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a b s t r a c t

This paper dealswith the problemofmultivariate copula density estimation. Usingwavelet
methods we provide two shrinkage procedures based on thresholding rules for which
knowledge of the regularity of the copula density to be estimated is not necessary.
These methods, said to be adaptive, have proved to be very effective when adopting the
minimax and the maxiset approaches. Moreover we show that these procedures can be
discriminated in the maxiset sense. We provide an estimation algorithm and evaluate its
properties using simulation. Finally, we propose a real life application for financial data.

© 2009 Published by Elsevier Inc.

1. Introduction

In risk management, in the areas of finance, insurance and climatology, for example, a new tool has been developed
to model the dependence structure of data: the copula. A copula is a multivariate joint distribution defined on the d-
dimensional unit cube [0, 1]d such that every marginal distribution is uniform on the interval [0, 1]. Sklar’s Theorem [1]
allows us to separately study the laws of the coordinates Xm form = 1, . . . d, of any d-vector X , and the dependence between
the coordinates.

Theorem 1. Let d ≥ 2 and H be a d-variate distribution function. If each marginal distribution Fm,m = 1, . . . d, of H is contin-
uous, a unique d-variate copula C exists, so that

∀(x1, . . . , xd) ∈ Rd, H(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)).

The copulamodelhas been extensively studiedwithin a parametric framework. Numerous classes of parametric copulas,
parametric distribution functions C , have been proposed. For instance there is the elliptic family, which contains the
Gaussian copulas and the Student copulas, and the Archimedean family, which contains the Gumbel copulas, the Clayton
copulas and the Frank copulas. The first step of such a parametric approach is to select the parametric family of the
copula being considered. This is amodeling task that may require finding new copula and methodologies to simulate the
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corresponding data. Usual statistical inference (estimation of the parameters, goodness-of-fit test, etc) can only take place
in a second step. Both tasks have been extensively studied.
We propose here to study the copula model within a non-parametric framework. Our aim is to make very mild

assumption about the copula. Thus, contrary to the parametric setting, no a priori model of the phenomenon is needed. For
practitioners, non-parametric estimators could be seen as a benchmark that makes it possible to select the right parametric
family by comparing them to an agnostic estimate. In fact, most of the time, practitioners observe the scatter plot of
{(Xi, Yi), i = 1, . . . , n}, or {(Ri, Si), i = 1, . . . , n} where R and S are the rank statistics of (X, Y ), and then attempt, on
the basis of these observations, only to guess the family of parametric copulas the target copula belongs to. Providing good
non-parametric estimators of the copula makes this task easier and provides a more rigorous way to describe the copula.
In our study, we propose non-parametric procedures to estimate the copula density c associatedwith the copula C . More

precisely, we consider the following model. We assume that we are observing an n-sample (X11 , . . . , X
d
1 ), . . . , (X

1
n , . . . , X

d
n )

of independent data with the same distribution H (and the same density h) as (X1, . . . , Xd). Referring to the marginal
distributions of the coordinates of the vector (X1, . . . , Xd) as F1, . . . , Fd, we are interested in estimating the copula density
c defined as the derivative (if it exists) of the copula distribution

c(u1, . . . , ud) =
h(F−11 (u1), . . . , F−1d (ud))

f1(F−11 (u1)) · · · fd(F−1d (ud))

where F−1p (up) = inf{x ∈ R : Fp(x) ≥ up}, 1 ≤ p ≤ d and u = (u1, . . . , ud) ∈ [0, 1]d. This would be a classical density model
if the marginal distributions, and thus the direct observations, (U1i = F1(X

1
i ), . . . ,U

d
i = Fd(X

d
i )) for i = 1, . . . , n, were

known. Unfortunately, this is not the case. We can observe that this model is somewhat similar to the non-parametric re-
gression model with unknown random design studied in Kerkyacharian and Picard [2] with theirwarped wavelet families.
Two wavelet-based methods are presented: a Local Thresholding Method and a Global Thresholding Method. Both

are extensions of the methods studied by Donoho et al. [3,4] and Kerkyacharian et al. [5] in the classical density estimation
framework. The copula density c is estimated using a specific multiscale basis representation of [0, 1]d, the wavelet
representation. Each wavelet coefficient is estimated individually and possibly thresholded (set to 0) if it is considered to
be non-significant. The two methods differ in their definition of non-significant: one is local, and individually considers
considering individually each estimated coefficient; the other is global, and simultaneously considers all coefficients at each
scale. Contrary to the kernel-based method, these methods do not require a fine-tuning of the smoothing parameters. The
definition of non-significant is not dependent on the (unknown) regularity of the copula: the procedures are data driven and
automatically provide an estimator close to the best possible estimators. We can observe that this includes the estimators
that require precise knowledge of the regularity of the copula.
We first measure the performance for both estimators on all copula densities that are bounded and that belong to a very

large class of regularity. The good behavior of our procedures is due to the approximation properties of the wavelet basis. A
regular copula can be approximated by few non-zero-wavelet coefficients leading to estimators with both a small bias and
small variance. The wavelet representation is connected to well-known regularity spaces: Besov spaces, in particular, that
contain Sobolev spaces or Holder spaces, can be defined through the wavelet coefficients. The first results of this paper are
the proofs that the rate of convergence of our estimators are:

(1) optimal in the minimax sense (up to a logarithmic factor),
(2) the same as in the standard densitymodel. Using pseudo-data instead of direct observations does not damage the quality
of the procedures.

