the null hypothesis that E

[
e(1)

]
= E

[
e(2)

]
?

Methods:
Gaussian (Student) test using asymptotic normality of a mean.
Non-parametric permutation test.

Gaussian approach is linked to confidence intervals.
The larger nl the smaller the confidence intervals. 101



Risk Estimation and Method
Choice

Comparison of Two Means

Non i.i.d. case
Assumption: e(l)

i are i.d. for each l but not necessarily independent.
Test formulation: Can we reject the null hypothesis that E

[
e(1)

]
= E

[
e(2)

]
?

Methods:
Gaussian (Student) test using asymptotic normality of a mean but variance is hard
to estimate.
Non-parametric permutation test but no confidence intervals.

Setting for Cross Validation (other than holdout).
Much more complicated than the i.i.d. case
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Risk Estimation and Method
Choice

Comparison of Several Means

Several means
Assumption: e(l)

i are i.d. for each l but not necessarily independent.
Tests formulation:

Can we reject the null hypothesis that the E
[
e(l)] are different?

Is the smaller mean statistically smaller than the second one?
Methods:

Gaussian (Student) test using asymptotic normality of a mean with multiple tests
correction.
Non-parametric permutation test but no confidence intervals.

Setting for Cross Validation (other than holdout).
The more models one compares:

the larger the confidence intervals
the most probable the best model is a lucky winner

Justify the fallback to the simplest model that could be the best one.
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Risk Estimation and Method
Choice

PAC Approach

CV Risk, Methods and Predictors
Cross-Validation risk: estimate of the average risk of a ML method.
No risk bound on the predictor obtained in practice.

Probabibly-Approximately-Correct (PAC) Approach
Replace the control on the average risk by a probabilistic bound

P
(
E
[
ℓ(Y , f̂ (X ))

]
> R

)
≤ ϵ

Requires estimating quantiles of the risk. 104



Risk Estimation and Method
Choice

Cross Validation and Confidence Interval
How to replace pointwise estimation by a confidence interval?
Can we use the variability of the CV estimates?
Negative result: No unbiased estimate of the variance!

Gaussian Interval (Comparison of the means and ∼ indep.)
Compute the empirical variance and divide it by the number of folds to construct
an asymptotic Gaussian confidence interval,
Select the simplest model whose value falls into the confidence interval of the
model having the smallest CV risk.

PAC approach (Quantile, ∼ indep. and small risk estim. error)
Compute the raw medians (or a larger raw quantiles)
Select the model having the smallest quantiles to ensure a small risk with high
probability.

Always reestimate the chosen model with all the data.
To obtain an unbiased risk estimate of the final predictor: hold out risk on
untouched test data. 105
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Cross Validation
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Unbalanced and Rebalanced Dataset
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Unbalanced Class
Setting: One of the class is much more present than the other.
Issue: Classifier too attracted by the majority class!

Rebalanced Dataset
Setting: Class proportions are different in the training and testing set (stratified
sampling)
Issue: Training risks are not estimate of testing risks.
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Risk Estimation and Method
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Resampling Strategies

So
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Resampling
Modify the training dataset so that the classes are more balanced.
Two flavors:

Sub-sampling which spoils data,
Over-sampling which needs to create new examples.

Issues: Training data is not anymore representative of testing data
Hard to do it right! 109



Risk Estimation and Method
Choice

Resampling Effect
Testing

Testing class prob.: πt(k)
Testing risk target:
Eπt [ℓ(Y , f (X ))] =∑

k
πt(k)E[ℓ(Y , f (X ))|Y = k]

Training
Training class prob.: πtr (k)
Training risk target:
Eπtr [ℓ(Y , f (X ))] =∑

k
πtr (k)E[ℓ(Y , f (X ))|Y = k]

Implicit Testing Risk Using the Training One
Amounts to use a weighted loss:

Eπtr [ℓ(Y , f (X ))] =
∑

k
πtr (k)E[ℓ(Y , f (X ))|Y = k]

=
∑

k
πt(k)E

[
πtr (k)
πt(k) ℓ(Y , f (X ))

∣∣∣∣Y = k
]

= Eπt

[
πtr (Y )
πt(Y ) ℓ(Y , f (X ))

]
Put more weight on less probable classes! 110



Risk Estimation and Method
Choice

Weighted Loss

In unbalanced situation, often the cost of misprediction is not the same for all
classes (e.g. medical diagnosis, credit lending. . . )
Much better to use this explicitly than to do blind resampling!

Weighted Loss
Weighted loss:

ℓ(Y , f (X )) −→ C(Y )ℓ(Y , f (X ))
Weighted risk target:

E[C(Y )ℓ(Y , f (X ))]

Rk: Strong link with ℓ as C is independent of f .
Often allow reusing algorithm constructed for ℓ.
C may also depend on X . . .
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Choice

Weighted Loss, ℓ0/1 loss and Bayes Classifier

The Bayes classifier is now:
f ⋆ = argminE[C(Y )ℓ(Y , f (X ))] = argminEX

[
EY |X [C(Y )ℓ(Y , f (X ))]

]
Bayes Predictor

For ℓ0/1 loss,
f ⋆(X ) = argmax

k
C(k)P(Y = k|X )

Same effect than a threshold modification for the binary setting!

Allow putting more emphasis on some classes than others.
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Risk Estimation and Method
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Linking Weights and Proportions

Cost and Proportions
Testing risk target:

Eπt [Ct(Y )ℓ(Y , f (X ))] =
∑

k
πt(k)Ct(k)E[ℓ(Y , f (X ))|Y = k]

Training risk target
Eπtr [Ctr (Y )ℓ(Y , f (X ))] =

∑
k

πtr (k)Ctr (k)E[ℓ(Y , f (X ))|Y = k]

Coincide if
πt(k)Ct(k) = πtr (k)Ctr (k)

Lots of flexibility in the choice of Ct , Ctr or πtr .
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Combining Weights and Resampling

Weighted Loss and Resampling
Weighted loss: choice of a weight Ct ̸= 1.
Resampling: use a πtr ̸= πt .

Stratified sampling may be used to reduce the size of a dataset without loosing a
low probability class!

Combining Weights and Resampling
Weighted loss: use Ctr = Ct as πtr = πt .
Resampling: use an implicit Ct(k) = πtr (k)/πt(k).
Combined: use Ctr (k) = Ct(k)πt(k)/πtr (k)

Most ML methods allow such weights!
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Choice

Auto ML
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Auto ML
Automatically propose a good predictor
Rely heavily on risk evaluations
Pros: easy way to obtain an excellent baseline
Cons: black box that can be abused. . .
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Risk Estimation and Method
Choice

Auto ML Task

So
ur

ce
:

M
ic

ro
so

ft

Auto ML Task
Input:

a dataset D = (X i , Yi)
a loss function ℓ(Y , f (X ))
a set of possible predictors fl,h,θ corresponding to a method l in a list, with
hyperparameters h and parameters θ

Output:
a predictor f equal to f̂l,ĥ,θ̂ or combining several such functions.
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Risk Estimation and Method
Choice

Predictors
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Predictors, a.k.a fitted pipelines
Preprocessing:

Feature design: normalization, coding, kernel. . .
Missing value strategy
Feature selection method

ML Method:
Method itself
Hyperparameters and architecture
Fitted parameters (includes optimization algorithm)

Quickly amounts to 20 to 50 design decisions!
Bruteforce exploration impossible!
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Risk Estimation and Method
Choice

Auto ML and Hyperparameter Optimization
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Most Classical Approach of Auto ML
Task rephrased as an optimization on the discrete/continous space of
methods/hyperparameters/parameters.
Parameters obtained by classical minimization.
Optimization of methods/hyperparameters much more challenging.
Approaches:

Bruteforce: Grid search and random search
Clever exploration: Evolutionary algorithm
Surrogate based: Bayesian search and Reinforcement learning
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Auto ML and Meta-Learning
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Learn from other Learning Tasks
Consider the choice of the method from a dataset and a metric as a learning task.
Requires a way to describe the problems (or to compute a similarity).
Descriptor often based on a combination of dataset properties and fast method
results.
May output a list of candidates instead of a single method.

Promising but still quite experimental!
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Risk Estimation and Method
Choice

Auto ML and Time Budget
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How to obtain a good result with a time constraint?
Brute force: Time out and methods screening with Meta-Learning (less
exploration at the beginning)
Surrogate based: Bayesian optimization (exploration/exploitation tradeoff)
Successive elimination: Fast but not accurate performance evaluation at the
beginning to eliminate the worst models (more exploration at the beginning)
Combined strategy: Bandit strategy to obtain a more accurate estimate of risks
only for the promising models (exploration/exploitation tradeoff)
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Choice

Auto ML benchmark
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Benchmark
Almost always (slightly) better than a good random forest or gradient boosting
predictor.
Worth the try!
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A Probabilistic Point of ViewThree Classical Methods in a Nutshell

Logistic Regression
Let fθ(X ) = X⊤β + β(0) with θ = (β, β(0)).
Let Pθ(Y = 1|X ) = e−fθ(X)/(1 + efθ(X))
Estimate θ by θ̂ using a Maximum Likelihood.
Classify using Pθ̂(Y = 1|X ) > 1/2

k Nearest Neighbors
For any X ′, define VX ′ as the k closest samples Xi from the dataset.
Compute a score gk =

∑
Xi ∈VX ′ 1Yi =k

Classify using arg max gk (majority vote).
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A Probabilistic Point of ViewThree Classical Methods in a Nutshell

Quadratic Discrimant Analysis
For each class, estimate the mean µk and the covariance matrix Σk .
Estimate the proportion P(Y = k) of each class.
Compute a score ln(P(X |Y = k)) + ln(P(Y = k))

gk(X ) = − 1
2(X − µk)⊤Σ−1

k (X − µk)

− d
2 ln(2π) − 1

2 ln(|Σk |) + ln(P(Y = k))

Classify using arg max gk

Those three methods rely on a similar heuristic: the probabilistic point of view!
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A Probabilistic Point of ViewBest Solution

The best solution f ⋆ (which is independent of Dn) is
f ⋆ = arg min

f ∈F
R(f ) = arg min

f ∈F
E[ℓ(Y , f (X ))] = arg min

f ∈F
EX
[
EY |X [ℓ(Y , f (X )]

]
Bayes Predictor (explicit solution)

In binary classification with 0 − 1 loss:

f ⋆(X ) =


+1 if P(Y = +1|X ) ≥ P(Y = −1|X )

⇔ P(Y = +1|X ) ≥ 1/2
−1 otherwise

In regression with the quadratic loss
f ⋆(X ) = E[Y |X ]

Issue: Explicit solution requires to know Y |X (or E[Y |X ]) for all values of X !
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A Probabilistic Point of ViewPlugin Predictor

Idea: Estimate Y |X by Y |X
∧

and plug it the Bayes classifier.

