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1. Introduction

Discrete choice models (see, e.g., [21]) have applications in many areas ranging
from planning of public transportation, economics of industrial organizations,
evaluation of public policies, among others. This paper considers the binary
choice model. There, agents (consumer, firm, country, etc.) choose between two
exclusive alternatives 1 or -1 (e.g., buying a good or not) the one that yields
the highest utility. The utility that an agent i gets from choosing alternative -1
(resp. from choosing 1) is assumed to have the form

U_1,; = ZLJ% +e_1,; (resp. ui,; = ZL% +€14), (1)

where z_1; (resp. z1,;) is a vector of d — 1 characteristics of alternative -1 (resp.
1) for agent i, d > 2, ; are preferences of agent ¢ for the characteristics, and
€_1, and € ; absorb both the usual error terms and constants. In (1), the pref-
erences are allowed to vary across individuals; namely, they are heterogeneous.
This translates into a vector of coefficients v indexed by ¢ that we assume
random. The characteristics of the alternatives are indexed by the agents, for
example they can be characteristics of two goods that a consumer has to choose
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upon interacted with individual characteristics like age or distance. We assume
that the random coefficients and errors are independent from the characteris-
tics. The statistician observes a sample of characteristics and choices for agents
i =1,...,n, but v;, ui;, and u_;; are not observed. Observing the choices
corresponds to observing the sign y; of the net utility u; ; —u_; ;. Indeed, agent
i prefers 1 (y; = 1) if and only if the net utility for 1 is positive, i.e.,

Uy —U_1; =€ —€_1;+ (21,0 — Zfl,i)—r'yi >0, (2)
and prefers -1 (y; = —1) when
Ul — U154 < 0.

We assume that the probability that |(e1; —e_1:,7;' )| is the 0 and thus that
agent ¢ is indifferent (i.e., u1; —u_1,; = 0) on a set of 0 probability. Hence, the
linear random coefficients binary choice model is

yi = sign (¢ 3;) , (3)
where, for a real number a, sign(a) is 1 if a > 0, -1 if a < 0, and is 0 if a = 0,

z;=(1, (215 —2-14) )"/ f(L (21, — Z—1,1)T)T| )

Bi=(e1ri—e 14,7 )"/ (€1 — 6—1,i,7iT)T| )

and | - | is the Euclidean norm in R¢. Like in [3, 4, 10, 13] among others, we
consider a nonparametric specification of the joint distribution of 8 and this
model is more general than the Logit, Probit, and Mixed-Logit models. Note
that it is important to avoid restricting the dependence between the coordinates
of (e; —e_1,7") since they can be functions of a deep heterogeneity parameter
(e.g., the type of a consumer).

We denote by Y, Z;, Z_1, X, €1, €_1, v, and [ the population quantities
corresponding to the lower cases letters indexed by i. The random vectors X
and /8 are elements of the unit sphere S*~1 of R?. For the main results of this
paper we maintain the following restrictions on the distribution of (87, X ") T.

Assumption 1. (A1.1) X and B are independent,
(A1.2) X and B have densities fx and fg with respect to the spherical mea-
sure o.

Assumption 2. (A2.1) fz(z)fs(—x) =0 for a.e. x in S¥1,
(A2.2) The support of X, denoted by supp(fx), is HY = {z € S~ : z; > 0},
(A2.3) fx is known and we have

o Ax = ||fxllLe(m+y < o0,
e and BX B ||1/fX||Loc(H+) < 00.
Under Assumption 1, f3 is solution of the ill-posed inverse problem: for a.e.
re Ht

sign (¢ ") fs(y)do(y) EKfp(z). (4)

EMX:ﬂ:/
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The operator K in (4) is a convolution on S?~!. Estimation of f5 in (4) is thus
related to statistical deconvolution on S~1 (see, e.g., [12, 16, 19]). However,
the left-hand side of (4) is not a density but a regression function where the
regressors are random. The identification issue in this model stems from the
fact that: (1) the distribution of the observed data only characterizes K fz on
supp(fx) which is a proper subset of S~ and (2) due to the sign function K
has an infinite dimensional null space. The support of X can only be as large as
HT because the first coordinate of X is positive. This is because we allow for
the term €;,; —€_1,; in (2).

A simple estimator for the density of 8 in this model is given in [10]. There,
rates of convergence for the LP-losses for 1 < p < oo over Sobolev ellipsoids
based on the same L space (as well as confidence intervals for the value of the
density at a point, treatment of endogenous regressors, and of models where
some coeflicients are nonrandom) are obtained under similar assumptions for
choices of the smoothing parameters which depend on unknown parameters of
the Sobolev ellipsoids. It is assumed in [10] that the support of 8 lies in an
(unknown) hemisphere, namely, that there exists n (unknown) in S?~! such
that P(n"3 > 0) = 1. This assumption first appeared in [13] and is stronger
than (A2.1). It implies that for some difference of the characteristics, or taking a
limit of these, everyone chooses the same alternative. In contrast, (A2.1) is much
less restrictive and does not imply “unselected samples”. However, everything
in [10] also holds under (A2.1). Assumption (A2.2) requires that the support of
Zy — Z_4 is R? and is also made in [10, 13]. [9] allows for continuous regressors
which support is a proper subset at the expense of assuming some form of
unselected samples and relying on integrability assumptions involving fs. It is
possible to obtain identification of f3 when we relax (A2.2) and the requirement
that fx exists (see (A1.2)). This is done in [8]. The estimation in this case is the
subject of future work. (A2.3) strengthens (A2.2) and is used to obtain rates of
convergence. It could be viewed as an assumption on the tails of X. It is relaxed
in [10] and in this paper at the end of Section 5. Note as well that Assumption
(A1.2) allows for one nonrandom coefficient in the original scale and that when
there are more than two, one should proceed as in Section 5.2 in [10] with the
estimator developed in this paper.

In this paper, we show that the estimator in [10] can be written as a plug-
in of a linear needlet estimator. Needlets are a class of linear combinations of
spherical harmonics which form a tight frame of localized functions on spheres
(see [25]). Hard-thresholding of series estimators based on needlets have been
successfully used in statistics for estimation of functions defined on spheres (see
[2] for densities, [24] for regression functions, and [17, 18, 19] for some inverse
problems) or compact manifolds (see [15]). This paper proves lower bounds on
the minimax risk when the degree of integrability in the loss - specified by
the statistician - can differ from the degree of integrability of the Besov body
containing the unknown fg, giving rise to sparse and dense regimes. The lower
bounds correspond, up to logarithmic factors, to the upper bounds in [10] over
Sobolev ellipsoids and matching degrees of integrability. This paper proposes to
replace the linear needlet estimator in [10] by a nonlinear estimator based on



Binary choice model estimation by needlet thresholding 281

hard-thresholding with data-driven thresholds and use the same plug-in strategy
as in [10]. The upper bounds on the risk of the estimator also correspond to the
lower bounds up to a logarithmic factor, but over all Besov bodies, including
nonmatching degrees of integrability. Both the upper and lower bounds are also
given for the sup-norm loss. The data-driven thresholds are similar in spirit
to [5] for density estimation using the Dantzig selector (see also [6, 24] for
other local thresholding procedures over the sphere), they are based on sharp
concentration inequalities and make the implementation of the estimator feasible
as it is independent of features of the unknown density. Proofs are given in the
appendix.

2. Preliminaries

We use the notation x Ay and zVy for the minimum and the maximum between
z and y. We write x < y when there exists ¢ such that x < cy, r 2 y when
there exists ¢ such that > cy, and x ~ y when z < y and = 2 y. We denote
by |A| and 14 the cardinal and indicator of the set A, by N the nonnegative
integers, by N* the positive integers, by a.e. almost every, and by a.s. almost
surely. We denote for 1 < p < oo by || - |l¢» the ¢P-norm of a vector, by || - ||,
the usual norm on the space LP(S?~!) of p integrable real-valued functions with
respect to the spherical measure 0. We write Lodd(Sd*I) (resp. L2 ., (S?71)) the
closure in L?(S9~1) of continuous functions on S¥~! which are odd (i.e., for every
x € S¥1 f(—x) = —f(x)) (resp. even). Every f € LP(S%"1) can be uniquely
decomposed as the sum of an odd and even function f~ and f+ in LP(S41).
The space L2(S%1) is a Hilbert space with the scalar product (, ) derived from
the norm, there f~ and fT are orthogonal. D is the set of densities and, as it
will become clear after Proposition 5, v(d) = d/2 is the degree of ill-posedness
of the inverse problem.

2.1. Harmonic analysis

The basic element is the orthogonal decomposition L2(S*™1) = @, . H*,

where H* are the eigenspaces of the Laplacian A on S?~!, corresponding to
def def

the eigenvalues —(j 4, given by (g = k(k + d — 2), of dimension L(k,d) =

2k +d —2)(k+d— 2)'/(k'(d 2)!(k +d — 2)). The space H* is spanned by

an orthonormal basis (hg, l)j (-4 and HO by 1. We also have L2 4(S%71) =
1)

@B, e H* 14 and 12 @B, H?%. The projector Ly 4 onto H*¢ is

even(
the operator with kernel

L(k,d)

k,d
Lya(z,y) = thz Y (y) = L(k.d) P (z

o (St 1)pu(d)( 1) y), (5)

where u(d) = (d — 1)/2, the surface of S¥! is o(S¢ 1) = 27%2/T'(d/2), and
C}! are the Gegenbauer polynomials. The Gegenbauer polynomials, defined for
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p > —1/2; are orthogonal in the space of square integrable functions on [—1,1]
with measure (1 — ¢2)#~1/2dt. We have P}(t) = 1, P}'(t) = 2ut for y # 0
PP(t) = 2t, and for every k € N

)

(k+2)PLo(t) = 2(p+ k + 1)tPE () — 2u+ k) B (1) (6)
Clearly, for f € L2(S?!), we have f = > reo Lik,af and, due to (5),

L(k,d)
Ve € 8 | Lia(e )3 = 3 (@) = Sk (7)
=1

Powers (—A)® f for s € R and f in a Banach space E; are defined in a Banach
space Eo when Ly 4f is defined in Fy and (—A)® f = 3770 ChaLk,af converges
in Ey. The best approximation in L"(S%"!) of a function f by harmonics of
degree less or equal to m is

Em(f)r = Pe@i,znrif; Fk.d ”f - PH’I” .

