Bandelets and Applications

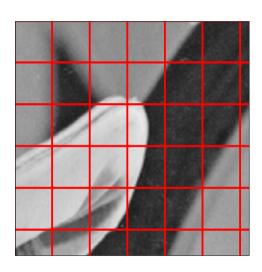
Ch. Dossal, E. Le Pennec, S. Mallat, G. Peyré CMAP (École Polytechnique) – Let It Wave – PMA (Université Paris 7)

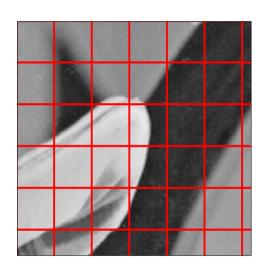
Signal processing requires to build sparse signal representations for compression, restoration, pattern recognition...

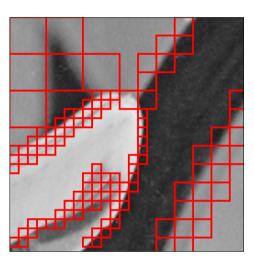
- Signal processing requires to build sparse signal representations for compression, restoration, pattern recognition...
- Sparsity is derived from regularity.

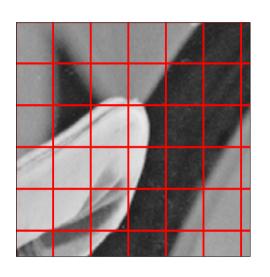
- Signal processing requires to build sparse signal representations for compression, restoration, pattern recognition...
- Sparsity is derived from regularity.
- Need to take advantage of geometrical image regularity to improve representations.

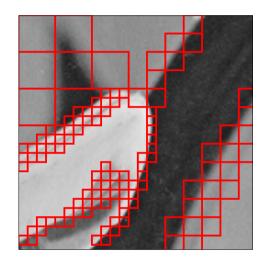
- Signal processing requires to build sparse signal representations for compression, restoration, pattern recognition...
- Sparsity is derived from regularity.
- Need to take advantage of geometrical image regularity to improve representations.
- ullet Building harmonic analysis representations adapted to complex geometry.











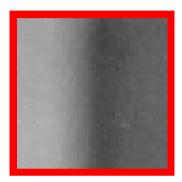
JPEG: DCT (Transform) (80)

JPEG 2000: Wavelet (Multiscale) (90)

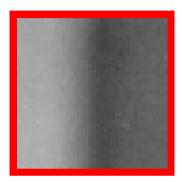
Now: Geometric Wavelets (Geometry) (??)

An ill-posed problem.

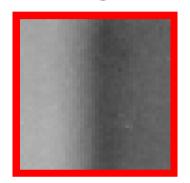
- An ill-posed problem.
- Edges are blurred transitions:

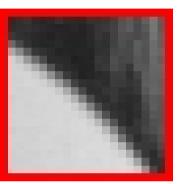


- An ill-posed problem.
- Edges are blurred transitions:

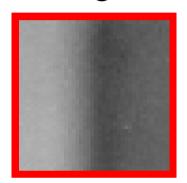


- An ill-posed problem.
- Edges are blurred transitions:

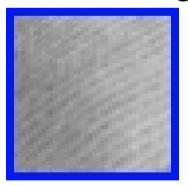




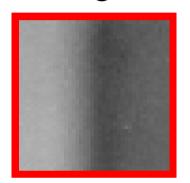
- An ill-posed problem.
- Edges are blurred transitions:



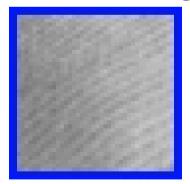
Scale of geometric regularity:

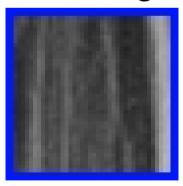


- An ill-posed problem.
- Edges are blurred transitions:

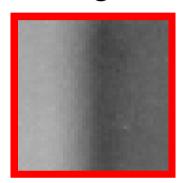


Scale of geometric regularity:



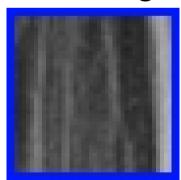


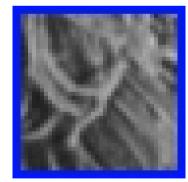
- An ill-posed problem.
- Edges are blurred transitions:



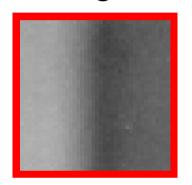
Scale of geometric regularity:

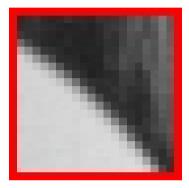


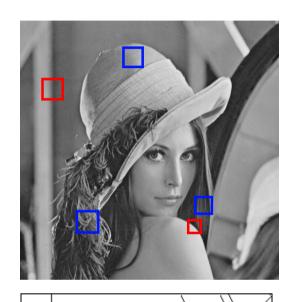




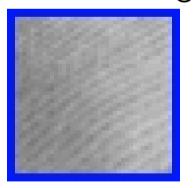
- An ill-posed problem.
- Edges are blurred transitions:

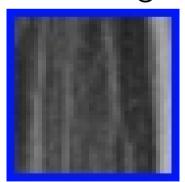


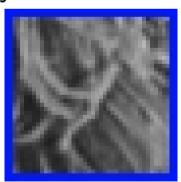




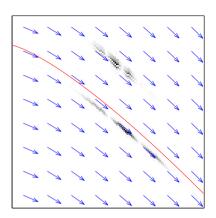
Scale of geometric regularity:

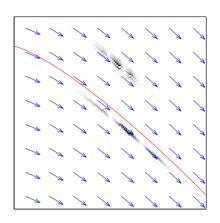






How can the estimation of the geometry become well-posed?

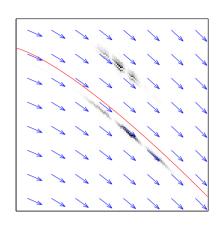




Basis adapted to the geometry: bandelets with an anisotropic support that follows the direction of regularity of the image,

$$\left\{ \frac{1}{2^{(j+l)/2}} \Psi^d \left(\frac{x_1 - 2^l m_1}{2^l}, \frac{x_2 - c(x_1) - 2^j m_2}{2^j} \right) \right\}_{d,j,l \geqslant j, m_1, m_2}.$$

Dyadic segmentation and associated geometry: bandelet basis adapted to an image.



Basis adapted to the geometry: bandelets with an anisotropic support that follows the direction of regularity of the image,

$$\left\{ \frac{1}{2^{(j+l)/2}} \Psi^d \left(\frac{x_1 - 2^l m_1}{2^l}, \frac{x_2 - c(x_1) - 2^j m_2}{2^j} \right) \right\}_{d,j,l \geqslant j, m_1, m_2}.$$

- Dyadic segmentation and associated geometry: bandelet basis adapted to an image.
- Efficient optimization of this geometry: non linear approximation theorem.

$$||f - f_M||^2 \leqslant CM^{-\alpha}$$

- Session 1
 - Bandelets construction
 - Non linear approximation with bandelets
 - Compression

- Session 1
 - Bandelets construction
 - Non linear approximation with bandelets
 - Compression
- Session 2
 - Bandelets algorithmic
 - Non linear approximation theorem(s)

- Session 1
 - Bandelets construction
 - Non linear approximation with bandelets
 - Compression
- Session 2
 - Bandelets algorithmic
 - Non linear approximation theorem(s)
- Session 3 (with Ch. Dossal)
 - Denoising
 - Deconvolution of seismic data

- Session 1
 - Bandelets construction
 - Non linear approximation with bandelets
 - Compression
- Session 2
 - Bandelets algorithmic
 - Non linear approximation theorem(s)
- Session 3 (with Ch. Dossal)
 - Denoising
 - Deconvolution of seismic data
- Session 4
 - Bandelets NG

- Session 1
 - Bandelets construction
 - Non linear approximation with bandelets
 - Compression
- Session 2
 - Bandelets algorithmic
 - Non linear approximation theorem(s)
- Session 3 (with Ch. Dossal)
 - Denoising
 - Deconvolution of seismic data
- Session 4
 - Bandelets NG

ullet Decomposition in an orthonormal basis ${f B}=\{g_m\}_{m\in{\Bbb N}}$

$$f = \sum_{m \in \mathbb{N}} \langle f, g_m \rangle g_m .$$

ullet Decomposition in an orthonormal basis ${f B}=\{g_m\}_{m\in{
m I\! N}}$

$$f = \sum_{m \in \mathbb{N}} \langle f, g_m \rangle g_m .$$

ullet Approximation with M vectors chosen adaptively

$$f_M = \sum_{m \in I_M} \langle f, g_m \rangle g_m .$$

ullet Decomposition in an orthonormal basis ${f B}=\{g_m\}_{m\in{
m I\! N}}$

$$f = \sum_{m \in \mathbb{N}} \langle f, g_m \rangle g_m .$$

ullet Approximation with M vectors chosen adaptively

$$f_M = \sum_{m \in I_M} \langle f, g_m \rangle g_m .$$

• To minimize $\|f-f_M\|^2 = \sum_{m \not\in I_M} |\langle f, g_m \rangle|^2$,

select the M largest inner products:

$$I_M = \{m, |\langle f, g_m \rangle| > T_M\}$$
: thresholding

ullet Decomposition in an orthonormal basis ${f B}=\{g_m\}_{m\in{
m I\! N}}$

$$f = \sum_{m \in \mathbb{N}} \langle f, g_m \rangle g_m .$$

ullet Approximation with M vectors chosen adaptively

$$f_M = \sum_{m \in I_M} \langle f, g_m \rangle g_m .$$

ullet To minimize $\|f-f_M\|^2=\sum_{m
ot\in I_M}|\langle f,g_m
angle|^2$,

select the M largest inner products:

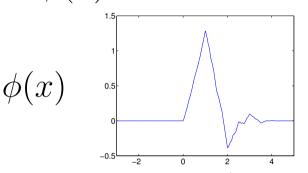
$$I_M = \{m, |\langle f, g_m \rangle| > T_M\}$$
: thresholding

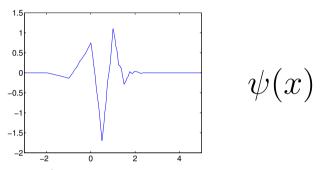
Problem: Given that f ∈ Θ, how to choose **B** so that $||f - f_M||^2 ≤ CM^{-β}$ with β large?

1D Wavelet Basis of $L^2[0,1]$

1D Wavelet Basis of $L^2[0,1]$

• Constructed with a scaling function $\phi(x)$ and a mother wavelet $\psi(x)$



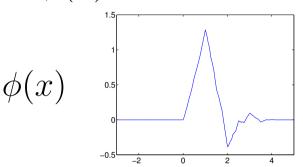


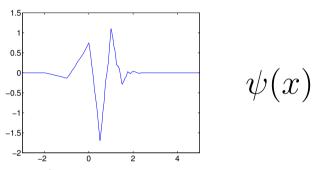
which are scaled by 2^j and translated by 2^jn

$$\phi_{j,n}(x) = \frac{1}{\sqrt{2^j}} \phi\left(\frac{x - 2^j n}{2^j}\right) , \quad \psi_{j,n}(x) = \frac{1}{\sqrt{2^j}} \psi\left(\frac{x - 2^j n}{2^j}\right)$$

1D Wavelet Basis of $L^2[0,1]$

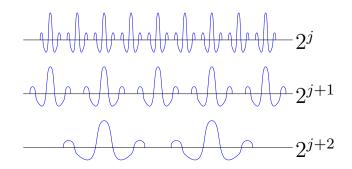
• Constructed with a scaling function $\phi(x)$ and a mother wavelet $\psi(x)$





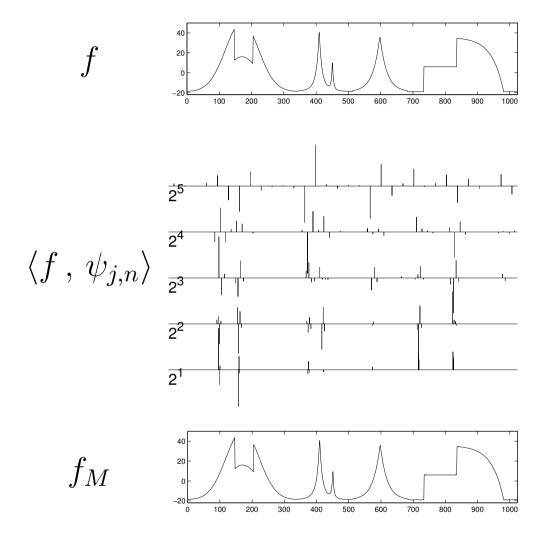
which are scaled by 2^j and translated by $2^j n$

$$\phi_{j,n}(x) = \frac{1}{\sqrt{2^j}} \phi\left(\frac{x - 2^j n}{2^j}\right) , \quad \psi_{j,n}(x) = \frac{1}{\sqrt{2^j}} \psi\left(\frac{x - 2^j n}{2^j}\right)$$

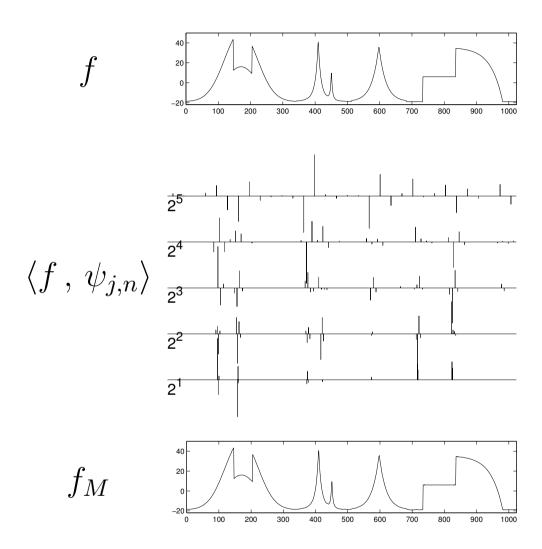


Non-Linear Approximation in a Wavelet Basis

Non-Linear Approximation in a Wavelet Basis



Non-Linear Approximation in a Wavelet Basis



• If f is piecewise \mathbb{C}^{α} and ψ has $p>\alpha$ vanishing moments then

$$||f - f_M||^2 \leqslant C M^{-2\alpha}$$
.

Isotropic Separable 2D Wavelet Basis

Isotropic Separable 2D Wavelet Basis

The family

$$\left\{ \begin{array}{ccc} \phi_{j,n_1}(x_1) \, \psi_{j,n_2}(x_2) &, & \psi_{j,n_1}(x_1) \, \phi_{j,n_2}(x_2) \\ &, & \psi_{j,n_1}(x_1) \, \psi_{j,n_2}(x_2) \end{array} \right\}_{(j,n_1,n_2) \in \mathbb{Z}^3}$$

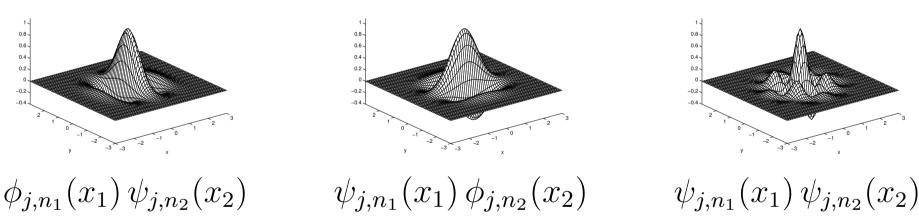
is an orthonormal basis of $L^2[0,1]^2$.

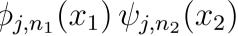
Isotropic Separable 2D Wavelet Basis

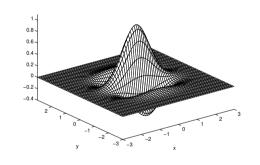
The family

$$\left\{ \begin{array}{ccc} \phi_{j,n_1}(x_1) \, \psi_{j,n_2}(x_2) & , & \psi_{j,n_1}(x_1) \, \phi_{j,n_2}(x_2) \\ & , & \psi_{j,n_1}(x_1) \, \psi_{j,n_2}(x_2) \end{array} \right\}_{(j,n_1,n_2) \in \mathbb{Z}^3}$$

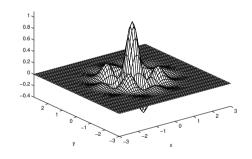
is an orthonormal basis of $L^2[0,1]^2$.



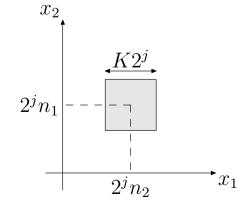




$$\psi_{j,n_1}(x_1) \, \phi_{j,n_2}(x_2)$$



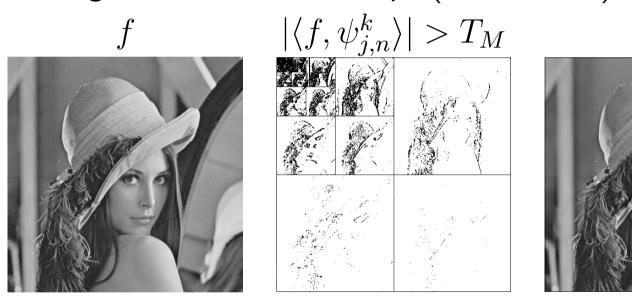
$$\psi_{j,n_1}(x_1)\,\psi_{j,n_2}(x_2)$$



Wavelets Support

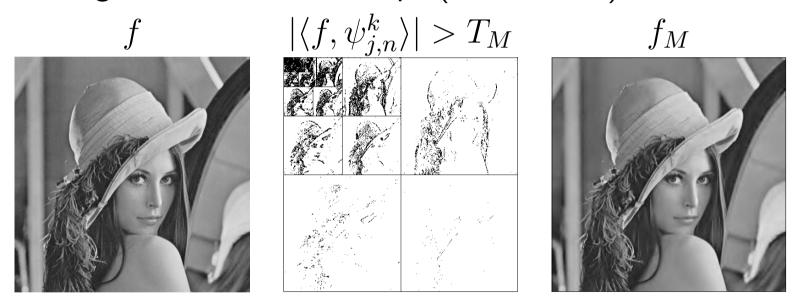
Successes and Failures of Wavelet Bases

Images are decomposed in a two-dimensional wavelet basis and larger coefficients are kept (JPEG-2000).



Successes and Failures of Wavelet Bases

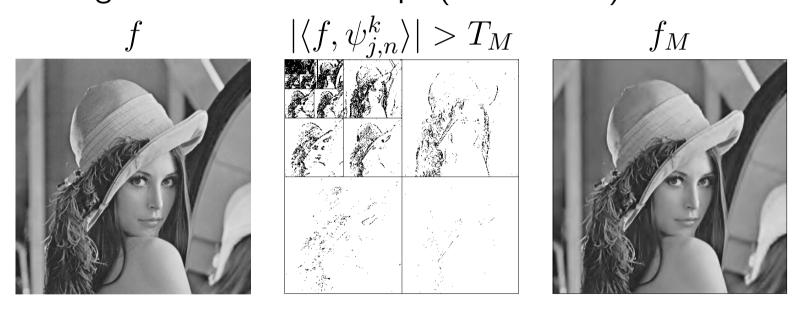
Images are decomposed in a two-dimensional wavelet basis and larger coefficients are kept (JPEG-2000).



• (Cohen, DeVore, Petrushev, Xue): Optimal for bounded variation functions: $||f - f_M||^2 \le C M^{-1}$.

Successes and Failures of Wavelet Bases

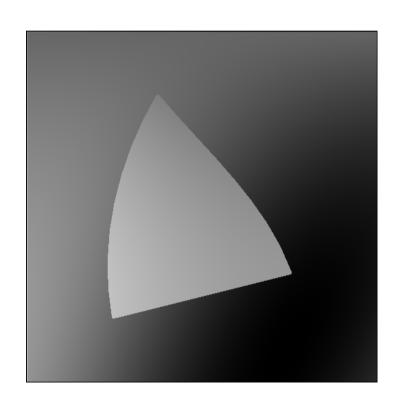
Images are decomposed in a two-dimensional wavelet basis and larger coefficients are kept (JPEG-2000).

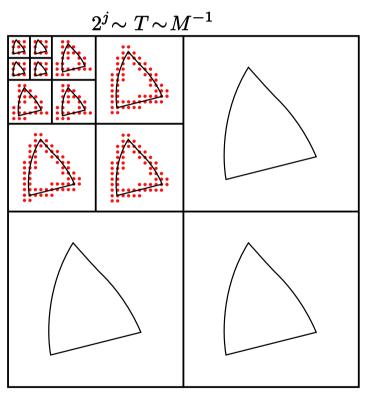


- (Cohen, DeVore, Petrushev, Xue): Optimal for bounded variation functions: $||f f_M||^2 \le C M^{-1}$.
- But: does not take advantage of any geometric regularity.

• Approximations of f which is \mathbf{C}^{α} away from \mathbf{C}^{α} "edge" curves:

• Approximations of f which is \mathbf{C}^{α} away from \mathbf{C}^{α} "edge" curves:

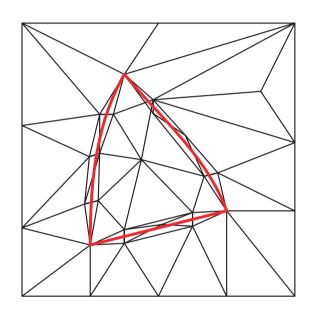




• with M wavelets: $||f - f_M||^2 \leqslant C M^{-1}$.

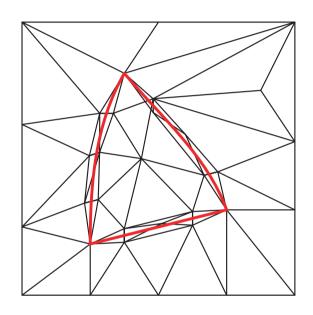
• Approximations of f which is \mathbf{C}^{α} away from \mathbf{C}^{α} "edge" curves:

• Approximations of f which is \mathbf{C}^{α} away from \mathbf{C}^{α} "edge" curves:



Piecewise linear approximation over M adapted triangles: if $\alpha \geqslant 2$ then $||f-f_M||^2 \leqslant C\,M^{-2}$,

• Approximations of f which is ${\bf C}^{\alpha}$ away from ${\bf C}^{\alpha}$ "edge" curves:



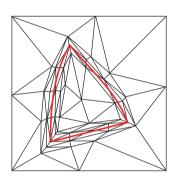
Piecewise linear approximation over M adapted triangles: if $\alpha \geqslant 2$ then $||f - f_M||^2 \leqslant C \, M^{-2}$,

■ Higher order approximation over M adapted "elements":

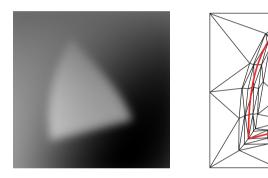
 $||f - f_M||^2 \leqslant C M^{-\alpha}$.

- Approximations of $f = \tilde{f} \star h_s$ which:
 - f is \mathbb{C}^{α} away from \mathbb{C}^{α} "edge" curves $(\alpha \geqslant 2)$:
 - h_s is a regularization kernel of size s

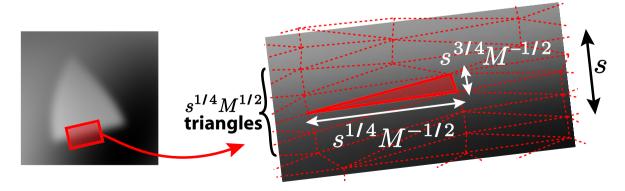
- Approximations of $f = \tilde{f} \star h_s$ which:
 - f is \mathbb{C}^{α} away from \mathbb{C}^{α} "edge" curves $(\alpha \geqslant 2)$:
 - h_s is a regularization kernel of size s



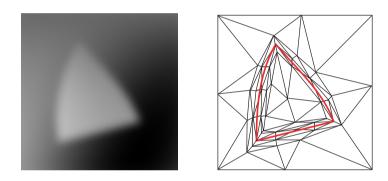
- Approximations of $f = \tilde{f} \star h_s$ which:
 - f is \mathbb{C}^{α} away from \mathbb{C}^{α} "edge" curves $(\alpha \geqslant 2)$:
 - h_s is a regularization kernel of size s



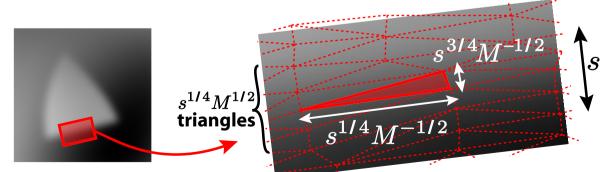
• With M adaptive triangles: $||f - f_M||^2 \leqslant C M^{-2}$.



- Approximations of $f = \tilde{f} \star h_s$ which:
 - f is \mathbb{C}^{α} away from \mathbb{C}^{α} "edge" curves $(\alpha \geqslant 2)$:
 - h_s is a regularization kernel of size s



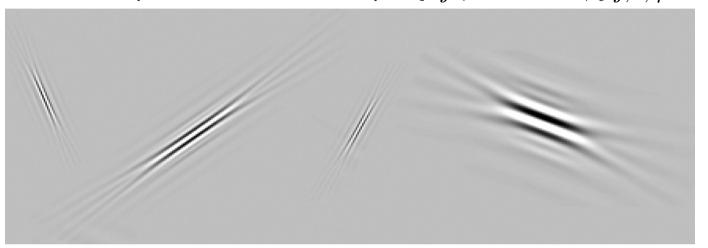
• With M adaptive triangles: $||f - f_M||^2 \leqslant C M^{-2}$.