Plugin Bayes Predictor
In binary classification with 0 − 1 loss:

f̂ (X ) =


+1 if P(Y = +1|X )
∧

≥ P(Y = −1|X )
∧

⇔ P(Y = +1|X )
∧

≥ 1/2
−1 otherwise

In regression with the quadratic loss
f̂ (X ) = E

[
Y |X
∧]

Rk: Direct estimation of E[Y |X ] by E[Y |X ]
∧

also possible. . .
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A Probabilistic Point of ViewPlugin Predictor

How to estimate Y |X?

Three main heuristics
Parametric Conditional modeling: Estimate the law of Y |X by a parametric
law Lθ(X ): (generalized) linear regression. . .
Non Parametric Conditional modeling: Estimate the law of Y |X by a non
parametric estimate: kernel methods, loess, nearest neighbors. . .
Fully Generative modeling: Estimate the law of (X , Y ) and use the Bayes
formula to deduce an estimate of Y |X : LDA/QDA, Naive Bayes. . .

Rk: Direct estimation of E[Y |X ] by E[Y |X ]
∧

also possible. . .
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A Probabilistic Point of ViewPlugin Classifier

Input: a data set Dn
Learn Y |X or equivalently P(Y = k|X ) (using the data set) and plug this
estimate in the Bayes classifier

Output: a classifier f̂ : Rd → {−1, 1}

f̂ (X ) =

+1 if ̂P(Y = 1|X ) ≥ ̂P(Y = −1|X )
−1 otherwise

Can we guaranty that the classifier is good if Y |X is well estimated?
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A Probabilistic Point of ViewClassification Risk Analysis

Theorem
If f̂ = sign(2p̂+1 − 1) then

E
[
ℓ0,1(Y , f̂ (X ))

]
− E

[
ℓ0,1(Y , f ⋆(X ))

]
≤ E

[
∥Ŷ |X − Y |X∥1

]
≤
(
E
[
2KL(Y |X , Ŷ |X

])1/2

If one estimates P(Y = 1|X ) well then one estimates f ⋆ well!
Link between a conditional density estimation task and a classification one!
Rk: In general, the conditional density estimation task is more complicated as one
should be good for all values of P(Y = 1|X ) while the classification task focus on
values around 1/2 for the 0/1 loss!
In regression, (often) direct control of the quadratic loss. . .
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A Probabilistic Point of ViewParametric Conditional Density Models
Idea: Estimate directly Y |X by a parametric conditional density Pθ(Y |X ).

Maximum Likelihood Approach
Classical choice for θ:

θ̂ = argmin
θ

−
n∑

i=1
logPθ(Yi |X i)

Goal: Minimize the Kullback-Leibler divergence between the conditional law of
Y |X and Pθ(Y |X )

E[KL (Y |X ,Pθ(Y |X ))]

Rk: This is often not (exactly) the learning task!
Large choice for the family {Pθ(Y |X )} but depends on Y (and X ).
Regression: One can also model directly E[Y |X ] by fθ(X ) and estimate it with a
least-squares criterion. . .
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A Probabilistic Point of ViewLinear Conditional Density Models

Linear Models
Classical choice: θ = (θ′, φ)

Pθ(Y |X ) = PX⊤β,φ(Y )
Very strong assumption!

Classical examples:
Binary variable: logistic, probit. . .
Discrete variable: multinomial logistic regression. . .
Integer variable: Poisson regression. . .
Continuous variable: Gaussian regression. . .
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A Probabilistic Point of ViewBinary Classifier

Plugin Linear Classification
Model P(Y = +1|X ) by h(X⊤β + β(0)) with h non decreasing.
h(X⊤β + β(0)) > 1/2 ⇔ X⊤β + β(0) − h−1(1/2) > 0
Linear Classifier: sign(X⊤β + β(0) − h−1(1/2))

Plugin Linear Classifier Estimation
Classical choice for h:

h(t) = et

1 + et logit or logistic

h(t) = FN (t) probit
h(t) = 1 − e−et log-log

Choice of the best β from the data.
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A Probabilistic Point of ViewMaximum Likelihood Estimate

Probabilistic Model
By construction, Y |X follows B(P(Y = +1|X ))
Approximation of Y |X by B(h(x⊤β + β(0)))
Natural probabilistic choice for β: maximum likelihood estimate.
Natural probabilistic choice for β: β approximately minimizing a distance between
B(h(x⊤β)) and B(P(Y = 1|X )).

Maximum Likelihood Approach
Minimization of the negative log-likelihood:

−
n∑

i=1
log(P(Yi |X i)) = −

n∑
i=1

(
1Yi =1 log(h(X i

⊤β)) + 1Yi =−1 log(1 − h(X i
⊤β))

)
Minimization possible if h is regular. . .
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A Probabilistic Point of ViewMaximum Likelihood Estimate
KL Distance and negative log-likelihood

Natural distance: Kullback-Leibler divergence
KL(B(P(Y = 1|X )), B(h(X⊤β))

= EX

[
P(Y = 1|X ) log P(Y = 1|X )

h(X⊤β)

+P(Y = −1|X ) log 1 − P(Y = 1|X )
1 − h(X⊤β)

]
= EX

[
−P(Y = 1|X ) log(h(X⊤β))

−P(Y = −1|X ) log(1 − h(X⊤β))
]

+ CX ,Y

Empirical counterpart = negative log-likelihood (up to 1/n factor):

− 1
n

n∑
i=1

(
1Yi =1 log(h(X i

⊤β)) + 1Yi =−1 log(1 − h(X i
⊤β))

)
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A Probabilistic Point of ViewLogistic Regression
Logistic Regression and Odd

Logistic model: h(t) = et

1+et (most natural choice. . . )
The Bernoulli law B(h(t)) satisfies then

P(Y = 1)
P(Y = −1) = et ⇔ log P(Y = 1)

P(Y = −1) = t

Interpretation in term of odd.
Logistic model: linear model on the logarithm of the odd

log P(Y = 1|X )
P(Y = −1|X ) = X⊤β

Associated Classifier
Plugin strategy:

fβ(X ) =

1 if eX⊤β

1+eX⊤β
> 1/2 ⇔ X⊤β > 0

−1 otherwise
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A Probabilistic Point of ViewLogistic Regression and Minimization

Likelihood Rewriting
Negative log-likelihood:

− 1
n

n∑
i=1

(
1Yi =1 log(h(X i

⊤β)) + 1Yi =−1 log(1 − h(X i
⊤β))

)

= −1
n

n∑
i=1

(
1Yi =1 log eX i

⊤β

1 + eX⊤
i β

+ 1Yi =−1 log 1
1 + eX i

⊤β

)

= 1
n

n∑
i=1

log
(
1 + e−Yi (X i

⊤β)
)

Convex and smooth function of β

Easy optimization.
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A Probabilistic Point of ViewExample: Logistic

139



A Probabilistic Point of ViewFeature Design

Transformed Representation
From X to Φ(X )!
New description of X leads to a different linear model:

fβ(X ) = Φ(X )⊤β

Feature Design
Art of choosing Φ.
Examples:

Renormalization, (domain specific) transform
Basis decomposition
Interaction between different variables. . .
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A Probabilistic Point of ViewExample: Quadratic Logistic
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A Probabilistic Point of ViewGaussian Linear Regression
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Gaussian Linear Model
Model: Y |X ∼ N (X⊤β, σ2) plus independence
Probably the most classical model of all time!
Maximum Likelihood with explicit formulas for the two parameters.

In regression, estimation of E[Y |X ] is sufficient: other/no model for the noise
possible.
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A Probabilistic Point of ViewExtension of Gaussian Linear Regression

Generalized Linear Model
Model entirely characterized by its mean (up to a scalar nuisance parameter)
(v(Eθ[Y ]) = θ with v invertible).
Exponential family: Probability law family Pθ such that the density can be written

f (y , θ, φ) = e
yθ−v(θ)

φ
+w(y ,φ)

where φ is a nuisance parameter and w a function independent of θ.
Examples:

Gaussian: f (y , θ, φ) = e− yθ−θ2/2
φ − y2/2

φ

Bernoulli: f (y , θ) = eyθ−ln(1+eθ) (θ = ln p/(1 − p))
Poisson: f (y , θ) = e(yθ−eθ)+ln(y !) (θ = ln λ)

Linear Conditional model: Y |X ∼ Px⊤β. . .

ML fit of the parameters
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A Probabilistic Point of ViewNon Parametric Conditional Estimation

Idea: Estimate Y |X or E[Y |X ] directly without resorting to an explicit
parametric model.

Non Parametric Conditional Estimation
Two heuristics:

Y |X (or E[Y |X ]) is almost constant (or simple) in a neighborhood of X . (Kernel
methods)
Y |X (or E[Y |X ]) can be approximated by a model whose dimension depends on the
complexity and the number of observation. (Quite similar to parametric model plus
model selection. . . )

Focus on kernel methods!
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A Probabilistic Point of ViewKernel Methods

Idea: The behavior of Y |X is locally constant or simple!

