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Motivation

Credit Default, Credit Score, Bank Risk, Market Risk Management
DEFiumy
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@ Data: Client profile, Client credit history...
@ Input: Client profile
@ Output: Credit risk
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Motivation

Marketing: advertisement, recommendation...

You looked at You might also consider
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@ Data: User profile, Web site history...

@ Input: User profile, Current web page

@ Output: Advertisement with price, recommendation...
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Motivation

Number Recognition
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e Data: Annotated database of images

@ Input: Image.

@ Output: Corresponding number.
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Motivation

Face Detection

@ Data: Annotated database of images
@ Input : Sub window in the image

@ Output : Presence or no of a face...
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Motivation

Spam detection (Text classification)

e Data: 4601 emails sent to an individual (George, at HP labs,
before 2000)

@ Input: email

@ Output : Spam/ No Spam

Fermin and Le Pennec Statistical Learning vs Machine Learning in Classification



Motivation

WINNING NOTIFICATION Dear George,

We are pleased to inform you of Could you please send me the
the result of the Lottery Winners report #1248 on the project
International programs held on advancement? Thanks in

the 30th january 2005. [...] You advance.

have been approved for a lump Regards,

sum pay out of 175,000.00 euros. Cathia
CONGRATULATIONS!!

goal: Detect spam in emails

input features: relative frequencies of the most commonly
occurring words and punctuation marks in these email messages.
"George”, "send”, "Lottery”, "project”, "pay”, "euros”,
"NOTIFICATION", "CONGRATULATIONS", "I", report, ...
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Motivation

With the explosion of “Big Data” problems, statistical learning has
become a very hot field in many scientific areas.

@ It is important to understand the ideas behind the various
techniques, in order to know how and when to use them.

@ One has to understand the simpler methods first, in order to
grasp the more sophisticated ones.

@ This is an exciting research area, having important
applications in science, industry and finance.

@ Statistical learning is a fundamental ingredient in the training
of a modern data scientist.
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Topics for Today

@ Supervised Classification (Part 1)
e Binary Supervised Classifcation
o Models
e Statistical and Machine Learning Framework
@ A Statistical Learner Point of View (Part 1)
e Logistic regression
o Class by Class modeling
o k Nearest Neighbors
© A Machine Learner Point of View (Part 2)
e SVM
o (Deep) Neural Networks
o Tree Based Methods
© Model and Variable Selection (Part 2)
o Model Selection
e Practical Variable Selection
e Empirical Risk Minimization Analysis

@ Big Data (Part 2)
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Statistical Learning in Classification

@ Supervised Classification
@ Binary Supervised Classification
@ Models
@ Statistical and Machine Learning Framework

© A Statistical Learner Point of View
@ Logistic Modeling
@ Class by Class modeling
@ k Nearest-Neighbors
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y Supervised Classification
Viodel
Statistical and Machine Learning Framework

Supervised Classification

Outline

@ Supervised Classification
@ Binary Supervised Classification
@ Models
@ Statistical and Machine Learning Framework
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Supervised Classification Binary Supervised Classification

Statistical and Machine Learning Framew

Outline

@ Supervised Classification
@ Binary Supervised Classification
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Binary Supervised Classification
Models
Statistical and Machine Learning Framework

Supervised Classification

Binary Supervised Classification

@ Output measurement Y € {—1,1}.

@ Input measurement X = (X(l),X(z), .. ,X(d)) e R4

o {(X;, Yi)}", are modeled as i.i.d random variables of a
generic pair (X, Y) € RY x {~1,1}

o Training data : D = {(Xy, Y4),...,(Xn, Ya)}  (i.i.d. ~P)

o Classifier : f : RY — {—1,1} measurable

@ Cost/Loss function : ¢(f(x),y) measure how well f(x)
“predicts” y For this talk £(f(x),y) = 1y¢(x)

@ Goal : learn f € F = {measurable fonctions RY — {—1,1}}
s.t.  the risk

R(F) = Ex,v)~p [((Y, F(X))] = P{Y # £(X)}

is minimal.
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Supervised Classification Binary Supervised Classification
Models

Statistical and Machine Learning Framework

Best solution

@ The best solution * is
f* = argmin R(F) = arg min B [((Y, £(X))] = arg min Ex [Eyx [((Y, £(x))]
f*(x) = arg m/?X]P)(Y = k|X =x)

Binary Bayes Classifier (explicit solution)

In binary classification with 0 — 1 loss:

+1 if P{Y=41X=x}>P{Y =—1|X =x}
F*(x) = SP{Y =+1X=x} >1/2

—1 otherwise

Issue: Explicit solution requires to know Y'|x for all x! J

Fermin and Le Pennec
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Binary Supervised Classification
Models
Statistical and Machine Learning Framework

Supervised Classification

Empirical Risk minimisation

One replaces the minimization of the average loss by the
minimization of the empirical loss

@ Empirical risk:
1 n
Ra(f) = 2 2 AYi F(X))
i=1
@ Empirical risk minimizer over a model § C F:
fo = argmin{R,(f)}
fesS

@ Exemple : linear discrimination

S={x— sign{B"x+ fo} /B € RY By € R}
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Binary Supervised Classification
Models
Statistical and Machine Learning Framev

Supervised Classification

Example: linear discrimination
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Binary Supervised Classification
Models

Statistical and Machine Learning Framev

Supervised Classification

Outline

@ Supervised Classification

@ Models
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Binary Supervised Classification
Models

Statistical and Machine Learning Framework

Supervised Classification

Bias-Variance Dilemna

@ General setting:

F = {measurable fonctions RY — {—1,1}}
Best solution: f* = argmin,c z R(f)

Class S C F of functions

Ideal target in S: f& = argmincs R(f)
Estimate in S: ?5 obtained with some procedure

Approximation error and estimation error (Bias/Variance)

R(fs) — R(f*) = R(fZ) — R(F*) + R(Fs) — R(f$)

Approximation error Estimation error

@ Approximation error can be large if the model § is not well
chosen

@ Estimation error can be large if the model is complex!
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. e e Binary ervised Classificati
Supervised Classification 3inary Supervised Classification
Models

Statistical and Machine Learning Framework

Under-fitting / Over-fitting Issue

Underfit
High bias)

Generalization

(

error

Overfit
(High
variance)

Error

Model complexity
o Different behavior for different model complexity

@ Low complexity model are easily learned but the
approximation large may remain large (Under-fit).