Difficult to find optimal approximations but good greedy solutions (Demaret, Dyn, Iske)

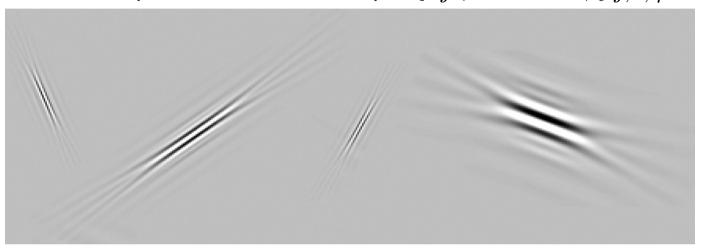
• Curvelets define tight frames of $L^2[0,1]^2$ with elongated and rotated elements (*Candes, Donoho*): $\{c_j(R_\theta x - \eta)\}_{j,\theta,\eta}$

• Curvelets define tight frames of $L^2[0,1]^2$ with elongated and rotated elements (*Candes, Donoho*): $\{c_j(R_\theta x - \eta)\}_{j,\theta,\eta}$



• If f is \mathbf{C}^{α} away from \mathbf{C}^{α} "edges" then with M curvelets: if $\alpha \geqslant 2$ then $\|f - f_M\|^2 \leqslant C (\log M)^3 M^{-2}$.

• Curvelets define tight frames of $L^2[0,1]^2$ with elongated and rotated elements (*Candes, Donoho*): $\{c_j(R_\theta x - \eta)\}_{j,\theta,\eta}$

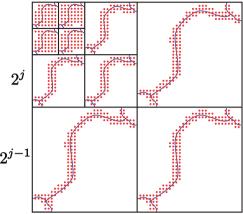


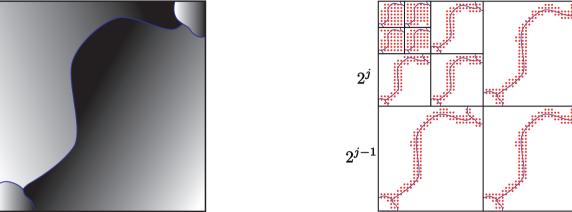
- If f is \mathbf{C}^{α} away from \mathbf{C}^{α} "edges" then with M curvelets: if $\alpha \geqslant 2$ then $\|f f_M\|^2 \leqslant C (\log M)^3 M^{-2}$.
- ullet Optimal for $\alpha=2$.

• Curvelets define tight frames of $L^2[0,1]^2$ with elongated and rotated elements (Candes, Donoho): $\{c_j(R_\theta x - \eta)\}_{j,\theta,\eta}$

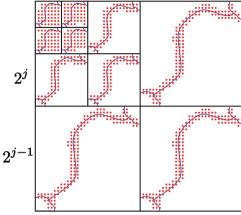


- If f is \mathbb{C}^{α} away from \mathbb{C}^{α} "edges" then with M curvelets: if $\alpha \geqslant 2$ then $\|f f_M\|^2 \leqslant C (\log M)^3 M^{-2}$.
- ullet Optimal for $\alpha=2$.
- Difficulty to build discrete orthogonal/Riesz bases: (Vetterli & Minh Do).

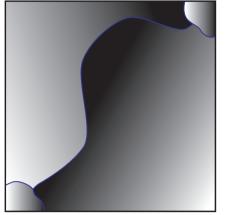


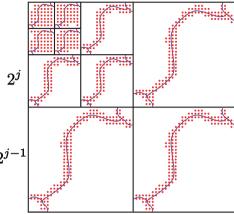


At each scale, how to approximate the vector of non-zero wavelet coefficients (chaotic behavior)?

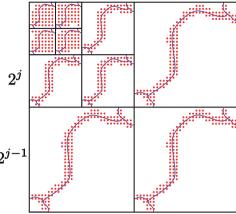


- At each scale, how to approximate the vector of non-zero wavelet coefficients (chaotic behavior)?
- Use of parameterized models projected over wavelets: "wedgelets" and "wedgeprints" by Baraniuk, Romberg, Wakin and Dragotti, Vetterli: discontinuities along parameterized curves.

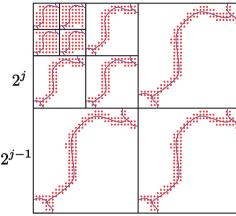




- At each scale, how to approximate the vector of non-zero wavelet coefficients (chaotic behavior)?
- Use of parameterized models projected over wavelets: "wedgelets" and "wedgeprints" by Baraniuk, Romberg, Wakin and Dragotti, Vetterli: discontinuities along parameterized curves.
- Difficult to parameterize smooth edges $f = \tilde{f} \star \theta_s$.



- At each scale, how to approximate the vector of non-zero wavelet coefficients (chaotic behavior)?
- Use of parameterized models projected over wavelets: "wedgelets" and "wedgeprints" by Baraniuk, Romberg, Wakin and Dragotti, Vetterli: discontinuities along parameterized curves.
- ullet Difficult to parameterize smooth edges $f = \tilde{f} \star \theta_s$.
- Modification of the wavelet transform (Cohen).



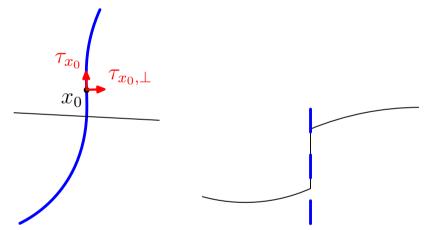
- At each scale, how to approximate the vector of non-zero wavelet coefficients (chaotic behavior)?
- Use of parameterized models projected over wavelets: "wedgelets" and "wedgeprints" by Baraniuk, Romberg, Wakin and Dragotti, Vetterli: discontinuities along parameterized curves.
- Difficult to parameterize smooth edges $f = \tilde{f} \star \theta_s$.
- Modification of the wavelet transform (Cohen).
- Bandelets NG (Peyré).

Geometric Model 1

By parts regular functions with discontinuities along regular curves:

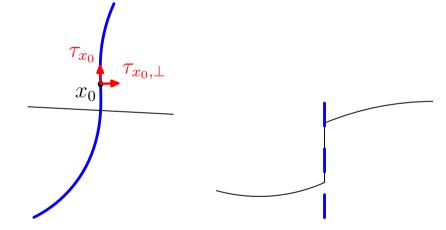
By parts regular functions with discontinuities along regular curves:

True discontinuities:

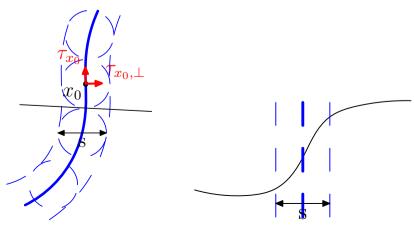


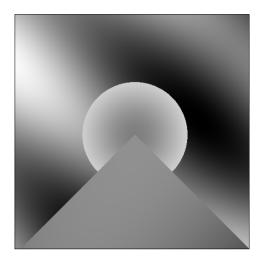
By parts regular functions with discontinuities along regular curves:

True discontinuities:



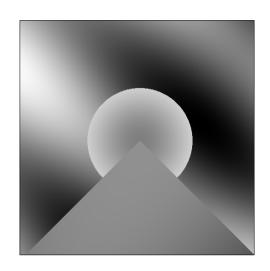
Smoothed discontinuities:







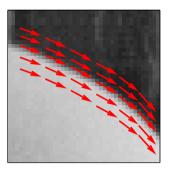
ullet C^{α} Horizon Model of Donoho revisited.

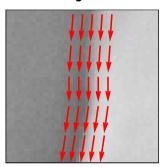


- ullet C^{\alpha} Horizon Model of Donoho revisited.
- C^{α} Geometrically Regular:
 - $f=\tilde{f}$ or $f=\tilde{f}\star h$ with $\tilde{f}\in\mathbf{C}^{\alpha}(\Lambda)$ for $\Lambda=[0,1]^2-\{\mathcal{C}_{\gamma}\}_{1\leqslant\gamma\leqslant G}$,
 - the blurring kernel h is \mathbf{C}^{α} , compactly supported in $[-s,s]^2$ and $\|h\|_{\mathbf{C}^{\alpha}} \leqslant s^{-(2+\alpha)}$.
 - the edge curves C_{γ} are α differentiable and do not intersect tangentially.

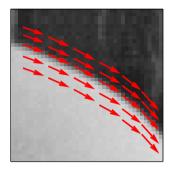
• Geometric flow: vector field $\vec{\tau}(x_1, x_2)$ giving local direction of regularity of the image.

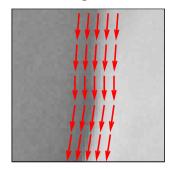
- Geometric flow: vector field $\vec{\tau}(x_1, x_2)$ giving local direction of regularity of the image.
- In a region, the flow is either vertically or horizontally parallel.



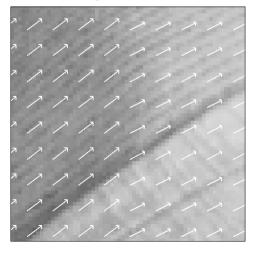


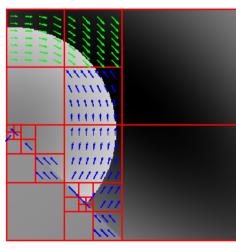
- Geometric flow: vector field $\vec{\tau}(x_1, x_2)$ giving local direction of regularity of the image.
- In a region, the flow is either vertically or horizontally parallel.





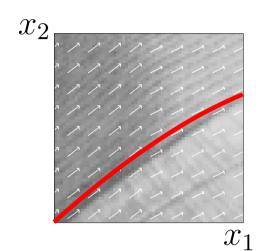
The image is segmented in such regions:





■ Let the flow be vertically parallel:

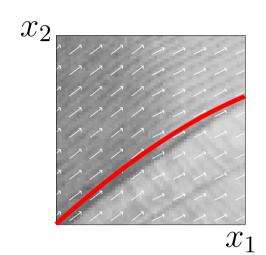
$$\vec{\tau}(x_1, x_2) = (1, c'(x_1)).$$



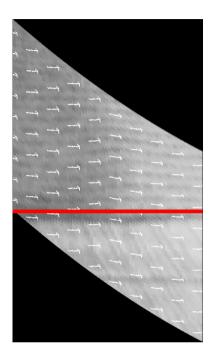
$$c(x_1) = \int_{x_{1,\min}}^{x_1} c'(u) \, \mathrm{d}u$$

Let the flow be vertically parallel:

$$\vec{\tau}(x_1, x_2) = (1, c'(x_1)).$$



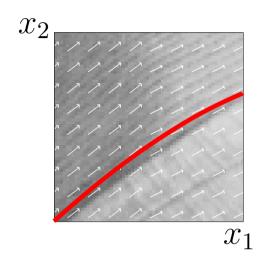
$$c(x_1) = \int_{x_{1,\min}}^{x_1} c'(u) \, \mathrm{d}u$$



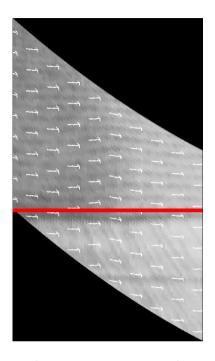
• For a given x_2 , $f(x_1, x_2 + c(x_1))$ is a regular function of x_1 .

Let the flow be vertically parallel:

$$\vec{\tau}(x_1, x_2) = (1, c'(x_1)).$$

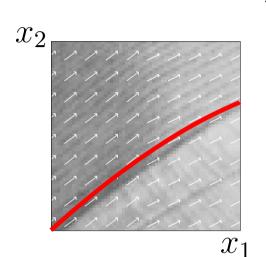


$$c(x_1) = \int_{x_1,\min}^{x_1} c'(u) \, \mathrm{d}u$$

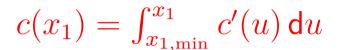


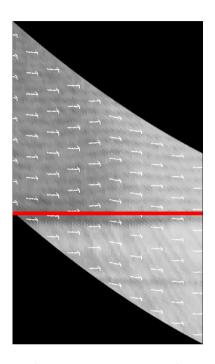
- For a given x_2 , $f(x_1, x_2 + c(x_1))$ is a regular function of x_1 .

▶ Let the flow be vertically parallel:



$$\vec{\tau}(x_1, x_2) = (1, c'(x_1)).$$





- For a given x_2 , $f(x_1, x_2 + c(x_1))$ is a regular function of x_1 .
- $\langle f(x_1, x_2 + c(x_1)), \Psi(x_1, x_2) \rangle = \langle f(x_1, x_2), \Psi(x_1, x_2) c(x_1) \rangle$
- Decomposition in a warped wavelet basis of $L^2(\Omega)$:

$$\begin{cases}
\phi_{j,m_1}(x_1) \psi_{j,m_2}(x_2 - c(x_1)) &, & \psi_{j,m_1}(x_1) \phi_{j,m_2}(x_2 - c(x_1)) \\
&, & \psi_{j,m_1}(x_1) \psi_{j,m_2}(x_2 - c(x_1))
\end{cases}$$

ullet Basis function should have vanishing moments along x_1 (flow direction).

ullet Basis function should have vanishing moments along x_1 (flow direction).

- Basis function should have vanishing moments along x_1 (flow direction).
- **Parameters** Bandeletization: replace $\{\phi_{j,m_1}(x_1)\}_{m_1}$ with a wavelet family $\{\psi_{l,m_1}(x_1)\}_{l>j,m_1}$ that spans the same space.
- Warped wavelet basis of $L^2(\Omega)$:

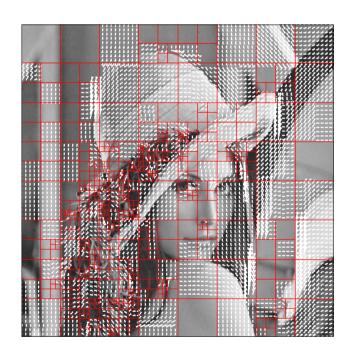
$$\left\{ \begin{array}{ccc} \phi_{j,m_1}(x_1) \, \psi_{j,m_2}(x_2 - c(x_1)) &, & \psi_{j,m_1}(x_1) \, \phi_{j,m_2}(x_2 - c(x_1)) \\ &, & \psi_{j,m_1}(x_1) \, \psi_{j,m_2}(x_2 - c(x_1)) \end{array} \right\}_{j}$$

- Basis function should have vanishing moments along x_1 (flow direction).
- **Parameter** Bandeletization: replace $\{\phi_{j,m_1}(x_1)\}_{m_1}$ with a wavelet family $\{\psi_{l,m_1}(x_1)\}_{l>j,m_1}$ that spans the same space.
- Bandelet basis of $L^2(\Omega)$:

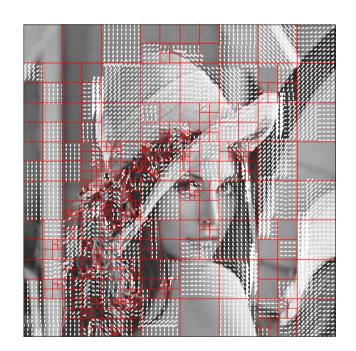
$$\left\{ \begin{array}{ccc} \psi_{l,m_1}(x_1) \, \psi_{j,m_2}(x_2 - c(x_1)) &, & \psi_{j,m_1}(x_1) \, \phi_{j,m_2}(x_2 - c(x_1)) \\ &, & \psi_{j,m_1}(x_1) \, \psi_{j,m_2}(x_2 - c(x_1)) \end{array} \right\}_{\substack{j,l>j \\ m_1,m_2}}.$$

Anisotropic

- Image support segmented in regions with either
 - a bandelet basis with a vertically parallel flow,
 - a bandelet basis with a horizontally parallel flow,
 - a wavelet basis (isotropic regularity).

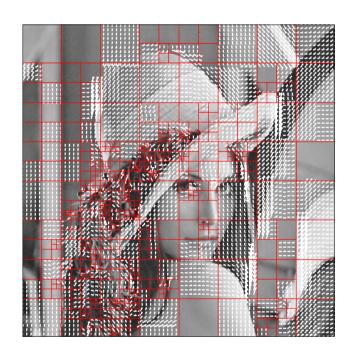


- Image support segmented in regions with either
 - a bandelet basis with a vertically parallel flow,
 - a bandelet basis with a horizontally parallel flow,
 - a wavelet basis (isotropic regularity).



- Fast bandelet transform $(O(N^2))$:
 - resampling, fast warped wavelet transform, bandeletization.

- Image support segmented in regions with either
 - a bandelet basis with a vertically parallel flow,
 - a bandelet basis with a horizontally parallel flow,
 - a wavelet basis (isotropic regularity).



- Fast bandelet transform $(O(N^2))$:
 - resampling, fast warped wavelet transform, bandeletization.
- No blocking effect with an adapted lifting scheme.

Flow Determination

Flow Determination

A vertically parallel flow $\vec{\tau}(x_1, x_2) = (1, c'(x_1))$ in Ω is parameterized by

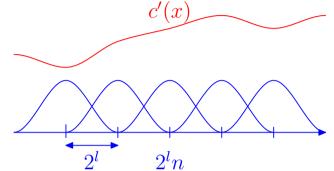
$$c'(x) = \sum_{n=1}^{L2^{-l}} \alpha_n \, \phi(2^{-l}x - n)$$

and the $L 2^{-l}$ parameters α_n .

Flow Determination

A vertically parallel flow $\vec{\tau}(x_1, x_2) = (1, c'(x_1))$ in Ω is parameterized by

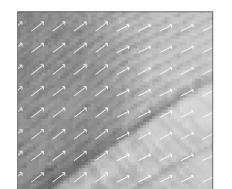
$$c'(x) = \sum_{n=1}^{L2^{-l}} \alpha_n \, \phi(2^{-l}x - n)$$



and the $L 2^{-l}$ parameters α_n .

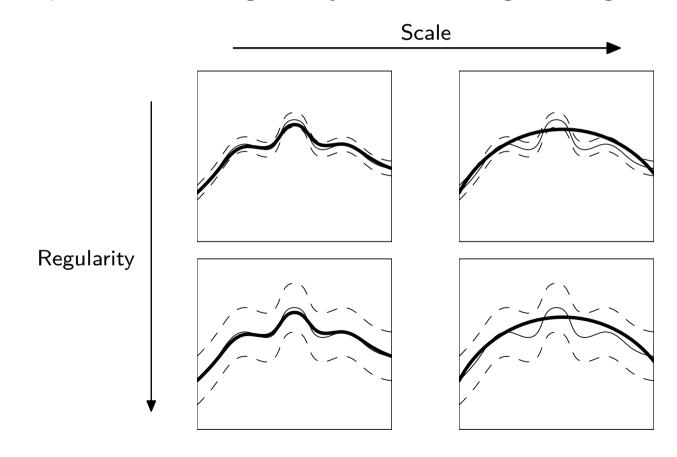
Minimization of

$$\int_{\Omega} \left| \nabla f(x_1, x_2) \cdot \vec{\tau}(x_1, x_2) \right|^2 dx_1 dx_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 dx_1 dx_2.$$

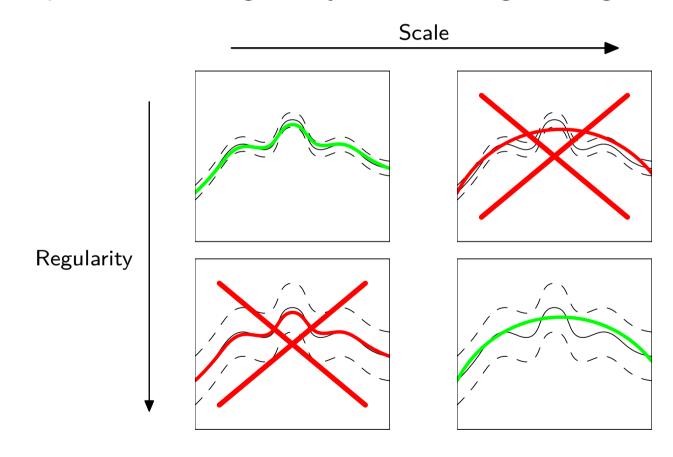


ullet Scale 2^l adapted to the regularity of the image along the flow:

ullet Scale 2^l adapted to the regularity of the image along the flow:



ullet Scale 2^l adapted to the regularity of the image along the flow:



M Term Approximation

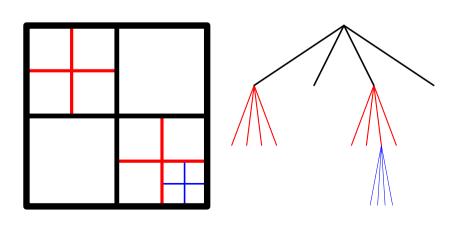
M Term Approximation

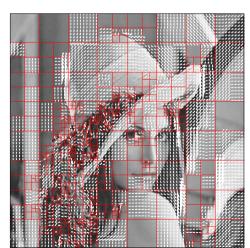
- A bandelet approximation is specified by:
 - ullet a dyadic squares segmentation given by the M_s interior nodes of a quadtree,
 - and inside each square Ω_i of the segmentation by::
 - $M_{q,i}$ coefficients for the geometric flow,
 - $M_{b,i}$ bandelets coefficients above a threshold T.

M Term Approximation

- A bandelet approximation is specified by:
 - ullet a dyadic squares segmentation given by the M_s interior nodes of a quadtree,
 - and inside each square Ω_i of the segmentation by::
 - $M_{q,i}$ coefficients for the geometric flow,
 - $M_{b,i}$ bandelets coefficients above a threshold T.
- Total number of parameters:

$$\dot{M} = M_s + \sum_{i} \left(M_{g,i} + M_{b,i} \right) .$$





• Minimization of $||f - f_M||^2$ for a given number of parameters M.

- Minimization of $||f f_M||^2$ for a given number of parameters M.
- Lagrangian approach: best geometric segmented flow that minimizes

$$||f - f_M||^2 + T^2 M$$
.

- Minimization of $||f f_M||^2$ for a given number of parameters M.
- Lagrangian approach: best geometric segmented flow that minimizes

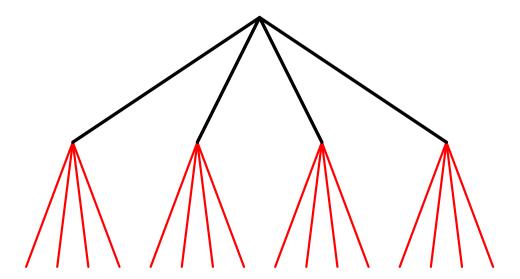
$$||f - f_M||^2 + T^2 M$$
.

■ Fast algorithm (CART): Bottom to top dynamic programming on the quadtree segmentation.

- Minimization of $||f f_M||^2$ for a given number of parameters M.
- Lagrangian approach: best geometric segmented flow that minimizes

$$||f - f_M||^2 + T^2 M$$
.

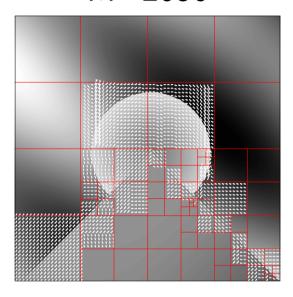
- Fast algorithm (CART): Bottom to top dynamic programming on the quadtree segmentation.
- Complexity: $O(N^2 (\log N)^2)$ for N^2 pixels.



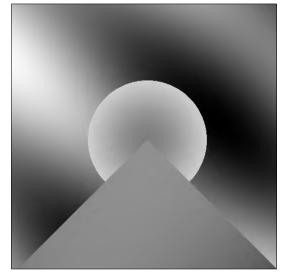
Results

Results

M = 2650



 $\mathsf{PSNR} = 45,\!97\,\mathsf{dB}$



Bandelets

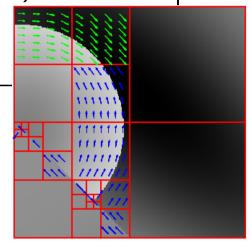
 $\mathsf{PSNR} = 40,\!17\,\mathsf{dB}$



Wavelets

Theorem: If f is \mathbf{C}^{α} geometrically regular $(f = \tilde{f})$ or $f = \tilde{f} \star h$ with \tilde{f} \mathbf{C}^{α} outside a set of curves, that are by parts \mathbf{C}^{α} , with some non tangency conditions) then

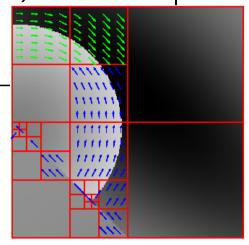
$$||f - f_M||^2 \leqslant C M^{-\alpha} .$$



Proof Theorem: If f is \mathbf{C}^{α} geometrically regular $(f = \tilde{f} \text{ or } f = \tilde{f} \star h \text{ with } \tilde{f} \mathbf{C}^{\alpha} \text{ outside a set of curves, that are by parts <math>\mathbf{C}^{\alpha}$, with some non tangency conditions) then

$$||f - f_M||^2 \leqslant C M^{-\alpha} .$$

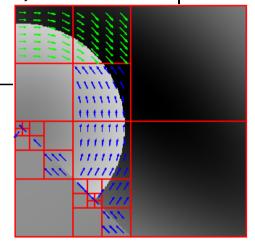
• Unknown degree of smoothness α .