Definition 3. For s > 0 and 1 < r < oo, f belongs to the Sobolev space
Wi (S if

1l = 171+ | (=2)7 1| < ox.
We denote by W$ _,4(S?71) the restriction of W(S%1) to odd functions.

Definition 4. For s >0, 1 <r < o0, and 0 < ¢ < 0o, f belongs to the Besov
space B (S*1) if

/]

A /s
Ao = Ifle + || (@7 B () s

¢a
2.2. The operator

Proposition 5. The operator K satisfies the following properties:

(P1.1) For every f € LY(S? 1), Kf = K(f),
(P1.2) IfKf = Kg with f,g € LL,,(S¥1) then g = f,
(P1.3) For every 1 <r < oo,

WG AR ) C (L (8T) € WG s,

where the exponents v(d) £ |1/r — 1/2|(d — 2) cannot be improved,
(P1.4) For every 1 <r < oo, there exists B(d,r) such that

K
VK €N, vPe @ H*, |K'P|, < B(d,r)K"D|P[|,. (8)

k=0
k odd
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Moreover, K is a self-adjoint and compact operator on L2(S¥~1) with null space

L2,..(S971), nonzero eigenvalues (Aapi1,4)pen corresponding to the eigenspaces
H?P+Ld for p € N

2877 . 2(=1)"8"2]1 -3 (2p 1)
Ara =g WEN Aepa = T ) a2 — 1)

For every d € N\ {1}, for every p € N, there exists cx(d), Cx(d) > 0 such that

3 H(d)p™ D < [Agpyr.al < Ca(d)p™ . 9)

K is a homeomorphism between L2 ,(S%~1) and W;(g()jd (Se-1).

The fact that v(d) is the degree of ill-posedness of the inverse problem follows
from (P1.4) and what follows, in particular (9).

Proposition 5 implies that every R € W;(dgdd(Sd_l) has a unique inverse
given by

L(k,d)

,Cfl(R): Z /\LLkd Z Z R, ) h. (10)

k odd ~k-d Koaa

2.3. Needlets

Smoothed projection operators (see [10]) have good approximation properties
in all LP(S?~!) spaces and are uniformly bounded from LP(S?1!) to LP(S?~1).
One such operator, the delayed means, is the integral operator with kernel

K% (x éia( )Lkdxy) (11)

k=0

where J is an integer, a is a C* and decreasing function on [0, 00) supported
on [0, 2] such that, for every 0 < ¢ < 2,0 < a(t) <1 and, for every 0 <t < 1,
a(t) = 1. The delayed means operator exhibits nearly exponential localization
(see Theorem 2.2 in [25]) and is a building block for the construction of needlets.

Define b such that b(t) = a(t) — a(2t) for ¢ > 0. It is nonzero only when
1/2 <t < 2, satisfies b?(¢) +b%(2t) = 1 for 1/2 < t < 1 and thus for every t > 1,
Yo b? (2%) =1, also b*(t) = a(t) for 1 <t < 2. Take a such that b is bounded
away from 0 on 3/5 <t<5/3.

The second ingredient for the construction of needlets is a quadrature formula

(Corollary 2.9 of [25]) with positive weights (w(j, 5)2>£e:- and nodes £ € E;
=J

which integrates functions in @ijzo H"4 and satisfy, for a constant Cz which
depends on d,
VjieN, VeeE;, Oz'27¢ D <5 < 029D
czto—ild=1/2 < w(j, &) < C=277d=1)/2,
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Needlets are defined as
. . = k e -
Vie(@) Fw(i€) Y b (W—l) Lya(,z) fjeN, €5,  (12)
k=0

doe(r) = Loa(é, ). (13)

For j =0, ¢g¢(z) is constant and Zy is a singleton.
The LP-norms of the needlets satisfy, for a constant C}, that can depend on d,

Vj €N, V¢ € 55, Cp—lgj(d—l)(1/2—1/p) < ¥jell, < Cpgj(d—l)(l/Q—l/p)_ (14)

If f € LP(S"!) for 1 < p < oo, then f = 3772 ) e (f ¥56)¥5¢. The needlets
form a tight frame, with unitary tightness constant, this means that for f €

L2(§d_1) N
713 =" D" [ viel

J=0¢€E;
Needlets do not form a basis and there is redundancy. Lemma 6 (see [2]) relates

LP(S%1) norms at level j to ¢? norms of needlet coefficients. Constants may
depend on d.

Lemma 6. (i) For every 1 < p < oo, there exists a constant 01/7 such that for
every j € N and (B¢)¢ez, € R

Z Peje||l < C;2j<d—1)(1/2_1/p)

£EE;

|(Be)ee, (15)

b)
¢
p

(i4) There exists constants ca and c, a and sets A; C Z; with |A;] > 42741
for j € N such that for every 1 < p < oo, j €N, and (B¢)eca, € RY,

Z Bevjell > ¢ 4 29(d=1)(1/2=1/p)
§EA;

(16)

’(B{)EQA]. o’
p

(ii1) For every 1 < p < oo, there exists a constant C]'D’ such that for every j € N
1/p

Do Nf ol 2UTDORTYR < Ol f,. (17)

§EE;

Needlets are such that (see [25]), for all function @ in the definition of the
smoothed projection operators, the norm ||H‘g, defining the Besov spaces is
L
equivalent to

1fllpe = H<2j(s+(d—1)(1/z—1/r)) H(<f’ Uie)ees,

The ball of radius M for this norm is denoted by By  (M).

W)jEN 04



Binary choice model estimation by needlet thresholding 285

Recall the following consequence of the proof of the continuous embeddings
in [2].

Lemma 7. (i) Ifp <r < oo, then we have B} (M) C B, ( é/pfl/rM),
(i) If s > (d — 1)(1/r — 1/p) and r < p < oo, then we have B; (M) C
BE4-D0/r=1/0) ()

P,
(iii) If f € B} (M) and (/Bj,ﬁ)geaj jen are its needlet coefficients, then there

exists (Dj)jen € RY such that ||(D;)jenllea < M and

Ve> 1, VieN, Y B¢l < CL /M promizstd-n/2=1/GAn)),

§€E;

Finally recall that, when f € B; , with s > (d —1)/r, then f is continuous.

3. Identification of fg

Let us present the arguments for the identification of fg. Proposition 5 (P1.1)
implies that Kfs = Kf; is odd. Thus under (A2.2) we can define the odd
function R as

R(z) =

_ +
{ E[Y|X = z] for a.e. 2z € H (18)

~E[Y|X = —2] forae z€ —HT

and we have, for a.e. x € S71 R(x) = K fg (x). Uniqueness of f; follows from
(P1.2). Using, for a.e. z € S¥! fz(x) > 0 and f5 (@) = (fs(z) — fs(—2))/2,
and condition (A2.1), yields that, for a.e. x € S¢~1, we have

fo(x) = 2f5 (€)1 ;- (450 (19)

In this paper we normalize the vectors of random coefficients and covariates
to have unit norm. Indeed, since only the sign of the net utility (2) matters
for choosing between 1 and -1 and the index is linear, a scale normalization of
(€1 — e_1,7") is in order. Let us compare with the normalization in [9]. It is
based on the following assumption, which is stronger than the condition in [13],
that the support of j is a subset of some (unknown) hemisphere, which itself is
stronger than (A2.1).

(H): a.s. there exists j € {1,...,d}, the coordinate ~; of v has a sign
(excluding 0).

Assumption (H) is likely to hold when Z;; and Z_;; are cost factors, since
consumers dislike an increase in cost. If (H) holds we can identify for which
index j <; has a sign since it amounts to the finding for which coordinate z;
of z z; = E[Y|Zy — Z_, = 2] is (globally) monotone. We can identify the sign
of the coefficient by assessing whether the function is increasing (positive) or
decreasing (negative). If v; > 0 then we normalize the vector of coefficients by
dividing by ;. If 7; < 0 we change the sign of Z;; — Z_1; to make it positive.
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A potential issue with this normalization is that if 8; can take small values then
estimators could differ in finite samples depending on which coefficient is used
for normalization. Also, monotonicity in one regressor of the conditional mean
function implies a type of weak monotonicity (in the sense used to identify treat-
ment effects, see, e.g., [9]) at the individual level as we now explain. Assuming
that v; > 0, 21, —2-1; = 2z for all t =1, ...,n, and that we change z; to z; > 2
while leaving unchanged (e1; — €_1;,7;' ) (the characteristics of the individuals)
and the other components of z, then some people do not change their decision
and some choose alternative 1 while originally they had chosen alternative -1,
but no one changes from alternative 1 to alternative -1. Monotonicity of the
conditional mean function implies monotonicity for every individual. This is
sometimes not a realistic model of individuals making choices. Clearly (A2.1)
allows both individuals to switch from 1 to -1 and individuals to switch from
-1 to 1 after similar changes in z (or z). On the other hand, if (H) holds then
(A2.2) can be relaxed and we can consider an index which is nonlinear in X

(cf. [9]).
4. Lower bounds

We take 1 < p,r <o0,0<¢g<o00,z>1,and s > 0, and consider the minimax
risk

R} = inf sup E H}; — fs
fs feeB; (M)ND

, (20)
P
where the infimum is over all estimators based on the i.i.d. sample of size n.
The degree of integrability 7 in the smoothness class By (M) is allowed to differ
from the degree of integrability p in the loss function. We distinguish two zones
for s,r,q,d, and p:
(1) the dense zone where s > p(v(d) + (d —1)/2) (1/r — 1/p) with the restric-
tion ¢ < rif s =p(w(d) 4+ (d—1)/2) (1/r — 1/p), where the rate involves

fidense(d, p,7,8) = s/(s + v(d) + (d — 1)/2),

(2) the sparse zone where (d — 1)/r < s < p(v(d)+ (d—1)/2) (1/r —1/p),
where the rate involves

psparse(d: p, 7, 8) = (s = (d = 1)(L/r = 1/p)) /(s + v(d) — (d = 1)(1/r — 1/2)).

