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1. Introduction

Discrete choice models (see, e.g., [21]) have applications in many areas ranging
from planning of public transportation, economics of industrial organizations,
evaluation of public policies, among others. This paper considers the binary
choice model. There, agents (consumer, firm, country, etc.) choose between two
exclusive alternatives 1 or -1 (e.g., buying a good or not) the one that yields
the highest utility. The utility that an agent i gets from choosing alternative -1
(resp. from choosing 1) is assumed to have the form

u−1,i = z�−1,iγi + ε−1,i (resp. u1,i = z�1,iγi + ε1,i), (1)

where z−1,i (resp. z1,i) is a vector of d− 1 characteristics of alternative -1 (resp.
1) for agent i, d ≥ 2, γi are preferences of agent i for the characteristics, and
ε−1,i and ε1,i absorb both the usual error terms and constants. In (1), the pref-
erences are allowed to vary across individuals; namely, they are heterogeneous.
This translates into a vector of coefficients γ indexed by i that we assume
random. The characteristics of the alternatives are indexed by the agents, for
example they can be characteristics of two goods that a consumer has to choose
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upon interacted with individual characteristics like age or distance. We assume
that the random coefficients and errors are independent from the characteris-
tics. The statistician observes a sample of characteristics and choices for agents
i = 1, . . . , n, but γi, u1,i, and u−1,i are not observed. Observing the choices
corresponds to observing the sign yi of the net utility u1,i−u−1,i. Indeed, agent
i prefers 1 (yi = 1) if and only if the net utility for 1 is positive, i.e.,

u1,i − u−1,i = ε1,i − ε−1,i + (z1,i − z−1,i)
�γi > 0, (2)

and prefers -1 (yi = −1) when

u1,i − u−1,i < 0.

We assume that the probability that
∣∣(ε1,i − ε−1,i, γ

�
i )�
∣∣ is the 0 and thus that

agent i is indifferent (i.e., u1,i − u−1,i = 0) on a set of 0 probability. Hence, the
linear random coefficients binary choice model is

yi = sign
(
x�
i βi

)
, (3)

where, for a real number a, sign(a) is 1 if a > 0, -1 if a < 0, and is 0 if a = 0,

xi = (1, (z1,i − z−1,i)
�)�/

∣∣(1, (z1,i − z−1,i)
�)�
∣∣ ,

βi = (ε1,i − ε−1,i, γ
�
i )�/

∣∣(ε1,i − ε−1,i, γ
�
i )�
∣∣ ,

and | · | is the Euclidean norm in Rd. Like in [3, 4, 10, 13] among others, we
consider a nonparametric specification of the joint distribution of β and this
model is more general than the Logit, Probit, and Mixed-Logit models. Note
that it is important to avoid restricting the dependence between the coordinates
of (ε1 − ε−1, γ

�) since they can be functions of a deep heterogeneity parameter
(e.g., the type of a consumer).

We denote by Y , Z1, Z−1, X, ε1, ε−1, γ, and β the population quantities
corresponding to the lower cases letters indexed by i. The random vectors X
and β are elements of the unit sphere Sd−1 of Rd. For the main results of this
paper we maintain the following restrictions on the distribution of (β�, X�)�.

Assumption 1. (A1.1 ) X and β are independent,
(A1.2 ) X and β have densities fX and fβ with respect to the spherical mea-

sure σ.

Assumption 2. (A2.1 ) fβ(x)fβ(−x) = 0 for a.e. x in Sd−1,
(A2.2 ) The support of X, denoted by supp(fX), is H+ = {x ∈ Sd−1 : x1 ≥ 0},
(A2.3 ) fX is known and we have

• AX
def
= ‖fX‖L∞(H+) < ∞,

• and BX
def
= ‖1/fX‖L∞(H+) < ∞.

Under Assumption 1, fβ is solution of the ill-posed inverse problem: for a.e.
x ∈ H+

E[Y |X = x] =

∫
Sd−1

sign
(
x�y
)
fβ(y)dσ(y)

def
= Kfβ(x). (4)
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The operator K in (4) is a convolution on Sd−1. Estimation of fβ in (4) is thus
related to statistical deconvolution on Sd−1 (see, e.g., [12, 16, 19]). However,
the left-hand side of (4) is not a density but a regression function where the
regressors are random. The identification issue in this model stems from the
fact that: (1) the distribution of the observed data only characterizes Kfβ on
supp(fX) which is a proper subset of Sd−1 and (2) due to the sign function K
has an infinite dimensional null space. The support of X can only be as large as
H+ because the first coordinate of X is positive. This is because we allow for
the term ε1,i − ε−1,i in (2).

A simple estimator for the density of β in this model is given in [10]. There,
rates of convergence for the Lp-losses for 1 ≤ p ≤ ∞ over Sobolev ellipsöıds
based on the same Lp space (as well as confidence intervals for the value of the
density at a point, treatment of endogenous regressors, and of models where
some coefficients are nonrandom) are obtained under similar assumptions for
choices of the smoothing parameters which depend on unknown parameters of
the Sobolev ellipsöıds. It is assumed in [10] that the support of β lies in an
(unknown) hemisphere, namely, that there exists n (unknown) in Sd−1 such
that P(n�β > 0) = 1. This assumption first appeared in [13] and is stronger
than (A2.1). It implies that for some difference of the characteristics, or taking a
limit of these, everyone chooses the same alternative. In contrast, (A2.1) is much
less restrictive and does not imply “unselected samples”. However, everything
in [10] also holds under (A2.1). Assumption (A2.2) requires that the support of
Z1 −Z−1 is Rd and is also made in [10, 13]. [9] allows for continuous regressors
which support is a proper subset at the expense of assuming some form of
unselected samples and relying on integrability assumptions involving fβ . It is
possible to obtain identification of fβ when we relax (A2.2) and the requirement
that fX exists (see (A1.2)). This is done in [8]. The estimation in this case is the
subject of future work. (A2.3) strengthens (A2.2) and is used to obtain rates of
convergence. It could be viewed as an assumption on the tails of X. It is relaxed
in [10] and in this paper at the end of Section 5. Note as well that Assumption
(A1.2) allows for one nonrandom coefficient in the original scale and that when
there are more than two, one should proceed as in Section 5.2 in [10] with the
estimator developed in this paper.

In this paper, we show that the estimator in [10] can be written as a plug-
in of a linear needlet estimator. Needlets are a class of linear combinations of
spherical harmonics which form a tight frame of localized functions on spheres
(see [25]). Hard-thresholding of series estimators based on needlets have been
successfully used in statistics for estimation of functions defined on spheres (see
[2] for densities, [24] for regression functions, and [17, 18, 19] for some inverse
problems) or compact manifolds (see [15]). This paper proves lower bounds on
the minimax risk when the degree of integrability in the loss - specified by
the statistician - can differ from the degree of integrability of the Besov body
containing the unknown fβ , giving rise to sparse and dense regimes. The lower
bounds correspond, up to logarithmic factors, to the upper bounds in [10] over
Sobolev ellipsöıds and matching degrees of integrability. This paper proposes to
replace the linear needlet estimator in [10] by a nonlinear estimator based on
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hard-thresholding with data-driven thresholds and use the same plug-in strategy
as in [10]. The upper bounds on the risk of the estimator also correspond to the
lower bounds up to a logarithmic factor, but over all Besov bodies, including
nonmatching degrees of integrability. Both the upper and lower bounds are also
given for the sup-norm loss. The data-driven thresholds are similar in spirit
to [5] for density estimation using the Dantzig selector (see also [6, 24] for
other local thresholding procedures over the sphere), they are based on sharp
concentration inequalities and make the implementation of the estimator feasible
as it is independent of features of the unknown density. Proofs are given in the
appendix.

2. Preliminaries

We use the notation x∧y and x∨y for the minimum and the maximum between
x and y. We write x � y when there exists c such that x ≤ cy, x � y when
there exists c such that x ≥ cy, and x 	 y when x � y and x � y. We denote
by |A| and 1A the cardinal and indicator of the set A, by N the nonnegative
integers, by N∗ the positive integers, by a.e. almost every, and by a.s. almost
surely. We denote for 1 ≤ p ≤ ∞ by ‖ · ‖�p the �p-norm of a vector, by ‖ · ‖p
the usual norm on the space Lp(Sd−1) of p integrable real-valued functions with
respect to the spherical measure σ. We write Lp

odd(S
d−1) (resp. Lp

even(S
d−1)) the

closure in Lp(Sd−1) of continuous functions on Sd−1 which are odd (i.e., for every
x ∈ Sd−1, f(−x) = −f(x)) (resp. even). Every f ∈ Lp(Sd−1) can be uniquely
decomposed as the sum of an odd and even function f− and f+ in Lp(Sd−1).
The space L2(Sd−1) is a Hilbert space with the scalar product 〈 , 〉 derived from
the norm, there f− and f+ are orthogonal. D is the set of densities and, as it
will become clear after Proposition 5, ν(d) = d/2 is the degree of ill-posedness
of the inverse problem.

2.1. Harmonic analysis

The basic element is the orthogonal decomposition L2(Sd−1) =
⊕

k∈N
Hk,d,

where Hk,d are the eigenspaces of the Laplacian Δ on Sd−1, corresponding to

the eigenvalues −ζk,d, given by ζk,d
def
= k(k + d − 2), of dimension L(k, d)

def
=

(2k + d − 2)(k + d − 2)!/(k!(d − 2)!(k + d − 2)). The space Hk,d is spanned by

an orthonormal basis (hk,l)
L(k,d)
l=1 and H0,d by 1. We also have L2

odd(S
d−1) =⊕

p∈N
H2p+1,d and L2

even(S
d−1) =

⊕
p∈N

H2p,d. The projector Lk,d onto Hk,d is
the operator with kernel

Lk,d(x, y) =

L(k,d)∑
l=1

hk,l(x)hk,l(y) =
L(k, d)

σ(Sd−1)P
μ(d)
k (1)

P
μ(d)
k

(
x�y
)
, (5)

where μ(d) = (d − 1)/2, the surface of Sd−1 is σ(Sd−1) = 2πd/2/Γ(d/2), and
Cμ

k are the Gegenbauer polynomials. The Gegenbauer polynomials, defined for
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μ > −1/2, are orthogonal in the space of square integrable functions on [−1, 1]
with measure (1 − t2)μ−1/2dt. We have Pμ

0 (t) = 1, Pμ
1 (t) = 2μt for μ �= 0,

P 0
1 (t) = 2t, and for every k ∈ N

(k + 2)Pμ
k+2(t) = 2(μ+ k + 1)tPμ

k+1(t)− (2μ+ k)Pμ
k (t). (6)

Clearly, for f ∈ L2(Sd−1), we have f =
∑∞

k=0 Lk,df and, due to (5),

∀x ∈ Sd−1, ‖Lk,d(x, ·)‖22 =

L(k,d)∑
l=1

|hk,l(x)|2 =
L(k, d)

σ(Sd−1)
. (7)

Powers (−Δ)
s
f for s ∈ R and f in a Banach space E1 are defined in a Banach

space E2 when Lk,df is defined in E2 and (−Δ)
s
f

def
=
∑∞

k=0 ζ
s
k,dLk,df converges

in E2. The best approximation in Lr(Sd−1) of a function f by harmonics of
degree less or equal to m is

Em(f)r = inf
P∈
⊕m

k=0 Hk,d
‖f − P‖r .

Definition 3. For s > 0 and 1 ≤ r ≤ ∞, f belongs to the Sobolev space
Ws

r(S
d−1) if

‖f‖r,s = ‖f‖r +
∥∥∥(−Δ)

s/2
f
∥∥∥
r
< ∞.

We denote by Ws
r odd(S

d−1) the restriction of Ws
r(S

d−1) to odd functions.

Definition 4. For s > 0, 1 ≤ r ≤ ∞, and 0 < q ≤ ∞, f belongs to the Besov
space Bs

r,q(S
d−1) if

‖f‖ABs
r,q

= ‖f‖r +
∥∥∥(2jsE2j (f)r

)
j∈N

∥∥∥
�q

< ∞.

2.2. The operator

Proposition 5. The operator K satisfies the following properties:

(P1.1 ) For every f ∈ L1(Sd−1), Kf = K(f−),
(P1.2 ) If Kf = Kg with f, g ∈ L1

odd(S
d−1) then g = f ,

(P1.3 ) For every 1 ≤ r ≤ ∞,

W
ν(d)+|1/r−1/2|(d−2)
r odd (Sd−1) ⊆ K(Lr

odd(S
d−1)) ⊆ W

ν(d)−|1/r−1/2|(d−2)
r odd (Sd−1),

where the exponents ν(d)± |1/r − 1/2|(d− 2) cannot be improved,
(P1.4 ) For every 1 ≤ r ≤ ∞, there exists B(d, r) such that

∀K ∈ N, ∀P ∈
K⊕

k=0
k odd

Hk,d, ‖K−1P‖r ≤ B(d, r)Kν(d)‖P‖r. (8)
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Moreover, K is a self-adjoint and compact operator on L2(Sd−1) with null space
L2
even(S

d−1), nonzero eigenvalues (λ2p+1,d)p∈N corresponding to the eigenspaces
H2p+1,d for p ∈ N

λ1,d =
2|Sd−2|
d− 1

, ∀p ∈ N∗ λ2p+1,d =
2(−1)p|Sd−2|1 · 3 · · · (2p− 1)

(d− 1)(d+ 1) · · · (d+ 2p− 1)
.

