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Introduction1.5 An Extended Example: Tic-Tac-Toe - Figure 1.1
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Multi-armed Bandits2.1 A k-armed Bandit Problem

k-armed bandit:
s = ∅
q∗(a) = E [Rt |Aa] = ra

Optimal policy: a∗ = argmax ra

Estimate Qt(a) ∼ E [Rt |Aa].
Next step:

Exploitation: At = argmax Qt(a), bet on the current winner.
Exploration: At ̸= argmax Qt(a), verify that no other arm are better.

Conflict between exploration and exploitation.
Theoretical results under strong assumptions.
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Multi-armed Bandits2.2 Action-value Methods

Action-value:

Qt(a) =
∑t−1

i=1 1Ai =aRi∑t−1
i=1 1Ai = a

Sample average that converges to q∗(a) provided
∑t−1

i=1 1Ai =a →∞
Greedy action:

At = argmax Qt(a)
ϵ-greedy action:

At =
{

argmax Qt(a) with probability 1− ϵ

A′ with A’ uniform on the arm otherwise
ϵ-greedy forces exploration and guarantees that Qt(a)→ a∗(a)
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Multi-armed Bandits2.3 The 10-armed Testbed

q∗(a) ∼ N (0, 1)
Rt |At = a ∼ N (q∗(a), 1)
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Multi-armed Bandits2.3 The 10-armed Testbed

Greedy policy may fail in a stationary context.
Even more risky in a nonstationary one.
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Multi-armed Bandits2.4 Incremental Implementation

Mean for a single action:

Qn = R1 + · · ·+ Rn−1
n − 1

Incremental implementation:

Qn+1 = R1 + · · ·+ Rn
n

= 1
n ((n − 1)Qn + Rn)

= Qn + 1
n (Rn − Qn)

General update rule:
NewEstimate = OldEstimate + StepSize (Target− OldEstimate)

where
Target is a noisy estimate of the true target,
StepSize may depends on t and a.
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Multi-armed Bandits2.4 Incremental Implementation
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Multi-armed Bandits2.5 Tracking a Nonstationary Problem

Nonstationary setting often present in reinforcement learning.
Incremental update:

Qn+1 = Qn + α (Rn − Qn)
If α ∈ (0, 1] is constant,

Qn+1 = Qn + α (Rn − Qn)
= (1− α)Qn−1 + αRn

= (1− α)2Qn−1 + α(1− α)Rn−1 + αRn

= (1− α)nQ1 +
n∑

k=1
α(1− α)n−iRi

Weighted average with more emphasis on later values.
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Multi-armed Bandits2.5 Tracking a Nonstationary Problem

Incremental update:
Qn+1 = Qn + αn (Rn − Qn)

Convergence toward the expectation of R requires some assumptions on α:
∞∑

n=1
αn = +∞

∞∑
n=1

α2
n < +∞

First condition guarantees that one can escape any initial condition.
Second condition that the iterations converges.

If αn = α no convergence but track any nonstationarity.
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Multi-armed Bandits2.6 Optimistic Initial Values

Estimate depends on initial values (except for the case where α1 = 1).
Way of supplying prior knowledge about the level of rewards expected.
Optimistic initialization leads to exploration at the beginning.
Fails to help in a nonstationary setting.
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Multi-armed Bandits2.7 Upper-Confidence-Bound Action Selection

ϵ-greedy fails to discriminate between good/bad actions or certain/uncertain
actions.
Upper-Confidence-Bound:

At = argmax
(

Qt(a) + c
√

ln t
Nt(a)

)
Arm with lower values estimates will be selected with decreasing frequency over
time.
Bandit proof hard to extend to reinforcement setting.
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Multi-armed Bandits2.8 Gradient Bandit Algorithm

Numerical preference associated to action a: Ht(a).
Induced soft-max policy:

P (At = a) = eHt(a)∑k
b=1 eHt(b)

= πt(a)

Natural learning algorithm with update

Ht+1(a) =
{

Ht(a) + α(Rt − R̄t)(1− πt(a)) if a = At

Ht(a)− α(Rt − R̄t)πt(a) otherwise
with R̄t = (

∑t−1
i=1 Ri)

Baseline R̄t accelerates convergence.
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Multi-armed Bandits2.8 Gradient Bandit Algorithm - Figure 2.5
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Multi-armed Bandits2.8 Gradient Bandit Algorithm
Ideal gradient ascent:

Ht+1(a) = Ht(a) + α
∂E [Rt ]
∂Ht(a)

= Ht(a) + α
∑

b

∂πt(b)
∂Ht(a)q∗(b)

= Ht(a) + α
∑

b

∂πt(b)
∂Ht(a) (q∗(b)− Bt)

= Ht(a) + α
∑

b
πt(b)∂ ln πt(b)

∂Ht(a) (q∗(b)− Bt)

= Ht(a) + αEπt

[
∂ ln πt(A)
∂Ht(a) (q∗(A)− Bt)

]
Stochastic gradient descent:

Ht+1(a) = Ht(a) + α
∂ ln πt(At)

∂Ht(a) (q∗(At)− Bt)
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Multi-armed Bandits2.8 Gradient Bandit Algorithm

Policy gradient:
∂ ln πt(b)
∂Ht(a) = ∂

∂Ht(a)

(
Ht(b)− ln

(∑
b′

eHt(b′)
))

= 1a=b −
eHt(a)∑
b′ eHt(b′)

= 1a=b − πt(a)
Stochastic gradient descent:

Ht+1(a) = Ht(a) + α (q∗(At)− Bt) (1a=b − πt(a))

22



Multi-armed Bandits2.9 Associative Search (Contextual Bandits)

Associative search: reward depends on the arm and on the situation.
Often call contextual bandits.
In between bandits and reinforcement learning, the action only impact the next
reward
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Multi-armed Bandits2 Multi-armed bandits - Figure 2.6
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Finite Markov Decision
Processes

3.1 The Agent-Environment Interface

At time step t ∈ N :
State St ∈ S: representation of the environment
Action At ∈ A(St): action chosen
Reward Rt+1 ∈ R: instantaneous reward
New state St+1

Finite MDP:
S, A and R are finite.
Dynamic entirely defined by

P (St = s ′, Rr = r |St−1 = s, At−1 = a) = p(s ′, r |s, a)
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Finite Markov Decision
Processes

3.1 The Agent-Environment Interface - Figure 3.1
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Finite Markov Decision
Processes

3.1 The Agent-Environment Interface

State-transition probabilities:
p(s ′|s, a) = P

(
St = s ′∣∣St−1 = s, At−1 = a

)
=
∑

r
p(s ′, r |s, a)

Expected reward for a state-action:
r(s, a) = E [Rt |St−1 = s, At−1 = a] =

∑
r

r
∑
s′

p(s ′, r |s, a)

Expected reward for a state-action-state:

r(s, a, s ′) = E
[
Rt
∣∣St−1 = s, At−1 = a, St = s ′] =

∑
r

r p(s ′, r |s, a)
p(s ′|s, a)
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Finite Markov Decision
Processes

3.1 The Agent-Environment Interface

Examples:
Bioreactor
Pick-and-Place Robots
Recycling Robot
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Finite Markov Decision
Processes

3.2 Goals and Rewards

That all of what we mean by goals and purposes can be well thought of as the
maximization of the expected value of the cumulative sum of a received scalar
signal (called reward).

The reward signal is your way of communicating to the robot what you want it to
achieve, not how you want it achieved.

31



Finite Markov Decision
Processes

3.3 Returns and Episodes

Episodic: Final time step T and

Gt =
T∑

t′=t+1
Rt′

Continuous tasks: undiscounted reward

Gt =
+∞∑

t′=t+1
Rt′ may not exist!

Continuous tasks: discounted reward

Gt =
+∞∑

0
γkRt+1+k

with 0 ≤ γ < 1.
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Finite Markov Decision
Processes

3.3 Returns and Episodes

Recursive property
Gt = Rt+1 + γGt+1

Finiteness if |R| ≤ M

|Gt | ≤
{

(T − t −+1)M if T <∞
M 1

1−γ otherwise
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Finite Markov Decision
Processes

3.3 Returns and Episodes - Example 3.4
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Finite Markov Decision
Processes

Unified Notation for Episodic and Continuing Tasks

Episodic case: several episodes instead of a single trajectory (St,i . . . )
Absorbing state s̃ such p(s̃|s̃, a) = 1 and Rt = 0 when St = s̃.
Convert episodic case into a continuing one.
Alternative: notation

Gt =
T∑

k=t+1
γk−t−1Rk

Undefined if T =∞ and γ = 1. . .
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Finite Markov Decision
Processes

3.5 Policies and Value Functions

Policy: π(a|s)
Value function:

vπ(s) = Eπ [Gt |St = s] = Eπ

[ ∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s
]

Action value function:
qπ(s, a) = Eπ [Gt |St = s, At = a]

= Eπ

[ ∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s, At = a
]

Implicit stationary assumption on π!
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Finite Markov Decision
Processes

3.5 Policies and Value Functions

Bellman Equation
vπ(s) = Eπ [Gt |St = s]

= Eπ [Rt+1 + γGt+1|St = s]
=
∑

a
π(a|s)

∑
s′

∑
r

p(s ′, r |s, a)
[
r + γEπ

[
Gt+1

∣∣St+1 = s ′]]
=
∑

a
π(a|s)

∑
s′

∑
r

p(s ′, r |s, a)
[
r + γvπ(s ′)

]
37



Finite Markov Decision
Processes

3.5 Policies and Value Functions - Figure 3.2

38



Finite Markov Decision
Processes

3.5 Policies and Value Functions - Figure 3.3
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Finite Markov Decision
Processes