The terminology dense and sparse is justified by the following heuristic. The
proofs of the lower bounds replace the infimum in (20) by a minimum over a
set of functions which are difficult to estimate. The functions used to prove the
lower bound in the dense zone are functions which could have many nonzero
needlet coefficients for £ € A; (see Lemma 6) and a well-chosen j. Those used to
prove the lower bound in the sparse zone only have two nonzeros. In the dense
zone, the rate is the same as for the matched case when r = p studied in [10].
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Theorem 8. (i) In the dense zone we have

1 Hdense(d,p;7,5)z
Ri 2 caoeld Mopr5,2) () G
(i1) In the sparse zone we have
Hsparse(d,p,7,8)2
Ry, > Csparse(d, M, p, 7,8, 2) % , (22)

where the constants cgense and Csparse depend on d, M, p, v, s and z.

The values of fidense and ftsparse depend on d through the dimension of Sd-1,
This is the usual curse of dimensionality in nonparametric regression or density
estimation. They also depend on d through the degree of ill-posedness v(d) = d/2
of the inverse problem.

5. Adaptive estimation by needlet thresholding

Consider the estimator j‘g = 2fﬁ_ 1fA’>0’ where fﬁT is an estimator of fﬂ_.
8

5.1. Smoothed projections and linear needlet estimators

A smoothed projection estimator of f[; with kernel (11), window a, and J € N,
is given for x € S4~! by
k

=y )\_J LyaR(x),

k odd

with the unbiased estimator of Ly qR(z) (see Lemma 10): L/kd\R(ac) =0if k is
even, else

Ly,a(z, x)
Lde Zyz fX:Ez

Alternatively, we can estimate fg using the needlet frame with smoothing win-
dow a. The coefficients 37, = <f/;, 1 ¢) are such that

8=l X 0 (55 ) Ui Dualé, )

k odd
_ : b (2Jk 1)
= w(j,¢) k}();d Ny (Ekaf Lia(€.)
= b(z)
= w(J4,€) kzod:d e Li,aR(§).

2972 < <2d



288 E. Gautier and E. Le Pennec

. —~a,J
Using that a (2%) =1for k =0,...,27 and denoting by fﬁ’a"] =E {fﬁ ],

we obtain that, for 1 < j < J, 7, = <fﬁ_a)J7¢j7§>, which can be estimated
without bias by

2y b L—1 S 1 /:a,J
3‘1,5 = (]»f) Z %Lk,dR(f) (A:) <f,3 »¢j,§>.

kodd k.

Moreover, for z € S 1,

.L ——
Brctie(o) = o, (Z %u,m(&)) (Zb (5) Lk,d@,x))
’ k

k odd

belongs to @:_, H*?, thus by the quadrature formula

3w @)~ S L)
Y Bietiela) = LraR(z).

ez, Koda Mk
J —~ —~a,J—1
This yields 3 5_, deaj B eie = fz , indeed

J R J R ad
Z Z BS ethie = Z Z Biebje (due to (A1) and because f;  is odd)
J=0£€E; J=1£€E;

(42) 1 — W (555) ——

k
1<k<2/-t 7 277 1<kp<2’
k odd k odd

k
(AS) ]_ o — a(r‘]_l)/\
= — Ly aR —=——LiqR,
Z A\ k,d + Z b\ k,d
1<k<2’/7t 7 2/ 1<k<2’
k odd k odd

where (Ag) uses that for 1/2 < t < 1, b?(¢) + b?(2t) = 1, while (A3) that
b2(t) = a (t) for 1 <t < 2. Thus, the smoothed projection and needlet estimators
coincide.

5.2. Nonlinear estimator with data-driven thresholds

Consider, for v > 1 and pr; . (z) = 21351, ,» the nonlinear estimator of f;:

= EJ: > o1 (Bie) e

J=0¢£€E;

It is classical that the optimal choice of J for linear estimators depends on the
parameters of the smoothness ellipsoid. In contrast, using a thresholded esti-
mator allows to take J large and independent of the parameters. Thresholding
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induces additional bias compared to linear estimators which allows to reduce
the variance incurred by taking J large.

The level of thresholding should depend on the size of the coefficients relative
to their variance. This variance is proportional to 1/y/n so that the level of the
threshold does not have to depend on the smoothness of the unknown function.
Instead of using a conservative upper bound on their variance, as is usually
the case in estimation using wavelets, we use data-driven levels of thresholding.
These provide better estimators in small samples. Lemma 14 gives a theoretical
guarantee that the performance is almost as good as that of an oracle which
would know the variance of the estimators of the coefficients. The data-driven
thresholding rule uses that 87, = £ 3" | Gj¢(wi, y;) with

o 2 o ) Yi b (5)
Gje(ziy) = = E w(7,€) Z 2 Ly a0, €). (23)
"= Fx(@i) S5y Ak
Define the estimator of the variance by
1 n i—1
~ def 2
Oje=r| ¥/ (G', (xz,yz) - G', ($kayk)) ) (24)
7€ n(n_l);kzl 7€ 5§

tn = v/logn/n, and the data-driven thresholds

def ~ 28 Yy log n
Tien =2V20tn05¢ + 5 Mje

where M ¢ is an upper bound on the sup-norm over H* x {£1} of G, ¢(z,y) —
E[Gje(X,Y)] = Gje(m,y) — B¢ (€9, 2||Gjglloc). For example, using (14) and
Proposition 5, we get

2[Gjelloo <2 HIC*I (zz;jj&) Bx < 20 B(d, 00)2i(“(+d=1/2) g def pp

(25)

I
The second term in Tj ¢ - controls the error in estimating the threshold.

Theorem 9. For J such that 2‘](”(‘1)*(‘1*1)/2)3;2 ~t-t M >0, and s >
(d-1)/r,
(i) If z>1 and v > z/2+ 1, we have
—a,p
s B\~ s
f5€Bs ,(M)ND

< é(d, 00,1, 5,7)(logn)* "t M" (Bth)“Sp‘“SE(d’oo’r’s)z . (26)

(i) If p < 0o and v > p/2, we have
—~a,p p
-

fg€B; ,(M)ND

< &(d, p,r, 5,7)(log n)P " M® (Bxt, )PP (27)
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where p(d,p,r,8) = pidense(d,p,7,8) and w = r in the dense zone, while

w(d,p,r,s) = tsparse(d,p,r,8) and @ > pSig/d()d‘*)‘fi(;i)l()l(/j;i/ll;é) is arbi-

trary in the sparse zone, and é(d,p,r,s,v) is a constant which depends on
d,p,7,s, and 7.

The upper bounds in Theorem 9 match the lower bound in Theorem 8 up to
logarithmic factors. Hence, the proposed estimator is minimax adaptive (up to
the log factors).

6. Simulation study

We study the performance of the estimator when d = 3, n = 3000, 5000, 10000,
and X is uniform on H*. We use of the Von Mises-Fisher distribution vMF (u, )
with density

f(Bsp, k) = A7 sinh r €Xp (IWTB)

with respect to o. We take 8 = (31,32, |B~3\) in the cases:

. B: follows a vMF(u, ) distribution where ;= (00 1)T and x = 10.
e [ follows a mixture A\MF(u1, k) + (1 — A)vMF(u2, k), where £ = 10,
A=0.3, 01 = (27Y202"Y%)T and py = (-2-20271/2)7.

We use the cubature defined in spherical coordinates as a product of the Gauss-
Legendre quadrature with m nodes and trapezoid rule with 2m subdivisions
(see [1]). The resulting cubature has 2m? nodes and integrates exactly all poly-
nomials on the sphere up to degree 2m — 1. We take the same function a as
in [2].

The threshold is driven by the parameter . The choice of ~y slightly depends
on the targeted norm. Here we focus on a simultaneous control of the L', L2,
xL* and L™ norm. According to our analysis, v should be chosen stricly larger
than 4. We have nevertheless chosen to use v = 4 which turns out to be sufficient
in practice.

Figure 1 displays the distribution of estimates based on a Monte-Carlo ex-
periments with 100 replications and n = 3000. We plot the Lambert equal-area
projection on the disk which is defined (see [22])

(sin  cos ¢, sin O sin ¢, cos f) T +— 2sin (g) (cos ¢, sing) T

Our main contribution is a control of the estimation error for all L? norm.
Table 1 displays the expected risk, approximated using Monte-Carlo and 100
replications, for some LP norms. More precisely, we have approximated the fol-

1/p
=~ P
lowing renormalized quantities: (]E |:Hf5 - f@H ] /||f,@|g> for p = {1,2,4}
P

and E H’fg — fg” } /11 f8lloo- Figure 2 displays the decay of those error with

respect to n in a logarithmic scales. As expected, we observe a simultaneous
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Fig 1: True density and distribution of the estimates.
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control over all norm and the error decays follows the power law given by the
upper bounds. The results are similar to the one obtained in [10] except that our
threshold does not depend on the unknown regularity of the function whereas
the level used in [10] depends on it.