For every d ∈ N \ {1}, for every p ∈ N, there exists cλ(d), Cλ(d) > 0 such that

c−1
λ (d)p−ν(d) ≤ |λ2p+1,d| ≤ Cλ(d)p

−ν(d). (9)

K is a homeomorphism between L2
odd(S

d−1) and W
ν(d)
2 odd(S

d−1).

The fact that ν(d) is the degree of ill-posedness of the inverse problem follows
from (P1.4) and what follows, in particular (9).

Proposition 5 implies that every R ∈ W
ν(d)
2 odd(S

d−1) has a unique inverse
given by

K−1 (R) =
∑
k odd

1

λk,d
Lk,d (R) =

∑
k odd

1

λk,d

L(k,d)∑
l=1

〈R, hk,l〉hk,l. (10)

2.3. Needlets

Smoothed projection operators (see [10]) have good approximation properties
in all Lp(Sd−1) spaces and are uniformly bounded from Lp(Sd−1) to Lp(Sd−1).
One such operator, the delayed means, is the integral operator with kernel

Ka,J (x, y)
def
=

∞∑
k=0

a

(
k

2J

)
Lk,d(x, y), (11)

where J is an integer, a is a C∞ and decreasing function on [0,∞) supported
on [0, 2] such that, for every 0 ≤ t ≤ 2, 0 ≤ a(t) ≤ 1 and, for every 0 ≤ t ≤ 1,
a(t) = 1. The delayed means operator exhibits nearly exponential localization
(see Theorem 2.2 in [25]) and is a building block for the construction of needlets.

Define b such that b2(t) = a (t) − a(2t) for t ≥ 0. It is nonzero only when
1/2 ≤ t ≤ 2, satisfies b2(t)+ b2(2t) = 1 for 1/2 ≤ t ≤ 1 and thus for every t ≥ 1,∑∞

j=0 b
2
(

t
2j

)
= 1, also b2(t) = a(t) for 1 ≤ t ≤ 2. Take a such that b is bounded

away from 0 on 3/5 ≤ t ≤ 5/3.
The second ingredient for the construction of needlets is a quadrature formula

(Corollary 2.9 of [25]) with positive weights
(
ω(j, ξ)2

)
ξ∈Ξj

and nodes ξ ∈ Ξj

which integrates functions in
⊕2j

k=0 H
k,d and satisfy, for a constant CΞ which

depends on d,

∀j ∈ N, ∀ξ ∈ Ξj , C−1
Ξ 2j(d−1) ≤ |Ξj | ≤ CΞ2

j(d−1)

C−1
Ξ 2−j(d−1)/2 ≤ ω(j, ξ) ≤ CΞ2

−j(d−1)/2.
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Needlets are defined as

ψj,ξ(x)
def
= ω(j, ξ)

∞∑
k=0

b

(
k

2j−1

)
Lk,d(ξ, x) if j ∈ N, ξ ∈ Ξj , (12)

ψ0,ξ(x)
def
= L0,d(ξ, x). (13)

For j = 0, ψ0,ξ(x) is constant and Ξ0 is a singleton.
The Lp-norms of the needlets satisfy, for a constant Cp that can depend on d,

∀j ∈ N, ∀ξ ∈ Ξj , C−1
p 2j(d−1)(1/2−1/p) ≤ ‖ψj,ξ‖p ≤ Cp2

j(d−1)(1/2−1/p). (14)

If f ∈ Lp(Sd−1) for 1 ≤ p ≤ ∞, then f =
∑∞

j=0

∑
ξ∈Ξj

〈f, ψj,ξ〉ψj,ξ. The needlets
form a tight frame, with unitary tightness constant, this means that for f ∈
L2(Sd−1)

‖f‖22 =

∞∑
j=0

∑
ξ∈Ξj

|〈f, ψj,ξ〉|2 .

Needlets do not form a basis and there is redundancy. Lemma 6 (see [2]) relates
Lp(Sd−1) norms at level j to �p norms of needlet coefficients. Constants may
depend on d.

Lemma 6. (i) For every 1 ≤ p ≤ ∞, there exists a constant C ′
p such that for

every j ∈ N and (βξ)ξ∈Ξj ∈ RΞj∥∥∥∥∥∥
∑
ξ∈Ξj

βξψj,ξ

∥∥∥∥∥∥
p

≤ C ′
p2

j(d−1)(1/2−1/p)
∥∥∥(βξ)ξ∈Ξj

∥∥∥
�p
, (15)

(ii) There exists constants cA and cp,A and sets Aj ⊂ Ξj with |Aj | ≥ cA2
j(d−1)

for j ∈ N such that for every 1 ≤ p ≤ ∞, j ∈ N, and (βξ)ξ∈Aj ∈ RAj ,∥∥∥∥∥∥
∑
ξ∈Aj

βξψj,ξ

∥∥∥∥∥∥
p

≥ cp,A2
j(d−1)(1/2−1/p)

∥∥∥(βξ)ξ∈Aj

∥∥∥
�p
, (16)

(iii) For every 1 ≤ p ≤ ∞, there exists a constant C ′′
p such that for every j ∈ N⎛⎝∑

ξ∈Ξj

|〈f, ψj,ξ〉|p
⎞⎠1/p

2j(d−1)(1/2−1/p) ≤ C ′′
p ‖f‖p. (17)

Needlets are such that (see [25]), for all function a in the definition of the

smoothed projection operators, the norm ‖·‖ABs
r,q

defining the Besov spaces is

equivalent to

‖f‖Bs
r,q

=

∥∥∥∥(2j(s+(d−1)(1/2−1/r))
∥∥∥(〈f, ψj,ξ〉)ξ∈Ξj

∥∥∥
�r

)
j∈N

∥∥∥∥
�q
.

The ball of radius M for this norm is denoted by Bs
r,q(M).
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Recall the following consequence of the proof of the continuous embeddings
in [2].

Lemma 7. (i) If p ≤ r ≤ ∞, then we have Bs
r,q(M) ⊆ Bs

p,q(C
1/p−1/r
Ξ M),

(ii) If s > (d − 1)(1/r − 1/p) and r ≤ p ≤ ∞, then we have Bs
r,q(M) ⊆

B
s−(d−1)(1/r−1/p)
p,q (M),

(iii) If f ∈ Bs
r,q(M) and (βj,ξ)ξ∈Ξj ,j∈N

are its needlet coefficients, then there

exists (Dj)j∈N ∈ RN such that ‖(Dj)j∈N‖�q ≤ M and

∀z ≥ 1, ∀j ∈ N,
∑
ξ∈Ξj

|βj,ξ|z ≤ C
1−(z∧r)/r
Ξ Dz

j 2
−jz(s+(d−1)(1/2−1/(z∧r))).

Finally recall that, when f ∈ Bs
r,q with s > (d− 1)/r, then f is continuous.

3. Identification of fβ

Let us present the arguments for the identification of fβ . Proposition 5 (P1.1)
implies that Kfβ = Kf−

β is odd. Thus under (A2.2) we can define the odd
function R as

R(x) =

{
E[Y |X = x] for a.e. x ∈ H+

−E[Y |X = −x] for a.e. x ∈ −H+ (18)

and we have, for a.e. x ∈ Sd−1, R(x) = Kf−
β (x). Uniqueness of f−

β follows from

(P1.2). Using, for a.e. x ∈ Sd−1 fβ(x) ≥ 0 and f−
β (x) = (fβ(x) − fβ(−x))/2,

and condition (A2.1), yields that, for a.e. x ∈ Sd−1, we have

fβ(x) = 2f−
β (x)1f−

β (x)>0. (19)

In this paper we normalize the vectors of random coefficients and covariates
to have unit norm. Indeed, since only the sign of the net utility (2) matters
for choosing between 1 and -1 and the index is linear, a scale normalization of
(ε1 − ε−1, γ

�) is in order. Let us compare with the normalization in [9]. It is
based on the following assumption, which is stronger than the condition in [13],
that the support of β is a subset of some (unknown) hemisphere, which itself is
stronger than (A2.1).

(H): a.s. there exists j ∈ {1, . . . , d}, the coordinate γj of γ has a sign
(excluding 0).

Assumption (H) is likely to hold when Z1j and Z−1j are cost factors, since
consumers dislike an increase in cost. If (H) holds we can identify for which
index j γj has a sign since it amounts to the finding for which coordinate zj
of z zj → E[Y |Z1 − Z−1 = z] is (globally) monotone. We can identify the sign
of the coefficient by assessing whether the function is increasing (positive) or
decreasing (negative). If γj > 0 then we normalize the vector of coefficients by
dividing by γj . If γj < 0 we change the sign of Z1j − Z−1j to make it positive.
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A potential issue with this normalization is that if βj can take small values then
estimators could differ in finite samples depending on which coefficient is used
for normalization. Also, monotonicity in one regressor of the conditional mean
function implies a type of weak monotonicity (in the sense used to identify treat-
ment effects, see, e.g., [9]) at the individual level as we now explain. Assuming
that γj > 0, z1i − z−1i = z for all i = 1, . . . , n, and that we change zj to z′j > zj
while leaving unchanged (ε1i − ε−1i, γ

�
i ) (the characteristics of the individuals)

and the other components of z, then some people do not change their decision
and some choose alternative 1 while originally they had chosen alternative -1,
but no one changes from alternative 1 to alternative -1. Monotonicity of the
conditional mean function implies monotonicity for every individual. This is
sometimes not a realistic model of individuals making choices. Clearly (A2.1)
allows both individuals to switch from 1 to -1 and individuals to switch from
-1 to 1 after similar changes in z (or x). On the other hand, if (H) holds then
(A2.2) can be relaxed and we can consider an index which is nonlinear in X
(cf. [9]).

4. Lower bounds

We take 1 ≤ p, r ≤ ∞, 0 ≤ q ≤ ∞, z ≥ 1, and s > 0, and consider the minimax
risk

R∗
n

def
= inf

f̂β

sup
fβ∈Bs

r,q(M)∩D
E

∥∥∥f̂β − fβ

∥∥∥z
p
, (20)

where the infimum is over all estimators based on the i.i.d. sample of size n.
The degree of integrability r in the smoothness class Bs

r,q(M) is allowed to differ
from the degree of integrability p in the loss function. We distinguish two zones
for s, r, q, d, and p:

(1) the dense zone where s ≥ p (ν(d) + (d− 1)/2) (1/r − 1/p) with the restric-
tion q ≤ r if s = p (ν(d) + (d− 1)/2) (1/r − 1/p), where the rate involves

μdense(d, p, r, s)
def
= s/(s+ ν(d) + (d− 1)/2),

(2) the sparse zone where (d − 1)/r < s < p (ν(d) + (d− 1)/2) (1/r − 1/p),
where the rate involves

μsparse(d, p, r, s)
def
= (s− (d− 1)(1/r − 1/p))/(s+ ν(d)− (d− 1)(1/r − 1/2)).

The terminology dense and sparse is justified by the following heuristic. The
proofs of the lower bounds replace the infimum in (20) by a minimum over a
set of functions which are difficult to estimate. The functions used to prove the
lower bound in the dense zone are functions which could have many nonzero
needlet coefficients for ξ ∈ Aj (see Lemma 6) and a well-chosen j. Those used to
prove the lower bound in the sparse zone only have two nonzeros. In the dense
zone, the rate is the same as for the matched case when r = p studied in [10].
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Theorem 8. (i) In the dense zone we have

R∗
n ≥ cdense(d,M, p, r, s, z)

(
1√
nAX

)μdense(d,p,r,s)z

, (21)

(ii) In the sparse zone we have

R∗
n ≥ csparse(d,M, p, r, s, z)

⎛⎝√ ln(nAX)

nAX

⎞⎠μsparse(d,p,r,s)z

, (22)

where the constants cdense and csparse depend on d, M , p, r, s and z.

The values of μdense and μsparse depend on d through the dimension of Sd−1.
This is the usual curse of dimensionality in nonparametric regression or density
estimation. They also depend on d through the degree of ill-posedness ν(d) = d/2
of the inverse problem.

5. Adaptive estimation by needlet thresholding

Consider the estimator f̂β = 2f̂−
β 1

f̂−
β >0

, where f̂−
β is an estimator of f−

β .

5.1. Smoothed projections and linear needlet estimators

A smoothed projection estimator of f−
β with kernel (11), window a, and J ∈ N,

is given for x ∈ Sd−1 by

f̂−
β

a,J

(x) =
∑
k odd

a
(

k
2J

)
λk,d

L̂k,dR(x),

with the unbiased estimator of Lk,dR(x) (see Lemma 10): L̂k,dR(x) = 0 if k is
even, else

L̂k,dR(x) =
2

n

n∑
i=1

yiLk,d(xi, x)

fX(xi)
.

Alternatively, we can estimate f−
β using the needlet frame with smoothing win-

dow a. The coefficients βa
j,ξ = 〈f−

β , ψj,ξ〉 are such that

βa
j,ξ = ω(j, ξ)

∑
k odd

b

(
k

2j−1

)
〈f−

β , Lk,d(ξ, ·)〉

= ω(j, ξ)
∑
k odd

b
(

k
2j−1

)
λk,d

〈Lk,dR,Lk,d(ξ, ·)〉

= ω(j, ξ)
∑
k odd

2j−2<k<2j

b
(

k
2j−1

)
λk,d

Lk,dR(ξ).
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Using that a
(

k
2j

)
= 1 for k = 0, . . . , 2j and denoting by f−

β

a,J
= E

[
f̂−
β

a,J
]
,

we obtain that, for 1 ≤ j ≤ J , βa
j,ξ =

〈
f−
β

a,J
, ψj,ξ

〉
, which can be estimated

without bias by

β̂a
j,ξ = ω(j, ξ)

∑
k odd

b
(

k
2j−1

)
λk,d

L̂k,dR(ξ)
(	1)
=

〈
f̂−
β

a,J

, ψj,ξ

〉
.