Kernel
Choose a kernel K (think of a weighted neighborhood).
For each X̃ , compute a simple localized estimate of Y |X
Use this local estimate to take the decision

In regression, estimation of E[Y |X ] is sufficient.
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A Probabilistic Point of ViewExample: k Nearest-Neighbors (with k = 3)
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A Probabilistic Point of ViewExample: k Nearest-Neighbors (with k = 4)
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A Probabilistic Point of Viewk Nearest-Neighbors

Neighborhood Vx of x : k learning samples closest from x .

k-NN as local conditional density estimate

̂P(Y = 1|X ) =
∑

X i ∈VX
1{Yi =+1}

|VX |

KNN Classifier:

f̂KNN(X ) =

+1 if ̂P(Y = 1|X ) ≥ ̂P(Y = −1|X )
−1 otherwise

Lazy learning: all the computations have to be done at prediction time.
Remark: You can also use your favorite kernel estimator. . .
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A Probabilistic Point of ViewExample: KNN
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A Probabilistic Point of ViewRegression and Local Averaging

A naive idea
E[Y |X ] can be approximated by a local average:

f̂ (X ) = 1
|{X i ∈ N (X )}|

∑
X i ∈N (X)

Yi

where B(X ) is a neighborhood of X .
Heuristic:

If X → E[Y |X ] is regular then
E[Y |X ] ≃ E

[
E
[
Y |X ′] |X ′ ∈ N (X )

]
= E

[
Y |X ′ ∈ N (X )

]
Replace an expectation by an empirical average:

E
[
Y |X ′ ∈ N (X )

]
≃ 1

|{X i ∈ N (X )}|
∑

X i ∈N (X)

Yi
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A Probabilistic Point of ViewRegression and Local Averaging

Neighborhood and Size
Most classical choice: N (X ) = {X ′, ∥X − X ′∥ ≤ h } where ∥.∥ is a (pseudo) norm
and h a size (bandwidth) parameter.
In principle, the norm and h could vary with X , and the norm can be replaced by
a (pseudo) distance.
Focus here on a fixed distance with a fixed bandwidth h cased.

Bandwidth Heuristic
A large bandwidth ensures that the average is taken on many samples and thus
the variance is small. . .
A small bandwidth is thus that the approximation E[Y |X ] ≃ E

[
Y |X ′ ∈ N (X )

]
is more accurate (small bias).
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A Probabilistic Point of ViewWeighted Local Averaging
Weighted Local Average

Replace the neighborhood N (X ) by a decaying window function w(X , X ′).
E[Y |X ] can be approximated by a weighted local average:

f̂ (X ) =
∑

i w(X , X ′
i)Yi∑

i w(X , X ′
i)

.

Kernel
Most classical choice: w(X , X ′) = K

(
X−X ′

h

)
where h the bandwidth is a scale

parameter.
Examples:

Box kernel: K (t) = 1∥t∥≤1 (Neighborhood)
Triangular kernel: K (t) = max(1 − ∥t∥, 0).
Gaussian kernel: K (t) = e−t2/2

Rk: K and λK yields the same estimate.
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A Probabilistic Point of ViewFrom Density Estimation to Regression

Nadaraya-Watson Heuristic
Provided all the densities exist

E[Y |X ] =
∫

Yp(X , Y )dY∫
p(Y , X )dY =

∫
Yp(X , Y )dY

p(X )
Replace the unknown densities by their estimates:

p̂(X ) = 1
n

n∑
i=1

K (X − X i)

p̂(X , Y ) = 1
n

n∑
i=1

K (X − X i)K ′(Y − Yi)

Now if K ′ is a kernel such that
∫

YK ′(Y )dY = 0 then∫
Y p̂(X , Y )dY = 1

n

n∑
i=1

K (X − X i)Yi

154



A Probabilistic Point of ViewFrom Density Estimation to Regression

Nadaraya-Watson
Resulting estimator of E[Y |X ]

f̂ (X ) =
∑n

i=1 YiKh(X − X i)∑n
i=1 Kh(X − X i)

Same local weighted average estimator!

Bandwidth Choice
Bandwidth h of K allows to balance between bias and variance.
Theoretical analysis of the error is possible.
The smoother the densities the easier the estimation but the optimal bandwidth
depends on the unknown regularity!
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A Probabilistic Point of ViewLocal Linear Estimation
Another Point of View on Kernel

Nadaraya-Watson estimator:

f̂ (X ) =
∑n

i=1 YiKh(X − X i)∑n
i=1 Kh(X − X i)

Can be view as a minimizer of
n∑

i=1
|Yi − β|2Kh(X − X i)

Local regression of order 0.

Local Linear Model
Estimate E[Y |X ] by f̂ (X ) = ϕ(X )⊤β̂(X ) where ϕ is any function of X and β̂(X )
is the minimizer of

n∑
i=1

|Yi − ϕ(X i)⊤β|2Kh(X − X i).
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A Probabilistic Point of ViewLOESS: LOcal polynomial regrESSion
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1D Nonparametric Regression
Assume that X ∈ R and let ϕ(X ) = (1, X , . . . , Xd).
LOESS estimate: f̂ (X ) =

∑d
j=0 β̂(X (j))X j with β̂(X ) minimizing

n∑
i=1

|Yi −
d∑

j=0
β(j)X j

i |
2Kh(X − X i).

Most classical kernel used: Tricubic kernel
K (t) = max(1 − |t|3, 0)3

Most classical degree: 2. . .
Local bandwidth choice such that a proportion of points belongs to the window.
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A Probabilistic Point of ViewFully Generative Modeling
Idea: If one knows the law of (X , Y ) everything is easy!

Bayes formula
With a slight abuse of notation,

P(Y |X ) = P((X , Y ))
P(X )

= P(X |Y )P(Y )
P(X )

Generative Modeling:
Propose a model for (X , Y ) (or equivalently X |Y and Y ),
Estimate it as a density estimation problem,
Plug the estimate in the Bayes formula
Plug the conditional estimate in the Bayes classifier.

Rk: Require to estimate (X , Y ) rather than only Y |X !
Great flexibility in the model design but may lead to complex computation.
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A Probabilistic Point of ViewFully Generative Modeling

Simpler setting in classification!

Bayes formula

P(Y = k|X ) = P(X |Y = k)P(Y = k)
P(X )

Binary Bayes classifier (the best solution)

f ⋆(X ) =
{

+1 if P(Y = 1|X ) ≥ P(Y = −1|X )
−1 otherwise

Heuristic: Estimate those quantities and plug the estimations.
By using different models/estimators for P(X |Y ), we get different classifiers.
Rk: No need to renormalize by P(X ) to take the decision!
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A Probabilistic Point of ViewDiscriminant Analysis

Discriminant Analysis (Gaussian model)
The densities are modeled as multivariate normal, i.e.,

P(X |Y = k) ∼ Nµk ,Σk

Discriminant functions: gk(X) = ln(P(X|Y = k)) + ln(P(Y = k))

gk(X ) = − 1
2(X − µk)⊤Σ−1

k (X − µk)

− d
2 ln(2π) − 1

2 ln(|Σk |) + ln(P(Y = k))

QDA (different Σk in each class) and LDA (Σk = Σ for all k)

Beware: this model can be false but the methodology remains valid!
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A Probabilistic Point of ViewDiscriminant Analysis
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Quadratic Discriminant Analysis
The probability densities are Gaussian
The effect of any decision rule is to divide the feature space into some decision
regions R1, R2

, . . . , Rc

The regions are separated by decision boundaries
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A Probabilistic Point of ViewDiscriminant Analysis
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Quadratic Discriminant Analysis
The probability densities are Gaussian
The effect of any decision rule is to divide the feature space into some decision
regions R1, R2, . . . , Rc

The regions are separated by decision boundaries
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A Probabilistic Point of ViewDiscriminant Analysis

Estimation
In practice, we will need to estimate µk , Σk and Pk := P(Y = k)

The estimate proportion ̂P(Y = k) = nk
n = 1

n
∑n

i=1 1{Yi =k}

Maximum likelihood estimate of µ̂k and Σ̂k (explicit formulas)

DA classifier

f̂G(X ) =
{

+1 if ĝ+1(X ) ≥ ĝ−1(X )
−1 otherwise

Decision boundaries: quadratic = degree 2 polynomials.
If one imposes Σ−1 = Σ1 = Σ then the decision boundaries is a linear hyperplane.
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A Probabilistic Point of ViewDiscriminant Analysis

So
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inLinear Discriminant Analysis
Σω1 = Σω2 = Σ
The decision boundaries are linear hyperplanes
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A Probabilistic Point of ViewDiscriminant Analysis

So
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:
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inQuadratic Discriminant Analysis
Σω1 ̸= Σω2

Arbitrary Gaussian distributions lead to Bayes decision boundaries that are general
quadratics.
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A Probabilistic Point of ViewExample: LDA

166



A Probabilistic Point of ViewExample: QDA
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A Probabilistic Point of ViewNaive Bayes

Naive Bayes
Classical algorithm using a crude modeling for P(X |Y ):

Feature independence assumption:

P(X |Y ) =
d∏

l=1
P
(

X (l)
∣∣∣Y)

Simple featurewise model: binomial if binary, multinomial if finite and Gaussian if
continuous

If all features are continuous, similar to the previous Gaussian but with a diagonal
covariance matrix!
Very simple learning even in very high dimension!
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A Probabilistic Point of ViewExample: Naive Bayes

169



A Probabilistic Point of ViewNaive Bayes with Density Estimation
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A Probabilistic Point of ViewExample: Naive Bayes
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A Probabilistic Point of ViewOther Models

Other models of the world!

Bayesian Approach
Generative Model plus prior on the parameters
Inference thanks to the Bayes formula

Graphical Models
Markov type models on Graphs

Gaussian Processes
Multivariate Gaussian models

. . .
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Optimization Point of ViewProbabilistic and Optimization Framework
How to find a good function f with a small risk

R(f ) = E[ℓ(Y , f (X ))] ?
Canonical approach: f̂S = argminf ∈S

1
n
∑n

i=1 ℓ(Yi , f (X i))

Problems
How to choose S?
How to compute the minimization?

A Probabilistic Point of View
Solution: For X , estimate Y |X plug this estimate in the Bayes classifier:
(Generalized) Linear Models, Kernel methods, k-nn, Naive Bayes, Tree,
Bagging. . .

