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1.5 An Extended Example: Tic-Tac-Toe - Figure 1.1 inoduction

starting position

opponent's move

our move

opponent's move

our move

opponent's move

our move

Figure 1.1: A sequence of tic-tac-toe moves. The solid black lines represent the moves taken
during a game; the dashed lines represent moves that we (our reinforcement learning player)
considered but did not make. Our second move was an exploratory move, meaning that it was
taken even though another sibling move, the one leading to e*, was ranked higher. Exploratory
moves do not result in any learning, but each of our other moves does, causing updates as
suggested by the red arrows in which estimated values are moved up the tree from later nodes
to earlier nodes as detailed in the text.
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21 A k_armed Bandlt Problem Multi-armed Bandits

k-armed bandit:

os=1

o gq.(a) =E[R|A)] =ra
Optimal policy: a, = argmaxr,
Estimate Q:(a) ~ E [R:|A,].
Next step:

e Exploitation: A; = argmax Q;(a), bet on the current winner.
o Exploration: A; # argmax Q;(a), verify that no other arm are better.

Conflict between exploration and exploitation.

Theoretical results under strong assumptions.



22 ACtIOﬂ—Value MethOdS Multi-armed Bandits

@ Action-value:

Z lA, a
z,?zll 1A, =a
Sample average that converges to g.(a) provided >f71 14—, — oo

Q(a) =

Greedy action:
A = argmax Q¢(a)

e-greedy action:
A _ Jargmax Q:(a) with probability 1 — ¢
R Y with A" uniform on the arm otherwise

e-greedy forces exploration and guarantees that Q;(a) — a.(a)

10



2.3 The 10-armed Testbed Multi-armed Bandits
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Figure 2.1: An example bandit problem from the 10-armed testbed. The true value q.(a) of
each of the ten actions was selected according to a normal distribution with mean zero and unit
variance, and then the actual rewards were selected according to a mean g.(a) unit variance
normal distribution, as suggested by these gray distributions.

e g.(a) ~N(0,1)
® RAr=a~ N(g.(a),1)
11



2.3 The 10-armed Testbed

Multi-armed Bandits
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Figure 2.2: Average performance of e-greedy action-value methods on the 10-armed testbed.
These dat

are averages over 2000 runs with different bandit problems. All methods used sample
averages as their action-value estimaty

@ Greedy policy may fail in a stationary context.
@ Even more risky in a nonstationary one.

12



2.4 Incremental Implementation Multi-armed Bandits

@ Mean for a single action:

0, = Ri+-+ Rp
n—1
@ Incremental implementation:
Ri+- -+ R,
Qpiz = "
n
1
- ((n—1)Qn + Rn)
1
:Qn+;(Rn_Qn)

@ General update rule:
NewEstimate = OldEstimate + StepSize ( Target — OldEstimate)
where
e Target is a noisy estimate of the true target,
e StepSize may depends on t and a.

13



2.4 Incremental Implementation Multi-armed Bandits

A simple bandit algorithm

Initialize, for a« =1 to k:

Qa) « 0
N(a)«0

Loop forever:
argmax, Q(a) with probability 1 — e  (breaking ties randomly)
A« . . o
a random action with probability e
R «+ bandit(A)
N(A)«+ N(A) +1
Q(4) + Q(A) + x(ay [R - Q(4)]

14



2.5 Tracking a Nonstationary Problem Mult-armed Bandits

@ Nonstationary setting often present in reinforcement learning.
@ Incremental update:

Qnt1 = Qn + @ (Rn — Qn)
e If a € (0,1] is constant,

Qi1 = Qn+a(Ry,— Qn)
=(1-0a)Qn1+aR,
=(1—-a)’Qu-1+a(l —a)Rp_1 +aR,

=(1-a) Ql—i—z (1-a)"'R;

k=1
@ Weighted average with more emphasis on later values.

15



2.5 Tracking a Nonstationary Problem Mult-armed Bandits

@ Incremental update:
Qn+1 = Qn+ap (Rn - Qn)
@ Convergence toward the expectation of R requires some assumptions on «:

[e.9] o0
Z op = +00 Z a% <+
n=1 n=1

e First condition guarantees that one can escape any initial condition.
e Second condition that the iterations converges.

@ If o, = v no convergence but track any nonstationarity.

16



26 OptImIStIC Inltlal VaIUGS Multi-armed Bandits

100%
Optimistic, greedy
Q1=5, e=0

80% -

Realistic, ¢ -greedy

o, 60%
A Q,=0, 0.1

o
Optimal
action  40% -

20%

0% =T T T T T 1
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Steps
Figure 2.3: The effect of optimistic initial action-value estimates on the 10-armed testbed.
Both methods used a constant step-size parameter, v = 0.1.
e Estimate depends on initial values (except for the case where a; = 1).
o Way of supplying prior knowledge about the level of rewards expected.
e Optimistic initialization leads to exploration at the beginning.

@ Fails to help in a nonstationary setting.

17



2.7 Upper-Confidence-Bound Action Selection Mult-armed Bandits

L5 UCB ¢=2 L ™ I TR
Sy i W

e-greedy € =0.1
1

Average
reward
05

0
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Figure 2.4: Average performance of UCB action sclection on the 10-armed testbed. As shown,
UCB generally performs better than =-greedy action selection, except in the first & steps, when
it selects randomly among the as-yet-untried actions.

@ e-greedy fails to discriminate between good/bad actions or certain/uncertain
actions.

@ Upper-Confidence-Bound:

Int

Ne(a)

@ Arm with lower values estimates will be selected with decreasing frequency over
time.

@ Bandit proof hard to extend to reinforcement setting.

A = argmax | Q¢(a) + ¢

18



2.8 Gradient Bandit Algorithm Mult-armed Bandits

@ Numerical preference associated to action a: Hy(a).

@ Induced soft-max policy:

Ht(a)
P(A =a)= —°

>y eMe(®)
@ Natural learning algorithm with update

Hooa(a) = H.(a) + a(R: — R)(1 — m:(a)) if a = A,
e H:(a) — a(R: — Ry)m:(a) otherwise
with R = (X121 Ry)

@ Baseline R; accelerates convergence.

= mt(a)

19



2.8 Gradient Bandit Algorithm - Figure 2.5 Mult-armed Bandits
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Figure 2.5: Average performance of the gradient bandit algorithm with and without a reward
baseline on the 10-armed testbed when the ¢. (a) are chosen to be near +4 rather than near zero.

20



2.8 Gradient Bandit Algorithm Mult-armed Bandits

o ldeal gradient ascent:

Hit1(a) = He(a) + o

= Hu(a) + oy, | (0.(4) — B

@ Stochastic gradient descent:

Hii1(a) = He(a) + «

21



2.8 Gradient Bandit Algorithm Mult-armed Bandits

@ Policy gradient:

dnm(b) 9 (b’
(s = BH( <Ht(b) “n (; oM (b)>)

th(a)
=L~ =
> ee(®)
=1, — m(a)

@ Stochastic gradient descent:
Hey1(a) = He(a) + o (gu(Ae) — Be) (1a=b — me(a))

22



2.9 Associative Search (Contextual Bandits) Mt armed Bandits

@ Associative search: reward depends on the arm and on the situation.
@ Often call contextual bandits.

@ In between bandits and reinforcement learning, the action only impact the next
reward

23



2 MUltI—armed bandItS - Flgure 26 Multi-armed Bandits

' UCB greedy with
optimistic
initialization
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Figure 2.6: A parameter study of the various bandit algorithms presented in this chapter.
Each point is the average reward obtained over 1000 steps with a particular algorithm at a
particular setting of its parameter.
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O Utl | ne Finite Markov Decision

Processes

© Finite Markov Decision Processes
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3 Finite Markov Decision Processes Finite Markov Decision

Processes

3.1 The Agent-Environment Interface

3.2 Goals and Rewards

3.3 Returns and Episodes

3.4 Unified Notation for Episodic and Continuing Tasks
3.5 Policies and Value Functions

3.6 Optimal Policies and Optimal Value Functions

3.7 Optimality and Approximation
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3.1 The Agent-Environment Interface

state reward

S| R
R
S. | Environment [€——

Figure 3.1: The agent-environment interaction in a Markov decision process.

Finite Markov Decision
Processes

action

@ At time step t € NV:
e State 5; € S: representation of the environment
o Action A; € A(S:): action chosen
e Reward R;;; € R: instantaneous reward
o New state S; 1
e Finite MDP:
e S, A and R are finite.
e Dynamic entirely defined by

P (S = s',R. = r|Se-1=5,A1=a) = p(S/, rls, a)

27



3.1 The Agent-Environment Interface - Figure 3.1

'_| Agent |

state reward

s, | IR

<

R (

g Uiy

a—

Sr+1

-

\

Environment ]4—

Finite Markov Decision
Processes

action

Figure 3.1: The agent—environment interaction in a Markov decision process.

28



31 The Agent_EnV|ronment Interface Finite Markov Decision

Processes

@ State-transition probabilities:
p(s'ls,a) =P (St = s'|Se_1 =s,Accr =a) = > _p(s', rls, a)
r

@ Expected reward for a state-action:
/
r(s,a) = E [R¢|St—1 = s, Ar_1 = a] = Z er(s ,rls, a)
r s/
@ Expected reward for a state-action-state:

/
N ETRIS, 1 —s At — a5 —s] =S PLr1s:2)
52 RelSemr = 5,4 =25 = <] zr:r p(s’|s, a)

29



31 The Agent_EnV|ronment Interface Finite Markov Decision

Processes _

s B franrct
s a s’ p(s'|s,a) | r(s,a,s’) 1-6,-3
high search high [e% Tsearch
high search low 11—« Tsearch
low search high | 1 -7 -3
low search low B Tsearch 1,0 recharge
high wait high 1 Twait
high wait low 0 =
low wait high | 0 =
low wait low 1 Twait
low recharge  high 1
low recharge low 0 =
Q, T'search 1—a, 7 searcn 1, ryase

@ Examples:

e Bioreactor
e Pick-and-Place Robots
e Recycling Robot

30



Finite Markov Decision

3.2 Goals and Rewards
Processes

That all of what we mean by goals and purposes can be well thought of as the
maximization of the expected value of the cumulative sum of a received scalar

signal (called reward).

@ The reward signal is your way of communicating to the robot what you want it to
achieve, not how you want it achieved.

31



33 Retu rns a nd EpISOdeS Finite Markov Decision

Processes

e Episodic: Final time step T and

T
Gf - Z Rt’

t'=t+1
@ Continuous tasks: undiscounted reward
—+oco
G = Z Ry may not exist!
t'=t+1

@ Continuous tasks: discounted reward
—+o00
k
Gt = Z’Y Ret14k
0

with 0 < v < 1.

32



33 Retu rns a nd EpISOdeS Finite Markov Decision

Processes

@ Recursive property
Gt = Rev1 + 7G4
e Finiteness if |[R| < M
T—t—+1)M if T <o
G| < {( 1 )

T otherwise
—

33



33 ReturnS and EpISOdeS - EXample 34 Finite Markov Decision

Processes

34



Unified Notation for Episodic and Continuing Tasks Finite Markev Decision

Processes

e Episodic case: several episodes instead of a single trajectory (S¢;...)
@ Absorbing state 5 such p(5/3,a) =1 and R; = 0 when S; = 3.

@ Convert episodic case into a continuing one.

@ Alternative: notation

-
Gy = Z FELR,
k=t+1

Undefined if T =00 and v =1...

35



35 PO“CIGS and Value FunCtlonS Finite Markov Decision

Processes

e Policy: m(als)
@ Value function:

Vr(s) = Ex [Gt|St = 5] = E [Z ’Yth+k+1
k=0

St:S‘|

St:s,At:al

@ Action value function:
gr(s,a) = E; [G¢|St = s, At = &]

[e.9]

k

=Er lz Y Retkt1
k=0

e Implicit stationary assumption on 7!

36



35 POIICleS and Value FunCtlonS Finite Markov Decision

Processes

OO0 OO O 0O¢

Backup diagram for v,

@ Bellman Equation
vr(s) = Ex [G¢]St = 5]
= Er [Res1 + 7Gey1|Se = 5]

:Z (als) ZZPS rls,a) [r +VEx [Ge+1|Se1 = 5]
=Y (als) ZZps rls, a) [r + yvx(s')]

37



3.5 Policies and Value Functions - Figure 3.2 Finite Markev Decision

Processes

Al [B. 3.38.8/4.4/53[15
\ +5 1.5/3.0[ 2.3[ 1.9/ 0.5
+10) B' <—I—> 0.1/0.7| 07| 0.4|-0.4]
/ ! -1.0-0.4-0.4-0.6-1.2

A4 Actions 1.9]-1.3-1.2-1.4-2.0

Figure 3.2: Gridworld example: exceptional reward dynamics (left) and state-value function
for the equiprobable random policy (right).
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3.5 Policies and Value Functions - Figure 3.3

v

¢.(s,driver)

—O
|
o

‘iz

Figure 3.3: A golf example: the state-value func-
tion for putting (upper) and the optimal action-
value function for using the driver (lower). n

Finite Markov Decision
Processes

39



3.6 Optimal Policies and Optimal Value Functions Finite Markov Decision

Processes

Optimal policies: vy, (s) > vx(s) (not necessarily unique)

Optimal state-value function :
vi(s) = max vx(s) Uniqueness
s

Optimal state-action-value function:
g«(s,a) = maxgr(s,a) Uniqueness
™
o Link:
g«(s,a) = E[Rey1 + 7vu(Se41)|Se = 5, Ar = 4]

40



3.6 Optimal Policies and Optimal Value Functions Finite Markov Decision

Processes

@ Bellman optimality equation:
vi(s) = max g«(s, a)

= mng [Rt+1 + ’}/V*(St+1)|5t = S,At = a]

= max Z p(s',rls,a) (r +yvi(s"))

s'r

@ Bellman optimality equation for g:
g«(s,a) =E

Rey1 + Y max G+ (St+1, 3/) St =5,Ar = 3]
a

= Y ol rls. ) (7 + maxaa (s, )
s'.r 2

41



3.6 Optimal Policies and Optimal Value Functions - Finite Markov Decision
Figure 3.4

(v+) . (@) &

- a N )
N, =A A

OO0 OO0 OO0 ¢ o o od

Figure 3.4: Backup diagrams for v, and q.
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3.6 Optimal Policies and Optimal Value Functions - Finite Markov Decision
Processes
Figure 3.5

Al |B. 22.0/24.4/22.0[19.4[17.5 — bl | —

+5 19.8/22.0/19.8/17.816.0 I I O R

0] B"i 17.8{19.8(17.8{16.014.4 L O O

16.0{17.8[16.0{14.4{13.0 L. i ._T J J

A"f 14.4116.0{14.4/13.011.7] L I o O D
Gridworld Vi T

Figure 3.5: Optimal solutions to the gridworld example.
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37 Optlmallty and ApprOXImatlon Finite Markov Decision

Processes

@ Very difficult to learn the optimal policy.
e Knowing the environment helps but is not sufficient. (Chap. 4)
e Computational challenges even in the finite case! (Chap. 5-8)

@ Need to resort to approximation! (Chap. 9-12)

44



OUtllne Dynamic Programming

@ Dynamic Programming
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4 DynamIC PI’Ogrammlng Dynamic Programming

4.1 Policy Evaluation (Prediction)

4.2 Policy Improvement

4.3 Policy Iteration

4.4 Value lteration

4.5 Asynchronous Dynamic Programming

4.6 Generalized Policy Iteration

4.7 Efficiency of Dynamic Programming
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4‘. 1 POIicy EVa | UatIOn Dynamic Programming

Policy Evaluation or Prediction

Bellman Equation
Vﬂ—(S) = Eﬂ— [Gt|5t = 5]
= E; [Ret1 + 7Ge41|St = 5]

= S n(als) XY p(s'rls. a) [+ v (s')]

Linear system that can be solved!

Bellman iteration:
Vir1(8) = Ex [Rer1 + 7vi(Se41)[S: = 8]

=2 m(als) D23 p(s'srls, @) [+ ()]

v is a fixed point.

Iterative policy evaluation: iterative algorithm that can be proved to converge.