@ High complexity model may contains a good ideal target but
the one learned can be bad due to a high variance (Over-fit)

Bias-variance trade-off <= avoid overfitting and underfitting )
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y Supervised Classification
Models
Statistical and Machine Learning Framework

Supervised Classification

Outline

@ Supervised Classification

@ Statistical and Machine Learning Framework
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Binary Supervised Classification
Models
Statistical and Machine Learning Framework

Supervised Classification

Statistical and Machine Learning Framework
How to find a good function f € ‘H that makes small

R(F) = EL(Y, F(X)] =P {Y # £(X)} 7
Naive approach: fs = argming.g LS Y, £(X)))

Problem: minimization impossible in practice for the 0-1 loss ! )

Supervised Statistical Learning (A. Fermin)

Solution: For x € RY, estimate P(Y = 1|X = x).
Learn Y|X and plug this estimate in the Bayes classifier:
generalized linear models, k-nn, naive Bayes...

Supervised Machine Learning (E. Le Pennec)

Solution: Replace the loss ¢ by an upper bound ¢ which allows
the minimization: SVM, Neural Network, Boosting

A
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A Statistical Learner Point of View

Outline

© A Statistical Learner Point of View
@ Logistic Modeling
@ Class by Class modeling
@ k Nearest-Neighbors
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Logistic Modeling

A Statistical Learner Point of View @ C‘a?.s et i
3 est-Neighbors

Classification Rule / Algorithm

@ Input: a data set D,
Learn Y|x or equivalently px(x) =P {Y = k|X = x} (using
the data set) and plug this estimate in the Bayes classifier

e Output: a classifier f : RY — {—1,1}

o [T P9 2P0
—1 otherwise

@ Three instantiations:
@ Logistic modeling (parametric method)
@ Class by class modeling (Bayes method)
© Nearest neighbors (kernel method)
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Logistic Modeling

i . . C by Cla leli
A Statistical Learner Point of View 5 Loy (Clles (ol

Outline

© A Statistical Learner Point of View
@ Logistic Modeling
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Logistic Modeling
Class by Class modeling

A Statistical Learner Point of View . ez N e

Logistic Modeling

The Binary logistic model (Y € {—1,1})

oBt()
p+1(x) - 1+ eB'9()

where ¢(x) is a transformation of the individual x

@ In this model, one verifies that
p+1(x) > p-1(x) & [o(x) =0
@ True Y|x may not belong to this model = maximum
likelihood of 3 only finds a good approximation!
o Binary Logistic classifier:
H t
?L(X) _ {—i—l if 8fp(x) >0

—1 otherwise

where 3 is estimated by maximum likelihood.
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Logistic Modeling
Class by Class modeling

A Statistical Learner Point of View . ez N e

Logistic Modeling

o Logist model: approximation of B(p1(x)) by B(h(5'x)) with
h(t) = 15+

Opposite of the log-lilkelihood formula

- Z yi=1log(h(3x)) + 1y,= 1 log(1 — h(5x)))

ef'x 1
— 23 (1, 100g 5 41, _ilog
nz yi=1 g1+e5tx yi=—1 158 1 oBix

= fZ|og (1 + e VilF* X)>

fi=il

@ Convex function in g!
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Logistic Modeling
A Statistical Learner Point of View (Cllass bj' et g
k Nearest-

Example: Edgar Anderson’s Iris Data

Description of this famous (Fisher's o

@ Measurements in centimeters of the variables sepal length and width and petal
length and width, respectively, for 50 flowers from each of 3 species of iris

@ The species are Iris setosa, versicolor, and virginica.
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Logistic Modeling
Class by Class modeling

A Statistical Learner Point of View . ez N e

Example: Edgar Anderson’s Iris Data

Simplified iris set

@ Use on petal length and width.

@ Restriction to two species versicolor, and virginica.

)
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°
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5 Species
2 O ® versicolor
g v ® viginica
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L] 0000000
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Petal.Length
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Logistic Modeling
p

n
Neigh

A Statistical Learner Point of View

Example: Logistic

Logistic

Decision region Decision boundary

Species

. versicolor
. virginica

Species

@ versicolor

Petal.Width

® virginica

Petal.Width

4 5 6
Petal.Length

Fermin and Le Pennec
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Logistic Modeling
Class by Class modeling

A Statistical Learner Point of View Y. e N e

Outline

© A Statistical Learner Point of View

@ Class by Class modeling
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Logistic Modeling
Class by Class modeling

A Statistical Learner Point of View Y. e N e

Class by Class Modeling

_ P{X=x|Y =k}P{Y =k}
B P {X = x}

Pi(x)

Remark: If one knows the law of X given y and the law of Y then
everything is easy!

e Binary Bayes classifier (the best solution)

f*(X) — +1 if p+1(x) > p,l(X)
—1 otherwise

@ Heuristic: Estimate those quantities and plug the estimations.
e By using different models for P {X|Y}, we get different
classifiers. Use your favorite density estimator...
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Logistic Modeling
Class by Class modeling

A Statistical Learner Point of View . e N e

Discriminant Analysis

Discriminant Analysis (Gaussian model)

@ The densities are modeled as multivariate normal, i.e.,
P{X|Y =k} ~ Ny 5,
@ Discriminants fonctions:
gi(x) = In(P{X|Y = k}) + In(P{Y = k})
1 _
8i(x) = — 5 (x = ) T (x = )
1
- g In(27) — > In(|Zk|) + In(P{Y = k})
o QDA (differents X in each class) and LDA (X4 = X for all k)

Beware: this model can be false but the methodology remains
valid!
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Logistic Modeling
Class by Class modeling

A Statistical Learner Point of View Y. e N e

Discriminant Analysis

In pratice, we will need to estimate px, Xx and Py :=P{Y = k}
@ The estimate proportion Iﬂ = Lk = %Zf’:l | PR

@ Maximum likelihood estimate of f1x and Sk (explicit formulas)

o DA classifier

~ 1 fg>8
oy {11 1828

—1 otherwise

@ Decision boundaries: quadratic = degree 2 polynomials.

@ If one imposes X _; = X1 = X then the decision boundaries is
an linear hyperplan
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A Statistical Learner Point of View

Example: LDA

Linear Discrimant Analysis

Decision region Decision boundary

Species

. versicolor
. virginica

Species

@ versicolor

Petal.Width

® virginica

Petal.Width

4 5 6 4
Petal.Length Petal.Length
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ic Modeling
A Statistical Learner Point of View Class byVCIass modeling
k Nearest-Neighbors

Example: QDA

Quadratic Discrimant Analysis

Decision region Decision boundary

Species

. versicolor
. virginica

Species

@ versicolor

Petal.Width

® virginica

Petal.Width

4 5 6
Petal.Length

Fermin and Le Pennec
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Logistic Modeling
Class by Class modeling

A Statistical Learner Point of View . e N e

Naive Bayes

o Classical algorithm using a crude modeling for P {X|Y}:
e Feature independence assumption:

i

e Simple featurewise model: binomial if binary, multinomial if
finite and Gaussian if continuous

d
P{X|Y}=]]P {XW

o If all features are continuous, similar to the previous Gaussian
but with a diagonal covariance matrix!