Moreover, for x ∈ Sd−1,

β̂a
j,ξψj,ξ(x) = ω(j, ξ)2

(∑
k odd

b
(

k
2j−1

)
λk,d

L̂k,dR(ξ)

)(∑
k

b

(
k

2j−1

)
Lk,d(ξ, x)

)

belongs to
⊕2j

k=0 H
k,d, thus by the quadrature formula

∑
ξ∈Ξj

β̂a
j,ξψj,ξ(x) =

∑
k odd

b2
(

k
2j−1

)
λk,d

L̂k,dR(x).

This yields
∑J

j=0

∑
ξ∈Ξj

β̂a
j,ξψj,ξ = f̂−

β

a,J−1

, indeed

J∑
j=0

∑
ξ∈Ξj

β̂a
j,ξψj,ξ =

J∑
j=1

∑
ξ∈Ξj

β̂a
j,ξψj,ξ (due to (�1) and because f̂−

β

a,J

is odd)

(	2)
=

∑
1≤k<2J−1

k odd

1

λk,d
L̂k,dR+

∑
2J−1≤k≤2J

k odd

b2
(

k
2J−1

)
λk,d

L̂k,dR

(	3)
=

∑
1≤k<2J−1

k odd

1

λk,d
L̂k,dR+

∑
2J−1≤k≤2J

k odd

a
(

k
2J−1

)
λk,d

L̂k,dR,

where (�2) uses that for 1/2 ≤ t ≤ 1, b2(t) + b2(2t) = 1, while (�3) that
b2(t) = a (t) for 1 ≤ t ≤ 2. Thus, the smoothed projection and needlet estimators
coincide.

5.2. Nonlinear estimator with data-driven thresholds

Consider, for γ ≥ 1 and ρTj,ξ,γ
(x) = x1|x|>Tj,ξ,γ

, the nonlinear estimator of f−
β :

f̂−
β

a,ρ

=

J∑
j=0

∑
ξ∈Ξj

ρTj,ξ,γ

(
β̂a
j,ξ

)
ψj,ξ.

It is classical that the optimal choice of J for linear estimators depends on the
parameters of the smoothness ellipsoid. In contrast, using a thresholded esti-
mator allows to take J large and independent of the parameters. Thresholding
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induces additional bias compared to linear estimators which allows to reduce
the variance incurred by taking J large.

The level of thresholding should depend on the size of the coefficients relative
to their variance. This variance is proportional to 1/

√
n so that the level of the

threshold does not have to depend on the smoothness of the unknown function.
Instead of using a conservative upper bound on their variance, as is usually
the case in estimation using wavelets, we use data-driven levels of thresholding.
These provide better estimators in small samples. Lemma 14 gives a theoretical
guarantee that the performance is almost as good as that of an oracle which
would know the variance of the estimators of the coefficients. The data-driven
thresholding rule uses that β̂a

j,ξ = 1
n

∑n
i=1 Gj,ξ(xi, yi) with

Gj,ξ(xi, yi)
def
=

2

n

n∑
i=1

ω(j, ξ)
yi

fX(xi)

∑
k odd

b
(

k
2j−1

)
λk,d

Lk,d(xi, ξ). (23)

Define the estimator of the variance by

σ̂j,ξ
def
=

√√√√ 1

n(n− 1)

n∑
i=2

i−1∑
k=1

(Gj,ξ(xi, yi)−Gj,ξ(xk, yk))
2
, (24)

tn =
√

logn/n, and the data-driven thresholds

Tj,ξ,γ
def
= 2
√
2γtnσ̂j,ξ +

28

3
Mj,ξ

γ log n

n− 1
,

where Mj,ξ is an upper bound on the sup-norm over H+ ×{±1} of Gj,ξ(x, y)−
E [Gj,ξ(X,Y )] = Gj,ξ(x, y)− βa

j,ξ (e.g., 2‖Gj,ξ‖∞). For example, using (14) and
Proposition 5, we get

2‖Gj,ξ‖∞ ≤ 2
∥∥∥K−1

(
ψ−
j,ξ

)∥∥∥
∞

BX ≤ 2C∞B(d,∞)2j(ν(d)+(d−1)/2)BX
def
= Mj .

(25)
The second term in Tj,ξ,γ controls the error in estimating the threshold.

Theorem 9. For J such that 2J(ν(d)+(d−1)/2)B
1/2
X 	 t−1

n , M > 0, and s >
(d− 1)/r,

(i) If z > 1 and γ > z/2 + 1, we have

sup
fβ∈Bs

r,q(M)∩D
E

∥∥∥f̂βa,ρ
− fβ

∥∥∥z
∞

≤ c̃(d,∞, r, s, γ)(logn)z−1Mr (BXtn)
μsparse(d,∞,r,s)z

. (26)

(ii) If p < ∞ and γ > p/2, we have

sup
fβ∈Bs

r,q(M)∩D
E

∥∥∥f̂βa,ρ
− fβ

∥∥∥p
p

≤ c̃(d, p, r, s, γ)(log n)p−1M	 (BXtn)
μ(d,p,r,s)p

, (27)
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where μ(d, p, r, s) = μdense(d, p, r, s) and � = r in the dense zone, while

μ(d, p, r, s) = μsparse(d, p, r, s) and � > p ν(d)+(d−1)(1/2−1/p)
s+ν(d)−(d−1)(1/r−1/2) is arbi-

trary in the sparse zone, and c̃(d, p, r, s, γ) is a constant which depends on
d, p, r, s, and γ.

The upper bounds in Theorem 9 match the lower bound in Theorem 8 up to
logarithmic factors. Hence, the proposed estimator is minimax adaptive (up to
the log factors).

6. Simulation study

We study the performance of the estimator when d = 3, n = 3000, 5000, 10000,
andX is uniform onH+. We use of the Von Mises-Fisher distribution vMF(μ, κ)
with density

f(β;μ, κ) =
κ

4π sinhκ
exp
(
κμ�β

)
with respect to σ. We take β = (β̃1, β̃2, |β̃3|) in the cases:

• β̃ follows a vMF(μ, κ) distribution where μ = (0 0 1)� and κ = 10.
• β̃ follows a mixture λvMF(μ1, κ) + (1 − λ)vMF(μ2, κ), where κ = 10,

λ = 0.3, μ1 = (2−1/2 0 2−1/2)� and μ2 = (−2−1/2 0 2−1/2)�.

We use the cubature defined in spherical coordinates as a product of the Gauss-
Legendre quadrature with m nodes and trapezoid rule with 2m subdivisions
(see [1]). The resulting cubature has 2m2 nodes and integrates exactly all poly-
nomials on the sphere up to degree 2m − 1. We take the same function a as
in [2].

The threshold is driven by the parameter γ. The choice of γ slightly depends
on the targeted norm. Here we focus on a simultaneous control of the L1, xL2,
xL4 and L∞ norm. According to our analysis, γ should be chosen stricly larger
than 4. We have nevertheless chosen to use γ = 4 which turns out to be sufficient
in practice.

Figure 1 displays the distribution of estimates based on a Monte-Carlo ex-
periments with 100 replications and n = 3000. We plot the Lambert equal-area
projection on the disk which is defined (see [22])

(sin θ cosφ, sin θ sinφ, cos θ)� �→ 2 sin

(
θ

2

)
(cosφ, sinφ)�.

Our main contribution is a control of the estimation error for all Lp norm.
Table 1 displays the expected risk, approximated using Monte-Carlo and 100
replications, for some Lp norms. More precisely, we have approximated the fol-

lowing renormalized quantities:

(
E

[∥∥∥f̂β − fβ

∥∥∥p
p

]
/‖fβ‖pp

)1/p

for p = {1, 2, 4}

and E

[∥∥∥f̂β − fβ

∥∥∥
∞

]
/‖fβ‖∞. Figure 2 displays the decay of those error with

respect to n in a logarithmic scales. As expected, we observe a simultaneous
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Fig 1: True density and distribution of the estimates.
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control over all norm and the error decays follows the power law given by the
upper bounds. The results are similar to the one obtained in [10] except that our
threshold does not depend on the unknown regularity of the function whereas
the level used in [10] depends on it.

Unimodal
������Risk

n
1000 2000 3000 5000 10000

E

[∥∥∥f̂β − fβ

∥∥∥
1

]
/‖fβ‖1 0.89 0.64 0.53 0.43 0.32(

E

[∥∥∥f̂β − fβ

∥∥∥2
2

]
/‖fβ‖22

)1/2

0.6 0.43 0.35 0.29 0.21(
E

[∥∥∥f̂β − fβ

∥∥∥4
4

]
/‖fβ‖44

)1/4

0.49 0.36 0.29 0.24 0.17

E

[∥∥∥f̂β − fβ

∥∥∥
∞

]
/‖fβ‖∞ 0.42 0.32 0.26 0.21 0.17

Mixture
������Risk

n
1000 2000 3000 5000 10000

E

[∥∥∥f̂β − fβ

∥∥∥
1

]
/‖fβ‖1 0.92 0.68 0.57 0.46 0.34(

E

[∥∥∥f̂β − fβ

∥∥∥2
2

]
/‖fβ‖22

)1/2

0.821 0.6 0.5 0.4 0.29(
E

[∥∥∥f̂β − fβ

∥∥∥4
4

]
/‖fβ‖44

)1/4

0.8 0.58 0.48 0.38 0.27

E

[∥∥∥f̂β − fβ

∥∥∥
∞

]
/‖fβ‖∞ 0.86 0.6 0.51 0.39 0.29

Table 1

Risk.

Fig 2: Decay of the risk with n in logarithmic scales.
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7. Appendix

7.1. A preliminary lemma

Lemma 10. The following equality holds for every g ∈ L2(Sd−1),

〈R, g〉 = 2E

[
Y g−(X)

fX(X)

]
.

Proof. The result is based on the following

〈R, g〉 = 〈R, g−〉 (because R is odd)

= 2

∫
H+

R(x)g−(x)

fX(x)
fX(x)dσ(x)

= 2E

[
R(X)g−(X)

fX(X)

]
= 2E

[
E[Y |X]g−(X)

fX(X)

]
.

7.2. Proof of Proposition 5

The operator K is related to the Hemispherical transform (see [10, 26]) defined
for f ∈ L1(Sd−1) and a.e. x ∈ Sd−1 by

H(f)(x)
def
=

∫
Sd−1

1x�y>0f(y)dσ(y),

through

Kf = 2H(f)−
∫
Sd−1

f(y)dσ(y).

(P1.1) is a consequence of the fact that y → x�y ∈ L∞
odd(S

d−1). (P1.2) follows
from Theorem 2 (ii), and (P1.3) follows from Theorem C in [26]. The second
part of the proposition together with (P1.4) are consequences of the proper-
ties of H detailed in [10]. The inequalities (9) correspond to Lemma A.2. Note
however that there is a typo in the proof and we should read 1.3 . . . (2p− 1) �
p−1/22.4 . . . (2p) but the result still holds.

7.3. Proof of Theorem 8

Start by noting that for every j ∈ N and ξ ∈ Ξj ,∫
Sd−1

ψj,ξ(x)dx = ω(j, ξ)b(0) = ω(j, ξ)(a(0)− a(0)) = 0.

This implies that the functions fm that we introduce below integrate to 1.
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7.3.1. Proof of the lower bound in the dense zone

Consider the family (Pm)Mm=0, whereM ∈ N∗, of distributions of an i.i.d. sample
of (Y,X) of size n when fβ = fm and the density of X is fX . These probabilities
are absolutely continuous with respect to the product of δ1 + δ−1, where δy
denotes the Dirac mass at y and σ. Take j ∈ N, f0 = 1/σ(Sd−1), and consider
the set Aj from Lemma 6 (ii). By the Varshamov-Guilbert bound (Lemma 2.9
in [27]) there exists Ω ⊆ {0, 1}Aj containing (0, . . . , 0) such that |Ω| = 2|Aj |/8

and ∀(ω1, ω2) ∈ Ω2, ‖ω1 − ω2‖�1 ≥ |Aj |/8. Enumerate the elements of Ω from 0

(corresponding to the zero vector) to M def
= |Ω| − 1 and define

fm
def
= f0 + γ

∑
ξ∈Aj

ωξψj,ξ

when (ωξ)ξ∈Aj is the mth element of Ω and γ = cC
−1/r
Ξ M2−j(s+(d−1)/2) for

0 < c < 1 such that all fm are nonnegative. We now use the following result
(see Theorem 2.5 in [27]).

Lemma 11. If for 0 < α < 1/8 we have:

(i) fm ∈ Bs
r,q(M) ∩ D for m = 0, . . . ,M,

(ii) ∀ 0 ≤ m < l ≤ M, ‖fm − fl‖p ≥ 2h > 0,

(iii) 1
M
∑M

m=1 K(Pm, P0) ≤ α ln(M),

then for every z ≥ 1

inf
f̂β

sup
fβ∈Bs

r,q(M)∩D
E

∥∥∥f̂β − fβ

∥∥∥z
p
≥ hz

√
M

1 +
√
M

(
1− 2α−

√
2α

ln(M)

)
. (28)

Start by checking (i) in Lemma 11. It is enough to show that fm ∈ Bs
r,q(M).