47



41 POIICy Evaluathn - Policy Evaluatlon Dynamic Programming

Iterative Policy Evaluation, for estimating V ~ v,

Input 7, the policy to be evaluated
Algorithm parameter: a small threshold € > 0 determining accuracy of estimation
Initialize V (s), for all s € 81, arbitrarily except that V (terminal) =0

Loop:
A+0
Loop for each s € S:
v+ V(s)
V(s) & X, mlals) Sy, (s, 7]5,0) [r + AV ()]
A — max(A, [v—V(s)|)
until A < 6

48



4.1 Policy Evaluation - Example 4.1

Dynamic Programming

Example 4.1 Consider the 4 x4 gridworld shown below.

actions

1 2 3
4 5 6 7
8 9 10 |11
12 |13 [14

Ry = -1

on all transitions

49



4‘. 2 POI icy I m provement Dynamic Programming

e If 7' is such that Vs, g (s, 7'(s)) > vx(s) then v > v;.
@ Sketch of proof:

Vr(s) < ga(s,7(s))
= E[Rep1 + 7 (Se11)|Se = 5, A = 7' (5)]
= Er [Res1 + 7V (Se41)|Se = 5]
< Err [Res1 + 7Gn(Se1, 7' (Se41))[Se = 5]
< En [Res1 + VEr [Reg1 + Y (Se42)[Ses15 Aepr = 7'(Se41)][Se = 5]
<En [Rt+1 + YRy + 72Vw(5t+2)|5t = 5}
< Ex [Res1+YRev2 + Y Regs + | Se = 5]
< v (s)
@ Greedy update:

7'(s) = argmax gx (s, a)
a

=argmax Y _ p(s', r|s, a) (r + yva(s))
a s',r
o If 7/ = 7 after a greedy update v = v; = v,. 50



4.2 Policy Improvement - Figure 4.1

k=0
k=1
k=2

Dynamic Programming

Vg, for the greedy policy

random policy w.rt. vg

0.0] 0.0/ 0.0{ 00 0.0]-2.4/2.9]-3.0 — |- |4
0.0/ 0.0] 0.0 0.0 - random k=3 2.4/-2.9]3.0[-2.9 tld e |,
0.0/ 0.0 0.0 00 policy 2.9]-3.0{-2.9]-2.4 HERE
0.0] 0.0/ 0.0[ 00 -3.0]-2.9-2.4] 0.0 REE
0.0]-1.0[-1.0]-1.0 — 0.0[-6.1]-8.4]-9.0 - |- |4
-1.0|-1.0]-1.0[-1.0 ! k=10 -6.1[-7.7|-8.4]-8.4 it o |y
-1.0[-1.0[-1.0[-1.0 | -8.4]-8.4]-7.7]-6.1 b pl
-1.0|-1.0]-1.0] 0.0 — -9.0[-8.4]-6.1] 0.0 REE
0.0[-1.7]-2.0]-2.0 - |- | 0.0]-14.[-20]-22. — |- o
-1.7]-2.0[-2.0[-2.0 i bl T -14.|-18.[-20.]-20. tldlq |y
2.0]-2.0{-2.0[-1.7 il Pl -20.]-20.-18.]-14. HERRE
2.0]-2.0[-1.7] 0.0 [ -] - -22.]-20.-14.] 0.0 L o] -

Figure 4.1: Convergence of iterative policy evaluation on a small gridworld. The left column is
the sequence of approximations of the state-value function for the random policy (all actions
equally likely). The right column is the sequence of greedy policies corresponding to the value
function estimates (arrows are shown for all actions achieving the maximum, and the numbers
shown are rounded to two significant digits). The last policy is guaranteed only to be an
improvement over the random policy, but in this case it, and all policies after the third iteration,
are optimal.

optimal
policy

51



43 POIicy Iteratlon Dynamic Programming

@ Policy iteration: sequence of policy evaluation and policy improvement
E ! E I E
TQ —* Vgg —> M1 —2 Vg —7 T —> Vg,
e In a finite states/actions setting, converges in finite time.

52



43 POIICy Iteratlon - POlICy Itel’atlon Dynamic Programming

Policy Iteration (using iterative policy evaluation) for estimating 7 ~ .

1. Initialization
V(s) € R and 7(s) € A(s) arbitrarily for all s € 8

2. Policy Evaluation
Loop:
A0
Loop for each s € 8:
v V(s)
V(s) Sy, p(/sr|s,7(8) [r + 7V ()]
A+ max(A, [v — V(s)|)
until A < 6 (a small positive number determining the accuracy of estimation)

3. Policy Improvement
policy-stable < true
For each s € 8:
old-action < 7(s)
m(s) « argmax, >, . p(s’,7|s,a)[r + V()]
If old-action # 7(s), then policy-stable + false
If policy-stable, then stop and return V = v, and 7 & 7,; else go to 2

53



4‘3 POIicy Iteratlon - Figure 42 Dynamic Programming

)

20

#Cars at first location

¥ #Cars at second location *°

0

Figure 4.2: The sequence of policies found by policy iteration on Jack’s car rental problem,
and the final state-value function. The first five diagrams show, for each number of cars at
each location at the end of the day, the number of cars to be moved from the first location to
the second (negative numbers indicate transfers from the second location to the first). Each
successive policy is a strict improvement over the previous policy, and the last policy is optimal. B
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4‘4 Value Iteration Dynamic Programming

Policy evaluation can be time consuming.

Value iteration: improve policy after only one step of policy evaluation.
@ Bellman iteration:
Vir1(s) = maxE [Rey1 + vk (Se41)[S: = 5, Ar = 4]
_ / /
= mgxlz p(s’,rls, a) (r + yvk(s"))
s'r

@ Update corresponds to the Bellman optimality equation.

Variation possible on the number of steps in the policy evaluation.

55



4.4 Value lteration - Value lteration

Dynamic Programming

Value Iteration, for estimating 7 ~ 7,

Algorithm parameter: a small threshold € > 0 determining accuracy of estimation
Initialize V (s), for all s € 8§, arbitrarily except that V (terminal) = 0

Loop:

| A+0

| Loop for each s € 8:

| v+ V(s)

| V(s) + max, ZS,)T p(s',r|s,a) [r + ’YV(S/)]

| A max(A, [v —V(s)|)

until A < 0

Output a deterministic policy, @ & ., such that
m(s) = argmax, ) . .p(s',7|s,a) [r + 7V(s’)]

56



4.4 Value lteration - Figure 4.3

Dynamic Programming

Final value
08 function
Value ¢
estimates
04
a2 sweep 1
sweep 2
= 3
o T i T Sweepw 1
1 25 50 75 99
Capital
50
. 40
Final ./
policy
(stake) 20
10
1
T T T T ]
1 25 50 75 99
Capital

Figure 4.3: The solution to the gambler’s problem
for pr = 0.4. The upper graph shows the value func-
tion found by successive sweeps of value iteration. The
lower graph shows the final policy.
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4.5 Asynchronous Dynamic Programming Dynamic Programming

Synchronous Dynamic Programming: update all states at each step.

Asynchronous Dynamic Programming: update only a few states at each step.

°
°

@ No systematic sweeps of the state set!

@ Only need to update every state infinitely often!
°

One possibility is to update the states seen by an agent experiencing the MDP.
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46 GeneraIIZEd POllcy Itel’atlon Dynamic Programming

Usey Ty

@ Policy iteration consists of two simultaneous interacting processes:

e one making a value function consistent with the current policy (policy evaluation)
o one making the policy greedy with respect to the current value function (policy
improvement)

@ Generalized Policy Iteration: any similar scheme.

@ Stabilizes only if one reaches the optimal value/policy pair.
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4.6 Generalized Policy lteration - Generalized Policy
lteration

evaluation
m
m V

7~ greedy (V)

improvement

Dynamic Programming
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47 Eff|C|ency Of DynamIC Progl’ammlng Dynamic Programming

e DP quite efficient: polynomial in |S| and |A|.
@ Linear programming alternative also possible.

@ Curse of dimensionality if the as the number of states grows exponentially with
the number of state variables.

@ Asynchronous DP methods are preferred.
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O Utl | ne Monte Carlo Methods

© Monte Carlo Methods
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5 Monte Carlo MethOdS Monte Carlo Methods

5.1 Monte Carlo Prediction

5.2 Monte Carlo Estimation of Action Values

5.3 Monte Carlo Control

5.4 Monte Carlo without Exploring Starts

5.5 Off-policy Prediction via Importance Sampling
5.6 Incremental Implementation

5.7 Off-policy Monte Carlo Control

5.8 Discounting-aware Importance Sampling

5.9 Per-decision Importance Sampling
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51 Monte Carlo Pl’edICtlon Monte Carlo Methods

Estimate v(s) by the average gain following 7 after passing through s.
Two variants:

e First-visit: use only first visit of s in each episode
o Every-visit: use every visit of s in each episode

First-visit is easier to analyze due to independence of each episode.

Every-visit works. .. but not necessarily better!
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5.1 Monte Carlo Prediction - First Visit Monte-Carlo  wonte carlo Methods
Policy Evaluation

First-visit MC prediction, for estimating V ~ v,

Input: a policy 7 to be evaluated ®
Initialize:

V(s) € R, arbitrarily, for all s € 8

Returns(s) < an empty list, for all s € 8 C)

Loop forever (for each episode):

Generate an episode following m: So, Ao, R1, 51, A1, R2,...,S7—1,Ar—1, R ®
G0
Loop for each step of episode, t =T—1,7—-2,...,0: .
G+ YG + Ry .
Unless S; appears in Sg, S1,...,5t—1:
Append G to Returns(St)
V(St) < average(Returns(St)) T
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51 Monte Carlo Pl’edICtlon Monte Carlo Methods

After 10,000 episodes After 500,000 episodes

Usable
ace

Figure 5.1: Approximate state-value functions for the blackjack policy that sticks only on 20
or 21, computed by Monte Carlo policy evaluation. |
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5.2 Monte Carlo Estimation of Action Values Monte Carlo Methods

Without a model, v (s) is not sufficient to do a policy enhancement step.
Need to estimate g, (s, a) directly.

Issue: require that any state-action pair is visited.

Impossible with a deterministic policy.

Instance of problem of maintaining exploration seen with the bandits.

Exploring starts: start the game from a random stat-action pair in a way that
every stat-action pair has a nonzero probability.

@ Alternative: impose condition on policy itself.
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53 Monte Carlo ContrOI Monte Carlo Methods

evaluation

PN
™ Q
7~ greedy(Q)

improvement

Generalized Policy Iteration can be implemented with MC.

Scheme:

E 1 E 1 E
0 —7 Qg —> M1 —> "+ =7 Tx —7 Qx

Infinite number of MC simulations to compute g;.

Easy policy improvement:
7(s) = argmax q(s, a)

Improvement at each step hence convergence. ..
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53 Monte Carlo ContrOI Monte Carlo Methods

@ Two strong assumptions:
o Every state-action pair is visited infinitely often (Exploring Starts)
e Infinite number of MC simulations
@ Approximate policy iteration required.
@ First approach: if the number of MC simulations is large enough then the
approximation is good enough. ..
@ The required number of simulations can be very large.
@ Second approach: use the current MC estimation to update a current Q-value

estimate (GPI).
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53 Monte Carlo COHtI’Ol Monte Carlo Methods

Monte Carlo ES (Exploring Starts), for estimating = ~ .

Initialize:
m(s) € A(s) (arbitrarily), for all s € 8
Q(s,a) € R (arbitrarily), for all s € 8, a € A(s)
Returns(s, a) < empty list, for all s € 8, a € A(s)

Loop forever (for each episode):
Choose Sy € 8, Ay € A(Sp) randomly such that all pairs have probability > 0
Generate an episode from Sy, Ay, following m: S, Ao, Ri,...,S7—1,Ar_1, Rr
G0
Loop for each step of episode, t =T—1,T-2,...,0:
G+ vG+ Ry
Unless the pair Sy, A; appears in So, Ag, S1, A1 ..., St—1, As_1:
Append G to Returns(S;, A)
Q(St, At) < average(Returns(Sy, Ar))
m(Sy) « argmax, Q(S¢, a)

@ Cannot converge to any suboptimal policy.

@ Convergence still an open question. . .
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53 Monte Carlo ContrOI - Figure 52 Monte Carlo Methods

Ty Ve
121 77—
STICK 1 SATTTT
Usable I o ’0‘.".'."5’ &
1 L
ace 1ie /“’*ﬁ%”"
NEP ‘
HIT 114

(R ———
A23456780910

119 €

No STICK e s
usable 116 &
ace B3s
HIT {125

A2345678910
Dealer showing

Figure 5.2: The optimal policy and state-value function for blackjack, found by Monte Carlo
ES. The state-value function shown was computed from the action-value function found by
Monte Carlo ES. u
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5.4 Monte Carlo Control without Exploring Starts Monte Carlo Methods

@ Exploring starts assumption can be removed if one guarantees that the agent
selects every action infinitely often.
@ Two approaches:
e on-policy, where the policy is constrained to explore.
e off-policy, where the agent use a different policy than the one we want to estimate
@ On-policy control: use soft policy such that 7(a|s) > 0 but gradually shift closer
and closer to a deterministic optimal policy.

@ Impossible to use the classical policy improvement step.
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5.4 Monte Carlo Control without Exploring Starts Monte Carlo Methods

@ Use of e-greedy rules:
_ Jargmaxq(s, a) with probability 1 — € + ¢/|.A(s)
m(s) = {a’ # argmax q(s,a) with probability €/|.A(s)|
° Improvement over any e-greedy policy:
g-(s,7'(s)) 277 (als)gx(s, a)

=e€/|A(s \Zqﬂsa l—e)maxq,r(s a)

9y m(als) — ¢/|A(s)]

> e/|A(s \qusa .

>Z s)gx(s,a) = vx(s, a)

@ Fixed point should be an optimal e-greedy policy.

g-(s, a)

a
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5.4 Monte Carlo Control without Exploring Starts Monte Carlo Methods

On-policy first-visit MC control (for e-soft policies), estimates 7 ~ .,

Algorithm parameter: small € > 0

Initialize:
7 4+ an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € 8, a € A(s)
Returns(s,a) «+ empty list, for all s € 8, a € A(s)

Repeat forever (for each episode):

Generate an episode following 7: Sg, Ao, Ry,...,S7_1,Ar_1,Rp
G+ 0
Loop for each step of episode, t =T—-1,T-2,...,0:

G+ 7G + Ri+1

Unless the pair Sy, A; appears in So, Ao, S1, 41 ...,5-1, Ar_1:
Append G to Returns(Sy, Ay)
Q(Sy, Ar) < average(Returns(Sy, Ar))
A* + argmax, Q(St, a) (with ties broken arbitrarily)
For all a € A(S;):
1—e+¢e/|A(S)| ifa= A*
CER s S

@ In practice, one reduces e during the iterations.
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5.5 Off-policy Prediction via Importance Sampling Monte Carlo Methods

Two approaches:

e on-policy, where the policy is constrained to explore.
e off-policy, where the agent use a different policy than the one we want to estimate

target policy (policy we want to estimate) vs behavior policy (policy we use to
explore)

on-policy: simpler

off-policy: more complex but more powerful and general.

Example: off-policy can be used to learn from observation.

Focus now on prediction: estimation of v, or g, while having episode following
policy b # m.

Minimum (coverage) requirement: if 7(als) > 0 then b(als) > 0.

We may have m(als) =0 and b(a|s) > 0...

Typically, b is an e-greedy policy.
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5.5 Off-policy Prediction via Importance Sampling Monte Carlo Methods

Most off-policy methods are base on importance sampling:
7(X) }
E:[f(X)]=E [ f(X
[FOO] = Eq |25 FX)

By construction,
]P) (At, St+1, At+1, ey 5T|5t7 7T)

= m(Ae|Se)P(St+1[Se, Ae)m(Aes1|Se1) - p(STIST-1,AT-1)
T-1

= 11 7(AxISk)p(Sk11]Sk: Ax)
k=t
@ Relative probability ratio:
p = P(At>5t+17At+17'-'757_‘51“7 71—_[171' Ak‘Sk
U P(AL Se1, Acir, -, STISE D) 2 B(AKISK)

@ Depends only on the policy and not on the MDP.
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5.5 Off-policy Prediction via Importance Sampling Monte Carlo Methods

@ Value function using importance sampling:
Va(S) = E [pr:7-1G¢|St = 5] # E[G|St = s| = vp(5)
e Natural estimate for v, (ordinary importance sampling):
T(t)-1G

V(s) = ZtEZ(s) Pe:T(t)—10t
IZ(s)]
where Z(s) are the time step where s is visited (only for the first time for a
first-visit method)

o Alternative (weighted importance sampling):
T()-1G
V(s) = ZtEZ(s) Pe:T(t)—10t

ZtGZ(s) Pe:T(t)—1
o Rk: E {Ztel (s) Pt:T(t)— ] Z(s)|
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5.5 Off-policy Prediction via Importance Sampling Monte Carlo Methods

5r

\

\

\‘\ Ordinary
Mean \importance
L \ gz
square \\‘:amphng
error \

(average over

100 runs) \
[ Weighted impom sampling
0 .

0 10 1(;0 102)0 10,(;00
Episodes (log scale)

Figure 5.3: Weighted importance sampling produces lower error estimates of the value of a
single blackjack state from off-policy episodes. |

@ ordinary importance sampling is unbiased (for the first-visit method) but may have
a large variance
@ weighted importance sampling is biased but may have a smaller variance.

@ No asymptotic bias.
@ ordinary importance sampling is nevertheless simpler to extend. .. 78



5.5 Off-policy Prediction via Importance Sampling Monte Carlo Methods

w(left|s) = 1

blefts) = %

2
Monte-Carlo
estimate of
v, (s) with
ordinary
importance 1
sampling
(ten runs)

1 10 100 1000 10,000 100000 1000000 10,000,000 100,000,000

Episodes (log scale)

Figure 5.4: Ordinary importance sampling produces surprisingly unstable estimates on the
one-state MDP shown inset (Example 5.5). The correct estimate here is 1 (v = 1), and, even
though this is the expected value of a sample return (after importance sampling), the variance
of the samples is infinite, and the estimates do not converge to this value. These results are for

off-policy first-visit MC.

@ Very large variance terms lead to convergence issues.
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56 Incremental Implementatlon Monte Carlo Methods

@ Incremental implementation avoids to store all the returns.