It should be observed that the same behavior also arises for linear wavelet procedures (see Genest et al. [6]). However, the
linear procedure is not adaptive in the sense that we need to know the regularity index of the copula density to obtain
optimal procedures. This paper provides a solution to this drawback.
Following themaxiset approach, we then characterize the precise set of copula densities estimated at a given polynomial

rate for our procedures.We verify that the local one outperforms the others, in the sense that this is the procedure for which
the set of copula densities estimated at a given rate is the largest.
One of the main difficulties of copula density estimation lies in the fact that most of the pertinent information is located

near the boundaries of [0, 1]d (at least for the most common copulas like the Gumbel copula or the Clayton copula). In the
theoretical construction, we use a family of wavelets especially designed for this case: they extend only within the compact
set [0, 1]d, do not thus cross the boundary and are optimal in terms of the approximation. In the practical construction,
boundaries remain an issue. In fact, the theoretically optimal wavelets are rarely implemented and when they are, they are
not as efficient as in the theory. We propose an appropriate symmetrization/periodization process of the original data here
in order to deal with this problem. We also enhance the scheme by adding some translation invariance. We numerically
verify the good behavior of the proposed scheme for simulated data with the usual parametric copula families. We then
illustrate an application on financial data by proposing a method to choose the parametric family and the parameters
based on a preliminary non-parametric estimator used as a benchmark. The last result of this paper is thus to propose
an implementation that is very easy to use and that provides good estimators.
The paper is organized as follows. Section 2 describes the multidimensional wavelet basis used in the sequel. Section 3

is devoted to the description of thresholding estimation procedures for which performances are studied in Section 4 for
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the minimax approach and in Section 5 for the maxiset approach. Section 6 deals with the practical results. Proofs of main
theorems are given in Section 7, while proofs of propositions and technical lemmas are included in the Appendix.

2. Wavelet setting

Our multivariate wavelet basis is built thanks to the tensorial product of the wavelet basis on the interval proposed by
Cohen et al. [7]. More precisely, for any j0 ∈ N, we consider

{φj0,k}k∈{1,...,2j0 }

⋃
{ψj,k}j≥j0,k∈{1,...,2j}

the basis of L2([0, 1]) obtained by Cohen et al. [7] from a compactly supported function φ and its corresponding waveletψ .
Here hj,k(·) denotes the function 2j/2h(2j · −k) for h(·) being either φ(·) or ψ(·). We define then the multivariate wavelets
as

φj,k(x1, . . . , xd) = φj,k1(x1) . . . φj,kd(xd),

ψε
j,k(x1, . . . , xd) =

d∏
m=1

φ
1−εm
j,km (xm)ψ

εm
j,km(xm),

for all ε = (ε1, . . . , εd) ∈ Sd = {0, 1}d \ {(0, . . . , 0)}. Indeed, with k = (k1, . . . , kd) a multicomponent vector, the set

{φj0,k, ψ
ε
j,`|j ≥ j0, k ∈ {1, . . . , 2

j0}d, ` ∈ {1, . . . , 2j}d, ε ∈ Sd}

is an orthonormal basis of L2([0, 1]d) for any j0 ∈ N (see for example Meyer [8]). It follows that any real function h of
L2([0, 1]d) can be expanded as

∀x ∈ [0, 1]d, h(x) =
∑

k∈{1,...,2j0 }d

hj0,kφj0,k(x)+
∑
j≥j0

∑
k∈{1,...,2j}d

∑
ε∈Sd

hεj,kψ
ε
j,k(x),

where the scaling coefficient hj0,k and the wavelet coefficient h
ε
j,k are given by

hj0,k =
∫
[0,1]d

h(x)φj0,k(x)dx and hεj,k =
∫
[0,1]d

h(x)ψε
j,k(x)dx.

Roughly speaking, the expansion of the analyzed function on the wavelet basis splits into the ‘‘trend’’ at the level j0 and the
sum of the ‘‘details’’ for all the larger levels j, j ≥ j0. For more details on the multivariate setting in the density model, see
Tribouley [9].
To simplify the notation, we omit the range of k and ε in the summation from now on. However, note that for any level

j, the summation extends over a finite number of terms 2jd × (2d − 1).

3. Estimation procedures

For a copula density c belonging to L2([0, 1]d), it is equivalent to estimate c and to estimate its wavelet coefficients. It
turns out that this can be easily done. Observe that, for any d-variate functionΦ

Ec(Φ(U1, . . . ,Ud)) = Eh
(
Φ(F1(X1), . . . , Fd(Xd))

)
or equivalently∫

[0,1]d
Φ(u)c(u)du =

∫
Rd
Φ(F1(x1), . . . , Fd(xd))h(x1, . . . , xd)dx1 . . . dxd.

This means that the wavelet coefficients of the copula density c on the wavelet basis are equal to the coefficients of the joint
density h on the warped wavelet family

{φj0,k(F1(·), . . . , Fd(·)), ψ
ε
j,`(F1(·), . . . , Fd(·))|j ≥ j0, k ∈ {0, . . . , 2

j0}d, ` ∈ {0, . . . , 2j}d, ε ∈ Sd}.

The corresponding empirical coefficients are

ĉj0,k =
1
n

n∑
i=1

φj0,k(F1(X
1
i ), . . . , Fd(X

d
i ))

and

ĉεj,k =
1
n

n∑
i=1

ψε
j,k(F1(X

1
i ), . . . , Fd(X

d
i )). (1)
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These coefficients cannot be evaluated since the distributions functions associated to the marginal distributions F1, . . . , Fd
are unknown. We propose to replace these unknown distributions functions by their corresponding empirical distributions
functions F̂1, . . . F̂d. The modified empirical coefficients are

c̃j0,k =
1
n

n∑
i=1
φj0,k(F̂1(X

1
i ), . . . , F̂d(X

d
i ))

and

c̃εj,k =
1
n

n∑
i=1

ψε
j,k(F̂1(X

1
i ), . . . , F̂d(X

d
i ))

where the empirical distribution functions are given by

∀t ∈ R, F̂p(t) =
1
n

n∑
i=1

1{Xpi ≤ t}, p = 1, . . . , d.