Indeed, for r ≥ 1 and ω ∈ Ω, we have
∥∥∥(ωξ)ξ∈Aj

∥∥∥
�r

≤
∥∥∥(ωξ)ξ∈Aj

∥∥∥1/r
�1

≤

C
1/r
Ξ 2j(d−1)/r, we obtain

γ2j(s+(d−1)(1/2−1/r))
∥∥∥(ωξ)ξ∈Aj

∥∥∥
�r

≤ γC
1/r
Ξ 2j(s+(d−1)/2) ≤ M.

Lemma 6 (ii) now yields that for every 1 ≤ p ≤ ∞ and 0 ≤ m < l ≤ M

‖fm − fl‖p ≥ γcp,A2
j(d−1)(1/2−1/p)

(cA
8
2j(d−1)

)1/p
= 2h.

Thus (ii) in Lemma 11 follows with h = cp,A
(
cA
8

)1/p
cC

−1/r
Ξ M2−js−1.

By independence, the Kullback-Leibler divergence between Pm and P0 is
given by

K(Pm, P0) = nE

[
H(fm)(X) ln

(
H(fm)(X)

H(f0)(X)

)
+(1−H(fm)(X)) ln

(
1−H(fm)(X)

1−H(f0)(X)

)]
.
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Using that, for x > 0, ln(x) ≤ x− 1, we obtain

K(Pm, P0) ≤ nE

[
H(fm − f0)(X)2

H(f0)(X) (1−H(f0)(X))

]
,

and thus

K(Pm, P0) ≤ 4nAX ‖H(fm − f0)‖22 ≤ 4nAXλ2
2j+1,d ‖fm − f0‖22 ,

where the last display comes fm − f0 ∈
⊕

2j+1≤k≤2j+2−1 H
k,d. From (9) we get

K(Pm, P0) ≤ 4Cλ(d)
2nAX2−2jν(d) ‖fm − f0‖22 ,

which yields using Lemma 6 (i)

K(Pm, P0) ≤ (2Cλ(d)C
′
2γ)

2
nAX2−2jν(d)

∥∥∥(ωξ)ξ∈Aj

∥∥∥2
�2

≤ (2Cλ(d)C
′
2γ)

2
nAX2−2jν(d)

∥∥∥(ωξ)ξ∈Aj

∥∥∥
�1

≤ (2Cλ(d)C
′
2γ)

2
CΞnAX2j(d−1−2ν(d))

≤ (2Cλ(d)C
′
2cM)

2
C

1−2/r
Ξ nAX2−2j(s+ν(d)).

Condition (iii) of Lemma 11 is satisfied once

25 (Cλ(d)C
′
2cM)

2

ln(2)
C

−2/r
Ξ nAX2−2j(s+ν(d)+(d−1)/2) ≤ α <

1

8
. (29)

For α < 1/8, the lower bound (28) yields that

inf
f̂β

sup
fβ∈Bs

r,q(M)

E

∥∥∥f̂β − fβ

∥∥∥z
p
≥
(
cp,A

(cA
8

)1/p
cC

−1/r
Ξ M2−js−1

)z

×
(
3

4
− 1

2
√
ln(M)

)

≥ 1

2

(
cp,A

(cA
8

)1/p
cC

−1/r
Ξ

M

2

)z

2−jsz,

where the inequality leading to the second display holds when ln(M) ≥ 4, for
example for j(d− 1) ≥ ln(5/cA ln(2))/ ln(2). Now (29) is satisfied for

j ≥ j0
def
= 1 +

ln
(
28 (Cλ(d)C

′
2cM)

2
C

−2/r
Ξ nAX/ ln(2)

)
2 ln(2)(s+ ν(d) + (d− 1)/2)

,

which implies the lower bound

inf
f̂β

sup
fβ∈Bs

r,q(M)

E

∥∥∥f̂β − fβ

∥∥∥z
p

≥ 1

2

(
cp,A

(cA
8

)1/p
cC

−1/r
Ξ M2−s−1

)z

×
(
28 (Cλ(d)C

′
2cM)

2
C

−2/r
Ξ nAX

ln(2)

)−μdense(d,p,r,s)z/2

.
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7.3.2. Proof of the lower bound in the sparse zone

In this proof we consider asymptotic orders for simplicity. The various constants
can be obtained like in Section 7.3.1. Consider the hypotheses

fm =
1

σ(Sd−1)
+ γψj,ξm ,

where ξm ∈ Aj and |γ| � 2−j(d−1)/2 to ensure the functions are positive.
The constant is adjusted so that for one of the fm that we denote f0, ∀x ∈
H+,

∣∣H(f−
0 )(x)

∣∣ ≤ cb with cb ∈ (0, 1
2 ). The function fm also integrate to 1. We

denote by M the cardinality of Aj (M 	 2j(d−1)), Pm the distributions of an
i.i.d. sample of (Y,X) of size n when fβ = fm and for a given fX , and Λ(Pm, P0)
the likelihood ratio. Recall that K(Pm, P0) = EPm [Λ(Pm, P0)]. We make use of
the following Lemma from [20].

Lemma 12. If for π0 > 0 and M ∈ N∗ the following three condition hold

(i) fm ∈ Bs
r,q(M) ∩ D for m = 1, . . . ,M,

(ii) ∀m �= l, ‖fm − fl‖p ≥ 2h > 0,
(iii) ∀m = 1, . . . ,M, Λ(P0, Pm) = exp(zmn − vmn ), where zmn are random vari-

ables and vmn constants such that P(zmn > 0) ≥ π0 and exp (supm vmn ) ≤
M,

then

∀z ≥ 1, inf
f̂β

sup
fβ∈Bs

r,q(M)∩D
E

∥∥∥f̂β − fβ

∥∥∥z
p
≥ h−zπ0

2
.

Item (i) is satisfied when |γ| ≤ M2−j(s−(d−1)(1/r−1/2). This is more restrictive
than the condition to ensure positivity because we assume that s ≥ (d − 1)/r.
Thus, now we take γ = 2cM2−j(s−(d−1)(1/r−1/2) for a well-chosen constant c.

The constant h in (ii) is obtained as follows, if m �= m′,

‖fm − fm′‖p = γ‖ψj,ξm − ψj,ξm′ ‖p
≥ γcp,A2

j(d−1)(1/2−1/p) ≥ 2cM2−j(s−(d−1)(1/r−1/p)).

Let us now consider item (iii), we obtain

Pm (log (Λ(P0, Pm)) ≥ −j(d− 1) log 2)

≥ 1− Pm (|log (Λ(P0, Pm))| ≥ j(d− 1) log 2)

≥ 1− EPm [|log (Λ(P0, Pm))|]
j(d− 1) log 2

.

Thus, condition (iii) is satisfied when

EPm [|log (Λ(P0, Pm))|] ≤ αj(d− 1) log 2,

for α ∈ (0, 1). The same computations as in the beginning of Section 5.1 yield
that we need to impose n2−2jν(d)γ2 � j, thus

AXn2−2j(s+ν(d)−(d−1)(1/r−1/2)) � j.
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The desired rate is obtained by taking

2j 	
(

nAX

log (nAX)

) 1
2(s+ν(d)−(d−1)(1/r−1/2))

.

7.4. Comparison between Besov ellipsoids of a function and its odd
part

Lemma 13. For 0 < s, q ≤ ∞ and 1 ≤ r ≤ ∞, there exists a constant ceq that
can depend on d such that, for every f ∈ Bs

r,q, ‖f−‖Bs
r,q

≤ ceq‖f‖Bs
r,q
.

Proof. Every f ∈ Bs
r,q(S

d−1) has same norm as x �→ f(−x), thus by the triangle

inequality ‖f−‖ABs
r,q

≤ ‖f‖ABs
r,q
. We conclude by equivalence of the norms.

7.5. A general inequality

We make use of the constants c1,z and c2,z such that∫
R+

zτz−1e−βτdτ ≤ c1,zβ
−z and

∫
R+

zτz−1e−ατ2

dτ ≤ c2,zα
−z/2. (30)

Lemma 14. For every τ, γ, z > 1 and

T s,++
j,ξ,γ ≥ 3

√
2γtnσ̂j,ξ + 26Mj,ξ

γ logn

n− 1

def
= T s,+

j,ξ,γ ,

the two following inequalities hold:
when p = ∞,

1

2z−1
E

[∥∥∥f̂βa,ρ
− fβ

∥∥∥z
∞

]
≤
∥∥∥f−

β

a,J − f−
β

∥∥∥z
∞

+ (J + 1)z−1C ′z
∞

{
an,∞,z,J

J∑
j=0

2j(d−1)z/2

(
sup
ξ∈Ξj

∣∣βa
j,ξ

∣∣z 1|βa
j,ξ|≤T s,++

j,ξ,γ

+E

[
sup
ξ∈Ξj

∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z 1|βa
j,ξ|>T s,++

j,ξ,γ

])

+
4CΞ

nγ

J∑
j=0

2j(d−1)(z/2+1) sup
ξ∈Ξj

∣∣βa
j,ξ

∣∣z
+

(
CΞ4

nγ

)1−1/τ (
1√
n
B

1/2
X 2Jz(ν(d)+(d−1)/2)

)z

2J(d−1)(1−1/τ)bn,∞,z,J,τ

}
,
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while, when 1 ≤ p ≤ ∞,

1

2z−1
E

[∥∥∥f̂βa,ρ
− fβ

∥∥∥z
p

]
≤
∥∥∥f−

β

a,J − f−
β

∥∥∥z
p
+ (J + 1)z−1C ′z

p C
z/(p∧z)−1
Ξ

{
an,p,z,J

J∑
j=0

2j(d−1)(z/2−z/(p∨z))
∑
ξ∈Ξj

(∣∣βa
j,ξ

∣∣z 1|βa
j,ξ|≤T s,++

j,ξ,γ

+E

[∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z]1|βa
j,ξ|>T s,++

j,ξ,γ

)
+

4

nγ

J∑
j=0

2j(d−1)z(1/2−1/(p∨z))
∑
ξ∈Ξj

∣∣βa
j,ξ

∣∣z
+

22−1/τ

nγ(1− 1
τ )

CΞ

(
1√
n
B

1/2
X 2J(ν(d)+(d−1)/2)

)z

2J(d−1)(1−z/(p∨z))bn,p,z,J,τ

}
,

where

an,∞,z,J = 1 +

(
2√

γ logn

)z (
2 +
(
log
(
CΞ2

J(d−1)c2,z

))z/2)
+

(
4

γ logn

)z (
2 +
(
log
(
CΞ2

J(d−1)c1,z

))z)
bn,∞,z,J,τ =

(
2
√
2C2B(d, 2)

)z (
21/τ +

(
log
(
CΞ2

J(d−1)c2,zτ
))z/2)

1− 2−(zν(d)+(d−1)(z/2+1−1/τ))

+
(8C∞B(d,∞)/3)

z
(
21/τ +

(
log
(
CΞ2

J(d−1)c1,z
))z)

1− 2−(zν(d)+(d−1)(z+1−1/τ))

×
(
2J(d−1)

n
BX

)z/2

;

and

an,p,z,J = 1 + 2

(( √
2c

1/z
2,z√

γ logn

)z

+

(
2c

1/z
1,z

γ log n

)z)

bn,p,z,J,τ =

(
2c

1/(zτ)
2,zτ C2B(d, 2)

)z
1− 2−(zν(d)+(d−1)(z/2+1−z/(p∨z)))

+

(
4
3c

1/(zτ)
1,zτ C∞B(d,∞)

)z
1− 2−(zν(d)+(d−1)(z+1−z/(p∨z)))

(
2J(d−1)

n
BX

)z/2

.

The inequalities of Lemma 14 are similar to oracle inequalities, for a well-
chosen J depending on n (see Theorem 9), where the oracle estimates βa

j,ξ if
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and only if the error made by estimating this coefficient is smaller than the one
made by discarding it. This oracle strategy would lead to a quantity of the form∣∣βa

j,ξ

∣∣z 1|βa
j,ξ|≤(E[|β̂a

j,ξ−βa
j,ξ|z])1/z + E

[∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z]1|βa
j,ξ|>(E[|β̂a

j,ξ−βa
j,ξ|z])1/z .

Such an oracle inequality would require to lower bound
(
E

[∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z])1/z.
In the inequalities of Lemma 14 the ideal quantity

(
E

[∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z])1/z is

replaced by T s,++
j,ξ,γ , called quasi-oracle. The remaining terms can be made as

small as we want by taking γ large enough. The last term corresponds to the
approximation error. Upper bounds of these types, uniform on Besov ellipsoids,
yield an approximation error which can be expressed in terms of the regularity
of the Besov class and is uniformly small for J large enough and allows to treat
the bias/variance trade-off in the quasi-oracle term uniformly over the ellipsoid.

7.6. Proof of Lemma 14

7.6.1. Preliminaries

Recall from the proof of Theorem 4.1 in [10] that for every 1 ≤ p ≤ ∞∥∥∥f̂βa,ρ
− fβ

∥∥∥
p
≤ 2
∥∥∥f̂−

β

a,ρ

− f−
β

∥∥∥
p
,

and that, for 1 ≤ z < ∞, we have∥∥∥f̂−
β

a,ρ

− f−
β

∥∥∥z
p
≤ 2z−1

(∥∥∥f̂−
β

a,ρ

− f−
β

a,J
∥∥∥z
p
+
∥∥∥f−

β

a,J − f−
β

∥∥∥z
p

)
. (31)

The first term corresponds to the error in the high dimensional space while the
second term corresponds to the approximation error. Let us start by studying
the first term.