@ Very simple learning even in very high dimension!
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A Statistical Learner Point of View

Example: Naive Bayes

Naive Bayes with Gaussian model

Decision region Decision boundary

= ! = !

S Species S Species

; .versicolor ; @ versicolo
< A < A
< .wrglmca < @ virginica
o o

4 5 6 4
Petal.Length Petal.Length
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A Statistical Learner Point of View

k Nearest-Neigh

Example: Naive Bayes

Naive Bayes with kernel density estimates

Decision region Decision boundary

= ! = !

S Species S Species

; .versicolor ; @ versicolo
< A < A
< .wrglmca < @ virginica
o o

4 5 6
Petal.Length
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Logistic Modeling
Class by Class modeling

A Statistical Learner Point of View k Nearest-Neighbors

Outline

© A Statistical Learner Point of View

@ k Nearest-Neighbors
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LOg.hT.\C Modeling
Class by Class modeling

A Statistical Learner Point of View k Nearest-Neighbors

Example: k Nearest-Neighbors

Fermin and Le Pennec Statistical Learning vs Machine Learning in Classification



LOg.hT.\C Modeling

A Statistical Learner Point of View cllis [y Clis eilling

l; Nearest-Neighbors

Example: k Nearest-Neighbors

Fermin and Le Pennec
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LQ‘T'mﬁc Modeling

i . . Class by Class modeling
A Statistical Learner Point of View k Nearest-Neighbors

Example: k Nearest-Neighbors
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LQ‘T'mﬁc Modeling

i . . Class by Class modeling
A Statistical Learner Point of View k Nearest-Neighbors

Example: k Nearest-Neighbors
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LOg.hT.\C Modeling
ss by Class modeling

l: Nearest- eighbors

A Statistical Learner Point of View

Example: k Nearest-Neighbors

Statistical Learning vs Machine Learning in Classification
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Logistic Modeling
Class by Class modeling
k Nearest-Neighbors

A Statistical Learner Point of View

k Nearest-Neighbors

@ Neighborhood Vy of x: k closest from x learning samples.

k-NN as local conditional density estimate

- 2xev Lyi=+1)

p+1(X) = |V ‘

@ KNN Classifier:
Fenn(x) = {

+1if pra(x) > Poa(x)
—1 otherwise

@ Remark: any kernel density estimate can be used...
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A Statistical Learner Point of View

Example: KNN

(GF (
k Nearest-Neighbors

k—NN with k=1

Decision region Decision boundary

£ ) £ )

S Species S Species

3_ .versicolor ; @ versicolor
< - < N

T .wrglnlca T @ virginica
[N o

: : ‘ 6 7 3 4 5 6 7
Petal.Length

Le Pennec Statistical Learning vs Machine Learning in Classification



[ mo
k Nearest-Neighbors

A Statistical Learner Point of View

Example: KNN

k—NN with k=3

Decision region Decision boundary

Species

. versicolor

virginica

Species
@ versicolor

Petal.Width
Petal.Width

@ virginica

1 1 1 1 1
6 7 3 4 5 6 7

4 5
Petal.Length Petal.Length
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[ mo
k Nearest-Neighbors

A Statistical Learner Point of View

Example: KNN

k—NN with k=5

Decision region Decision boundary

Species

. versicolor

virginica

Species
@ versicolor

Petal.Width
Petal.Width

@ virginica

1 1 1 1 1
6 7 3 4 5 6 7

4 5
Petal.Length Petal.Length
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[ mo
k Nearest-Neighbors

A Statistical Learner Point of View

Example: KNN

k—NN with k=7

Decision region Decision boundary

Species

. versicolor

virginica

Species
@ versicolor

Petal.Width
Petal.Width

@ virginica

1 1 1 1 1
6 7 3 4 5 6 7

4 5
Petal.Length Petal.Length

Fermin and Le Pennec

Statistical Learning vs Machine Learning in Classification



[ mo
k Nearest-Neighbors

A Statistical Learner Point of View

Example: KNN

k—NN with k=9

Decision region Decision boundary

Species

. versicolor

virginica

Species
@ versicolor

Petal.Width
Petal.Width

@ virginica

1 1 1 1 1
6 7 3 4 5 6 7

4 5
Petal.Length Petal.Length
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Logistic Modeling
Class by Class modeling
k Nearest-Neighbors

A Statistical Learner Point of View

Over-fitting Issue

Underfit

High bias) Generalization

(

error

Error

Overfit
(High
variance)

Training error

Model complexity

Error behaviour

e Learning/training error (error made on the learning/training
set) decays when the complexity of the model increases.

@ Quite different behavior when the error is computed on new
observations (generalization error).

@ Overfit for complex models: parameters learned are too
specific to the learning set!

@ General situation! (Think of polynomial fit...)

@ Need to use an other criterion than the training error!
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ss modeling

A Statistical Learner Point of View k Nearest-Neighbors

Cross Validation

Training Set Test Set

e Very simple idea: use a second learning/verification set to
compute a verification error.
e Sufficient to avoid over-fitting!

Cross Validation

@ Use %n observations to train and %n to verify!

e Validation for a learning set of size (1 — %) X n instead of n!

@ Most classical variations:
o Leave One Out,
o K-fold cross validation.

@ Accuracy/Speed tradeoff: K =5 or K = 10!
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Petal.Width

Decision region

4 5 6
Petal.Length

k—NN with CV choice

Decision boundary

Species

. versicolor
. virginica

Species
@ versicolor

® virginica

Petal.Width
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Machine Learning in Classification

© A Machine Learner Point of View
e SVM
o (Deep) Neural Networks
@ Tree Based Methods

@ Model and Variable Selection
@ Model Selection
@ Practical Variable Selection
@ Empirical Risk Minimization Analysis

© Big Data
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Statistical and Machine Learning Framework
How to find a good function f € ‘H that makes small

R(F) = EL(Y, F(X)] =P {Y # £(X)} 7
Naive approach: fs = argming.g LS Y, £(X)))

Problem: minimization impossible in practice for the 0-1 loss ! )

Supervised Statistical Learning (A. Fermin)

Solution: For x € RY, estimate P(Y = 1|X = x).
Learn Y|X and plug this estimate in the Bayes classifier:
generalized linear models, k-nn, naive Bayes...