Themost unaffected way to estimate the density c is to reconstruct the function from its modified empirical coefficients.
We consider here the very general family of truncated estimators of c defined by

c̃T := c̃T (jn, Jn) =
∑
k

c̃jn,kφjn,k +
Jn∑
j=jn

∑
k,ε

ωεj,kc̃
ε
j,kψ

ε
j,k, (2)

where the indices (jn, Jn) are such that jn ≤ Jn and where, for any (j, k, ε), ωεj,k belongs to {0, 1}. Notice that the weight ω
ε
j,k

may or may not depend on the observations.
The later case has been considered by Genest et al. [6] who proposed to use a linear procedure

c̃L := c̃L(jn) =
∑
k

c̃jn,kφjn,k (3)

for a suitable choice of jn. The accuracy of this linear procedure relies on the fast uniform decay of the wavelets coefficients
across the scale as soon as the function is uniformly regular. The trend at the chosen level jn becomes a sufficient
approximation. The optimal choice of jn depends on the regularity of the unknown function to be estimated and thus the
procedure is not data driven.
We propose here to use some nonlinear procedures based on hard thresholding methods (see for instance Cohen

et al. [10], Kerkyacharian and Picard [11], and Donoho and Johnstone [3])) that overcome this issue. In hard thresholding
procedures, the ‘‘small’’ coefficients are killed by setting the corresponding weight ωεj,k to 0. They differ by the definition of
‘‘small’’. We study here two strategies: a local one, where each coefficient is considered individually, and a global one, where
all the coefficients at the same scale are considered globally.
For a given threshold level λn > 0 and a set of indices (jn, Jn), the local hard threshold weights ω

ε,L
j,k and the global hard

threshold weights ωε,Gj,k are defined respectively by

ω
ε,HL
j,k = 1{|c̃εj,k| > λn}. and ω

ε,HG
j,k = 1

{∑
k

|c̃εj,k|
2 > 2jdλ2n

}
.

Let us put c̃ε,HLj,k = ω
ε,HL
j,k c̃

ε
j,k and c̃

ε,HG
j,k = ω

ε,HG
j,k c̃

ε
j,k. The corresponding local hard thresholding estimators c̃HL and global hard

thresholding estimators c̃HG are defined respectively by

c̃HL := c̃HL(jn, Jn, λn) =
∑
k

c̃jn,kφjn,k +
Jn∑
j=jn

∑
k,ε

c̃ε,HLj,k ψ
ε
j,k. (4)

and

c̃HG := c̃HG(jn, Jn, λn) =
∑
k

c̃jn,kφjn,k +
Jn∑
j=jn

∑
k,ε

c̃ε,HGj,k ψε
j,k. (5)

The nonlinear procedures given in (4) and (5) depend on the level indices (jn, Jn) and on the threshold value λn. In the next
section, we define a criterion to measure the performance of our procedures and explain how to choose those parameters
to achieve optimal performance.
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4. Minimax results

4.1. Minimax approach

Theminimax theory is a classical way to analyze the performance of estimation procedures which has been extensively
developed since the 1980’s. In the minimax setting, the practitioner chooses a loss function `(.) that quantifies the loss of a
misestimation and a functional class F which is supposed to contain the estimated function c. He measures then the worst
case loss of the estimator c̃:

sup
c∈F
E`(̃c − c)

and compares it with the best possible value of this quantity, called theminimax risk,
R(F ) = inf

c̃
sup
c∈F
E `(̃c − c).

The infimum is taken over all possible estimators. If both coincide, the procedure isminimax optimal on the class F . A lot
of minimax results for standard statistical models and many families of functional spaces as Sobolev spaces, Holder spaces,
and others as the family of Besov spaces have been now established (see for instance Ibragimov and Khasminski [12] or
Kerkyacharian and Picard [10]).

4.2. Besov bodies

We deal here with wavelet methods; it is thus standard to consider as functional classes the Besov bodies characterized
by the wavelet coefficients as follows

Definition 1 (Strong Besov Bodies). For any s > 0, a function c belongs to the Besov bodyBs2∞ if and only if its sequence of
wavelet coefficients cεj,k satisfies

sup
J≥0
22Js

∑
j>J

∑
k,ε

(cεj,k)
2 <∞.

These spaces can be seen as extensions of classical regularity spaces. For example, any function that is s times differentiable
belongs to Bs2∞ (see for instance Donoho and Johnstone [3]). In this paper, we focus on the quadratic loss and these Besov
bodies for which the minimax risks are known:

∀c ∈ Bs2∞, sup
n
inf
c̃
n
2s
2s+d E‖̃c − c‖22 <∞

where the infimum is taken other any estimator of the density c. Notice that this defines aminimax rate that measures the
best possible decay of the error when the number of samples n varies.

4.3. Optimality

If the wavelet is regular enough, Genest et al. [6] prove that the linear procedure c̃L = c̃L(j∗n) defined in (3) is minimax
optimal on the Besov body Bs2∞ for all s > 0 provided j

∗
n is chosen so that:

2j
∗
n−1 < n

1
2s+d ≤ 2j

∗
n .

As hinted in the previous section, this result is not fully satisfactory because the optimal procedure depends on the regularity
s of the density which is generally unknown.
The thresholding procedures described in (4) and (5) do not suffer from this drawback: the same choice of parameters

jn, JN and λn yields an almost minimax optimal estimator simultaneously for any Bs2,∞. The following theorem (which is a
direct consequence of Theorem 3 established in the following section) ensures indeed that

Theorem 2. Assume that the wavelet is continuously differentiable and let s > 0. For any choice of level jn and Jn and threshold
λn such that

2jn−1 < (log(n))1/d ≤ 2jn , 2Jn−1 <
(
n
log n

)1/d
≤ 2Jn , λn =

√
κ log(n)
n

for some κ large enough,

∀s > 0, c ∈ Bs2∞ ∩ L∞([0, 1]
d)⇒ sup

n

(
n

log(n)

) 2s
2s+d

E‖̃c − c‖22 <∞

where c̃ stands either for the hard local thresholding procedure c̃HL(jn, Jn, λn) or for the hard global thresholding procedure
c̃HG(jn, Jn, λn).
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Observe that, when s > d/2, the embeddingBs2∞ ( L∞([0, 1]d) is satisfied. Thus the assumption c ∈ Bs2∞ ∩ L∞([0, 1]
d) in

Theorem 2 could be replaced with the assumption c ∈ Bs2∞.
We immediately deduce

Corollary 4.1. The hard local thresholding procedure c̃HL and the hard global thresholding procedure c̃HG are adaptive minimax
optimal up to a logarithmic factor on the Besov bodiesBs2∞ for the quadratic loss function.

Notice that this logarithmic factor is nothing but the classical ‘‘price’’ of adaptivity.