Lemma 6 (i) yields

∥∥∥f̂−
β

a,ρ

− f−
β

a,J
∥∥∥z
p
≤ (J + 1)z−1

J∑
j=0

∥∥∥∥∥∥
∑
ξ∈Ξj

(
ρTj,ξ,γ

(
β̂a
j,ξ

)
− βa

j,ξ

)
ψj,ξ

∥∥∥∥∥∥
z

p

≤ (J + 1)z−1
J∑

j=0

C ′z
p 2j(d−1)z(1/2−1/p)

∥∥∥ρTj,ξ,γ

(
β̂a
j,ξ

)
− βa

j,ξ

∥∥∥z
p
.

Thus, for p = ∞, we have

∥∥∥f̂−
β

a,ρ

− f−
β

a,J
∥∥∥z
p
≤ (J + 1)z−1

J∑
j=0

C ′z
∞2j(d−1)z/2 sup

ξ∈Ξj

∣∣∣ρTj,ξ,γ

(
β̂a
j,ξ

)
− βa

j,ξ

∣∣∣z ,
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while, for p < ∞, we have∥∥∥f̂−
β

a,ρ

− f−
β

a,J
∥∥∥z
p
≤ (J + 1)z−1C ′z

p C
z

p∧z−1

Ξ

J∑
j=0

2j(d−1)z(1/2−1/(p∨z))
∑
ξ∈Ξj

∣∣∣ρTj,ξ,γ

(
β̂a
j,ξ

)
− βa

j,ξ

∣∣∣z .
The last inequality is obtained by using that, when p ≥ z, we have⎛⎝∑

ξ∈Ξj

|bξ|p
⎞⎠z/p

≤
∑
ξ∈Ξj

|bξ|z ,

and by the Hölder inequality, when p ≤ z, we have⎛⎝∑
ξ∈Ξj

|bξ|p
⎞⎠z/p

≤ C
z/p−1
Ξ

∑
ξ∈Ξj

|bξ|z .

7.6.2. Coefficientwise analysis

For the simplicity of the notations we sometimes drop the dependence on γ in
the sets of indices.

We first consider the term

δj,ξ,z
def
=
∣∣∣ρTj,ξ,γ

(
β̂a
j,ξ

)
− βa

j,ξ

∣∣∣z .
By construction we have

δj,ξ,z =
∣∣βa

j,ξ

∣∣z 1|β̂a
j,ξ|≤Tj,ξ,γ

+
∣∣∣β̂a

j,ξ − βa
j,ξ

∣∣∣z 1|β̂a
j,ξ|>Tj,ξ,γ

= max
(∣∣βa

j,ξ

∣∣z 1|β̂a
j,ξ|≤Tj,ξ,γ

,
∣∣∣β̂a

j,ξ − βa
j,ξ

∣∣∣z 1|β̂a
j,ξ|>Tj,ξ,γ

)
.

We introduce two “phantom” random thresholds T b
j,ξ,γ = Tj,ξ,γ − Δj,ξ,γ and

T s
j,ξ,γ = Tj,ξ,γ+Δj,ξ,γ for some Δj,ξ,γ to be defined later. They are used to define

big and small original needlet coefficients. We also use T b,−
j,ξ,γ for a deterministic

lower bound on T b
j,ξ,γ , T

s,+
j,ξ,γ and Δ+

j,ξ,γ for deterministic upper bounds on T s
j,ξ,γ

and Δj,ξ,γ . These bounds will hold with high probability. We obtain almost
surely

δj,ξ,z

= max

( ∣∣βa
j,ξ

∣∣z max
(
1|β̂a

j,ξ|≤Tj,ξ,γ
1|βa

j,ξ|≤T s
j,ξ,γ

,1|β̂a
j,ξ|≤Tj,ξ,γ

1|βa
j,ξ|>T s

j,ξ,γ

)
,∣∣∣β̂a

j,ξ − βa
j,ξ

∣∣∣z max
(
1|β̂a

j,ξ|>Tj,ξ,γ
1|βa

j,ξ|≤T b
j,ξ,γ

,1|β̂a
j,ξ|>Tj,ξ,γ

1|βa
j,ξ|>T b

j,ξ,γ

))
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≤ max

( ∣∣βa
j,ξ

∣∣z max
(
1|βa

j,ξ|≤T s
j,ξ,γ

,1|β̂a
j,ξ−βa

j,ξ|>Δj,ξ,γ

)
,∣∣∣β̂a

j,ξ − βa
j,ξ

∣∣∣z max
(
1|β̂a

j,ξ−βa
j,ξ|>Δj,ξ,γ

,1|βa
j,ξ|>T b

j,ξ,γ

))
≤ max

( ∣∣βa
j,ξ

∣∣z max
(
1|βa

j,ξ|≤T s,+
j,ξ,γ

,1T s,+
j,ξ,γ<T s

j,ξ,γ
,1|β̂a

j,ξ−βa
j,ξ|>Δj,ξ,γ

)
,∣∣∣β̂a

j,ξ − βa
j,ξ

∣∣∣z max
(
1|β̂a

j,ξ−βa
j,ξ|>Δj,ξ,γ

,1|βa
j,ξ|>T b,−

j,ξ,γ
,1T b,−

j,ξ,γ>T b
j,ξ,γ

))
.

Sorting the terms according to the number of random terms we obtain

δj,ξ,z

≤ max

( ∣∣βa
j,ξ

∣∣z 1|βa
j,ξ|≤T s,+

j,ξ,γ
,
∣∣βa

j,ξ

∣∣z max
(
1T s,+

j,ξ,γ<T s
j,ξ,γ

,1|β̂a
j,ξ−βa

j,ξ|>Δj,ξ,γ

)
,∣∣∣β̂a

j,ξ − βa
j,ξ

∣∣∣z 1|βa
j,ξ|>T b,−

j,ξ,γ
,∣∣∣β̂a

j,ξ − βa
j,ξ

∣∣∣z max
(
1|β̂a

j,ξ−βa
j,ξ|>Δj,ξ,γ

,1T b,−
j,ξ,γ>T b

j,ξ,γ

))
.

7.6.3. Scalewise analysis

Defining

Mj,z
def
= sup

ξ∈Ξj

∣∣∣ρTj,ξ,γ

(
β̂a
j,ξ

)
− βa

j,ξ

∣∣∣z = sup
ξ∈Ξj

δj,ξ,z

Sj,z
def
=
∑
ξ∈Ξj

∣∣∣ρTj,ξ,γ

(
β̂a
j,ξ

)
− βa

j,ξ

∣∣∣z =
∑
ξ∈Ξj

δj,ξ,z,

we obtain

Mj,z ≤ max

(
sup
ξ∈Ξj

∣∣βa
j,ξ

∣∣z 1|βa
j,ξ|≤T s,+

j,ξ,γ
,

sup
ξ∈Ξj

∣∣βa
j,ξ

∣∣z max
(
1T s,+

j,ξ,γ<T s
j,ξ,γ

,1|β̂a
j,ξ−βa

j,ξ|>Δj,ξ,γ

)
,

sup
ξ∈Ξj

∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z 1|βa
j,ξ|>T b,−

j,ξ,γ
,

sup
ξ∈Ξj

∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z max
(
1T b,−

j,ξ,γ>T b
j,ξ,γ

,1|β̂a
j,ξ−βa

j,ξ|>Δj,ξ,γ

))
def
= max(MS0

j,z ,M
S1
j,z ,M

B1
j,z ,M

B2
j,z )

≤ MS0
j,z +MS1

j,z +MB1
j,z +MB2

j,z ;

Sj,z ≤
∑
ξ∈Ξj

∣∣βa
j,ξ

∣∣z 1|βa
j,ξ|≤T s,+

j,ξ,γ

+
∑
ξ∈Ξj

∣∣βa
j,ξ

∣∣z max
(
1T s,+

j,ξ,γ<T s
j,ξ,γ

,1|β̂a
j,ξ−βa

j,ξ|>Δj,ξ,γ

)
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+
∑
ξ∈Ξj

∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z 1|βa
j,ξ|>T b,−

j,ξ,γ

+
∑
ξ∈Ξj

∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z max
(
1T b,−

j,ξ,γ>T b
j,ξ,γ

,1|β̂a
j,ξ−βa

j,ξ|>Δj,ξ,γ

)
def
= SS0

j,z + SS1
j,z + SB1

j,z + SB2
j,z .

We bound the expectations of the random terms as follows

E
[
MS1

j,z

]
≤ sup

ξ∈Ξj

∣∣βa
j,ξ

∣∣z E[ sup
ξ∈Ξj

max
(
1T s,+

j,ξ,γ<T s
j,ξ,γ

,1|β̂a
j,ξ−βa

j,ξ|>Δj,ξ,γ

)]

≤ sup
ξ∈Ξj

∣∣βa
j,ξ

∣∣z⎛⎝P
⎛⎝ ⋃

ξ∈Ξj

{
T s,+
j,ξ,γ < T s

j,ξ,γ

}⎞⎠
+P

⎛⎝ ⋃
ξ∈Ξj

{∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣ > Δj,ξ,γ

}⎞⎠⎞⎠ ;

E
[
MB1

j,z

]
≤ E

[
sup
ξ∈Ξj

∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z 1|βa
j,ξ|>T b,−

j,ξ,γ

]
;

E
[
MB2

j,z

]
≤ E

[
sup
ξ∈Ξj

∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣zτ]1/τ

× E

[
sup
ξ∈Ξj

max
(
1T b,−

j,ξ,γ>T b
j,ξ,γ

,1|β̂a
j,ξ−βa

j,ξ|>Δj,ξ,γ

)]1−1/τ

≤ E

[
sup
ξ∈Ξj

∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣zτ]1/τ
⎛⎝P
⎛⎝ ⋃

ξ∈Ξj

{
T b,−
j,ξ,γ > T b

j,ξ,γ

}⎞⎠

+P

⎛⎝ ⋃
ξ∈Ξj

{∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣ > Δj,ξ,γ

}⎞⎠⎞⎠1−
1

τ

E
[
SS1
j,z

]
=
∑
ξ∈Ξj

∣∣βa
j,ξ

∣∣z E [max
(
1T s,+

j,ξ,γ<T s
j,ξ,γ

,1|β̂a
j,ξ−βa

j,ξ|>Δj,ξ,γ

)]
≤
∑
ξ∈Ξj

∣∣βa
j,ξ

∣∣z (P{T s,+
j,ξ,γ < T s

j,ξ,γ

}
+ P

{∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣ > Δj,ξ,γ

})
;

E
[
SB1
j,z

]
=
∑
ξ∈Ξj

E

[∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z]1|βa
j,ξ|>T b,−

j,ξ,γ
;

E
[
SB2
j,z

]
=
∑
ξ∈Ξj

E

[∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z max
(
1T b,−

j,ξ,γ>T b
j,ξ,γ

,1|β̂a
j,ξ−βa

j,ξ|>Δj,ξ,γ

)]
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≤
∑
ξ∈Ξj

(
E

[∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣zτ])1/τ
×
(
P

{
T b,−
j,ξ,γ > T b

j,ξ,γ

}
+ P

{∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣ > Δj,ξ,γ

})1−1/τ

.

The constant τ > 1 in the Hölder inequality will be specified later.

7.6.4. Bernstein inequality and the term
∣∣∣β̂a

j,ξ − βa
j,ξ

∣∣∣z
Let denote variance of Gj,ξ(X,Y )

σ2
j,ξ

def
= E

[(
Gj,ξ(X,Y )− βa

j,ξ

)2]
.

Lemma 15. We have

E

[∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z] ≤ 2

(
c2,z

(
2√
n
σj,ξ

)z

+ c1,z

(
4

3n
Mj,ξ

)z)
.

Proof. The Bernstein inequality yields

P

{∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣ ≥ u
}
≤ 2e

− nu2

2

(
(σj,ξ)

2
+Mj,ξu/3

)
≤ 2

(
e
− nu2

4(σj,ξ)
2

+ e
− 3nu

4Mj,ξ

)
.

Using now E [|X|z] =
∫
R+ zuz−1P{|X| > u}du, we obtain

E

[∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z] ≤ ∫
R+

zuz−1P

{∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣ ≥ u
}
du

≤
∫
R+

zuz−12

(
e
− nu2

4(σj,ξ)
2

+ e
− 3nu

4Mj,ξ

)
du,

hence the inequality from the lemma follows from (30).