Supervised Machine Learning (E. Le Pennec)

Solution: Replace the loss ¢ by an upper bound ¢ which allows
the minimization: SVM, Neural Network, Boosting

A
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Outline

© A Machine Learner Point of View
e SVM
o (Deep) Neural Networks
@ Tree Based Methods

@ Model and Variable Selection
@ Model Selection
@ Practical Variable Selection
@ Empirical Risk Minimization Analysis

© Big Data
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A Machine Learner Point of View SVM
(Deep) Neural Networks
Tree Based Methods

Outline

© A Machine Learner Point of View
e SVM
o (Deep) Neural Networks
@ Tree Based Methods
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A Machine Learner Point of View SVM
(Deep) Neural Networks
Tree Based Methods

Empirical Risk Minimization

@ The best solution f* is the one minimizing

f* = argmin R(f) = argminE [{(Y, f(X))]

Empirical Risk Minimization
@ One restricts f to a subset of functions S = {fy,0 € ©}

@ One replaces the minimization of the average loss by the
minimization of the empirical loss

@ Plus convexification /regularization of the risk...
o Examples: SVM, Trees and (Deep) Neural Networks
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A Machine Learner Point of View SVM
(Deep) Neural Networks
Tree Based Methods

Logistic Revisited

@ Ideal solution:

n

~ 1
f=argmin=Y /1 i F(x;
gmin , 3" 0. ()

Logistic regression

e Use f(x) = (B,x) + b.
o Use the logistic loss £(y, f) = log,(1 + e ™), i.e. the
-log-likelihood.

o Different vision than the statistician but same algorithm!
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A Machine Learner Point of View

Deep) Neural N
Tree Based Methods

Logistic Revisited

Logistic

Decision region Decision boundary

Species

. versicolor

virginica

Species
@ versicolor

Petal.Width
Petal.Width

@ virginica

1 1 1 1 1
6 7 3 4 5 6 7

4 5
Petal.Length Petal.Length
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A Machine Learner Point of View SVM
(Deep) Neural Networks
Tree Based Methods

Outline

© A Machine Learner Point of View
e SVM
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A Machine Learner Point of View SVM
(Deep) Neural Networks
Tree Based Methods

Ideal Separable Case

o Linear classifier: sign((5,x) + b)
@ Separable case: 3(3, b), Vi, yi((5,x) + b) > 0!

How to choose (3, b) so that the separation is maximal?

@ Strict separation: 3(f, b), Vi, yi((8,x) + b) > 1

@ Maximize the distance between (3, x) + b =1 and
(8,x) +b=—1.

o Equivalent to the minimization of ||3||%.
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A Machine Learner Point of View SVM
(Deep) Neural
Tree Based Me

Non Separable Case

@ What about the non separable case?
@ Relax the assumption that Vi, y;((8,x) + b) > 1.
@ Naive attempt: ;
. 1
argmin|[|5]* + C= > Ly((3.0+6)21
i=1
@ Non convex minimization.

SVM: better convex relaxation!

argmin |61 + €~ 3" max(1 ~ yi({8,x) + b),0)
i=1
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A Machine Learner Point of View SVM
(Deep) Neural Networks
Tree Based Methods

SVM as a Penalized Convex Relaxation

@ Convex relaxation:

argmin |61 + € 3" max(1 — yi({3,x) + b),0)
i=1

1< 1
= argmin — > max(1 — yi({8,x) + b),0) + E||5||2
i1

o Prop: (/Y (y;,sign((B, x) + b)) < max(1 — y;({8, x) + b),0)

Penalized convex relaxation (Tikhonov!)

% znjgo/l(y,-, sign((8, x) + b))
i=1

< 23" max(1 = y{{8,%) + b),0) + 312
i=1
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A Machine Learner Point of View SVM
(Deep) Neural N
Tree Based Methods

Support Vector Machine

Decision region Decision boundary

Species
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Species
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Petal.Width
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Petal.Width
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Petal.Length
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Mercer Theorem and Scalar Product

@ Mercer Theorem: the minimizer in 8 of

1< 1
= max(1 = yi((8,x) + b),0) + =[]

n C
is a linear combination of the input points > 7_; a/x;.

e Duality theory: o = a;y; where
n 1 n

o = arg maxZa,- ) Z QG YiYi(Xi, Xj)
i=1 ij=1

under the constraints >.7 ; a;y; =0and 0 < o; < C/n.

Dual formulation

@ «; are Lagrangian multipliers and are equal to 0 as soon as
yi((B,xi) + b) > 1 + Explicit formula for b.

e Data involved only through scalar product (x, y)!
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The Kernel Trick

@:R? - R
(@1,82) = (21,22, 28) = (o}, V2129, 03)

@ Non linear separation: just replace x by a non linear ®(x)...

Computing k(x,y) = (®(x), ®(y)) may be easier than
computing ®(x), ®(y) and then the scalar product!
@ ® can be specified through its definite positive kernel k.

@ Examples: Polynomial kernel k(x,y) = (1 + (x,y))?, Gaussian
kernel k(x,y) = e~ lx=¥I*/2

@ RKHS setting!

@ Can be used in (logistic) regression and more...
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Support Vector Machine with polynomial kernel

Decision region Decision boundary

Species

. versicolor
. virginica

Species

@ versicolor

Petal.Width

® virginica

Petal.Width

4 5 6
Petal.Length
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Support Vector Machine with Gaussian kernel

Decision region Decision boundary

Species

. versicolor
. virginica

Species

@ versicolor

Petal.Width

® virginica

Petal.Width

4 5 6
Petal.Length
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Outline

© A Machine Learner Point of View

o (Deep) Neural Networks
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Artificial Neuron and Logistic Regression

weights

% @

activation

functon
N net input

net,
I—
5 activation
transfer

function
ll
threshold

Artificial neuron Logistic unit

@ Structure:
@ Mix inputs with a

weighted sum, ichted

o Apply a (non linear) weignted sum, .
! for f . hi o Apply the logistic function
ransfer tunction to this O'(t) _ et/(l i et)
sum, !

e Eventually threshold the ° Tzres.h.‘"dlat /28 ELS
result to make a decision. a decision:

@ Structure:
@ Mix inputs with a

@ Logistic weights learned by

@ Weights | d b
B minimizing the -log-likelihood.

minimizing a loss function.
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Neural network

I

Neural network structure

o Cascade of artificial neurons organized in layers

@ Thresholding decision only at the output layer

@ Most classical case use logistic neurons and the -log-likelihood
as the criterion to minimize.
o Classical (stochastic) gradient descent algorithm (Back

propagation)
@ Non convex and thus may be trapped in local minima.
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Neural network

Neural Network

Decision region Decision boundary

Species

. versicolor

virginica

Species
@ versicolor

Petal.Width
Petal.Width

@ virginica

1 1 1 1 1
6 7 3 4 5 6 7

4 5
Petal.Length Petal.Length
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Deep Neural Network

Deep Neural Network structure

@ Deep cascade of layers!