3.6 Optimal Policies and Optimal Value Functions

Optimal policies: vπ∗(s) ≥ vπ(s) (not necessarily unique)
Optimal state-value function :

v∗(s) = max
π

vπ(s) Uniqueness
Optimal state-action-value function:

q∗(s, a) = max
π

qπ(s, a) Uniqueness
Link:

q∗(s, a) = E [Rt+1 + γv∗(St+1)|St = s, At = a]
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Finite Markov Decision
Processes

3.6 Optimal Policies and Optimal Value Functions

Bellman optimality equation:
v∗(s) = max

a
q∗(s, a)

= max
a

E [Rt+1 + γv∗(St+1)|St = s, At = a]

= max
a

∑
s′,r

p(s ′, r |s, a)
(
r + γv∗(s ′)

)
Bellman optimality equation for q:

q∗(s, a) = E
[
Rt+1 + γ max

a′
q∗(St+1, a′)

∣∣∣∣St = s, At = a
]

=
∑
s′,r

p(s ′, r |s, a)
(

r + max
a′

γq∗(s ′, a′)
)
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Finite Markov Decision
Processes

3.6 Optimal Policies and Optimal Value Functions -
Figure 3.4
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Finite Markov Decision
Processes

3.6 Optimal Policies and Optimal Value Functions -
Figure 3.5
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Finite Markov Decision
Processes

3.7 Optimality and Approximation

Very difficult to learn the optimal policy.
Knowing the environment helps but is not sufficient. (Chap. 4)
Computational challenges even in the finite case! (Chap. 5-8)
Need to resort to approximation! (Chap. 9-12)
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Dynamic Programming4 Dynamic Programming
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Dynamic Programming4.1 Policy Evaluation

Policy Evaluation or Prediction
Bellman Equation

vπ(s) = Eπ [Gt |St = s]
= Eπ [Rt+1 + γGt+1|St = s]
=
∑

a
π(a|s)

∑
s′

∑
r

p(s ′, r |s, a)
[
r + γvπ(s ′)

]
Linear system that can be solved!
Bellman iteration:

vk+1(s) = Eπ [Rt+1 + γvk(St+1)|St = s]
=
∑

a
π(a|s)

∑
s′

∑
r

p(s ′, r |s, a)
[
r + γvk(s ′)

]
vπ is a fixed point.
Iterative policy evaluation: iterative algorithm that can be proved to converge.
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Dynamic Programming4.1 Policy Evaluation - Policy Evaluation
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Dynamic Programming4.1 Policy Evaluation - Example 4.1
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Dynamic Programming4.2 Policy Improvement
If π′ is such that ∀s, qπ(s, π′(s)) ≥ vπ(s) then vπ′ ≥ vπ.
Sketch of proof:

vπ(s) ≤ qπ(s, π′(s))
= E [Rt+1 + γvπ(St+1)|St = s, At = π′(s)]
= Eπ′ [Rt+1 + γvπ(St+1)|St = s]
≤ Eπ′ [Rt+1 + γqπ(St+1, π′(St+1))|St = s]
≤ Eπ′ [Rt+1 + γEπ′ [Rt+1 + γvπ(St+2)|St+1, At+1 = π′(St+1)]|St = s]
≤ Eπ′

[
Rt+1 + γRt+2 + γ2vπ(St+2)

∣∣St = s
]

≤ Eπ′
[
Rt+1 + γRt+2 + γ2Rt+3 + · · ·

∣∣St = s
]

≤ vπ′(s)
Greedy update:

π′(s) = argmax
a

qπ(s, a)

= argmax
a

∑
s′,r

p(s ′, r |s, a)
(
r + γvπ(s ′)

)
If π′ = π after a greedy update vπ′ = vπ = v∗. 50



Dynamic Programming4.2 Policy Improvement - Figure 4.1
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Dynamic Programming4.3 Policy Iteration

Policy iteration: sequence of policy evaluation and policy improvement
π0

E−→ vπ0
I−→ π1

E−→ vπ1
I−→ · · ·π∗

E−→ vπ∗

In a finite states/actions setting, converges in finite time.
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Dynamic Programming4.3 Policy Iteration - Policy Iteration
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Dynamic Programming4.3 Policy Iteration - Figure 4.2
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Dynamic Programming4.4 Value Iteration

Policy evaluation can be time consuming.
Value iteration: improve policy after only one step of policy evaluation.
Bellman iteration:

vk+1(s) = max
a

E [Rt+1 + γvk(St+1)|St = s, At = a]

= max
a

∑
s′,r

p(s ′, r |s, a)
(
r + γvk(s ′)

)
Update corresponds to the Bellman optimality equation.
Variation possible on the number of steps in the policy evaluation.
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Dynamic Programming4.4 Value Iteration - Value Iteration
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Dynamic Programming4.4 Value Iteration - Figure 4.3
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Dynamic Programming4.5 Asynchronous Dynamic Programming

Synchronous Dynamic Programming: update all states at each step.
Asynchronous Dynamic Programming: update only a few states at each step.
No systematic sweeps of the state set!
Only need to update every state infinitely often!
One possibility is to update the states seen by an agent experiencing the MDP.

58



Dynamic Programming4.6 Generalized Policy Iteration

Policy iteration consists of two simultaneous interacting processes:
one making a value function consistent with the current policy (policy evaluation)
one making the policy greedy with respect to the current value function (policy
improvement)

Generalized Policy Iteration: any similar scheme.
Stabilizes only if one reaches the optimal value/policy pair.
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Dynamic Programming4.6 Generalized Policy Iteration - Generalized Policy
Iteration
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Dynamic Programming4.7 Efficiency of Dynamic Programming

DP quite efficient: polynomial in |S| and |A|.
Linear programming alternative also possible.
Curse of dimensionality if the as the number of states grows exponentially with
the number of state variables.
Asynchronous DP methods are preferred.
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Monte Carlo Methods5 Monte Carlo Methods
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Monte Carlo Methods5.1 Monte Carlo Prediction

Estimate vπ(s) by the average gain following π after passing through s.
Two variants:

First-visit: use only first visit of s in each episode
Every-visit: use every visit of s in each episode

First-visit is easier to analyze due to independence of each episode.
Every-visit works. . . but not necessarily better!
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Monte Carlo Methods5.1 Monte Carlo Prediction - First Visit Monte-Carlo
Policy Evaluation
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Monte Carlo Methods5.1 Monte Carlo Prediction
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Monte Carlo Methods5.2 Monte Carlo Estimation of Action Values

Without a model, vπ(s) is not sufficient to do a policy enhancement step.
Need to estimate qπ(s, a) directly.
Issue: require that any state-action pair is visited.
Impossible with a deterministic policy.
Instance of problem of maintaining exploration seen with the bandits.
Exploring starts: start the game from a random stat-action pair in a way that
every stat-action pair has a nonzero probability.
Alternative: impose condition on policy itself.
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Monte Carlo Methods5.3 Monte Carlo Control

Generalized Policy Iteration can be implemented with MC.
Scheme:

π0
E−→ qπ0

I−→ π1
E−→ · · · I−→ π∗

E−→ q∗

Infinite number of MC simulations to compute qπ.
Easy policy improvement:

π(s) = argmax q(s, a)
Improvement at each step hence convergence. . .
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Monte Carlo Methods5.3 Monte Carlo Control

Two strong assumptions:
Every state-action pair is visited infinitely often (Exploring Starts)
Infinite number of MC simulations

Approximate policy iteration required.
First approach: if the number of MC simulations is large enough then the
approximation is good enough. . .
The required number of simulations can be very large.
Second approach: use the current MC estimation to update a current Q-value
estimate (GPI).
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Monte Carlo Methods5.3 Monte Carlo Control

Cannot converge to any suboptimal policy.
Convergence still an open question. . .

70



Monte Carlo Methods5.3 Monte Carlo Control - Figure 5.2
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Monte Carlo Methods5.4 Monte Carlo Control without Exploring Starts

Exploring starts assumption can be removed if one guarantees that the agent
selects every action infinitely often.
Two approaches:

on-policy, where the policy is constrained to explore.
off-policy, where the agent use a different policy than the one we want to estimate

On-policy control: use soft policy such that π(a|s) > 0 but gradually shift closer
and closer to a deterministic optimal policy.
Impossible to use the classical policy improvement step.
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Monte Carlo Methods5.4 Monte Carlo Control without Exploring Starts

Use of ϵ-greedy rules:

π(s) =
{

argmax q(s, a) with probability 1− ϵ + ϵ/|A(s)
a′ ̸= argmax q(s, a) with probability ϵ/|A(s)|

Improvement over any ϵ-greedy policy:
qπ(s, π′(s)) =

∑
a

π′(a|s)qπ(s, a)

= ϵ/|A(s)|
∑

a
qπ(s, a) + (1− ϵ) max

a
qπ(s, a)

≥ ϵ/|A(s)|
∑

a
qπ(s, a) + (1− ϵ)

∑
a

π(a|s)− ϵ/|A(s)|
1− ϵ

qπ(s, a)

≥
∑

a
π(a|s)qπ(s, a) = vπ(s, a)

Fixed point should be an optimal ϵ-greedy policy.
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Monte Carlo Methods5.4 Monte Carlo Control without Exploring Starts

In practice, one reduces ϵ during the iterations.
74



Monte Carlo Methods5.5 Off-policy Prediction via Importance Sampling
Two approaches:

on-policy, where the policy is constrained to explore.
off-policy, where the agent use a different policy than the one we want to estimate

target policy (policy we want to estimate) vs behavior policy (policy we use to
explore)
on-policy: simpler
off-policy: more complex but more powerful and general.
Example: off-policy can be used to learn from observation.
Focus now on prediction: estimation of vπ or qπ while having episode following
policy b ̸= π.
Minimum (coverage) requirement: if π(a|s) > 0 then b(a|s) > 0.
We may have π(a|s) = 0 and b(a|s) > 0. . .
Typically, b is an ϵ-greedy policy.
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Monte Carlo Methods5.5 Off-policy Prediction via Importance Sampling