Theorem: If f is \mathbf{C}^{α} geometrically regular $(f = \tilde{f})$ or $f = \tilde{f} * h$ with \tilde{f} \mathbf{C}^{α} outside a set of curves, that are by parts \mathbf{C}^{α} , with some non tangency conditions) then

$$||f - f_M||^2 \leqslant C M^{-\alpha} .$$

- Unknown degree of smoothness α .
- Optimal decay exponent α .



Proof Theorem: If f is \mathbf{C}^{α} geometrically regular $(f = \tilde{f} \text{ or } f = \tilde{f} \star h \text{ with } \tilde{f} \mathbf{C}^{\alpha} \text{ outside a set of curves, that are by parts <math>\mathbf{C}^{\alpha}$, with some non tangency conditions) then

$$||f - f_M||^2 \leqslant C M^{-\alpha} .$$

- Unknown degree of smoothness α .
- Optimal decay exponent α .
- Improvement over isotropic wavelets for which

$$||f - f_M||^2 \leqslant C M^{-1}$$

Theorem: If f is \mathbf{C}^{α} geometrically regular $(f = \tilde{f})$ or $f = \tilde{f} * h$ with \tilde{f} \mathbf{C}^{α} outside a set of curves, that are by parts \mathbf{C}^{α} , with some non tangency conditions) then

$$||f - f_M||^2 \leqslant C M^{-\alpha} .$$

- Unknown degree of smoothness α .
- Optimal decay exponent α .
- Improvement over isotropic wavelets for which

$$||f - f_M||^2 \leqslant C M^{-1}$$

Improvement over curvelets for which

$$||f - f_M||^2 \le C (\log M)^3 M^{-2}$$

ullet A compressed image \widetilde{f} is calculated from f by:

- ullet A compressed image \tilde{f} is calculated from f by:
 - Quantizing uniformly all bandelet coefficients with step size Δ .

- ullet A compressed image \tilde{f} is calculated from f by:
 - Quantizing uniformly all bandelet coefficients with step size Δ .
 - Entropy coding all parameters with a total of R bits.

- ullet A compressed image \tilde{f} is calculated from f by:
 - Quantizing uniformly all bandelet coefficients with step size Δ .
 - ullet Entropy coding all parameters with a total of R bits.
 - Optimizing the geometric flow to minimize the Lagrangian:

$$||f - \tilde{f}||^2 + \lambda \Delta^2 R$$
 with $\lambda \approx 0.107$

- ullet A compressed image \tilde{f} is calculated from f by:
 - Quantizing uniformly all bandelet coefficients with step size Δ .
 - ullet Entropy coding all parameters with a total of R bits.
 - Optimizing the geometric flow to minimize the Lagrangian:

$$||f - \tilde{f}||^2 + \lambda \Delta^2 R$$
 with $\lambda \approx 0.107$

• $O(N^2(\log_2 N)^2)$ operations.

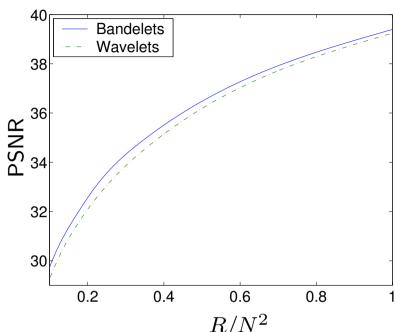
Original



 $R/N^2 = 0.22 \text{ bpp}$

Bandelets (33.05 db)

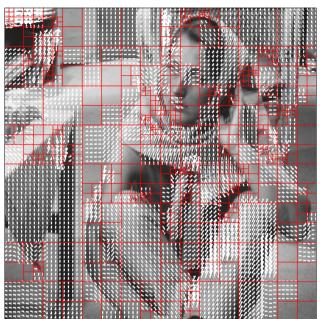
Distortion-Rate



Wavelets $\binom{R/N^2}{32.54}$ db)

Original Bandelets Wavelets

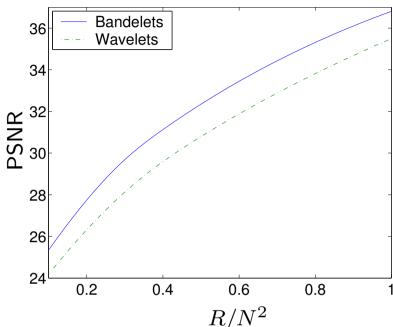
Original



 $R/N^2 = 0.40 \text{ bpp}$

Bandelets (31.22 db)

Distortion-Rate



Wavelets $\binom{R/N^2}{29.68}$ db)

Original Bandelets Wavelets



ullet Estimate an image f from the noisy data

X = f + W where W is Gaussian white of variance σ^2 .

- ullet Estimate an image f from the noisy data
 - X = f + W where W is Gaussian white of variance σ^2 .
- Thresholding estimator in a basis $\mathbf{B} = \{g_m\}_{1 \leq m \leq N^2}$:

$$F = \sum_{|\langle X, g_m \rangle| > T} \langle X, g_m \rangle g_m = P_{\mathcal{M}}(X) .$$

- Estimate an image f from the noisy data $X = f + W \quad \text{where } W \text{ is Gaussian white of variance } \sigma^2.$
- Thresholding estimator in a basis $\mathbf{B} = \{g_m\}_{1 \leq m \leq N^2}$:

$$F = \sum_{|\langle X, g_m \rangle| > T} \langle X, g_m \rangle g_m = P_{\mathcal{M}}(X) .$$

ullet Model: subspace ${\cal M}$ of a bandelet frame associated to a geometry.

- Estimate an image f from the noisy data $X = f + W \quad \text{where } W \text{ is Gaussian white of variance } \sigma^2.$
- Thresholding estimator in a basis $\mathbf{B} = \{g_m\}_{1 \leq m \leq N^2}$:

$$F = \sum_{|\langle X, g_m \rangle| > T} \langle X, g_m \rangle g_m = P_{\mathcal{M}}(X) .$$

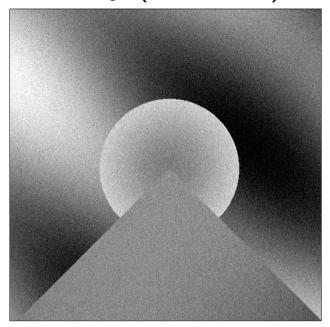
- ullet Model: subspace ${\cal M}$ of a bandelet frame associated to a geometry.
- The *oracle model* minimizes the risk $E(||F f||^2)$.

- ullet Estimate an image f from the noisy data
 - X = f + W where W is Gaussian white of variance σ^2 .
- Thresholding estimator in a basis $\mathbf{B} = \{g_m\}_{1 \leq m \leq N^2}$:

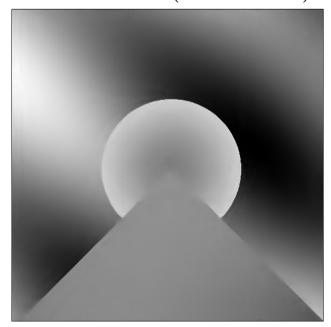
$$F = \sum_{|\langle X, g_m \rangle| > T} \langle X, g_m \rangle g_m = P_{\mathcal{M}}(X) .$$

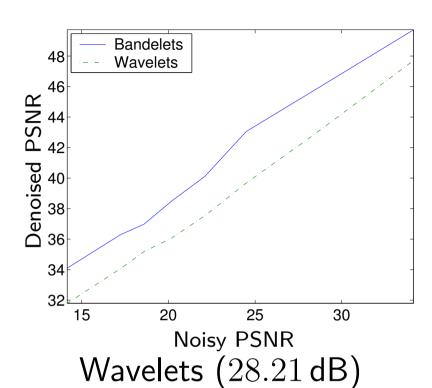
- ullet Model: subspace ${\cal M}$ of a bandelet frame associated to a geometry.
- The *oracle model* minimizes the risk $E(||F f||^2)$.
- Design of a penalized estimator :
 - MDL : $||X F||^2 + \lambda \sigma^2 R$.
 - Complexity : $-\|F\|^2 + \lambda \sigma^2 M$.

Noisy $(20.19 \, dB)$



Bandelets $(30.29 \, dB)$

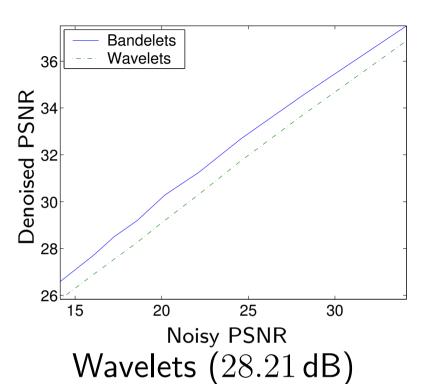






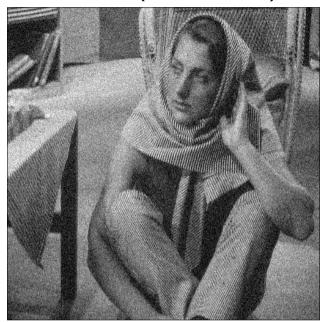
Noisy $(20.19 \, dB)$

Bandelets $(30.29 \, dB)$

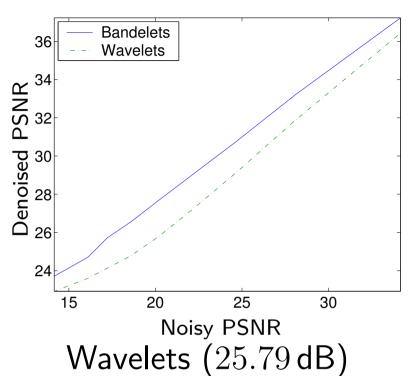


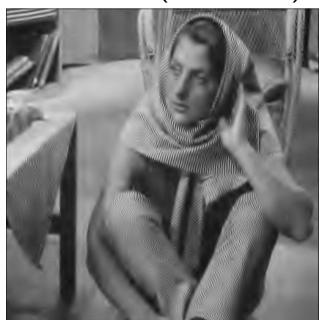
Noisy Bandelets Wavelets

Noisy $(20.19 \, dB)$



Bandelets $(27.68 \, dB)$





Noisy Bandelets Wavelets

Conclusion

Conclusion

Bandelets provide a sparse representation of images in basis adapted to the geometry.

Conclusion

- Bandelets provide a sparse representation of images in basis adapted to the geometry.
- Suitable for applications.

Conclusion

- Bandelets provide a sparse representation of images in basis adapted to the geometry.
- Suitable for applications.
- Theoretical framework for proof.

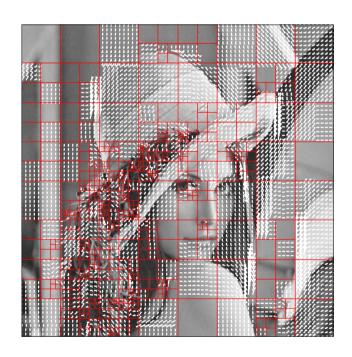
Conclusion

- Bandelets provide a sparse representation of images in basis adapted to the geometry.
- Suitable for applications.
- Theoretical framework for proof.
- Tomorrow : Implementation and theory.

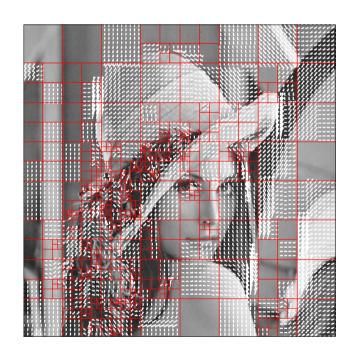
Overview

- Session 1
 - Bandelets construction
 - Non linear approximation with bandelets
 - Compression
- Session 2
 - Bandelets algorithmic
 - Non linear approximation theorem(s)
- Session 3 (with Ch. Dossal)
 - Denoising
 - Deconvolution of seismic data
- Session 4
 - Bandelets NG

- Image support segmented in regions with either
 - a bandelet basis with a vertically parallel flow,
 - a bandelet basis with a horizontally parallel flow,
 - a wavelet basis (isotropic regularity).

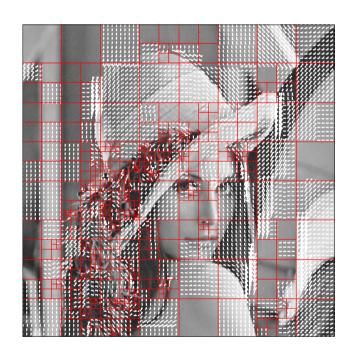


- Image support segmented in regions with either
 - a bandelet basis with a vertically parallel flow,
 - a bandelet basis with a horizontally parallel flow,
 - a wavelet basis (isotropic regularity).



- Fast bandelet transform $(O(N^2))$:
 - resampling, fast warped wavelet transform, bandeletization.

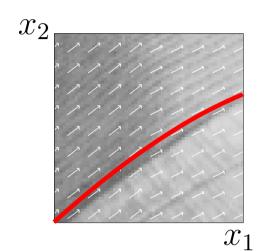
- Image support segmented in regions with either
 - a bandelet basis with a vertically parallel flow,
 - a bandelet basis with a horizontally parallel flow,
 - a wavelet basis (isotropic regularity).



- Fast bandelet transform $(O(N^2))$:
 - resampling, fast warped wavelet transform, bandeletization.
- No blocking effect with an adapted lifting scheme.

■ Let the flow be vertically parallel:

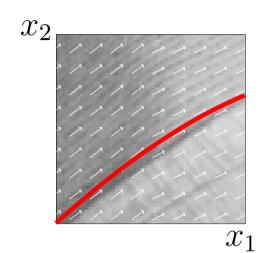
$$\vec{\tau}(x_1, x_2) = (1, c'(x_1)).$$



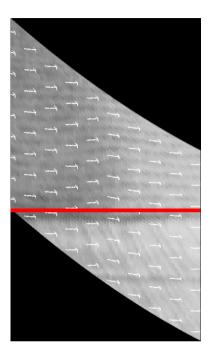
$$c(x_1) = \int_{x_{1,\min}}^{x_1} c'(u) \, \mathrm{d}u$$

Let the flow be vertically parallel:

$$\vec{\tau}(x_1, x_2) = (1, c'(x_1)).$$



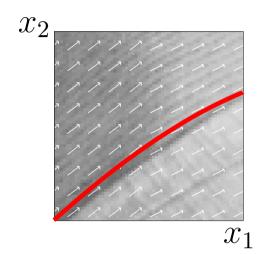
$$c(x_1) = \int_{x_{1,\min}}^{x_1} c'(u) \, \mathrm{d}u$$



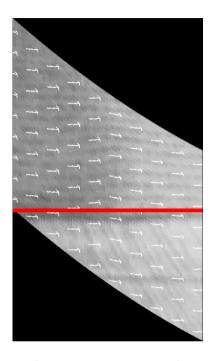
• For a given x_2 , $f(x_1, x_2 + c(x_1))$ is a regular function of x_1 .

Let the flow be vertically parallel:

$$\vec{\tau}(x_1, x_2) = (1, c'(x_1)).$$

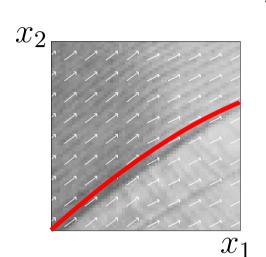


$$c(x_1) = \int_{x_1 \min}^{x_1} c'(u) \, \mathrm{d}u$$

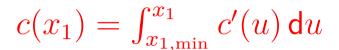


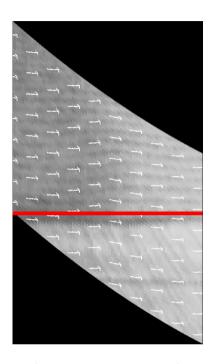
- For a given x_2 , $f(x_1, x_2 + c(x_1))$ is a regular function of x_1 .

▶ Let the flow be vertically parallel:



$$\vec{\tau}(x_1, x_2) = (1, c'(x_1)).$$





- For a given x_2 , $f(x_1, x_2 + c(x_1))$ is a regular function of x_1 .
- $\langle f(x_1, x_2 + c(x_1)), \Psi(x_1, x_2) \rangle = \langle f(x_1, x_2), \Psi(x_1, x_2) c(x_1) \rangle$
- Decomposition in a warped wavelet basis of $L^2(\Omega)$:

$$\begin{cases}
\phi_{j,m_1}(x_1) \psi_{j,m_2}(x_2 - c(x_1)) &, & \psi_{j,m_1}(x_1) \phi_{j,m_2}(x_2 - c(x_1)) \\
&, & \psi_{j,m_1}(x_1) \psi_{j,m_2}(x_2 - c(x_1))
\end{cases}$$

ullet Basis function should have vanishing moments along x_1 (flow direction).

ullet Basis function should have vanishing moments along x_1 (flow direction).

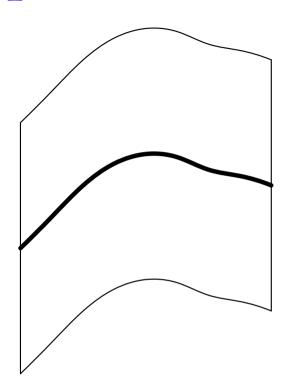
- Basis function should have vanishing moments along x_1 (flow direction).
- **Parameters** Bandeletization: replace $\{\phi_{j,m_1}(x_1)\}_{m_1}$ with a wavelet family $\{\psi_{l,m_1}(x_1)\}_{l>j,m_1}$ that spans the same space.
- Warped wavelet basis of $L^2(\Omega)$:

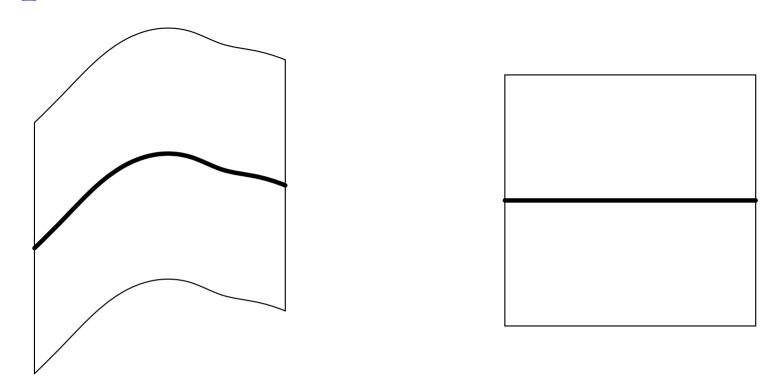
$$\left\{ \begin{array}{ccc} \phi_{j,m_1}(x_1) \, \psi_{j,m_2}(x_2 - c(x_1)) &, & \psi_{j,m_1}(x_1) \, \phi_{j,m_2}(x_2 - c(x_1)) \\ &, & \psi_{j,m_1}(x_1) \, \psi_{j,m_2}(x_2 - c(x_1)) \end{array} \right\}_{j}$$

- Basis function should have vanishing moments along x_1 (flow direction).
- **Parameter** Bandeletization: replace $\{\phi_{j,m_1}(x_1)\}_{m_1}$ with a wavelet family $\{\psi_{l,m_1}(x_1)\}_{l>j,m_1}$ that spans the same space.
- Bandelet basis of $L^2(\Omega)$:

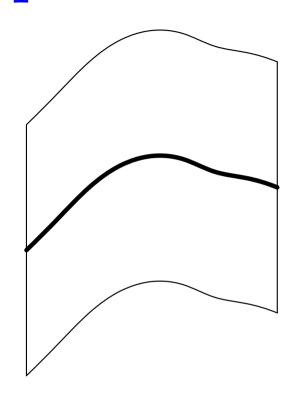
$$\left\{ \begin{array}{ccc} \psi_{l,m_1}(x_1) \, \psi_{j,m_2}(x_2 - c(x_1)) &, & \psi_{j,m_1}(x_1) \, \phi_{j,m_2}(x_2 - c(x_1)) \\ &, & \psi_{j,m_1}(x_1) \, \psi_{j,m_2}(x_2 - c(x_1)) \end{array} \right\}_{\substack{j,l > j \\ m_1,m_2}}.$$

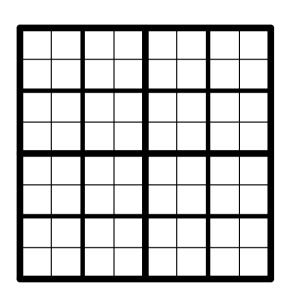
Anisotropic



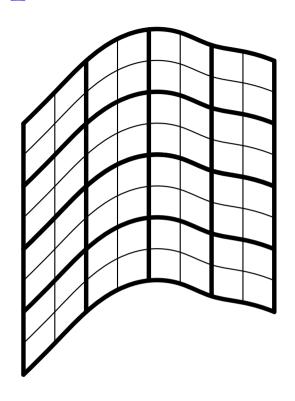


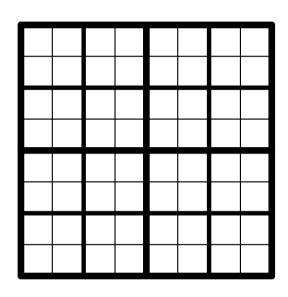
- Simple setting: Tube, the natural structure associated to a flow.
- Warping to a rectangle (orthonormal transform).



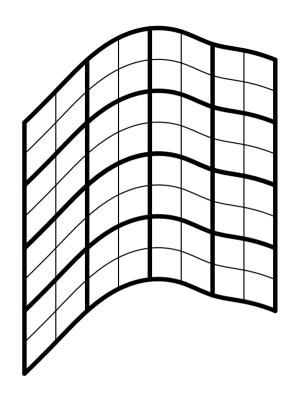


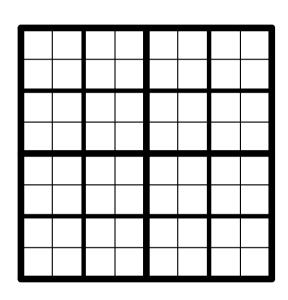
- Simple setting: Tube, the natural structure associated to a flow.
- Warping to a rectangle (orthonormal transform).
- Fast Wavelet Transform $(O(N^2))$.



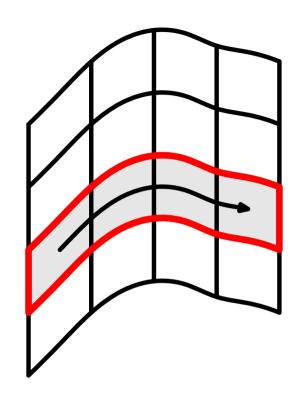


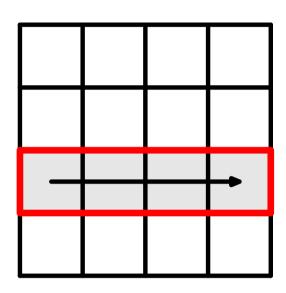
- Simple setting: Tube, the natural structure associated to a flow.
- Warping to a rectangle (orthonormal transform).
- Fast Wavelet Transform $(O(N^2))$.
- Warped Wavelet in the original domain.



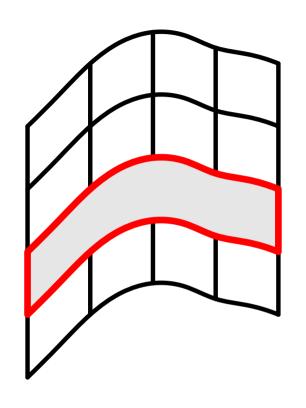


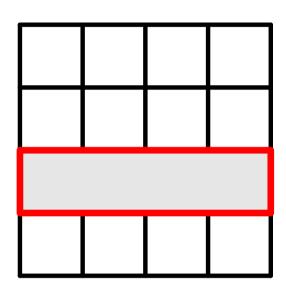
- Simple setting: Tube, the natural structure associated to a flow.
- Warping to a rectangle (orthonormal transform).
- Fast Wavelet Transform $(O(N^2))$.
- Warped Wavelet in the original domain.
- Inverse transform.



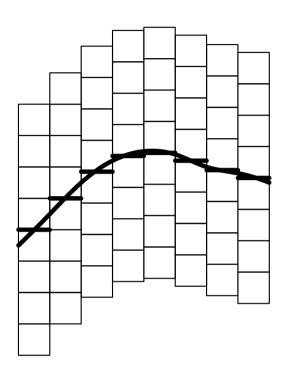


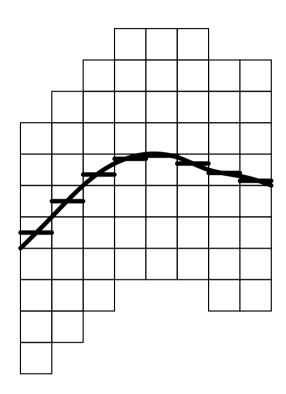
- Regularity along the geometry: regularity along the horizontal in the warped domain.
- 1D Wavelet Transform $(O(N^2))$: $\phi_{j,k_1}(x_1)\psi_{j,k_2} \to \psi_{l,k}(x_1)\psi_{j,k_2}(x_2)$.
- Bandelets: images of these hyperbolic wavelets in the original domain.