@ Observation: if

V.o— 11 Wi Gy
! o Wi
then »
Vn+1 = Vn + Tn (Gn - Vn)
with Cn+1 = Cn + WH‘H-'
o Rk: if
Vo _ Zic1 WiGi
" n—1
then

1
Vn+1 = Vn + E(WnGn - Vn)

@ Leads to a better implementation.
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56 Incremental Implementatlon Monte Carlo Methods

Off-policy MC prediction (policy evaluation) for estimating Q ~ ¢,

Input: an arbitrary target policy m

Initialize, for all s € 8, a € A(s):
Q(s,a) € R (arbitrarily)
C(s,a) + 0

Loop forever (for each episode):

b + any policy with coverage of 7

Generate an episode following b: Sy, Ag, R1,...,S7—1,Ar_1, Rp

G+ 0

W1

Loop for each step of episode, t =T —1,T—2,...,0, while W # 0:
GG+ Ry
C(St, Ay) « C(S, Ay) + W
Q(Ss, Ar) < Q(Sy, Ag) + ﬁ (G — Q(St, Ay)]

w(A¢|St
Wew b((Atllst))
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57 Oﬂ:—pOlicy Monte CarIO COHtFOl Monte Carlo Methods

Off-policy MC control, for estimating 7 ~ 7,

Initialize, for all s € 8, a € A(s):
Q(s,a) € R (arbitrarily)
C(s,a) <0
m(s) « argmax, Q(s,a) (with ties broken consistently)

Loop forever (for each episode):

b + any soft policy

Generate an episode using b: Sy, Ao, R1,...,S7-1,Ar—1, Rp

G0

W1

Loop for each step of episode, t =T —-1,T—-2,...,0:
G+~ YG+ Ry
C(St, At) = C(St, At) + W
Q(S:, Ar) + Q(Si, Ar) + gy [G — Q(Sh, Ar)]
7(St) + argmax, Q(St,a)  (with ties broken consistently)
If A, # (St) then exit inner Loop (proceed to next episode)
W Wz

. J

@ GPI principle
@ Require a exploratory target policy
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O Utl Ine Temporal-Difference Learning

@ Temporal-Difference Learning
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6 Tem pOra I_ leFe rence Learn | ng Temporal-Difference Learning

6.1 TD Prediction

6.2 Advantages of TD Prediction Methods

6.3 Optimality of TD(0)

6.4 Sarsa: On-policy TD Control

6.5 Q-Learning: Off-policy TD Control

6.6 Expected Sarsa

6.7 Maximization Bias and Double Learning

6.8 Games, Afterstates, and Other Special Cases
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6 . 1 T D P I'ed ICtiO n Temporal-Difference Learning

constant a Monte Carlo update:

V(S:) « V(S:) + a (G — V(S))
Target G; (~ v(St)) requires to wait until the episode end.
Simplest TD method:

V(S:) < V(St) + a(Rer1 +vV(St41) — V(St))

Target Rev1 + vV(St+1) (~ v (St)) is available immediately.
Estimate based on a previous estimate: bootstrapping method (like DP).
Underlying expectations:

Ve = B [G¢|St = 5]

= Er [Reg1 + 7va(Se41)[Se = 9]
Estimate:

e Expectation (MC / TD)
e Value function (DP /TD)

85



6.1 TD Prediction

Temporal-Difference Learning /,

Tabular TD(0) for estimating v,

Input: the policy 7 to be evaluated
Algorithm parameter: step size a € (0,1]
Initialize V(s), for all s € 8", arbitrarily except that V (terminal) = 0

Initialize S
Loop for each step of episode:
A <+ action given by 7 for S
Take action A, observe R, S’
V(S) « V(S) + a[R+1V(S") - V(S)] T
S8

until S is terminal

Loop for each episode: I

@ TD error:

0t = Rey1 +vV(Se41) — V(St)
e MC error:

Gt — V(St) = 6 +v(Gey1 — V(St11))

T-1
= >
k=T

if V is kept frozen during each episod:a.
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6.1 TD Prediction

45
___actual outcome_____
. 404
Predicted

total

travel 35
time

30

Temporal-Difference Learning

actual
outcome

T T T T T T
leaving reach exiting 2ndary home arrive
office car highway road street home

Situation

T T T T T T
leaving reach exiting 2ndary home arrive
office  car highway road street home

Situation

Figure 6.1: Changes recommended in the driving home example by Monte Carlo methods (left)

and TD methods (right).
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62 Advantages Of TD Pl’edICtIOI"I MethOdS Temporal-Difference Learning [

0.8+ Estimated 0.25 Empirical RMS error,
value averaged over states
- )
064 0.2 1
—e 7 0.15-
04+ 72 \
s Twe 0.1
values =13 03
024 g
0.05
TD 1 e
0 T T T T 1 0 0 i ) ;
A B c D E 0 25 50 75 100
State Walks / Episodes

@ Obvious advantages:
o No need for a model (cf DP)
o No need to wait until the episode end (cf MC)

Theoretical guarantee on the convergence!
No theoretical winner between TD and MC. ..
In practice, TD is often faster.
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6 . 3 O ptl ma | Ity Of T D (0) Temporal-Difference Learning /,

BATCH TRAINING

RMS error, .15
averaged
over states .1

054

-0 T T T 1
0 25 50 75 100

Walks / Episodes

Figure 6.2: Performance of TD(0) and constant-«
MC under batch training on the random walk task.

Batch updating setting: several passes on the same data.
MC and TD converges (provided « is small enough).
Different limits:

e MC: sample average of the return
e TD: value function if one replaces the true MDP by the maximum likelihood one.

(certainty-equivalence estimate)
@ Rk: no need to compute the ML estimate!
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64 Sarsa Oﬂ—pOllcy TD COI’TtI’Ol Temporal-Difference Learning

/_\ ‘R!+1m Rt+2 o ot e
U AI w AI+1 i At+ At+3

o GPI setting:
e Update Q using the current policy with

Q(S:, Ar) + Q(St, Ar) + a(Rey1 + vQ(Ser1, Ari1) — Q(St, Ar))
e Update 7 by policy improvement

@ May not converge if one use a greedy policy update!

@ Convergence results if ¢; greedy update with ¢; — 0.

90



64 Sarsa Oﬂ—pOllcy TD COI’TtI’Ol Temporal-Difference Learning /

Sarsa (on-policy TD control) for estimating @ ~ g¢.

Algorithm parameters: step size a € (0,1], small £ > 0
Initialize Q(s, a), for all s € 8t,a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
Choose A’ from S’ using policy derived from Q (e.g., e-greedy)
Q(S, 4) — Q(S, 4) +a[R +1Q(S", &) — Q(S, A)]
S« S8 A+ A

until S is terminal

170 5
150 4
s +
P N~
% 1004 Actions
o
0
o
w
504
04

0 1000 2000 3000 4000 5000 6000 7000 8000
Time steps
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65 Q_Learnlng Oﬂ:_pOhCy TD ContrOI Temporal-Difference Learning/%

Q-learning (off-policy TD control) for estimating 7 ~ .

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s, a), for all s € 8T, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:

Initialize S

Loop for each step of episode:
Choose A from S using policy derived from Q (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) «+ Q(S,A) + a[R + ymax, Q(5’,a) — Q(S, A)]
S+ S

until S is terminal

\

@ Q-learning update:

Q(St, Ar) = Q(St, Ar) +  (Regr +7 max Qe(Ses1,8) — Q(St, Ar))
@ Update independent from the behavior policy!
@ Convergence provided the policy visit each state-action infinitely often.
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6.5 Q-Learning: Off-policy TD Control

Temporal-Difference Learning

R=-1
Safer path
Optimal path | J
s| The Clitf |
\”/ R=-100
Sarsa
25
Sum of s
rewards Q-learning
during
episode 5
T T T T 1
100 200 300 400 500
Episodes

@ Q-learning takes more risk. . .
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66 EXpeCted Sarsa Temporal-Difference Learning

! I
/A /N

e o o e o o
Q-learning Expected Sarsa

Figure 6.4: The backup diagrams for Q-learning and Expected Sarsa.
@ Idea: replace the action sampling in Sarsa by an expectation
Q(Se, Ar) = Q(St, Ae) + v (Reqa + VER [Qe(Sev1, Ari1)|Se1] — Q(Se, Ar))
< Q(St,A) + o (Rt+1 +7 ) m(alSes1) Qe(Ser1,a) — Q(St’At)>
a

@ More complex but variance reduction.
@ Off-policy as 7 can be different from b
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66 EXpeCted Sarsa Temporal-Difference Learning ‘

40 - Asymptotic Performance
xooxo @
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Figure 6.3: Interim and asymptotic performance of TD control methods on the cliff-walking
task as a function of a. All algorithms used an e-greedy policy with e = 0.1. Asymptotic
performance is an average over 100,000 episodes whereas interim performance is an average
over the first 100 episodes. These data are averages of over 50,000 and 10 runs for the interim
and asymptotic cases respectively. The solid circles mark the best interim performance of each
method. Adapted from van Seijen et al. (2009).
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6.7 Maximization Bias and Double Learning

100%

~ N(=0.1,1)
™ t (Dt
75%) | X ’ left right
| \
% left | \\
actions  50%| ‘\Q—Ieaming
e Double \\\
259%) Q-learning X

~ === optimal
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Episodes

Figure 6.5: Comparison of Q-learning and Double Q-learning on a simple episodic MDP (shown
inset). Q-learning initially learns to take the left action much more often than the right action.
and always takes it significantly more often than the 5% minimum probability enforced by
s-greedy action selection with = 0.1. In contrast, Double Q-learning is essentially unaffected by
maximization bias. These data are averaged over 10,000 runs. The initial action-value estimates
were zero. Any ties in e-greedy action selection were broken randomly.

e Maximization bias issue: E [max] > max E!
@ Double learning:

e Maintain two independent estimates of g: @ and Q>

Temporal-Difference Learning /,

e Maintain two estimates of the best action A; . = argmax Q1(., a) and

Az« = argmax @(., a)

e Maintain two unbiased estimates q(A; ) = Q2(A1,+) and q(Az.) = Q1(Az..)
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67 MaXimizathn BIaS and DOUble Learnlng Temporal-Difference Learning

Double Q-learning, for estimating @, ~ Q2 ~ ¢.

Algorithm parameters: step size o € (0,1], small € > 0
Initialize Q1(s,a) and Qs(s, a), for all s € 87, a € A(s), such that Q(terminal,-) =0
Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using the policy e-greedy in Q1 + Q2
Take action A, observe R, S’
With 0.5 probabilility:
Qu(S, 4) < Q1(S, 4) + a( R +1Qa(S', argmax, Q1(S",a)) — Q1(S, 4))
else:
Q(S, 4) < (S, 4) + a( R +1Qu (', argmax, Qs(S",a)) - Q2(S, 4))
S« S

until S is terminal
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68 Games, Afterstates, and Other SpeCial CaSGS Temporal-Difference Learning /

X X

0 + X o|X =+

@ Book focuses on state-action value function.
@ Other approach possible: afterstates value function

@ Interesting in games in particular. ..
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OUtI | ne n-step Bootstrapping

ﬂ n-step Bootstrapping
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7 n-step Bootstrapping step Bootstrapping

7.1 n-step TD Prediction

7.2 n-step Sarsa

7.3 n-step Off-policy Learning

7.4 Per-decision Methods with Control Variates

7.5 Off-policy Learning Without Importance Sampling: The n-step Tree Backup
Algorithm

7.6 A Unifying Algorithm: n-step Q(o)
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7 . 1 n—Ste p T D P I’ed ICtIO n n-step Bootstrapping

1-stepTD
andTD(O) 2stepTD  3-step T

O—e-
O—e—0O—e-
One-O—ee—00—0O

Figure 7.1: The backup
from one-step TD method

o MC:
Gt = Rey1+7Rea+--+7" 'Ry
@ One-step return:
Getr1 = Rey1 + v Ve(St1)
@ n-step return:
Gritn = Rep1 +YRepo + -+ 7" ' Regn + 7" Ve n1(Sen)
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71 n—Step TD Pl’edICtIOI"I n-step Bootstrapping

or estimating

Input: a policy m

Algorithm parameters: step size o € (0,1], a positive integer n

Initialize V(s) arbitrarily, for all s € §

All store and access operations (for S; and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store S # terminal
T+ o
Loop for t =0,1,2,...:
| Ift<T, then:
| Take an action according to 7(-|S;)
| Observe and store the next reward as Ry and the next state as Sy,
| If Si41 is terminal, then T ¢+ 1
| 7« t—n+1 (7isthe time whose state’s estimate is being updated)
| Ifr>0:
| Gexmemm g,
| If 7 +n < T, then: G < G +9"V(Sr1n) ()
| V(S « V(S +alG-V(Sy)
Until 7 =T -1

@ n-step TD:

Vitn(St) = Viern—1(St) + a(Getyn — Vign—1(St))
o Contraction property:

B [Ge:tnl St = 5] = vir($) oo <A Vetn-1(5) = v (Sl oo
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71 n—Step TD Pl’edICtIOI"I n-step Bootstrapping

Average
RMS error
over 19 states
and first 10
episodes

n=4

025

0 0.2 04 0.6 08 1

Figure 7.2: Performance of n-step TD methods as a function of «, for various values of n, on
a 19-state random walk task (Example 7.1). |

@ Optimum for intermediate n.
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7.2 n-step Sarsa

@ n-step return:

Initialize Q(s, a) arbitrarily, for all s € 8,a € A
Initialize 7 to be e-greedy with respect to @, or to a fixed given policy

Algorithm parameters: step size a € (0, 1], small € > 0, a positive integer n
All store and access operations (for S, Ay, and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal
Select and store an action Ag ~ (| Sp)
T¢oo
Loop for t =0,1,2,...:
| Ift<T, then:
Take action A,
Obs and store the next reward as R, 4, and the next state as Sy41
If Sy41 is terminal, then:
T+t+1

el

|
|
|
|
|
| Select and store an action Ay ~ 7(+[Set1)

| 7et—n+1 (ris the time whose estimate is being updated)

| Ir>o0:

| GeTmem DR

| If 7+ n<T, then G « G +7"Q(Sr4n, Arin) (Gririn)
| QS Ar) « Q(Sr, Ar) + G — Q(Sr, Ar))

| If 7 is being learned, then ensure that 7(-|S;) is e-greedy wrt Q

Until7 =7 -1

n-step Bootstrapping

Grit4n = Rep1 +YRepo + -+ 9" ' Resn + 7" Qesn—1(Sesn, Arsn)

@ n-step Sarsa:

Qr4n(St, At) = Qryn—1(St, At) + o (Getn — Qrn—1(St, Ar))
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7 . 2 n—Ste p Sa rsa n-step Bootstrapping

1-step Sarsa oo-step Sarsa n-step
aka Sarsa(0) 2-step Sarsa 3-step Sarsa n-step Sarsa  aka Monte Carlo  Expected Sarsa

o]
T 7

o——eo+—D—e
o—O—eo—(e
o——eo+—O—e

o——e
[ G P G e P @

!
T

O—e
-~ ®

Figure 7.3: The backup diagrams for the spectrum of n-step methods for state-action values.
They range from the one-step update of Sarsa(0) to the up-until-termination update of the
Monte Carlo method. In between are the n-step updates, based on n steps of real rewards and
the estimated value of the nth next state-action pair, all appropriately discounted. On the far
right is the backup diagram for n-step Expected Sarsa.

@ Expected Sarsa possible. . .
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72 n—Step Sarsa n-step Bootstrapping

Action values increased Action values increased
Path taken by one-step Sarsa by 10-step Sarsa
—> > +
v
R -y
J G G G| |4
L) * b |-

Figure 7.4: Gridworld example of the speedup of policy learning due to the use of n-step
methods. The first panel shows the path taken by an agent in a single episode, ending at a
location of high reward, marked by the G. In this example the values were all initially 0, and all
rewards were zero except for a positive reward at G. The arrows in the other two panels show
which action values were strengthened as a result of this path by one-step and n-step Sarsa
methods. The one-step method strengthens only the last action of the sequence of actions that
led to the high reward, whereas the n-step method strengthens the last n actions of the sequence,
so that much more is learned from the one episode.
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7.3 n-step Off-policy Learning -step Bootstrapping

o Need to take into account the exploratory policy b.