Lemma 15 is used to obtain a uniform upper bound of the power of the ratio

between
∣∣∣β̂a

j,ξ − βa
j,ξ

∣∣∣ and a threshold cσ
√
log(n)/nσj,ξ + cM log(n)/(n− 1)Mj,ξ:

E

⎡⎣⎛⎝
∣∣∣β̂a

j,ξ − βa
j,ξ

∣∣∣
cσ
√
log(n)/nσj,ξ + cM log(n)/(n− 1)Mj,ξ

⎞⎠z⎤⎦
≤ 2

⎛⎝c2,z
⎛⎝2 1

cσ
√
logn+ cM

√
n logn
n−1

Mj,ξ

σj,ξ

⎞⎠z

+c1,z

(
4

3

1

cσ
√
n
√
logn

σj,ξ

Mj,ξ
+ cM log(n) n

n−1

)z)

≤ 2

(
c2,z

(
2

1

cσ
√
logn

)z

+ c1,z

(
4

3

1

cM logn

)z)
. (32)

The following similar lemma is useful to handle the case p = ∞.
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Lemma 16. For any Ξ′
j ⊂ Ξj, we have

E

⎡⎣ sup
ξ∈Ξ′

j

⎛⎝
∣∣∣β̂a

j,ξ − βa
j,ξ

∣∣∣
uj,ξ

⎞⎠z⎤⎦ ≤
(
2
√
2√
n

sup
ξ∈Ξ′

j

σj,ξ

cj,ξ

)z (
2 +
(
log
(
c2,z
∣∣Ξ′

j

∣∣))z/2)

+

(
8

3n
sup
ξ∈Ξ′

j

Mj,ξ

cj,ξ

)z (
2 +
(
log
(
c1,z
∣∣Ξ′

j

∣∣))z) .
(33)

Proof. A uniform union bound yields

P

⎧⎨⎩ sup
ξ∈Ξ′

j

∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣
uj,ξ

≥ τ

⎫⎬⎭
≤ min

(
1,
∣∣Ξ′

j

∣∣ 2(e− 1
4n

(
infξ∈Ξ′

j

uj,ξ
σj,ξ

)2

τ2

+ e
− 3

4n

(
infξ∈Ξ′

j

uj,ξ
Mj,ξ

)
τ

))

≤ min

(
1,
∣∣Ξ′

j

∣∣ 2e− 1
4n

(
infξ∈Ξ′

j

uj,ξ
σj,ξ

)2

τ2

)
+min

(
1,
∣∣Ξ′

j

∣∣ 2e− 3
4n

(
infξ∈Ξ′

j

uj,ξ
Mj,ξ

)
τ

)

This yields

E

⎡⎣ sup
ξ∈Ξ′

j

⎛⎝
∣∣∣β̂a

j,ξ − βa
j,ξ

∣∣∣
uj,ξ

⎞⎠z⎤⎦
≤
∫
R+

zτz−1 min

(
1,
∣∣Ξ′

j

∣∣ 2e− 1
4n

(
infξ∈Ξ′

j

uj,ξ
σj,ξ

)2

τ2

)
dτ

+

∫
R+

zτz−1 min

(
1,
∣∣Ξ′

j

∣∣ 2e− 3
4n

(
infξ∈Ξ′

j

uj,ξ
Mj,ξ

)
τ

)
dτ,

and thus, for any τ1 ≥ 0 and τ2 ≥ 0, we get

E

⎡⎣ sup
ξ∈Ξ′

j

⎛⎝
∣∣∣β̂a

j,ξ − βa
j,ξ

∣∣∣
uj,ξ

⎞⎠z⎤⎦ ≤ τz2 +

∫
τ≥τ2

zτz−1
∣∣Ξ′

j

∣∣ 2e− 1
4n

(
infξ∈Ξ′

j

uj,ξ
σj,ξ

)2

τ2

dτ

+ τz1 +

∫
τ≥τ1

zτz−1
∣∣Ξ′

j

∣∣ 2e− 3
4n

(
infξ∈Ξ′

j

uj,ξ
Mj,ξ

)
τ
dτ.

Take

τ1 =
8

3n

log
(
c1,z
∣∣Ξ′

j

∣∣)
infξ∈Ξ′

j

uj,ξ

Mj,ξ

and τ2 =
2
√
2√
n

√
log
(
c2,z
∣∣Ξ′

j

∣∣)
infξ∈Ξ′

j

uj,ξ

σj,ξ

.
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Hence, by construction, we have:

∀τ ≥ τ1,
∣∣Ξ′

j

∣∣ 2e− 3
4n

(
infξ∈Ξ′

j

uj,ξ
Mj,ξ

)
τ
≤ 2

c1,z
e
− 3

8n

(
infξ∈Ξ′

j

uj,ξ
Mj,ξ

)
τ

∀τ ≥ τ2,
∣∣Ξ′

j

∣∣ 2e− 1
4n

(
infξ∈Ξ′

j

uj,ξ
σj,ξ

)2

τ2

≤ 2

c2,z
e
− 1

8n

(
infξ∈Ξ′

j

uj,ξ
σj,ξ

)2

τ2

.

This implies

E

⎡⎣ sup
ξ∈Ξ′

j

⎛⎝
∣∣∣β̂a

j,ξ − βa
j,ξ

∣∣∣
uj,ξ

⎞⎠z⎤⎦
≤

⎛⎝2
√
2√
n

√
log
(
c2,z
∣∣Ξ′

j

∣∣)
infξ∈Ξ′

j

uj,ξ

σj,ξ

⎞⎠z

+ 2

(
2
√
2√
n

1

infξ∈Ξ′
j

uj,ξ

σj,ξ

)z

+

(
8

3n

log
(
c1,z
∣∣Ξ′

j

∣∣)
infξ∈Ξ′

j

uj,ξ

Mj,ξ

)z

+ 2

(
8

3n

1

infξ∈Ξ′
j

uj,ξ

Mj,ξ

)z

,

which allows to establish the claimed result.

Lemma 16 allows to obtain the upper bounds (35) and (36) below.
For uj,ξ = σj,ξ, we obtain

E

⎡⎣ sup
ξ∈Ξ′

j

⎛⎝
∣∣∣β̂a

j,ξ − βa
j,ξ

∣∣∣
σj,ξ

⎞⎠z⎤⎦
≤
(
2
√
2√
n

)z (
2 +
(
log
(
c2,z
∣∣Ξ′

j

∣∣))z/2)
+

(
8

3n
sup
ξ∈Ξ′

j

Mj,ξ

σj,ξ

)z (
2 +
(
log
(
c1,z
∣∣Ξ′

j

∣∣))z) .
For future use, note that we can also use the uniform bounds Mj (see (25)) and

σj,ξ ≤ C2B(d, 2)B
1/2
X 2jν(d)

def
= σj (34)

instead of Mj,ξ and σj,ξ, and obtain

E

[
sup
ξ∈Ξ′

j

∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z]

≤
(
2
√
2√
n
σj

)z (
2 +
(
log
(
c2,z
∣∣Ξ′

j

∣∣))z/2)+ ( 8

3n
Mj

)z (
2 +
(
log
(
c1,z
∣∣Ξ′

j

∣∣))z) .
(35)
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Along the same lines, with uj,ξ = cσ
√
log(n)/nσj,ξ + cM log(n)/(n− 1)Mj,ξ, we

obtain

E

⎡⎣ sup
ξ∈Ξ′

j

⎛⎝
∣∣∣β̂a

j,ξ − βa
j,ξ

∣∣∣
c′σ
√
logn

σj,ξ√
n
+ c′M logn

Mj,ξ

n−1

⎞⎠z⎤⎦
≤
(

2
√
2

c′σ
√
logn

)z (
2 +
(
log
(
c2,z
∣∣Ξ′

j

∣∣))z/2)
+

(
8

3c′M logn

)z (
2 +
(
log
(
c1,z
∣∣Ξ′

j

∣∣))z) , (36)

recall that when Ξ′
j = Ξj ,

∣∣Ξ′
j

∣∣ ≤ CΞ2
j(d−1).

7.6.5. Empirical Bernstein and the probabilities

We take

Δj,ξ,γ =
√

2γtnσ̂j,ξ +
14

3
Mj,ξ

γ logn

n− 1
;

Tj,ξ,γ = 2Δj,ξ,γ , T b
j,ξ,γ = Δj,ξ,γ , T s

j,ξ,γ = 3Δj,ξ,γ ;

Δ+
j,ξ,γ =

√
2γtnσj,ξ +

26

3
Mj,ξ

γ logn

n− 1
;

Δ−
j,ξ,γ =

√
2γtnσj,ξ +

2

3
Mj,ξ

γ logn

n− 1
;

T b,−
j,ξ,γ = Δ−

j,ξ,γ and T s,+
j,ξ,γ = 3Δ+

j,ξ,γ .

Lemma 17. The following upper bounds hold:

P

{
T b,−
j,ξ,γ > T b

j,ξ,γ

}
≤ 1

nγ
;

P

{
T s,+
j,ξ,γ < T s

j,ξ,γ

}
≤ 1

nγ
;

P

{∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣ > Δj,ξ,γ

}
≤ 3

nγ
;

P

⎛⎝ ⋃
ξ∈Ξj

{
T s,+
j,ξ,γ < T s

j,ξ,γ

}⎞⎠ ≤
∑
ξ∈ξj

P

{
T s,+
j,ξ,γ < T s

j,ξ,γ

}
≤ CΞ2

j(d−1) 1

nγ
;

P

⎛⎝ ⋃
ξ∈Ξj

{
T b,−
j,ξ,γ > T b

j,ξ,γ

}⎞⎠ ≤
∑
ξ∈ξj

P

{
T b,−
j,ξ,γ > T b

j,ξ,γ

}
≤ CΞ2

j(d−1) 1

nγ
;

P

⎛⎝ ⋃
ξ∈Ξj

{∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣ > Δj,ξ,γ

}⎞⎠ ≤
∑
ξ∈ξj

P

{∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣ > Δj,ξ,γ

}
≤ CΞ2

j(d−1) 3

nγ
.
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Proof. Using the results of [23], we get:

P

{
σj,ξ > σ̂j,ξ + 2

√
2u

Mj,ξ√
n− 1

}
≤ e−u;

P

{
σj,ξ < σ̂j,ξ − 2

√
2u

Mj,ξ√
n− 1

}
≤ e−u;

P

{∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣ > √
2u

σ̂j,ξ√
n

+
14

3
Mj,ξ

u

n− 1

}
≤ 3e−u,

which yields the first inequalities. The others follow from the union bound.

7.6.6. The case p = ∞

Let us consider the various terms one by one.
Error in the high dimensional space.

E [Mj,z] ≤ E
[
MS0

j,z

]
+ E
[
MS1

j,z

]
+ E
[
MB1

j,z

]
+ E
[
MB2

j,z

]
,

with

E
[
MS0

j,z

]
= sup

ξ∈Ξj

∣∣βa
j,ξ

∣∣z 1|βa
j,ξ|≤T s,+

j,ξ,γ
;

E
[
MS1

j,z

]
≤ CΞ2

j(d−1) 4

nγ
sup
ξ∈Ξj

∣∣βa
j,ξ

∣∣z ;
E
[
MB1

j,z

]
≤ E

[
sup
ξ∈Ξj

∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z 1|βa
j,ξ|>T b,−

j,ξ,γ

]
;

E
[
MB2

j,z

]
≤
(
CΞ2

j(d−1) 4

nγ

)1−1/τ
((

2
√
2√
n
σj

)z (
21/τ +

(√
log (|Ξj | c1,zτ )

)z)
+

(
8

3n
Mj

)z (
21/τ + (log (|Ξj | c1,zτ ))z

))
,

where we have used (a+ b)1/τ ≤ a1/τ + b1/τ for τ ≥ 1.

This yields

E

[∥∥∥f̂−
β

a,ρ

− f−
β

a,J
∥∥∥z
∞

]
(J + 1)z−1C ′z

∞

≤
J∑

j=0

2j(d−1)z/2

(
sup
ξ∈Ξj

∣∣βa
j,ξ

∣∣z 1|βa
j,ξ|≤T s,+

j,ξ,γ

+ E

[
sup
ξ∈Ξj

∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z 1|βa
j,ξ|>T b,−

j,ξ,γ

])
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+
4

nγ
CΞ

J∑
j=0

2j(d−1)(z/2+1) sup
ξ∈Ξj

∣∣βa
j,ξ

∣∣z
+

(
CΞ

4

nγ

)1−1/τ J∑
j=0

2j(d−1)(z/2+1−1/τ)

×
((

2
√
2√
n
σj

)z (
21/τ +

(√
log (|Ξj | c1,zτ )

)z)

+

(
8

3n
Mj

)z (
21/τ + (log (|Ξj | c1,zτ ))z

))
def
= O′

∞,z +R′
1,∞,z +R′

2,∞,z.

The terms R′
1,∞,z and R′

2,∞,z. The term R′
1,∞,z is the term which appears in

Theorem 14 and thus we only need to bound R′
2,∞,z. As in the case p < ∞,

we can use the uniform bounds on σj,ξ and Mj,ξ, namely, (25) and (34), and
|Ξj | ≤ |ΞJ | to obtain

R′
2,∞,z

≤
(
4CΞ

nγ

)1−1/τ J∑
j=0

2j(d−1)(z/2+1−1/τ)

×
((

2
√
2√
n
C2B(d, 2)2jν(d)B

1/2
X

)z (
21/τ + (log (c2,zτ |ΞJ |))z/2

)
+

(
8

3n
C∞B(d,∞)2j(ν(d)+(d−1)/2)BX

)z (
21/τ + (log (c1,zτ |ΞJ |))z

))
≤
(
4CΞ

nγ

)1−1/τ
[(

2
√
2√
n
C2B(d, 2)B

1/2
X

)z (
21/τ + (log (c2,zτ |ΞJ |))z/2

)
× 2J(ν(d)z+(d−1)(z/2+1−1/τ))

1− 2−(ν(d)z+(d−1)(z/2+1−1/τ))

+

(
8

3n
C∞B(d,∞)BX

)z (
21/τ + (log (c1,zτ |ΞJ |))z

)
× 2J(ν(d)z+(d−1)(z+1−1/τ))

1− 2−(ν(d)z+(d−1)(z+1−1/τ))

]
.