@ No conceptual novelty but initialization becomes a crucial
issue.

@ Bunch of solutions proposed on a greedy initialization of the
layers starting from the deepest one.

@ Very impressive results!
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Deep Neural Network

H20 NN

Decision region Decision boundary

Species

. versicolor

virginica

Species
@ versicolor

Petal.Width
Petal.Width

@ virginica

‘ a5 6 1
Petal.Length
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Deep Learning

Family of Machine Learning algorithm combining:

a (deep) multilayered structure,

a clever (often unsupervised) initalization,

@ a more classical final fine tuning optimization.

e Examples: Deep Neural Network, Deep (Restricted) Boltzman
Machine, Stacked Encoder...

@ Appears to be very efficient but lack of theoretical fundation!
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Outline

© A Machine Learner Point of View

@ Tree Based Methods
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Classification and Regression Trees
Petal Wi< 1.8

Petal.Le < 5 irginic)

Qersicdd ~ (iginid)

Tree principle

@ Construction of a recursive partition through a tree structured
set of questions (splits around a given value of avariable),

Use a simple majority vote in each leaf.

Quality of the prediction depends on the tree (the partition).

Issue: Minim. of the (penalized) empirical error is NP hard!
Practical tree construction are all based on two steps:

o a top-down step in which branches are created (branching)
e a bottom-up in which branches are removed (pruning)
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yes| PetalWi<1.8

Petal.Le < 5 (Virginic)
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Branching

Greedy top-bottom approach

@ Start from a single region containing all the data

@ Recursively split those regions along a certain variable and a
certain value

@ No regret strategy on the choice of the splits!

@ Heuristic: choose a split so that the two new regions are as
homogeneous possible...
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Branching

Various definition of homogeneous

@ CART: empirical loss based criterion

CRR) =3 Uyny(R)+ Sty v(R
X €ER xER
CART: Gini index (classification)

C(RR)=_ p(R)(L—p(R) + Y p(R)(L~ p(R))

xi€R X€ER
@ C4.5: entropy based criterion (Information Theory)

C(R,R)=>_ H(R)+ > _ H(R)

HER x€R

CART with Gini is probably the most used technique...

Other criterion based on x? homogeneity or based on different
local predictors (generalized linear models...)
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Branching

Choice of the split in a given region

@ Compute the criterion for all features and all possible splitting
points (necessarily among the data values in the region)

@ Choose the one minimizing the criterion

@ Variations: split at all categories of a categorical variables
(ID3), split at a fixed position (median/mean)
@ Stopping rules:

o when a leaf/region contains less than a prescribed number of
observations
e when the region is sufficiently homogeneous...

@ May lead to a quite complex tree / Over-fitting possible!
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Pruning

@ Model selection within the (rooted) subtrees of the previous
tree!

@ Number of subtrees can be quite large but the tree structure
allows to find the best model efficiently.

@ The predictor in a leaf depends only on the values in this leaf.

e Efficient bottom-up (dynamic programming) algorithm if the
criterion used satisfies an additive property

Fermin and Le Pennec Statistical Learning vs Machine Learning in Classification



A Machine Learner Point of View SVM
(Deep) Neural Networks
Tree Based Methods

Pruning

Examples of criterion satisfying this assumptions

@ AIC type criterion:

Zgl(yiafﬁ(x,')(xi) +)\|T| = Z Z gl(Yi,fﬁ(Xi)—i-)\
i=1 LET \x€EL
e Simple cross-Validation (with (x/, y/) a different dataset):

Zﬁ/(y,-/, fr(x) = Z Z U (yi, fe(x7)

i=1 LET \xeL

@ Limits over-fitting...
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Decision region Decision boundary
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Extensions

Recursive Partitioning methods

@ Recursive construction of a partition

@ Use of simple local model on each part of the partition

@ Examples:
o CART, ID3, C4.5, C5
o MARS (local linear regression models)
e Piecewise polynomial model with a dyadic partition...
@ Book: Recursive Partitioning and Applications by Zhang and
Singer
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Stabilization by Independent Average

Very simple idea to obtain a more stable estimator

o Vote/average of B predictors fi,. .., fg obtained with
independent datasets of size n!

(1 & 1
fagr_SlgH(Bbz::lfb> or fagr:EZfb

Regression: E [figr(x)] = E [fp(x)] and V [foge(x)] = V[f,é(x)]

Prediction: more complex analysis

(]

Averaging leads to variance reduction, i.e. stability!

Issue: cost of obtaining B independent datasets of size n!
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Bagging and Bootstrap

Bagging: Bootstrap Aggregation(Breiman)
@ Instead of using B independent dataset of size n, draw B
datasets from a single one using a uniform with replacement
scheme (Bootstrap).

@ The f, are identically distributed but not independent
anymore.

@ Price for the non independence: E [f,g(x)] = E [fp(x)] and

Vil = T (12 29 0

with p(x) = Cov [fp(x), fpr(x)] with b # b'.

@ On average, a fraction of (1 —1/e) ~ .63 examples are unique
among each drawn dataset...

o Better aggregation scheme exists...
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Randomized Predictors

@ Correlation leads to less variance reduction:

Vi) = T (12 2 0

with p(x) = Cov [fp(x), fpr(x)] with b # b'.

Reduce the correlation by adding more randomness in the
predictor.

@ Randomized predictors: construct predictors that depends
on a randomness source R that may be chosen independently
for all bootstrap samples.

@ This reduces the correlation between the estimates...

e But may modify heavily the estimates themselves!
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Random Forest

Tree based randomized predictors (Breiman)

@ Draw B resampled datasets from a single one using a uniform
with replacement scheme (Bootstrap)

@ For each resampled datasets, construct a tree using a different
randomly drawn subset of variables at each split.

@ Most important parameter is the size of this subset:

e if it is too large then we are back to bagging
o if it is too small the mean of the predictors is probably not a
good predictor...

@ Recommendation:
o Classification: use a proportion of 1/\@
o Regression: use a proportion of 1/3

@ Often sloppier stopping rules and pruning...
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Random Forest

Random Forest

Decision region Decision boundary
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AdaBoost

@ ldea: learn a sequence of predictor trained on weighted
dataset with weights depending on the loss so far.