4.4. Criticism on the minimax point of view

The minimax theory requires the choice of the functional space F (or the choice of a sequence of functional spaces Fs).
The arbitrariness of this choice is themain drawback of theminimax approach. Indeed, Corollary 4.1 establishes that no other
procedures could be uniformly better on the spaces Bs2∞ but it does not address two important questions. What about a
different choice of spaces? Both of our thresholding estimators achieve the minimax rate on the spacesBs2,∞ but is there a
way to distinguish their performance? To answer to these questions, we propose to explore themaxiset approach.

5. Maxiset results

5.1. Maxiset approach

The maxiset point of view developed by Cohen et al. [13] is inspired by the approximation theory. This new way to
analyze the performance of estimation procedures fixes the procedures instead of the space. The space of functions (called
the maxiset) for which a given procedure attains a prescribed rate of convergence is studied. The larger the space the better
the estimator. The maxiset point of view is more optimistic than the minimax point of view in the sense that the maxiset
approach points out all the functions estimated by a fixed procedure at a given rate instead of looking at a worst case
behavior on a given class.
The maxiset of a fixed estimation procedure c̃ associated with the rate of convergence rn, denotedMS(̃c, rn), is defined

through the following equivalence
sup
n
r−1n E‖̃c − c‖

2
2 <∞ ⇐⇒ c ∈MS(̃c, rn).

where we still consider the quadratic loss. Remark that if an estimator c̃ of c achieves the (minimax) rate rn on a functional
spaceF thenF is included in the maxisetMS(̃c, rn). Minimax procedures on the same target space can thus differ by their
maxisets, providing a way to compare them: the best procedure is the procedure admitting the largest maxiset.
Many papers have considered themaxiset approach in thewhite noisemodel (see Cohen et al. [13] or Autin et al. [14]) and

the density estimation model (see Autin [15]). In both models, the hard local procedure appears to be the best one amongst
a large family of shrinkage procedures, called the elitist rules, and the corresponding maxisets involveweak Besov spaces.

5.2. Weak Besov spaces

These spaces are special cases of Lorentz spaces defined by properties of the wavelet coefficients. We define here the
local weak Besov spacesWL(r) and the global weak Besov spacesWG(r) by

Definition 2 (Local Weak Besov Spaces). For any 0 < r < 2, a function c ∈ L2([0, 1]d) belongs to the local weak Besov space
WL(r) if and only if its sequence of wavelet coefficients c

ε
j,k satisfies the following equivalent properties:

• sup0<λ≤1 λr−2
∑
j≥0
∑
k,ε(c

ε
j,k)
21{|cεj,k| ≤ λ} <∞,

• sup0<λ≤1 λr
∑
j≥0
∑
k,ε 1{|c

ε
j,k| > λ} <∞.

and

Definition 3 (Global Weak Besov Spaces). For any 0 < r < 2, a function c ∈ L2([0, 1]d) belongs to the global weak Besov
spaceWG(r) if and only if its sequence of wavelet coefficients c

ε
j,k satisfies the following equivalent properties:

• sup0<λ≤1 λr−2
∑
j≥0
∑
k,ε(c

ε
j,k)
21{
∑
k(c

ε
j,k)
2
≤ 2djλ2} <∞,

• sup0<λ≤1 λr
∑
j≥0 2

dj∑
ε 1{

∑
k(c

ε
j,k)
2 > 2djλ2} <∞.

As for the definition of the Besov bodies, the definition depends on the wavelet basis. However, as established by Meyer [8]
and Cohen et al. [13], this dependency is quite weak. Note that the equivalences between the properties used in the
definitions of the weak Besov spaces can be proved as in Cohen et al. [13].
These spaces are clearly related to the Besov bodiesBs2,∞. Indeed some computation proves thatB

s
2,∞ ⊂ WG

( 2d
2s+d

)
and

Bs2,∞ ⊂ WL
( 2d
2s+d

)
. In Section 7.3, we prove the following strict inclusion property

Proposition 1. For any 0 < r < 2,WG(r) ( WL(r).
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5.3. Performances and comparison of our procedures

In this section, we study the maxiset of the linear procedure and the maxisets of the thresholding procedures described
in Section 1. We focus on the near minimax optimal procedures: we use the following choices of parameters

2jn−1 < (log(n))1/d ≤ 2jn , 2Jn−1 <
(

n
log(n)

)1/d
≤ 2Jn

2j
∗
n−1 <

(
n

log(n)

) 1
2s+d

≤ 2j
∗
n , λn =

√
κ log(n)
n

for some κ > 0 and we study the linear estimator c̃L = c̃L(j∗n), the local thresholding estimator c̃HL = c̃HL(jn, Jn, λn) and the
global thresholding estimator c̃HG = c̃HG(jn, Jn, λn).
Let us fix s > 0. We focus on the rate rn =

(
n−1 log(n)

)2s/(2s+d) which is the (near) minimax rate achieved on the space
Bs2∞. The following theorem exhibits the maxisets of the procedures with this target rate rn.

Theorem 3. Let s > 0, and assume that c ∈ L∞([0, 1]d). For a large enough κ , we get

sup
n

(
n

log(n)

) 2s
2s+d

E‖c̃L − c‖22 <∞ ⇐⇒ c ∈ Bs2∞, (6)

sup
n

(
n

log(n)

) 2s
2s+d

E‖c̃HL − c‖22 <∞ ⇐⇒ c ∈ B
ds
2s+d
2∞ ∩WL

(
2d
2s+ d

)
, (7)

sup
n

(
n

log(n)

) 2s
2s+d

E‖c̃HG − c‖22 <∞ ⇐⇒ c ∈ B
ds
2s+d
2∞ ∩WG

(
2d
2s+ d

)
. (8)

Note that the same spaces arise if we assume that the marginal distributions are known (see Autin et al. [16]). This is also a
nice result to prove that the lack of direct observations does not make the problem harder.
The following strict embedding,

Bs2∞ ( B
ds
2s+d
2∞ ∩WG

(
2d
2s+ d

)
implies

Corollary 5.1. Let s > 0 and let us consider the target rate

rn =
(
log(n)
n

) 2s
2s+d

. (9)

Then we get

MS(c̃L, rn) ( MS(c̃HG, rn) ( MS(c̃HL, rn).