Most off-policy methods are base on importance sampling:

Eπ [f (X )] = Eq

[
π(X )
q(X ) f (X )

]
By construction,

P (At , St+1, At+1, . . . , ST |St , π)
= π(At |St)p(St+1|St , At)π(At+1|St+1) · · · p(ST |ST−1, AT−1)

=
T−1∏
k=t

π(Ak |Sk)p(Sk+1|Sk , Ak)

Relative probability ratio:

ρt:T−1 = P (At , St+1, At+1, . . . , ST |St , π)
P (At , St+1, At+1, . . . , ST |St , b) =

T−1∏
k=t

π(Ak |Sk)
b(Ak |Sk)

Depends only on the policy and not on the MDP.
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Monte Carlo Methods5.5 Off-policy Prediction via Importance Sampling

Value function using importance sampling:
vπ(s) = E [ρt:T−1Gt |St = s] ̸= E [Gt |St = s] = vb(s)

Natural estimate for vπ (ordinary importance sampling):

V (s) =
∑

t∈I(s) ρt:T (t)−1Gt

|I(s)|
where I(s) are the time step where s is visited (only for the first time for a
first-visit method)
Alternative (weighted importance sampling):

V (s) =
∑

t∈I(s) ρt:T (t)−1Gt∑
t∈I(s) ρt:T (t)−1

Rk: E
[∑

t∈I(s) ρt:T (t)−1
]

= |I(s)|
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Monte Carlo Methods5.5 Off-policy Prediction via Importance Sampling

ordinary importance sampling is unbiased (for the first-visit method) but may have
a large variance
weighted importance sampling is biased but may have a smaller variance.
No asymptotic bias.
ordinary importance sampling is nevertheless simpler to extend. . . 78



Monte Carlo Methods5.5 Off-policy Prediction via Importance Sampling

Very large variance terms lead to convergence issues.

79



Monte Carlo Methods5.6 Incremental Implementation

Incremental implementation avoids to store all the returns.
Observation: if

Vn =
∑n−1

k=1 WkGk∑n−1
k=1 Wk

then
Vn+1 = Vn + Wn

Cn
(Gn − Vn)

with Cn+1 = Cn + Wn+1.
Rk: if

Vn =
∑n−1

k=1 WkGk
n − 1

then
Vn+1 = Vn + 1

n (WnGn − Vn)

Leads to a better implementation.
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Monte Carlo Methods5.6 Incremental Implementation
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Monte Carlo Methods5.7 Off-policy Monte Carlo Control

GPI principle
Require a exploratory target policy 82
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Temporal-Difference Learning6 Temporal-Difference Learning
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Temporal-Difference Learning6.1 TD Prediction

constant α Monte Carlo update:
V (St)← V (St) + α (Gt − V (St))

Target Gt (∼ vπ(St)) requires to wait until the episode end.
Simplest TD method:

V (St)← V (St) + α (Rt+1 + γV (St+1)− V (St))
Target Rt+1 + γV (St+1) (∼ vπ(St)) is available immediately.
Estimate based on a previous estimate: bootstrapping method (like DP).
Underlying expectations:

vπ = Eπ [Gt |St = s]
= Eπ [Rt+1 + γvπ(St+1)|St = s]

Estimate:
Expectation (MC / TD)
Value function (DP /TD)
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Temporal-Difference Learning6.1 TD Prediction

TD error:
δt = Rt+1 + γV (St+1)− V (St)

MC error:
Gt − V (St) = δt + γ(Gt+1 − V (St+1))

=
T−1∑
k=T

γk−tδk

if V is kept frozen during each episode.
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Temporal-Difference Learning6.1 TD Prediction
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Temporal-Difference Learning6.2 Advantages of TD Prediction Methods

Obvious advantages:
No need for a model (cf DP)
No need to wait until the episode end (cf MC)

Theoretical guarantee on the convergence!
No theoretical winner between TD and MC. . .
In practice, TD is often faster.
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Temporal-Difference Learning6.3 Optimality of TD(0)

Batch updating setting: several passes on the same data.
MC and TD converges (provided α is small enough).
Different limits:

MC: sample average of the return
TD: value function if one replaces the true MDP by the maximum likelihood one.
(certainty-equivalence estimate)

Rk: no need to compute the ML estimate!
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Temporal-Difference Learning6.4 Sarsa: On-policy TD Control

GPI setting:
Update Q using the current policy with

Q(St , At)← Q(St , At) + α (Rt+1 + γQ(St+1, At+1)− Q(St , At))
Update π by policy improvement

May not converge if one use a greedy policy update!
Convergence results if ϵt greedy update with ϵt → 0.
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Temporal-Difference Learning6.4 Sarsa: On-policy TD Control
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Temporal-Difference Learning6.5 Q-Learning: Off-policy TD Control

Q-learning update:
Q(St , At)← Q(St , At) + α

(
Rt+1 + γ max

a
Qt(St+1, a)− Q(St , At)

)
Update independent from the behavior policy!
Convergence provided the policy visit each state-action infinitely often.
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Temporal-Difference Learning6.5 Q-Learning: Off-policy TD Control

Q-learning takes more risk. . .
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Temporal-Difference Learning6.6 Expected Sarsa

Idea: replace the action sampling in Sarsa by an expectation
Q(St , At)← Q(St , At) + α (Rt+1 + γEπ [Qt(St+1, At+1)|St+1]− Q(St , At))

← Q(St , At) + α

(
Rt+1 + γ

∑
a

π(a|St+1)Qt(St+1, a)− Q(St , At)
)

More complex but variance reduction.
Off-policy as π can be different from b
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Temporal-Difference Learning6.6 Expected Sarsa
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Temporal-Difference Learning6.7 Maximization Bias and Double Learning

Maximization bias issue: E [max] ≥ maxE!
Double learning:

Maintain two independent estimates of q: Q1 and Q2
Maintain two estimates of the best action A1,∗ = argmax Q1(., a) and
A2,∗ = argmax Q2(., a)
Maintain two unbiased estimates q(A1,∗) = Q2(A1,∗) and q(A2,∗) = Q1(A2,∗)
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Temporal-Difference Learning6.7 Maximization Bias and Double Learning
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Temporal-Difference Learning6.8 Games, Afterstates, and Other Special Cases

Book focuses on state-action value function.
Other approach possible: afterstates value function
Interesting in games in particular. . .
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n-step Bootstrapping7.1 n-step TD Prediction

MC:
Gt = Rt+1 + γRt+2 + · · ·+ γT−t−1RT

One-step return:
Gt:t+1 = Rt+1 + γVt(St+1)

n-step return:
Gt:t+n = Rt+1 + γRt+2 + · · ·+ γn−1Rr+n + γnVt+n−1(St+n)
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n-step Bootstrapping7.1 n-step TD Prediction

n-step TD:
Vt+n(St) = Vt+n−1(St) + α (Gt:t+n − Vt+n−1(St))

Contraction property:
∥Eπ [Gt:t+n|St = s]− vπ(s)∥∞ ≤ γn∥Vt+n−1(s)− vπ(s)∥∞
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n-step Bootstrapping7.1 n-step TD Prediction

Optimum for intermediate n.
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n-step Bootstrapping7.2 n-step Sarsa

n-step return:
Gt:t+n = Rt+1 + γRt+2 + · · ·+ γn−1Rr+n + γnQt+n−1(St+n, At+n)

n-step Sarsa:
Qt+n(St , At) = Qt+n−1(St , At) + α (Gt:t+n − Qt+n−1(St , At))

104



n-step Bootstrapping7.2 n-step Sarsa

Expected Sarsa possible. . .
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n-step Bootstrapping7.2 n-step Sarsa
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n-step Bootstrapping7.3 n-step Off-policy Learning

Need to take into account the exploratory policy b.
Importance sampling correction:

ρt:h =
min(h,T−1)∏

k=T

π(Ak |Sk)
b(Ak |Sk)

Off-policy n-step TD:
Vt+n(St) = Vt+n−1(St) + αρt:t+n−1 (Gt:t+n − Vt+n−1(St))

Off-policy n-step Sarsa:
Qt+n(St , At) = Qt+n−1(St , Qt) + αρt:t+n (Gt:t+n − Qt+n−1(St , At))

Expected Sarsa possible. . .
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n-step Bootstrapping7.3 n-step Off-policy Learning
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n-step Bootstrapping7.5 Off-policy Learning Without Importance
Sampling: The n-step Tree Backup Algorithm

Use reward for action taken and bootstrap for the others.
Weight each branch by π(a|St). 109



n-step Bootstrapping7.5 Off-policy Learning Without Importance
Sampling: The n-step Tree Backup Algorithm

1-step return (Expected Sarsa)
Gt:t+1 = Rt+1 + γ

∑
a

π(a|St+1)Qt(St+1, a)

2-step return:
Gt:t+2 = Rt+1 + γ

∑
a ̸=At+1

π(a|St+1)Qt+1(St+1, a)

+ γπ(At+1|St+1)
(

Rt+2 + γ
∑

a
π(a|St+2)Qt+1(St+2, a)

)
= Rt+1 + γ

∑
a ̸=At+1

π(a|St+1)Qt+1(St+1, a) + γπ(At+1|St+1)Gt+1:t+2

Recursive definition of n-step return:
Gt:t+n = Rt+1 + γ

∑
a ̸=At+1

π(a|St+1)Qt+n−1(St+1, a) + γπ(At+1|St+1)Gt+1:t+n
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n-step Bootstrapping7.5 Off-policy Learning Without Importance
Sampling: The n-step Tree Backup Algorithm
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n-step Bootstrapping7.6 A Unifying Algorithm: n-step Q(σ)