An Optimization Point of View
Solution: If necessary replace the loss ℓ by an upper bound ℓ and minimize the
empirical loss: SVR, SVM, Neural Network,Tree, Boosting. . .
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Optimization Point of ViewThree Classical Methods in a Nutshell

Penalized Logistic Regression
Let fθ(X ) = X⊤β + β(0) with θ = (β, β(0)).

Find θ̂ = arg min 1
n

n∑
i=1

log
(
1 + e−Yi fθ(X i )

)
+ λ∥β∥1

Classify using sign(fθ̂)

Deep Learning
Let fθ(X ) with f a feed forward neural network outputing two values with a
softmax layer as a last layer.

Optimize by gradient descent the cross-entropy −1
n

n∑
i=1

log
(
fθ(X i)(Yi )

)
Classify using sign(fθ̂)
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Optimization Point of ViewThree Classical Methods in a Nutshell

Support Vector Machine
Let fθ(X ) = X⊤β + β(0) with θ = (β, β(0)).

Find θ̂ = arg min 1
n

n∑
i=1

max (1 − Yi fθ(X i), 0) + λ∥β∥2
2

Classify using sign(fθ̂)

Those three methods rely on a similar heuristic: the optimization point of view!
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Optimization Point of ViewEmpirical Risk Minimization

The best solution f ⋆ is the one minimizing
f ⋆ = arg min R(f ) = arg minE[ℓ(Y , f (X ))]

Empirical Risk Minimization
One restricts f to a subset of functions S = {fθ, θ ∈ Θ}
One replaces the minimization of the average loss by the minimization of the
average empirical loss

f̂ = f
θ̂

= argmin
fθ,θ∈Θ

1
n

n∑
i=1

ℓ(Yi , fθ(X i))

Intractable for the ℓ0/1 loss!
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Optimization Point of ViewConvexification Strategy
Risk Convexification

Replace the loss ℓ(Y , fθ(X )) by a convex upperbound ℓ(Y , fθ(X )) (surrogate loss).
Minimize the average of the surrogate empirical loss

f̃ = f
θ̂

= argmin
fθ,θ∈Θ

1
n

n∑
i=1

ℓ(Yi , fθ(X i))

Use f̂ = sign(f̃ )

Much easier optimization.

Instantiation
Logistic (Revisited)
Support Vector Machine
(Deep) Neural Network
Boosting
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Optimization Point of ViewClassification Loss and Convexification

Convexification
Replace the loss ℓ0/1(Y , f (X )) by

ℓ(Y , f (X )) = l(Yf (X ))
with l a convex function.
Further mild assumption: l is decreasing, differentiable at 0 and l ′(0) < 0.
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Optimization Point of ViewClassification Loss and Convexification

Classical convexification
Logistic loss: ℓ(Y , f (X )) = log2(1 + e−Yf (X)) (Logistic / NN)
Hinge loss: ℓ(Y , f (X )) = (1 − Yf (X ))+ (SVM)
Exponential loss: ℓ(Y , f (X )) = e−Yf (X) (Boosting. . . )
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Optimization Point of ViewProperties

The Target is the Bayes Classifier
The minimizer of

E
[
ℓ(Y , f (X ))

]
= E[l(Yf (X ))]

is the Bayes classifier f ⋆ = sign(2η(X ) − 1)

Control of the Excess Risk
It exists a convex function Ψ such that

Ψ
(
E
[
ℓ0/1(Y , sign(f (X ))

]
− E

[
ℓ0/1(Y , f ⋆(X )

])
≤ E

[
ℓ(Y , f (X )

]
− E

[
ℓ(Y , f ⋆(X ))

]
Theoretical guarantee!
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Optimization Point of ViewLogistic Revisited

Ideal solution:

f̂ = argmin
f ∈S

1
n

n∑
i=1

ℓ0/1(Yi , f (X i))

Logistic regression
Use f (X ) = X⊤β + β(0).
Use the logistic loss ℓ(y , f ) = log2(1 + e−yf ), i.e. the negative log-likelihood.

Different vision than the statistician but same algorithm!

181



Optimization Point of ViewLogistic Revisited
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Optimization Point of ViewSimplified Models
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Bias-Variance Issue
Most complex models may not be the best ones due to the variability of the
estimate.

Naive idea: can we simplify our model without loosing too much?
by using only a subset of the variables?
by forcing the coefficients to be small?

Can we do better than exploring all possibilities?
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Optimization Point of ViewLinear Models
Setting: Gen. linear model = prediction of Y by h(x⊤β).

Model coefficients
Model entirely specified by β.
Coefficientwise:

β(i) = 0 means that the ith covariate is not used.
β(i) ∼ 0 means that the ith covariate as a low influence. . .

If some covariates are useless, better use a simpler model. . .

Submodels
Simplify the model through a constraint on β!
Examples:

Support: Impose that β(i) = 0 for i ̸∈ I.
Support size: Impose that ∥β∥0 =

∑d
i=1 1β(i) ̸=0 < C

Norm: Impose that ∥β∥p < C with 1 ≤ p (Often p = 2 or p = 1)
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Optimization Point of ViewNorms and Sparsity
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Sparsity
β is sparse if its number of non-zero coefficients (ℓ0) is small. . .
Easy interpretation in terms of dimension/complexity.

Norm Constraint and Sparsity
Sparsest solution obtained by definition with the ℓ0 norm.
No induced sparsity with the ℓ2 norm. . .
Sparsity with the ℓ1 norm (can even be proved to be the same as with the ℓ0
norm under some assumptions).
Geometric explanation.

186



Optimization Point of ViewConstraint and Penalization
Constrained Optimization

Choose a constant C .
Compute β as

argmin
β∈Rd ,∥β∥p≤C

1
n

n∑
i=1

ℓ(Yi , h(x i
⊤β))

Lagrangian Reformulation
Choose λ and compute β as

argmin
β∈Rd

1
n

n∑
i=1

ℓ(Yi , h(x i
⊤β)) + λ∥β∥p′

p

with p′ = p except if p = 0 where p′ = 1.
Easier calibration. . . but no explicit model S.

Rk: ∥β∥p is not scaling invariant if p ̸= 0. . .
Initial rescaling issue. 187



Optimization Point of ViewPenalization
Penalized Linear Model

Minimization of

argmin
β∈Rd

1
n

n∑
i=1

ℓ(Yi , h(x i
⊤β)) + pen(β)

where pen(β) is a (sparsity promoting) penalty
Variable selection if β is sparse.

Classical Penalties
AIC: pen(β) = λ∥β∥0 (non-convex / sparsity)
Ridge: pen(β) = λ∥β∥2

2 (convex / no sparsity)
Lasso: pen(β) = λ∥β∥1 (convex / sparsity)
Elastic net: pen(β) = λ1∥β∥1 + λ2∥β∥2

2 (convex / sparsity)

Easy optimization if pen (and the loss) is convex. . .
Need to specify λ to define a ML method! 188



Optimization Point of ViewPenalized Gen. Linear Models

Classical Examples
Penalized Least Squares
Penalized Logistic Regression
Penalized Maximum Likelihood
SVM
Tree pruning

Sometimes used even if the parameterization is not linear. . .
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Optimization Point of ViewPenalization and Cross-Validation
Practical Selection Methodology

Choose a penalty family penλ.
Compute a CV risk for the penalty penλ for all λ ∈ Λ.
Determine λ̂ the λ minimizing the CV risk.
Compute the final model with the penalty pen

λ̂
.

CV allows to select a ML method, penalized estimation with a penalty pen
λ̂
, not a

single predictor hence the need of a final reestimation.

Why not using CV on a grid?
Grid size scales exponentially with the dimension!
If the penalized minimization is easy, much cheaper to compute the CV risk
for all λ ∈ Λ. . .
CV performs best when the set of candidates is not too big (or is structured. . . )
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Optimization Point of ViewPerceptron
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Perceptron (Rosenblatt 1957)
Inspired from biology.
Very simple (linear) model!
Physical implementation and proof of concept.
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Optimization Point of ViewPerceptron
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Perceptron (Rosenblatt 1957)
Inspired from biology.
Very simple (linear) model!
Physical implementation and proof of concept.
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Optimization Point of ViewArtificial Neuron and Logistic Regression
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Artificial neuron
Structure:

Mix inputs with a weighted sum,
Apply a (non linear) activation
function to this sum,
Possibly threshold the result to make
a decision.

Weights learned by minimizing a loss
function.

Logistic unit
Structure:

Mix inputs with a weighted sum,
Apply the logistic function
σ(t) = et/(1 + et),
Threshold at 1/2 to make a decision!

Logistic weights learned by minimizing
the -log-likelihood.

Equivalent to linear regression when using a linear activation function!
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Optimization Point of ViewMultilayer Perceptron
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MLP (Rumelhart, McClelland, Hinton - 1986)
Multilayer Perceptron: cascade of layers of artificial neuron units.
Optimization through a gradient descent algorithm with a clever implementation
(Backprop).

Construction of a function by composing simple units.
MLP corresponds to a specific direct acyclic graph structure.
Non convex optimization problem!
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Optimization Point of ViewMultilayer Perceptron
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Optimization Point of ViewUniversal Approximation Theorem

Universal Approximation Theorem (Hornik, 1991)
A single hidden layer neural network with a linear output unit can
approximate any continuous function arbitrarily well given enough hidden units.

Valid for most activation functions.
No bounds on the number of required units. . . (Asymptotic flavor)
A single hidden layer is sufficient but more may require less units.
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Optimization Point of ViewDeep Neural Network
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Deep Neural Network structure
Deep cascade of layers!

No conceptual novelty. . .
But a lot of tricks allowing to obtain a good solution: clever initialization, better
activation function, weight regularization, accelerated stochastic gradient descent,
early stopping. . .
Use of GPU and a lot of data. . .
Very impressive results!
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Optimization Point of ViewDeep Neural Network
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Optimization Point of ViewDeep Learning
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Family of Machine Learning algorithm combining:
a (deep) multilayered structure,
a clever optimization including initialization and regularization.