@ Importance sampling correction:
min(h, T—1)

Pt:h = H

k=T

w(Ak|Sk)
b(Ak|Sk)
e Off-policy n-step TD:
Virn(St) = Virn-1(Se) + aprern—1(Grtrn — Virn-1(5t))
@ Off-policy n-step Sarsa:
Qe+n(St, At) = Qegn—1(St, Qt) + apritn (Get4n — Qern—1(St, At))

@ Expected Sarsa possible. . .
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7.3 n-step Off-policy Learning -step Bootstrapping

Off-poli

Input: an arbitrary behavior policy b such that b(a|s) > 0, for all s € §,a € A
Tnitialize Q(s, a) arbitrarily, for all s € 8,a € A

Initialize 7 to be greedy with respect to @, or as a fixed given policy

Algorithm parameters: step size a € (0, 1], a positive integer n

All store and access operations (for Si, A¢, and Ry) can take their index mod n + 1
Loop for each episode:

Initialize and store So # terminal
Select and store an action Ao ~ b(-|So)

T + oo
Loop for t =0,1,2,...:
If L < T, then:

|
| Take action A;

| Observe and store the next reward as R;+1 and the next state as Sy+1
| If Si11 is terminal, then:

| T+t+1

| else:

| Select and store an action Asq1 ~ b(+|Ses1)
| 7« t—n+1 (ris the time whose estimate is being updated)
|

|

|

|

|

|

Ifr>0:
o TG0 s (Pr4tin-)
G ymrn D) i Sip,
Ifr+n<T,then: G+ G+7"Q(Sr4n, Argn) (Grrin)

Q(S7, Ar)  Q(S-, Ar) + ap[G — Q(S-, A7)
If 7 is being learned, then ensure that 7(-|S-) is greedy wrt @
Until 7=T—1
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7.5 Off-policy Learning Without Importance estep Bootstrapping
Sampling: The n-step Tree Backup Algorithm

the 3-step
tree-backup
update

@ Use reward for action taken and bootstrap for the others.
@ Weight each branch by m(a|S;). 109



7.5 Off-policy Learning Without Importance estep Bootstrapping
Sampling: The n-step Tree Backup Algorithm

@ 1-step return (Expected Sarsa)
Grt41 = Rev1 + Z 7(a|Se+1) Qe(Se+1, a)
a

@ 2-step return:

Grtya = Repi+7 Y, m(alSt11)Qera(Seta, )
aFAr1

+ 7 (Aeg1|Se41) (Rt+2 +7 Z 7(a]Se42) Qe+1(Se2, 3))

=Rey1+7 Z (a]St+1) Qe41(Se+1, a) + Y (Aet1|St41) Get1:042
aFAr
@ Recursive definition of n-step return:
G t+n = Rt+1 + v Z 3|5t+1)Qt+n 1(5t+17 ) + ’Y7T(At+1‘5t+1)Gt+1:t+n
a#Aii1
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7.5 Off-policy Learning Without Importance estep Bootstrapping
Sampling: The n-step Tree Backup Algorithm

e Q(s,a) arbitrarily, for all s € 8,a € A
Initialize © to be greedy with respect to @, or as a fixed given policy
Algorithm parameters: step size o € (0, 1], a positive integer n

All store and access operations can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal
Choose an action Ay arbitrarily as a function of Sy; Store Ay
T+ ¢
1Eereye) 03 = (U 10k oo B
| Tt<T:
| Take action Ag; observe and store the next reward and state as Ry, Siq1
| If Sy41 is terminal:
| TR Al
| else:
| Choose an action A1 arbitrarily as a function of Sy} 1; Store A1
| 74 t+1—n (7 is the time whose estimate is being updated)
| Ifr>0:
| Ift+1>T:
| G <+ Ry
| else
| G Rep1 +7v>, w(alSe41)Q(Sey1,a)
| Loop for k = min(¢, T — 1) down through 7 + 1:
| G 4 Ri + 7 Yoz a, m(alSk)Q(Sk, @) + ym(Ax|Sk)G
| QS A QS AN + 0 (G - QSr A,)
| If 7 is being learned, then ensure that 7(:|S;) is greedy wrt @
Until 7 =T -1
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7.6 A Unifying Algorithm: n-step Q(o) r-step Bootstrapping

4-step 4-step 4-step 4-
Sarsa Tree backup Expected Sarsa

)
!

A

A
/N

a
6

L

1

!

.’ﬁ\.
!
7

L

SV

Figure 7.5: The backup diagrams of the three kinds of n-step action-value updates considered
so far in this chapter (4-step case) plus the backup diagram of a fourth kind of update that unifies
them all. The ‘p’s indicate half transitions on which importance sampling is required in the
ofl-policy case. The fourth kind of update unifies all the others by choosing on a state-by-state
basis whether to sample (o = 1) or not (o, = 0).

1
0
1

Do D—e>0)

o
o
o

:>O‘—0~10-—0-io-—0~30~—0

e Different strategy at each node:
e o = 1: action sampling
e o0 = 0: action averaging
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7.6 A Unifying Algorithm: n-step Q(o) r-step Bootstrapping

G OF G

an arbitrary behavior policy b such that b(a|s) > 0, for all s€ S,a € A
e Q(s, a) arbitrarily, for all s € 8,a € A

Initialize 7 to be e-greedy with respect to Q, or as a fixed given policy
Algorithm parameters: step size a € (0,1], small € > 0, a positive integer n
All store and access operations can take their index mod n + 1

Loop for each episode:
Initialize and store S # terminal
Choose and store an action Ag ~ b(-|So)
T+ o0
Loop for t =0,1,2,...:
| Ift<T

Take action Ay;

| observe and store the next reward and state as Ry4q, Si41
| If Si41 is termina
| Tt+1

| else:

| Choose and store an action Ayy1 ~ b(-|Sps1)

| Select and store 741

| Store ,"}—§H—3:Lj as pri1

| 7<t—n+1 (7is the time whose estimate is being updated)
| Ifr>0:

|

|

|

|

|

|

|

|

|

G« 0:
Loop for k = min(t + 1,T) down through 7 + 1:
ifk="T:
G+ Ry
else:

V 3, 7(alSk)Q(Sk, a) .
G Ri+7(onpi + (1 = oi)m(Ak|Sk)) (G — Q(Sk, Ar)) +V
QS+, A7)  Q(Sr. Ar) +a[G — Q(Sy. A,)]

If  is being learned, then ensure that 7(-|S;) is greedy wrt @
Until 7=T -1

e Generalization to o; € [0, 1]
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O Utl Ine Planning and Learning with

Tabular Methods

© Planning and Learning with Tabular Methods
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8 Plannlng and Learnlng Wlth TabU|ar MethOdS Planning and Learning with /

Tabular Methods

8.1 Models and Planning

8.2 Dyna: Integrated Planning, Acting and Learning
8.3 When the Model is Wrong

8.4 Prioritized Sweeping

8.5 Expected vs. Sample Updates
8.6 Trajectory Sampling

8.7 Real-time Dynamic Programming
8.8 Planning at Decision Time

8.9 Heuristic Search

8.10 Rollout Algorithms

8.11 Monte Carlo Tree Search



81 MOdels and Plannlng Planning and Learning with

Tabular Methods

@ Model: anything that can be used to predict the environment response.
o Two different model families:

e Distribution models: explicitly learn the MDP transitions
e Sample models: learn to simulate the MDP
@ Second type is easier to obtain.
e Planning:
plann .
model 22Mg, policy

@ In the book, state-space planning by opposition of plan-space planning which
works on the plans.

@ Common structure of state-space planning
. backups .
model — simulated exp. ———— values — policy

@ Learning methods use real experiences instead of simulated ones
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81 MOdGlS and Plannlng Planning and Learning with /

Tabular Methods /..

Random-sample one-step tabular Q-planning

Loop forever:
1. Select a state, S € 8, and an action, A € A(S), at random

2. Send S, A to a sample model, and obtain

a sample next reward, R, and a sample next state, S’
3. Apply one-step tabular Q-learning to S, A, R, S":

Q(S, 4) + Q(S, A) + a[R + ymax, Q(S',a) — Q(S, A)]

@ Similar algorithm than Q-learning!
@ Only difference is the source of experience.
@ Rk: we have used this algorithm in the section 6.3 Optimality of TD(0).
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8.2 Dyna: Integrated Planning, Acting and Learning  piaming snd Learning with

Tabular Methods

value/policy
acting
planning direct
RL
model experlence

model
learning

@ Dyna-Q: architecture combining both planning and learning.
@ Two uses of experience:
e model-learning (to improve the models)
e reinforcement-learning (direct RL) (to improve the value/policy)
@ Indirect methods (model based) can use an a priori model but can be mislead by a
false model.
@ Direct methods do not require a model but may require a lot of experience.
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8.2 Dyna: Integrated Planning, Acting and Learning  piaming snd Learning with
Tabular Methods
/SN

| Policy/value functions |

planning update

direct RL simulated
update experience
real
experience
search
learning control
Model

[Environmentj

Figure 8.1: The general Dyna Architecture. Real experience, passing back and forth between
the environment and the policy, affects policy and value functions in much the same way as does
simulated experience generated by the model of the environment.
@ Planning, acting, model-learning and direct RL are conceptually simultaneous.
@ Need to deal with the scheduling in practice. 119



8.2 Dyna: Integrated Planning, Acting and Learning

Planning and Learning with
Tabular Methods

Tabular Dyna-Q

Initialize Q(s,a) and Model(s,a) for all s € § and a € A(s)
Loop forever:
(a) S < current (nonterminal) state
(b) A + e-greedy(S, Q)
(c) Take action A; observe resultant reward, R, and state, S’
() Q(S, 4) & Q(S.A) + a[R +ymax, Q(S',a) — Q(S. A)]
(e) Model(S,A) < R, S’ (assuming determlmstlc environment)
(f) Loop repeat n times:

S + random previously observed state

A < random action previously taken in S

R,S" < Model(S, A)

Q(S,A) «+ Q(S,A) + a[R + ymax, Q(5,a) — Q(S, A)]

@ Learning, model-learning and planning are present.
@ Extension of Q-learning.
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8.2 Dyna: Integrated Planning, Acting and Learning  piaming snd Learning with

Tabular Methods

600 actions.

Steps 0 planning steps
per 4004 | (direct RLonly)
episode

5 planning steps

50 planning steps
200

2 10 20 30 40 50

Episodes

Figure 8.2: A simple maze (inset) and the average learning curves for Dyna-Q agents varying
in their number of planning steps (n) per real step. The task is to travel from S to G as quickly

as possible.
WITHOUT PLANNING (n :U) WITH PLANNING (II :50)

[] G eIk EaR]
t [IE=RAE]

S S Reifdnai]

PR .

[ | ]

[ ")

Figure 8.3: Policies found by planning and nonplanning Dyna-Q agents halfway through the
second episode. The arrows indicate the greedy action in each state; if no arrow is shown for a

state, then all of its action values were equal. The black square indicates the location of the
agent. n
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83 When the MOCIGI IS Wrong Planning and Learning with

Tabular Methods

Cumulative
reward

0 1000 2000 3000
Time steps

Figure 8.4: Average performance of Dyna agents on a blocking task. The left environment
was used for the first 1000 steps, the right environment for the rest. Dyna-Q+ is Dyna-Q with
an exploration bonus that encourages exploration. u

o If the model is wrong, it may eventually be corrected. . .
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8.3 When the Model is Wrong

Planning and Learning with
Tabular Methods

T G : G
\;HHH : HHH

Hs S

Cumulative
reward

0 3000 6000
Time steps

Figure 8.5: Average performance of Dyna agents on
a shortcut task. The left environment was used for the
first 3000 steps, the right environment for the rest.

-

@ but this may be complicated if the model was pessimistic. .

@ Dyna-Q+ forces exploration by increasing the rewards of non explored lately
state-action.
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8 4 PI’IOFItIZEd SWeepl ng Planning and Learning with

Tabular Methods

Prioritized sweeping for a deterministic environment

Initialize Q(s, a), Model(s,a), for all s, a, and PQueue to empty
Loop forever:
(a) S « current (nonterminal) state
b) A + policy(S,Q)
¢) Take action A; observe resultant reward, R, and state, S’
d) Model(S,A) + R, S’
e) P+ |R+ ymax, Q(S',a) — Q(S, 4)|.
f) if P > 6, then insert S, A into PQueue with priority P
g) Loop repeat n times, while PQueue is not empty:
S, A « first(PQueue)
R, S" < Model(S, A)
Q(S,4) « Q(S, 4) + a[R + ymax, Q(S',a) — Q(S, A)]
Loop for all S, A predicted to lead to S:
R < predicted reward for S, A, S
P+ |R +ymax, Q(S,a) — Q(S, 4)|.
if P > 6 then insert S, A into PQueue with priority P

@ Freedom in the order of the state/action during planning.
@ Intuition says that one should work backward from the goal.

@ Prioritized sweeping: order state-action by a predicted value difference.
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8.4 Prioritized Sweeping

Updates
until
optimal
solution

1074

106

104

103

1024

Planning and Learning with 4

Tabular Methods

Dyna-Q

Prioritized
sweeping

T T T T T T T 1
47 94 186 376 752 1504 3008 6016
Gridworld size (#states)
[ |

@ Prioritized sweeping leads to faster convergence.
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8 . 5 EXpeCted VS. Sa m ple U pd ateS Planning and Learning with

Tabular Methods

Value Expected updates  Sample updates
estimated (OP) (one-step TD)
) ¢ A
Un(s
C /m ;
0000 OO os'
policy evaluation TD(0)
() m
OO0 o0 b0
value eration

w (%%

apoloy ovaluaton Sarsa
s sa
NS
Ny n]
w(se) o /&
NV e
vaie teraton Qiearing

Figure 8.6: Backup diagrams for all the one-step
updates considered in this book

@ If the transition probability are available, should we use expectation or samples?
DP or RL?
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8 . 5 EXpeCted VS. Sa m ple U pd ateS Planning and Learning with

RMS error
in value
estimate

1

Tabular Methods

sample expected
updates updates
N

b =2 (branching factor)

T T

15 2b
Number of max Q(s’, a") computations
a’

Figure 8.7: Comparison of efficiency of expected and sample updates.

@ Expectations are more stable but require more computation.

@ Cost depends heavily on the branching factor.

@ In practice, sampling seems interesting for large branching factors!
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8.6 Trajectory Sampling

@ Trajectory sampling: sample states-actions by interacting with the model. ..

Valueof

10,000 STATES
Value of

1

Figure 8.8: Relative efficiency of updates dis-

tributed uniformly across the state space versus

focused on simulated on-policy trajectories, each
"

@ Initial gain but may be slow in the long run.

Planning and Learning with
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87 Real_tlme DynamIC Programmlng Planning and Learning with

Tabular Methods

Irrelevant States:
unreachable from any start state
Start States under any optimal policy

Relevant States
reachable from some start state
under some optimal policy
Classical DP but with a trajectory sampling.
Convergence holds with exploratory policy.
Optimal policy does not require to specify the action in irrelevant states.
Convergence holds even without full exploration in some specific cases!

In practice, seems to be computation efficient.
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88 Plannlng at DeCISion Tlme Planning and Learning with

Tabular Methods

Background planning: planning works on all states.

°
@ Decision-time planning: planning starts from the current state.

@ Extension of the one-step lookahead but often without memory.
°

Combination looks interesting. ..
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89 HeU rIStIC SearCh Planning and Learning with

Tabular Methods

Figure 8.9: Heuristic search can be implemented as a sequence of one-step updates (shown
here outlined in blue) backing up values from the leaf nodes toward the root. The ordering
shown here is for a selective depth-first search.

Heuristic search: most classical decision time planning method.
At each step,

e a tree of possible continuations is grown

e an approximate value function is used at the leaves.

e those values are backed-up to the root
Often value function is fixed.

@ Can be seen as an extension of greedy policy beyond a single step.
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8.9 Heuristic Search

Figure 8.9: Heuristic search can be implemented as a sequence of one-step updates (shown
here outlined in blue) backing up values from the leaf nodes toward the root. The ordering
shown here is for a selective depth-first search.

The deeper the tree the less influence the value function.
The better the value function the better the policy.

Computational trade-off.

Focus on the states that are accessible from the current state.

Planning and Learning with
Tabular Methods
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810 RO”OUt Algorlthms Planning and Learning with

Tabular Methods

@ Use MC simulation with a policy 7 to choose the next action.
@ Simulation equivalent of the policy improvement idea.
@ State-action value function estimated only for the current state.

@ Computation time influenced by the complexity of the policy and the number of
simulations.

@ Early stopping possible using an approximate value function!
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8.11 Monte Carlo Tree Search

Planning and Learning with
Tabular Methods

L»saecnon —— Expansion —— Simulation —— Backup —J

N / Q\
l\ . PR
&

v v \ »
‘,/ \\ \

> AP
K s s

Tree Rollout
Policy Policy
1

&

Figure 8.10: Monte Carlo Tree Search. When the environment changes to a new state, MCTS
executes as many iterations as possible before an a rementally
building a tree whose root node represents the curre sts of the four
operations Selection, Expansion (though possibly skipped on som . Simulation,
and Backup, as explained in the text and illustrated by the bold arrows in the trees. Adapted
from Chaslot, Bakkes, Srita, and Spronck (2008)

@ Rollout algorithm combined with backup-ideas.
@ Repeat 4 steps:

@ Selection of a sequence of actions according to the current values with a tree policy.
@ Expansion of the tree at the last node without values.

@ Simulation with a rollout policy to estimate the values at this node.

@ Backup of the value by empirical averaging.

@ MCTS focuses on promising path.
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. &
Ta bU Iar Rel nforcement Planning and Learning with 4

Tabular Methods o
width >
Temporal- ? of update Dynamic
difference ? A programming
learning O 3

depth
(length)
of update
Exhaustive
Monte . search
Carlo T

O—e :-+ 0O+ 0

Figure 8.11: A slice through the space of reinforcement learning methods, highlighting the
two of the most important dimensions explored in Part T of this book: the depth and width of
the updates.

135



Other Ralsed ISSUGS Planning and Learning with

Tabular Methods

@ Definition of return Is the task episodic or continuing, discounted or undiscounted?

@ Action values vs. state values vs. afterstate values What kind of values should be estimated?
If only state values are estimated, then either a model or a separate policy (as in actor—critic
methods) is required for action selection.

@ Action selection/exploration How are actions selected to ensure a suitable trade-off between
exploration and exploitation? (e-greedy, optimistic initialization of values, soft-max, and UCB...)

@ Synchronous vs. asynchronous Are the updates for all states performed simultaneously or one
by one in some order?