Different strategy at each node:
σ = 1: action sampling
σ = 0: action averaging
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n-step Bootstrapping7.6 A Unifying Algorithm: n-step Q(σ)

Generalization to σt ∈ [0, 1]
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Planning and Learning with
Tabular Methods

8.1 Models and Planning

Model: anything that can be used to predict the environment response.
Two different model families:

Distribution models: explicitly learn the MDP transitions
Sample models: learn to simulate the MDP

Second type is easier to obtain.
Planning:

model planning−−−−−→ policy
In the book, state-space planning by opposition of plan-space planning which
works on the plans.
Common structure of state-space planning

model −−→ simulated exp. backups−−−−→ values −−→ policy
Learning methods use real experiences instead of simulated ones
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Planning and Learning with
Tabular Methods

8.1 Models and Planning

Similar algorithm than Q-learning!
Only difference is the source of experience.
Rk: we have used this algorithm in the section 6.3 Optimality of TD(0).
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Planning and Learning with
Tabular Methods

8.2 Dyna: Integrated Planning, Acting and Learning

Dyna-Q: architecture combining both planning and learning.
Two uses of experience:

model-learning (to improve the models)
reinforcement-learning (direct RL) (to improve the value/policy)

Indirect methods (model based) can use an a priori model but can be mislead by a
false model.
Direct methods do not require a model but may require a lot of experience.
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Planning and Learning with
Tabular Methods

8.2 Dyna: Integrated Planning, Acting and Learning

Planning, acting, model-learning and direct RL are conceptually simultaneous.
Need to deal with the scheduling in practice. 119



Planning and Learning with
Tabular Methods

8.2 Dyna: Integrated Planning, Acting and Learning

Learning, model-learning and planning are present.
Extension of Q-learning.
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Planning and Learning with
Tabular Methods

8.2 Dyna: Integrated Planning, Acting and Learning
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Planning and Learning with
Tabular Methods

8.3 When the Model is Wrong

If the model is wrong, it may eventually be corrected. . .
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Planning and Learning with
Tabular Methods

8.3 When the Model is Wrong

but this may be complicated if the model was pessimistic. . .
Dyna-Q+ forces exploration by increasing the rewards of non explored-lately
state-action.
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Planning and Learning with
Tabular Methods

8.4 Prioritized Sweeping

Freedom in the order of the state/action during planning.
Intuition says that one should work backward from the goal.
Prioritized sweeping: order state-action by a predicted value difference.
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Planning and Learning with
Tabular Methods

8.4 Prioritized Sweeping

Prioritized sweeping leads to faster convergence.
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Planning and Learning with
Tabular Methods

8.5 Expected vs. Sample Updates

If the transition probability are available, should we use expectation or samples?
DP or RL?
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Planning and Learning with
Tabular Methods

8.5 Expected vs. Sample Updates

Expectations are more stable but require more computation.
Cost depends heavily on the branching factor.
In practice, sampling seems interesting for large branching factors!
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Planning and Learning with
Tabular Methods

8.6 Trajectory Sampling

Trajectory sampling: sample states-actions by interacting with the model. . .
Initial gain but may be slow in the long run.
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Planning and Learning with
Tabular Methods

8.7 Real-time Dynamic Programming

Classical DP but with a trajectory sampling.
Convergence holds with exploratory policy.
Optimal policy does not require to specify the action in irrelevant states.
Convergence holds even without full exploration in some specific cases!
In practice, seems to be computation efficient.
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Planning and Learning with
Tabular Methods

8.8 Planning at Decision Time

Background planning: planning works on all states.
Decision-time planning: planning starts from the current state.
Extension of the one-step lookahead but often without memory.
Combination looks interesting. . .
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Planning and Learning with
Tabular Methods

8.9 Heuristic Search

Heuristic search: most classical decision time planning method.
At each step,

a tree of possible continuations is grown
an approximate value function is used at the leaves.
those values are backed-up to the root

Often value function is fixed.
Can be seen as an extension of greedy policy beyond a single step.
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Planning and Learning with
Tabular Methods

8.9 Heuristic Search

The deeper the tree the less influence the value function.
The better the value function the better the policy.
Computational trade-off.
Focus on the states that are accessible from the current state.

132



Planning and Learning with
Tabular Methods

8.10 Rollout Algorithms

Use MC simulation with a policy π to choose the next action.
Simulation equivalent of the policy improvement idea.
State-action value function estimated only for the current state.
Computation time influenced by the complexity of the policy and the number of
simulations.
Early stopping possible using an approximate value function!
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Planning and Learning with
Tabular Methods

8.11 Monte Carlo Tree Search

Rollout algorithm combined with backup-ideas.
Repeat 4 steps:

Selection of a sequence of actions according to the current values with a tree policy.
Expansion of the tree at the last node without values.
Simulation with a rollout policy to estimate the values at this node.
Backup of the value by empirical averaging.

MCTS focuses on promising path.
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Planning and Learning with
Tabular Methods

Tabular Reinforcement
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Planning and Learning with
Tabular Methods

Other Raised Issues
Definition of return Is the task episodic or continuing, discounted or undiscounted?
Action values vs. state values vs. afterstate values What kind of values should be estimated?
If only state values are estimated, then either a model or a separate policy (as in actor–critic
methods) is required for action selection.
Action selection/exploration How are actions selected to ensure a suitable trade-off between
exploration and exploitation? (ϵ-greedy, optimistic initialization of values, soft-max, and UCB. . . )
Synchronous vs. asynchronous Are the updates for all states performed simultaneously or one
by one in some order?
Real vs. simulated Should one update based on real experience or simulated experience? If
both, how much of each?
Location of updates What states or state–action pairs should be updated? Model-free methods
can choose only among the states and state–action pairs actually encountered, but model-based
methods can choose arbitrarily. There are many possibilities here.
Timing of updates Should updates be done as part of selecting actions, or only after- ward?
Memory for updates How long should updated values be retained? Should they be retained
permanently, or only while computing an action selection, as in heuristic search?
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9 On-policy Prediction with Approximation
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On-policy Prediction with
Approximation

9.1 Value-function Approximation
Prediction methods covered based on backed-up values to which the current value
is shifted.
Examples:

MC with Gt
TD(0) with Rt+1 + γV (St+1)
n-step TD Gt:t+n

V is defined by its value at each state.
When the number of states is large this may be intractable.
Idea: replace V (s) by an approximation v̂(s, w) where w are weights
(parameters) defining the function.
Goal: find w such that v̂(s, w) ∼ vπ(s) from the backed-up values.
Similar to supervised learning!
Function approximation (or regression) setting.
Reinforcement Learning requires on-line methods rather than batch.
Often non-stationary target functions. . .
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On-policy Prediction with
Approximation

9.2 The Prediction Objective (VE )

How to measure the quality of v̂(s, w)?
So far, we have use implicitly a ∥ · ∥∞ norm.
Prediction Objective (VE ):

VE (w) =
∑

s
µ(s) (vπ(s)− v̂(s, w))2

where µ is a state distribution.
Most classical choice: µ(s) is the fraction of time spent in s.
Under on-policy training, such a choice is called on-policy distribution

Stationary distribution under π for the continuing tasks.
Depends on the law of initial state for episodic tasks.

More difference between episodic and continuing that without approximation.
Rk: Prediction Objective not linked to corresponding policy performance!
Often only local optimal in w . . .
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On-policy Prediction with
Approximation

9.3 Stochastic-gradient and Semi-gradient Methods

Prediction Objective (VE ):
VE (w) =

∑
s

µ(s) (vπ(s)− v̂(s, w))2

Prediction Objective (VE ) gradient:
∇VE (w) = −2

∑
s

µ(s) (vπ(s)− v̂(s, w))∇v̂(s, w)

Prediction Objective (VE ) stochastic gradient:
∇̂VE (w) = −2 (vπ(St)− v̂(St , w))∇v̂(St , w)

SGD algorithm:
w t+1 = w t + α (vπ(St)− v̂(St , w))∇v̂(St , w)

Issue: vπ is unknown!
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On-policy Prediction with
Approximation

9.3 Stochastic-gradient and Semi-gradient Methods

Monte Carlo: replace vπ(St) by Gt .
Algorithm:

w t+1 = w t + α (Gt − v̂(St , w))∇v̂(St , w)
Convergence guarantees because E [Gt |St = s] = vπ(s).
Stochastic-gradient setting!
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On-policy Prediction with
Approximation

9.3 Stochastic-gradient and Semi-gradient Methods

TD: replace vπ(St) by Rt+1 + γv̂(St+1, w t).
Algorithm:

w t+1 = w t + α (Rt+1 + γv̂(St+1, w t)− v̂(St , w))∇v̂(St , w)
Not a stochastic-gradient setting anymore!
Effect of the change of w to the target is ignored, hence the name semi-gradient
Less stable but converges for linear approximation.
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On-policy Prediction with
Approximation

9.3 Stochastic-gradient and Semi-gradient Methods

Example with state aggregation: several states are using the same value for the
value function.
MC stochastic gradient algorithm.
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On-policy Prediction with
Approximation

9.4 Linear Methods

Linear method: ŝ(s, w) = w⊤x(s) with x(s) a feature vector representing state s.
x i are basis functions of the linear space of possible ŝ.
Linear method gradient:

∇ŝ(s, w) = x(s)
Generic SGD algorithm:

w t+1 = w t + α
(
Ut −w⊤

t x(St))
)

x(St)
MC stochastic gradient:

w t+1 = w t + α
(
Gt −w⊤

t x(St))
)

x(St)
TD(0) semi-gradient:

w t+1 = w t + α
(
Rt+1 + γw⊤

t x(St+1)−w⊤
t x(St))

)
x(St)

Simple form allows mathematical analysis!
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On-policy Prediction with
Approximation

9.4 Linear Methods
Using x(St) = xt , TD becomes

w t+1 = w t + α
(
Rt+1 + γw⊤

t xt+1 −w⊤
t xt)

)
xt

= w t + α
(
Rt+1xt − xt (xt − γxt+1)⊤ w t

)
Assume we are in the steady state regime,

E [w t+1|w t ] = w t + α (b − Aw t)
with b = E [Rt+1xt ] and A = E

[
xt(xt − γxt+1)⊤

]
.