Iterative scheme proposed by Schapire and Freud

o Set wvy(i)=1/n; t=0and f =0
o Fort=1to=T

e t=t+1

e h: = argmin, g 27:1 Wt(i)éo/l(y,-, h(xi))

o Set e = 27:1 Wf(i)Zo/l(y,-,g(x,-)) and a; = % log 1:—?

o let wi(t+1)= W‘(i)e;itltht(xf) where Z;.1 is a renormalization
constant such that > " wi(t+1) =1

o f="F+ah:

o Use f = Z, 1Oztht

@ Now simple explanation of such a scheme!

Statistical Learning vs Machine Learning in Classification
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AdaBoost

@ Sett=0and f =0.

@ Fort=1to T,
o (hs, o) = argminy, , 27:1 e—Yi(f(xi)+ah(x;))
o f="f+ah

Use f = 1 1 arhy

Greedy optimization of a classifier as a linear combination of
T classifier for the exponential loss.

Those two algorithms are equivalent!

Iterative scheme with only two parameters: the class S of
weak classifier and the number of step T.

In the literature, one can read that Adaboost does not overfit!
This not true and T should be chosen with care...
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Boosting

General greedy optimization strategy to combine weak predictors

@ Sett=0and f =0.
@ Fort=1to T,

o (ht, o) = argmin,, , S Oy F(xi) + ah(x;))
] f = f + Oztht

@ Use f= Zt-‘r:l Oétht

@ Forward Stagewise Additive Modeling:

AdaBoost with #/(y, h) = e

LogitBoost with ¢/(y, h) = log(1 + e™*")

L>Boost with ¢'(y, h) = (y — h)?> (Matching pursuit)

LyBoost with ¢'(y, h) = |y — h|

HuberBoost with

g/(y’ h) - ‘y - h‘zl\y—h|<e + (2€|y - h| - E2)]-|y—h\26

@ Simple principle but no easy numerical scheme except for
AdaBoost and [yBoost...
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Gradient Boosting

@ At each boosting step, one need to solve

(he,ae) = argmin Y £'(y;, f(x;) + ah) = L(y, f + ah)

ha =1

e Gradient approximation L(y,f + ah) ~ L(y, )+ a(Vf, h).

Gradient boosting

Replace the minimization step by a gradient descent type step:
o Choose h; as the best possible descent direction in S

o Choose a; that minimizes L(y, f + ah;) (line search)

Easy if finding the best descent direction is easy!

Numerical scheme based on either explicit solution (classifier)
or LS.
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@ Ideal solution:

~ 1
f = argmin — o1 i, F(x;
grin >~ 4y 1)

Replace ¢(y,f) =1, by l(y,f) = (1 — yf)+.
Add a penalty A||f||%

Example:

o f(x)=(B,x) and |f|[%
o f(x) =1, aiK(x,x) with ||f]|3 = a'Ka (Kernel trick)...

Fermin and Le Pennec Statistical Learning vs Machine Learning in Classification




A Machine Learner Point of View SVM
(Deep) Neural Networks
Tree Based Methods

(Deep) Neural Networks

@ Ideal solution:

~ 1
f = argmin =Y ¢9/1 i F(x;
gmin 310 £(x)

=
=2

Neuron: x — o({8,x) + b)
Neural Network: Convolution system of neurons.

Replace (y, f) by a smooth/convex loss.

e 6 6 o

Minimize the empirical loss using the backprop algorithm
(gradient descent)

Canonical (logistic) example:
o(x)=€/(1+€) and {L(y,f)=—ylogf—(1—y)log(l—")

Deep Neural Networks: good initialization strategy.
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Tree and Boosting

@ ldeal solution:

N 1
f = argmin — (1 i F(x;
gmin 31 ()

Single tree

@ Minimization of the loss / Conditional law estimation

@ Suboptimal tree optimization through a relaxed criterion

Bagging/Random Forest

@ Averaging of several predictors (statistical point of view?)

Boosting

@ Best interpretation as a minimization of the exponential loss
Uy, f) = e (machine learner point of view?)
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Outline

@ Model and Variable Selection
@ Model Selection
@ Practical Variable Selection
@ Empirical Risk Minimization Analysis
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Outline

@ Model and Variable Selection
@ Model Selection
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Model Selection

@ How to design models? (Model/feature design)

@ How to chose amongst several models? (Model/feature
selection)

@ Key to obtain good performance!

Approximation error and estimation error (Bias/Variance)

R(fs) — R(f*) = R(f) — R(F*) + R(fs) — R(£)

Approximation error Estimation error

@ Approximation error can be large for not suitable model S!

@ Estimation error can be large if the model is complex!

@ Need to find the good balance automatically!
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Model Selection

@ Empirical error biased toward complex models!

Error

Selection criterion

e Cross validation: Very efficient (and almost always used in
practice!) but slightly biased as it target uses only a fraction
of the data.

@ Penalization approach: use empirical loss criterion but
penalize it by a term increasing with the complexity of S

Rn(%) — Rn(%) + pen(S)

and choose the model with the smallest penalized risk.

@ Model mixing also possible...
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Penalized Maximum Likelihood Estimate

Penalized Maximum Likelihood

n

- 1
& = argmin min > — logPr(yilx;) + pen(S)

@ AIC (An Information Criterion/Akaike Information Criterion):
o Wilks theorem if the true law belongs to S

fZE’( Ze’ (Vi f

e BIC (Bayesian Informat|on Cr|ter|on).
e Asymptotic approximation of Bayesian modeling:

—log P {S|(xi, yi)} ~ —log P {yilxi, S} +
e MDL (Minimum Descrition Length):

o Information-Theoretic approach: pen(S) = length of code
required to specify f € S with enough precision (~ '°§"D5)
e Generally pen(S) ~ ADs!

Iog n

Ds
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Complexity Theory

Typical PAC type result

@ With probability larger than 1 —n

e(n,n,S)

R(fs) < Rn(fs) + -

@ Use then pen(S) = \/e(n,n,S)/n to obtain an upper bound
of the risk!

o Example:
e Vapnik-Chervonenkis theorem: with prob. larger than 1 — 7

hs(log(2n/hs) 4+ 1) — log(n/4)

R(fs) < Ra(fs) +\/

where hg is the VC dimension of S (maximum number of
points that can be shattered by f € S)
o Similar results with different definition of the dimension...
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Model Collection Complexity

@ Upper bound of the risk of type: with probability larger than
1 —mn, for a single model S

e(n,n,S)

R(fs) < Rn(fs) + .

@ Selection requires a simultaneous control over all models!