Examples: Deep NN, AutoEncoder, Recursive NN, GAN, Transformer. . .
Interpretation as a Representation Learning.
Transfer learning: use as initialization a pretrained net.
Very efficient and still evolving!
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Optimization Point of ViewConvolutional Network
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Le Net - Y. LeCun (1989)
6 hidden layer architecture.
Drastic reduction of the number of parameters through a translation invariance
principle (convolution).

Required 3 days of training for 60 000 examples!
Tremendous improvement.
Representation learned through the task. 200



Optimization Point of ViewDeep Convolutional Networks
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Alexnet - A. Krizhevsky, I. Sutskever, G. Hinton (2012)
Bigger and deeper layers and thus much more parameters.
Clever intialization scheme, RELU, renormalization and use of GPU.

6 days of training for 1.2 millions images.
Tremendous improvement. . .
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Optimization Point of ViewDeep Convolutional Networks
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Bigger and bigger networks! (GoogLeNet / Residual Neural Network /
Transformers. . . )
More computational power to learn better representation.

Work in Progess!
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Optimization Point of ViewSupport Vector Machine

fθ(X ) = X ⊤β + β(0) with θ = (β, β(0))

θ̂ = arg min 1
n

n∑
i=1

max (1 − Yi fθ(X i), 0) + λ∥β∥2
2

Support Vector Machine
Convexification of the 0/1-loss with the hinge loss:

1Yi fθ(X i )<0 ≤ max (1 − Yi fθ(X i), 0)
Penalization by the quadratic norm (Ridge/Tikhonov).
Solution can be approximated by gradient descent algorithms.

Revisit of the original point of view.
Original point of view leads to a different optimization algorithm and to some
extensions.
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Optimization Point of ViewIdeal Separable Case

So
ur

ce
:

M
.M

oh
ri

et
al

.

Linear classifier: sign(X⊤β + β(0))
Separable case: ∃(β, β(0)), ∀i , Yi(X i

⊤β + β(0)) > 0

How to choose (β, β(0)) so that the separation is maximal?
Strict separation: ∃(β, β(0)), ∀i , Yi(X i

⊤β + β(0)) ≥ 1
Distance between X⊤β + β(0) = 1 and X⊤β + β(0) = −1:

2
∥β∥

Maximizing this distance is equivalent to minimizing 1
2∥β∥2.
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Optimization Point of ViewIdeal Separable Case

So
ur

ce
:

M
.M

oh
ri

et
al

.

Separable SVM
Constrained optimization formulation:

min 1
2∥β∥2 with ∀i , Yi(X i

⊤β + β(0)) ≥ 1

Quadratic Programming setting.
Efficient solver available. . .
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Optimization Point of ViewNon Separable Case
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What about the non separable case?

SVM relaxation
Relax the assumptions

∀i , Yi(X i
⊤β + β(0)) ≥ 1 to ∀i , Yi(X i

⊤β + β(0)) ≥ 1 − si
with the slack variables si ≥ 0
Keep those slack variables as small as possible by minimizing

1
2∥β∥2 + C

n∑
i=1

si

where C > 0 is the goodness-of-fit strength
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Optimization Point of ViewNon Separable Case
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SVM
Constrained optimization formulation:

min 1
2∥β∥2 + C

n∑
i=1

si with
{

∀i , Yi(X i
⊤β + β(0)) ≥ 1 − si

∀i , si ≥ 0
Hinge Loss reformulation:

min 1
2∥β∥2 + C

n∑
i=1

max(0, 1 − Yi(X i
⊤β + β(0)))︸ ︷︷ ︸

Hinge Loss

Constrained convex optimization algorithms vs gradient descent algorithms. 206



Optimization Point of ViewSVM as a Penalized Convex Relaxation

Convex relaxation:

argmin 1
2∥β∥2 + C

n∑
i=1

max(1 − Yi(X i
⊤β + β(0)), 0)

= argmin 1
n

n∑
i=1

max(1 − Yi(X i
⊤β + β(0)), 0) + 1

Cn
1
2∥β∥2

Prop: ℓ0/1(Yi , sign(X i
⊤β + β(0))) ≤ max(1 − Yi(X i

⊤β + β(0)), 0)

Penalized convex relaxation (Tikhonov!)

1
n

n∑
i=1

ℓ0/1(Yi , sign(X i
⊤β + β(0))) + 1

Cn
1
2∥β∥2

≤ 1
n

n∑
i=1

max(1 − Yi(X i
⊤β + β(0)), 0) + 1

Cn
1
2∥β∥2
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Optimization Point of ViewSVM
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Optimization Point of ViewConstrained Minimization
Constrained Minimization

Goal:
min

x
f (x)

with
{

hj(x) = 0, j = 1, . . . p
gi(x) ≤ 0, i = 1, . . . q

or rather with argmin!

Different Setting
f , hj , gi differentiable
f convex, hj affine and gi convex.

Feasibility
x is feasible if hj(x) = 0 and gi(x) ≤ 0.
Rk: The set of feasible points may be empty 209



Optimization Point of ViewLagrangian
Constrained Minimization

Goal:

p⋆ = min
x

f (x) with
{

hj(x) = 0, j = 1, . . . p
gi(x) ≤ 0, i = 1, . . . q

Lagrangian
Def:

L(x , λ, µ) = f (x) +
p∑

j=1
λjhj(x) +

q∑
i=1

µigi(x)

with λ ∈ Rp and µ ∈ (R+)q.
The λj and µi are called the dual (or Lagrange) variables.
Prop:

max
λ∈Rp , µ∈(R+)q

L(x , λ, µ) =
{

f (x) if x is feasible
+∞ otherwise

min
x

max
λ∈Rp , µ∈(R+)q

L(x , λ, µ) = p⋆
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Optimization Point of ViewLagrangial Dual

Lagrangian
Def:

L(x , λ, µ) = f (x) +
p∑

j=1
λjhj(x) +

q∑
i=1

µigi(x)

with λ ∈ Rp and µ ∈ (R+)q.

Lagrangian Dual
Lagrangian dual function:

Q(λ, µ) = min
x

L(x , λ, µ)
Prop:

Q(λ, µ) ≤ f (x), for all feasible x
max

λ∈Rp , µ∈(R+)q
Q(λ, µ) ≤ min

x feasible
f (x)
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Optimization Point of ViewDuality
Primal

Primal:

p⋆ = min
x∈X

f (x) with
{

hj(x) = 0, j = 1, . . . p
gi(x) ≤ 0, i = 1, . . . q

Dual
Dual:

q⋆ = max
λ∈Rp , µ∈(R+)q

Q(λ, µ) = max
λ∈Rp , µ∈(R+)q

min
x

L(x , λ, µ)

Duality
Always weak duality:

q⋆ ≤ p⋆

max
λ∈Rp , µ∈(R+)q

min
x

L(x , λ, µ) ≤ min
x

max
λ∈Rp , µ∈(R+)q

L(x , λ, µ)

Not always strong duality q⋆ = p⋆. 212



Optimization Point of ViewStrong Duality
Strong Duality

Strong duality:
q⋆ = p⋆

max
λ∈Rp , µ∈(R+)q

min
x

L(x , λ, µ) = min
x

max
λ∈Rp , µ∈(R+)q

L(x , λ, µ)

Allow to compute the solution of one problem from the other.
Requires some assumptions!

Strong Duality under Convexity and Slater’s Condition
f convex, hj affine and gi convex.
Slater’s condition: it exists a feasible point such that hj(x) = 0 for all j and
gi(x) < 0 for all i .
Sufficient to prove strong duality.
Rk: If the gi are affine, it suffices to have hj(x) = 0 for all j and gi(x) ≤ 0 for all
i . 213



Optimization Point of ViewKKT
Karush-Kuhn-Tucker Condition

Stationarity:
∇xL(x⋆, λ, µ) = ∇f (x⋆) +

∑
j

λj∇hj(x⋆) +
∑

i
µi∇gi(x⋆) = 0

Primal admissibility:
hj(x⋆) = 0 and gi(x⋆) ≤ 0

Dual admissibility:
µi ≥ 0

Complementary slackness:
µigi(x⋆) = 0

KKT Theorem
If f convex, hj affine and gi convex, all are differentiable and strong duality
holds then x⋆ is a solution of the primal problem if and only if the KKT
condition holds

Same result without differentiability using the sub-gradient. . .
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Optimization Point of ViewSVM and Lagrangian

SVM
Constrained optimization formulation:

min 1
2∥β∥2 + C

n∑
i=1

si with
{

∀i , Yi(X i
⊤β + β(0)) ≥ 1 − si

∀i , si ≥ 0

SVM Lagrangian
Lagrangian:

L(β, β(0), s, α, µ) = 1
2∥β∥2 + C

n∑
i=1

si

+
∑

i
αi(1 − si − Yi(X i

⊤β + β(0))) −
∑

i
µisi
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Optimization Point of ViewSVM and KKT
KKT Optimality Conditions

Stationarity:
∇βL(β, β(0), s, α, µ) = β −

∑
i

αiYiX i = 0

∇β(0)L(β, β(0), s, α, µ) = −
∑

i
αi = 0

∇si L(β, β(0), s, α, µ) = C − αi − µi = 0
Primal and dual admissibility:

(1 − si − Yi(X i
⊤β + β(0))) ≤ 0, si ≥ 0, αi ≥ 0, and µi ≥ 0

Complementary slackness:
αi(1 − si − Yi(X i

⊤β + β(0))) = 0 and µisi = 0

Consequence
β⋆ =

∑
i αiYiX i and 0 ≤ αi ≤ C .

If αi ̸= 0, X i is called a support vector and either
si = 0 and Yi(X i

⊤β⋆ + β(0)∗) = 1 (margin hyperplane),
or αi = C (outliers).