If the algorithm converges to wTD, then
b − AwTD = 0

If A is invertible,
wTD = A−1b

and
E [w t+1 −wTD|w t ] = (Id− αA)(w t −wTD)

A is definite positive thanks to the stationarity of the measure µ for the policy π.
Complete proof much more involved.
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Approximation

9.4 Linear Methods

Error bound for MC:
VE (wMC ) = min

w
VE (w)

Error bound for TD:
VE (wMC ) ≤ 1

1− γ
min

w
VE (w)

Possible asymptotic loss for TD. . . but often faster convergence and lower
variance!
Similar results for other on-policy prediction algorithms.
Similar results for episodic tasks.
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9.4 Linear Methods
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9.4 Linear Methods

Algorithm:
w t+1 = w t + α

(
Gt:t+n −w⊤

t x(St))
)

x(St)
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On-policy Prediction with
Approximation

9.5 Feature Construction for Linear Methods

Polynomials: simplest possible basis

x(s)i =
k∏

j=1
sci,j
j

Fourier Basis: useful when dealing with periodic functions
x(s)i = cos(πs⊤ci) or sin(πs⊤ci)

Renormalization may be required.
Selection of the order can be useful.
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On-policy Prediction with
Approximation

9.5 Feature Construction for Linear Methods

Fourier well adapted to smooth functions.
151



On-policy Prediction with
Approximation

9.5 Feature Construction for Linear Methods

Coarse coding: extension of state aggregation.
Large freedom in the design of the cells.
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On-policy Prediction with
Approximation

9.5 Feature Construction for Linear Methods

Bandwidth issue. . .
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9.5 Feature Construction for Linear Methods

Systematic way of construction coarse coding: grid plus overlap.
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Approximation

9.5 Feature Construction for Linear Methods

Same size for all cells: easier choice of α.
Easy computation.
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9.5 Feature Construction for Linear Methods

Different offset leads to different approximations.
Large freedom on the tiling.
Hashing can also be used
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9.5 Feature Construction for Linear Methods

Radial Basis Function:
x(s)i = Φ(∥s − ci∥2/2σ2)

Smoothed version of tiling. . .
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On-policy Prediction with
Approximation

9.6 Selecting Step-Size Parameters Manually

SGD requires the selection of an appropriate step-size.
Theory proposes a slowly decreasing step-size (O(1/t))
Often very slow convergence and not adapted to non-stationary target.
Intuition from tabular case: α = 1/τ with τ the number of experience required to
converge approximately.
Rule of thumb for linear SGD

α = (τE
[
x⊤x

]
)−1
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On-policy Prediction with
Approximation

9.7 Nonlinear Function Approximation: Artificial
Neural Networks

Artificial Neural Networks are widely used for nonlinear function approximations.
Complex architecture trained with gradient descent (backprop)
Several clever tools: initialization, activation function, dropout, residual networks,
batch normalization. . .
See lecture on Deep Learning. . .
Can be used in stochastic-gradient or semi-gradient method.
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9.7 Nonlinear Function Approximation: Artificial
Neural Networks

Use of Convolutional Network to capitalize on partial translation invariance.
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Approximation

9.8 Least-Squares TD
Better sample accuracy can be obtained through a different direction.
The TD fixed point satisfy:

wTD = A−1b
with A = E

[
xt(xt − γxt+1)⊤

]
and b = E [Rt+1xt ]

TD algorithm: iterative update of a w t .
Least-Squares TD algorithm: iterative update of At and bt and final application
of the inverse formula.
Natural estimates:

At = 1
t

t−1∑
k=0

xt(xt − γxt+1)⊤ and bt = 1
t

t−1∑
k=0

Rt+1xt

To avoid some invertibility issue:

Ât =
t−1∑
k=0

xt(xt − γxt+1)⊤ + ϵId and b̂t =
t−1∑
k=0

Rt+1xt

Missing 1/t factor cancels. . .
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On-policy Prediction with
Approximation

9.8 Least-Squares TD

O(d2) per step but inversion required in the end. . .
Even better algorithm by maintaining an estimate of (tA)−1:

Ât
−1

=
(
Ât−1 + xt(xt − γxt+1)⊤

)−1

= Ât−1
−1
− Ât−1

−1
xt(xt − γxt+1)⊤Ât−1

−1

1 + (xt − γxt+1)⊤Ât−1
−1

xt
still O(d2) per step but no inversion in the end.
No stepsize. . . but thus no forgetting. . . 162



On-policy Prediction with
Approximation

9.9 Memory-based Function Approximation

Non-parametric approach using memory.
Requires an estimate of the target for a set of states.
After (lazy) learning, each time a new query state arrives, one retrieve a set of
close examples in the training dataset and deduces an estimate for the query state.
Examples: nearest-neighbors, weighted average, locally weighted regression. . .
Focus on states that are close to observed states.
No need to be accurate far from typical states.
Computational issue: need to find (approximate) nearest neighbors. . .
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9.10 Kernel-based Function Approximation

Kernel-based approximation is a weighted average strategy where the weights are
defined by a kernel k measuring the similarity between states.
Kernel-based approximation:

v̂(s,D) =
∑

s′∈D k(s, s ′)g(s ′)∑
s′∈D k(s, s ′)

Similar to RBF but kernel centered on the examples.
Large freedom in the choice of kernel. . .
Kernel tricks!
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9.11 Looking Deeper at On-policy Learning: Interest
and Emphasis

Prediction Objective (VE ):
VE (w) =

∑
s

µ(s) (vπ(s)− v̂(s, w))2

where µ is a state distribution.
Not necessarily the most interesting goal!
For instance, one may be more interested by earlier states than later states.
Interest It defined for each state.
General algorithm:

w t+n = w t+n−1 + αMt(Gt:t+n − v̂(St , w t+n−1))∇v̂(St , w t+n−1)
with

Mt = It + γnMt−n

Proof of convergence similar to TD(0).
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10 On-policy Control with Approximation

10.1 Episodic Semi-gradient Control
10.2 Semi-gradient n-step Sarsa
10.3 Average Reward: A New Problem Setting for Continuing Tasks
10.4 Deprecating the Discounted Setting
10.5 Differential Semi-gradient n-step Sarsa
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10.1 Episodic Semi-gradient Control

Straightforward extension to qπ(s, a) ∼ q̂(s, a, w).
Prediction algorithm:

w t+1 = w t + α (Ut − q̂(St , At , w t))∇q̂(St , At , w)
On-policy control by adding a (ϵ-greedy) policy improvement step.
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10.1 Episodic Semi-gradient Control

Grid tiling with 8 cells and asymmetrical offsets.
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10.1 Episodic Semi-gradient Control
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10.2 Semi-gradient n-step Sarsa

Natural extension of tabular methods:
Gt:t+n = Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnq̂(St+n, At+n, w t+n−1)
w t+n = w t+n−1 + α (Gt:t+n − q̂(St , At , w t+n−1))∇q̂(St , At , w t+n−1)
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10.2 Semi-gradient n-step Sarsa
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10.3 Average Reward: A New Problem Setting for
Continuing Tasks

Continuous task without discounting.
Average reward:

r(π) = lim
h→+∞

1
h

h∑
t=1

E [Rt |S0, A0:t−1 ∼ π]

=
∑

s
µπ(s)

∑
a

π(a|s)
∑
s′,r

p(s ′, r |s, a)r

Ergodicity assumption on the MDP: existence of
µπ(s) = lim

t→+∞
P (St = s|A0:t−1 ∼ π)

which is independent of S0 for any π.
By construction, ∑

s
µπ

∑
a

π(a|s)p(s ′|s, a) = µπ(s ′)
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10.3 Average Reward: A New Problem Setting for
Continuing Tasks

Differential returns:
Gt = Rt+1 − r(π) + Rt+2 − r(π) + · · ·

Differential value functions:
vπ(s) = Eπ [Gt |St = s] and qπ(s, a) = Eπ [Gt |St = s, At = a]

Bellman:
vπ(s) =

∑
a

π(a|s)
∑
r ,s′

p(s ′, r |s, a)
(
r − r(π) + vπ(s ′)

)
qπ(s, a) =

∑
r ,s′

p(s ′, r |s, a)
(

r − r(π) +
∑
a′

π(a′|s ′)qπ(s ′, a′)
)

Optimality:
v∗(s) = max

a

∑
r ,s′

p(s ′, r |s, a)
(
r −max

π
r(π) + v∗(s ′)

)
qπ(s, a) =

∑
r ,s′

p(s ′, r |s, a)
(

r −max
π

r(π) + max
a′

qπ(s ′, a′)
)

Rk: True derivation much more involved! 174
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10.3 Average Reward: A New Problem Setting for
Continuing Tasks

Differential TD errors:
δt = Rt+1 − Rt + v̂(St+1, w t)− v̂(St , w t)
δt = Rt+1 − Rt + q̂(St+1, At+1, w t)− q̂(St , At , w t)

Differential algorithm: for instance semi-gradient Sarsa
w t+1 = w t + αδt∇q̂(St , At , w t)
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10.3 Average Reward: A New Problem Setting for
Continuing Tasks
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10.4 Deprecating the Discounted Setting
In the ergodic setting, discounting is equivalent to averaging!