Union bounds type control

e With probability 1 — 3 s 7ns, V model S

6(”7 1S, S)

R(fs) < Ru(fs) + .

@ Larger penalty required for complex model collections!
@ Visible in MDL approach as a cost to specify the model...
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Outline

@ Model and Variable Selection

@ Practical Variable Selection
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General Setting

e Prediction for x € R

@ All the coordinates of x may not be useful!

Variable Selection

@ How to choose as a subset of indices / a subset of variables in
a given statistical model?

e Curse of dimensionality: number of possible subsets 29!
@ Even worse as in practice ®(x) is often used instead of x!

@ Remark: Competition between different statistical models
only possible by exhaustive exploration...
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Exhaustive Exploration

@ Brute force approach!

Strategy

Exhaustive exploration of all subsets

Computation of a criterion for all subsets (CV,AIC,...)

Choice of the model minimizing the criterion

Only possible when d is small.
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Clever Exploration

@ Minimization of a criterion but without an exhaustive
exploration of the subsets.

Generic strategy

@ Start with a pool of subsets of size P

o Create a larger pool of size PC by adding and/or removing
variables from the previous subset

@ Keep only the best P subset according to the criterion and
iterate

@ Variations on the size of the subsets, the initial subsets, the
rule to add and remove variables, the criterion...
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Clever Exploration

Forward strategy

@ Start with an empty model

@ At each step, create a larger collection by creating models
equal to the current one plus any variable not used in the
current model (one at a time)

@ Modify the current model if the best model within the new
collection leads to a reduction of the criterion.

Backward strategy

o Start with the full model.

@ At each step, create a larger collection by creating models
equal to the current one minus any variable used in the
current model (one at a time)

@ Modify the current model if the best model within the new
collection leads to a reduction of the criterion.
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Clever Exploration

Forward /Backward strategy

@ Start with the full model.

@ At each step, create a larger collection by creating models
equal to the current one plus any variable not used in the
current model (one at a time) and to the current one minus
any variable used in the current model (one at a time)

@ Modify the current model if the best model within the new
collection leads to a reduction of the criterion.

e Various Stochastic (Genetic) Algorithm...
@ Stability issue...
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Linear Model and (Convex) Penalty

@ In (generalized) linear model, prediction depends only on x*f3
with € RY,

Penalization on

@ Subset selection < Support selection for 3!

@ Combine the empirical loss minimization with a (sparsity
promoting) penalty:
n

L300 Fx6)) + pen(5)
i=1

@ Penalty choices

AIC: pen(B) = A||Bllo (non convex / sparsity)

Ridge: pen(8) = A||3||3 (convex / no sparsity)

Lasso: pen(8) = A||B]|1 (convex / sparsity)

Elastic net: pen(8) = 1|31 + A2||8]13 (convex / sparsity)

e Efficient algorithm as soon as ¢’ and pen are convex.
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Variable Filtering

@ Heuristic screening of the variables used when there is a lot of
variables.

Two different strategies to associate a importance factor to a

variable

@ Independent criterion for each feature

o Criterion obtained by combining several variable selections on
(smaller) variable subsets

o Filtering: Removing the variables whose criterion is small
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Variable Filtering

Independent criterions

o Correlation of X(') with Y (continuous/continuous)

@ Information Gain based on entropy criterion
H(XMD) + H(Y) — H(XD, Y) (continuous or
discrete/continuous or discrete)

o y2-test of independence between X() and Y
(discrete/discrete)

Variable filtering based on variable selection

@ Penalty based exploration

@ Random forest
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Model and Variable Selection

Cross Validation

Model Selection
Practical Variable Selection
Empirical Risk Minimization Analysis
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Model Selection
Model and Variable Selection Practical Variable ction
Empirical Risk Minimization Analysis

Outline

@ Model and Variable Selection

@ Empirical Risk Minimization Analysis
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Model Selection
Model and Variable Selection Practical Variable Selection
Empirical Risk Minimization Analysis

Empirical Risk Minimization and Concentration

o Let the risk be R(f) =E [¢(Y, f(X))] and its empirical
counterpart R, = >4 £(yi, f(x)).

o Let f = argming.g R(f) and f= argmingcg Rn(f) (Empirical
Risk Minimization).

o IfVf e S,R(f) — Ry(f) < e dR(f) R(f) < e then
R(f f)+

()SR()
< Ro(f) +
gR(f)+2e

and the ERM is optimal up to 2e.
@ Two different bounds in one:
° R,,(?) + € is a data driven upper bound of the risk
(Penalization type)
° R,,(?) + 2¢ is a oracle type upper bound of the risk.
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Empirical Risk Minimization and Concentration

o If £ = (91 then we can easily prove (Hoeffding) that for any
feS
P{R(f) — R(f) < €} > 1 — e 2"
P{R,(f) — R(f) < e} >1— e 2
@ Union bound technique for finite set S:
P{Vf € S,R(f) — Rn(f) < €}
=1-P{3f € S,R(f) — Ra(f) > €}
>1— Y P{R(f) — Ra(f) > ¢}

fes
> 1— |S‘ef2n52
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Empirical Risk Minimization and Concentration

o If we let e = , we deduced (with a trick) that
with a probability greater than 1 — 26,

log |S|+log(1/4)
2n

R(F) < Ru(F) + \/'Og 5 Z:’g(l/é)

< R(F) + 2¢ o 51+ og(1/0)

@ We also have

log |S| + log(1/0)

0
2n +
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Empirical Risk Minimization and Concentration

and with the non optimal choice § =1/y/n

E[R(?)} SR(?)_1_2\/Iog\8|;;75Iogn+\/T

S
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Model and Variable Selection Practical Variable Selection
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Empirical Risk Minimization and Concentration

e If S is not finite then if S(n) is a finite subset such that
Vi e S,3f € S(n),|R(f) — R(f')| <nand R,(f") < Ru(f) +1n
then, with a control on S(7), with probability 1 — 7
R(F) < R(F') +1 < Ra(F') + €(n) + 1

<
< min Ry(f 2
< min (f') +€(n) +2n

in R(f)+2 2
min (f') + 2e(n) + 21

R(f) + 2¢(n) + 3n

IN

IA

and along the same line

R(f) < Ra(f) +¢e(n) +3n



Model Selection
Model and Variable Selection Practical Variable Selection
Empirical Risk Minimization Analysis

Empirical Risk Minimization and Concentration

where €(n) = \/'C’g\s(")\zw

n
@ In a usual parametric setting, log |S(n)| < C + Dslog(1/n) so
that

C + Ds log(1/n) + log(1/n) .
2n

min 2¢(n) + 3n < mnin 2\/
U

dimg
2n

and using the non optimal choice n =

min 2¢(n) + 31 < 2\/C +30s log(zgﬁD‘S) *log(1/m) %
- V C + D(S)(9/4 + } log(2n/Ds)) + log(1/)
- 2n
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Big Data

Outline

© Big Data
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Big Data

Data is the new Oil!
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Big Data

Lots of Words!
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Doing Data Science

Big Data

Raw Data is
Collected
A

Exploratory
Data
HRnalysis
Datais Clean
Processed Data
Machine
Learning
N nlJ ith
™~ Statistical
™ l ! Models
Build Data (ommum‘mle
Product Visualizations Make
Report Decisions
Findings

Figure 2-2. The data science process

Doing Data Science: Straight talk from the frontline

@ Rachel Schutt, Cathy O'Neil - O'Reilly

@ Art of decision / evaluation from data.