Unimodal
) " 1000 2000 3000 5000 10000
Risk
E[Hfﬂ—fﬁul]/ufﬁul 0.89 0.64 053 043  0.32
~ 2
(E{HfﬁffﬁM /Hf5||§> 0.6 043 035 029 021
N 4 1/4
(E{HfﬁffﬁM /Hf6||3> 049 036 029 024 017
E[Hﬁ;ffﬁH ]/||f/3||<,o 042 032 026 021 0.17
o0
Mixture
) n 1000 2000 3000 5000 10000
Risk
]E[Hfg—fﬁHl]/llfglll 092 068 057 046 0.34

N 2 1/2
(E{Hfﬂ—fﬂHQ}/ufgng) 0821 06 05 04  0.29

N 4 1/4
<E{Hfﬁ—fﬁM/||f5||3> 0.8 058 048 038 027

E[H}\g—fﬁHm]/”fB”oo 086 0.6 051 039 0.29
TABLE 1
Risk.
Unimodal Mixture

T p

8 1
(/2]

()] — 2
o

- — 4
0

n'd Inf

1000 10000 1000 10000
n (log scale)

Fig 2: Decay of the risk with n in logarithmic scales.
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7. Appendix
7.1. A preliminary lemma

Lemma 10. The following equality holds for every g € L#(S*™1),

Proof. The result is based on the following

(R,9) =(R,g~) (because R is odd)

[ B,
‘2/1%7&(@ fx(@)do(x)

_on [BX)g”(X)] _ o [ENX]g™(X)

‘2E[ Fx(X) }‘QE{ Fx(X) } -

7.2. Proof of Proposition 5

The operator K is related to the Hemispherical transform (see [10, 26]) defined
for f € L'(S%1) and a.e. z € S~! by

HO@™ [ Lol )ity

through
Kf=2H(f) - f(y)do(y).

§d—1
(P1.1) is a consequence of the fact that y — z Ty € L39,(S?1). (P1.2) follows
from Theorem 2 (ii), and (P1.3) follows from Theorem C in [26]. The second
part of the proposition together with (P1.4) are consequences of the proper-
ties of H detailed in [10]. The inequalities (9) correspond to Lemma A.2. Note
however that there is a typo in the proof and we should read 1.3...(2p — 1) <
p~1/22.4...(2p) but the result still holds.

7.3. Proof of Theorem 8

Start by noting that for every j € N and £ € =,

Yie(@)dr = w(j,£)b(0) = w(j,§)(a(0) — a(0)) = 0.

gd—1

This implies that the functions f,, that we introduce below integrate to 1.
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7.3.1. Proof of the lower bound in the dense zone

Consider the family (P,,) . ,, where M € N*, of distributions of an i.i.d. sample

of (Y, X) of size n when fz = f,,, and the density of X is fx. These probabilities
are absolutely continuous with respect to the product of §; + d_1, where ¢,
denotes the Dirac mass at y and 0. Take j € N, fo = 1/0(S%"1), and consider
the set A; from Lemma 6 (ii). By the Varshamov-Guilbert bound (Lemma 2.9
in [27]) there exists Q C {0,1}4 containing (0,...,0) such that | = 2/43!/8
and V(wy,w2) € Q%) |wy — wal/n > |A;|/8. Enumerate the elements of  from 0
(corresponding to the zero vector) to M = || — 1 and define

fn = fo+7 D wetje

EEA;

when (we)eea, is the mth element of Q and y = cCZ /T M2 +(d-1)/2) for
0 < ¢ < 1 such that all f,, are nonnegative. We now use the following result
(see Theorem 2.5 in [27]).

Lemma 11. If for 0 < a < 1/8 we have:

(i) fm € BL,(M)ND form=0,...,M,
(@) VO<m<I<M, | fm— fillp =20 >0,
(i) & M K (P, Po) < aln(M),

then for every z > 1

= ® vM 2«
inf su E — >h————|(1-2a—/——— | . 28
75 fﬁeB;qFM)mD Hf'B fﬁHp 1+ VM In(M) (28)

Start by checking (i) in Lemma 11. It is enough to show that f,, € B; (M).
1/r
Indeed, for r > 1 and w € Q, we have H(w’f)geAj

Cé/r2j(d_1)/", we obtain

or g H(wf)geAJ

/1

2 (s+(d=1)(1/2=1/7) H(WE)&A < yCL/m9i(s+(@-1)/2) < pf.

J|ler
Lemma 6 (ii) now yields that for every 1 <p < ocoand 0 <m <l <M

ol _ CA i(q_1\\ /P
1 fim — fill, = vep.a2 - DO/2-1/D) (?2]@ 1)) — 9.
Thus (ii) in Lemma 11 follows with h = ¢p 4 (%A)l/p c E_l/TMQ*jsfl.
By independence, the Kullback-Leibler divergence between P,, and Py is
given by

K(Pp, Py) = nkE {H(fm)(xnn (M)

H o) (0)
(1= H(f) (X)) In (1 - H(fm)(x)ﬂ |

1=H(fo)(X)
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Using that, for > 0, In(z) < z — 1, we obtain

H(fm _fO)(X)Q
(fo)(X) (1 = H(fo)(X)) |

K (P, Po) < nE | o

and thus
K (P, Po) < 4nAx [H(fm = fo)lls < 4nAx 2301 4l fn = foll3
where the last display comes f,, — fo € @2j+1§k§2j+2_1 H®? From (9) we get
K(Pp, Po) < 4Cx(d)*nAx2 "D || £, = foll3,

which yields using Lemma 6 (i)

X 2
K (P, Po) < (205 (@)C) nAx2 57 ()

§€Aj 02

e ||
< (2C(d)Chy)? C=nAx 2@ 1-20()
< (205 (d)CheM)? CL " n Ay 22 (s tv(d)
Condition (iii) of Lemma 11 is satisfied once

25 (Ca(d)CheM)?
In(2)
For ao < 1/8, the lower bound (28) yields that

z 1/ . z
> (cp,A (%) pcc:”TMz—JH)
p 8 =

3 1
(2o
<4 2 1n(./\/l)>

1 CA 1/p —l/'rM # s
> A -~ o jsz
=3 (cp’A ( 8 ) ety ) B

where the inequality leading to the second display holds when In(M) > 4, for
example for j(d — 1) > In(5/ca In(2))/1In(2). Now (29) is satisfied for

In (28 (C\(d)CheM)? Oz "nAx ) 1n(2))
2In(2)(s +v(d) + (d—1)/2) ’

:—2/7“nAX272j(s+u(d)+(df1)/2) <a<

co| —

inf sup E H?; — f3
fs feeBy (M)

def

J>2jo=1+

which implies the lower bound

fs— s

inf sup E
fs fs€By (M)

1 vp 4y, N
5 (s (52) oz v

(2 (Cx(d)CheM)? CZ*"nAx
In(2)

z
P

> —Hdense (d,p,7,8)2/2
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7.3.2. Proof of the lower bound in the sparse zone

In this proof we consider asymptotic orders for simplicity. The various constants
can be obtained like in Section 7.3.1. Consider the hypotheses

1
fm = m + YY) s

where &,, € A; and |y| S 2-3(d=1)/2 to ensure the functions are positive.
The constant is adjusted so that for one of the f,, that we denote fy, Vo €
HT, ’H(fo_)(x)‘ < ¢ with ¢ € (0, 3). The function f,, also integrate to 1. We
denote by M the cardinality of A; (M ~ 27(d=1)) P, the distributions of an
i.i.d. sample of (Y, X) of size n when fg = f,,, and for a given fx, and A(Py,, Po)
the likelihood ratio. Recall that K (P, Py) = Ep,, [A(Pp,, Py)]. We make use of
the following Lemma from [20].

Lemma 12. If for my > 0 and M € N* the following three condition hold

(i) fm € B ,(M)ND form=1,...,. M,
(it) Ym # 1 || fon — fillp = 2k >0,

(i) Ym =1,...,M, A(Po, Pp,) = exp(z* — vl?), where zI* are random vari-
ables and v])' constants such that P(z" > 0) > my and exp (sup,, vi') <
M,
then e
— z -
Vz > 1, inf sup E HfB — fa]| = o,
Is fp€B; (M)ND p 2

Ttem (i) is satisfied when |y| < M2~7(s=(@=1D(1/r=1/2) This is more restrictive
than the condition to ensure positivity because we assume that s > (d — 1)/r.
Thus, now we take v = 2cM2-7(s=(d=1)(1/r=1/2) {51 5 well-chosen constant c.