@ Real vs. simulated Should one update based on real experience or simulated experience? If
both, how much of each?

@ Location of updates What states or state—action pairs should be updated? Model-free methods
can choose only among the states and state—action pairs actually encountered, but model-based
methods can choose arbitrarily. There are many possibilities here.

@ Timing of updates Should updates be done as part of selecting actions, or only after- ward?

@ Memory for updates How long should updated values be retained? Should they be retained
permanently, or only while computing an action selection, as in heuristic search?
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O Utl | ne On-policy Prediction with

Approximation

@ On-policy Prediction with Approximation
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9 On-policy Prediction with Approximation On-policy Prediction with

Approximation

9.1 Value-function Approximation

9.2 The Prediction Objective (VE)

9.3 Stochastic-gradient and Semi-gradient Methods

9.4 Linear Methods

9.5 Feature Construction for Linear Methods

9.6 Selecting Step-Size Parameters Manually

9.7 Nonlinear Function Approximation: Artificial Neural Networks
9.8 Least-Squares TD

9.9 Memory-based Function Approximation

9.10 Kernel-based Function Approximation

9.11 Looking Deeper at On-policy Learning: Interest and Emphasis
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9.1 Value-function Approximation On-policy Prediction with

Approximation

Prediction methods covered based on backed-up values to which the current value
is shifted.
Examples:

e MC with G;

° TD(O) with Rt+1 + ')/V(St—s—l)

o n-step TD Ggpyp

@ V is defined by its value at each state.
@ When the number of states is large this may be intractable.

@ Idea: replace V/(s) by an approximation ¥(s, w) where w are weights

(parameters) defining the function.

Goal: find w such that V(s, w) ~ v,(s) from the backed-up values.
Similar to supervised learning!

Function approximation (or regression) setting.

Reinforcement Learning requires on-line methods rather than batch.
Often non-stationary target functions. ..
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9.2 The Prediction Objective (VE) On-polcy Prcicton wth

Approximation

@ How to measure the quality of ¥(s, w)?
@ So far, we have use implicitly a || - ||oc norm.
@ Prediction Objective (VE):
VE(w) =Y u(s) (va(s) — (s, w))?
where 1 is a state distribution. ’

@ Most classical choice: pu(s) is the fraction of time spent in s.
@ Under on-policy training, such a choice is called on-policy distribution

e Stationary distribution under 7 for the continuing tasks.
e Depends on the law of initial state for episodic tasks.

@ More difference between episodic and continuing that without approximation.
@ Rk: Prediction Objective not linked to corresponding policy performance!

@ Often only local optimal in w. ..
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9.3 Stochastic-gradient and Semi-gradient Methods ool Prediction wien

Approximation

@ Prediction Objective (VE):
VE(W) = 37 1(2) (42(5) - (5. w)
@ Prediction Objective (VE) gradient:
VVE(w) = —2Z,u — U(s,w)) Vi(s, w)
@ Prediction Objective (VE) stochastic gradient:

ve

VVE(w) = =2 (vr(S:) — 0(S¢, w)) VI(S¢, w)
@ SGD algorithm:

Wt+1 = Wt + « (V7|—(5t) — \7(51-, W)) V\,}(St, W)

@ Issue: v, is unknown!
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9.3 Stochastic-gradient and Semi-gradient Methods ool Prediction wien

Approximation

Gradient Monte Carlo Algorithm for Estimating v ~ v,

Input: the policy 7 to be evaluated

Algorithm parameter: step size a > 0

Loop forever (for each episode):

W — W + Ot[Gt = ’fJ(St,W)] Vﬁ(St,W)

Input: a differentiable function % : § x R — R

Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Generate an episode Sy, Ag, Ry, 51, A1, ..
Loop for each step of episode, t =0,1,...

. Rp, St using 7
,I'—1:

@ Monte Carlo: replace v,(S;t) by G;.
@ Algorithm:

Wil — W + « (Gt — \A/(St7 W)) V\/}(St, W)
e Convergence guarantees because E [G;|S;: = s] = vz (s).

@ Stochastic-gradient setting!
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9.3 Stochastic-gradient and Semi-gradient Methods ool Prediction wien

Approximation

Semi-gradient TD(0) for estimating 0 ~ v,

Input: the policy 7 to be evaluated

Input: a differentiable function % : 8+ x R? — R such that 9 (terminal,-) = 0
Algorithm parameter: step size a > 0

Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A ~ 7(+|S)
Take action A, observe R, S’
w4 w+a[R+0(5,w) — 8(S,w)| Vi(S,w)
=

until S is terminal

@ TD: replace v;(S¢) by Ret1 + YU(Ser1, we).
@ Algorithm:
Wiepl = We + @ (Rep1 + Y0 (Ser1, we) — V(Se, w)) VI(St, w)
@ Not a stochastic-gradient setting anymore!
o Effect of the change of w to the target is ignored, hence the name semi-gradient
@ Less stable but converges for linear approximation.
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9.3 Stochastic-gradient and Semi-gradient Methods ool Prediction wien

Approximation

1 Thie 00137
value U f
Value : *':/Fl)groﬁimate ¢ Distribution
scale e scale
/
/
o
P M ooor
A o
1 State 1000

Figure 9.1: Function approximation by state aggregation on the 1000-state random walk task,
using the gradient Monte Carlo algorithm (page 202).

@ Example with state aggregation: several states are using the same value for the

value function.

@ MC stochastic gradient algorithm.
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9 4 I_i near M ethOdS On-policy Prediction with

Approximation

Linear method: 5(s,w) = w' x(s) with x(s) a feature vector representing state s.

x; are basis functions of the linear space of possible §.

Linear method gradient:
Vs(s,w) = x(s)

Generic SGD algorithm:
wer = we + o (Ue— wl x(5))) x(S¢)
MC stochastic gradient:
Wil = W+ (Gt - w:x(St))) x(St)
e TD(0) semi-gradient:
Wip1 = We + @ (Rt+1 +yw] x(Se41) — thx(St))) x(St)

Simple form allows mathematical analysis!
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9 4 I_i near M ethOdS On-policy Prediction with

Approximation

Using x(S¢) = x¢, TD becomes

T T
Wil = We +« (Rt+1 +yw, Xe11 — wy xt)) Xt

=Ww:+a (Rt+1xt — x¢ (Xt — ’7)(t+1)T Wt)
Assume we are in the steady state regime,
E[wiri|we] = wie + a (b — Awy)

with b =B [Rey1x] and A =E [xe(xe — yxe41) " |.
If the algorithm converges to wyp, then

b — AWTD =0
If A is invertible,

wWip = Alp
and

E [Wt+1 — WTD|Wt] = (Id — OzA)(Wt — WTD)

A is definite positive thanks to the stationarity of the measure pu for the policy 7.
Complete proof much more involved.
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9 4 I_i near M ethOdS On-policy Prediction with

Approximation

Error bound for MC:

VE(wpyc) = min VE(w)
Error bound for TD:

o 1 o
VE(wpyc) < 1= min VE(w)
_’Y w

Possible asymptotic loss for TD. .. but often faster convergence and lower
variance!

Similar results for other on-policy prediction algorithms.

Similar results for episodic tasks.
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9 4 I_i near M ethOdS On-policy Prediction with

Approximation

0.55
1 True
value Uy = 05
X« Average 045
Approximate F RMS error
ol TDvalue ¥ ] over 1000 states 04
| and first 10
v episodes ¥
03
-4 _ 0251, i - : -
! State 1000 0 0.2 04 0.6 0.8 1

«

Figure 9.2: Bootstrapping with state aggregation on the 1000-state random walk task. Left:
Asymptotic values of semi-gradient TD are worse than the asymptotic Monte Carlo values in
Figure 9.1. Right: Performance of n-step methods with state-aggregation are strikingly similar
to those with tabular representations (cf. Figure 7.2). These data are averages over 100 runs.
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9.4 Linear Methods

n-step semi-gradient TD for

e Algorithm:

Input: the policy 7 to be evaluated

Input: a differentiable function 9 : 8+ x R? — R such that o (terminal,-) = 0
Algorithm parameters: step size a > 0, a positive integer n

Initialize value-function weights w arbitrarily (e.g., w = 0)

All store and access operations (.S; and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sp # terminal
T+
Loop for ¢t =0,1,2,...:
| Ift < T, then:
| Take an action according to m(-|Sy)
| Observe and store the next reward as R;;; and the next state as Syq1
| If Sy is terminal, then 7" <t + 1
| 7 t—n+1 (7 is the time whose state’s estimate is being updated)
If7>0:
| If 7+ n < T, then: G G+ 7"0(Sr4n,W) (i)
| w4 w+a[G —0(S;,w)] Vo(S,,w)
Untilt=T-1

Wi = we +a (Gerrn — w{ x(5))) X(St)

On-policy Prediction with
Approximation
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9.5 Feature Construction for Linear Methods On-policy Prediction with

Approximation

@ Fourier Basis: useful when dealing with periodic functions
x(s); = cos(ws'¢;) or sin(ms' )

@ Renormalization may be required.

@ Selection of the order can be useful.
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9.5 Feature Construction for Linear Methods On-policy Prediction with

VE
averaged
over 30 runs

4

Approximation

v A~‘\‘A:7'.’)\.6:A',‘\"f

Fourier basis

0 5600
Episodes

Figure 9.5: Fourier basis vs polynomials on the 1000-state random walk. Shown are learning
curves for the gradient Monte Carlo method with Fourier and polynomial bases of order 5, 10,
and 20. The step-size parameters were roughly optimized for each case: a = 0.0001 for the
polynomial basis and o = 0.00005 for the Fourier basis. The performance measure (y-axis) is
the root mean squared value error (9.1).

@ Fourier well adapted to smooth functions.
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9.5 Feature Construction for Linear Methods On-policy Prediction with

Approximation

Figure 9.6: Coarse coding. Generaliza-
tion from state s to state s’ depends on
the number of their features whose recep-
tive fields (in this case, circles) overlap.
These states have one feature in common,
so there will be slight generalization be-
tween them.

@ Coarse coding: extension of state aggregation.
@ Large freedom in the design of the cells.
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9.5 Feature Construction for Linear Methods On-policy Prediction with

Approximation
desired approx-
#Examples “ <— function — imation
LTINS q
10 _ /X

40 _/\L A /\
160 ﬂ ﬂ, /\
640 ﬂ ﬂ ,/—\
2560 ﬂ ﬂ ﬂ
10240 ﬂ ﬂ I\M

— — feature

width
Narrow Medium Broad
features features features

Figure 9.8: Example of feature width’s strong effect on initial generalization (first row) and
weak effect on asymptotic accuracy (last row). |

@ Bandwidth issue. ..

153



9.5 Feature Construction for Linear Methods On-policy Prediction with

Approximation

Tiling 1 —

T1.1111g2/,l, ,,,,, Sbr-—fi-—ti--

Tiling 3 ! : : i

. .12 1 | | T
Continuous SR il e Four active
2D state ! ! : : tiles/features

- L | SIS SIS u overlap the point
pac i //E// i l =4 and are used to

Point in el o B | represent it

state space i ' : !

to be SN I SOOI N N N L

represented

Figure 9.9: Multiple, overlapping grid-tilings on a limited two-dimensional space. These tilings
are offset from one another by a uniform amount in each dimension.

@ Systematic way of construction coarse coding: grid plus overlap.
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9.5 Feature Construction for Linear Methods On-policy Prediction with

Approximation

\
VVE \\ .
averaged State aggregation
over 30 runs \\(oie’t‘iling)

Tile coding (50 tilings)

0 . 5000
Episodes

Figure 9.10: Why we use coarse coding. Shown are learning curves on the 1000-state random
walk example for the gradient Monte Carlo algorithm with a single tiling and with multiple
tilings. The space of 1000 states was treated as a single continuous dimension, covered with tiles
each 200 states wide. The multiple tilings were offset from each other by 4 states. The step-size
parameter was set so that the initial learning rate in the two cases was the same, a = 0.0001 for
the single tiling and o = 0.0001/50 for the 50 tilings.

@ Same size for all cells: easier choice of «.
@ Easy computation.

155



. . L)
9.5 Feature Construction for Linear Methods

Possible
generalizations
for uniformly
offset tiings

Possible
generalizations
for asymmetrically Irregular Log stripes Diagonal stripes
offset tilings

Figure 9.12: Tilings need not be grids. They can be arbitrarily shaped and non-uniform, while

@ still in many cases being computationally efficient to compute.

Figure 9.11: Why tile asymmetrical offsets are preferred in tile coding. Shown is the strength
of generalization from a trained state, indicated by the small black plus, to nearby states, for the
case of cight tilings. If the tilings are uniformly offset (above), then there are diagonal artifacts
and substantial variations in the generalization, whereas with asymmetrically offset tilings the
generalization is more spherical and homogencous.

On-policy Prediction with £,
Approximation

oo

@ Different offset leads to different approximations.
@ Large freedom on the tiling.
@ Hashing can also be used
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9.5 Feature Construction for Linear Methods On-policy Prediction with

Approximation

T f T
Ci-1 . Cix1
Figure 9.13: One-dimensional radial basis functions.

@ Radial Basis Function:
x(s)i = (||s — cil|*/20?)
@ Smoothed version of tiling. ..
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9.6 Selecting Step-Size Parameters Manually On-policy Prediction with

Approximation

SGD requires the selection of an appropriate step-size.
Theory proposes a slowly decreasing step-size (O(1/t))
Often very slow convergence and not adapted to non-stationary target.

Intuition from tabular case: o = 1/7 with 7 the number of experience required to
converge approximately.

Rule of thumb for linear SGD

a=(7E {XTX} )1

158



9.7 Nonlinear Function Approximation: Artificial On-policy Prediction with
Approximation
Neural Networks

Figure 9.14: A generic feedforward ANN with four input units, two output units, and two
hidden layers

Artificial Neural Networks are widely used for nonlinear function approximations.
Complex architecture trained with gradient descent (backprop)

Several clever tools: initialization, activation function, dropout, residual networks,
batch normalization. ..

See lecture on Deep Learning. ..

Can be used in stochastic-gradient or semi-gradient method.
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9.7 Nonlinear Function Approximation: Artificial On-policy Prediction with
Approximation
Neural Networks

C3: f. maps 16@10x10

INPUT ‘(531@ gg:;tge maps S4: f. maps 16@5x5
32x32 S2: . maps C5: layer pg. | OUTPUT
6@14x14 120 B:ayer

|
| Full conAaction | Gaussian connections

Convolutions Subsampling Convolutions ~ Subsampling Full connection

Figure 9.15: Deep Convolutional Network. Republished with permission of Proceedings of the
IEEE, from Gradient-based learning applied to document recognition, LeCun, Bottou, Bengio,
and Haffner, volume 86, 1998; permission conveyed through Copyright Clearance Center, Inc.

@ Use of Convolutional Network to capitalize on partial translation invariance.
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98 Least_Sq uares TD On-policy Prediction with

Approximation

@ Better sample accuracy can be obtained through a different direction.
@ The TD fixed point satisfy:
wWip = Alb
with A=E [xt(xt — 7xt+1)T] and b =E [Rei1x¢]
@ TD algorithm: iterative update of a w;.
@ Least-Squares TD algorithm: iterative update of A; and b; and final application
of the inverse formula.
@ Natural estimates:

1 t—1 1 t—1
A = *th(xt—”)’XH-l)T and b; = *ZRH-lXt
£ k=0 t k=0
@ To avoid some invertibility issue:
t—1 t—1
At = Z Xt(Xt — ’)/Xt+1)T + eld and bt = Z Rt+1xt
k=0 k=0

@ Missing 1/t factor cancels. ..
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98 Least_Sq uares TD On-policy Prediction with

Approximation
LSTD for estimating © = w'x(-) ~ v, (O(d?) version)
Input: feature re on x : 8+ — RY such that x(terminal) = 0
Algorithm parameter: small € > 0
A d x d matrix
A d-dimensional vector
isode:
«x(S)
p of episode:
Choose and take action A ~ 7(-|S), observe R, S"; x' « x(S')
ve Al 1 (x =)
A e A — (ATxvT/(14+v7x)
b+« b+ Rx
we b
S« 8;xex
until S’ is terminal
@ O(d?) per step but inversion required in the end. ..
@ Even better algorithm by maintaining an estimate of (tA)™!:
—~_1 — ™~ 1
A = (At—l + X (Xt — YXt41) )
—1 1

——
A/\_l A1 xe(xe —yXeq1) Aen
— A1 - 1

14 (x¢ — ’}’Xt+1)TAt—1_ Xt
e still O(d?) per step but no inversion in the end.
@ No stepsize. .. but thus no forgetting. . .
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9.9 Memory-based Function Approximation On-policy Prediction with

Approximation

Non-parametric approach using memory.
Requires an estimate of the target for a set of states.

After (lazy) learning, each time a new query state arrives, one retrieve a set of
close examples in the training dataset and deduces an estimate for the query state.

Examples: nearest-neighbors, weighted average, locally weighted regression. . .
Focus on states that are close to observed states.
No need to be accurate far from typical states.

Computational issue: need to find (approximate) nearest neighbors. ..
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9.10 Kernel-based Function Approximation On-policy Prediction with

Approximation

Kernel-based approximation is a weighted average strategy where the weights are
defined by a kernel k measuring the similarity between states.