β(0)∗ = Yi − X i
⊤β⋆ for any support vector with 0 < αi < C .
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Optimization Point of ViewSVM Dual
SVM Lagrangian Dual

Lagrangian Dual:
Q(α, µ) = min

β,β(0),s
L(β, β(0), s, α, µ)

Prop:
if
∑

i αiYi ̸= 0 or ∃i , αi + µi ̸= C ,
Q(α, µ) = −∞

if
∑

i αiYi = 0 and ∀i , αi + µi = C ,

Q(α, µ) =
∑

i
αi − 1

2
∑
i,j

αiαjYiYjX i
⊤X j

SVM Dual problem
Dual problem is a Quadratic Programming problem:

max
α≥0,µ≥0

Q(α, µ) ⇔ max
0≤α≤C

∑
i

αi − 1
2
∑
i ,j

αiαjYiYjX i
⊤X j

Involves the X i only through their scalar products. 217



Optimization Point of ViewMercer Theorem
Mercer Representation Theorem

For any loss ℓ and any increasing function Φ, the minimizer in β of
n∑

i=1
ℓ(Yi , X i

⊤β + β(0)) + Φ(∥β∥2)

is a linear combination of the input points β⋆ =
n∑

i=1
α′

iX i .

Minimization problem in α′:
n∑

i=1
ℓ(Yi ,

∑
j

α′
jX i

⊤X j + β(0)) + Φ(∥β∥2)

involving only the scalar product of the data.

Optimal predictor requires only to compute scalar products.
f̂ ⋆(X ) = X⊤β⋆ + β(0),∗ =

∑
i

α′
iX i

⊤X

Transform a problem in dimension dim(X ) in a problem in dimension n.
Direct minimization in β can be more efficient. . . 218
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Feature Engineering
Art of creating new features from the existing one X .
Example: add monomials (X (j))2, X (j)X (j′). . .
Adding feature increases the dimension.

Feature Map
Application ϕ : X → H with H an Hilbert space.
Linear decision boundary in H: ϕ(X )⊤β + β(0) = 0 is not an hyperplane
anymore in X .

Heuristic: Increasing dimension allows to make data almost linearly separable.
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Polynomial Mapping of order 2
ϕ : R2 → R6

ϕ(X ) =
(
(X (1))2, (X (2))2,

√
2X (1)X (2),

√
2X (1),

√
2X (2), 1

)
Allow to solve the XOR classification problem with the hyperplane X (1)X (2) = 0.

Polynomial Mapping and Scalar Product
Prop:

ϕ(X )⊤ϕ(X ′) = (1 + X⊤X ′)2
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Optimization Point of ViewSVM Primal and Dual
Primal, Lagrandian and Dual

Primal:

min ∥β∥2 + C
n∑

i=1
si with

{
∀i , Yi(ϕ(X i)⊤β + β(0)) ≥ 1 − si

∀i , si ≥ 0
Lagrangian:

L(β, β(0), s, α, µ) = 1
2∥β∥2 + C

n∑
i=1

si

+
∑

i
αi(1 − si − Yi(ϕ(X i)⊤β + β(0))) −

∑
i

µisi

Dual:
max

α≥0,µ≥0
Q(α, µ) ⇔ max

0≤α≤C

∑
i

αi − 1
2
∑
i ,j

αiαjYiYjϕ(X i)⊤ϕ(X j)

Optimal ϕ(X )⊤β⋆ + β(0),∗ =
∑

i αiYiϕ(X )⊤ϕ(X i)

Only need to know to compute ϕ(X )⊤ϕ(X ′) to obtain the solution. 221



Optimization Point of ViewFrom Map to Kernel

Many algorithms (e.g. SVM) require only to be able to compute the scalar
product ϕ(X )⊤ϕ(X ′).

Kernel
Any application

k : X × X → R
is called a kernel over X .

Kernel Trick
Computing directly the kernel k(X , X ′) = ϕ(X )⊤ϕ(X ′) may be easier than
computing ϕ(X ), ϕ(X ′) and then the scalar product.

Here k is defined from ϕ.
Under some assumption on k, ϕ can be implicitly defined from k!
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Optimization Point of ViewPDS Kernel

Positive Definite Symmetric Kernels
A kernel k is PDS if and only if

k is symmetric, i.e.
k(X , X ′) = k(X ′, X )

for any N ∈ N and any (X 1, . . . , XN) ∈ X N ,
K = [k(X i , X j)]1≤i,j≤N

is positive semi-definite, i.e. ∀u ∈ RN

u⊤Ku =
∑

1≤i,j≤N
u(i)u(j)k(X i , X j) ≥ 0

or equivalently all the eigenvalues of K are non-negative.

The matrix K is called the Gram matrix associated to (X 1, . . . , XN).
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Optimization Point of ViewReproducing Kernel Hilbert Space

Moore-Aronsajn Theorem
For any PDS kernel k : X × X → R, it exists a Hilbert space H ⊂ RX with a
scalar product ⟨·, ·⟩H such that

it exists a mapping ϕ : X → H satisfying
k(X , X ′) =

〈
ϕ(X ), ϕ(X ′)

〉
H

the reproducing property holds, i.e. for any h ∈ H and any X ∈ X
h(X ) = ⟨h, k(X , ·)⟩H .

By def., H is a reproducing kernel Hilbert space (RKHS).
H is called the feature space associated to k and ϕ the feature mapping.
No unicity in general.
Rk: if k(X , X ′) = ϕ′(X )⊤ϕ′(X ′) with ϕ′ : X → Rp then

H can be chosen as {X 7→ ϕ′(X )⊤
β, β ∈ Rp} and ∥X 7→ ϕ′(X )⊤

β∥2
H = ∥β∥2

2.
ϕ(X ′) : X 7→ ϕ′(X )⊤

ϕ′(X ′).
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Optimization Point of ViewKernel Construction Machinery
Separable Kernel

For any function Ψ : X → R, k(X , X ′) = Ψ(X )Ψ(X ′) is PDS.

Kernel Stability
For any PDS kernels k1 and k2, k1 + k2 and k1k2 are PDS kernels.
For any sequence of PDS kernels kn converging pointwise to a kernel k, k is a
PDS kernel.
For any PDS kernel k such that |k| ≤ r and any power series

∑
n anzn with an ≥ 0

and a convergence radius larger than r ,
∑

n
ankn is a PDS kernel.

For any PDS kernel k, the renormalized kernel k ′(X , X ′) = k(X , X ′)√
k(X , X )k(X ′, X ′)

is

a PDS kernel.
Cauchy-Schwartz for k PDS: k(X , X ′)2 ≤ k(X , X )k(X ′, X ′)
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Optimization Point of ViewClassical Kernels

PDS Kernels
Vanilla kernel:

k(X , X ′) = X⊤X ′

Polynomial kernel:
k(X , X ′) = (1 + X⊤X ′)k

Gaussian RBF kernel:
k(X , X ′) = exp

(
−γ∥X − X ′∥2

)
Tanh kernel:

k(X , X ′) = tanh(aX⊤X ′ + b)

Most classical is the Gaussian RBF kernel. . .
Lots of freedom to construct kernel for non classical data.
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Optimization Point of ViewRepresenter Theorem

Representer Theorem
Let k be a PDS kernel and H its corresponding RKHS,
for any increasing function Φ and any function L : Rn → R, the optimization
problem

argmin
h∈H

L(h(X 1), . . . , h(Xn)) + Φ(∥h∥)

admits only solutions of the form
n∑

i=1
α′

ik(X i , ·).

Examples:
(kernelized) SVM
(kernelized) Penalized Logistic Regression (Ridge)
(kernelized) Penalized Regression (Ridge)
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Optimization Point of ViewKernelized SVM
Primal

Constrained Optimization:

min
f ∈H,β(0),s

∥f ∥2
H + C

n∑
i=1

si with
{

∀i , Yi(f (X i) + β(0)) ≥ 1 − si

∀i , si ≥ 0
Hinge loss:

min
f ∈H,β(0)

∥f ∥2
H + C

n∑
i=1

max(0, 1 − Yi(f (X i) + β(0)))

Representer:
min

α′,β(0)

∑
i ,j

α′
iα

′
jk(X i , X j)

+ C
n∑

i=1
max(0, 1 − Yi(

∑
j

α′
jk(X j , X i) + β(0)))

Dual
Dual: max

α≥0,µ≥0
Q(α, µ) ⇔ max

0≤α≤C

∑
i

αi − 1
2
∑
i ,j

αiαjYiYjk(X i , X j)
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Optimization Point of ViewClassification And Regression Trees

Tree principle (CART by Breiman (85) / ID3 by Quinlan (86))
Construction of a recursive partition through a tree structured set of questions
(splits around a given value of a variable)
For a given partition, probabilistic approach and optimization approach yield the
same predictor!
A simple majority vote/averaging in each leaf
Quality of the prediction depends on the tree (the partition).
Intuitively:

small leaves lead to low bias, but large variance
large leaves lead to large bias, but low variance. . .

Issue: Minim. of the (penalized) empirical risk is NP hard!
Practical tree construction are all based on two steps:

a top-down step in which branches are created (branching)
a bottom-up in which branches are removed (pruning) 232
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Optimization Point of ViewBranching

X1 < .5?

X1 < .2? X2 < .7?

Yes No

Yes NoYes No

Greedy top-bottom approach
Start from a single region containing all the data
Recursively split those regions along a certain variable and a certain value

No regret strategy on the choice of the splits!
Heuristic: choose a split so that the two new regions are as homogeneous
possible. . .
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Optimization Point of ViewBranching
Various definition of inhomogeneous

CART: empirical loss based criterion (least squares/prediction error)
C(R, R) =

∑
x i ∈R

ℓ(yi , y(R)) +
∑
x i ∈R

ℓ(yi , y(R))

CART: Gini index (Classification)
C(R, R) =

∑
x i ∈R

p(R)(1 − p(R)) +
∑
x i ∈R

p(R)(1 − p(R))

C4.5: entropy based criterion (Information Theory)
C(R, R) =

∑
x i ∈R

H(R) +
∑
x i ∈R

H(R)

CART with Gini is probably the most used technique. . .
Other criterion based on χ2 homogeneity or based on different local predictors
(generalized linear models. . . )
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Optimization Point of ViewBranching

Choice of the split in a given region
Compute the criterion for all features and all possible splitting points
(necessarily among the data values in the region)
Choose the split minimizing the criterion

Variations: split at all categories of a categorical variable using a clever category
ordering (ID3), split at a restricted set of points (quantiles or fixed grid)
Stopping rules:

when a leaf/region contains less than a prescribed number of observations
when the region is sufficiently homogeneous. . .