In otherwords, in themaxiset point of view andwhen the quadratic loss is considered, the thresholding rules outperform
the linear procedure. Moreover, the hard local thresholding estimator c̃HL appears to be the best estimator among the
considered procedures since it strictly outperforms the hard global thresholding estimator c̃HG.

6. Applied results

In this section, we deal with numerical aspects of the thresholding estimation. Although we have used wavelets on the
interval in the theory, they are seldom available in numerical packages. We propose here ways to overcome this drawback.
We test then our methodology on simulated datasets and we verify that there is a best numerical scheme. We test it in the
context of the parametric estimation. Finally, we apply the chosen procedure to financial data.

6.1. Algorithms

For the sake of simplicity, the estimation algorithms are described in the bivariate case but their extension to other
dimension is straightforward. We assume that a sample {(Xi, Yi)}1≤i≤n of size n is given.
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All estimators proposed in this paper can be summarized in an algorithm having seven steps:

(1) Rank the Xi, Yi with

Ri =
n∑
l=1

1{Xl ≤ Xi} and Si =
n∑
l=1

1{Yl ≤ Yi}.

(2) Compute the maximal scale index Jn = b 12 log2(
n
log n )c.

(3) Compute the empirical scaling coefficients at the maximal scale index Jn:

˜cJn,k1,k2 =
1
n

n∑
i=1

φJn,k1,k2

(
Ri
n
,
Si
n

)
for 1 ≤ k1 ≤ 2Jn and 1 ≤ k2 ≤ 2Jn .

(4) Compute the empirical wavelet coefficients c̃εj,k1,k2 from these scaling coefficients with the fast 2D wavelet transform
algorithm.

(5) Threshold these coefficients according to the global thresholding rule or the local thresholding rule to obtain the

estimated wavelet coefficients c̃ε,Tj,k1,k2 .

(6) Compute the estimated scaling coefficients ˜cTJn,k1,k2 at scale index Jn by the fast 2D wavelet inverse transform algorithm.
(7) Construct the estimated copula density c̃ using the formula

c̃ =
∑
k1,k2

˜cJn,k1,k2φJn,k1,k2 .

Unfortunately only the steps (1), (2) and (5) are as straightforward as they seem to be. Two issuesmake the other stepsmore
complex: the handling of the boundaries and the discrete nature of computer results.
The later issue is the easiest to solve. As inmost numerical scheme, we fix a grid resolution of 1/N much smaller than 2−Jn

and approximate the estimated copula density at step (7) on the induced grid (i/N, j/N). Although the scaling functions are
not always known explicitly, a very good approximation can be computed on this grid andwe assume from now on that this
effect is negligible. The norms Eq appearing in the numerical results (see Tables A.1–A.4) are thus empirical norms ‖ · ‖N,q
on this grid. In our experiments, we take N = 4× 2Jn . Notice that step (3) also requires an evaluation of the scaling function
using a similar approximation.
The former issue, the boundary handling, is the most important one. Indeed, for most copula densities, the interesting

behavior arises in the corners which are the most difficult parts to handle numerically. In our theorems, we use the wavelet
on the interval defined by Cohen et al. [7].We test this schemenumerically andwe compare itwith other choices of boundary
handling.
The classical construction of the wavelet yields a basis over Rd while we only have samples on [0, 1]d.

• A first choice is to consider the function of [0, 1]d to be estimated as a function ofRd which is 0 outside [0, 1]d. This choice
is called zero padding.
• A second choice is to suppose that we observe the restriction on [0, 1]d of a 1-periodic function, this is equivalent to
work in the classical periodic wavelet setting. This choice called periodization is very efficient when the function is
really periodic.
• We propose also to modify the periodization and assume that we observe the restriction over [0, 1]d of a even 2-
periodic function. As this introduces a symmetrization over the existing borders, we call this method symmetrization.
It avoids the introduction of discontinuities along the border. Notice that nevertheless this symmetrization introduces
discontinuities for the derivatives at the boundaries.
• The last choice is the use of the tailored wavelet on the interval proposed by Cohen et al. [7] and the corresponding

boundary corrected wavelet transform. Remark that this transform is more involved than the classical one.

Once this choice is made, we use the corresponding fast wavelet transform. The resulting estimated copula density is the
restriction to [0, 1]d of the estimated function.
Wavelet thresholding methods in a basis suffer from a griding effect. Often, isolated wavelets are seen in the estimated

signal. To reduce this effect, we propose to use the cycle spinning trick proposed by Donoho and Johnstone. The copula
density is estimated simultaneously in a collection of basis obtained by translations of a singlewavelet basis and the resulting
estimators are averaged. In our numerical experiments, we have performed this operation using 25 different translations
and observed a significant improvement of the results.

6.2. Simulation

We focus on usual parametric families of copulas: the FGM, the Gaussian, the Student, the Clayton, the Frank and the
Gumbel families. We give results for two very different values of n (the number of data): n = 500 which is very small for a
bidimensional problem and n = 2000 which is usual in non-parametric estimation.
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Wetest bothmethods of estimation (local thresholding andglobal thresholding) and, for eachmethod, four differentways
to solve the boundaries problems (zero padding, periodization, symmetrization and interval wavelets). In our experiments,
the first marginal distribution is an exponential with parameter 4 and the second marginal distribution is the standard
Gaussian. Let us remark here that the results obtained by our algorithm do not depend on the marginal distributions.
To evaluate the quality of our results, we consider three empirical loss functions derived from the L1 norm, the L2 norm

and the L∞ norm, that is to say
Eq = ‖̃c − c0‖N,q for q = 1, 2,∞,

where c0 is the ‘‘true’’ copula density and N×N is the number of points of the grid (as described in the previous subsection).
Tables A.3 and A.4 summarize the relative errors given by

REq =
‖̃c − c0‖N,q
‖c0‖N,q

for q = 1, 2,∞.