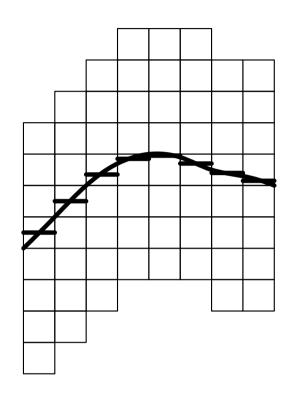


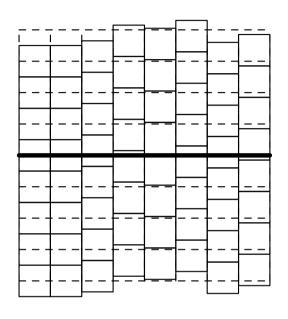


- Regularity along the geometry: regularity along the horizontal in the warped domain.
- 1D Wavelet Transform $(O(N^2))$: $\phi_{j,k_1}(x_1)\psi_{j,k_2} \to \psi_{l,k}(x_1)\psi_{j,k_2}(x_2)$.
- Bandelets: images of these hyperbolic wavelets in the original domain.

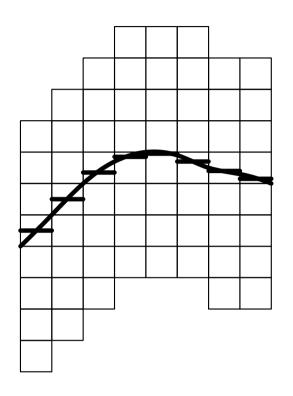


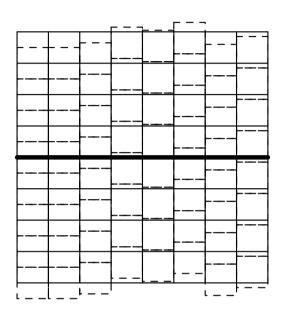






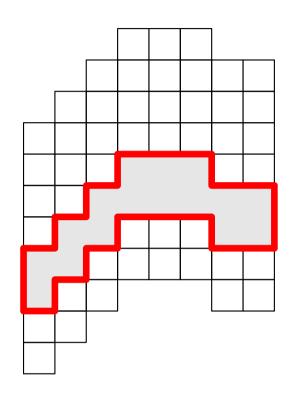
- Discretization : not adapted to the geometry.
- Resampling needed for the warping (choice very important).

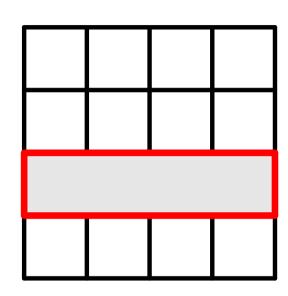




- Discretization : not adapted to the geometry.
- Resampling needed for the warping (choice very important).
- Fast Bandelet Transform: complexity $O(N^2)$.

Discretization

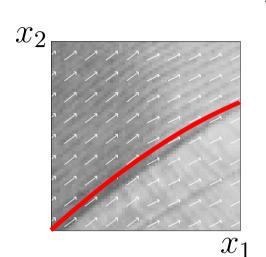




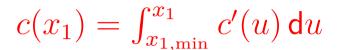
- Discretization : not adapted to the geometry.
- Resampling needed for the warping (choice very important).
- Fast Bandelet Transform: complexity $O(N^2)$.
- \blacksquare Interpolation of order 0: basis with a perfect reconstruction.

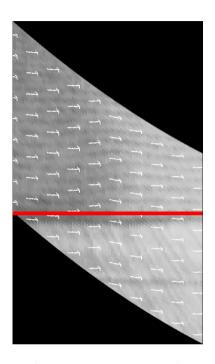
Warped Wavelet Basis

▶ Let the flow be vertically parallel:



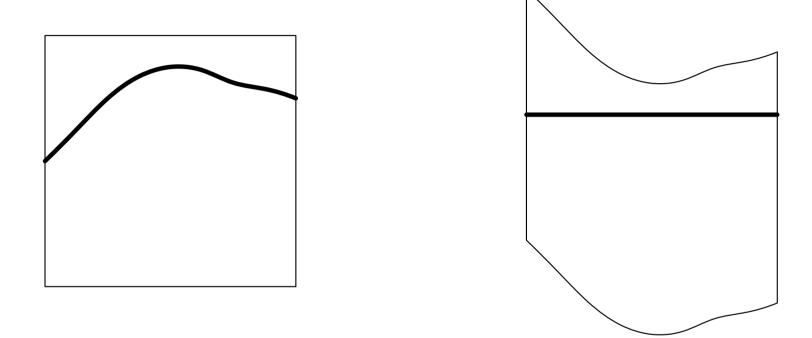
$$\vec{\tau}(x_1, x_2) = (1, c'(x_1)).$$



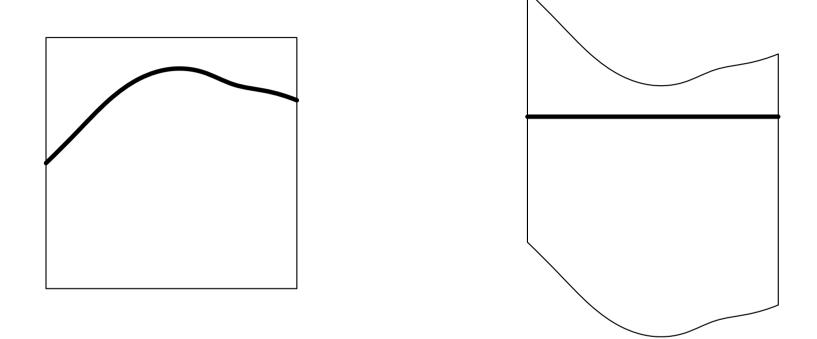


- For a given x_2 , $f(x_1, x_2 + c(x_1))$ is a regular function of x_1 .
- $\langle f(x_1, x_2 + c(x_1)), \Psi(x_1, x_2) \rangle = \langle f(x_1, x_2), \Psi(x_1, x_2) c(x_1) \rangle$
- Decomposition in a warped wavelet basis of $L^2(\Omega)$:

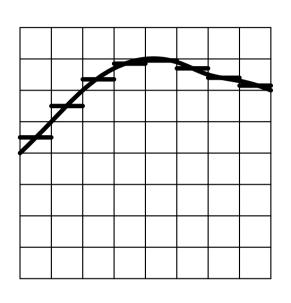
$$\begin{cases}
\phi_{j,m_1}(x_1) \psi_{j,m_2}(x_2 - c(x_1)) &, & \psi_{j,m_1}(x_1) \phi_{j,m_2}(x_2 - c(x_1)) \\
&, & \psi_{j,m_1}(x_1) \psi_{j,m_2}(x_2 - c(x_1))
\end{cases}$$

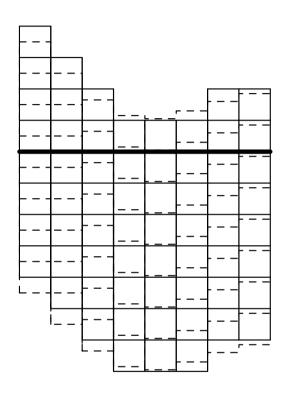


Wavelets on an arbitrary domain.

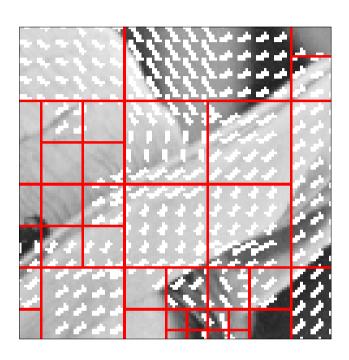


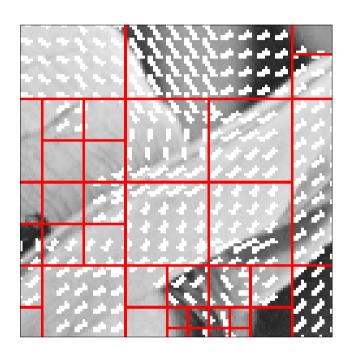
- Wavelets on an arbitrary domain.
- Continuous case: existence of a warped wavelet basis.



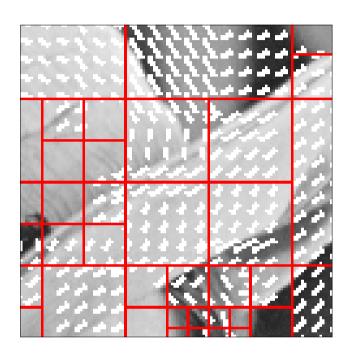


- Wavelets on an arbitrary domain.
- Continuous case: existence of a warped wavelet basis.
- Discrete case: Lifting scheme.





- Quadtree segmentation + basis on each square = blocking artifacts.
- But not in practice!



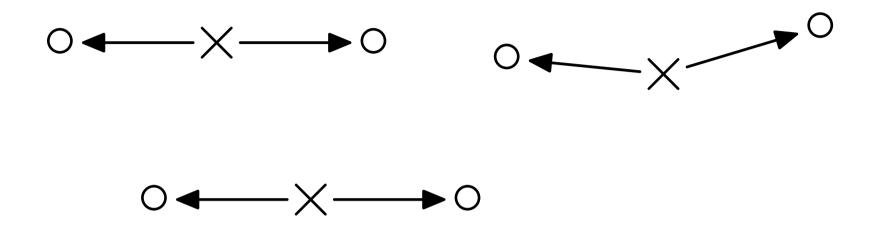
- ullet Quadtree segmentation + basis on each square = blocking artifacts.
- But not in practice!
- Modification of the classical wavelet transform: Lifting Scheme.

▶ Lifting scheme: versatile way to implement a wavelet transform and more...

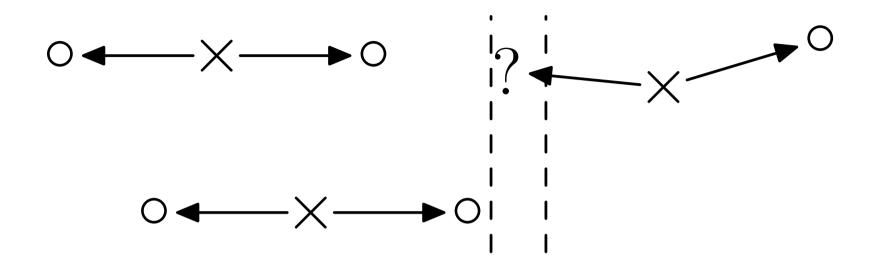
- Lifting scheme: versatile way to implement a wavelet transform and more...
- Basic steps:
 - predict the odd samples with the even samples.
 - update the even samples with the new odd samples.
 - iterate the two previous steps.
 - rescale the resulting samples.

- Lifting scheme: versatile way to implement a wavelet transform and more...
- Basic steps:
 - predict the odd samples with the even samples.
 - update the even samples with the new odd samples.
 - iterate the two previous steps.
 - rescale the resulting samples.
- Only requires a neighborhood of size 1!

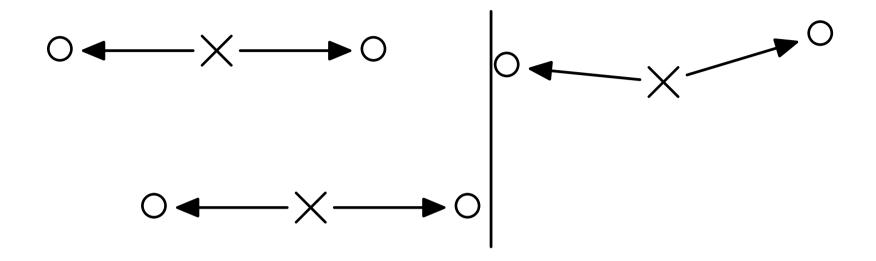
- Lifting scheme: versatile way to implement a wavelet transform and more...
- Basic steps:
 - predict the odd samples with the even samples.
 - update the even samples with the new odd samples.
 - iterate the two previous steps.
 - rescale the resulting samples.
- Only requires a neighborhood of size 1!
- Easy for irregular grid in the symetric case (still 2 vanishing moments).



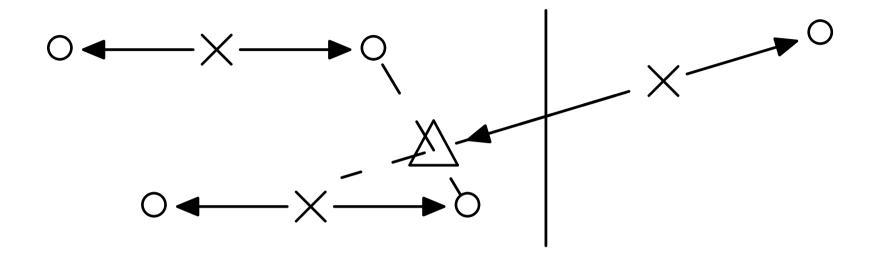
- 2D wavelet lifting scheme: extension of the 1D case (along lines and colums).
- Extension to an irregular sampling case.



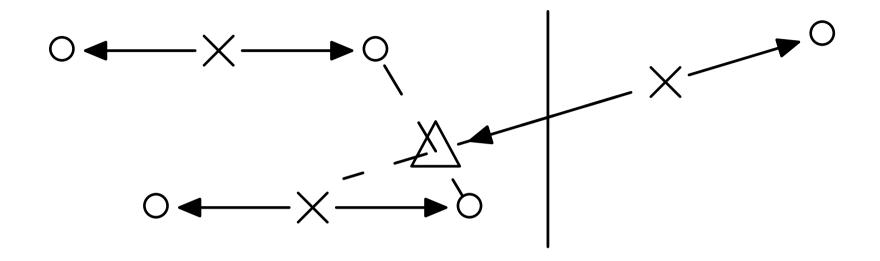
- 2D wavelet lifting scheme: extension of the 1D case (along lines and colums).
- Extension to an irregular sampling case.
- Only difference with the regular lifting scheme is at the boundaries.



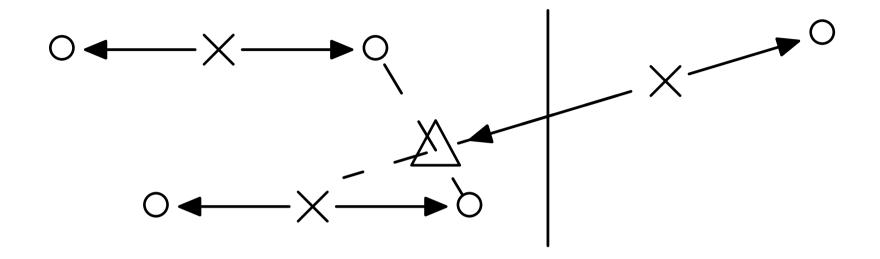
- 2D wavelet lifting scheme: extension of the 1D case (along lines and colums).
- Extension to an irregular sampling case.
- Only difference with the regular lifting scheme is at the boundaries.



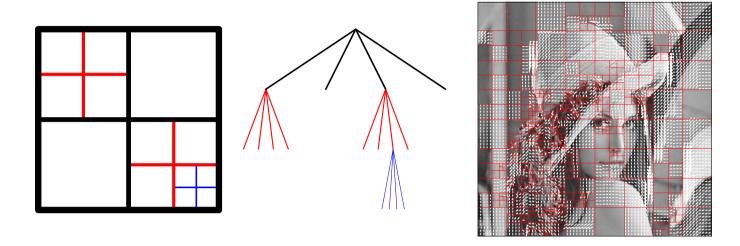
- 2D wavelet lifting scheme: extension of the 1D case (along lines and colums).
- Extension to an irregular sampling case.
- Only difference with the regular lifting scheme is at the boundaries.



- 2D wavelet lifting scheme: extension of the 1D case (along lines and colums).
- Extension to an irregular sampling case.
- Only difference with the regular lifting scheme is at the boundaries.
- Still 2 vanishing moments.

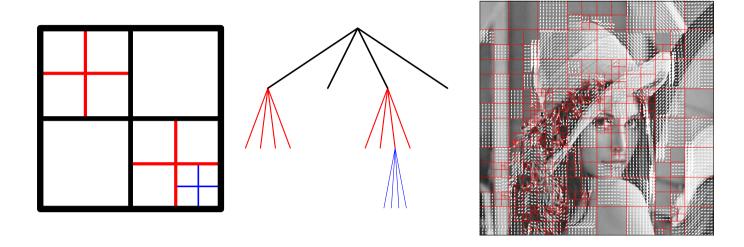


- 2D wavelet lifting scheme: extension of the 1D case (along lines and colums).
- Extension to an irregular sampling case.
- Only difference with the regular lifting scheme is at the boundaries.
- Still 2 vanishing moments.
- Bandelet lifting scheme: add another 1D transform.



Additive structure of the Lagrangian:

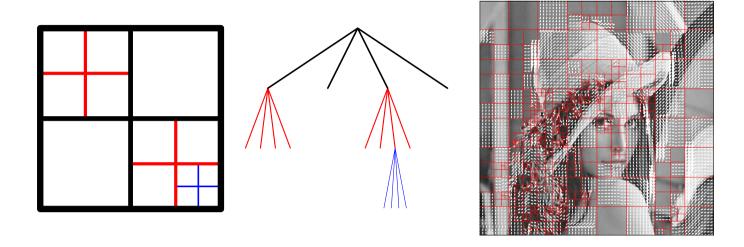
$$||f - f_M||^2 + T^2 M = \sum_i ||f - f_M||_{\Omega_i}^2 + T^2 M_i$$
.



Additive structure of the Lagrangian:

$$||f - f_M||^2 + T^2 M = \sum_i ||f - f_M||_{\Omega_i}^2 + T^2 M_i$$
.

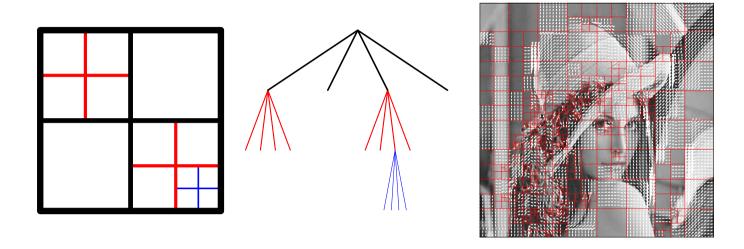
Bottom to top dynamic programming.



Additive structure of the Lagrangian:

$$||f - f_M||^2 + T^2 M = \sum_i ||f - f_M||_{\Omega_i}^2 + T^2 M_i$$
.

- Bottom to top dynamic programming.
- Minimization on each dyadic square.



Additive structure of the Lagrangian:

$$||f - f_M||^2 + T^2 M = \sum_i ||f - f_M||_{\Omega_i}^2 + T^2 M_i$$
.

- Bottom to top dynamic programming.
- Minimization on each dyadic square.
- Global minimization on all the possible geometries.

• A vertically parallel flow $\vec{\tau}(x_1,x_2)=(1,c'(x_1))$ in Ω is parameterized by

$$c'(x) = \sum_{n=1}^{L2^{-l}} \alpha_n \, \phi(2^{-l}x - n)$$

and the $L 2^{-l}$ parameters α_n .

• A vertically parallel flow $\vec{\tau}(x_1, x_2) = (1, c'(x_1))$ in Ω is parameterized by

$$c'(x) = \sum_{n=1}^{L2^{-l}} \alpha_n \, \phi(2^{-l}x - n)$$

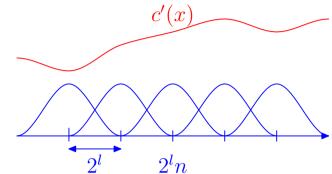
and the $L 2^{-l}$ parameters α_n .

Minimization of

$$\int_{\Omega} \left| \nabla f(x_1, x_2) \cdot \vec{\tau}(x_1, x_2) \right|^2 dx_1 dx_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 dx_1 dx_2.$$

• A vertically parallel flow $\vec{\tau}(x_1, x_2) = (1, c'(x_1))$ in Ω is parameterized by

$$c'(x) = \sum_{n=1}^{L2^{-l}} \alpha_n \, \phi(2^{-l}x - n)$$



and the $L 2^{-l}$ parameters α_n .

Minimization of

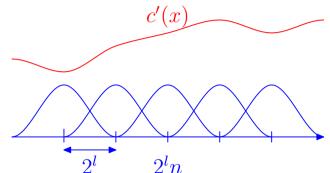
$$\int_{\Omega} \left| \nabla f(x_1, x_2) \cdot \vec{\tau}(x_1, x_2) \right|^2 dx_1 dx_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 dx_1 dx_2 .$$

Lucas-Kanade: minimization of

$$\sum_{n} |f[n_1, n_2] - f[n_1 + 1, n_2 + c'(n_1)]|^2$$

• A vertically parallel flow $\vec{\tau}(x_1, x_2) = (1, c'(x_1))$ in Ω is parameterized by

$$c'(x) = \sum_{n=1}^{L2^{-l}} \alpha_n \, \phi(2^{-l}x - n)$$



and the $L 2^{-l}$ parameters α_n .

Minimization of

$$\int_{\Omega} \left| \nabla f(x_1, x_2) \cdot \vec{\tau}(x_1, x_2) \right|^2 dx_1 dx_2 = \int_{\Omega} \left| \frac{\partial f(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 dx_1 dx_2 .$$

Lucas-Kanade: minimization of

$$\sum_{\mathbf{n}} |f[n_1, n_2] - f[n_1 + 1, n_2 + c'(n_1)]|^2$$

Closely related to the optical flow

Computational Issues

Computational Issues

Cost of the minimization on each dyadic square depends on the possible choices for the geometries.

Computational Issues

- Cost of the minimization on each dyadic square depends on the possible choices for the geometries.
- Estimation of a geometry per square: complexity $O(N^2 \log(N)^2)$.

- Cost of the minimization on each dyadic square depends on the possible choices for the geometries.
- Estimation of a geometry per square: complexity $O(N^2 \log(N)^2)$.
- Test all geometries:

$$c'(x) = \sum_{n=1}^{L2^{-l}} \alpha_n \, \phi(2^{-l}x - n) \quad \forall \alpha_n \in \epsilon \mathbb{Z} \cap [-2, 2]$$

- Cost of the minimization on each dyadic square depends on the possible choices for the geometries.
- Estimation of a geometry per square: complexity $O(N^2 \log(N)^2)$.
- Test all geometries:

$$c'(x) = \sum_{n=1}^{L2^{-l}} \alpha_n \, \phi(2^{-l}x - n) \quad \forall \alpha_n \in \epsilon \mathbb{Z} \cap [-2, 2]$$

Exponential complexity!

- Cost of the minimization on each dyadic square depends on the possible choices for the geometries.
- Estimation of a geometry per square: complexity $O(N^2 \log(N)^2)$.
- Test all geometries:

$$c'(x) = \sum_{n=1}^{L2^{-l}} \alpha_n \, \phi(2^{-l}x - n) \quad \forall \alpha_n \in \epsilon \mathbb{Z} \cap [-2, 2]$$

- Exponential complexity!
- Polynomial geometry: somewhere in between?

- Cost of the minimization on each dyadic square depends on the possible choices for the geometries.
- Estimation of a geometry per square: complexity $O(N^2 \log(N)^2)$.
- Test all geometries:

$$c'(x) = \sum_{n=1}^{L2^{-l}} \alpha_n \, \phi(2^{-l}x - n) \quad \forall \alpha_n \in \epsilon \mathbb{Z} \cap [-2, 2]$$

- Exponential complexity!
- Polynomial geometry: somewhere in between?
- Free lunch: Much better for the estimation setting (non local).

Theorem: If f is \mathbf{C}^{α} geometrically regular $(f = \tilde{f} \text{ ou})$ outside a set of curves, that are by parts \mathbf{C}^{α} , with some non tangency conditions)

$$||f - f_M||^2 \leqslant C M^{-\alpha} .$$

Theorem: If f is \mathbf{C}^{α} geometrically regular $(f = \tilde{f})$ ou $f = \tilde{f} * h$ with \tilde{f} \mathbf{C}^{α} outside a set of curves, that are by parts \mathbf{C}^{α} , with some non tangency conditions) **□**

$$||f - f_M||^2 \leqslant C M^{-\alpha} .$$

• Unknown degree of smoothness α .

Theorem: If f is \mathbf{C}^{α} geometrically regular $(f = \tilde{f})$ ou $f = \tilde{f} \star h$ with \tilde{f} \mathbf{C}^{α} outside a set of curves, that are by parts \mathbf{C}^{α} , with some non tangency conditions) **□**

$$||f - f_M||^2 \leqslant C M^{-\alpha} .$$

- Unknown degree of smoothness α .
- ullet Optimal decay exponent α .