The constant h in (ii) is obtained as follows, if m # m/’,

I fm — fm’”p = Vij,{m - ¢j7£7n/ P
> ey 42 @ D/21/D) > 90 f9=i(s—(d=1(A/r=1/p)

Let us now consider item (iii), we obtain
> 1= Py ([log (A(Po, Prm))| = j(d — 1) log 2)

~_ Er, (o (AR, Po)]|
- j(d—1)log2

Thus, condition (iii) is satisfied when
Ep,, [|log (A(Py, Py))[] < j(d — 1) log 2,

for a € (0,1). The same computations as in the beginning of Section 5.1 yield
that we need to impose n227%(D~2 < 5 thus

Axn2- 2 @d—(@d-1(/r=1/2) <
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The desired rate is obtained by taking

1

. 2(st+v(d)—(d—1)(1/r—1/2))

o nAx .
10g (’nAx)

7.4. Comparison between Besov ellipsoids of a function and its odd
part

Lemma 13. For 0 < s,q < oo and 1 < r < oo, there exists a constant cqq that
can depend on d such that, for every f € By . [ f~|lB:, < ceallflB:,-

r,q’

Proof. Every f € Bg ,(S?"') has same norm as x — f(—x), thus by the triangle
inequality ||~ ||§$’q <|\f ||’§fw. We conclude by equivalence of the norms. O

7.5. A general inequality

We make use of the constants ¢; , and ¢y . such that
/ 2" e PTdr < ¢ .7 and / e dr < ca a2 (30)
R+ R+

Lemma 14. For every T, v, z > 1 and

Y10g N aet s, +

S,++ =
T > 3\/%%0;‘,5 +26M; ¢ n_1 &

3,&:

the two following inequalities hold:

when p = 00,
1 —a,p z
2z—1E[Hf’3 — s oo]

<" - f/;H; + (1o

J
Un,00,2,J ZQJ(dfl)z/Q <su_p |B?7§|Z 1|67£|§Tjsé+w+
j=0 §EE; ’ >

-~ 4
E 4. =B 1. s
* gseugfz ﬂ],g 5;,5 |Bj,§>Tj,§+,w+]>
40z <
= (d— z
+ E 2J(d 1)(=z/2+1) SUP | ;,17€|

i—0 =5

J
C=a\"VT U i z
= z(v(d)+(d—1)/2) J(d-1)(1-1/7)
+( "/) (\/EBX 2 ) 2 bn,oo,z,J,T}a
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while, when 1 < p < oo,

)

1 —a,p
FE [Hfﬁ — fs

<[z = s3] + o+ 0o
j(d—1)(z/2—= z a |?
an’p’z"]zﬂ e/2=2/v)) § (\@é\ 1ge |<rrit
i=0 ==

E[|Be = B5e| | 1jsy Joryer)

ZQJ (d—1)z(1/2—1/(pV=z)) Z |B§1§|

§EE;
22_1/T 1200 (w(d)+(d-1)/2) | 97 (d—1)(1—2/(pv=))
+WCE (%BX 2 v ) 2 Z/\pvz bnypyz”]’.,—},
n T
where
_ 2 : J(d—1) 2/2
On,o0,2,0 =1+ (\/’W) <2 + (log <C:2 cz,z))
( ) 2+ log C’—2J(d 1)01 ))Z)
vlogn
- z/2
.  (2v202B(d,2))7 (27 + (log (C=2" Ve ) )
o0z T 1 — 2~ (@) (@d-1)(z/2+1-1/7)
(8CooB(d, ) /3)° (27 + (log (C=27 Ve ) )
+ 1— 27(zu(d)+(d71)(z+171/7))
9J(d—1) z/2
X ( BX> ;
n
and

Vet o (2al Y
Unpzg =1+2| | 7=—=] + ,
vvlogn vlogn

(201/ (=), B(d, 2))

2,27

1 — 2—(zv(d)+(d=1)(z/2+1-2/(pV2)))

(gcj{/z(f COOB(d,oo)>Z <2J(d—1) >Z/2
X .

bnpz.gr =

T L @@= D) (o 1=2/ (V)

The inequalities of Lemma 14 are similar to oracle inequalities, for a well-
chosen J depending on n (see Theorem 9), where the oracle estimates 5}175 if



Binary choice model estimation by needlet thresholding 299

and only if the error made by estimating this coefficient is smaller than the one
made by discarding it. This oracle strategy would lead to a quantity of the form

1/z.

1 - 2
} |85 > (E[|B5 e =B5.¢|°])

1/z
Such an oracle inequality would require to lower bound ( Hﬁ] £~ D .

1/z
Bo, - ]) is
replaced by TJSEJT , called quasi-oracle. The remaining terms can be made as
small as we want by taking + large enough. The last term corresponds to the
approximation error. Upper bounds of these types, uniform on Besov ellipsoids,
yield an approximation error which can be expressed in terms of the regularity
of the Besov class and is uniformly small for J large enough and allows to treat
the bias/variance trade-off in the quasi-oracle term uniformly over the ellipsoid.

a |? na
1 71 - z+]EH -—
15l Lo < (o132, s 7y =+ E ([P — Bile

In the inequalities of Lemma 14 the ideal quantity (IE [

7.6. Proof of Lemma 1
7.6.1. Preliminaries

Recall from the proof of Theorem 4.1 in [10] that for every 1 < p < 0o

/\ap

55, <2

and that, for 1 < z < co, we have

<22 1<HAap_f5aJ Z"‘Hf[;aJ — ;) (31)

The first term corresponds to the error in the high dimensional space while the
second term corresponds to the approximation error. Let us start by studying
the first term.

Lemma 6 (i) yields

H/\ap

z

TEEElbS (prycr (Bie) = Bie) wie

j=0 §e~]

-

P

z—1 zo0j(d—1)z(1/2—1 Ra a z
e Ve Tl N AN |
7=0

Thus, for p = 0o, we have

z

/\ap
H ’

aJH (J+lz 120/22](1 I)Z/QSup
p =0 EEE,

(Bﬁf) — Ble
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while, for p < oo, we have

&P _a,J —1

|77 =5 <@+ repers

J
S id-D=(1/2-1/ (V) §° (PT-E (gqu) _ 5;5‘2.

7=0 EEE;
The last inequality is obtained by using that, when p > z, we have

z/p

> (bl <> bl

¢eE; ¢eg;
and by the Holder inequality, when p < z, we have

z/p

STl | <N (bl

£eg; £eg;

7.6.2. Coefficientwise analysis

For the simplicity of the notations we sometimes drop the dependence on v in
the sets of indices.
We first consider the term

def

Oje,2 =

~ z
PTie~ (B;I,E) B ;)5
By construction we have

~

z
a a
Bie — Bj,e‘ Lge [>T e
o z
a a N
Bie — 53‘75’ 1|,8;,£|>ij) :

We introduce two “phantom” random thresholds Tﬁgﬁ = Tjen — Ajey and
TPc ., =Tjen+Aje for some Aje , to be defined later. They are used to define

8j.e.z = | B¢l Lo |<tye, T

4
= max (|,8;L7£| 1\3;5|ST]~,5,~Y’

big and small original needlet coeflicients. We also use T;’gﬂ/ for a deterministic
lower bound on T;-’ eryo L. ;2‘7 and A;’E y for deterministic upper bounds on T

and Aje . These bounds will hold with high probability. We obtain almost
surely

dj¢,2

_ a |? _ _
max(’ﬂj»f’ 0 (13 |<r, o o f<mse o f<msen Yo lore. )

7€y

‘ﬁﬁs —Bie

V4
max (1\8;,§|>Tm1|ﬁ;,5|sneg,w’ 1|B;,g|>n-,m1|ﬂ;,§|>m,w) )
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z
< ma (35l max (1) oy s o one)

3,€:y
z
max (

‘531,5 — B

1|B;7£_ﬂ;y§|>Aj’§v'V’ 1|B3},5|>Tﬁ§y’v> )

4
< max }6“ } max (1 B st s Lpst s 15 )
- A 1B | <T5 e T <T5 e ) T By e—Bre|>Diey ) 7

~ z
a a . _ _
)Bj’g Bj’g‘ fax (1|B;,575;,5|>A115=’Y’ 1|ﬁ;~£|>TJﬁYﬁw7 1TJ€’§7’Y>TJ¢7§»’Y) )
Sorting the terms according to the number of random terms we obtain

dje,z

a |? a |? R
= max < |ﬁj’£| l‘ﬁ;§|§T;gw7 ﬁj{’ max (1T}§,%JT~<T;,5,7’ 1|5}'1,§*5?,5|>A1v5w) ’

~ z
Bie = B1e] Lyap ot

7€

Bz - B

z
max (15 16— b ) .
( B e=Bse|>Dsey” T, >The

7.6.3. Scalewise analysis

Defining
def Sa a #
Mj,. = sup ’PTJ;M (@3&) - 5;',5‘ = SUp Oj¢ .
£EE; §EE;
def Y #
S5 3 |omes (Bie) = B2l = D drees
£EE; §EE;
we obtain

M < 4 I K
Dz = max (ssélalz ’ﬁ]{’ |Bj,§‘§ijg—’Y,

a 4
su ’ : ’ max ( 1., I N
£e:p. Fie ( T3y <Then 1B Biel>Dien )
SS=7

z

sup | B¢ — B¢

1, —
£€E; |ﬂj,§|>T¥7

)
3,

J:&:y

~ z
a _ pa _ R
fseucp 5j’£ 6J’E’ max <1TJ§,’§,7>T!’ ’1|5;‘5—B?’5|>A]‘,§.7) >
=j

= max(M7, ML MPY MP?)