J(π) =
∑

s
µπ(s)vπ,γ(s)

=
∑

s
µπ(s)

∑
a

π(a|s)
∑
s′,r

p(s ′, r |s, a)(r + γvπ,γ(s ′))

= r(π) + γ
∑
s′

vπ,γ(s ′)
∑

s
µπ(s)

∑
a

p(s ′|s, a)π(a|s)

= r(π) + γ
∑
s′

vπ,γ(s ′)µπ(s ′)

= r(π) + γJ(π)

= 1
1− γ

r(π)
Same optimal policies.
Issue: with approximation, policy improvement theorem is lost (in finite,
discounted and average cases).
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10.5 Differential Semi-gradient n-step Sarsa

Differential n-returns:
Gt:t+n = Rt+1 − Rt+n−1 + · · ·+ Rt+n − Rt+n−1

+ q̂(St+n, At+, w t+n−1)
where Rt+n−1 is an estimate of r(π).
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11.6 The Bellman Error is not Learnable
11.7 Gradient-TD Methods
11.8 Emphatic-TD Methods
11.9 Reducing Variance

180



Off-policy Methods with
Approximation

11.1 Semi-gradient Methods

Off-policy learning: two challenges
dealing with the target update
dealing with the distributions of update

First-part is easier. . .
Importance sampling ratio:

ρt = ρt:t = π(At |St)
b(At |St)

Semi-gradient off-policy TD(0):
w t+1 = w t + αρtδt∇v̂(St , w t)

with
δt = Rt+1 + γv̂(St+1, w t)− v̂(St , W t) (episodic)

= Rt+1 − Rt + v̂(St+1, w t)− v̂(St , W t) (continuing)
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11.1 Semi-gradient Methods

Semi-gradient Expected Sarsa:
w t+1 = w t + αδt∇q̂(St , At , w t)

with
δt = Rt+1 + γ

∑
π(a|St + 1)q̂(St+1, a, w t)

− q̂(St , At , W t) (episodic)
= Rt+1 − Rt +

∑
π(a|St + 1)q̂(St+1, a, w t)

− q̂(St , At , W t) (continuing)
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11.1 Semi-gradient Methods
Multi-step Semi-gradient Sarsa:

w t+n = w t+n−1 + αρt+1 · ρt+n−1δt∇q̂(St , At , w t)
with

δt = Rt+1 + · · ·+ γn−1Rt+n + γnq̂(St+n, At+n, w t+n−1)
− q̂(St , At , W t) (episodic)

= Rt+1 − Rt + · · ·+ Rt+n − Rt+n−1 + q̂(St+n, At+n, w t+n−1)
− q̂(St , At , W t) (continuing)

Tree-backup:
w t+n = w t+n−1 + α (Gt:t+n − q̂(St , At , wt+n−1))∇q̂(St , At , w t)

with

Gt:t+n = q̂(St , At , wt−1) +
t+n−1∑

k=t
δk

k∏
i=t+1

γπ(Ai |Si)

and δk as in Expected Sarsa.
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11.2 Examples of Off-policy Divergence

Simple transition with a reward 0.
TD error:

δt = Rt+1 + γv̂(St+1, w t)− v̂(St , w t)
= 0 + γ2wt − wt = (2γ − 1)wt

Off-policy semi-gradient TD(0) update:
wt+1 = wt + αρtδt∇v̂(St+1, w t)

= wt + α× 1× (2γ − 1)wt = (1 + α(2γ − 1))wt

Explosion if this transition is explored without w being update on other
transitions as soon as γ > 1/2.
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11.2 Examples of Off-policy Divergence

Divergence of off-policy algorithm.
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11.2 Examples of Off-policy Divergence

Exact minimization of bootstrapped VE at each step:
wk+1 = argmin

w

∑
s

(v̂(s, w)− Eπ [Rt+1 + γv̂(St+1, wk)|St = s])2

= argmin
w

(w − γ2wk)2 + (2w − (1− ϵ)γ2wk)2

= 6− 4ϵ

5 γwk

Divergence if γ > 5/(6− 4ϵ).
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11.3 The Deadly Triad

Deadly triad:
Function approximation
Bootstrapping
Off-policy training

Instabilities as soon as the three are present!
Issue:

Function approximation is unavoidable.
Bootstrap is much more computational and data efficient.
Off-policy may be avoided. . . but essential when dealing with extended setting (learn
from others or learn several tasks)
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11.4 Linear Value-function Geometry

Natural weighted squared norm:
∥v∥2µ =

∑
s

µ(s)v(s)2

Prediction objective VE :
VE (w) = ∥vw − vπ∥2µ

Projection operator Π:
Πv = vw where w = argmin

w
∥v − vw∥2

Target for MC methods
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11.4 Linear Value-function Geometry

Bellman error:

δw(s) =

∑
a

π(a|s)
∑
s′,r

p(s ′, r |s, a)(r + γvw(s ′))

− vw(s)

= Eπ [Rt+1 − γvw(St+1)− vw(St)|St = s, At ∼ π]
Expectation of TD error.
Mean Squared Bellmann Error:

BE (w) = ∥δw(s)∥2µ
Unique minimizer in linear case
Different from minimizer of VE .
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11.4 Linear Value-function Geometry

Bellman operator:
Bπ(v)(s) =

∑
a

π(a|s)
∑
s′,r

p(s ′, r |s, a)(r + γvw(s ′))

Bπ(vw)(s) is in general not representable.
Projected Bellman operator: ΠBπv
Projected Bellman iteration: vw t+1 = ΠBπvw t . . .
Mean Square Projected Bellman error:

PBE (w) = ∥ΠBπvw − vw∥2µ = ∥Πδw∥2µ
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11.5 Gradient Descent in the Bellman Error
With approximation, only MC so far is a SGD method. . .
TD error:

δt = Rt+1 + γv̂(St+1, w t)− v̂(St , w t)
Mean Squared TD Error:

TDE (w) =
∑

s
µ(s)E

[
δ2

t |St = s, At ∼ π
]

= Eb
[
ρtδ

2
t

]
with µ linked to b.
Minimization of an expectation leads to SGD.
SGD algorithm:

w t+1 = w t − 1/2α∇(ρtδ
2
t )

= w t + αρtδt(∇v̂(St , w t)− γ∇v̂(St+1, w t))
Convergence guarantees for this naïve residual-gradient algorithm.
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11.5 Gradient Descent in the Bellman Error

Solution not necessarily interesting!
True value function is easy: vπ(A) = 1/2, vπ(B) = 1, vπ(C) = 0.
Optimal TDE attained for: vπ(A) = 1/2, vπ(B) = 3/4, vπ(C) = 1/4!
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11.5 Gradient Descent in the Bellman Error

Bellman error can also be measured by
(Eπ [δt ])2

SGD type algorithm:
w t+1 = w t − 1/2α∇ (Eπ [δt ])2

= w t − αEb [ρtδt ]∇Eb [ρtδt ]
= w t + α (Eb [ρt(Rt+1 + γv̂(St+1, w t))]− v̂(St , w t))

× (∇v̂(St , w t)− γEb [ρt∇v̂(St+1, w t)])
Requires two independent samples for St+1!
Converges toward the true value in the tabular case.
Can be slow. . . and the solution with approximation may be unsatisfactory.
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11.6 The Bellman Error is not Learnable

Two MRP with the same outputs (because of approximation).
but different VE .
Impossibility to learn VE .
Minimizer however is learnable:

RE (w) = E
[
(Gt − v̂(St , w))2

]
= VE (w) + E

[
(Gt − vπ(St))2

]
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11.6 The Bellman Error is not Learnable

Two MRP with the same outputs (because of approximation).
Different BE .
Different minimizer!
BE is not learnable!
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11.6 The Bellman Error is not Learnable

PBE and TDE are learnable.
196



Off-policy Methods with
Approximation

11.7 Gradient-TD Methods

SGD Methods for minimizing PBE .
PBE (w) = ∥Πδw∥2µ

= δ⊤
w Π⊤DΠδw

= (X⊤Dδw)⊤(X⊤DX)−1(X⊤Dδw)
Gradient:

PBE (w) = 2∇(X⊤Dδw)⊤(X⊤DX)−1(X⊤Dδw)
Expectations:

X⊤Dδw = E [ρtδtxt ]

∇(X⊤Dδw)⊤ = E
[
ρt(γxt+1 − xt)x⊤

]
X⊤DX = E

[
xtx⊤

t

]
Not yet a SGD. . .
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11.7 Gradient-TD Methods
Expectations:

∇(X⊤Dδw)⊤ = E
[
ρt(γxt+1 − xt)x⊤

]
X⊤DX = E

[
xtx⊤

t

]
X⊤Dδw = E [ρtδtxt ]

Learn the product v of last two terms:
v ≃ E

[
xtx⊤

t

]−1
E [ρtδtxt ]

Solution of a least square
Iterative algorithm:

v t+1 = v t + βρt(δt − v⊤
t xt)xy

Insert expression in the gradient to obtain GTD
w t+1 = w t + αρt(γxt+1 − xt)x⊤v t

or GTD2
w t+1 = w t + αρt(δxt − γxt+1xtx⊤v t)

Convergence with β → 0 and α/β → 0 (two scales)
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11.7 Gradient-TD Methods

199



Off-policy Methods with
Approximation

11.8 Emphatic-TD Methods

Linear semi-gradient TD methods convergence due to a match between the
on-policy distribution and the transition prob.
Emphatic-TD: clever manner to weight the examples in off-policy that maintains
the compatibility.
One-step Emphatic-RD:

δt = Rt+1 + γv̂(St+1, w t)− v̂(St , w t)
Mt = γρt−1Mt−1 + It

w t+1 = w t + αMtρtδt∇v̂(St , w t)
where It is an arbitrary interest and Mt the emphasis (M0 = 0).
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11.9 Reducing Variance