Theorem: If f is \mathbf{C}^{α} geometrically regular $(f = \tilde{f})$ ou $f = \tilde{f} * h$ with \tilde{f} \mathbf{C}^{α} outside a set of curves, that are by parts \mathbf{C}^{α} , with some non tangency conditions) **□**

$$||f - f_M||^2 \leqslant C M^{-\alpha} .$$

- Unknown degree of smoothness α .
- ullet Optimal decay exponent α .
- Improvement over isotropic wavelets for which

$$||f - f_M||^2 \leqslant C M^{-1}$$

Proof Theorem: If f is \mathbf{C}^{α} geometrically regular $(f = \tilde{f})$ ou $f = \tilde{f} * h$ with \tilde{f} \mathbf{C}^{α} outside a set of curves, that are by parts \mathbf{C}^{α} , with some non tangency conditions) **Proof**

$$||f - f_M||^2 \leqslant C M^{-\alpha} .$$

- Unknown degree of smoothness α .
- ullet Optimal decay exponent α .
- Improvement over isotropic wavelets for which

$$||f - f_M||^2 \leqslant C M^{-1}$$

Improvement over curvelets for which

$$||f - f_M||^2 \leqslant C (\log M)^3 M^{-2}$$

Theorem: If f is \mathbf{C}^{α} geometrically regular $(f = \tilde{f} \text{ ou } f = \tilde{f} \star h \text{ with } \tilde{f} \mathbf{C}^{\alpha} \text{ outside a set of curves, that are by parts <math>\mathbf{C}^{\alpha}$, with some non tangency conditions)

$$||f - f_M||^2 \leqslant C M^{-\alpha} .$$

- Unknown degree of smoothness α .
- ullet Optimal decay exponent α .
- Improvement over isotropic wavelets for which

$$||f - f_M||^2 \leqslant C M^{-1}$$

Improvement over curvelets for which

$$||f - f_M||^2 \leqslant C (\log M)^3 M^{-2}$$

But with slightly modified bandelets.

Frame instead of basis:

- Frame instead of basis:
 - Orthonormal families of bandelets that overflow their associated square: redundancy.

- Frame instead of basis:
 - Orthonormal families of bandelets that overflow their associated square: redundancy.
 - Bandelet basis associated to the smallest tube that comprises the square.

- Frame instead of basis:
 - Orthonormal families of bandelets that overflow their associated square: redundancy.
 - Bandelet basis associated to the smallest tube that comprises the square.
- Choice of the geometry:

- Frame instead of basis:
 - Orthonormal families of bandelets that overflow their associated square: redundancy.
 - Bandelet basis associated to the smallest tube that comprises the square.
- Choice of the geometry:
 - Estimation of the geometry possible only if the jumps of the discontinuities are high enough.

- Frame instead of basis:
 - Orthonormal families of bandelets that overflow their associated square: redundancy.
 - Bandelet basis associated to the smallest tube that comprises the square.
- Choice of the geometry:
 - Estimation of the geometry possible only if the jumps of the discontinuities are high enough.
 - General case: exhaustive exploration of all possible geometries in a square up to a precision ϵ .

$$c'(x) = \sum_{n=1}^{L2^{-l}} \alpha_n \, \phi(2^{-l}x - n) \quad \forall \alpha_n \in \epsilon \mathbb{Z} \cap [-2, 2]$$

- Frame instead of basis:
 - Orthonormal families of bandelets that overflow their associated square: redundancy.
 - Bandelet basis associated to the smallest tube that comprises the square.
- Choice of the geometry:
 - Estimation of the geometry possible only if the jumps of the discontinuities are high enough.
 - General case: exhaustive exploration of all possible geometries in a square up to a precision ϵ .

$$c'(x) = \sum_{n=1}^{L2^{-l}} \alpha_n \, \phi(2^{-l}x - n) \quad \forall \alpha_n \in \epsilon \mathbb{Z} \cap [-2, 2]$$

Exponential complexity!

Complexity reduction by a reduction of the number of the possible geometries.

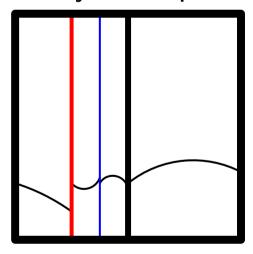
Complexity reduction by a reduction of the number of the possible geometries.

• Polynomial flow:
$$c'(x) = \sum_{n=0}^{p} \alpha_n x^n$$
.

Complexity reduction by a reduction of the number of the possible geometries.

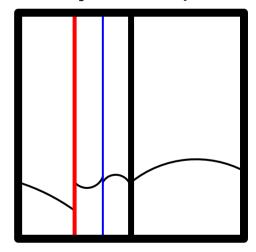
Polynomial flow:
$$c'(x) = \sum_{n=0}^{p} \alpha_n x^n$$
.

Further splitting of the dyadic squares in dyadic rectangles.



Complexity reduction by a reduction of the number of the possible geometries.

Further splitting of the dyadic squares in dyadic rectangles.

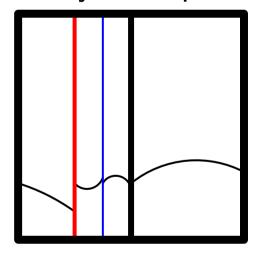


Optimization algorithm with polynomial complexity.

Complexity reduction by a reduction of the number of the possible geometries.

Polynomial flow:
$$c'(x) = \sum_{n=0}^{p} \alpha_n x^n$$
.

Further splitting of the dyadic squares in dyadic rectangles.



- Optimization algorithm with polynomial complexity.
- Logarithmic factor in the decay:

$$||f - f_M||^2 \leqslant CM^{-\alpha} \log M$$

ullet The shold T: Lagrangian

$$\mathcal{L}(f,T,\mathbf{B}) = \sum_{b_n,|\langle f,b_n\rangle|\leqslant T} |\langle f,b_n\rangle|^2 + T^2 M.$$

- The shold T: Lagrangian $\mathcal{L}(f,T,\mathbf{B}) = \sum_{b_n,|\langle f,b_n\rangle|\leqslant T} |\langle f,b_n\rangle|^2 + T^2M.$
- Step 1: Existence of a bandelet basis ${f B}_0$ that satisfies

$$\mathcal{L}(f, T, \mathbf{B}) \leqslant CT^{2\alpha/(\alpha+1)}$$

- Lemma on a single square.
- Construction of a good partition.

- The shold T: Lagrangian $\mathcal{L}(f,T,\mathbf{B}) = \sum_{b_n,|\langle f,b_n\rangle|\leqslant T} |\langle f,b_n\rangle|^2 + T^2M$.
- **Step 1:** Existence of a bandelet basis ${f B}_0$ that satisfies

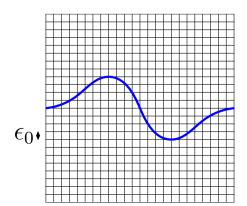
$$\mathcal{L}(f, T, \mathbf{B}) \leqslant CT^{2\alpha/(\alpha+1)}$$

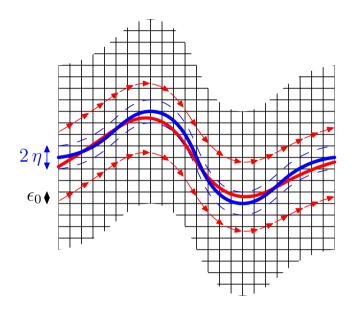
- Lemma on a single square.
- Construction of a good partition.
- Step 2: The optimization finds such a basis and it yields the right decay.

- The shold T: Lagrangian $\mathcal{L}(f,T,\mathbf{B}) = \sum_{b_n,|\langle f,b_n\rangle|\leqslant T} |\langle f,b_n\rangle|^2 + T^2M.$
- **Step 1:** Existence of a bandelet basis ${f B}_0$ that satisfies

$$\mathcal{L}(f, T, \mathbf{B}) \leqslant CT^{2\alpha/(\alpha+1)}$$

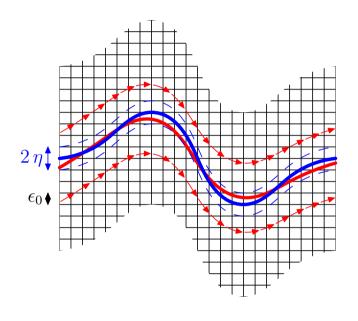
- Lemma on a single square.
- Construction of a good partition.
- Step 2: The optimization finds such a basis and it yields the right decay.
- Discretization: at a resolution ϵ_0 : $T^{2\alpha/(\alpha+1)} \geqslant T^2 \geqslant \epsilon_0$.





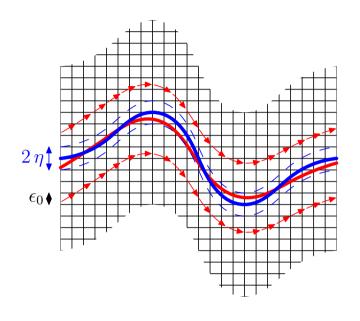
Flow Integral curve (g) Real edge (c)

• Tube defined by g: f is warped to $Wf = f(x_1, x_2 + g(x_1))$.



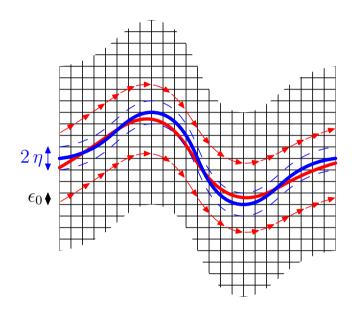
Flow Integral curve (g) Real edge (c)

- Tube defined by g: f is warped to $Wf = f(x_1, x_2 + g(x_1))$.
- ullet g such that
 - $|(g-c)^{(\beta)}| \leqslant C\eta^{1-\beta/\alpha}$ with $\eta = \max(s, T^{2\alpha/(\alpha+1)})$.
 - $\eta^{-1/\alpha}$ geometric parameters.



Flow Integral curve (g) Real edge (c)

- Tube defined by g: f is warped to $Wf = f(x_1, x_2 + g(x_1))$.
- ullet g such that
 - $|(g-c)^{(\beta)}| \leqslant C\eta^{1-\beta/\alpha}$ with $\eta = \max(s, T^{2\alpha/(\alpha+1)})$.
 - $\eta^{-1/\alpha}$ geometric parameters.
- $|\frac{\partial^{\alpha}}{\partial x_{1}^{\alpha}}Wf| \leqslant Cs^{-1}$

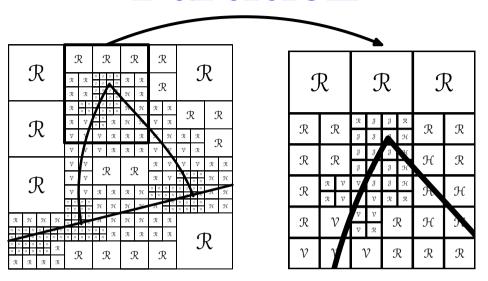


Flow Integral curve (g) Real edge (c)

- Tube defined by g: f is warped to $Wf = f(x_1, x_2 + g(x_1))$.
- ullet g such that
 - $|(g-c)^{(\beta)}| \leqslant C\eta^{1-\beta/\alpha}$ with $\eta = \max(s, T^{2\alpha/(\alpha+1)})$.
 - $\eta^{-1/\alpha}$ geometric parameters.
- $|\frac{\partial^{\alpha}}{\partial x_{1}^{\alpha}}Wf| \leqslant Cs^{-1}$
- $\mathcal{L}(f, T, \mathbf{B}_i) = ||f f_M||^2 + T^2 M \leqslant C T^{2\alpha/(\alpha+1)}$.

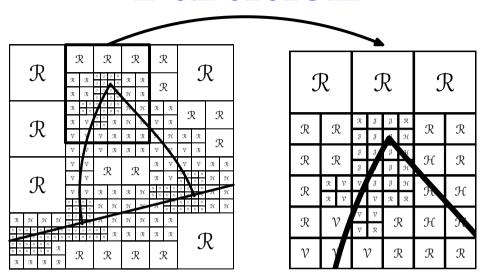
Partition

Partition



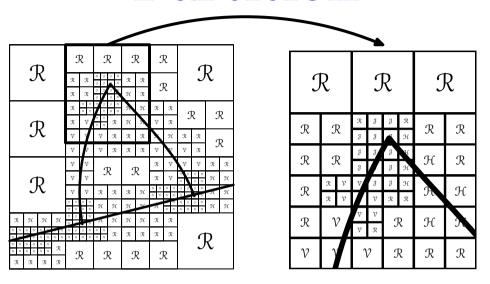
- Quadtree to obtain a partition with:
 - at most $K(1+|\log(\eta)|)$ edge squares with one single horizontal or vertical *edge* (bandelets),
 - a finite number of junctions square of size η (wavelets),
 - at most $K(1 + |\log(\eta)|)$ regular squares (wavelets).

Partition



- Quadtree to obtain a partition with:
 - at most $K(1 + |\log(\eta)|)$ edge squares with one single horizontal or vertical *edge* (bandelets),
 - a finite number of junctions square of size η (wavelets),
 - at most $K(1 + |\log(\eta)|)$ regular squares (wavelets).
- Total geometric cost : $C\eta^{-1/\alpha}$.

Partition



- Quadtree to obtain a partition with:
 - at most $K(1 + |\log(\eta)|)$ edge squares with one single horizontal or vertical *edge* (bandelets),
 - a finite number of junctions square of size η (wavelets),
 - at most $K(1 + |\log(\eta)|)$ regular squares (wavelets).
- Total geometric cost : $C\eta^{-1/\alpha}$.

$$\mathcal{L}(f, T, \mathbf{B}) = \sum_{i} \mathcal{L}(f, T, \mathbf{B}_i) \leqslant CT^{2\alpha/(\alpha+1)}$$

Existence of a partition (previous construction) such that the Lagrangian satisfies

$$\mathcal{L}(f, T, \mathbf{B}_0) \leqslant C T^{2\alpha/(\alpha+1)}$$
.

 Existence of a partition (previous construction) such that the Lagrangian satisfies

$$\mathcal{L}(f, T, \mathbf{B}_0) \leqslant C T^{2\alpha/(\alpha+1)}$$
.

ullet CART algorithm minimizes $\mathcal{L}(f,T,\mathbf{B})$ and tests this partition.

 Existence of a partition (previous construction) such that the Lagrangian satisfies

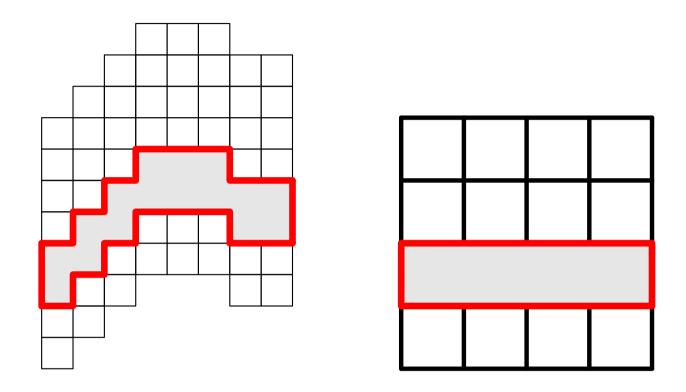
$$\mathcal{L}(f, T, \mathbf{B}_0) \leqslant C T^{2\alpha/(\alpha+1)}$$
.

- ullet CART algorithm minimizes $\mathcal{L}(f,T,\mathbf{B})$ and tests this partition.
- ullet The optimal function f_M satisfies thus also

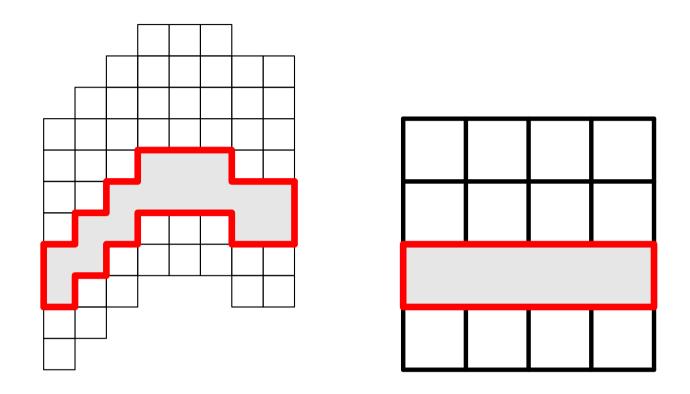
$$||f - f_M||^2 + T^2 M \leqslant \mathcal{L}(f, T, \mathbf{B}_0) \leqslant C T^{2\alpha/(\alpha+1)}$$

and so

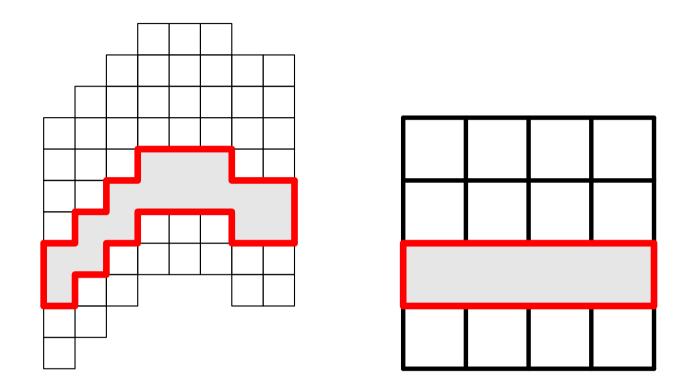
$$||f - f_M||^2 \leqslant KM^{-1/\alpha} .$$



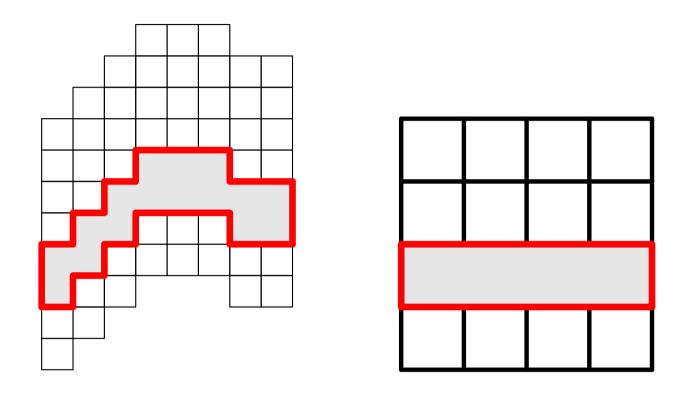
• Interpolation of order 0 (no interpolation) leads to discrete bandelets.



- Interpolation of order 0 (no interpolation) leads to discrete bandelets.
- Discrete basis/frame.



- Interpolation of order 0 (no interpolation) leads to discrete bandelets.
- Discrete basis/frame.
- Same optimization scheme.



- Interpolation of order 0 (no interpolation) leads to discrete bandelets.
- Discrete basis/frame.
- Same optimization scheme.
- Same kind of theoretical results.

Approximation scheme leads to compression scheme.

- Approximation scheme leads to compression scheme.
- Simple prototype coder:
 - Quad-Tree coded with 1 bits per inner node.
 - Geometry coded with $\log_2 3$ bits for the type of bandelets, $\log_2 T$ bits for the geometry scale and $\log_2 T$ bits per geometric coefficients.
 - Position of the M largest coefficients: $(1 \log(M/N))$ bits per coefficients.
 - Value of the M largest coefficients: $\log_2 T$ bits per coefficients.

- Approximation scheme leads to compression scheme.
- Simple prototype coder:
 - Quad-Tree coded with 1 bits per inner node.
 - Geometry coded with $\log_2 3$ bits for the type of bandelets, $\log_2 T$ bits for the geometry scale and $\log_2 T$ bits per geometric coefficients.
 - Position of the M largest coefficients: $(1 \log(M/N))$ bits per coefficients.
 - Value of the M largest coefficients: $\log_2 T$ bits per coefficients.
- Sufficient to use the previous theorem to obtain:

$$D(R) \leqslant C R^{-\alpha} (\log R)^{\alpha}$$

- Approximation scheme leads to compression scheme.
- Simple prototype coder:
 - Quad-Tree coded with 1 bits per inner node.
 - Geometry coded with $\log_2 3$ bits for the type of bandelets, $\log_2 T$ bits for the geometry scale and $\log_2 T$ bits per geometric coefficients.
 - Position of the M largest coefficients: $(1 \log(M/N))$ bits per coefficients.
 - Value of the M largest coefficients: $\log_2 T$ bits per coefficients.
- Sufficient to use the previous theorem to obtain:

$$D(R) \leqslant C R^{-\alpha} (\log R)^{\alpha}$$

No claim of optimality for the coder.

Bandelets algorithmic closely related to wavelet algorithmic.

- Bandelets algorithmic closely related to wavelet algorithmic.
- Optimization can lead to computationnal issue.

- Bandelets algorithmic closely related to wavelet algorithmic.
- Optimization can lead to computationnal issue.
- Non linear approximation theorems.

- Bandelets algorithmic closely related to wavelet algorithmic.
- Optimization can lead to computationnal issue.
- Non linear approximation theorems.
- Some differences between theory and practice.

Overview

- Session 1
 - Bandelets construction
 - Non linear approximation with bandelets
 - Compression
- Session 2
 - Bandelets algorithmic
 - Non linear approximation theorem(s)
- Session 3 (with Ch. Dossal)
 - Denoising
 - Deconvolution of seismic data
- Session 4
 - Bandelets NG

ullet Estimate an image f from the noisy data

X = f + W where W is Gaussian white of variance σ^2 .

- \blacksquare Estimate an image f from the noisy data
 - X = f + W where W is Gaussian white of variance σ^2 .
- Thresholding estimator in a basis $\mathbf{B} = \{g_m\}_{1 \leq m \leq N^2}$:

$$F = \sum_{|\langle X, g_m \rangle| > T} \langle X, g_m \rangle g_m = P_{\mathcal{M}}(X) .$$

- ullet Estimate an image f from the noisy data
 - X = f + W where W is Gaussian white of variance σ^2 .
- Thresholding estimator in a basis $\mathbf{B} = \{g_m\}_{1 \leq m \leq N^2}$:

$$F = \sum_{|\langle X, g_m \rangle| > T} \langle X, g_m \rangle g_m = P_{\mathcal{M}}(X) .$$

ullet Model: subspace ${\mathcal M}$ of a bandelet frame associated to a geometry.

- Estimate an image f from the noisy data $X = f + W \quad \text{where } W \text{ is Gaussian white of variance } \sigma^2.$
- Thresholding estimator in a basis $\mathbf{B} = \{g_m\}_{1 \leq m \leq N^2}$:

$$F = \sum_{|\langle X, g_m \rangle| > T} \langle X, g_m \rangle g_m = P_{\mathcal{M}}(X) .$$

- ullet Model: subspace ${\cal M}$ of a bandelet frame associated to a geometry.
- The *oracle model* minimizes the risk $E(||F f||^2)$.

- Estimate an image f from the noisy data $X = f + W \quad \text{where } W \text{ is Gaussian white of variance } \sigma^2.$
- Thresholding estimator in a basis $\mathbf{B} = \{g_m\}_{1 \leq m \leq N^2}$:

$$F = \sum_{|\langle X, g_m \rangle| > T} \langle X, g_m \rangle g_m = P_{\mathcal{M}}(X) .$$

- ullet Model: subspace ${\cal M}$ of a bandelet frame associated to a geometry.
- The oracle model minimizes the risk $E(||F f||^2)$.
- Design of a penalized estimator:

$$||F - X||^2 + \lambda \operatorname{Pen}(F)$$

MDL = Bayesian.

- MDL = Bayesian.
- Prior on the functions: $P(f) \propto 2^{-R}$ where R is the number of bits required to code the function.

- ightharpoonup MDL = Bayesian.
- Prior on the functions: $P(f) \propto 2^{-R}$ where R is the number of bits required to code the function.
- Estimator selects the model that minimizes

$$||X - F||^2 + \lambda \,\sigma^2 \,R$$

- ightharpoonup MDL = Bayesian.
- Prior on the functions: $P(f) \propto 2^{-R}$ where R is the number of bits required to code the function.
- Estimator selects the model that minimizes

$$||X - F||^2 + \lambda \,\sigma^2 \,R$$

Allows to reuse the compression algorithm almost directly.

- MDL = Bayesian.
- Prior on the functions: $P(f) \propto 2^{-R}$ where R is the number of bits required to code the function.
- Estimator selects the model that minimizes

$$||X - F||^2 + \lambda \,\sigma^2 \,R$$

- Allows to reuse the compression algorithm almost directly.
- No theoretical results but a practical algorithm with a flow estimation.

Computation of Flow with Noise

Computation of Flow with Noise

• Image regularization at a scale 2^l : $f \star \theta_l$ with

$$\theta_l(x_1, x_2) = 2^{-2l} \theta(2^{-l}x_1, 2^{-l}x_2).$$

Computation of Flow with Noise

Image regularization at a scale 2^l : $f \star \theta_l$ with

terized at the scale
$$2^l$$
: $f\star\theta_l$ with
$$\theta_l(x_1,x_2)=2^{-2l}\,\theta(2^{-l}x_1\,,\,2^{-l}x_2)\,.$$

Flow parameterized at the scale 2^l :

$$c'(x) = \sum_{n=1}^{L2^{-l}} \alpha_n \, \phi(2^{-l}x - n) ,$$

$$\int_{\Omega} \left| \nabla (f \star \theta_l)(x_1, x_2) \cdot \vec{\tau}(x_1, x_2) \right|^2 dx_1 dx_2 = \int_{\Omega} \left| \frac{\partial (f \star \theta_l)(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 dx_1 dx_2$$

Computation of Flow with Noise

• Image regularization at a scale 2^l : $f \star \theta_l$ with

$$\theta_l(x_1, x_2) = 2^{-2l} \theta(2^{-l}x_1, 2^{-l}x_2)$$
.