These relative errors are computed with 100 repetitions of the experiment. The associated standard deviation is also given
(in parentheses).
Tables A.1 and A.2 show that the zero padding method, the periodization method and, surprisingly, the boundary

correctedmethod (which is, theoretically, the optimal construction) provide similar results.Moreover, they lead generally to
much larger errors than the ones obtained by the symmetric periodization. This method appears to be the best one in order
to solve the boundaries effects. This remark is valid for both sample size (n = 500, 2000). Although the zero paddingmethod
is the default method in the MatlabWavelet Toolbox, it suffers from a severe drawback: it introduces strong discontinuities
along the borders of [0, 1]d. The periodization method suffers from the same drawback than the zero padding method as
soon as the function is not really periodic. Fig. A.1 emphasizes the superiority of the symmetric periodization method in the
case where the unknown copula density is a normal copula. While the copula estimated with symmetric extension remains
close to the shape of the true copula up to a resolution issue, this is not the case for the two other estimated copulas. In the
periodized version, the height of the extreme peaks is reduced and two spurious peaks corresponding to the periodization
of the real peaks appear. The zero padded version is slightly better as it shows only the reduced height artifact. The bad
performance of the boundary corrected method arises from a different issue: the difficulty of implementing a discrete
numerical scheme corresponding exactly to the theoretical continuous construction. It explains also why this construction
is only seldom implemented.
Tables A.3 and A.4 display the empirical L1, L2 and L∞ estimation error for the symmetric extension for respectively

n = 500 and n = 2000. They show that the best results are obtained for the L2 norm for which the method has been
designed. The second best results are obtained for the L1 norm because a bound on the L2 norm implies a bound on the L1
norm. The estimation problem in L∞ is much more challenging as it is not a consequence of the estimation in L2.
Observe that the behavior strongly depends on the copula itself. This is coherentwith the theory that states that themore

‘‘regular’’ the copula is, the more efficient the estimator will be. The copulas that are the least well estimated (Normal with
parameter 0.9, Student with parameter 0.5 and Gumbel with parameter 8.33) are the most ‘‘irregular’’ ones: they are very
‘‘peaky’’. They are therefore not regular enough to be estimated correctly by the proposed method.
A final remark should be given on the difficulty to evaluate such errors.Whereas the L1 norm is finite equal to 1 for all true

copula, the L2 and L∞ norms can be very large (even infinite) because of their peaks. This is not an issue from the numerical
point of view aswe are restricted to a grid of step 1/N onwhich one can ensure the finiteness of the copula. Nevertheless the
induced ‘‘empirical’’ norm can be substantially different from the integrated norm. Thus the error for n = 500 to n = 2000
are not strictly equivalent as the function can be much more complex for the resolution induced by n = 2000 than for
n = 500.

6.3. Parametric estimation

Practitioners often use non-parametric estimators as a benchmark to choose the copula and its parameters among a
family. We test our estimator in this framework by computing empirical distances

Eq(θ, 0) = ‖ĉ − cθ‖N,q for q = 1, 2,∞
between the benchmark denoted ĉ and a copula density cθ varying in a fixed parametric family of copula densities C0. The
corresponding natural estimator of the parameter θ is thus

θ̂
q
0 = arg min

θ

Eq(θ, 0).

Table A.9 gives the estimator θ for each norm with the a priori knowledge of the parametric family C0 from which the data
are issued. As a benchmark, we have used the local thresholding with symmetrization.
From the theoretical point of view, this way to estimate θ is wrong as the empirical estimators of the error are biased.

A much better choice would have been to estimate the error by its corresponding U-statistics as proposed in Gayraud and
Tribouley [17]. Nevertheless, the numerical results are quite good as soon as the copula can be estimated efficiently. On the
one hand, when the copula are too irregular, the corresponding estimate is a smoothed version and the estimate parameter
corresponds to this smoothed version. On the other hand, when the Kendall’s tau is small enough, the estimated parameters
are close to the true parameter even if a slight bias toward a smoother copula can be observed.
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6.4. Real data applications

We apply the thresholding methods on various financial series to identify the behavior of the dependence (or non-
dependence). All data correspond to daily closing market quotations and are from 01/07/1987 to 31/01/2007. As usual,
we consider the log-return of the data.
Notice that we apply our procedures even though the independence assumption is not necessarily satisfied by our

data. We first propose estimators of the bivariate copula density associated with two financial series using the adaptive
thresholding procedures (see Figs. A.2–A.5). Next, the non-parametric estimator denoted ĉ is used as a benchmark and we
derive a new estimator by choosing the copula amongst a parametric family of copula that minimizes the error between
itself and the benchmark ĉ. Note that, contrary to the previous section, we do not want to impose an a priori knowledge on
the parametric family. Nevertheless, we focus on copulas which belong to the Gaussian, Student, Gumbel, Clayton or Frank
families. More precisely, we consider the following parametric classes of copulas

C1 = {c ∈ Nθ , θ = [−0.99 : 0.01 : 0.99]}
C2 = {c ∈ Tθ , θ = [−0.99 : 0.01 : 0.99, 1 : 1 : 100]}
C3 = {c ∈ Gθ , θ = [1 : 0.01 : 2]}
C4 = {c ∈ Cθ , θ = [0 : 0.01 : 2]}
C5 = {c ∈ Fθ , θ = [−2 : 0.01 : 2]}

and we propose to estimate the parameter θ for each class Cp of copula densities, as in the previous subsection, by

θ̂ qp = arg min
θ

Eq(θ, p) for p = 1, . . . , 5.

We derive estimators of c among all the candidates
{
cθ̂qp , p = 1, . . . 5

}
for each contrast q = 1, 2,∞. Tables A.5–A.8 give

• the estimate θ̃ q for q = 1, 2,∞ defined by

θ̃ q = arg min
p=1,...,5

(
arg min

θ

Eq(θ, p)
)
,

• the parametric family Cp̂ corresponding to the smallest error,
• the associated relative errors defined by

REq(θ̃ q) = 100
‖ĉ − cθ̃q‖N,q
‖cθ̃q‖N,q

where c is in Cp̂.