@ Kernel-based approximation:

(s, D) = Zxeo kG 2 Jels)
ZS’ED k(S, S )

Similar to RBF but kernel centered on the examples.

Large freedom in the choice of kernel. ..
Kernel tricks!
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9.11 Looking Deeper at On-policy Learning: Interest  onpolicy preciction with
and Empbhasis

Approximation

Prediction Objective (VE):
VE(w) =3~ 11(s) (va(s) — ¥(s, w))?
where 1 is a state distribution. ’
Not necessarily the most interesting goal!
For instance, one may be more interested by earlier states than later states.
Interest /; defined for each state.
General algorithm:
Wein = Wepn1+ aMe(Grern — V(St, Wern—1))VU(St, Wetn-1)
with
My = It + "M,

Proof of convergence similar to TD(0).
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O Utl | ne On-policy Control with

Approximation

@ On-policy Control with Approximation
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10 On-policy Control with Approximation On-policy Cantrol with

Approximation

10.1 Episodic Semi-gradient Control

10.2 Semi-gradient n-step Sarsa

10.3 Average Reward: A New Problem Setting for Continuing Tasks
10.4 Deprecating the Discounted Setting

10.5 Differential Semi-gradient n-step Sarsa
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101 EpISOdIC Seml_gradlent Contl’Ol On-policy Control with

Approximation

Episodic Semi-gradient Sarsa for Estimating ¢

Input: a differentiable action-value function parameterization ¢ : 8 x A x R? — R
Algorithm parameters: step size a > 0, small € > 0
Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Loop for each episode:
S, A < initial state and action of episode (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
If S’ is terminal:
W W+ oz[R —4(S, A, W)}VQ(S, A, w)
Go to next episode
Choose A’ as a function of ¢(5’, -, w) (e.g., e-greedy)
W W+ a[R +74(S", A", w) — §(S, A,w)}Vé(S, A, w)
S« 5
A A

@ Straightforward extension to q,(s, a) ~ §(s, a, w).
@ Prediction algorithm:

Wi = we + o (Ur — §(St, Ar, we)) Va(St, A, w)
@ On-policy control by adding a (e-greedy) policy improvement step.
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On-policy Control with

10.1 Episodic Semi-gradient Control Onpolcy
/T\

Episode 12

Goal

MOUNTAIN CAR

S

7

Z

Sotees
22
2
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/ v ‘:;,f g l')"‘!‘ W I
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Figure 10.1: The Mountain Car task (upper left panel) and the cost-to-go function
(— maxq §(s, a, w)) learned during one run.

o Grid tiling with 8 cells and asymmetrical offsets.
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101 EpISOdIC Seml_gradlent COI’]tI’Ol On-policy Control with

Approximation

1000

Mountain Car 4
Steps per episode

log scale
averaged over 100 runs 200

100

Episode

Figure 10.2: Mountain Car learning curves for the semi-gradient Sarsa method with tile-coding
function approximation and e-greedy action selection. ]
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102 Seml_gradient n—Step Sarsa On-policy Control with

Approximation

Gy OF g

Tnput: a differentiable action-value function parameterization §: 8 x A x R* - R
Input: a policy 7 (if estimating ¢ )

Algorithm parameters: step size o > 0, small £ > 0, a positive integer n

Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

All store and access operations (Sy, Ay, and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal
Select and store an action Ay ~ =(:|Sp) or e-greedy wrt ¢(Sp, -, w)
T+ o0
Loop for £ =10,1,2,...:
| Ift <7, then:
| Take action A;
| Observe and store the next reward as R, and the next state as Sy4q
| If Syy1 is terminal, then:
| T+t+1
| else:
| Select and store A;1q ~ m(|Se41) or e-greedy wrt ¢(Sip1, -, W)
| 74 t—n+1 (7is the time whose estimate is being updated)
| Ifr>0:
| GespenD iy
| If 7+ n < T, then G < G +9"4(Srn, Aryn, W) (Griran)
| wewtalG— QS Anw)] V(S Ar, w)
Until7=T-1

@ Natural extension of tabular methods:
Getin = Rev1 + YReva + -+ 7" Resn +7"8(Stsms Atins Wesn—1)

Wiip = Wiip-1+Q (Gt:t+n - a(sta Ae, Wt+n—1)) Va(sn As, Wt+n—1)
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10.2 Semi-gradient n-step Sarsa

On-policy Control with
Approximation

Mountain Car
Steps per episode

log scale
averaged over 100 runs 200

Episode

Figure 10.3: Performance of one-step vs 8-step semi-gradient Sarsa on the Mountain Car task.
Good step sizes were used: o = 0.5/8 for n =1 and o = 0.3/8 for n = 8.

Mountain Car
Steps per episode 260
averaged over
first 50 episodes
and 100 runs 240

Q x number of tilings (8)

Figure 10.4: Effect of the a and n on carly performance of n-step semi-gradient Sarsa and
tile-coding function approximation on the Mountain Car task. As usual, an intermediate level of
bootstrapping (n = 4) performed best. These results are for selected a values, on a log scale,
and then connected by straight lines. The standard errors ranged from 0.5 (less than the line
width) for n = 1 to about 4 for n = 16, so the main effects are all statistically significant.
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10.3 Average Reward: A New Problem Setting for Onpolcy Control it
pproximation
Continuing Tasks

@ Continuous task without discounting.
@ Average reward:

1.
r(m) = lim EZE[Rt\SmAO:t—lNW]

h—+o00 —
3 e6) Y1) Yl s )

e Ergodicity assumption on the MDP: existence of
pr(s) = tﬂTOO]P (St = s|Ap:t—1 ~ )
which is independent of Sy for any 7.

@ By construction,

i Y w(als)p(s'ls, @) = on(s)
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10.3 Average Reward: A New Problem Setting for Onpolcy Control it
pproximation
Continuing Tasks

o Differential returns:
Gt = Rep1—r(m) + Reyo — r(m) + -+
Differential value functions:
Ve(s) = Ex [G|S: =s] and  gx(s,a) = E; [G¢|S: = s, At = 4]

@ Bellman:
ve(s) = m(als) > p(s',rls,a) (r — r(w) + va(s))
a r,s’
a):Zp(s’,r|s,a)<r—r —I—Z a'ls")gx (s, a))
r,s’
@ Optimality:
vi(s) = maapr(sl, rls, a) (r — max r(r) + v*(s’))
=> p(s',rls, a) (r — max r(m) + max g, (s, a’))
s a’
r,s’
@ Rk: True derivation much more involved! 174



10.3 Average Reward: A New Problem Setting for Onpolcy Control it
pproximation
Continuing Tasks

Differential semi-gradient Sarsa for estimating § ~ q.

Input: a differentiable action-value function parameterization § : 8 x A x R — R
Algorithm parameters: step sizes o, 5 > 0
Initialize value-function weights w € R¢ arbitrarily (e.g., w = 0)
Tnitialize average reward estimate R € R arbitrarily (e.g., R = 0)
Initialize state S, and action A
Loop for each step:

Take action A, observe R, S’

Choose A’ as a function of §(S’,-,w) (e.g., e-greedy)

d R—R+G(8", A, w)— (S, A, w)

R+ R+ 80

W W+ adV§(S, A, w)

S« 8

A A

o Differential TD errors:
6t = Rt+1 — Fr + O(St+1, Wt) — O(St, Wt)
0t = Rep1 — Re + 4(Sev1, Aey1, we) — §(Se, Ar, we)
o Differential algorithm: for instance semi-gradient Sarsa
Wil = Wi + ad:V§(Se, A, we)
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10.3 Average Reward: A New Problem Setting for
Continuing Tasks

'] ReJECT
fority - PoLicy
Priority . ACGEPT
]
172737475 6 78 910
Number of free servers
Tk priority 8
priority 4
s
Differential
value of of = VALUE
best action Pt FUNCTION
sk
o}

0o 1 2 3 4 5 6 7 8 9 10

Number of free servers

Figure 10.5: The policy and value function found by differential semi-gradient one-step Sarsa
on the access-control queuing task after 2 million steps. The drop on the right of the graph
is probably due to insufficient data; many of these states were never experienced. The value
learned for R was about 2.31. ]

On-policy Control with
Approximation
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10.4 Deprecating the Discounted Setting On-policy Control with

Approximation

@ In the ergodic setting, discounting is equivalent to averaging!

=2 pals)vra(s
zg;mrsE;Wﬂﬂggmeb@Xr+vmn@%
= r(m) +7 Z Vrr(S) Z:uw(S) Ea: p(s'ls, a)m(als)
Zdﬂ+ﬁ§;wM5MAﬂ

= r(m) +~J(m)
1
= r
()
@ Same optimal policies.
@ Issue: with approximation, policy improvement theorem is lost (in finite,

discounted and average cases).
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10.5 Differential Semi-gradient n-step Sarsa

Differential semi-gradient n-step Sarsa for estimating ¢

Input: a differentiable function ¢ : 8 x A x R¢ — R, a policy 7

Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Initialize average-reward estimate R € R arbitrarily (e.g., R = 0)

Algorithm parameters: step size a, 8 > 0, a positive integer n

All store and access operations (S¢, A;, and Ry) can take their index mod n + 1

Initialize and store Sp and Ag
Loop for each step, t =0,1,2,...:
Take action Ay
Observe and store the next reward as R;11 and the next state as Si41
Select and store an action Ay 1 ~ 7(+|S¢11), or e-greedy wrt ¢(Sii1,-, W)
T+ t—n+1 (7is the time whose estimate is being updated)
Ifr>0:
0 Z:tn“ Ri — R) + §(Sr4n> Arin, W) — 4(S7, Ar, w)
R« R+p6
W W+ adVi(Sy, A, w)

@ Differential n-returns:

Gtt4n= Ri1 — Resn-1+ -+ Revn — Repn-1
+ cAI(St—l—na Aty Wt+n—1)

where Ry i, 1 is an estimate of r(r).

On-policy Control with
Approximation
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O Utl ine Off-policy Methods with

Approximation

@ Off-policy Methods with Approximation
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11 Off-policy Methods with Approximation

11.1 Semi-gradient Methods

11.2 Examples of Off-policy Divergence
11.3 The Deadly Triad

11.4 Linear Value-function Geometry

11.5 Gradient Descent in the Bellman Error
11.6 The Bellman Error is not Learnable
11.7 Gradient-TD Methods

11.8 Emphatic-TD Methods

11.9 Reducing Variance

Off-policy Methods with
Approximation
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11.1 Semi—gradient Methods Off-policy Methods with

Approximation

e Off-policy learning: two challenges

o dealing with the target update

e dealing with the distributions of update
o First-part is easier. . .

@ Importance sampling ratio:

e = pre — m(Ae|St)
t — Mtit — T /A [\
b(A¢|St)

@ Semi-gradient off-policy TD(0):

Wil = Wt + aptétVO(St, Wt)
with
0t = Rev1 + YU(Str1, we) — 0(St, W,)  (episodic)
= Riy1 — Re + 0(Ser1, wy) — 0(Se, W,)  (continuing)
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11.1 Semi—gradient Methods Off-policy Methods with

Approximation

@ Semi-gradient Expected Sarsa:
Wil = Wi + adeV§(Se, Ar, wy)
with
0c = Repa 3 m(alSe +1)4(Se41, 2, we)
— §(S¢, Ae, Wy)  (episodic)
= Rep1— Re + Z (alSt + 1)8(Ser1, a, we)
—4(St, Ae, Wy)  (continuing)
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11.1 Semi—gradient Methods Off-policy Methods with

Approximation

@ Multi-step Semi-gradient Sarsa:
Witn = Wipn_1 + Qpes1 - Pe4n—10:V(Se, Ar, W)
with
0t = Rep1+ -+ 7" Regn +7"4(Stsn, Atsns Wegn—1)
— q(S¢, A, W) (episodic)
=Rey1— Re+ -+ Revn — Reyn—1 4 4(Stsns Aty Wegn—1)
— §q(S¢, Ar, W)  (continuing)
@ Tree-backup:
Wiin = Weyn1+ a(Grern — G(St, Ar, Wern—1)) Va(St, A, wt)

with
t+n—1 k
Gt:t+n = q(St, Ar, we—1) + Z Ok H ym(AilSi)
k=t i=t+1

and dy as in Expected Sarsa.
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11.2 Examples of Off-policy Divergence Off-policy Methods with

Approximation

Simple transition with a reward 0.
TD error:

0t = Rer +70(Ser1, we) — (S, we)
=0+72w: — wy = (27 — 1wy
Off-policy semi-gradient TD(0) update:
Wil = W + apr0e VV(Sey1, We)
=wr+ax1x2y—1Dw =14 a2y —1))w:
Explosion if this transition is explored without w being update on other
transitions as soon as y > 1/2.
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11.2 Examples of Off-policy Divergence

Off-policy Methods with
Approximation

w(solid|-) = 1
b(dashed|-) = 6/7
bsolid|-) = 1/7
99

Figure 11.1: Baird’s The imate state-value function for this Markov
process is of the form shown by the linear expressions inside cach state. The solid action usually
results in the seventh state, and the dashed action usually results in one of the other six states,
cach with equal probability. The reward is always zero.

Semi-gradient Off-policy TD Semi-gradient DP

300

20

100]

0 0 0
Steps ! !

Sweeps
Figure 11.2: Demonstration of instability on Baird's counterexample. Shown are the evolution
of the components of the parameter vector w of the two semi

gradient algorithms. The step size
was a = 001, and the initial weights were w = (1,1,1,1, 1

,10,1)

@ Divergence of off-policy algorithm.
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11.2 Examples of Off-policy Divergence Off-policy Methods with

Approximation

1—¢

(0)—
L]

e Exact minimization of bootstrapped VE at each step:
Wit = argmin Y (U(s, w) — Ex [Req1 4+ 70(Ses1, wi)|Se = s])?
w S

= argmin(w — 72w, )? + (2w — (1 — €)y2wy)?
w
_ 6—4e

YWk
@ Divergence if v > 5/(6 — 4e).
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113 The Deadly Triad Off-policy Methods with

Approximation

@ Deadly triad:
e Function approximation
e Bootstrapping
e Off-policy training
@ Instabilities as soon as the three are present!
@ Issue:
e Function approximation is unavoidable.
e Bootstrap is much more computational and data efficient.

e Off-policy may be avoided. .. but essential when dealing with extended setting (learn
from others or learn several tasks)
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11.4 Linear Value-function Geometry Off-policy Methods with

Approximation

X
v
4

»

Ur
V' ‘I r
The 3D space of a
all value functions Z
over 3 states =
E
5
2
s -
TDE = 0
W, vy (min VE = [|VE|})
- -
“PBE =10
mitl BE = ||BEJ|}

@ Natural weighted squared norm:

IvIE =D u(s)v(s)?

@ Prediction objective VE:
VE(w) = [|viv — vall}:
@ Projection operator [1:
Mv=v, where w =argmin||v—v,|?>
w

@ Target for MC methods
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11.4 Linear Value-function Geometry Off-policy Methods with

Approximation

5

TDE = 0

"l W, vy (min VE = \\'F,H":;
PBE L& -

PBE- 1B, vy PBE =

...... BE = |[BE||?
‘The subspace of all value functions representable as

Bellman error:

dw(s) = (ZW(aIS)ZP(S’,rls, a)(r+7vw(5’))) — vu(s)

a s'.r

=E;[Re+1 — Y (St+1) — viu(5:)|St = s, Ar ~ 7]
Expectation of TD error.
Mean Squared Bellmann Error:
BE(w) = [[6w(s)13
Unique minimizer in linear case
Different from minimizer of VE.
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11.4 Linear Value-function Geometry Off-policy Methods with

Approximation

Value error (VE)

TDE =0
™ v (min VE = VE[})
PBE -7

...... BE = |[BE|?

Bellman operator:
Bx(v)(s) = > _m(als)Y_ p(s'; rls, a)(r + yviu(s))
a s’.r
B (vw)(s) is in general not representable.
Projected Bellman operator: B, v
Projected Bellman iteration: vy, , = lNBrvy,. ..
Mean Square Projected Bellman error:

PBE(w) = ||NB;v,, — vw||3 = ||n5w||i
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11.5 Gradient Descent in the Bellman Error Off-policy Methods with

Approximation

e With approximation, only MC so far is a SGD method. ..
@ TD error:
0t = Rev1 + YU(St1, we) — 0(St, wi)
Mean Squared TD Error:
TDE(w ZN )E [621Se = 5, Ac ~ 7]

=Ep [ptét]
with p linked to b.

Minimization of an expectation leads to SGD.
SGD algorithm:
Weir = we — 1/20V(pe6?)
= w¢ + apede(VU(Se, wi) — YV U(Ser1, we))
Convergence guarantees for this naive residual-gradient algorithm.
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11.5 Gradient Descent in the Bellman Error Off-policy Methods with ¥

OI 1

@ Solution not necessarily interesting!

@ True value function is easy: v;(A) =1/2, vx(B) =1, vz(C) =0.
e Optimal TDE attained for: v(A) =1/2, vz(B) = 3/4, vz(C) = 1/4!
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11.5 Gradient Descent in the Bellman Error Off-policy Methods with

Approximation

“//D
DA

@ Bellman error can also be measured by
(Ex [5:])°

SGD type algorithm:
Wep1 = we — 1/2aV (Ex [6])?
= w¢ — aEp [pedi] VEp [p0¢]
= we + a (Ep [pe(Req1 + 70(Seq1, we))] = (S, we))
X (VU(Se, we) = VEp [pe VI(Sei1, we)])
Requires two independent samples for Sy 1!