• Flow parameterized at the scale 2^l :

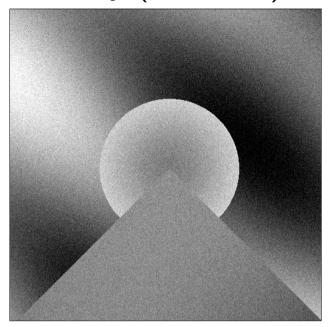
$$c'(x) = \sum_{n=1}^{L2^{-l}} \alpha_n \, \phi(2^{-l}x - n) ,$$

where the α_n minimize

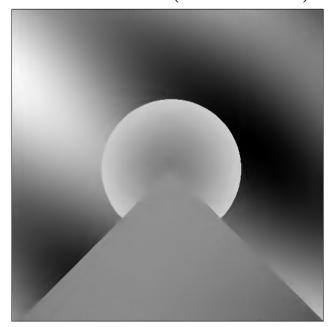
$$\int_{\Omega} \left| \nabla (f \star \theta_l)(x_1, x_2) \cdot \vec{\tau}(x_1, x_2) \right|^2 dx_1 dx_2 = \int_{\Omega} \left| \frac{\partial (f \star \theta_l)(x_1, x_2)}{\partial \vec{\tau}(x_1, x_2)} \right|^2 dx_1 dx_2$$

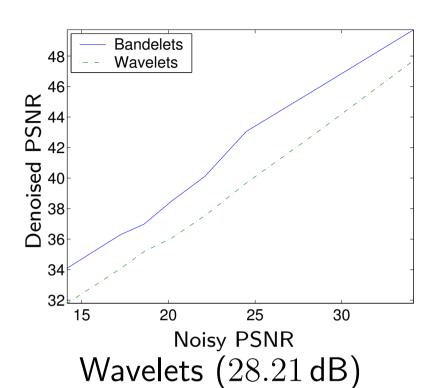
• The scale 2^l is computed by the penalized minimization. It is adjusted to the noise variance and the local geometric signal regularity.

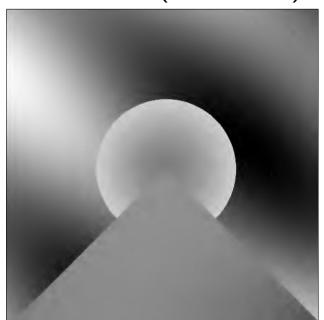
Noisy $(20.19 \, dB)$



Bandelets $(30.29 \, dB)$

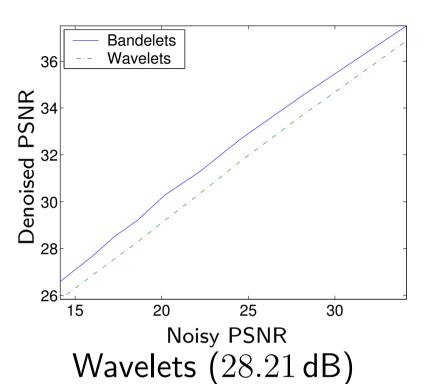






Noisy $(20.19 \, dB)$

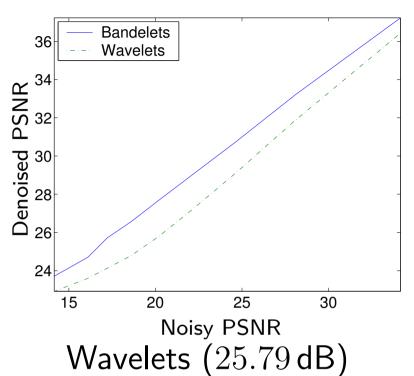
Bandelets $(30.29 \, dB)$

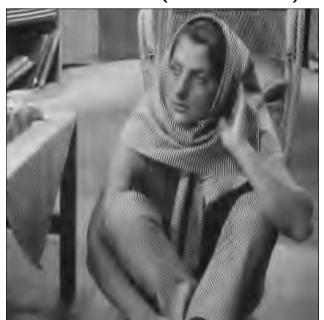


Noisy Bandelets Wavelets

Noisy $(20.19 \, dB)$

Bandelets $(27.68 \, dB)$





Noisy Bandelets Wavelets

How to obtain a theoretical result of convergence for a bandelet estimator (Ch. Dossal)?

- How to obtain a theoretical result of convergence for a bandelet estimator (Ch. Dossal)?
- Control on the total number ν of bandelets in all the different tested models.

- How to obtain a theoretical result of convergence for a bandelet estimator (Ch. Dossal)?
- Control on the total number ν of bandelets in all the different tested models.
- Minimizing of

$$-\|F\|^2 + \lambda \,\sigma^2 \left(\log \nu\right) M$$

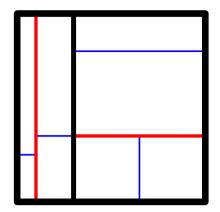
gives an almost optimal result on the estimator risk (Donoho).

- How to obtain a theoretical result of convergence for a bandelet estimator (Ch. Dossal)?
- Control on the total number ν of bandelets in all the different tested models.
- Minimizing of

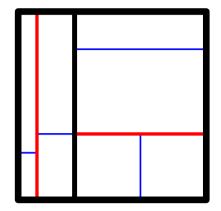
$$-\|F\|^2 + \lambda \,\sigma^2 \left(\log \nu\right) M$$

gives an almost optimal result on the estimator risk (Donoho).

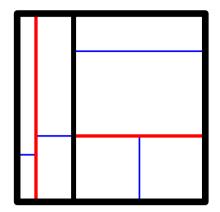
But requires a orthogonal basis or a tight frame.



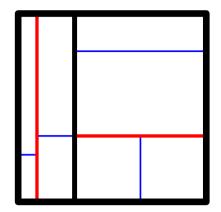
- Modifications of the border bandelets in a rectangle to obtain an orthonormal basis with suitable approximation properties.
- Splitting in rectangle with a polynomial flow.



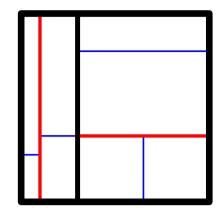
- Modifications of the border bandelets in a rectangle to obtain an orthonormal basis with suitable approximation properties.
- Splitting in rectangle with a polynomial flow.
- Tree structure preserved.



- Modifications of the border bandelets in a rectangle to obtain an orthonormal basis with suitable approximation properties.
- Splitting in rectangle with a polynomial flow.
- Tree structure preserved.
- Polynomial total number of bandelets: $\nu \leqslant C N^{(p+5)}$.



- Modifications of the border bandelets in a rectangle to obtain an orthonormal basis with suitable approximation properties.
- Splitting in rectangle with a polynomial flow.
- Tree structure preserved.
- Polynomial total number of bandelets: $\nu \leqslant C N^{(p+5)}$.
- Optimization complexity still polynomial.



- Modifications of the border bandelets in a rectangle to obtain an orthonormal basis with suitable approximation properties.
- Splitting in rectangle with a polynomial flow.
- Tree structure preserved.
- Polynomial total number of bandelets: $\nu \leqslant C N^{(p+5)}$.
- Optimization complexity still polynomial.
- Near optimality of the risk for the minimization of

$$-\|F\|^2 + \lambda \,\sigma^2 \left(\log \nu\right) M$$

with $\log \nu \propto \log N$.

Estimate F obtained from Y=f+W, where W is a white noise of variance σ^2 , by minimizing $-\|F\|^2 + \lambda\,\sigma^2\,(\log\nu)\,M \quad .$

• Estimate F obtained from Y=f+W, where W is a white noise of variance σ^2 , by minimizing

 $-\|F\|^2 + \lambda \,\sigma^2 \left(\log \nu\right) M \quad .$

Theorem: If f is \mathbf{C}^{α} geometrically regular ($f = \tilde{f}$ or $f = \tilde{f} \star h$ with \tilde{f} \mathbf{C}^{α} outside a set of curves, that are by parts \mathbf{C}^{α} with some non tangency conditions) then the estimate F satisfies

$$||f - F||^2 \le C(\log \nu)^{\alpha/(\alpha+1)} (\log \log \nu)^{1/(\alpha+1)} \sigma^{2\alpha/(\alpha+1)}$$

with a probability greater than $1-2\nu^{-1/4}$.

• Estimate F obtained from Y=f+W, where W is a white noise of variance σ^2 , by minimizing

 $-\|F\|^2 + \lambda \,\sigma^2 \left(\log \nu\right) M \quad .$

Theorem: If f is \mathbf{C}^{α} geometrically regular ($f = \tilde{f}$ or $f = \tilde{f} \star h$ with \tilde{f} \mathbf{C}^{α} outside a set of curves, that are by parts \mathbf{C}^{α} with some non tangency conditions) then the estimate F satisfies

$$||f - F||^2 \le C(\log \nu)^{\alpha/(\alpha+1)} (\log \log \nu)^{1/(\alpha+1)} \sigma^{2\alpha/(\alpha+1)}$$

with a probability greater than $1-2\nu^{-1/4}$.

• Unknown degree of smoothness α .

• Estimate F obtained from Y=f+W, where W is a white noise of variance σ^2 , by minimizing

 $-\|F\|^2 + \lambda \,\sigma^2 \left(\log \nu\right) M \quad .$

Theorem: If f is \mathbf{C}^{α} geometrically regular ($f = \tilde{f}$ or $f = \tilde{f} \star h$ with \tilde{f} \mathbf{C}^{α} outside a set of curves, that are by parts \mathbf{C}^{α} with some non tangency conditions) then the estimate F satisfies

$$||f - F||^2 \le C(\log \nu)^{\alpha/(\alpha+1)} (\log \log \nu)^{1/(\alpha+1)} \sigma^{2\alpha/(\alpha+1)}$$

with a probability greater than $1-2\nu^{-1/4}$.

- Unknown degree of smoothness α .
- Near optimal decay exponent α .

• Estimate F obtained from Y=f+W, where W is a white noise of variance σ^2 , by minimizing

 $-\|F\|^2 + \lambda \,\sigma^2 \left(\log \nu\right) M \quad .$

Theorem: If f is \mathbf{C}^{α} geometrically regular ($f = \tilde{f}$ or $f = \tilde{f} \star h$ with \tilde{f} \mathbf{C}^{α} outside a set of curves, that are by parts \mathbf{C}^{α} with some non tangency conditions) then the estimate F satisfies

$$||f - F||^2 \le C(\log \nu)^{\alpha/(\alpha+1)} (\log \log \nu)^{1/(\alpha+1)} \sigma^{2\alpha/(\alpha+1)}$$

with a probability greater than $1-2\nu^{-1/4}$.

- Unknown degree of smoothness α .
- Near optimal decay exponent α .
- Sampling case: $Y(x_i) = f(x_i) + \epsilon(x_i)$ with ϵ a white noise of variance σ^2 :

$$||f - F||^2 \leqslant C \left(\frac{\log N}{N^2}\right)^{\alpha/(\alpha+1)} (\log\log N)^{1/(\alpha+1)}$$

• Risk: $E(\|f - F\|^2) = \sum_{n \notin \mathcal{M}} |\langle f, g_n \rangle|^2 + M\sigma^2$.

- Risk: $E(\|f F\|^2) = \sum_{n \notin \mathcal{M}} |\langle f, g_n \rangle|^2 + M\sigma^2$.
- Oracle risk : minimum risk over all possible estimator $(\mathcal{M} = \{n \text{ s.t. } |\langle f, g_n \rangle| \geqslant \sigma\} \text{ in the best basis}).$

- Risk: $E(\|f F\|^2) = \sum_{n \in \mathcal{M}} |\langle f, g_n \rangle|^2 + M\sigma^2$.
- Oracle risk : minimum risk over all possible estimator $(\mathcal{M} = \{n \text{ s.t. } |\langle f, g_n \rangle| \geqslant \sigma\} \text{ in the best basis}).$
- Oracle estimate: $f_0 = \operatorname{argmin}_g \|f g\|^2 + \sigma^2 M(g)$

- Risk: $E(\|f F\|^2) = \sum_{n \in \mathcal{M}} |\langle f, g_n \rangle|^2 + M\sigma^2$.
- Oracle risk : minimum risk over all possible estimator $(\mathcal{M} = \{n \text{ s.t. } |\langle f, g_n \rangle| \geqslant \sigma\} \text{ in the best basis}).$
- Oracle estimate: $f_0 = \operatorname{argmin}_g \|f g\|^2 + \sigma^2 M(g)$
- Oracle estimate v2: $f_1 = \operatorname{argmin}_q \|f g\|^2 + \lambda \sigma^2 (\log \nu) M(g)$

- Risk: $E(\|f F\|^2) = \sum_{n \notin \mathcal{M}} |\langle f, g_n \rangle|^2 + M\sigma^2$.
- Oracle risk : minimum risk over all possible estimator $(\mathcal{M} = \{n \text{ s.t. } |\langle f, g_n \rangle| \geqslant \sigma\} \text{ in the best basis}).$
- Oracle estimate: $f_0 = \operatorname{argmin}_g \|f g\|^2 + \sigma^2 M(g)$
- Oracle estimate v2: $f_1 = \operatorname{argmin}_g \|f g\|^2 + \lambda \sigma^2(\log \nu) M(g)$
- ${\color{red} \bullet}$ Empirical estimate: $F = \operatorname{argmin}_g \|X g\|^2 + \lambda \sigma^2 (\log \nu) M(g)$

- Risk: $E(\|f F\|^2) = \sum_{n \notin \mathcal{M}} |\langle f, g_n \rangle|^2 + M\sigma^2$.
- Oracle risk : minimum risk over all possible estimator $(\mathcal{M} = \{n \text{ s.t. } |\langle f, g_n \rangle| \geqslant \sigma\} \text{ in the best basis}).$
- Oracle estimate: $f_0 = \operatorname{argmin}_q \|f g\|^2 + \sigma^2 M(g)$
- Oracle estimate v2: $f_1 = \operatorname{argmin}_g \|f g\|^2 + \lambda \sigma^2 (\log \nu) M(g)$
- ${\color{red} \bullet}$ Empirical estimate: $F = \operatorname{argmin}_g \|X g\|^2 + \lambda \sigma^2 (\log \nu) M(g)$
- Theorem: With high probability

$$||f - F||^2 + \lambda \sigma^2(\log \nu) M(F) \le C||f - f_1||^2 + \lambda \sigma^2(\log \nu) M(f_1)$$

$$||f - F||^2 + \lambda \sigma^2(\log \nu) M(F) \le C(\log \nu) (||f - f_0||^2 + \sigma^2 M(f_0))$$

Proof - 1

Proof - 1

● Donoho: quiet easy (once we assume the following lemma).

Proof - 1

- Donoho: quiet easy (once we assume the following lemma).
- **▶ Lemma:** With high probability, $\forall \mathcal{M}, ||P_{\mathcal{M}}W||^2 \leq 4M\sigma^2$.

Proof - 1

- Donoho: quiet easy (once we assume the following lemma).
- **▶ Lemma:** With high probability, $\forall \mathcal{M}, ||P_{\mathcal{M}}W||^2 \leq 4M\sigma^2$.
- **●** Step 1:

$$||f - f_1||^2 + \lambda \sigma^2 (\log \nu) M(f_1) \leqslant \lambda (\log \nu) (||f - f_0||^2 + \sigma^2 M(f_0))$$
 (easy).

Proof - 1

- Donoho: quiet easy (once we assume the following lemma).
- **▶ Lemma:** With high probability, $\forall \mathcal{M}, ||P_{\mathcal{M}}W||^2 \leq 4M\sigma^2$.
- Step 1:

$$||f - f_1||^2 + \lambda \sigma^2 (\log \nu) M(f_1) \leqslant \lambda (\log \nu) (||f - f_0||^2 + \sigma^2 M(f_0))$$
 (easy).

Step 2:

$$||f - F||^2 + \lambda \sigma^2(\log \nu) M(F) \le C||f - f_1||^2 + \lambda \sigma^2(\log \nu) M(f_1).$$

Proof - 2

- $||X g||^2 = ||X f|| + 2\langle X f, f g \rangle + ||f g||^2.$
- Inserting this in

$$\|X-F\|^2 + \lambda \sigma^2(\log \nu) M(F) \leqslant \|X-f_1\|^2 + \lambda \sigma^2(\log \nu) M(f_1)$$
 yields

$$||f - F||^2 + \lambda \sigma^2(\log \nu) M(F) \le ||f - f_1||^2 + \lambda \sigma^2(\log \nu) M(f_1) + 2\langle X - f, F - f_1 \rangle .$$

- Now $\langle X f, F f_1 \rangle \leqslant \|P_{\mathcal{M} \cup \mathcal{M}_1} W\| \|F f_1\|$.
- By definition of f_1 ,

$$||F - f_1|| \le ||F - f|| + ||f - f_1|| \le 2(||f - F||^2 + \lambda \sigma^2(\log \nu)M(F))^{1/2}$$

With the lemma,

$$||P_{\mathcal{M} \cup \mathcal{M}_1} W||^2 \le 4\sigma^2 \log \nu (M(F) + M(f_1))$$

$$||P_{\mathcal{M} \cup \mathcal{M}_1} W||^2 \le (8/\lambda)\sigma^2 (||f - F||^2 + \lambda \sigma^2 (\log \nu) M(F))$$

Combining this two last bounds gives the result.

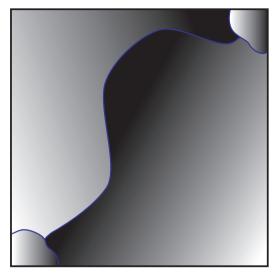
Bandelets: nice example of model selection.

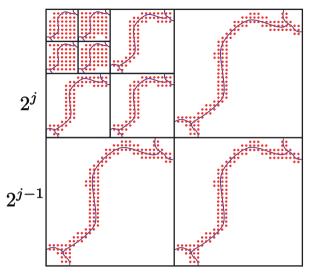
- Bandelets: nice example of model selection.
- Both practical and theoretical results.

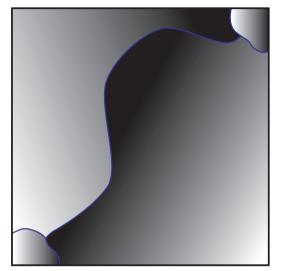
- Bandelets: nice example of model selection.
- Both practical and theoretical results.
- Bandelets are well adapted to seismic data deconvolution.

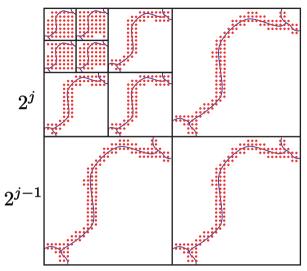
Overview

- Session 1
 - Bandelets construction
 - Non linear approximation with bandelets
 - Compression
- Session 2
 - Bandelets algorithmic
 - Non linear approximation theorem(s)
- Session 3 (with Ch. Dossal)
 - Denoising
 - Deconvolution of seismic data
- Session 4
 - Bandelets NG

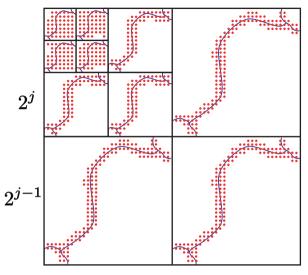




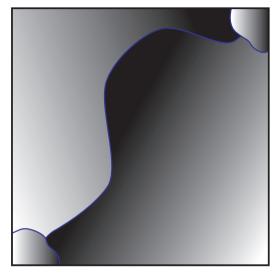


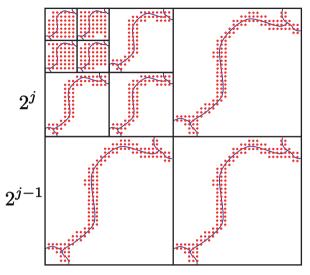


At each scale, how to approximate the vector of non-zero wavelet coefficients (chaotic behavior)?

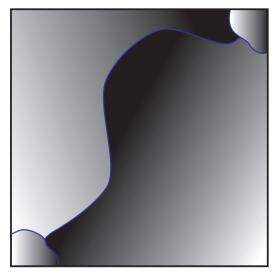


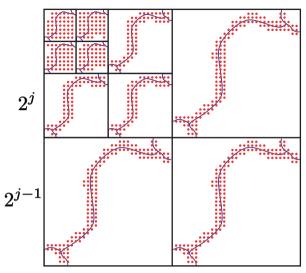
- At each scale, how to approximate the vector of non-zero wavelet coefficients (chaotic behavior)?
- Use of parameterized models projected over wavelets: "wedgelets" and "wedgeprints" by Baraniuk, Romberg, Wakin and Dragotti, Vetterli: discontinuities along parameterized curves.





- At each scale, how to approximate the vector of non-zero wavelet coefficients (chaotic behavior)?
- Use of parameterized models projected over wavelets: "wedgelets" and "wedgeprints" by Baraniuk, Romberg, Wakin and Dragotti, Vetterli: discontinuities along parameterized curves.
- Difficult to parameterize smooth edges $f = \tilde{f} \star \theta_s$.



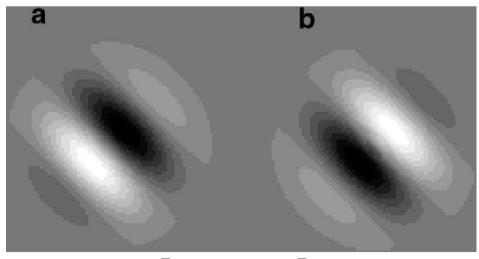


- At each scale, how to approximate the vector of non-zero wavelet coefficients (chaotic behavior)?
- Use of parameterized models projected over wavelets: "wedgelets" and "wedgeprints" by Baraniuk, Romberg, Wakin and Dragotti, Vetterli: discontinuities along parameterized curves.
- ullet Difficult to parameterize smooth edges $f = \tilde{f} \star \theta_s$.
- Modification of the wavelet transform (Cohen).