Fermin and Le Pennec
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Big Data

The 5 Vs of Big Data

Terabytes + Balch
+ Records/Arch * Real/near-time
+ Transactions « Processes
Tables, Files « Streams

* Structured
+ Unstructured

5 Vs of
Big Data

+ Statistical

+ Events
+ Multi-factor + Correlations
* Probabilistic + Hypothetical

Trustworthiness
Authenticity
Origin, Reputation
Availability
Accountability

Fermin and Le Pennec
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Big Data

A new Context

Data everywhere

o Huge volume,

o Huge variety...

v

Affordable computation units

@ Cloud computing
@ Graphical Processor Units (GPU)...

A

@ Growing academic and industrial interest
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Big Data is (quite) Easy

Example of off the shelves solution

SparK ainazon

~getRootLogger. setLevel(Level.WARN)
examples = MLUtiLs. loadLibSVMFile(sc, params.input).cache()

spLits = exemtes, rndomspLit (Arra
training = splits(0).cache()
test = spLits(1) cache()
nunTraining = training. count()
nunTest = test.count()
println(s™Training: SnumTraining, test: SnunTest.
exanples. unpersist (blocking e)

updater = parses.regType €
pdater()
Savarediaupdater()

algorithn LogistichegressiomithSad()
aigorithm.optind
umitarations parsms.nualtarations)
.setst‘psuekparams.sKEDSx
“setUpdater (upd:
- Setheofaraaiparaat, regP
ot = SLgorttha. run{trotnig) clearThreshold()

prediction = model.predict(test.nap(_. features))
predictionandLabel = prediction.zip(test.nap(_. label))

metrics
myMetrics " ficationtetrics (predictionAndLabel)

Empirical CrossEntropy = ${myMetris ntropy()}.
println(sTest areaUnderPR = ${netrics.arealnderPR()}.")
println(s"Test areaUnderROC = ${metrics.areaUnderR0C()}.")

sc.stop()
)
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Big Data

Big Data is (quite) Easy

Example of off the shelves solution

Spor‘ll(\z amazon

export AWS_ACCESS_KEY_ID=<your-access-keyid>

export AWS_SECRET_ACCESS_KEY=<your-access-key-secret>

cellule/spark/ec2/sparl-ec2 -i cellule.pem -k cellule -s <number of machines> launch <cluster-name>
ssh -i cellule.pem root@<your-cluster-master-dns>

spark-ec2/copy-dir ephemeral-hdfs/conf

ephemeral-hdfs/bin/hadoop distcp s3n://celluledecalcul/dataset/raw/train.csv /data/train.csv

scp -i cellule.pem cellule/challenge/target/scala-2.10/target/scala-2.10/challenges_2.10-0.0.jar

cellule/spark/bin/spark-submit \
--class fr.cc.challenge.Preprocess \
challenges_2.10-0.0.jar \
/data/train.csv \
/data/train2.csv

cellule/spark/bin/spark-submit \
--class fr.cc.sparktest.LogisticRegression \
challenges_2.10-0.0.jar \
/data/train2.csv

= Logistic regression for arbitrary large dataset!
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Big Data

A Complex Ecosystem!

Business Industry speelfic Ve 'Ji"“'

[ Predictive e

Models Models T Big Data
Solutions

Big Data Machine Learning Engine
(ex. IBM, SKYTREE)
Big Data
B|g Data_ Technology

Software Platform

(ex Hadoop, Claudera. Hortonworks)

Big Data
{ Data Stores

Big Data
[Structured & Unstructured]

(ex. mongoDB, REDIS, Cassandra, Hana)
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Big Data

A Complex Ecosystem!

Big Data Landscape
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Big Data

New Interdisciplinary Challenges

@ Applied math AND Computer science

@ Strong link with domain specific applications: marketing,
signal processing, genomic, biology, health...

Some joint math/computer science challenges

@ Unstructured data and their representation

@ Huge dataset and computation
@ High dimensional data and model selection

@ Learning with less supervision

@ Visualization
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Unstructured Data

The Unstructured Data Data

Explosion o 2! e %
- Growing 100X every 10 years
- Requires a new approach TRl e .
(]
- - Y
W hudo ¢ ¢
Traditional
i
L3

Some challenges

@ How to store efficiently the data?

@ How to describe them to be able to process them?

@ How to combine data of different nature?
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Big Data

Huge Dataset

Servers
(aka computers) Spark:Transformations & Actions
Faster, more expensive A Processor core(s) LIAZL3 cache -
Generally non persistent 7 Transformations
i N Processors memory map /
0.8, Virtual & physical _ NVRAM\ D”ecet ad?;;i&"ﬁi
Memory mapfrange - NAND/Flash 9. 16132
External memory (storage)

Beyond memory map
Utize file system
DAS, SAN, NAS
Block, file
Objects

S4aH

Higher capacity
Lower cost
Persistent
Distance &

Locality of reference  source: StoazerObloz.com

Some challenges

@ How to take into account the locality of the data?

@ How to construct parallel architectures?

@ How to design adapted algorithms?
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High Dimensional Data

Main Paradigmatic Changes in Big Data Analytics Environment
atistica nalysi A

Ansytcal
Prncies

THALES

Some challen

@ How to describe the data?
@ How to reduce the data dimensionality?

@ How to select models?
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Learning and Supervision

METHOD TRAIMING DATA
i
Training
process
C
El . Labeled »—r =
[ Sem-suoervised I lraning
o lzarning rOCess
E[L ‘J | Unlabeled { Labeled I i
1
+
Unsupervised Unlabeled Traming
learning data A process

Some challenges

@ How to learn with the less possible interactions?

@ How to learn simultaneously several related tasks?
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Visualization

Some challenges
@ How to look at the data?

@ How to present results?
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