The term O′
∞,z. Denote by

O′
z,j = sup

ξ∈Ξj

∣∣βa
j,ξ

∣∣z 1|βa
j,ξ|≤T s,+

j,ξ,γ
+ E

[
sup
ξ∈Ξj

∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z 1|βa
j,ξ|>T b,−

j,ξ,γ

]
.
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Because T s,++
j,ξ,γ ≥ T s,+

j,ξ,γ , we get

E

[
sup
ξ∈Ξj

∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z 1|βa
j,ξ|>T b,−

j,ξ,γ

]

= E

[
sup
ξ∈Ξj

∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z 1|βa
j,ξ|>T s,++

j,ξ,γ

]

+ E

[
sup
ξ∈Ξj

∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z 1T s,++
j,ξ,γ ≥|βa

j,ξ|>T b,−
j,ξ,γ

]

≤ E

[
sup
ξ∈Ξj

∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z 1|βa
j,ξ|>T s,++

j,ξ,γ

]

+ E

⎡⎣ sup
ξ∈Ξj

⎛⎝
∣∣∣β̂a

j,ξ − βa
j,ξ

∣∣∣
T b,−
j,ξ,γ

1T s,++
j,ξ,γ ≥|βa

j,ξ|>T b,−
j,ξ,γ

⎞⎠z⎤⎦
× sup

ξ∈Ξj

{∣∣βa
j,ξ

∣∣z 1T s,++
j,ξ,γ ≥|βa

j,ξ|>T b,−
j,ξ,γ

}
,

thus

O′
z,j ≤

⎛⎝1 + E

⎡⎣ sup
ξ∈Ξj

⎛⎝
∣∣∣β̂a

j,ξ − βa
j,ξ

∣∣∣
T b,−
j,ξ,γ

⎞⎠z⎤⎦⎞⎠ sup
ξ∈Ξj

{∣∣βa
j,ξ

∣∣z 1|βa
j,ξ|≤T s,++

j,ξ,γ

}

+ E

[
sup
ξ∈Ξj

∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z 1|βa
j,ξ|>T s,++

j,ξ,γ

]
.

Using now (36), with c′σ =
√
2γ and c′M = 2

3γ, and |Ξj | ≤ CΞ2
j(d−1), we get the

upper bound in Theorem 14.

7.6.7. The case p < ∞

Let us consider the various terms one by one.
Error in the high dimensional space. We obtain

E [Sj,z] = E
[
SS0
j,z

]
+ E
[
SS1
j,z

]
+ E
[
SB1
j,z

]
+ E
[
SB2
j,z

]
.

with

E
[
SS0
j,z

]
=
∑
ξ∈Ξj

∣∣βa
j,ξ

∣∣z 1|βa
j,ξ|≤T s,+

j,ξ,γ
;

E
[
SS1
j,z

]
≤ 4

nγ

∑
ξ∈Ξj

∣∣βa
j,ξ

∣∣z ;
E
[
SB1
j,z

]
≤
∑
ξ∈Ξj

E

[∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z]1|βa
j,ξ|>T b,−

j,ξ,γ
;
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E
[
SB2
j,z

]
≤ 41−1/τ

nγ(1−1/τ)

∑
ξ∈Ξj

21/τ
((

2c
1/(zτ)
2,zτ

σj,ξ√
n

)z

+

(
4

3
c
1/(zτ)
1,zτ

Mj,ξ

n

)z)
,

where we have used (a+ b)1/τ ≤
(
a1/τ + b1/τ

)
. This yields

E

[∥∥∥f̂−
β

a,ρ

− f−
β

a,J
∥∥∥z
p

]
(J + 1)z−1C ′z

p C
z/(p∧z)−1
Ξ

≤
J∑

j=0

2j(d−1)z(1/2−1/(p∨z))E [Sj,z]

≤
J∑

j=0

2j(d−1)z(1/2−1/(p∨z))
∑
ξ∈Ξj

(∣∣βa
j,ξ

∣∣z 1|βa
j,ξ|≤T s,+

j,ξ,γ

+E

[∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z]1|βa
j,ξ|>T b,−

j,ξ,γ

)
+

4

nγ

J∑
j=0

2j(d−1)z(1/2−1/(p∨z))
∑
ξ∈Ξj

∣∣βa
j,ξ

∣∣z
+

22−1/τ

nγ(1−1/τ)

J∑
j=0

2j(d−1)z(1/2−1/(p∨z))

∑
ξ∈Ξj

((
2c

1/(zτ)
2,zτ

σj,ξ√
n

)z

+

(
4

3
c
1/(zτ)
1,zτ

Mj,ξ

n

)z)
def
= Op,z +R1,p,z +R2,p,z.

The terms R1,p,z and R2,p,z. The term R1,p,z appears as is in Lemma 14. To
bound the term R2,p,z, we rely on (25). We obtain

∑
ξ∈Ξj

21/τ
((

2c
1/(zτ)
2,zτ

σj√
n

)z

+

(
4

3
c
1/(zτ)
1,zτ

Mj

n

)z)

≤
∑
ξ∈Ξj

21/τ
(
2c

1/(zτ)
2,zτ C2B(d, 2)2jν(d)B

1/2
X

1√
n

)z

+
∑
ξ∈Ξj

21/τ
(
4

3
c
1/(zτ)
1,zτ C∞B(d,∞)2j(ν(d)+(d−1)/2)BX

1

n

)z

≤ CΞ2
1/τ
(
2c

1/(zτ)
2,zτ C2B(d, 2)

)z
B

z/2
X

1

nz/2
2j((d−1)+zν(d))

+ CΞ2
1/τ

(
4

3
c
1/(zτ)
1,zτ C∞B(d,∞)

)z

Bz
X

1

nz
2j((d−1)+z(ν(d)+(d−1)/2));
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this yields

J∑
j=0

2j(d−1)z( 1
2− 1

p∨z )
∑
ξ∈Ξj

21/τ
((

2c
1/(zτ)
2,zτ

σj√
n

)z

+

(
4

3
c
1/(zτ)
1,zτ

Mj

n

)z)

≤
J∑

j=0

2j(d−1)z( 1
2− 1

p∨z )CΞ2
1/τ
(
2c

1/(zτ)
2,zτ C2B(d, 2)

)z
B

z/2
X

1

nz/2
2j((d−1)+zν(d))

+

J∑
j=0

2j(d−1)z( 1
2− 1

p∨z )CΞ2
1/τ

(
4

3
c
1/(zτ)
1,zτ C∞B(d,∞)

)z

Bz
X

1

nz
2j((d−1)+z(ν(d)+ d−1

2 ))

≤ CΞ2
1/τ
(
2c

1/(zτ)
2,zτ C2B(d, 2)

)z
B

z/2
X

1

nz/2

J∑
j=0

2jz(ν(d)+
d−1
z +(d−1)( 1

2− 1
p∨z ))

+ CΞ2
1/τ

(
4

3
c
1/(zτ)
1,zτ C∞B(d,∞)

)z

Bz
X

1

nz

J∑
j=0

2jz(ν(d)+
d−1
z +(d−1)(1− 1

p∨z )

≤
CΞ2

1/τ
(
2c

1/(zτ)
2,zτ C2B(d, 2)

)z
1− 2−z(ν(d)+ d−1

z +(d−1)( 1
2− 1

p∨z ))
B

z/2
X

1

nz/2
2Jz(ν(d)+

d−1
z +(d−1)( 1

2− 1
p∨z c))

+
CΞ2

1/τ
(

4
3c

1/(zτ)
1,zτ C∞B(d,∞)

)z
1− 2−z(ν(d)+(d−1)/z+(d−1)(1−1/(p∨z)))

Bz
X

1

nz
2Jz(ν(d)+

d−1
z +(d−1)(1− 1

p∨z )).

The term Op,z. Denote by

Oz,j,ξ =
∣∣βa

j,ξ

∣∣z 1|βa
j,ξ|≤T s,+

j,ξ,γ
+ E

[∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z]1|βa
j,ξ|>T b,−

j,ξ,γ
.

Because T s,++
j,ξ,γ ≥ T s,+

j,ξ,γ , we get

E

[∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z]1|βa
j,ξ|>T b,−

j,ξ,γ

= E

[∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z]1|βa
j,ξ|>T s,++

j,ξ,γ
+ E

[∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z]1T s,++
j,ξ,γ ≥|βa

j,ξ|>T b,−
j,ξ,γ

≤ E

[∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z]1|βa
j,ξ|>T s,++

j,ξ,γ
+

E

[∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z](
T b,−
j,ξ,γ

)z ∣∣βa
j,ξ

∣∣z 1T s,++
j,ξ,γ ≥|βa

j,ξ|>T b,−
j,ξ,γ

,

Oz,j,ξ ≤

⎛⎝1 + E

[∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z](
T b,−
j,ξ,γ

)z
⎞⎠∣∣βa

j,ξ

∣∣z 1|βa
j,ξ|≤T s,++

j,ξ,γ

+ E

[∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z]1|βa
j,ξ|>T s,++

j,ξ,γ
.
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Now using the results of Section 7.6.4, with T b,−
j,ξ,γ =

√
2γtnσj,ξ +

2
3γ

logn
n−1Mj,ξ,

we obtain

sup
j,ξ

E

[∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z](
T b,−
j,ξ,γ

)z ≤ 2

(
c2,z

(
2

1√
2γ

√
logn

)z

+ c1,z

(
4

3

1

(2/3)γ log n

)z)

≤ 2

(( √
2c

1/z
2,z√

γ logn

)z

+

(
2c

1/z
1,z

γ logn

)z)
.

This yields

Op,z ≤
(
1 + 2

(( √
2c

1/z
2,z√

γ logn

)z

+

(
2c

1/z
1,z

γ log n

)z)) J∑
j=0

2j(d−1)z(1/2−1/(p∨z))

∑
ξ∈Ξj

(∣∣βa
j,ξ

∣∣z 1|βa
j,ξ|≤T s,++

j,ξ,γ
+ E

[∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z]1|βa
j,ξ|>T s,++

j,ξ,γ

)
.

7.7. Proof of Theorem 9

This proof requires an upper bound on: the approximation error, R1,p,z, R1,p,z,
and Op,z. We use that because fβ ∈ Bs

r,q(M), we have, by Lemma 13, f−
β ∈

Bs
r,q(ceqM).

7.7.1. The case 1 ≤ p < ∞

Let us consider the terms one by one.
The approximation error. Start with

∥∥∥f−
β

a,J − f−
β

∥∥∥
p
=

∥∥∥∥∥∥
∑
j>J

∑
ξ∈Ξj

βa
j,ξψj,ξ

∥∥∥∥∥∥
p

.

From Lemma 6 (i) and the definition of the Besov spaces as a sequence space,
with 1/q + 1/q̃ = 1, we obtain∥∥∥∥∥∥

∑
j>J

∑
ξ∈Ξj

βa
j,ξψj,ξ

∥∥∥∥∥∥
p

≤ C ′
p

∑
j>J

2−js2j(s+(d−1)(1/2−1/p))
∥∥∥(βa

j,ξ

)
ξ∈Ξj

∥∥∥
�p
,

which yields∥∥∥∥∥∥
∑
j>J

∑
ξ∈Ξj

βa
j,ξψj,ξ

∥∥∥∥∥∥
p

≤ C ′
p2

−Js(2sq̃ − 1)−1/q̃
∥∥∥f−

β

∥∥∥
Bs

p,q
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≤

⎧⎪⎨⎪⎩
C ′

pceqMC
1/p−1/r
Ξ (2sq̃ − 1)−1/q̃

∥∥∥f−
β

∥∥∥
Bs

p,q

2−Js if r ≥ p

C ′
pceqM(2sq̃ − 1)−1/q̃

∥∥∥f−
β

∥∥∥
Bs

p,q

2−J(s−(d−1)(1/r−1/p)) if r ≤ p.

It is enough to consider the worst case where r ≤ p and to check that in the two

zones s−(d−1)(1/r−1/p)
ν(d)+(d−1)/2 ≥ μ.

In the dense zone, we have

s+ ν(d) +
d− 1

2
≥
(
ν(d) +

d− 1

2

)
p

r
,

which yields
s

s+ ν(d) + d−1
2

≤ s(
ν(d) + d−1

2

)
p
r

.

Because s > (d− 1)/r and p ≥ r, we have

s− d− 1

r
+

d− 1

p
− sr

p
= (d− 1)

(
sr

d− 1
− 1

)(
1

r
− 1

p

)
≥ 0,

which yields s− (d− 1)(1/r − 1/p) ≥ sr
p and gives the result.

In the sparse zone, because s > (d− 1)/r, we have

s− (d− 1)(1/r − 1/p)

ν(d) + (d− 1)/2
≥ s− (d− 1)(1/r − 1/p)

s+ ν(d)− (d− 1)(1/r − 1/2)
.

The terms R1,p,p and R2,p,p. Using Lemma 7 (iii) we obtain

R1,p,p ≤ 4

nγ
(ceqM)pC

1−(p∧r)/r
Ξ

J∑
j=0

2−jp(s+(d−1)(1/p−1/(p∧r))),

where the exponent is nonpositive because s > (d− 1)/r, thus

R1,p,p ≤ 4(ceqM)pC
1−(p∧r)/r
Ξ

nγ
(
1− 2−p(s+(d−1)(1/p−1/(p∧r)))

) .
With γ > p/2, R1,p,p is of lower order than tpn.