Geometry in the Visual Brain

Geometry in the Visual Brain

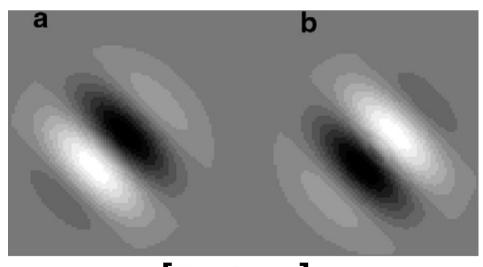
Simple cells in V1 provide inner products with wavelets:



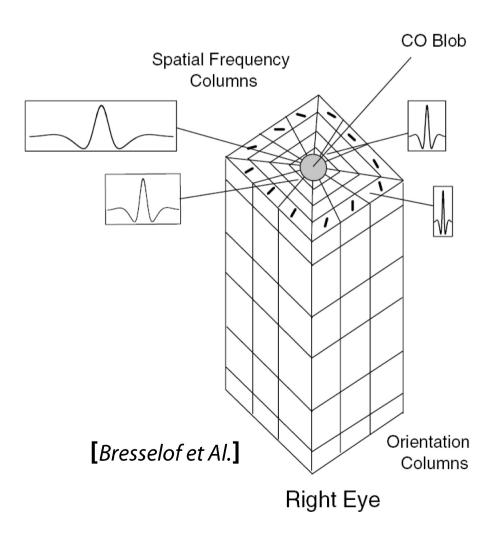
[Wolf et al]

Geometry in the Visual Brain

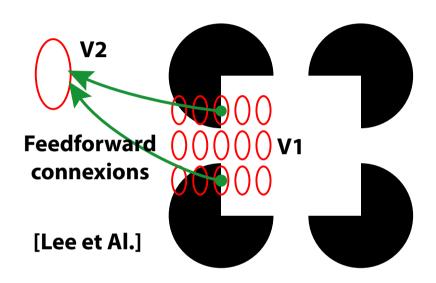
Simple cells in V1 provide inner products with wavelets:



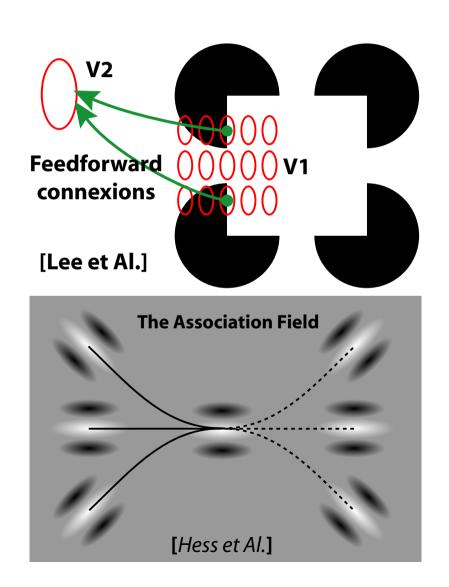
[Wolf et al]



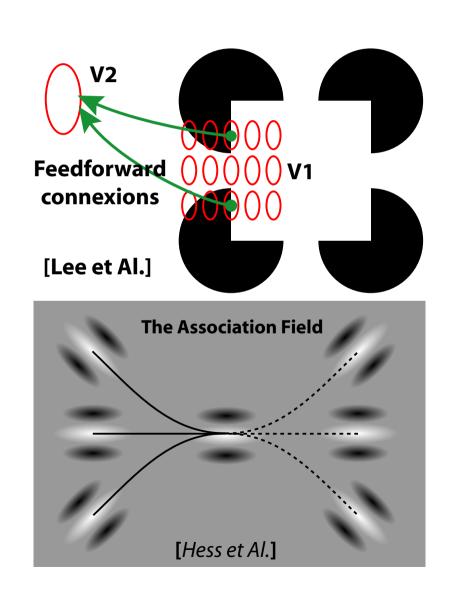
Contour integration in V2:

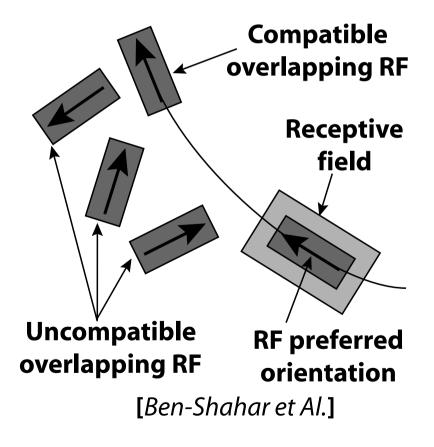


Contour integration in V2:



Contour integration in V2:



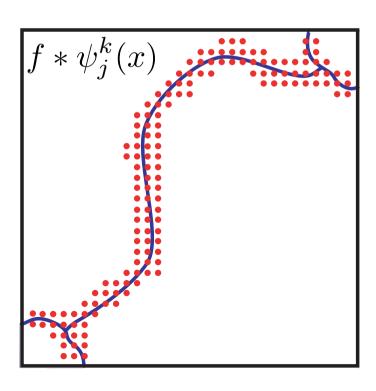


Gabriel Peyré

Gabriel Peyré

Wavelet coefficients are samples of a regularized function:

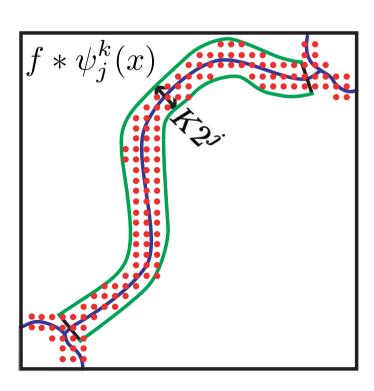
$$\langle f\,,\,\psi_{j,n}^k\rangle=f\star\psi_j^k(2^jn)\quad\text{with}\quad\psi_j^k(x)=2^{-j}\,\psi^k(-2^{-j}x)\quad.$$



Gabriel Peyré

Wavelet coefficients are samples of a regularized function:

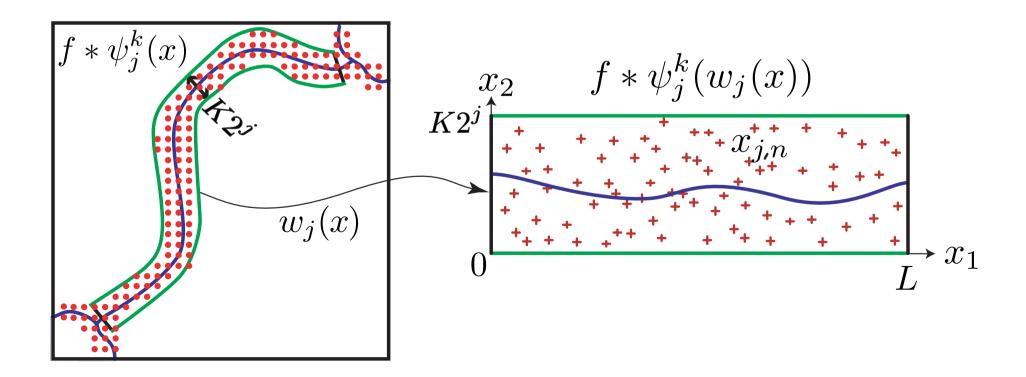
$$\langle f\,,\,\psi_{j,n}^k\rangle=f\star\psi_j^k(2^jn)\quad\text{with}\quad\psi_j^k(x)=2^{-j}\,\psi^k(-2^{-j}x)\quad.$$



Gabriel Peyré

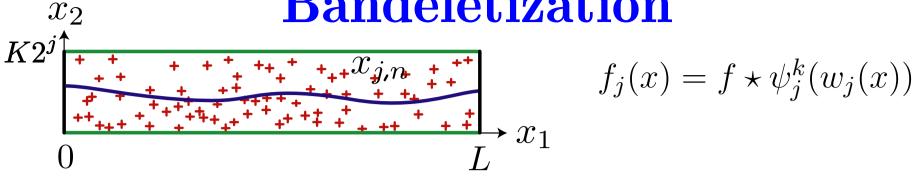
Wavelet coefficients are samples of a regularized function:

$$\langle f\,,\,\psi_{j,n}^k\rangle=f\star\psi_j^k(2^jn)\quad\text{with}\quad\psi_j^k(x)=2^{-j}\,\psi^k(-2^{-j}x)\quad.$$



Bandeletization

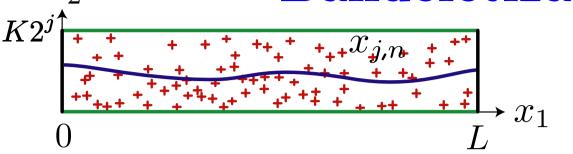
Bandeletization



$$f_j(x) = f \star \psi_j^k(w_j(x))$$

$$\left| \frac{\partial^{a+b} f_j(x_1, x_2)}{\partial^a x_1 \partial^b x_2} \right| \leqslant C \, 2^{-bj} \, 2^{-aj/\alpha} .$$

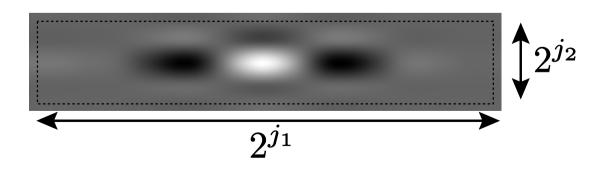
Bandeletization



$$f_j(x) = f \star \psi_j^k(w_j(x))$$

$$\left| \frac{\partial^{a+b} f_j(x_1, x_2)}{\partial^a x_1 \, \partial^b x_2} \right| \leqslant C \, 2^{-bj} \, 2^{-aj/\alpha} .$$

• Approximation from M wavelets of an anisotropic wavelet basis $\{\psi_{j_1,n_1}(x_1) \psi_{j_2,n_2}(x_2)\}_{j_1,n_1,j_2,n_2}$:

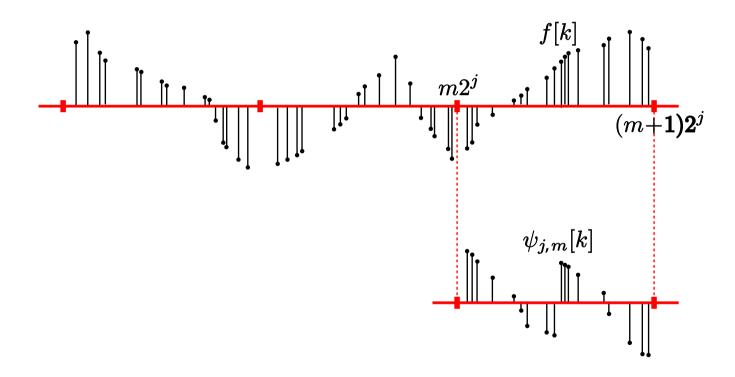


$$||f_j - f_{j,M}||^2 \leqslant C M^{-\alpha}$$
.

Irregularly Sampled Alpert Multiwavelets

Alpert discontinuous polynomial multiresolution approximation:

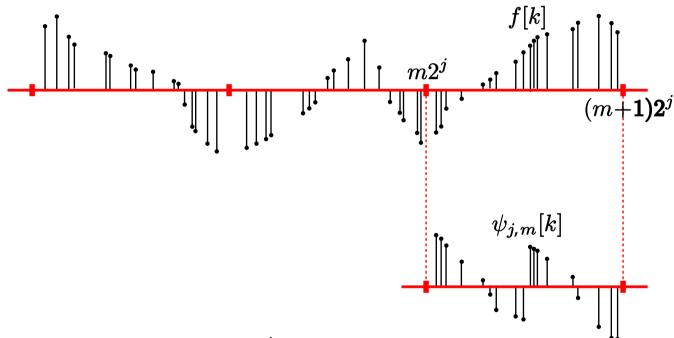
 $\mathbf{V}_{j}^{'} = \{f : f \text{ is a polynomial of degree p on } [m2^{j}, (m+1)2^{j})\}$



Irregularly Sampled Alpert Multiwavelets

Alpert discontinuous polynomial multiresolution approximation:

 $\mathbf{\dot{V}}_{j}^{'} = \{f : f \text{ is a polynomial of degree p on } [m2^{j}, (m+1)2^{j})\}$

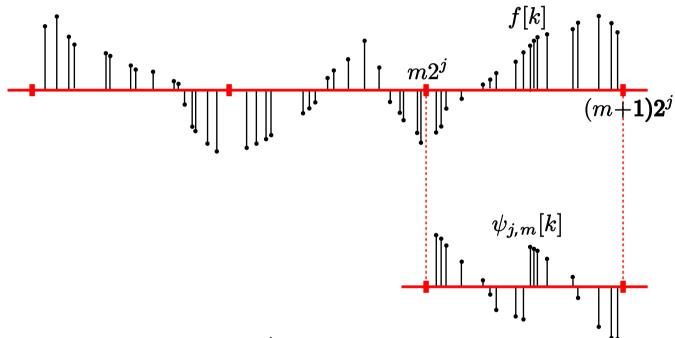


• On each interval of size 2^j there are (p+1) wavelets having (p+1) vanishing moments.

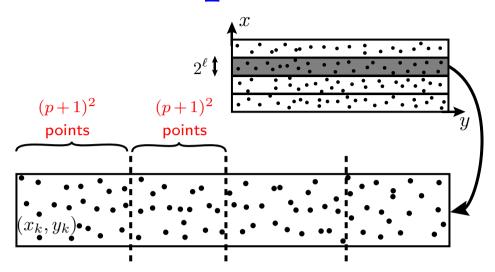
Irregularly Sampled Alpert Multiwavelets

Alpert discontinuous polynomial multiresolution approximation:

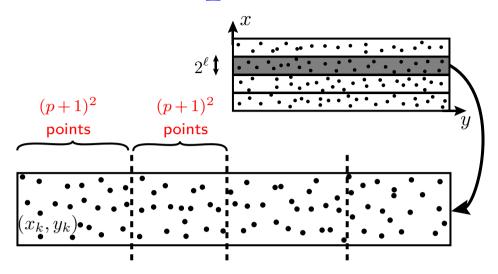
$$\mathbf{V}_j = \{f : f \text{ is a polynomial of degree p on } [m2^j, (m+1)2^j)\}$$



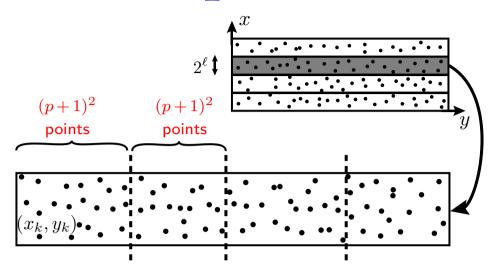
- On each interval of size 2^j there are (p+1) wavelets having (p+1) vanishing moments.
- Alpert fast wavelet transform is O(N) for N irregularly spaced samples.



• On each slice take basis vectors $(x_k^i y_k^j)$ for $i, j = 0 \dots p$.

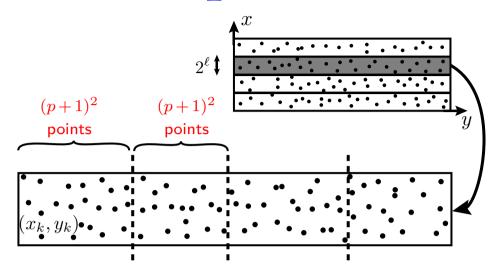


- On each slice take basis vectors $(x_k^i y_k^j)$ for $i, j = 0 \dots p$.
- On each slice same 1D fast O(n) algorithm.

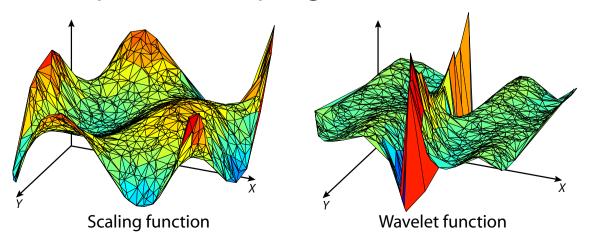


- On each slice take basis vectors $(x_k^i y_k^j)$ for $i, j = 0 \dots p$.
- On each slice same 1D fast O(n) algorithm.
- Stable with respect to sampling location.

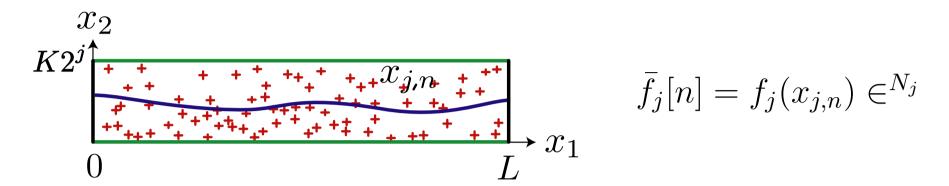
2D Discrete Alpert Multiwavelets



- On each slice take basis vectors $(x_k^i y_k^j)$ for $i, j = 0 \dots p$.
- On each slice same 1D fast O(n) algorithm.
- Stable with respect to sampling location.



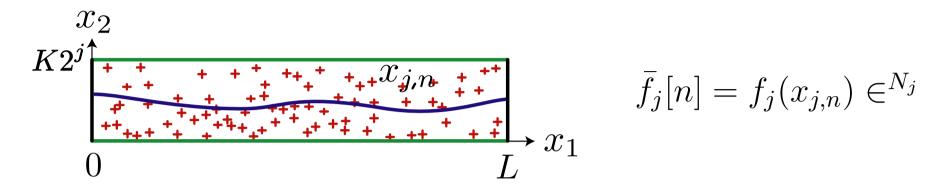
Bandeletization with 2D Alpert Wavelets



• Approximation of $\bar{f}_j[n]$ in a 2D anisotropic Alpert wavelet basis $\{a_{j,m}[n]\}_{0 \le n < N_j}$:

$$\bar{f}_{j,M}[n] = \sum_{|\langle \bar{f}_j, a_m \rangle| > T_M} \langle \bar{f}_j, a_{j,m} \rangle a_{j,m}[n] .$$

Bandeletization with 2D Alpert Wavelets



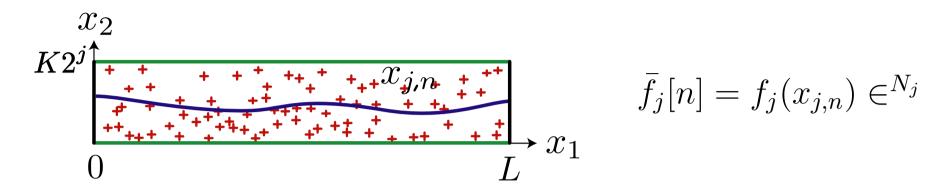
• Approximation of $\bar{f}_j[n]$ in a 2D anisotropic Alpert wavelet basis $\{a_{j,m}[n]\}_{0 \le n < N_i}$:

$$\bar{f}_{j,M}[n] = \sum_{|\langle \bar{f}_j, a_m \rangle| > T_M} \langle \bar{f}_j, a_{j,m} \rangle a_{j,m}[n] .$$

• Requires $O(N_i)$ operations and

$$\|\bar{f}_j - \bar{f}_{j,M}\|^2 \leqslant C M^{-\alpha}$$
.

Bandeletization with 2D Alpert Wavelets



• Approximation of $\bar{f}_j[n]$ in a 2D anisotropic Alpert wavelet basis $\{a_{j,m}[n]\}_{0 \leqslant n < N_j}$:

$$\bar{f}_{j,M}[n] = \sum_{|\langle \bar{f}_j, a_m \rangle| > T_M} \langle \bar{f}_j, a_{j,m} \rangle a_{j,m}[n] .$$

• Requires $O(N_i)$ operations and

$$\|\bar{f}_j - \bar{f}_{j,M}\|^2 \leqslant C M^{-\alpha}$$
.

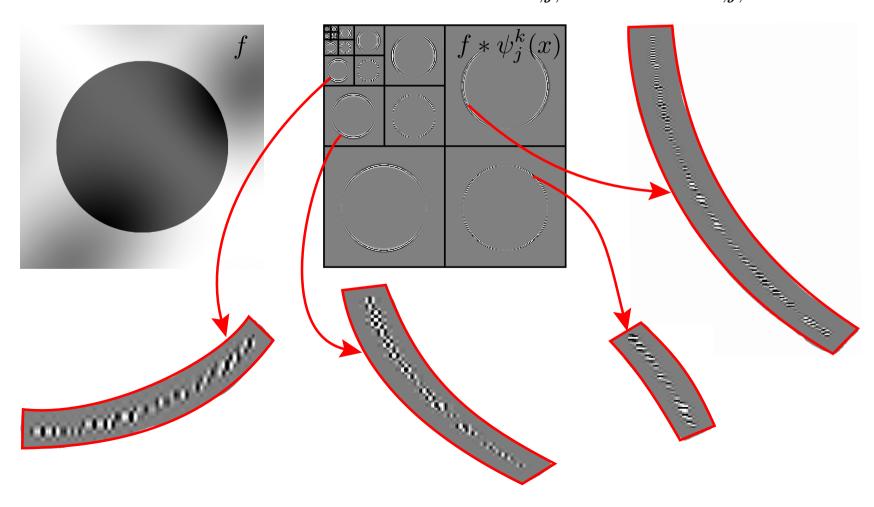
Similar to V2 neurons.

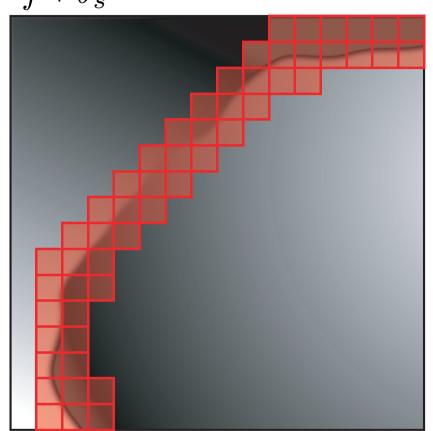
$$b_{j,m}^k(x) = \sum_{n=1}^{N_j} a_{j,m}[n] \, \psi_{j,n}^k(x) .$$

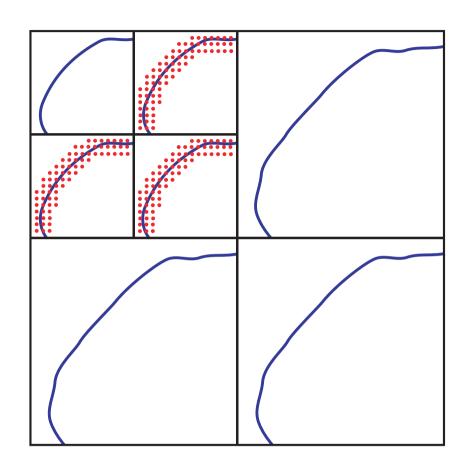
$$b_{j,m}^k(x) = \sum_{n=1}^{N_j} a_{j,m}[n] \, \psi_{j,n}^k(x) .$$

$$b_{j,m}^k(x) = \sum_{n=1}^{N_j} a_{j,m}[n] \, \psi_{j,n}^k(x) .$$

ullet Bandelet orthonormal basis: $\left\{\psi_{j,n}^k\right\}_{k,j,n}\cup\left\{b_{j,m}^k\right\}_{k,j,m}$.

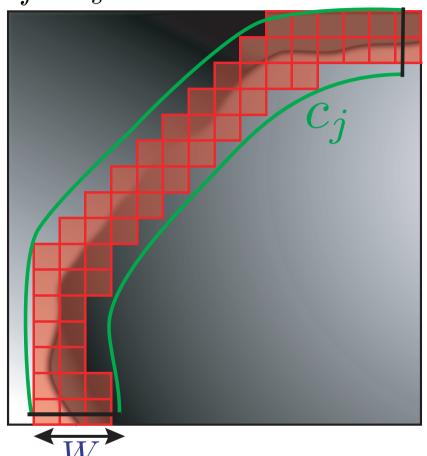




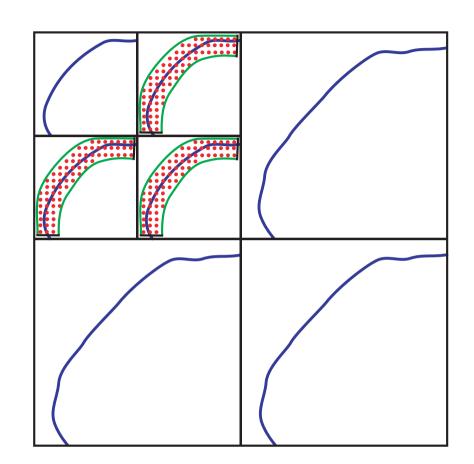


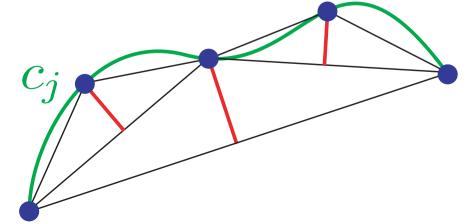
- detection threshold $\mathit{D}_{\!\it{j}}$

 $\widetilde{f} * \theta_s$

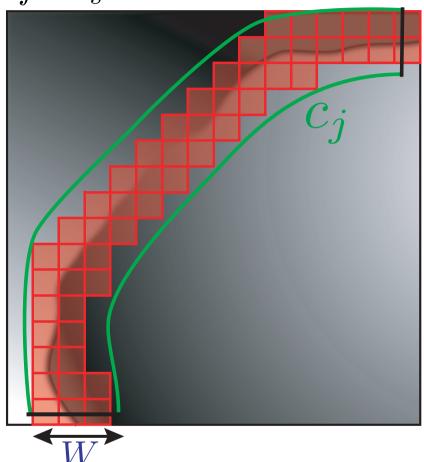


- wavelet coefficients are in a band of width $W = \max(2^j K, s)$
- detection threshold $\widehat{D}_{\!j}$
- *C_j* is parameterized with a normal subdivision [Daubechies, Runborg, Sweldens]

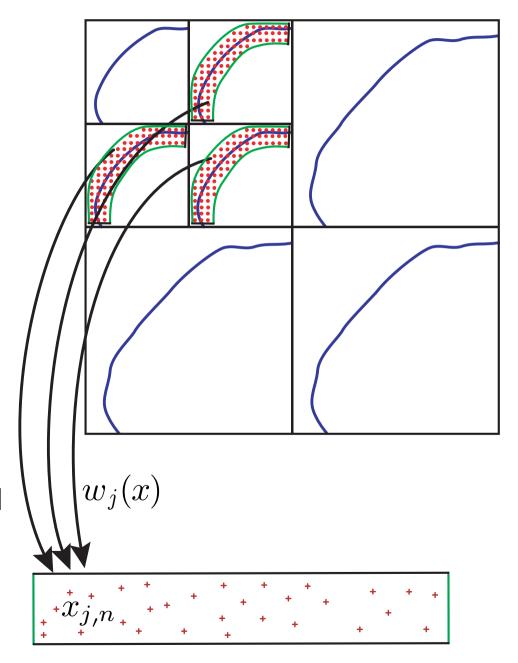




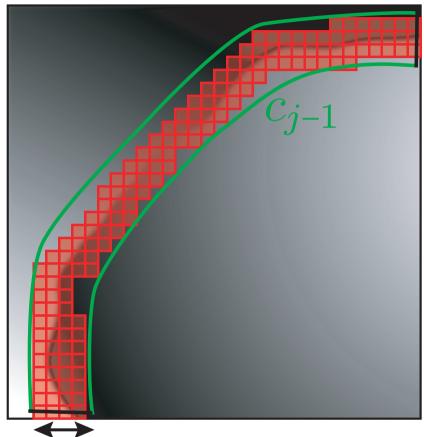
 $\widetilde{f} * \theta_s$



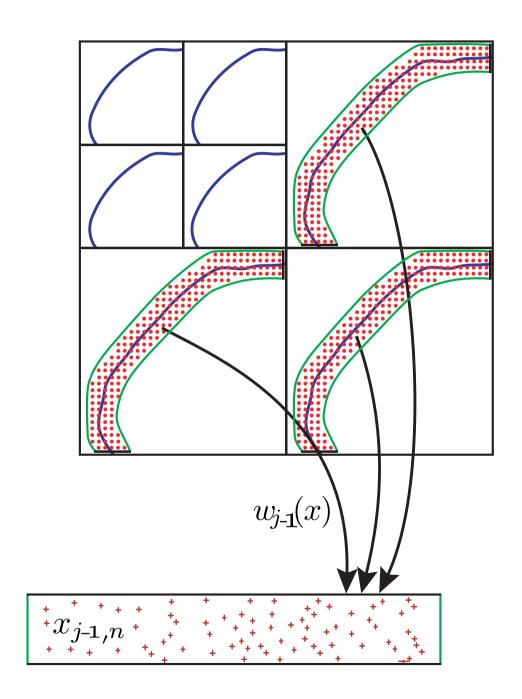
- wavelet coefficients are in a band of width $W = \max(2^j K, s)$
- detection threshold $\widehat{D_j}$
- *C_j* is parameterized with a normal subdivision [Daubechies, Runborg, Sweldens]