Converges toward the true value in the tabular case.
@ Can be slow. . .and the solution with approximation may be unsatisfactory.
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11.6 The Bellman Error is not Learnable Off-policy Methods with ¥

Approximation

Two MRP with the same outputs (because of approximation).
but different VE.
Impossibility to learn VE.

Minimizer however is learnable:

RE(w) Ge — (S, w))?]

=E(
VE(w) +E [(G: = ve(S:))?]
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11.6 The Bellman Error is not Learnable Off-policy Methods with ¥

Approximation

DSOS

e Two MRP with the same outputs (because of approximation).
e Different BE.
e Different minimizer!

@ BE is not learnable!
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11.6 The Bellman Error is not Learnable Off-policy Methods with

Approximation

Mor]te (;arlo Bootstrapping
objectives Data objectives Data
distribution distribution

el /
A AN

VE,; VE, BE BE
BE; BE,
l ! | w3 Wi
w vi oW

Figure 11.4: Causal relationships among the data distribution, MDPs, and various objectives.
Left, Monte Carlo obJectlves Two different MDPs can produce the same data distribution
yet also produce different VEs, proving that the VE objective cannot be determined from data
and is not learnable. However, all such VEs must have the same optimal parameter vector, w*!
Moreover, this same w* can be determined from another objective, the RE, which is uniquely
determined from the data distribution. Thus w* and the RE are learnable even though the VEs
are not. Right, Bootstrapping objectives: Two different MDPs can produce the same data
distribution yet also produce different BEs and have different minimizing parameter vectors;
these are not learnable from the data distribution. The PBE and TDE objectives and their
(different) minima can be directly determined from data and thus are learnable.

@ PBE and TDE are learnable.
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11.7 Gradient-TD Methods

@ SGD Methods for minimizing PBE.
PBE(w) = |[Méw|I7
=4,0"DNs,,
= (X"D6,,) " (XTDX)"Y (X" Dé,,)
@ Gradient:
PBE(w) = 2V(X'Dé,) " (X" DX)"Y(X " Déy)
@ Expectations:
X"Déy = E [pedix]
V(XTDdw)" = E [pelrxers — x)x"|
X"DX =E |xix{ |
@ Not yet a SGD. ..

Off-policy Methods with
Approximation
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11.7 G rad ient-T D M ethods Off-policy Methods with

Approximation

@ Expectations:
V(X" Déw)" =E [pe(yxep1 — xe)x]
X"DX =E [x:x{|

XTD(SW =K [pt(;txt]
Learn the product v of last two terms:

v~ E {xtx:] - E [pedexi]

Solution of a least square
Iterative algorithm:

-
Vitl = Ve + Bpe(0r — vy Xe)Xy,
Insert expression in the gradient to obtain GTD

.
Wil = Wi+ ape(7Xeqp1 — X)X Ve

or GTD2
Wip1 = Wy + ape(0xe — 7xt+1XtXTVt)
Convergence with 5 — 0 and /3 — 0 (two scales)
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11.7 G rad ient-T D M ethods Off-policy Methods with

Approximation .

10p+ TDC m Expected TDC

o 1000 [

Steps 1000

Sweeps

Figure 11.5: The behavior of the TDC algorithm on Baird’s counterexample. On the left is
shown a typical single run, and on the right is shown the expected behavior of this algorithm if
the updates are done synchronously (analogous to (11.9), except for the two TDC parameter
vectors). The step sizes were a = 0.005 and 3 = 0.05.
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118 Emphatic—TD |\/|ethods Off-policy Methods with

Approximation

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

Sweeps

step Emphatic-TD algorithm in expectation on Baird's

@ Linear semi-gradient TD methods convergence due to a match between the
on-policy distribution and the transition prob.
@ Emphatic-TD: clever manner to weight the examples in off-policy that maintains
the compatibility.
@ One-step Emphatic-RD:
0t = Rey1 +vV(Se1, we) — 0(Se, wy)
M = vpt_1 M1 + It
Wil = Wi+ aMipid Vi(Se, wy)

where I; is an arbitrary interest and M; the emphasis (M = 0).
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11 9 Red uci ng Va riance Off-policy Methods with

Approximation

Off-policy methods have more variance than off-policy ones.

High variability of importance sampling ratio.

o
o
@ Tree Backup does not have importance ratio.
@ Other variants such as Retrace.

o

Variance can also be reduced by more strongly linking the behavior and target
policies.
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O Utl | ne Eligibility Traces

@ Eligibility Traces
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12 Ellglblllty Tl’aCGS Eligibility Traces

12.1 The A-return

12.2 TD(A)

12.3 n-step Truncated A-return Methods
12.4 Redoing Updates: Online A-return

12.5 True Online TD(A)

12.6 Dutch Traces in Monte Carlo Learning
12.7 Sarsa(\)

12.8 Variable A and ~

12.9 Off-policy Traces with Control Variates
12.10 Watkins's Q(\) to Tree-Backup(\)
12.11 Stable Off-policy Methods with Traces

12.12 Implementation Issues
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12.1 The A-return

Eligibility Traces

. 00

,,,,,,,

@ n-step return:

Getin=Res1+ 7Ry + -+ 7" Resn +7"0(Strn Wein1)
@ Averaged n-step return: (compound update)

G;_’.U = anGt:t—i-n with an =1

n=1 i=1
e TD(\): specific averaging

G{\ = (1 - A) Z Anith;t_Fn
n=1
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12 . ]. The A‘ retU rn Eligibility Traces

weight given to
the 3-step return total area =1
is (1—A)A2

decay by A
Weighting  1-a weight given to
actual, final return
iS )"1‘—?71

Time —

Figure 12.2: Weighting given in the A-return to each of the n-step returns.

@ TD(\): interpolation between TD(0) and MC
Gr=(1-X> AN"'Grern

n=1
T—t—1
=(1-X) > N 'Gun+ NG

n=1
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12 . ]. The A‘ retU rn Eligibility Traces

n-step TD methods
(from Chapter 7)

Off-line A-return algorithm

RMS error
at the end
of the episode
over the first
10 episodes

Figure 12.3: 19-state Random walk results (Example 7.1): Performance of the offline A-return
algorithm alongside that of the n-step TD methods. In both case, intermediate values of the
bootstrapping parameter (X or n) performed best. The results with the offline A-return algorithm
are slightly better at the best values of @ and A, and at high a.

o offline A-return algorithm:
e Play an episode according to the policy
o Afterwards, modify w according to
Wi = we +a (G} — U(Se,we)) VI(Se,we), t=0,...,T
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12 . 1 The A‘ retU rn Eligibility Traces

Figure 12.4: The forward view. We decide how to update each state by looking forward to
future rewards and states.

@ Forward view!

@ Need to wait till the end before any update.
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12 . 2 T D ( )\) Eligibility Traces

D(A). Each update depends on the current
of past events,

@ Backward view!
o Eligibility trace z; keeping track of the components of w that have contributed to
state valuations:

zZ_1 = 0
Zy = ’Y)\thl + V\/}(St, Wt)
e TD Error:
0t = Rey1 +vV(Seq1, we) — V(St, we)
e Update:

Wiil = Wi+ adpZ;
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12.2 TD(A)

Eligibility Traces

Semi-gradient TD()) for estimating

Input: the policy 7 to be evaluated
Tnput: a differentiable function o : $* x R — R such that o(terminal,-) = 0
Algorithm parameters: step size a > 0, trace decay rate A € [0,1]
Initialize value-function weights w arbitrarily (e.g., w = 0)
Loop for each episode:
Initialize S
240 (a d-dimensional vector)
Loop for each step of episode:
Choose A ~ 7(-|S)
| Take action A, observe R, S’
|z y)z+ Vi(Sw)
| & R+7i(S'w) — (S.w)
| wew+adz
| S«
until §’ is terminal

e TD(N):
2t =YAZi_1 + V(S wy)
Ot = Rev1 +70(Seq1, we) — U(Se, we)
Wiil = Wi + @l Zy
e TD(0) is the classical TD algorithm.

@ TD(1) is similar to a MC algorithm but with parameter update before the end of
the episode.
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12 . 2 T D ( )\) Eligibility Traces

Off-line A-return algorithm
(from the previous section)

RMS error
at the end
of the episode
over the first
10 episodes

Figure 12.6: 19-state Random walk results (Example 7.1): Performance of TD(A) alongside
that of the offline A-return algorithm. The two algorithms performed virtually identically at low
(less than optimal) a values, but TD(\) was worse at high « values.

@ Not the same as using A-return. ..
e Convergence guarantees in the linear case:

o 1_ o
VE(ws) < 177)\ min VE(w)
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12.3 n-step Truncated A-return Methods Eligibilty Traces

n-step truncated TD(X)

7 7 7 1
O S ! O
S Y77 .
CI) I Ift+ >7
(1=X)A ? (f 'A,
1 Lo
O AT—t=1
(1- A% TA.H»f
?b,‘ R,

Figure 12.7: The backup diagram for truncated TD(X).

@ \-return is technically never known in the continuing case!

@ Truncated A-return:
h—t—1
Gt h=(1-2X) Z /\n_lct:t+n + Ah_t_th
n=1
@ Similar to an episodic setting of length h.
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12.3 n-step Truncated A-return Methods Eligibilty Traces

e Family of n-step A-return. ..
e TTD(A):
Wiin = Wiip—1 T« (G{\;t+n — V(S Wt+n—1)) VU(St, Wein-1)

o Efficient implementation relying on:
t+k—1

Glerk = V(Se,wes1) + Y. (P16
i=t
with
0t = Rey1 + YV(St41, we) — U(Se, wi—1)
@ Forward view but strong connection with backward one.
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12.4 Redoing Updates: Online A-return Erigibiity Traces

On-line A-return algorithm Off-line A-return algorithm
= true online TD(A) ~ (from Section 12.1)

RMS error 45
at the end
of the episode o4
over the first
10 episodes 03

03

025

n i L
o 02 04 06 0.8 1

Figure 12.8: 19-state Random walk results (Example 7.1): Performance of online and offline
A-return algorithms. The performance measure here is the VE at the end of the episode, which
should be the best case for the offline algorithm. Nevertheless, the online algorithm performs
subtly better. For comparison, the A=0 line is the same for both methods.

@ Conceptual algorithm which computes a weight at any time t using only the
returns known at this time.
@ Pass on all the data at each time step using the largest possible horizon h:

wiiy = wi+a (G — U(S,wh)) V(S we), 0<t<h<T
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125 True Online TD(A) Eligibility Traces

wQ
1 1
wgo wi
2 2 2

wl wl wl . wl
@ Online A-return algorithm has a triangular structure.
@ True online TD(A) computes wi{] directly from wt.
@ Linear case:
Wil = wi 4 adeze + a(w] xe — w1 x;)(z: — x¢)
with
2y =yAze 1+ (1 — oz'y)\z:_lxt)xt
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125 True Online TD(A) Eligibility Traces

True online TD()\) for estimating w'x ~ v,

Input: the policy 7 to be evaluated

Input: a feature function x : 8% — R? such that x(terminal,-) = 0
Algorithm parameters: step size a > 0, trace decay rate A € [0, 1]
Initialize value-function weights w € R? (e.g., w=0)

Loop for each episode:
Initialize state and obtain initial feature vector x
z+0 (a d-dimensional vector)
Vg < 0 (a temporary scalar variable)
Loop for each step of episode:
| Choose A ~
| Take action A, observe R, x’ (feature vector of the next state)
| Vewlx
| Ve w'x
| 6« R+V' -V
| z+ A2+ (1—ayAz'x)x
| wewtal@+V —Vaa)z—a(V — Vaa)x
| Voa< V'
| x«x
until x’ = 0 (signaling arrival at a terminal state)
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125 True Online TD(A) Eligibility Traces

@ Dutch trace:
ze =yAze_1 4+ (1 — aydz] xi)x;
@ Accumulating trace TD(\):
zt = YAZp1 + Xt

1 if Xit = 1
Zy =
YAz +—1 otherwise

@ Replacing trace:

was a precursor of Dutch traces for binary features.
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12.6 Dutch Traces in Monte Carlo Learning Eiigbilty Traces

@ Linear MC update:
Wip1 = Wi+« (G — w:xt) X
@ Here G is a single reward known at time T.

@ All the computation have to be done at the end to obtain wr.
@ More efficient implementation using:

Wr=wri+a (G — w¥,1xr,1) XT_1
= (Id — OZXT—1X—|7—'_1)WT—1 +aGxT_1
=Fr_ywr_1+aGxr_;
=F1 1Frowr o+ aG(Frooxt 2+ x7_1)
T-1

=F1_ 1F7 5 ---Fowo+aG Z Fr_1- Frpixk
k=0

ar—1

ZT-1
with Ft =1Id — O[Xt(xt)—r.
@ Recursive online implementation possible. 217



12.6 Dutch Traces in Monte Carlo Learning Eiigbilty Traces

@ Furthermore,
t
Zy = ZFt"‘Fk+1Xk
k=0

= Fizi 1+ Xt

=z; 1+ (1— ath_lxt)xt
and
ar=F; Fowo= Fia; 1 = ar 1 — OéXtXtTat—l
e Efficient computation with only O(d) operation per step.

o Eligibility traces arise whenever one tries to learn a long-term prediction in an
efficient manner.
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12.7 Sarsa ()\) Eligibility Traces

Sarsa(\)

—(O—e—(O—0-—O—e

[}
(1=2»° Ar_1

Zzl .'. DSTRT

AT—t-1
Figure 12.9: Sarsa(\)’s backup diagram. Compare with Figure 12.1.

@ Action-value form of the n-step return:
Gr:t4n = Rex1+ -+ 9" Resn +7"4(Sesn, Atsn, Wern—1) 219



12.7 Sarsa ()\) Eligibility Traces

Action values increased Action values increased Action values increased
Path taken by one-step Sarsa by 10-step Sarsa by Sarsa()) with A=0.9
[ ] >y ol B s
1o : Junr
i ml mall ] - bl
: 6l | G al [y ‘ al T[4
t ] * [y . 4 |

@ Backward view:
Wil = Wt + adrzt
with
0t = Ret1 +74(Str1, Aev1, we) — §(St, Ae, we—1)
and
zZ_ 1 = 0
z; = yAzt-1 + V§(Se, Ae, wi)
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12.7 Sarsa ()\) Eligibility Traces

Input: a function F(s, a) returning the set of (indices of) active features for s,a
Input: a policy 7 (if estimating ¢r)

Algorithm parameters: step size o > 0, trace decay rate A € [0, 1]

Initialize: w = (wy,...,wq)" € R? (e.g, w=0), 2= (21,...,24) € R?

Loop for each episode:
Initialize S
Choose A ~ 7(:|S) or e-greedy according to ¢(S, -, w)
z+ 0
Loop for each step of episode:
Take action A, observe R, S’

§<R

Loop for i in F(S, A):
S+ 06— w;
2z 2zi+1 (accumulating traces)
or z; 1 (replacing traces)

If S’ is terminal then:
W W+ adz
Go to next episode
Choose A’ ~ m(:|S’) or near greedily ~ G(9',-, w)
Loop for i in F(S, A'): § < 6 + yw;
W W+ aldz
Z < YAz
S S A A

221



12.7 Sarsa ()\) Eligibility Traces

mating w' X & ¢, or g.

Input: a feature function x : 87 x A — R% such that x(terminal, )=0
Input: a policy 7 (if estimating ¢ )

Algorithm parameters: step size a > 0, trace decay rate A € [0, 1]
Initialize: w € R? (e.g., w = 0)

Loop for each episode:
Initialize S
Choose A ~ 7(-|S) or near greedily from S using w
x + x(S,4)
z+ 0
Qota < 0
Loop for each step of episode:
| Take action A, observe R, S’
| Choose A’ ~ 7(-|S”) or near greedily from S’ using w
| % —x(5,4)
| @+w'x
| Q@ wix
| 0« R+7Q -Q
| z+ydz+ (1—ayrz'x)x
| wewtal+Q - Qua)z — a(Q — Qua)x
| Qoa Q'
| x+x
| A« A
until S’ is terminal
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12.7 Sarsa )\ Eligibility Traces

Sarsa(\) with replacing traces n-step Sarsa

n=1

Mountain Car
Steps per episode 240

averaged over
first 50 episodes 220
and 100 runs
200
180
g 3 ¥ 5 & o ¥ 7
a x number of tilings (8) Qv x number of tilings (8)

Figure 12.10: Early performance on the Mountain Car task of Sarsa(A) with replacing traces
and n-step Sarsa (copied from Figure 10.4) as a function of the step size, a.
s

" ~v Sarsa(}) with replacing traces

Sarsa(») with replacing traces

i oo
Mountaln Car and clearing the traces of other actions

Reward per episode _,
averaged over
first 20 episodes
and 100 runs

Sarsa(h) with accumulating traces

B T
@ x number of tiings (8)

Figure 12.11: Summary comparison of Sarsa(X) algorithms on the Mountain Car task. Truc
online Sarsa(A) performed better than regular Sarsa(A) with both accumulating and replacing
traces. Also included is a version of Sarsa(A) with replacing traces in which, on each time step,
the traces for the state and the actions not selected were set to zero.
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128 Variable A and Y Eligibility Traces

@ Generalization to non constant discount and non constant \.
@ 7 termination function:
Gt = Rey1 + 7e41Gep1

) k
= H Vi | Ri+1
k=t \i=t+1

o Using 7 = 0 at the transition allows to see a single stream in episodic setting.
@ Recursive definition of the A-return for time dependent A;::
G* = Req1 + Yer1 ((1 = A1) V(Ser1, we) + Aeya Gt)\-is-1>

G = Rey1 + Ve ((1 = Ae11)d(Sea1, Arr1, we) + Aeya G{\f1)

G = Rep1 + Y1 <(1 = A1) Y 7(alSe+1)q(Ser1, @, we) + )‘t+1GtAJi1>

a
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12.9 Off-policy Traces with Control Variates Erigibility Traces

o Off-policy A-return:
G = py (Rt+1 + Vi1 ((1 = A1) V(St+1, We) + Ara Gg‘j—l))

+ (1= pe)V(Se, we)

Control variate

@ TD error:

0t = Rev1 + Ye+10(St41, w) — V(Se, we)
@ Approximation of off-policy A-return:

00 k
GtAs ~ V(Se, wi) + pe Z Ok H YiAipi
k=t i=t+1
@ Not an approximation if w is not updated!