Off-policy methods have more variance than off-policy ones.
High variability of importance sampling ratio.
Tree Backup does not have importance ratio.
Other variants such as Retrace.
Variance can also be reduced by more strongly linking the behavior and target
policies.
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Eligibility Traces12.1 The λ-return

n-step return:
Gt:t+n = Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnv̂(St+n, w t+n−1)

Averaged n-step return: (compound update)

Gω
t =

∞∑
n=1

ωnGt:t+n with
∞∑

i=1
ωn = 1

TD(λ): specific averaging

Gλ
t = (1− λ)

∞∑
n=1

λn−1Gt:t+n

204



Eligibility Traces12.1 The λ-return

TD(λ): interpolation between TD(0) and MC

Gλ
t = (1− λ)

∞∑
n=1

λn−1Gt:t+n

= (1− λ)
T−t−1∑

n=1
λn−1Gt:t+n + λT−t−1Gt
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Eligibility Traces12.1 The λ-return

offline λ-return algorithm:
Play an episode according to the policy
Afterwards, modify w according to

w t+1 = w t + α
(
Gλ

t − v̂(St , w t)
)
∇v̂(St , w t), t = 0, . . . , T
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Eligibility Traces12.1 The λ-return

Forward view!
Need to wait till the end before any update.
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Eligibility Traces12.2 TD(λ)

Backward view!
Eligibility trace zt keeping track of the components of w that have contributed to
state valuations:

z−1 = 0
zt = γλzt−1 +∇v̂(St , w t)

TD Error:
δt = Rt+1 + γv̂(St+1, w t)− v̂(St , w t)

Update:
w t+1 = w t + αδtzt
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Eligibility Traces12.2 TD(λ)

TD(λ):
zt = γλzt−1 +∇v̂(St , w t)
δt = Rt+1 + γv̂(St+1, w t)− v̂(St , w t)

w t+1 = w t + αδtzt
TD(0) is the classical TD algorithm.
TD(1) is similar to a MC algorithm but with parameter update before the end of
the episode.
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Eligibility Traces12.2 TD(λ)

Not the same as using λ-return. . .
Convergence guarantees in the linear case:

VE (w∞) ≤ 1− γλ

1− γ
min

w
VE (w)
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Eligibility Traces12.3 n-step Truncated λ-return Methods

λ-return is technically never known in the continuing case!
Truncated λ-return:

Gλ
t:h = (1− λ)

h−t−1∑
n=1

λn−1Gt:t+n + λh−t−1Gt

Similar to an episodic setting of length h.
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Eligibility Traces12.3 n-step Truncated λ-return Methods

Family of n-step λ-return. . .
TTD(λ):

w t+n = w t+n−1 + α
(
Gλ

t:t+n − v̂(St , w t+n−1)
)
∇v̂(St , w t+n−1)

Efficient implementation relying on:

Gλ
t:t+k = v̂(St , w t+1) +

t+k−1∑
i=t

(γλ)i−1δi

with
δt = Rt+1 + γv̂(St+1, w t)− v̂(St , w t−1)

Forward view but strong connection with backward one.
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Eligibility Traces12.4 Redoing Updates: Online λ-return

Conceptual algorithm which computes a weight at any time t using only the
returns known at this time.
Pass on all the data at each time step using the largest possible horizon h:

wh
t+1 = wh

t + α
(
Gλ

t:h − v̂(St , wh
t )
)
∇v̂(St , w t), 0 ≤ t < h ≤ T
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Eligibility Traces12.5 True Online TD(λ)

w0
0

w1
0 w1

1
w2

0 w2
1 w2

2
...

...
... . . .

wT
0 wT

1 wT
2 · · · wT

T

Online λ-return algorithm has a triangular structure.
True online TD(λ) computes w t+1

t+1 directly from w t
t .

Linear case:
w t+1 = w t + αδtzt + α(w⊤

t xt −w⊤
t−1xt)(zt − xt)

with
zt = γλzt−1 + (1− αγλz⊤

t−1xt)xt
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Eligibility Traces12.5 True Online TD(λ)

Dutch trace:
zt = γλzt−1 + (1− αγλz⊤

t−1xt)xt

Accumulating trace TD(λ):
zt = γλzt−1 + xt

Replacing trace:

zt =
{

1 if xi ,t = 1
γλzi ,t−1 otherwise

was a precursor of Dutch traces for binary features.
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Eligibility Traces12.6 Dutch Traces in Monte Carlo Learning
Linear MC update:

w t+1 = w t + α
(
G −w⊤

t xt
)

xt
Here G is a single reward known at time T .
All the computation have to be done at the end to obtain wT .
More efficient implementation using:

wT = wT+1 + α
(
G −w⊤

T−1xT−1
)

xT−1

= (Id− αxT−1x⊤
T−1)wT−1 + αGxT−1

= FT−1wT−1 + αGxT−1

= FT−1FT−2wT−2 + αG(FT−2xT−2 + xT−1)

= FT−1FT−2 · · ·F 0w0︸ ︷︷ ︸
aT−1

+αG
T−1∑
k=0

FT−1 · · ·F k+1xk︸ ︷︷ ︸
zT−1

with F t = Id− αxt(xt)⊤.
Recursive online implementation possible. 217



Eligibility Traces12.6 Dutch Traces in Monte Carlo Learning

Furthermore,

zt =
t∑

k=0
F t · · ·F k+1xk

= Ftzt−1 + xt

= zt−1 + (1− αz⊤
t−1xt)xt

and
at = F t · F 0w0 = F tat−1 = at−1 − αxtx⊤

t at−1

Efficient computation with only O(d) operation per step.
Eligibility traces arise whenever one tries to learn a long-term prediction in an
efficient manner.
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Eligibility Traces12.7 Sarsa(λ)

Action-value form of the n-step return:
Gt:t+n = Rt+1 + · · ·+ γn−1Rt+n + γnq̂(St+n, At+n, w t+n−1)

Offline λ-return algorithm:
w t+1 = w t + α

(
Gλ

t − q̂(St , At , w t)
)
∇q̂(St , At , w t)

where Gλ
t = Gλ

t:∞.
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Eligibility Traces12.7 Sarsa(λ)

Backward view:
w t+1 = w t + αδtzt

with
δt = Rt+1 + γq̂(St+1, At+1, w t)− q̂(St , At , w t−1)

and
z−1 = 0

zt = γλzt−1 +∇q̂(St , At , w t)

220



Eligibility Traces12.7 Sarsa(λ)
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Eligibility Traces12.7 Sarsa(λ)
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Eligibility Traces12.8 Variable λ and γ

Generalization to non constant discount and non constant λ.
γ termination function:

Gt = Rt+1 + γt+1Gt+1

=
∞∑

k=t

 k∏
i=t+1

γi

Rk+1

Using γt = 0 at the transition allows to see a single stream in episodic setting.
Recursive definition of the λ-return for time dependent λt :
Gλs

t = Rt+1 + γt+1
(
(1− λt+1)v̂(St+1, w t) + λt+1Gλs

t+1

)
Gλa

t = Rt+1 + γt+1
(
(1− λt+1)q̂(St+1, At+1, w t) + λt+1Gλa

t+1

)
Gλa

t = Rt+1 + γt+1

(
(1− λt+1)

∑
a

π(a|St+1)q̂(St+1, a, w t) + λt+1Gλa
t+1

)
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Eligibility Traces12.9 Off-policy Traces with Control Variates
Off-policy λ-return:

Gλs
t = ρt

(
Rt+1 + γt+1

(
(1− λt+1)v̂(St+1, w t) + λt+1Gλs

t+1

))
+ (1− ρt)v̂(St , w t)︸ ︷︷ ︸

Control variate
TD error:

δt = Rt+1 + γt+1v̂(St+1, w)− v̂(St , w t)
Approximation of off-policy λ-return:

Gλs
t ≃ v̂(St , w t) + ρt

∞∑
k=t

δk

k∏
i=t+1

γiλiρi

Not an approximation if w is not updated!
Forward-view update:

w t+1 = w t + α
(
Gλs

t − v̂(St , w t)
)
∇v̂(St , w t)

≃ w t + αρt

 ∞∑
k=t

δk

k∏
i=t+1

γiλiρi

∇v̂(St , w t)
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Eligibility Traces12.9 Off-policy Traces with Control Variates
Link between forward and backward views:

w t+1 −w t ≃

 ∞∑
k=t

αρtδk

k∏
i=t+1

γiλiρi

∇v̂(St , w t)

Sum over time:
∞∑

t=1
(w t+1 −w t) ≃

∞∑
t=1

∞∑
k=t

αρtδk

 k∏
i=t+1

γiλiρi

∇v̂(St , w t)

=
∞∑

k=1

k∑
t=1

αρtδk

 k∏
i=t+1

γiλiρi

∇v̂(St , w t)

=
∞∑

k=1
αδk

k∑
t=1

ρt

 k∏
i=t+1

γiλiρi

∇v̂(St , w t)

Eligibility trace (accumulating):

zt =
k∑

t=1
ρt

 k∏
i=t+1

γiλiρi

∇v̂(St , w t)

= ρk(γkλkzk−1 +∇v̂(Sk , wk))
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Eligibility Traces12.9 Off-policy Traces with Control Variates
Similar results for action-value methods.
Off-policy λ return:

Gλs
t = Rt+1 + γt+1

(
(1− λt+1)V̄t(St+1, w t)+

λt+1
(
ρt+1Gλs

t+1 + V̄t(St+1, w t)− ρt+1q̂(St+1, At+1, w t)
) )

≃ q̂(St , At , w t) +
∞∑

k=t
δk

k∏
i=t+1

γiλiρi

with
δt = Rt+1 + γt+1V̄ (St+1)− q̂(St , At , w t)

Eligibility trace:
zt = γtλtρtzt−1 +∇q̂(St , At , w t)

λ = 1 close from MC but subtly distinct. . .
Theoretical guarantees still investigated.