We have tested a lot of financial series and have selected four revealing examples. In our tests, the Clayton family or the
Gumbel family have never been selected; the selected family is always either the Gaussian family, the Student family or the
Frank family.
The first observation is that the parametric families are quite well adapted since the relative error between the best fits

and the non-parametric benchmark REq is always (much) smaller than 10% (except for the L∞ norm). As expected, the results
are quite similar for both thresholding methods. There is however a significant bias from the metric point of view toward
the block approach. This bias can be seen, for example, in Fig. A.3, where the peaks have disappeared. Remark that this
phenomenon occurs when the unknown copula density is not uniformly regular (when it does present high peaks). When
this is not the case, as in the DowJones versus Ftse100uk, the local approach is more adapted. Nevertheless, the parameters
estimated by the two different methods remain close.
The second observation is that the choice of the contrast is crucial to estimate the parameter θ : there are significant

differences between θ̂p1 , θ̂
p
2 , θ̂

p
∞. This is usual in density estimation as they do not measure the same behavior. The L1 norm

is our preferred choice. It seems natural in a density context and corresponds to a more robust criterion than the L2 norm
for which our theorems have been obtained. The L∞ focuses on pointwise difference and, thus, is not adapted to the task.
Nevertheless, the choice of the best family seems not to depend on the choice of the contrast: each type of parametric family
is linked to a specific structure of dependence and are different enough to be identified whatever the criterion is.
We conclude this section with a few comments on the selected examples. The estimated copula for Cac versus Brent

indicates that those series are independent. The copula densities DowJones versus Oncedor and Brent versus ExonMobil are
both detected as Frank copulas butwith opposite behaviors. Both results can be interpreted. It is obvious that the series Brent
and ExonMobil should exhibit a strong dependence with a strong correlation. The negative dependence between Oncedor
and the financial indices can be explained by the fact that Oncedor (gold) is a hedgewhen the stockmarket collapses. Remark
that we observe the same kind of dependence of Oncedor for others composite indices such as Ftse100uk, Cac. The more
delicate case is for the copula DowJones versus Ftse100uk. It is a very peaky copula and thus quite hard to estimate. We
think nevertheless that the local thresholding method produces a nice estimate.
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6.5. Conclusion

When the unknown copula density is uniformly regular (in the sense that it is not too peaky on the corners), the
thresholdingwavelet procedures associatedwith the symmetrization extension produce a good non-parametric estimation.
If the copula presents strong peaks at the corner (for instance the Clayton copula with a large Kendall tau), our method is
much less efficient. We think that improvements will come from a new family of wavelet adapted to singularity on the
corners.
As shown in the numerical experiments, our procedures can be used in the popular two steps decision procedure: first

use a non-parametric estimator to decide which copula family to consider and second estimate the parameters within this
family. We do not claim that the plug-in method used with our estimate as a benchmark is optimal (it is slightly biased), but
it provides a simple single framework. We did not study here the properties of such an estimator or of the corresponding
goodness-of-fit test problem. We refer to Gayraud and Tribouley [17] for this last statistical issue.

7. Proofs

We first state two propositions needed to establish the main results. Next, we prove Theorem 3 in two steps by proving
both implications. Last, we prove Proposition 1 and Corollary 5.1.
From now on, K denotes any constant that does not depend on j, k and n. Its value may change from one line to another

and may depends on the wavelet, on ‖c‖∞ and ‖c‖2.

7.1. Preliminaries

These preliminary results concern the estimation of the wavelet coefficients and the scaling coefficients (denoted cε0j,k
with ε0 = (0, . . . , 0) to unify the notation). Proposition 3 shows that the accuracy of estimates is as sharp as if the direct
observations were available.

Proposition 2. Assume that the copula density belongs to L∞([0, 1]d) and let δ > 0. There exists a constant K > 0 such that for

any j such that 2j ≤ 2
(

n
log(n)

)1/d
, and for any (k, ε)

P
(
|c̃εj,k − ĉ

ε
j,k| > λn

)
≤ Kn−δ (10)

P

(∑
k

(c̃εj,k − ĉ
ε
j,k)
2 > Ld2djλ2n

)
≤ Kn1−δ(log(n))−1 (11)

provided κ is chosen large enough.

It is clear that (11) is a direct consequence of (10). The proof of (10) is relegated to the Appendix. From (10) we immediately
deduce

Proposition 3. Under the same assumptions on j and c as in Proposition 2, there exists a constant K > 0 such that for any (k, ε)

E
[(
c̃εj,k − ĉ

ε
j,k

)2]
≤ K

log(n)
n

.

7.2. Proof of Theorem 3

First, we prove the result for the linear estimator. Secondly, we prove the result for the local thresholding method. We
do not prove the result for the global thresholding method since the techniques are the same except that the required large
deviation inequality is given by (11) instead of (10).

7.2.1. Proof of Equivalence (6)
Let c be a copula density function belonging to L∞([0, 1]d) and satisfying for any n,

E‖c̃L − c‖22 ≤ K
(
log(n)
n

) 2s
2s+d

(12)

for some constant K > 0. Let us prove that c also belongs to the spaceBs2∞. Let us recall that the smoothing index used for
the linear procedure is j∗n and it satisfies 2

1−j∗n >
(
n−1 log(n)

)1/(2s+d). Since
E‖c̃L − c‖22 = E

∥∥∥∥∥c̃L −∑
k

cj∗n,kφj∗n,k

∥∥∥∥∥
2

2

+

∥∥∥∥∥∥
∑
j≥j∗n

∑
k,ε

cεj,kψ
ε
j,k

∥∥∥∥∥∥
2

2

,
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the assumption (12) implies∑
j≥j∗n

∑
k,ε

(cεj,k)
2
≤ E‖c̃L − c‖22 ≤ K (2

−2j∗n )s.

So c ∈ Bs2∞.
Conversely, let us suppose that c ∈ Bs2∞. Then, using the same techniques as in Genest et al. [6], we can show that for

any n

E‖c̃L − c‖22 ≤ K
(
log(n)
n

) 2s
2s+d

which ends the proof. The proof in Genest et al. [6] is given in the case d = 2 and uses a sharp control on the estimated
coefficients.

7.2.2. Proof of Equivalence (7) (first step:H⇒)
When the direct observations (F1(X1i ), . . . , Fd(X

d
i )) are available, we use the estimator ĉHL built in the sameway as c̃HL but

with the sequence of coefficients ĉεj,k defined in (1) and with the threshold λn/2 instead of λn. Let jn, Jn be positive integers
and λn > 0. We get

E‖c̃HL − c‖22 ≤ 2E‖c̃HL − ĉHL‖
2
2 + 2E‖ĉHL − c‖

2
2.