2,27 2,27 2,27
S0 S1 B1 B2,
< Mj,z +Mj,z + ijz —I—Mj’z,
. a z
Six < 2 18Rl g ez,

¢eg;

a |# R
" 5; |/8j7€| e <1T;;,§JT’Y<TJ§,£,’Y’ 1|BJ@,€_'B;£|>AJ"5)’Y)
=J
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+ > B - Bre 1

s st
—~ Biel>Tilen
£EE;
,\ z
+ E ‘ﬁ‘? - B¢ ‘ max(l b~ opb >1{3a _ga )
o= A Tyen>Then"  |Bs =55 >Rien
g;

def ~S0 S1 B1 B2
=S85+ 55+ 55 + 557

We bound the expectations of the random terms as follows

E [M;!] < sup |Bf¢|"E
¢ez,

Sup max (1 st s 15 _ )
¢eg; T <Tien 1B =B e[ >Rse v

< swp |57 | P U (T, < T }
=7

ez,

+2 | U {‘Bﬁé _5?,5’ > Aj,é,v} ;

ez,

-~

Bie = Bje

(SS)

J

Bl z )
ML) <E [S“P 1|5§-‘,s|>Tf,’s,w1 ’

~

1/7
B2 a a =T
E[MZ] <E LS“:P_ Bie — Pie ]
S~=J

1-1/7
x E | sup max (1 b— w512 )
¢eg; Tien>T e BB e|> R v

1/7
2a a =T b,— b
Bie — 5]35‘ ] Pl U {ij > Tj,m}

Ej

<E lsup

§EE;

1——

~

Bie — /3?,5‘ > Ajen )

4P U{

¢ex,
S17 _ a |? ~
Fe »sz 851" B [max (s o 33 o o)
=
z - 3 ,
< D 185l (P{Tye, < T } +PH5§55 - 5}1,5‘ > Djent)s
£EE;

E[SjZ]=)_E HB}‘,& —5?,5‘ | Lige >t s

— J~§w7
§EE;

E[Sfj]:Z]E{A

z
a a
J:€ Bj’g‘ max (1T]%)-1§_Y’Y>T;§v"{7 1‘*8;5_ ;,§|>Aj*5”*>:|
€€E; '
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Séga:j (E[ ZT:|)1/T

1-1/7
b,— b a a
x (P {ij > Tj,m} + P{ Ble — ﬁj,s’ > Aaym}) :

The constant 7 > 1 in the Holder inequality will be specified later.

/\a a
Bie = Bie

z

7.6.4. Bernstein inequality and the term ’B;E — B¢
Let denote variance of G;¢(X,Y)

o2 MR [(Gre(X,Y) - 827

Lemma 15. We have
z 2 z 4 z
J 2o (Game) +a (aatie) )

E { j.e — P
Proof. The Bernstein inequality yields

2

nu TL’LLZ
N — 77  ~N2 N -7 2 _ _3nu
P{ e — Bﬁs‘ > u} < 9e 2(ene) ) g <e (e5e) 4 e 4%7&) .

Using now E [|X|*] = [, zu* '"P{|X| > u}du, we obtain

na a i z—1 Ra a
I [ ie — Pie } S /R+ zu P{‘Bj,& *@,g’ > U}du
nu?
T \2 3nu
< / 25712 e 4(”%5)2 +e Mg | du,
R+
hence the inequality from the lemma follows from (30). O

Lemma 15 is used to obtain a uniform upper bound of the power of the ratio
between ‘3}15 - 5;‘75‘ and a threshold c,+/log(n)/noj ¢ + carlog(n)/(n—1)M; ¢:

z

e — Pie
co/log(n)/noje +carlog(n)/(n — 1) Mj ¢
z
<9 2 L
<2 e :
"\ eovIogn + eur Ynlogn —]f]:ff

1 1 ’
+ Py [
.z (3 cov/n/logngs + ey log(n)%> )

i, €
3,€

1 i 4 1 z
<2 22— - . 32
- <02’Z < cax/logn> to. (3 CM logn> ) (32)

The following similar lemma is useful to handle the case p = co.
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Lemma 16. For any = C E;, we have

~ z
‘5?5 - 5}15‘ N2 o\
]E ’ ) S ],5 (2+ 1 E/~ 2/2)
ssélﬁpj jie vn ssélﬁpj ox: (log (c2.: [=3]))

+ <3n ;:5% Cje ) (2 + (10g (Clvz ’“J’)) ) .
(33)

Proof. A uniform union bound yields

Bz — 82|
P<{ sup 170s e > T
e, Ujg

2
1 : Y3, 2 3 : “5.€

—an| inf, = T —2n|inf, - &> |7
< min (17 ':_’ 9 (e 4 ( £es) "L&) +e ! ( ge=) 1”.’/15) ))
_— ‘—‘J

1 ('f “j€>22 3 ('f “ji)

—an(inf, = =25 ) 7 —3Sn(inf, =/ o

< min | 1, E;’ 2 ! €E=j 95 +min | 1, ‘E;‘ 2¢ * §€E; Mje

This yields

s

Aa a
B3 _B',é
E | sup e
¢eE) Ujg

2
1 : Y5.€ 2
_ . —_ 71”(”‘&654 o ) T
S/ 271 min (1,|:.;|26 R dr
R+
P — 7%n<inf£65( ;Ijg )T
+ zT* " min | 1,|=%]| 2e EA dr
b) J b)
R+

and thus, for any 7 > 0 and 75 > 0, we get

o~ z
a_ _ pga . e )?
‘ﬂj’é ﬁj’g‘ 2 2—1 |z _%"<mf565’, %) v
E|sup | ————— <75+ 2T :j’2€ L dr
565_’7 Uj e T>To

3 ; Yj.€
1 = _Z"<mfses’. M )T
+Tf+/ 27” 1’:;’26 5 Mie ) dr
T>T1

Take

__8log (1.2 [E)) nd o 2V2 log (c2,. |f)
! 3n il’lfgeE; ;\ij’i 2 \/ﬁ infge—/ Y '

=J 95,
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Hence, by construction, we have:

3 . uje 3 : Y56
—2n|inf, - T 2 —2n| inf, - T
V1T > 1, ’EH 2 * ( ses; Mf=5> < e ° ( £e=; MM)
Cl,z
2 2
1o “5.€ 2 1 i Y58 2
—an| inf, - T —=zn|inf, - T
VT > Ty :/‘|2€ ! ( €<% a“) < 2 e " ( 8<% aj'g)
> =5 < .
C2 2~
This implies
a. _— (e
(B854
sup
= Uje

(22 ’
\/ﬁ infgeg; Li.g \/ﬁ inf565; Zj’§

E

: 8 1 ’
o - Uj ¢ ) + 2| — . Uj ¢ i
3n 1nf§~659 Mo 3n mfgeE;_ Mo

which allows to establish the claimed result.

Lemma 16 allows to obtain the upper bounds (35) and (36) below.
For u; ¢ = 0;,¢, we obtain

z
8 M; — z
* (3— S —“) (2+ (log (e1.2[Z}]))) -

For future use, note that we can also use the uniform bounds M; (see (25)) and
oje < CyB(d,2)BY 2" & g (34)

instead of M;¢ and o;¢, and obtain

E

sup
ez’

< (?) (2 g (o 150 7%) + (5500,) (2 (g (en 1))
(35)

R z
Bie = /Bﬁs‘ ]
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Along the same lines, with u; ¢ = c,+/log(n)/no; ¢ + carlog(n)/(n — 1) M, ¢, we
obtain
z

Bt~ 8 qs’
E | sup J Js

=54 \/logno” +dy,

- (%) (2+ (s (c2- [ >>Z”)
8 : e
+ (m) (2 + (log (e1,2[E5]))7) (36)

recall that when =) = Z;, ’ | < 0=29(d-1)

5

7.6.5. Empirical Bernstein and the probabilities
We take

vlogn
Ajeqy =2 t0]5+ MJ§ 1

Tieny =20y, T'&'y = Ajfw T5e =30

J J»

vlogn
_]f'y \/ t Ujf+ Mjg —1’

ylogn
JE’Y V27t UJ§+ n_1’
b,— S+ +
Tfo’Y Aj,ﬁﬁ and TJ&W 3AJ§’Y

Lemma 17. The following upper bounds hold:

1
b, b .
IP{T]M>T“}§—W,

1
IP{T” < T }_—;

3,& ny
PLB2, — B > Aje b < 3
3£ T Pk EY [ =

i . 1
s,+ s s,+ : _oj(d—=1) = .
P U {Tjév < T } = Z P{ Tj,é,'y < Tjg’fﬂ} < 02 nY’
€€E; §EE;
, 1
b, b b, b a-1)_* .
P U {TJ£V>TJ}€,7} < ZP{TJEV>TJ¥§W}SCEQJ( )n_“f’
£€E; §EE;
P U {[Bre = e > diea) | < SP{ e~ Bie| > Avca )
§€E; £eg;

< Co2i@-D 3
<Cs —
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Proof. Using the results of [23], we get:

M.
P {O'j’g > a‘j’g + 2V QU%} <e ™
N —
Ploje <oy —ovaudie | <o,
5,6 < 05.¢ um €

Sa a 8‘75 14 u _u

which yields the first inequalities. The others follow from the union bound.

7.6.6. The case p = 0o

Let us consider the various terms one by one.
Error in the high dimensional space.