We also have

R2,p,p ≤ 22−1/τ

nγ(1−1/τ)
CΞbn,p,p,J,τ .

With the aforementioned choice of J ,

1√
n
2J(ν(d)+(d−1)/2)B

1/2
X � 1;

2J(d−1)

n
BX � 1.

Together, these yield that bn,p,p,J,τ is of the order of a constant.
This term is also of lower order than tpn for τ large enough such that γ(1 −

1/τ) > p/2.
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The term Op,p. First note that an,p,p,J = 1 + o(1).
We take T s,++

j,ξ,γ uniform in ξ:

T s,++
j,ξ,γ = 3

√
2γtnC2B(d, 2)2jν(d)B

1/2
X

+ 52C∞B(d,∞)2j(ν(d)+(d−1)/2)BX
γ logn

n− 1

≤ 2jν(d)
√
γtnB

1/2
X

(
3
√
2C2B(d, 2) + 52C∞B(d,∞)

n
√
γ

n− 1

)
,

where the last display uses the upper bound on J , this yields, for n ≥ 2,

T s,++
j,ξ,γ ≤ 2jν(d)

√
γtnB

1/2
X

(
3
√
2C2B(d, 2) + 104C∞B(d,∞)

)
def
= T s,++

j,γ .

As a consequence of Lemma 15, we get

E

[∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣p] ≤ 2

((
2c

1/p
2,p

σj√
n

)p

+

(
4

3
c
1/p
1,p

Mj

n

)p)
≤ 2

(
2c

1/p
2,p C2B(d, 2)2jν(d)B

1/2
X

1√
n

)p

+ 2

(
8

3
c
1/p
1,p C∞B(d,∞)2j(ν(d)+(d−1)/2)BX

1

n

)p

≤ 2jpν(d)
1

np/2
B

p/2
X 2p+1

(
c
1/p
2,p C2B(d, 2) +

4

3
c
1/p
1,p C∞B(d,∞)

)p

≤
(
T s,++
j,γ

)p
(γ logn)p/2

2

(
2

c
1/p
2,p C2B(d, 2) + 4

3c
1/p
1,p C∞B(d,∞)

3
√
2C2B(d, 2) + 104C∞B(d,∞)

(√
γ
))p

≤
(
T s,++
j,γ

)p
(γ logn)p/2

2

(√
2

3
c
1/p
2,p +

c
1/p
1,p

78
√
γ

)p

.

We define the two constants Cγ = 3
√
2C2B(d, 2) + 104C∞B(d,∞)

√
γ and

Cσ,p = 21/p

(√
2

3
c
1/p
2,p +

c
1/p
1,p

78
√
γ

)
.

For any 0 < z < p, we have∑
ξ∈Ξj

(∣∣βa
j,ξ

∣∣p 1|βa
j,ξ|≤T s,++

j,γ
+ E

[∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣p]1|βa
j,ξ|>T s,++

j,γ

)

≤
∑
ξ∈Ξj

(∣∣βa
j,ξ

∣∣p 1|βa
j,ξ|≤T s,++

j,γ
+

(
T s,++
j,γ

)p
(γ log n)p/2

Cp
σ,p1|βa

j,ξ|>T s,++
j,ξ,γ

)

≤
(
1 +

Cp
σ,p

(γ logn)p/2

)(
T s,++
j,γ

)p−z ∑
ξ∈Ξj

∣∣βa
j,ξ

∣∣z
≤
(
1 +

Cp
σ,p

(γ logn)p/2

)(√
γtnB

1/2
X Cγ

)p−z

2jν(d)(p−z)
∑
ξ∈Ξj

∣∣βa
j,ξ

∣∣z .
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We need to sum over j and take two different values for z, one that we denote
z1 for j ≤ j0 and one that we denote z2 for j0 < j ≤ J . The values of z1, z2, j0
will be specified later, depending on the value of the parameters r, q, s and p
such that we are in the dense or sparse zone. Up to a multiplying constant, we
thus need to control

A+B =
(
B

1/2
X tn

)p−z1
j0∑
j=0

2j[ν(d)(p−z1)+(d−1)(p/2−1)]
∑
ξ∈Ξj

∣∣βa
j,ξ

∣∣z1
+
(
B

1/2
X tn

)p−z2
J∑

j=j0+1

2j[ν(d)(p−z2)+(d−1)(p/2−1)]
∑
ξ∈Ξj

∣∣βa
j,ξ

∣∣z2 ,
where we choose adequately z1, z2 and j0 in the two zones. Because of Lemma
7 (i), we only consider p ≥ r.

Let us first consider the dense zone. We define

r̃ =
p(ν(d) + (d− 1)/2)

s+ ν(d) + (d− 1)/2
.

In the dense zone, r̃ ≤ r, p > r̃ and

s =

(
ν(d) +

d− 1

2

)(p
r̃
− 1
)
. (37)

With z2 = r, we get

B ≤
(
B

1/2
X tn

)p−r J∑
j=j0+1

2j[ν(d)(p−r)+(d−1)(p/2−1)]
∑
ξ∈Ξj

∣∣βa
j,ξ

∣∣r .
Lemma 7 (iii) gives that∑

ξ∈Ξj

|βj,ξ|r ≤ Dr
j2

−jr(s+(d−1)(1/2−1/r)),

where ∀j ∈ N, Dj ≥ 0, (Dj)j∈N ∈ �q. Note that

s+ (d− 1)

(
1

2
− 1

r

)
=

(d− 1)p

2r̃
− d− 1

r
+ ν(d)

(p
r̃
− 1
)
, (38)

thus

B ≤
(
B

1/2
X tn

)p−r J∑
j=j0+1

2jp(1−
r
r̃ )(ν(d)+

d−1
2 )Dr

j

� (ceqM)r
(
B

1/2
X tn

)p−r

2j0p(1−
r
r̃ )(ν(d)+

d−1
2 ),

for q ≥ 1 if r > r̃ and for q ≤ r if r = r̃ (i.e., s = p
(
ν(d) + d−1

2

) (
1
r − 1

p

)
).
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Taking 2j0
p
r̃ (ν(d)+

d−1
2 ) 	

(
B

1/2
X tn

)−1

, we get

B � Mr
(
B

1/2
X tn

)p−r̃

,

which is the rate that we expect in that zone.

As for A, we take z1 = r < r̃ ≤ r, this yields, using Lemma 7 (iii),

A ≤
(
B

1/2
X tn

)p−r
j0∑
j=0

2j[ν(d)(p−r)+(d−1)(p/2−1)]
∑
ξ∈Ξj

∣∣βa
j,ξ

∣∣r
� Mr

(
B

1/2
X tn

)p−r
j0∑
j=0

2j[ν(d)(p−r)+(d−1)(p/2−1)−r(s+(d−1)(1/2−1/r))]

� Mr
(
B

1/2
X tn

)p−r
j0∑
j=0

2jp(ν(d)+(d−1)/2)(1−r/r̃) (using (37))

� Mr
(
B

1/2
X tn

)p−r

2j0p(ν(d)+(d−1)/2)(1−r/r̃)

� Mr
(
B

1/2
X tn

)p−r̃

(from the definition of j0).

Let us now consider the sparse zone. We define by

r̃ = p
ν(d) + (d− 1)(1/2− 1/p)

s+ ν(d)− (d− 1)(1/r − 1/2)
,

in a such a way that

p− r̃ = p
s− (d− 1)(1/r − 1/p)

s+ ν(d)− (d− 1)(1/r − 1/2)
;

r̃ − r =
(p− r)((d− 1)/2 + ν(d))− rs

s+ ν(d)− (d− 1)(1/r − 1/2)
> 0;

s+ (d− 1)

(
1

2
− 1

r

)
=

(d− 1)p

2r̃
− d− 1

r̃
+ ν(d)

(p
r̃
− 1
)
. (39)

For the term A, we take z1 = r and obtain

A ≤
(
B

1/2
X tn

)p−r
j0∑
j=0

2j[ν(d)(p−r)+(d−1)(p/2−1)]
∑
ξ∈Ξj

∣∣βa
j,ξ

∣∣r
≤
(
B

1/2
X tn

)p−r
j0∑
j=0

2j[ν(d)+(d−1)(1/2−1/p) p
r̃ (r̃−r)]Dr

j (using (39))

�
(
B

1/2
X tn

)p−r

2j0[(ν(d)+(d−1)(1/2−1/p) p
r̃ (r̃−r)]Mr,
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the last inequality holds because ν(d) + (d − 1)/2 − (d − 1)/p > 0, indeed,
because we are in the sparse zone ν(d)+ (d− 1)/2 ≥ s/(p/r− 1) = sr/(p− r) ≥
2/(p− r) ≥ (d− 1)/p. Taking 2j0(ν(d)+(d−1)(1/2−1/p)) p

r̃ 	
(
B

1/2
X tn

)−1

, yields

A � Mr
(
B

1/2
X tn

)p−r̃

.

For the term B, we take z2 = r > r̃ > r and obtain

B ≤
(
B

1/2
X tn

)p−r J∑
j=j0+1

2j[ν(d)(p−r)+(d−1)(p/2−1)]
∑
ξ∈Ξj

∣∣βa
j,ξ

∣∣r
�
(
B

1/2
X tn

)p−r J∑
j=j0+1

2j(ν(d)+(d−1)(1/2−1/p))p(r−r)/r̃Dr
j (using (39))

�
(
B

1/2
X tn

)p−r

2j0(ν(d)+(d−1)(1/2−1/p))p(r−r)/r̃Mr

�
(
B

1/2
X tn

)p−r̃

Mr.

7.7.2. The case p = ∞

Consider r = ∞. The general case follows by Lemma 7 (ii).
The approximation error. Because fβ ∈ Bs

∞,q(M), we have by Lemma 6 (i)∥∥∥∥∥∥
∑
j>J

∑
ξ∈Ξj

βa
j,ξψj,ξ

∥∥∥∥∥∥
∞

≤
∑
j>J

∥∥∥∥∥∥
∑
ξ∈Ξj

βa
j,ξψj,ξ

∥∥∥∥∥∥
∞

≤ C ′
∞ceqM

∑
j>J

2j(d−1)/22−j(s+(d−1)/2)Dj

≤ C ′
∞ceqM2−Js(2sq̃ − 1)−1/q̃.

where ‖(Dj)j∈N‖q ≤ ceqM . From the choice of J , we get∥∥∥∥∥∥
∑
j>J

∑
ξ∈Ξj

βa
j,ξψj,ξ

∥∥∥∥∥∥
∞

� C ′
∞ceqM(2sq̃ − 1)−1/q̃

(
tnB

1/2
X

)s/(ν(d)+(d−1)/2)

.

This term is negligible because s/(ν(d) + (d− 1)/2) ≥ s/(sν(d) + (d− 1)/2).

The terms R′
1,∞,z and R′

2,∞,z. Using the definition of the Besov norm, we obtain

R′
1,∞,z ≤ 4

nγ
(ceqM)zCΞ

J∑
j=0

2−jzs2j(d−1)

� 4

nγ
2J(d−1)Mz.
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With γ > z/2+ 1, which holds if 2(γ− 1)(1− 1/τ) > z, R1,∞,z is of lower order
than tzn.

Due to the choice of J , the term in bracket in the expression of R′
2,∞,z in

Theorem 14 is less than 1. The second term in the expression of bn,∞,z,J,τ is
of smaller order than the first term. The order of bn,∞,z,J,τ is finally (logn)z/2.
Thus, we have

R′
2,∞,z �

(
n−γ2J(d−1)

)1−1/τ

(logn)z/2.

This term is also of lower order than tzn when τ is such that 2(γ−1)(1−1/τ) > z.

The term O′
∞,z. Note that here an,∞,z,J is of the order of a constant. We now

proceed like for the term Op,p. Using (35), we obtain for arbitrary z ∈ [0, z]

sup
ξ∈Ξj

∣∣βa
j,ξ

∣∣z 1|βa
j,ξ|≤T s,++

j,ξ,γ
+ E

[
sup
ξ∈Ξj

∣∣∣β̂a
j,ξ − βa

j,ξ

∣∣∣z 1|βa
j,ξ|>T s,++

j,ξ,γ

]

�
(√

γtnB
1/2
X

)z−z

2jν(d)(z−z) sup
ξ∈Ξj

∣∣βa
j,ξ

∣∣z .
We use an upper bound on A+B, where:

A =
(
B

1/2
X tn

)z−z1
j0∑
j=0

2j[ν(d)(z−z1)+(d−1)z/2] sup
ξ∈Ξj

∣∣βa
j,ξ

∣∣z1 ;
B =

(
B

1/2
X tn

)z−z2
J∑

j=j0+1

2j[ν(d)(z−z2)+(d−1)z/2] sup
ξ∈Ξj

∣∣βa
j,ξ

∣∣z2 ,
for well-chosen 0 ≤ j0 ≤ J , z1 and z2. Because f ∈ Bs

∞,q(M), we have

∀z ≥ 1, sup
ξ∈Ξj

∣∣βa
j,ξ

∣∣z ≤ (ceqM)z2−j(s+(d−1)/2)z.

The result follows taking z1 = 0, j0 such that 2j0 	 t
−1/(s+ν(d)+(d−1)/2)
n , and

z2 = z.
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