May lead to a quite complex tree: over-fitting possible!
Additional pruning often use.
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Optimization Point of ViewPruning

→

Model selection within the (rooted) subtrees of previous tree!
Number of subtrees can be quite large, but the tree structure allows to find the
best model efficiently.

Key idea
The predictor in a leaf depends only on the values in this leaf.
Efficient bottom-up (dynamic programming) algorithm if the criterion used
satisfies an additive property

C(T ) =
∑
L∈T

c(L)

Example: AIC / CV.
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Optimization Point of ViewPruning

Examples of criterion satisfying this assumptions
AIC type criterion:

n∑
i=1

ℓ(yi , fL(x i )(x i)) + λ|T | =
∑
L∈T

∑
x i ∈L

ℓ(yi , fL(x i)) + λ


Simple cross-Validation (with (x ′

i , y ′
i ) a different dataset):

n′∑
i=1

ℓ(y ′
i , fL(x ′

i)) =
∑
L∈T

∑
x ′

i ∈L
ℓ(y ′

i , fL(x ′
i))


Limit over-fitting for a single tree.
Rk: almost never used when combining several trees. . .
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Optimization Point of ViewCART: Pros and Cons

Pros
Leads to an easily interpretable model
Fast computation of the prediction
Easily deals with categorical features
(and missing values)

Cons
Greedy optimization
Hard decision boundaries
Lack of stability
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Optimization Point of ViewEnsemble methods

Lack of robustness for single trees.
How to combine trees?

Parallel construction
Construct several trees from bootstrapped samples and average the responses
(Bagging)
Add more randomness in the tree construction (Random Forests)

Sequential construction
Construct a sequence of trees by reweighting sequentially the samples according
to their difficulties (AdaBoost)
Reinterpretation as a stagewise additive model (Boosting)
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Ensemble Methods
Averaging: combine several models by averaging (bagging, random forests,. . . )
Boosting: construct a sequence of (weak) classifiers (XGBoost, LightGBM,
CatBoost)
Stacking: use the outputs of several models as features (tpot. . . )

Loss of interpretability but gain in performance
Beware of overfitting with stacking: the second learning step should be done with
fresh data.
No end to end optimization as in deep learning!
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Empirical Risk MinimizationEmpirical Risk Minimization

Empirical Risk Minimizer (ERM)
For any loss ℓ and function class S,

f̂ = argmin
f ∈S

1
n

n∑
i=1

ℓ(Yi , f (X i)) = argmin
f ∈S

Rn(f )

Key property:
Rn(f̂ ) ≤ Rn(f ), ∀f ∈ S

Minimization not always tractable in practice!
Focus on the ℓ0/1 case:

only algorithm is to try all the functions,
not feasible is there are many functions
but interesting hindsight!
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Empirical Risk MinimizationERM and PAC Analysis

Theoretical control of the random (error estimation) term:
R(f̂ ) − R(f ⋆

S )

Probably Almost Correct Analysis
Theoretical guarantee that

P
(
R(f̂ ) − R(f ⋆

S ) ≤ ϵS(δ)
)

≥ 1 − δ

for a suitable ϵS(δ) ≥ 0.
Implies:

P
(

R(f̂ ) − R(f ⋆) ≤ R(f ⋆
S ) − R(f ⋆) + ϵS(δ)

)
≥ 1 − δ

E
[
R(f̂ ) − R(f ⋆

S )
]

≤
∫ +∞

0
δS(ϵ)dϵ

The result should hold without any assumption on the law P!
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Empirical Risk MinimizationA General Decomposition
By construction:

R(f̂ ) − R(f ⋆
S ) = R(f̂ ) − Rn(f̂ ) + Rn(f̂ ) − Rn(f ⋆

S ) + Rn(f ⋆
S ) − R(f ⋆

S )
≤ R(f̂ ) − Rn(f̂ ) + Rn(f ⋆

S ) − R(f ⋆
S )

≤
(
R(f̂ ) − R(f ⋆

S )
)

−
(
Rn(f̂ ) − Rn(f ⋆

S )
)

Four possible upperbounds
R(f̂ ) − R(f ⋆

S ) ≤ sup
f ∈S

((R(f ) − R(f ⋆
S )) − (Rn(f ) − Rn(f ⋆

S )))

R(f̂ ) − R(f ⋆
S ) ≤ sup

f ∈S
(R(f ) − Rn(f )) + (Rn(f ⋆

S ) − R(f ⋆
S ))

R(f̂ ) − R(f ⋆
S ) ≤ sup

f ∈S
(R(f ) − Rn(f )) + sup

f ∈S
(Rn(f ) − R(f ))

R(f̂ ) − R(f ⋆
S ) ≤ 2 sup

f ∈S
|R(f ) − Rn(f )|

Supremum of centered random variables!
Key: Concentration of each variable. . . 252



Empirical Risk MinimizationRisk Bounds

By construction, for any f ′ ∈ S,
R(f ′) = Rn(f ′) +

(
R(f ′) − Rn(f ′)

)
A uniform upper bound for the risk

Simultaneously ∀f ′ ∈ S,
R(f ′) ≤ Rn(f ′) + sup

f ∈S
(R(f ) − Rn(f ))

Supremum of centered random variables!
Key: Concentration of each variable. . .
Can be interpreted as a justification of the ERM!
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Empirical Risk MinimizationConcentration of the Empirical Loss
Empirical loss:

Rn(f ) = 1
n

n∑
i=1

ℓ0/1(Yi , f (X i))

Properties
ℓ0/1(Yi , f (X i)) are i.i.d. random variables in [0, 1].

Concentration

P(R(f ) − Rn(f ) ≤ ϵ) ≥ 1 − e−2nϵ2

P(Rn(f ) − R(f ) ≤ ϵ) ≥ 1 − e−2nϵ2

P(|Rn(f ) − R(f )| ≤ ϵ) ≥ 1 − 2e−2nϵ2

Concentration of sum of bounded independent variables!
Hoeffding theorem.
Equiv. to P

(
R(f ) − Rn(f ) ≤

√
log(1/δ)/(2n)

)
≥ 1 − δ 255



Empirical Risk MinimizationHoeffding

Theorem
Let Zi be a sequence of ind. centered r.v. supported in [ai , bi ] then

P
( n∑

i=1
Zi ≥ ϵ

)
≤ e

− 2ϵ2∑n
i=1(bi −ai )2

Proof ingredients:
Chernov bounds:

P

( n∑
i=1

Zi ≥ ϵ

)
≤

E
[
eλ
∑n

i=1 Zi
]

eλϵ
≤
∏n

i=1 E
[
eλZi

]
eλϵ

Exponential moment bounds: E
[
eλZi

]
≤ e

λ2(bi −ai )2
8

Optimization in λ

Prop:

E
[
eλ
∑n

i=1 Zi
]

≤ e
λ2∑n

i=1(bi −ai )2

8 .
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Empirical Risk MinimizationHoeffding Inequality
Theorem

Let Zi be a sequence of independent centered random variables supported in
[ai , bi ] then

P
( n∑

i=1
Zi ≥ ϵ

)
≤ e

− 2ϵ2∑n
i=1(bi −ai )2

Zi = 1
n

(
E
[
ℓ0/1(Y , f (X ))

]
− ℓ0/1(Yi , f (X i))

)
E[Zi ] = 0 and Zi ∈ [ 1

n

(
E
[
ℓ0/1(Y , f (X ))

]
− 1

)
, 1

nE
[
ℓ0/1(Y , f (X ))

]
]

Concentration:
P(R(f ) − Rn(f ) ≥ ϵ) ≤ e−2nϵ2

By symmetry,
P(Rn(f ) − R(f ) ≥ ϵ) ≤ e−2nϵ2

Combining the two yields
P(|Rn(f ) − R(f )| ≥ ϵ) ≤ 2e−2nϵ2
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Empirical Risk MinimizationFinite Class Case

Concentration
If S is finite of cardinality |S|,

P

sup
f

(R(f ) − Rn(f )) ≤

√
log |S| + log(1/δ)

2n

 ≥ 1 − δ

P

sup
f

|Rn(f ) − R(f )| ≤

√
log |S| + log(1/δ)

2n

 ≥ 1 − 2δ

Control of the supremum by a quantity depending on the cardinality and the
probability parameter δ.
Simple combination of Hoeffding and a union bound.

258



Empirical Risk MinimizationFinite Class Case
PAC Bounds

If S is finite of cardinality |S|, with proba greater than 1 − 2δ

R(f̂ ) − R(f ⋆
S ) ≤

√
log |S| + log(1/δ)

2n +

√
log(1/δ)

2n

≤ 2

√
log |S| + log(1/δ)

2n
If S is finite of cardinality |S|, with proba greater than 1 − δ, simultaneously
∀f ′ ∈ S,

R(f ′) ≤ Rn(f ′) +

√
log |S| + log(1/δ)

2n

≤ Rn(f ′) +

√
log |S|

2n +

√
log(1/δ)

2n
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Empirical Risk MinimizationFinite Class Case

PAC Bounds
If S is finite of cardinality |S|, with proba greater than 1 − 2δ

R(f̂ ) − R(f ⋆
S ) ≤

√
log |S|

2n +

√
2 log(1/δ)

n
If S is finite of cardinality |S|, with proba greater than 1 − δ, simultaneously
∀f ′ ∈ S,

R(f ′) ≤ Rn(f ′) +

√
log |S|

2n +

√
log(1/δ)

2n

Risk increases with the cardinality of S.
Similar issue in cross-validation!
No direct extension for an infinite S. . .
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Empirical Risk MinimizationConcentration of the Supremum of Empirical Losses
Supremum of Empirical losses:

∆n(S)(X 1, . . . , Xn) = sup
f ∈S

R(f ) − Rn(f )

= sup
f ∈S

(
E
[
ℓ0/1(Y , f (X ))