227



Eligibility Traces12.10 Watkins’s Q(λ) to Tree-Backup(λ)

Tree backup return:
Gλa

t = Rt+1 + γt+1
(
(1− λt+1)V̄ St+1+

λt+1
(
V̄ (St+1)− π(At+1|St+1)(q̂(St+1, At+1, w t)− Gλa

t+1)
) )

≃ q̂(St , At , w t) +
+∞∑
k=t

δk

k∏
i=t+1

γiλiπ(Ai |Si)

Tree Backup eligibility trace:
zt = γtλtπ(At |St) +∇q̂(St , At , w)

228



Eligibility Traces12.10 Watkins’s Q(λ) to Tree-Backup(λ)

Watkins’s Q(λ) cuts the trace to zero after the first non greedy update.
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Eligibility Traces12.11 Stable Off-policy Methods with Traces

Four of the most important examples of stable off-policy using eligibility traces.
GTD(λ): Gradient-TD (TDC)
GQ(λ): Gradient-TD for action-value
HTD(λ): Hybrid between GTD(λ) and TD(λ)
Emphatic TD(λ): Extension of Emphatic-TD.
All of them maintain an eligibility trace used in some TD error updates
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Eligibility Traces12.11 Stable Off-policy Methods with Traces

GTD(λ): Gradient-TD (TDC)
w t+1 = w t + αδs

t zt − αγt+1(1− λt+1)(z⊤
t v t)xt+1

v t+1 = v t + βδzt − β(v⊤
t xt)xt

GQ(λ): Gradient-TD for action-value
w t+1 = w t + αδa

t zt − αγt+1(1− λt+1)(z⊤
t v t)x t+1

where
x t =

∑
a

π(a|St)x(St , a)

δa
t = Rt+1 + γt+1w⊤

t x t+1 −w⊤
t xt

and the rest as in GTD(λ)

231



Eligibility Traces12.11 Stable Off-policy Methods with Traces

HTD(λ): Hybrid between GTD(λ) and TD(λ)
w t+1 = w t + αδs

t zt + α((zt − zb
t )⊤v t)(xt − γt+1xt+1)

v t+1 = v t + βδs
t z⊤ − β((zb

t )⊤v t)(xt − γt+1xt+1)
zt = ρt(γtλtzt−1 + xt)
zb

t = γtλtzb
t−1 + xt

Emphatic TD(λ): Extension of Emphatic-TD
w t+1 = w t + αδtzt

δt = Rt+1 + γt+1w⊤
t xt+1 −w⊤

t xt

zt = ρt(γtλtzt−1 + Mtxt)
Mt = λt It + (1− λt)Ft

Ft = ρt−1γtFt−1 + It .
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Eligibility Traces12.12 Implementation Issues

Trace is of the dimension of w .
Eligibility trace seems unusable for tabular methods.
Trick: list the small numbers of non-zero coordinates in the trace, update them
and kill them if they are too small.
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Policy Gradient Methods13.1 Policy Approximation and its Advantages

Parametric policy π(a|s, θ) differentiable with respect to θ.
Soft-max in action preferences:

numerical preferences h(a, s, θ).
probability:

π(a|s, θ) = eh(a,s,θ)∑
b eh(b,s,θ)

Lots of freedom in the parameterization of h: from linear to deep network. . .
Can approach a deterministic policy or stochastic ones. . .
May be simpler than value-based method.
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Policy Gradient Methods13.2 The Policy Gradient Theorem

Performance measure J(θ) depends smoothly on θ.
Easier to obtain convergence guarantees.
Episodic case: performance

J(θ) = vπθ
(s0)

where s0 is the initial state.
Policy gradient theorem:

∇J(θ) ∝
∑

s
µ(s)

∑
a

qπ(s, a)∇π(a|s, θ)
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Policy Gradient Methods13.2 The Policy Gradient Theorem
Gradient of vπ(s):

∇vπ(s) = ∇
(∑

a
π(a|s)qπ(s, a)

)
=
∑

a
(∇π(a|s)qπ(s, a) + π(a|s)∇qπ(s, a))

=
∑

a

(
∇π(a|s)qπ(s, a) + π(a|s)

∑
s′

p(s ′|s, a)∇vπ(s ′)
)

=
∑

x

∞∑
k=0

P (s → x , k, π)
∑

a
∇π(a|x)qπ(x , a)

Stationary measure µ(s):

µ(s) =
∑

k P (s0 → s, k, π)∑
s′
∑

k P (s0 → s, k, π)
Gradient of J(θ):

∇J(θ) =
(∑

s′

∑
k

P (s0 → s, k, π)
)∑

s
µ(s)

∑
a
∇π(a|s)qπ(s, a)
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Policy Gradient Methods13.3 REINFORCE: Monte Carlo Policy Gradient

Gradient of J(θ):
∇J(θ) ∝

∑
s

µ(s)
∑

a
∇π(a|s, θ)qπ(s, a)

= Eπ

[∑
a
∇π(a|St , θ)qπ(St , a)

]
All-actions SGD:

θt+1 = θt+1 + α
∑

a
∇π(a|St , θ)q̂(St , a, w)

REINFORCE use a single action:

θt+1 = θt+1 + αGt
∇π(At |St , θ)

π(At |St)
where Gt is the usual MC return.
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Policy Gradient Methods13.3 REINFORCE: Monte Carlo Policy Gradient

REINFORCE derivation:

∇J(θ) ∝ Eπ

[∑
a
∇π(a|St , θ)qπ(St , a)

]

= Eπ

[∑
a

π(a|St , θ)∇π(a|St , θ)
π(a|St , θ) qπ(St , a)

]

= Eπ

[
∇π(At |St , θ)

π(A|St , θ) qπ(St , At)
]

= Eπ

[
Gt
∇π(At |St , θ)
π(At |St , θ)

]
= Eπ [Gt∇ ln π(At |St , θ)]
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Policy Gradient Methods13.3 REINFORCE: Monte Carlo Policy Gradient

SGD algorithm hence good theoretical convergence properties.
Variance may be high. 241



Policy Gradient Methods13.4 REINFORCE with Baseline

Any baseline b(s) satisfies ∑
a

b(s)∇π(a|s, θ) = 0

Generalized policy gradient theorem:
∇J(θ) ∝

∑
s

µ(s)
∑

a
(qπ(s, a)− b(s))∇π(a|s, θ)

REINFORCE algorithm with baseline:

θt+1 = θt+1 + α(Gt − b(St))
∇π(At |St , θ)

π(At |St)
Allows variance reduction.
Natural choice for b(St): v̂(St , w).

242



Policy Gradient Methods13.4 REINFORCE with Baseline
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Policy Gradient Methods13.5 Actor-Critic Methods

REINFORCE learns a policy and a state value function, but does not use it to
bootstrap.
Actor-Critic methods: replace Gt by a bootstrap estimate:

θt+1 = θt+1 + α(Gt:t+1 − v̂(St , w))∇π(At |St , θ)
π(At |St , θ)

= θt+1 + αδt
∇π(At |St , θ)
π(At |St , θ)

Same tradeoff with respect to MC. . .
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Policy Gradient Methods13.5 Actor-Critic Methods
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Policy Gradient Methods13.5 Actor-Critic Methods
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Policy Gradient Methods13.6 Policy Gradient for Continuing Tasks

Most natural performance measure:

J(θ) = r(π) = lim
h→∞

1
h

h∑
t=1

E [Rt |S0, A0:t−1 ∼ π]

=
∑

s
µ(s)

∑
a

π(a|s)
∑
s′,r

p(s ′, r |s, a)r

µ is such that ∑
s

µ(s)
∑

a
π(a|s)p(s ′|s, a) = µ(s ′)

Gradient of J(θ):
∇J(θ) =

∑
s

µ(s)
∑

a
∇π(a|s)qπ(s, a)
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Policy Gradient Methods13.6 Policy Gradient for Continuing Tasks
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Policy Gradient Methods13.6 Policy Gradient for Continuing Tasks

Gradient of the state-value function:

∇vπ(s) = ∇

(∑
a

π(a|s)qπ(s, a)

)
=
∑

a

(∇π(a|s)qπ(s, a) + π(a|s)∇qπ(s, a))

=
∑

a

(
∇π(a|s)qπ(s, a) + π(a|s)

∑
s′

p(s ′|s, a)∇(−r(θ) + vπ(s ′)

)

=
∑

a

(
∇π(a|s)qπ(s, a)

+ π(a|s)

(
−∇r(θ) +

∑
s′

p(s ′|s, a)∇vπ(s ′)

))
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Policy Gradient Methods13.6 Policy Gradient for Continuing Tasks

Gradient of J(θ) = r(θ):

∇J(θ) =
∑

a

(
∇π(a|s)qπ(s, a) + π(a|s)

∑
s′

p(s ′|s, a)∇vπ(s ′)

)
− ∇vπ(s)

=
∑

s

µ(s)

(∑
a

(
∇π(a|s)qπ(s, a) + π(a|s)

∑
s′

p(s ′|s, a)∇vπ(s ′)

)
− ∇vπ(s)

)
=
∑

s

µ(s)
∑

a

∇π(a|s)qπ(s, a)

+
∑

s′

∑
s

µ(s)π(a|s)p(s ′|s, a)︸ ︷︷ ︸
µ(s′)

∇vπ(s ′) −
∑

s

µ(s)∇vπ(s)

=
∑

s

µ(s)
∑

a

∇π(a|s)qπ(s, a)
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Policy Gradient Methods13.7 Policy Parameterization for Continuous Actions

Policy-based methods offer a way to deal with continuous action space.
Only requirement is a parametric policy that can be sampled.
For instance, a Gaussian parameterization with linear mean and linear log variance.
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