E[M;.] <E[M72] + E[M7;] + B [M7] + E [M7],
with
S07 __ a |? .
BMG2] = sup |5l Lysy <o

)

E [M}}] < 052j(d_1)%§£5p, |B5.el”

§‘> J&W];

e AN (2 =
B < (=200 L) ((7 (27 + (Vs (o1

E [MJBZl] <E lsup ‘5;5 Bie

)

307

z

O

)

+ (%M])z (21” + (log (|5 Cl,zr))z>> ;

where we have used (a + b)l/T < a7 +0M7 for T > 1.
This yields

/\ap a,
B\ -5

J
ZQJ(d 1)z/2<sup |ﬁ §| 1|[3“ |<T*+
=0

(J+ 1)1z

~ z
+ E | sup ﬁ;-l’g —5}1,5

§EE;

J,£|>TJb§w‘| >
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+ CHZ2J(d 1)(z/241) sup |5a§|

j=0 £eE
1-1/7 J

4
__ g(d 1)(z/24+1-1/71)
+ <C:m) Z;)

<<%> (274 bg(Ej'%))z)

\/ﬁ
+(50) (27 + Oog (21 r.r))) )

def
*Ooo,z+ 1ooz+R2ooz

The terms R ., , and R .. The term R} . is the term which appears in
Theorem 14 and thus we only need to bound Rj ., .. As in the case p < oo,
we can use the uniform bounds on ;¢ and M; ¢, namely, (25) and (34), and

|Z5] < |=s] to obtain

/
2,00,z

1-1/7 J
§ : 2j(d—1)(z/2+1—1/7—)

()
< Y
n =

x((” B(d, 2)2 >B}{2) (247 + (g (ca.or [241)))

7
8 i(v(d)+(d—1)/2) - 17 = )2
S CaB(d, ) Bx ) (27 + (og(er.or [241))7)

N\ 1-1/7
< (40;)
= ey

z

(ﬁcﬂ 2B ) (27 + (log (ca.0r [E41) )

T

2J(u(d)z+(d—1)(z/2+1—1/7'))
X 1 o)t d=1)(z/241-1/7))

8 z = 2
+(gaCuBld o) Bx ) (27 + og(err [241)°)
2J(V(d)z+(d—1)(z+1—1/‘r))

(v(d)z+(d—1)(2+1-1/7))

X
1-2-

The term O, .. Denote by

~ z
a a
sup B = Be| Lo oo |-
Ee:] Js J il

o . = a 1% 1., . E
2r = 3 1G5 gy, +



Binary choice model estimation by needlet thresholding 309

,++ S, +
Because T] £y > Tj’gﬁ, we get
E | su 1 a
gep ng ﬂ |B E|>JE’Y‘|
A(L a #
=FE|su 1. — B¢ s,
gegpj Fie = Pie G >T0E
z
+E | su Gl 1.,
30 | = Bie] Lryisian o ]
E Aa a z
< su ’ re— B2 ’ 1. s,
SEsp |Fhe — Fle| Ysg o
o~ z
a a
| (Phe =5
EEEpj ;)757’)' TJS€+W+Z|ﬁ |> 3 £ ~
X Sup{|ﬁq§|z <++ },
€€E; 7> >|ﬁ |> J§’Y
thus
’E?a - 5?5’
] i) z
O’Z’j <[|[1+E sup | ——5—— sup {|ﬂj“§| 1|B‘?' |ST‘?’++}
£€s, J& £€5; v
A(l a z
E | sup |32, — 8¢ ’ 1w oot | -
+ gbeuapj ’8]75 BJ@ |Be c|>Ts

Using now (36), with ¢/, = /27 and ¢j; = 27, and |Z;| < C=274~1) | we get the
upper bound in Theorem 14.

7.6.7. The case p < oo

Let us consider the various terms one by one.
Error in the high dimensional space. We obtain

E[S;:] =E[S72] +E[S] +E[S7C] + E[S)7].
with

SSO Z ’B]E{ 1|ﬂa |<Tr, )

$€~J

SSl - nw Z ’5?5’

€€E;

E[s2] <> E[|B

ez,

z
Bre = 85| | 1y o

]&’Y
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41— 1/7

52 17 1/(27) T4, 4 1)) Mje\”
E[S2] < e 2. 27 ((2 e ﬁ) - (501’” —) )

n
£€E;
where we have used (a + b)/7 < (a/™ + b'/7). This yields

=[5 - 5[]

a 22/ (pAz)—1
(J+1)=-tCizcg™”

2i(d=1)=(1/2-1/ VR (g, ]

e

<
I
(=)

e

<
Il
o

9i(d=1)z(1/2-1/(pV=2)) Z (|6‘?5]21|5a |[<Tst
’ J,€

—753.&
§EE;
Aa a ?
VE [|Bre — 85| | 1155 o)

3:€:
ZQJ (=0):01/2-1/ V) §™ |ga |?

§EE;

22—1/7‘ Jo
+ 9i(d—1)z(1/2—1/(pV=2))
ny(1=1/7) £ ‘
=

11 T5e\ (4 /e Mg~
S (%) + (e m) )
§EE;

def
= Op,z + Rip:+ Rop:

The terms R1p . and Ry p .. The term Ry, . appears as is in Lemma 14. To
bound the term Ry, ., we rely on (25). We obtain

1 1) 05\ (4 e Mg
27 (%) + (59575
=]

. 1 \°7
5o (a1

- §€EE; ’ \/ﬁ
1\7
S 2/m (2D 0 B(d, o) D2 g L
+ o= <3 G JET ( OO) XTL
Ej

T 1/(z1 z 9 1 e .
< =27 (2705 B(d,2)) BY Wzﬂ((d Dt 2(@)

1z7'

_|_C:21/T( 1/(z7) C B(d )) Bz 2](((1 1)+2z(v(d)+(d— 1)/2))
- 3
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this yields

’ - /e 05\ (A aen My
I (CLEN N TN
= i, vn 3" n
J
o 1_ 1 . 1 T z 2 1 i ((d— zv
SZOQJ(d Dz(3=5vz) 021/ (262(2(j )CQB(d,2)> B;(/ W2]((d D+zv(d))

J z
. 1 1 4 ZT
+ 3 2GR ot/ (EC},/Z(T )COOB(d’OO))

j=0
Bz L gi(@-D+2(w(@+252))
an

)

J
< C=2/7 (26/57CyB(d.2)) B L e Gt
E nZ
7=0

z J
4 1 . d—1 1
c=2V7 (Vo B(d By— 3 2@+ D57
+ = (301,27 ( 700) an

=0

_o1/7 (2 Y0 00 B(d, 2 )
O_ CQ,ZT CZ (? ) z/2 1 2]2(V(d)+%+(d71)(é7P$ZC))
92w @+ +d-1) (-5 F n#/2

<
1

_ol/7 (4 1/(z7) ?
. C=2 (361,27 COOB(d,OO)> 2 1 orw@+ it -1 a-54))
1 — 2—2W(@+(d-1)/z+(d-1)(1-1/(pV2))) ~ X pz '

The term O, .. Denote by

2 ~ z
Ociie = |B3el Yy geryr, +E[|Bre = 8¢l | Yo orec

S, ++ S, +
> > T
Because 7. =T, we get
z
1 .. b, —
} 185 ¢ [>T,

4 —~ 4
1 1o EH‘?—‘?Hls, Y
] ‘5:',&|>Tj,gw++ Bie = Bie T 2185 > T,
]

E[|Bc - B

=E [[B5¢ - 51

z] ) N E HB}I,& — B¢
A Y

a |%
@ 1Py _
|ﬂJ’E| TJ?-,EJT’:rZ‘BJ'a,£|>T; '

<E|[|Bre - 81

3,6y

E[|Bse - pse|
a a

.6~ Pig ]
O.je< |1+ b\ 7
( J}Eﬁ)

z
|87l 1)g0 <+

z
R

+E HB?@ —Bie
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Now using the results of Section 7.6.4, with T]bé_v = V29t,05c + %71;%’1‘ M; ¢,
we obtain

SupEHﬁ?,&‘ﬁi&’ } <2<C (2 1 )Z+c (4 1 )z>
z < 2,2 - 12 (=
i (Tb’_ ) v2yy/logn 3(2/3)ylogn

3:€
z z z Z
(Y[
- Vlogn ~vlogn '
This yields

1/2 \ * 1/z \ # J
O,.<|1+2 \/56272 + 21, Z2j(d71)z(1/271/(p\/z))
Pz = vvlogn ~vlogn

§=0
S (1856l sy ery + B |

=j

~

z
Bre=B1e] | 1oy Joryr)

3,&

7.7. Proof of Theorem 9

This proof requires an upper bound on: the approximation error, R; , -, R1p 2,
and O, .. We use that because fg € B} (M), we have, by Lemma 13, f; €
By (ceqM).

7.7.1. The case 1 < p < oo

Let us consider the terms one by one.
The approximation error. Start with

5577 =], = | Z 3 oo

j>J EEE, .

From Lemma 6 (i) and the definition of the Besov spaces as a sequence space,
with 1/g + 1/¢ = 1, we obtain

55 etne] <X e |
) ? - ) E:j

j>-]£€5j p j>J

)

Y23

which yields

DD Blevie

§>J E€E; ,

e Vil

s
BP«(I
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Clceq MCYPV (250 — 1)=1/ Hfﬁ“ 9-Js ifr>p

< i i Bra
Cl CoqM (257 — 1)1/ fﬁ—‘ —J(s=(d=1)A/r=1/P) if ¢ < p.

2
B34
It is enough to consider the worst case where r < p and to check that in the two
zones S=(-VA/r=1/p) )

v(d)+d-1)/2 =
In the dense zone, we have

s—l—u(d)—i—d— > (V(d)+—> g,

which yields
s S

< .
s+vd) +%5E T (vd)+452)E
Because s > (d — 1)/r and p > r, we have

d—1 d—-1 sr sr 1 1
— —_———=(d-1 -1 -—— =] >
T Ty Tw ( )(d—l ><r p>_0’

which yields s — (d —1)(1/r — 1/p) > °- and gives the result.
In the sparse zone, because s > (d — 1)/r, we have

s—(d-D)A/r=1/p) s—=(d=1)(A/r =1/p)
v(d)+(d-1)/2 T s+v(d)—(d-1)(1/r—1/2)

The terms Ry pp, and Ry p . Using Lemma 7 (iii) we obtain

J
4 —(pAr) /7T —j — -
Ripp < (ceqM)pC’é (pAr)/ § 9= Ip(s+(d=1)(1/p=1/(pAr)))

nYy
3=0
where the exponent is nonpositive because s > (d — 1)/r, thus

AcegM)PCz
7 (1 — 2-p(H+E@-DA/p=1/GAN))”

Rl,p,p <

With v > p/2, Ry p,, is of lower order than t2.