@ Forward-view update:
wern = we +a (G — 0(Se, we)) V(S we)

~ Wt —|—Oépt (Z 6/{ H Yi lPl) Sta Wt)

k=t i=t+1
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12.9 Off-policy Traces with Control Variates Erigibility Traces

@ Link between forward and backward views:

o) k

Wiyl — W = Zal)t5k H YiNipi V\A/(Sn Wt)
k=t i=t+1

@ Sum over time:

o0
Z (Wt+1 - Wt)
t=1

Ma

i=t+1

k
apely ( 11 ’Yi)\iﬂi) V (St we)

M 1
M=~ T0¢

=
Il
M
~
Il

O‘pték H ’Yl iPi Stth)
1 i=t+1

||Pl‘ﬂg

k k
Z H Yidipi | VU(St, wy)
t=1 i=t+1

o Eligibility trace (accumulating).

k k
Zy = Zpt ( H "/i)\ipi) V‘A/(Sty Wt)
t=1 i=t+1

= pr(VAkzk—1 + VU(Sk, wy))
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12.9 Off-policy Traces with Control Variates Erigibility Traces

@ Similar results for action-value methods.
o Off-policy A return:

G = Rert + 7e41 (1= M) Ve(Sevr, we) +
At+1 (Pt+1 G221+ Ve(Ser1, we) — per1d(Ses, A, Wt)) )

StaAtawt Z(Sk H ViNipi

= i=t+1
with
0t = Rep1 + 7e41V(Se41) — 4(St, A, we)
o Eligibility trace:
zy = Ve epeze—1 + VG(Se, A, we)
@ A =1 close from MC but subtly distinct. ..
@ Theoretical guarantees still investigated.
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12.10 Watkins's Q(\) to Tree-Backup()\) Eigibity Traces

Tree Backup()\)

| S J
AR AoAy
AN
1T I
A
(1=2)\?
A
Z =1 [
AT-t-1
Figure 12.13: The backup diagram for the A version of the Tree Backup algorithm.

@ Tree backup return:
G = Rer1 4+ 741 ((1 = A1) VSeqa+

)\t-i-l (\_/(St+1) — 7T(At+1‘5t+1)(a(5t+17 Af+17 Wt) - Glf\jl)) )

+o00 k
~G(Se, Ae,we) + > 6k [ vidim(AilSi)
k=t i=t+1

@ Tree Backup eligibility trace:
z; = Ve Ae(Ae|St) + Va(Se, A, w)
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12.10 Watkins's Q(\) to Tree-Backup()\) Eigibity Traces

Watkins’s Q())

T 1E
operm

‘L
do=1 o BRI i Sesn Retn

AL-t-1
® @ @ First non-greedy action

A1

Figure 12.12: The backup diagram for Watkins’s Q(X). The series of component updates ends
either with the end of the episode or with the first nongreedy action, whichever comes first.

e Watkins's Q(\) cuts the trace to zero after the first non greedy update.
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12.11 Stable Off-policy Methods with Traces Erigibility Traces

Four of the most important examples of stable off-policy using eligibility traces.
GTD()\): Gradient-TD (TDC)

GQ(A): Gradient-TD for action-value

HTD(A): Hybrid between GTD(A) and TD(\)

Emphatic TD(\): Extension of Emphatic-TD.

All of them maintain an eligibility trace used in some TD error updates
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12.11 Stable Off-policy Methods with Traces Erigibility Traces

@ GTD(A): Gradient-TD (TDC)
Wir1 = We + iz — avyep1(l — )\t+1)(ZtTVt)Xt+1
Verr = Ve + B0z — B(v] x¢)x:

e GQ(X): Gradient-TD for action-value
Wit = we + adize — avep1(l = Aey1)(2{ ve)Xer

where
Xt = ZW(B‘S{-)X(SU a)
a
0f = Rep1 + Ve W:Yt-rl - W:Xt
and the rest as in GTD(\)
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12.11 Stable Off-policy Methods with Traces Erigibility Traces

@ HTD(A): Hybrid between GTD(A) and TD(\)
Wip1 = we +adize + af(ze — Z?)T"t)(xt — Ye+1Xe+41)
Vepr = ve+ 86721 — B((27) Tve) (Xt — Yer1Xes1)
z: = pe(VeAeZe—1 + X¢)
20 = YAzl g + X¢
e Emphatic TD(\): Extension of Emphatic-TD
Wiil = Wi+ adpZ;
0t = Rep1 +Yer1wy Xep1 — wi x;
z: = pe(VedeZe—1 + Mexe)
My = Al + (1 — A\ Fe
Ft = pt—1veFe—1+ I
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12.12 Implementation Issues Eligibilty Traces

MOUNTAIN CAR RANDOM WALK
T T

Stepsper .| RMS error
episode s

PuDDLE WORLD (CART AND POLE
. -

Failures per
100,000 steps

@ Trace is of the dimension of w.

@ Eligibility trace seems unusable for tabular methods.

@ Trick: list the small numbers of non-zero coordinates in the trace, update them
and kill them if they are too small.
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O Utl | ne Policy Gradient Methods

@ Policy Gradient Methods
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13 POl |Cy G rad ient MethOdS Policy Gradient Methods

13.1 Policy Approximation and its Advantages
13.2 The Policy Gradient Theorem

13.3 REINFORCE: Monte Carlo Policy Gradient
13.4 REINFORCE with Baseline

13.5 Actor-Critic Methods

13.6 Policy Gradient for Continuing Tasks

13.7 Policy Parameterization for Continuous Actions
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13.1 Policy Approximation and its Advantages Policy Gradient Methods

-11.6
-20

optimal
stochastic
policy

£-greedy right

2=]-]e]
£-greedy left

6 Uf1 0?2 0:3 0f4 0?5 0:6 0?7 UTS 0t9 1
probability of right action

e Parametric policy 7(als, @) differentiable with respect to 6.
@ Soft-max in action preferences:

e numerical preferences h(a, s, 0).

e probability:

eh(a,s,G)
m(als,0) = W

@ Lots of freedom in the parameterization of h: from linear to deep network. ..
@ Can approach a deterministic policy or stochastic ones. . .
@ May be simpler than value-based method.
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13.2 The Policy Gradient Theorem Policy Gradient Methods

@ Performance measure J(6) depends smoothly on 6.
o Easier to obtain convergence guarantees.

e Episodic case: performance
J(0) = virg(s0)
where sg is the initial state.

@ Policy gradient theorem:

VJ(8) x Z w(s) Z g=(s,a)Vm(als, 0)
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13.2 The Policy Gradient Theorem Policy Gradient Methods Y

e Gradient of v(s):

Vvr(s) =V (Z m(als)gx (s, a))

a

— Z (Vr(als)g=(s, a) + m(als)Vagx(s, a))

— Z (w als)qx(s, a) + (als) Y p(s'ls, a) V(s )>

s/

_ZZP s — x, k,m ZVTr(a]x g=(x, a)
X k=0
e Stationary measure pu(s):

Sk P(sp— s, k,m)

uls) = S5 P (s — s, ko)

e Gradient of J(0):

— (ZZ]P’ (so — s, k,w)) Zu(s) ZV%(a|s)qﬂ(s, a)
s’k S a
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13.3 REINFORCE: Monte Carlo Policy Gradient Policy Gradient Methods

e Gradient of J(0):
V() o 3 u(s) Y Vr(als, 0)dx(s. 2

= ]Eﬂ_ Z V7T(3|51_—, e)qw(sta 3)

@ All-actions SGD:
0t+1 == 0t+1 + « Z Vﬂ'(a‘st, 9)3](5}, a, W)
a

@ REINFORCE use a single action:

Vr(A:|S:, 0
Oty1=0:11 +OéGtM

7T(At|5t)
where G; is the usual MC return.
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13.3 REINFORCE: Monte Carlo Policy Gradient Policy Gradient Methods

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for .

Input: a differentiable policy parameterization w(als, 8)
Algorithm parameter: step size a > 0
Initialize policy parameter 8 € RY (e.g., to 0)

Loop forever (for each episode):

Generate an episode Sy, Ag, Ry,...,Sr—1, Ar_1, Ry, following 7(-|-,8)
Loop for each step of the episode t =0,1,...,7 —1:
G T @)

t+1 1
0 0+ay' GVInw(4,]S,0)

e REINFORCE derivation:
VJ(0) x Ex | Y Vr(alSt, 0)ax(St, a)}

_E, Zw(a\st,e)mqﬂ(st,a)l

[ V(A S:, 0)
_W%(St,At)
[ Vﬂ'(At’St,e)
=E, |G—F——""
" (AS:, 0)

] =E, [G:V In7(A:|S;,0)]
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13.3 REINFORCE: Monte Carlo Policy Gradient Policy Gradient Methods

101 v« (80)
0 WY Mh‘)/ *v'M*‘* W 'ﬂ\\"v’iﬂ‘:m ',dm m'\'ﬁwfq““""
] ww '
“ lr’L (hy f \,‘ o-14
M Ty
GO -40 - .'*l o v . o-12
Total reward i A T““)'*‘ o .’.
on episode Pt
averaged over 100 runs 60
-80 -
—90hI : . | |
1 200 400 600 800 1000
Episode

Figure 13.1: REINFORCE on the short-corridor gridworld (Example 13.1). With a good step
size, the total reward per episode approaches the optimal value of the start state.

@ SGD algorithm hence good theoretical convergence properties.
@ Variance may be high. 241



134 REINFORCE Wlth Baseline Policy Gradient Methods

Any baseline b(s) satisfies
Zb )V (als,0) =0

@ Generalized policy gradient theorem
x 3 p(s) S ar(s:2) — () Vrnlals, )

REINFORCE algorithm W|th baselme.
011 = Oei1 + (G — b(St))

VT('(At‘St, 9)
7T(At|5t)

Allows variance reduction.

Natural choice for b(S;): V(St, w).
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134 REINFORCE Wlth Baseline Policy Gradient Methods

REINFORCE with Baseline (episodic), for estimating mg ~

Input: a differentiable policy parameterization 7(als, 8)

Input: a differentiable state-value function parameterization o(s,w)
Algorithm parameters: step sizes af > 0, a¥ > 0

Initialize policy parameter 6 € R? and state-value weights w € R% (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ao, Ry, ..., S7—1, Ar_1, Ry, following 7(-|-,0)
Loop for each step of the episode t =0,1,...,7 — 1:
G« ZZ:H—I Y Ry (Gy)
0+ G —9(S;,w)
W — W+ aV IV (S,,w)
0« 0+a®y'5Vinm(AS;,0)

0
iy R
20 i)
W

70 f
Total reward [
on episode f
aversged over 100 s

1 200 400 600 800 1000
Episode
Figure 13.2: Adding a baseline to REINFORCE can make it learn much faster, as illus-
trated here on the short-corridor gridworld (Example 13.1). The step size used for plain
REINFORCE is that at which it performs best (to the nearest power of two: see Figure 13.1).
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13 . 5 ACtOr—C I’ItIC MethOdS Policy Gradient Methods

@ REINFORCE learns a policy and a state value function, but does not use it to

bootstrap.
@ Actor-Critic methods: replace G; by a bootstrap estimate:
N VTF(At’St, 0)
0;.1=20 Gr.t11 — V(S _
t+1 t+1 + a(Grrr1 — V(St, w)) (Ad|St, 0)
Vﬂ'(At’St, 0)
=0 Op—
t+1 + Qo (A5t 0)

@ Same tradeoff with respect to MC. ..
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13 5 ACtOI’—CI’ItIC MethOdS Policy Gradient Methods

One-step Actor—Critic (episodic), for estimating g ~ 7.

Input: a differentiable policy parameterization 7(als, 0)
Input: a differentiable state-value function parameterization o(s,w)
Parameters: step sizes a® > 0, a% >0
Initialize policy parameter 8 € RY and state-value weights w € R (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

I+1
Loop while S is not terminal (for each time step):
A~ (S, 8)
Take action A, observe S, R
0+ R+~0(S",w) —0(S,w) (if S is terminal, then 0(S’,w) = 0)

W W+ aVIVo(S,w)
0+ 0+a’I5Vinn(AlS,0)
I ~I

S5
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13 5 ACtOI’—CI’ItIC MethOdS Policy Gradient Methods

Actor—Critic with Eligibility Traces (episodic), for estimating g ~ 7.

Input: a differentiable policy parameterization m(al|s, 8)
Input: a differentiable state-value function parameterization 9(s,w)
Parameters: trace-decay rates A° € [0,1], A¥ € [0,1]; step sizes a® > 0, a™ >0
Initialize policy parameter 6 € R and state-value weights w € R? (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

2% < 0 (d’-component eligibility trace vector)

z% < 0 (d-component eligibility trace vector)

I+1
Loop while S is not terminal (for each time step):
A~ w(]S,0)
Take action A, observe S’, R
0 R+~0(S",w) —0(S,w) (if S’ is terminal, then 4(S’,w) = 0)

zV¥ — YAVzY + Vi(S,w)

20 — y\°28 + IV Inw(4|S,0)
W w+avozV

0« 0+a%5z°

I—~I

S« 5
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136 POIICy Gradlent fOI’ Contlnulng TaSkS Policy Gradient Methods

@ Most natural performance measure:

1
J(0) = r(m) = Jim - > E[Re|So; Av:t—1 ~ 7]
t=1

=Y us) Do (als) Y p(s', rls, a)r

@ i is such that

3" ()Y w(als)p(s'ls. a) = u(s')

e Gradient of J(0):
VI(0) = 3" 1u(s) Y Vn(als)a(s, 3)
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136 POllcy Gradlent fOI’ Contlnulng TaSkS Policy Gradient Methods

Actor—Critic with Eligibility Traces (continuing), for estimating mg ~ 7.

Input: a differentiable policy parameterization 7 (als, 0)

Input: a differentiable state-value function parameterization o(s,w)
Algorithm parameters: A% € [0,1], A € [0,1], @™ > 0, a® > 0, a® > 0
Initialize R € R (e.g., to 0)

Initialize state-value weights w € R? and policy parameter 6 € RY (e.g., to 0)
Initialize S € 8 (e.g., to so)

z% < 0 (d-component eligibility trace vector)
2% < 0 (d’-component eligibility trace vector)
Loop forever (for each time step):

A~m7(]S,0)

Take action A, observe S’, R

§+ R—R+9(8",w) —9(S,w)

R+ R+alis

zV¥ «— A\VzV + Vi(S,w)

28 + \?2° + Vinw(A|S, 0)

W w+avizW

0+ 0+ a6z

S« S5

248



13.6 Policy Gradient for Continuing Tasks otes onon vretnods X

@ Gradient of the state-value function:

Vve(s) =V (Z m(a|s)gx (s, a))

a

- Z (Vr(als)gx (s, a) + 7(a|s)Vax(s, a))
=> (Vﬂ'(a|s)qw(s, a) + m(als) Z p(s'ls, a)V(—r(6) + w(s’))
= Z (Vﬂ(a|s)qﬁ(5, a)

+ m(als) (—Vr(@) + Z p(s']s, a)va(s/)> )

S
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13.6 Policy Gradient for Continuing Tasks otes onon vretnods X

@ Gradient of J(8) = r(6):

vIO) =) (Vw(a|s)qﬁ(s, a) +7(als) > p(s'ls, a)Vv,r(s/)> — Vva(s)

a s/

_ Zu(s) (Z (vﬂ als)qx (s, a) +w(a|s)2p(s/5,a)Vvﬂ(s’)> - Vvﬁ(s)>
- ZM(S)ZW als)qx(s, a)
+ZZM m(als)p(s'[s, 3) Vva(s %Zu )Vva(s)

w(s’)

= Z M(S) Z VW(3|5)q7r(57 a)
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13.7 Policy Parameterization for Continuous Actions  reiicy Gradient Methods

T T T T T T
0.8 / \
0.6

0.4

N ARNN

T I T
0%=0.2, =——
02=1.0, m—
0%=5,0, ——
, 02=0.5, = ]

o

T T
wononon
L

1
N

0.0 |—r—

@ Policy-based methods offer a way to deal with continuous action space.
@ Only requirement is a parametric policy that can be sampled.

e For instance, a Gaussian parameterization with linear mean and linear log variance.
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