]
− 1

n

n∑
i=1

ℓ0/1(Yi , f (X i))
)

Properties
Bounded difference:

|∆n(S)(X 1, . . . , X i , . . . Xn) − ∆n(S)(X 1, . . . X ′
i , . . . , Xn)| ≤ 1/n

Concentration

P(∆n(S) − E[∆n(S)] ≤ ϵ) ≥ 1 − e−2nϵ2

Concentration of bounded difference function.
Generalization of Hoeffding theorem: McDiarmid Theorem.
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Empirical Risk MinimizationMcDiarmid Inequality
Bounded difference function

g : X n → R is a bounded difference function if it exist ci such that
∀(X i)n

i=1, (X ′
i)n

i=1 ∈ R,∣∣g(X 1, . . . , X i , . . . , Xn) − g(X 1, . . . , X ′
i , . . . , Xn)

∣∣ ≤ ci

Theorem
If g is a bounded difference function and X i are independent random variables
then

P(g(X 1, . . . , Xn) − E[g(X 1, . . . , Xn)] ≥ ϵ) ≤ e
−2ϵ2∑n

i=1 c2
i

P(E[g(X 1, . . . , Xn)] − g(X 1, . . . , Xn) ≥ ϵ) ≤ e
−2ϵ2∑n

i=1 c2
i

Proof ingredients:
Chernov bounds
Martingale decomposition. . .
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Empirical Risk MinimizationMcDiarmid Inequality

Theorem
If g is a bounded difference function and X i are independent random variables
then

P(g(X 1, . . . , Xn) − E[g(X 1, . . . , Xn)] ≥ ϵ) ≤ e
−2ϵ2∑n

i=1 c2
i

Using g = ∆n(S) for which ci = 1/n yields immediately

P(∆n(S) − E[∆n(S)] ≥ ϵ) ≤ e
−2ϵ2∑n

i=1 c2
i = e−2nϵ2

We derive then

P(∆n(S) ≥ E[∆n(S)] + ϵ) ≤ e
−2ϵ2∑n

i=1 c2
i = e−2nϵ2

It remains to upperbound

E[∆n] = E
[
sup
f ∈S

R(f ) − Rn(f )
]
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Empirical Risk MinimizationRademacher Complexity
Theorem

Let σi be a sequence of i.i.d. random symmetric Bernoulli variables (Rademacher
variables):

E
[
sup
f ∈S

(R(f ) − Rn(f ))
]

≤ 2E
[
sup
f ∈S

1
n

n∑
i=1

σiℓ
0/1(Yi , f (X i))

]

Rademacher complexity
Let B ⊂ Rn, the Rademacher complexity of B is defined as

Rn(B) = E
[

sup
b∈B

1
n

n∑
i=1

σibi

]

Theorem gives an upper bound of the expectation in terms of the average
Rademacher complexity of the random set
Bn(S) = {(ℓ0/1(Yi , f (X i)))n

i=1, f ∈ S}.
Back to finite setting: This set is at most of cardinality 2n. 265



Empirical Risk MinimizationFinite Set Rademacher Complexity Bound

Theorem
If B is finite and such that ∀b ∈ B, 1

n∥b∥2
2 ≤ M2, then

Rn(B) = E
[

sup
b∈B

1
n

n∑
i=1

σibi

]
≤

√
2M2 log |B|

n

If B = Bn(S) = {(ℓ0/1(Yi , f (X i)))n
i=1, f ∈ S}, we have M = 1 and thus

Rn(B) ≤

√
2 log |Bn(S)|

n
We obtain immediately

E
[
sup
f ∈S

(R(f ) − Rn(f ))
]

≤ E

√8 log |Bn(S)|
n

 .
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Empirical Risk MinimizationFinite Set Rademacher Complexity Bound

Theorem
With probability greater than 1 − 2δ,

R(f̂ ) − R(f ⋆
S ) ≤ E

√8 log |Bn(S)|
n

+

√
2 log(1/δ)

n

With probability greater than 1 − δ, simultaneously ∀f ′ ∈ S

R(f ′) ≤ Rn(f ′) + E

√8 log |Bn(S)|
n

+

√
log(1/δ)

2n

This is a direct consequence of the previous bound.
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Empirical Risk MinimizationFinite Set Rademacher Complexity Bound

Corollary
If S is finite then with probability greater than 1 − 2δ

R(f̂ ) − R(f ⋆
S ) ≤

√
8 log |S|

n +

√
2 log(1/δ)

n
If S is finite then with probability greater than 1 − δ, simultaneously ∀f ′ ∈ S

R(f ′) ≤ Rn(f ′) +

√
8 log |S|

n +

√
log(1/δ)

2n

It suffices to notice that
|Bn(S)| = |{(ℓ0/1(Yi , f (X i)))n

i=1, f ∈ S}| ≤ |S|
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Empirical Risk MinimizationFinite Set Rademacher Complexity Bound

Same result with Hoeffding but with better constants!

R(f̂ ) − R(f ⋆
S ) ≤

√
log |S|

2n +

√
2 log(1/δ)

n

R(f ′) ≤ Rn(f ′) +

√
log |S|

2n +

√
log(1/δ)

2n
Difference due to the crude upperbound of

E
[
sup
f ∈S

(R(f ) − Rn(f ))
]

Why bother?: We do not have to assume that S is finite!
|Bn(S)| ≤ 2n
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Empirical Risk MinimizationBack to the Bound

Theorem

E
[
sup
f ∈S

(R(f ) − Rn(f ))
]

≤ E

√8 log |Bn(S)|
n


Key quantity: E

[√
8 log |Bn(S)|

n

]
Hard to control due to its structure!

A first data dependent upperbound

E

√8 log |Bn(S)|
n

 ≤

√
8 logE[|Bn(S)|]

n (Jensen)

Depends on the unknown P!
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Empirical Risk MinimizationShattering Coefficient

Shattering Coefficient (or Growth Function)
The shattering coefficient of the class S, s(S, n), is defined as

s(S, n) = sup
((X1,Y1),...,(Xn,Yn))∈(X ×{−1,1})n

|{(ℓ0/1(Yi , f (X i)))n
i=1, f ∈ S}|

By construction, |Bn(S)| ≤ s(S, n) ≤ min(2n, |S|).

A data independent upperbound

E

√8 log |Bn(S)|
n

 ≤

√
8 log s(S, n)

n
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Empirical Risk MinimizationShattering Coefficient

Theorem
With probability greater than 1 − 2δ,

R(f̂ ) − R(f ⋆
S ) ≤

√
8 log s(S, n)

n +

√
2 log(1/δ)

n
With probability greater than 1 − δ, simultaneously ∀f ′ ∈ S,

R(f ′) ≤ Rn(f ′) +

√
8 log s(S, n)

n +

√
log(1/δ)

2n

Depends only on the class S!
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Empirical Risk MinimizationVapnik-Chervonenkis Dimension

VC Dimension
The VC dimension dVC of S is defined as the largest integer d such that

s(S, d) = 2d

The VC dimension can be infinite!

VC Dimension and Dimension
Prop: If span(S) corresponds to the sign of functions in a linear space of
dimension d then dVC ≤ d .

VC dimension similar to the usual dimension.
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Empirical Risk MinimizationVC Dimension and Sauer’s Lemma

Sauer’s Lemma
If the VC dimension dVC of S is finite

s(S, n) ≤

2n if n ≤ dVC(
en

dVC

)dVC if n > dVC

Cor.: log s(S, n) ≤ dVC log
(

en
dVC

)
if n > dVC .
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Empirical Risk MinimizationVC Dimension and PAC Bounds

PAC Bounds
If S is of VC dimension dVC then if n > dVC

With probability greater than 1 − 2δ,

R(f̂ ) − R(f ⋆
S ) ≤

√√√√8dVC log
(

en
dVC

)
n +

√
2 log(1/δ)

n
With probability greater than 1 − δ, simultaneously ∀f ′ ∈ S,

R(f ′) ≤ Rn(f ′) +

√√√√8dVC log
(

en
dVC

)
n +

√
log(1/δ)

2n

Rk: If dVC = +∞ no uniform PAC bounds exists!
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Empirical Risk MinimizationCountable Collection and Non Uniform PAC Bounds

PAC Bounds
Let πf > 0 such that

∑
f ∈S πf = 1

With proba greater than 1 − 2δ,

R(f̂ ) − R(f ⋆
S ) ≤

√
log(1/πf )

2n +

√
2 log(1/δ)

n
With proba greater than 1 − δ, simultaneously ∀f ′ ∈ S,

R(f ′) ≤ Rn(f ′) +

√
log(1/πf )

2n +

√
log(1/δ)

2n

Very similar proof than the uniform one!
Much more interesting idea when combined with several models. . .
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Empirical Risk MinimizationModels, Non Uniform Risk Bounds and SRM
Assume we have a countable collection of set (Sm)m∈M and let πm be such that∑

m∈M πm = 1.

Non Uniform Risk Bound
With probability 1 − δ, simultaneously for all m ∈ M and all f ∈ Sm,

R(f ) ≤ Rn(f ) + E

√8 log |Bn(Sm)|
n

+

√
log(1/πm)

2n +

√
log(1/δ)

2n

Structural Risk Minimization
Choose f̂ as the minimizer over m ∈ M and f ∈ Sm of

Rn(f ) + E

√8 log |Bn(Sm)|
n

+

√
log(1/πm)

2n

Mimics the minimization of the integrated risk!
279



Empirical Risk MinimizationSRM and PAC Bound

PAC Bound
If f̂ is the SRM minimizer then with probability 1 − 2δ,

R(f̂ ) ≤ inf
m∈M

inf
f ∈Sm

R(f ) + E

√8 log |Bn(Sm)|
n

+

√
log(1/πm)

2n


+

√
2 log(1/δ)

n

The SRM minimizer balances the risk R(f ) and the upper bound on the
estimation error E

[√
8 log |Bn(Sm)|

n

]
+
√

log(1/πm)
2n .

E
[√

8 log |Bn(Sm)|
n

]
can be replaced by an upper bound (for instance a VC based

one). . .
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