We also have
2271/7'

R2,p7p < ny(1—1/7) CEbn,p,p,Jr

With the aforementioned choice of J,

1
_— _9J(w(d)+(d-1)/2) g1/2 < q.
\/ﬁ X ~ 5
2J(d—1)
Bx < 1.

Together, these yield that by, ; p 7+ is of the order of a constant.
This term is also of lower order than ¢P for 7 large enough such that v(1 —

1/7) > p/2.
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The term O, . First note that a,, p, 7 =1+ o(1).
We take Tjs,grj uniform in &:

Tt = 3y/2yt,CoB(d, 202V BYY*

+52C0 B(d, 00) 20 (“(D+(d-1/2) Vlog"
1

< 2 /31, BY? (3\/5023@ 2) + 52C B(d, oo)”—ﬁl) :
n—
where the last display uses the upper bound on J, this yields, for n > 2,
T < 2@ 1, BY? (3\/§C2B(d, 2) + 1040 B(d, oo)) st

As a consequence of Lemma 15, we get

a a [P 1o i \" 4 1 MNP
Y. — S <92 2 —
3,6 ﬁm&’ ] > << Cap \/—) + C1,p n

) 1 \?
<3 (alfreaia 20 5 L)
’ n

E|

8 1 iy _ ]. P
+2 (—SclffCooB(d,oo)Qj( (@)+(d 1)/2)BXE>
P
v(d P/25p+1 1/p —4 1/p B o0
< 2Jp ( )n 72 B 2P (6271) CQB(CZ, 2) + 3617;0 Coso (d7 ))

(L), (s CaBA.2) + feifCocB(d.o) '
~ (ylogn)P/27 \ " 3v205B(d, 2) + 104C5 B(d, 50) (\/7)

Ts++\P 1/p \ P
< T, \/icéfer—cl”’

= (ylogn)p/2°\ 3 787
7y log

We define the two constants C,, = 3v/2C2B(d,2) 4+ 104CsB(d, 50),/7 and

1/p
. —29l/p ch/P+ “Lp )
P 3 2P 18,4

For any 0 < z < p, we have

P ~ p
S (1856l s Jrzs +E[[Be = 85 ] 1 orye)
§E€E;
(Ts ++)P
< ¢ s —l - P s
- Z (’B] f{ 1|ﬁa |<T e+t (ry]ogn)p/zca’p1|’6;‘f|>TJ E+’j—>

ez,

Cg, S a
< (”W) T 3 1Bl

==

- (1+ (i) (ﬁtnB}(/sz)piz 9iv(d)(p—=) Z ’5}1@’2'

1 p/2
7logn) iz,
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We need to sum over j and take two different values for z, one that we denote
z1 for j < jo and one that we denote 25 for jo < j < J. The values of 21, 22, jo
will be specified later, depending on the value of the parameters r, ¢, s and p
such that we are in the dense or sparse zone. Up to a multiplying constant, we
thus need to control

_.Jo
A+ B— (B;(/ztn)p - Y 2@/ § g |
=0

§€E;

J
1/2, \P7* i(d) (p—22)+(d— - z
+ (BX tn) Y @m0 N ge |7
Jj=jo+1 £€E;

where we choose adequately z1, zo and jy in the two zones. Because of Lemma
7 (i), we only consider p > r.
Let us first consider the dense zone. We define

p(v(d) +(d—1)/2)
s+v(d)+(d-1)/2

F =
In the dense zone, 7 < r, p > 7 and
d—1
5= (u(d) + T) (2-1). (37)

With zo = r, we get

e
B< (B;(ﬂtn)p Y P @OE-HEDE2D] § e |
Jj=jo+1 £€EE;

Lemma 7 (iii) gives that

Z 1Bjel” < D§2*J’T(S+(d71)(1/271/r))7

§EE;
where Vj € N, D; >0, (Dj)en € ¢4. Note that

s+(d—1)(%_l):(d_l)p—d_l—ku(d)(z—f—l), (38)

T 2r r 7
thus
1/2 p=r J . r )4 d=1
B < (BX tn) Z 2ip(1-%) (v( )JrT)D;
Jj=jo+1

p=r ] r —
S (CeqM)" (B;(/Qtn) 2]()17(17?)(1,(11”%)7

foqulifr>7:andforq§rifr:f(i.e.,s:p(u(d)—i—%)(%—%)).
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_ _ -1
Taking ik ((@+45+) ~ (B}(/Qtn> , we get

p—T
BsM (BY )

which is the rate that we expect in that zone.
As for A, we take z; =7 < 7 < r, this yields, using Lemma 7 (iii),

— Jo

A< (BY)TT S P @G e 6] 5 g |7
Jj=0 §E€E;
_7 Jo
< M (B;g?tn)p Y DT+ (p/2-1) (s (d=1)(1/2-1/7)
j=0
1/9 p—T Jo . o
<M (B Y tn) Y 2D HAD2 AT/ (using (37))
j=0
<M ( Bt )p’? oiop(v(d)+(d—1)/2) (1~7/7)

< M” (B;{Qtn)p_r (from the definition of jg).

Let us now consider the sparse zone. We define by

v(d)+ (d—1)(1/2 - 1/p)
P — (d—1)1/r—1/2)

F=

in a such a way that

s—(@d-1)QA/r—1/p)
s+v(d) —(d—1)(1/r—1/2)’
_ (p—r)(d—1)/2+v(d)) —rs

T @) — - —12) "

s+(d—1) (1_1) - (d_})p_d;lw(d)(gq).

p—T=p

2 r 2r
For the term A, we take z; = r and obtain
Jo

A< (B;(/Ztn)”"“Z2j[u<d><p—r>+<df1><p/271>1 S8
Jj=0 §EE;

_p Jo
(B}(/Qtn)p Z2j[u(d)+(d71)(1/271/p)%(ffr)]D; (using (39))
3=0

IN

< ( B;{?tn)”"“ 9io[(v(@)+(d=1)(1/2=1/p) 2 (F=r)] p g7
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the last inequality holds because v(d) + (d — 1)/2 — (d — 1)/p > 0, indeed,
because we are in the sparse zone v(d) +(d—1)/2 > s/(p/r—1) =sr/(p—1) >

4 , -1
2/(p —7r) > (d—1)/p. Taking 270W(D+(d=1)(1/2=1/p)) % ~ (B;(ﬂtn) , yields

—7

A<M (Bi{ztn)p

For the term B, we take zo =7 > 7 > r and obtain

-7 J _
B< (B}(/%n)p S @@/ § (g [
J=jot1 ¢ez,

.
5(3;(/2%)” S QIE@HEDA2PRC /DT (using (39))
Jj=jo+1
< ( B;(/ztn)”” odo (v(d)+(d—1)(1/2=1/p))p(r—7) /7 /7

p—r7

s (BYn)"

7.7.2. The case p = 00

Consider r = co. The general case follows by Lemma 7 (ii).
The approrimation error. Because fg € B3, ,(M), we have by Lemma 6 (i)

YD Bleviel| <D0 Brevie

§>J EEE, o i>J||¢es; -

< ClocegM Z Qj(d—l)/22—j(8+(d—1)/2)Dj
J>J
< ClocegM2775(287 — 1)~ 1/4,

where ||(D;)jen|lq < ceqM. From the choice of J, we get

7 G s/(v(d)+(d—1)/2)
Z Z 5}1,51/13,5 S’ Cé@ceqM(qu - 1)71/(1 (tnB;(/2> .

§>J E€E; -

This term is negligible because s/(v(d) + (d — 1)/2) > s/(sv(d) + (d — 1)/2).

The terms R} , , and R5 , . Using the definition of the Besov norm, we obtain

J
4 z —jzsoj(d—
oo < nj(chM) CEZQ jzs9i(d—1)
j=0
5 iZJ(dfl)Mz
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With v > z/2+ 1, which holds if 2(y —1)(1 —1/7) > 2z, R1,c0,> is of lower order
than ¢7.

Due to the choice of J, the term in bracket in the expression of Rj ., . in
Theorem 14 is less than 1. The second term in the expression of by o -, - is
of smaller order than the first term. The order of b, o, -, 7+ is finally (log n)Z/Q.
Thus, we have

1-1/7
R e S (n7727070) "™ logn)*2.

This term is also of lower order than ¢Z when 7 is such that 2(y—1)(1—-1/7) > z.

The term O(’xm. Note that here a,, o ., 7 is of the order of a constant. We now
proceed like for the term O, ,. Using (35), we obtain for arbitrary z € [0, 2]

~

Bie = Bje

sup
§EE;

a |? ?
) . 1 a s, ]E 1 a s,
52152 m ’5‘ |85, |[<T5 ey + |Bj,5|>Tj,s+,w+]
z—Zz . _ -
S (VAtaBY?) " 20 sup (7|
€€E;
We use an upper bound on A + B, where:

zZ—Zz jO
A= (Bé(mtn) 1 S i@ +@D2/2 gy |ge |
5 =

=0 €=
zZ—2z9 J
B = (B;(/Qtn) Z 2j[V(d)(Z—Zg)+(d—1)Z/2] sup |5;’§|z2 7
j=jo+1 L€y

for well-chosen 0 < jo < J, 21 and 23. Because f € B, (M), we have
VZ > 1, sup |B%|" < (coqgM)7279HE@D/2Z,
§€E;

The result follows taking z; = 0, jo such that 270 ~ t;l/(s+u(d)+(d71)/2)

9 = Z.

, and
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