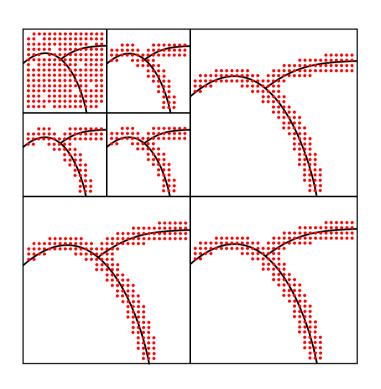


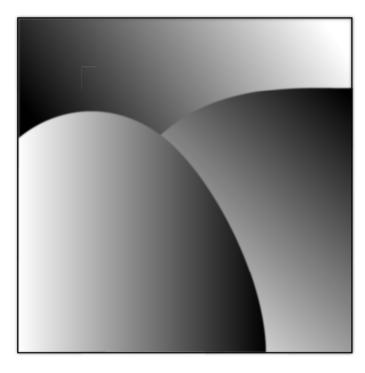
$$\widetilde{f} * \theta_s$$

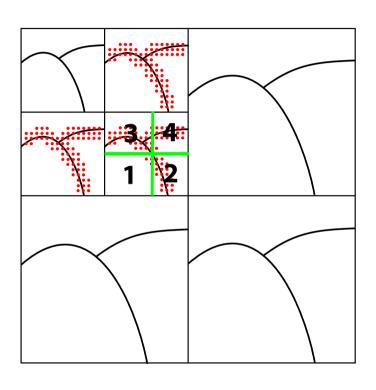


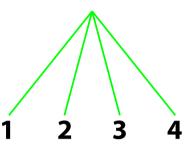
- wavelet coefficients are in a band of width $W = \max(2^{j-1}K, s)$
- detection threshold D_{j-1}
- C_{j-1} is parameterized with a normal subdivision [Daubechies, Runborg, Sweldens]

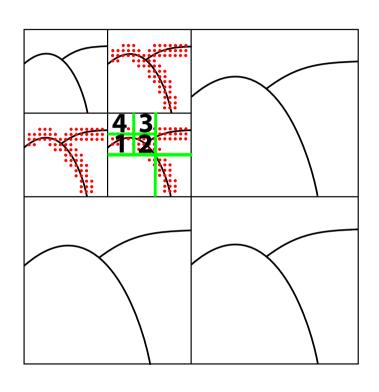


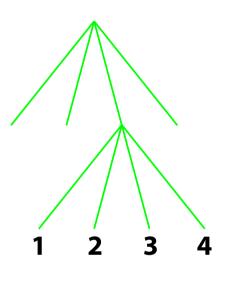


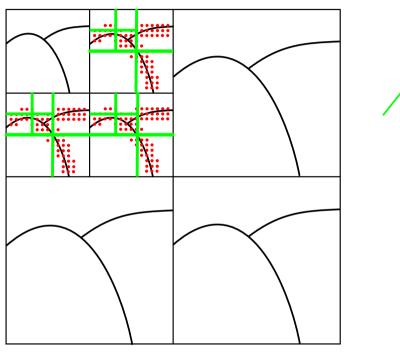


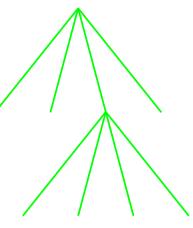


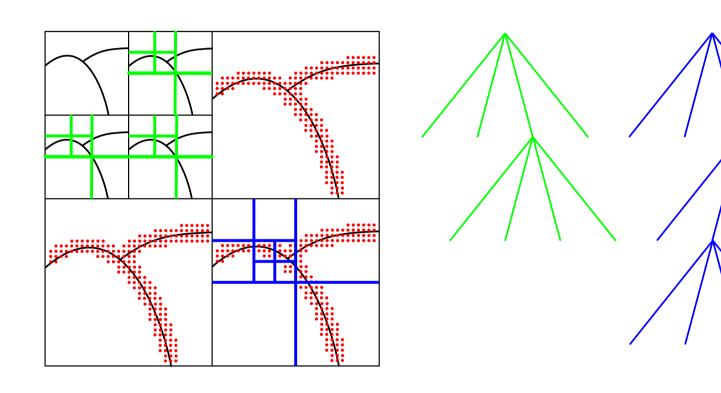


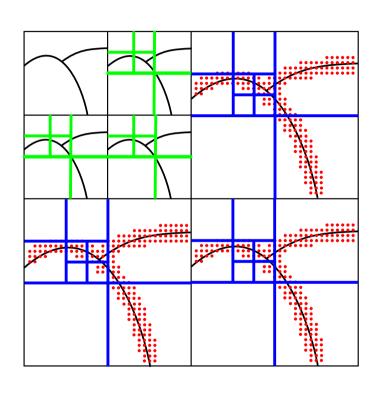


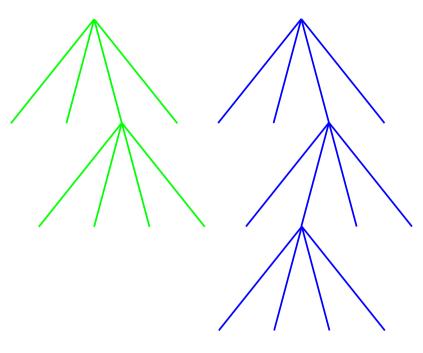


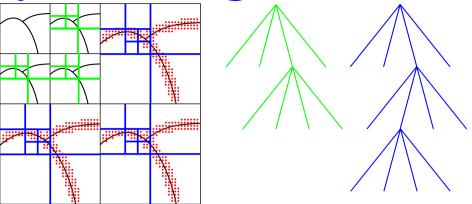


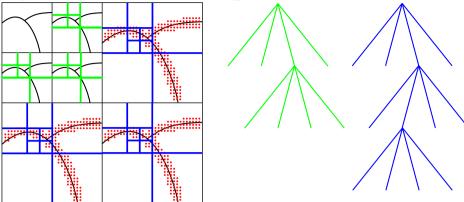






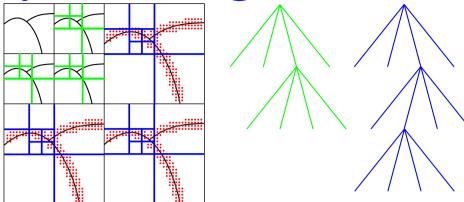






Total number of bandelet, wavelet and geometric coefficients:

$$M = \sum_{j} M_{j} = \sum_{j} (M_{B_{j}} + M_{W_{j}} + M_{G_{j}})$$

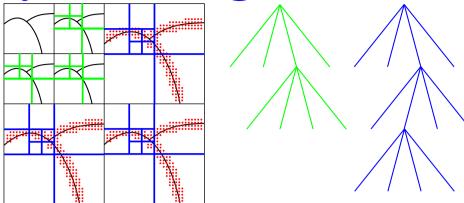


Total number of bandelet, wavelet and geometric coefficients:

$$M = \sum_{j} M_{j} = \sum_{j} (M_{B_{j}} + M_{W_{j}} + M_{G_{j}})$$

Best basis (geometry) computed by minimizing $||f - f_M||^2 + T^2M$:

$$||f - f_M||^2 + T^2 M = \sum_j \left(\sum_{|b_{j,m}| < T} |b_{j,m}|^2 + \sum_{|w_{j,m}| < T} |w_{j,m}|^2 + T^2 M_j \right)$$



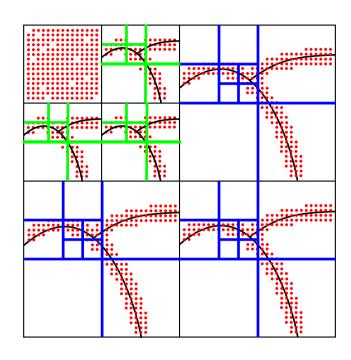
Total number of bandelet, wavelet and geometric coefficients:

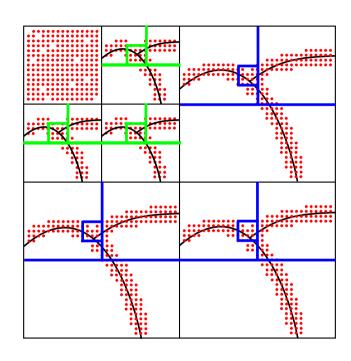
$$M = \sum_{j} M_{j} = \sum_{j} (M_{B_{j}} + M_{W_{j}} + M_{G_{j}})$$

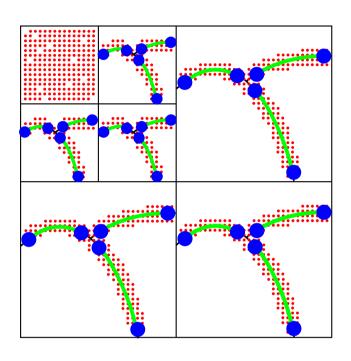
Best basis (geometry) computed by minimizing $||f - f_M||^2 + T^2M$:

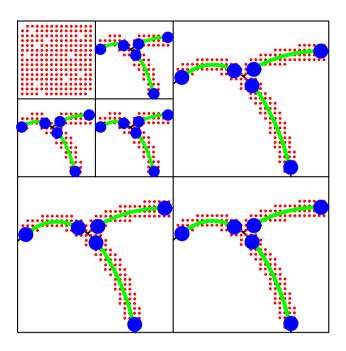
$$||f - f_M||^2 + T^2 M = \sum_{j} \left(\sum_{|b_{j,m}| < T} |b_{j,m}|^2 + \sum_{|w_{j,m}| < T} |w_{j,m}|^2 + T^2 M_j \right)$$

• Computed with $O(N \log_2 N)$ operations with a CART algorithm









- A bandelet representation includes:
 - Beginning and ending points of bands at each scale.
 - Geometric wavelet coefficients that specify each band.
 - Bandelet coefficients in each band.
 - Wavelet coefficients outside all bands.

Bandelet Approximation Theorem

Gabriel Peyré

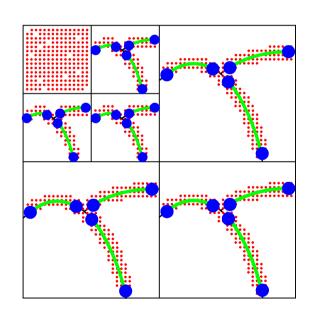
Bandelet Approximation Theorem

Gabriel Peyré

Theorem: Suppose that \tilde{f} is \mathbf{C}^{α} away from "edges" that are piecewise \mathbf{C}^{α} .

If $f=\tilde{f}$ or $f=\tilde{f}\star\theta_s$ then a bandelet approximation f_M , with $M=M_B+M_W+M_G$, satisfies

$$||f - f_M||^2 \leqslant C M^{-\alpha} .$$



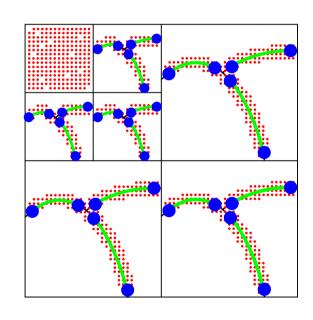
Bandelet Approximation Theorem

Gabriel Peyré

Theorem: Suppose that f is \mathbb{C}^{α} away from "edges" that are piecewise \mathbb{C}^{α} .

If $f=\tilde{f}$ or $f=\tilde{f}\star\theta_s$ then a bandelet approximation f_M , with $M=M_B+M_W+M_G$, satisfies

$$||f - f_M||^2 \leqslant C M^{-\alpha} .$$

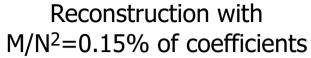


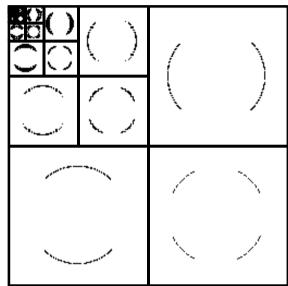
• Optimal (unknown) decay exponent α .

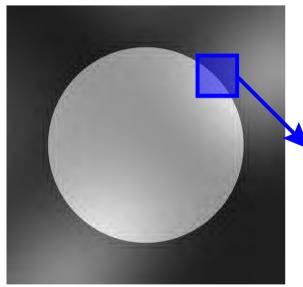
Numerical Experiments

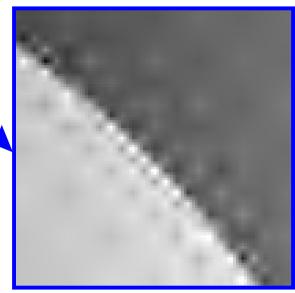
Numerical Experiments

 $|\langle f, \psi_{jn} \rangle| > T$

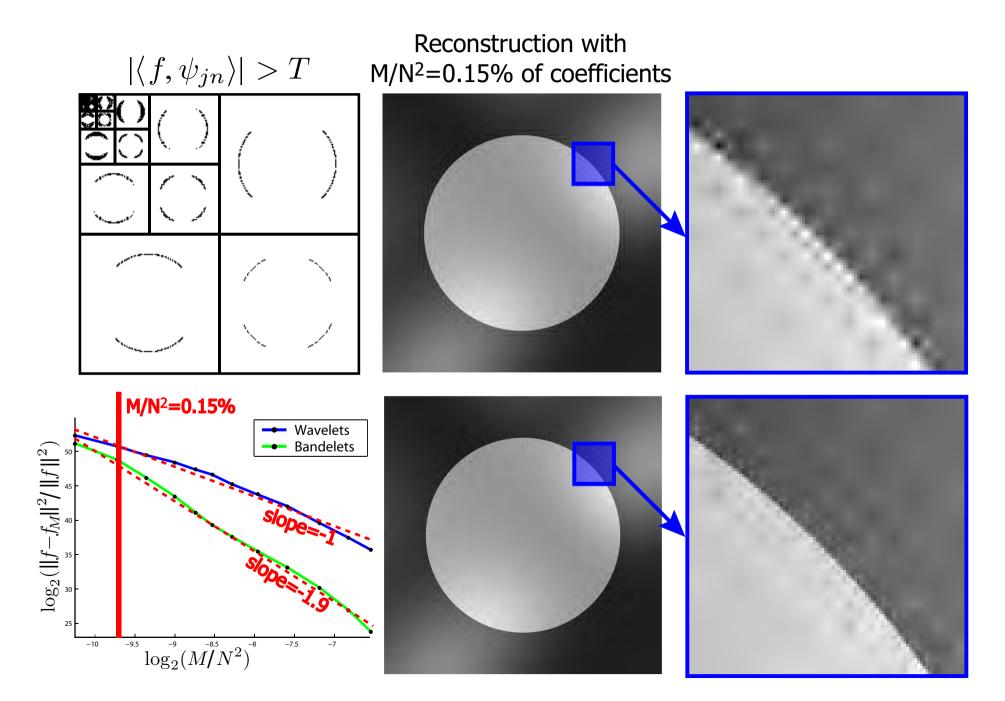




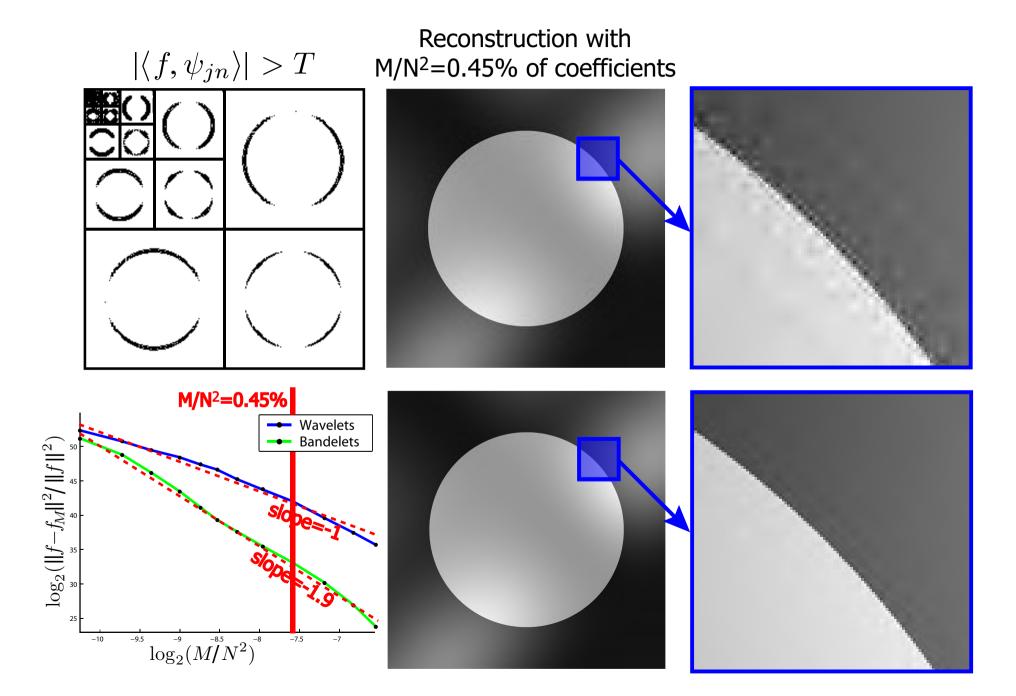




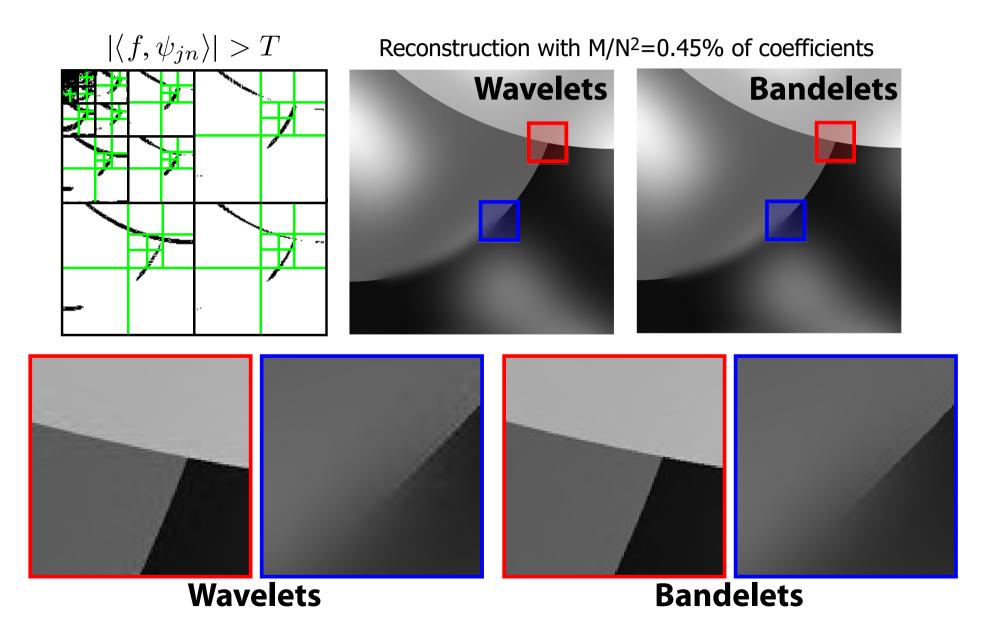
Numerical Experiments



Numerical Experiments



Numerical Experiments



ID Photo: easy way of authentification.

But easy to forge.

- But easy to forge.
- Secured solution: digital picture plus cryptology and digital signature.

- But easy to forge.
- Secured solution: digital picture plus cryptology and digital signature.
- But limited capacity of storage.

- But easy to forge.
- Secured solution: digital picture plus cryptology and digital signature.
- But limited capacity of storage.
- 2D Barcode (500-800 bytes), Contactless card (up to 32 kbytes), Smartcard (up to 512 kbytes).

- But easy to forge.
- Secured solution: digital picture plus cryptology and digital signature.
- But limited capacity of storage.
- 2D Barcode (500-800 bytes), Contactless card (up to 32 kbytes), Smartcard (up to 512 kbytes).
- Let It Wave: image compression codec adapted to the geometry of faces.

500 bytes

500 bytes

JPEG

500 bytes

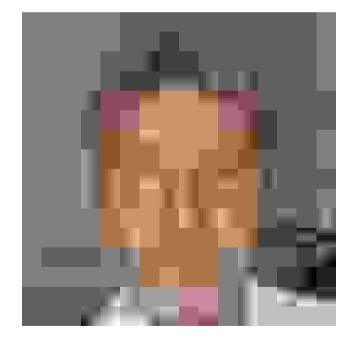
JPEG-2000

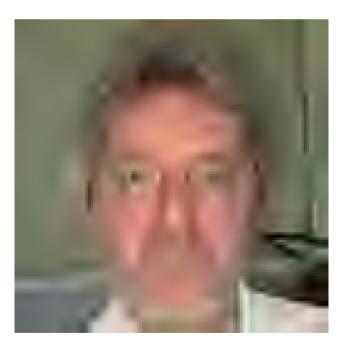
JPEG

JPEG

500 bytes JPEG-2000

Bandelets Let It Wave

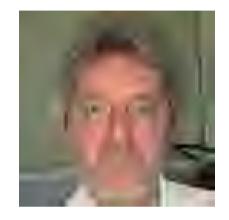


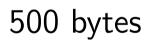


JPEG

JPEG-2000

LIW



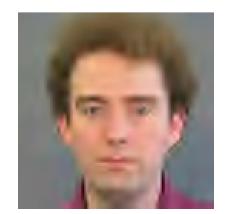


JPEG

JPEG-2000

LIW



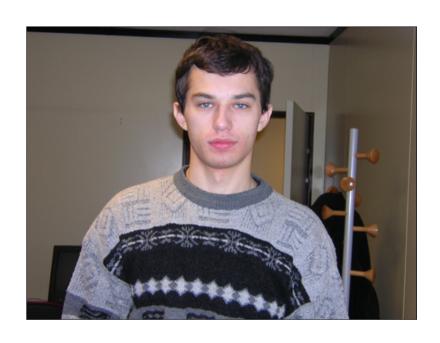


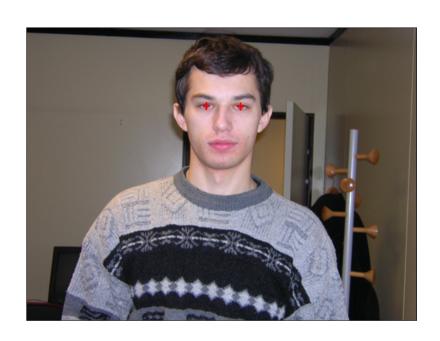
JPEG

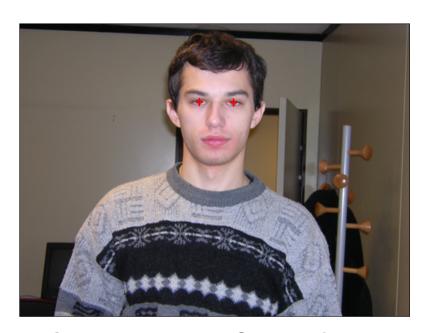
JPEG-2000

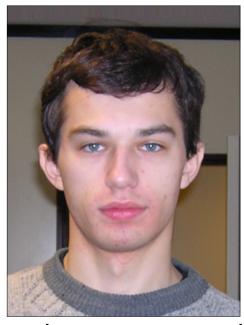
LIW



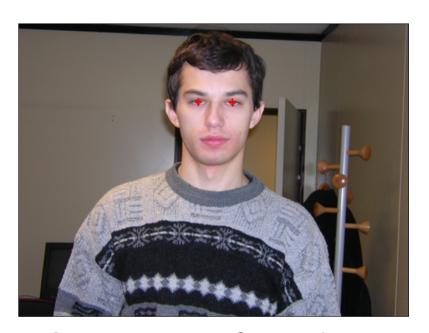








- Complete system: from the camera to the compressed image through a reframing.
- Detection of the face and its geometry.
- Reframing.





- Complete system: from the camera to the compressed image through a reframing.
- Detection of the face and its geometry.
- Reframing.
- Compression (750 bytes).

Bandelet(s) provides a practical and theoretical framework for image processing.

- Bandelet(s) provides a practical and theoretical framework for image processing.
- Share the same core idea.

- Bandelet(s) provides a practical and theoretical framework for image processing.
- Share the same core idea.
- Numerical and theoretical results but a lot of unsanswered questions.

- Bandelet(s) provides a practical and theoretical framework for image processing.
- Share the same core idea.
- Numerical and theoretical results but a lot of unsanswered questions.
- Huge field of applications.