First, we study the error term due to the pseudo-observations

T = E‖c̃HL − ĉHL‖22

= E

[∑
k

(c̃ε0jnk − ĉ
ε0
jnk)

2

]
+ E

[
Jn∑
jn

∑
k,ε

(c̃εj,k − ĉ
ε
j,k)
21{|c̃εj,k| > λn}1

{
|ĉεj,k| >

λn

2

}]

+ E

[
Jn∑
jn

∑
k,ε

(ĉεj,k)
21{|c̃εj,k| ≤ λn}1

{
|ĉεj,k| >

λn

2

}]
+ E

[
Jn∑
jn

∑
k,ε

(c̃εj,k)
21{|c̃εj,k| > λn}1

{
|ĉεj,k| ≤

λn

2

}]
= T1 + T2 + T3 + T4.

Using Proposition 3, we have

T1 ≤ K
log(n)
n
2djn ≤ K

(log(n))2

n
. (13)

To study T2, we apply Cauchy–Schwarz inequality and we obtain

T2 = E

[
Jn∑
jn

∑
k,ε

(c̃εj,k − ĉ
ε
j,k)
21
{
|c̃εj,k| > λn

}
1
{
|ĉεj,k| >

λn

2

}(
1
{
|cεj,k| ≤

λn

4

}
+ 1

{
|cεj,k| >

λn

4

})]

≤

Jn∑
jn

∑
k,ε

[
E(c̃εj,k − ĉ

ε
j,k)
4]1/2 [P

(
|ĉεj,k − c

ε
j,k| >

λn

4

)]1/2
+

Jn∑
jn

∑
k,ε

E(c̃εj,k − ĉ
ε
j,k)
21
{
|cεj,k| >

λn

4

}
.

Observe that, for any j, k, ε, we have

|c̃εj,k| ∨ |ĉ
ε
j,k| ≤ 2

jd/2(‖ψ‖d
∞
∨ ‖φ‖d

∞
). (14)

For any δ > 0, we use now the standard Bernstein Inequality to obtain

P
(
|ĉεj,k − c

ε
j,k| >

λn

4

)
≤ Kn−δ. (15)

This inequality is valid for a choice of κ large enough. Let us now fix r in ]0, 2[. Applying Proposition 3 and using (14), we
have

T2 ≤ K
Jn∑
jn

∑
k,ε

2jd
[

P
(
|ĉεj,k − c

ε
j,k| >

λn

4

)]1/2
+

Jn∑
jn

∑
k,ε

E(c̃εj,k − ĉ
ε
j,k)
21
{
|cεj,k| >

λn

4

}

≤ K

(
22dJnn−δ/2 + un

[(
λn

4

)r Jn∑
jn

∑
k,ε

1
{
|cεj,k| >

λn

4

}])
(16)
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where un = (λn/4)−r(log(n)/n). Similarly, we have

T3 ≤ E

[
Jn∑
jn

∑
k,ε

(ĉεj,k)
21{|c̃εj,k| ≤ λn}1

{
|ĉεj,k| >

λn

2

}
×

(
1
{
|cεj,k| ≤

λn

4

}
+ 1

{
|cεj,k| >

λn

4

})]

≤ E

[
Jn∑
jn

∑
k,ε

(ĉεj,k)
21
{
|ĉεj,k| >

λn

2

}
1
{
|cεj,k| ≤

λn

4

}]
+ E

[
Jn∑
jn

∑
k,ε

(ĉεj,k)
21{|c̃εj,k| ≤ λn}1

{
|cεj,k| >

λn

4

}]

≤ K
Jn∑
jn

∑
k,ε

2djP
(
|ĉεj,k − c

ε
j,k| >

λn

4

)
+

(
λn

4

)r Jn∑
jn

∑
k,ε

vn1
{
|cεj,k| >

λn

4

}
where

vn = 2
(
λn

4

)−r [
E(c̃j,k − ĉj,k)2 + E(c̃j,k)21{|c̃j,k| ≤ λn}

]
≤ 2

(
Kun + 4rλ2−rn

)
.

This implies

T3 ≤ K

(
22dJn

nδ
+ (un + λ2−rn )

[(
λn

4

)r Jn∑
jn

∑
k,ε

1
{
|cεj,k| >

λn

4

}])
. (17)

Using (14) and Proposition 2, we get

T4 ≤ K
Jn∑
jn

∑
k,ε

2djP
(
|c̃εj,k − ĉ

ε
j,k| >

λn

2

)
≤ K22dJnn−δ. (18)

Combining the bounds of (13) and (16)–(18) and choosing jn, Jn as indicated in Theorem 2, we get for δ ≥ 6

E‖c̃HL − c‖22 ≤ 2 E‖ĉHL − c‖
2
2 + Kρn

where

ρn =
(log(n))2

n
+

(
log n
n

)1− r2 (λn
4

)r Jn∑
jn

∑
k,ε

1
{
|cεj,k| >

λn

4

}
+

1
n(log(n))2

.

On the one hand, let us suppose that c belongs to the weak Besov spaceWL(
2d
2s+d ). For r := 2d/(2s+ d),(

λn

4

)r Jn∑
jn

∑
k,ε

1
{
|cεj,k| >

λn

4

}
≤ K .

It follows that

ρn ≤ K
(
log(n)
n

) 2s
2s+d

.

Using the standard result when direct observations are available, we also have

E‖ĉHL − c‖22 ≤ K
(
log(n)
n

) 2s
2s+d

for c ∈ WL(
2d
2s+d ) ∩Bs2∞. This ends the proof of the first part of (7) of Theorem 3.

7.2.3. Proof of Equivalence (7) (second step:⇐H)
Suppose that there existsM such that for any n,

E‖c̃HL − c‖22 ≤ M
(
n−1 log(n)

) 2s
2s+d .

Since∑
j>Jn

∑
k,ε

(cεj,k)
2
≤ E‖c̃HL − c‖22,
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and, setting Jn as indicated in Theorem 2, we obtain∑
j>Jn

∑
k,ε

(cεj,k)
2
≤ M

(
log(n)
n

) 2s
2s+d

≤ M
(
2d(1−Jn)

) 2s
2s+d ≤ K

(
2−2Jn

) ds
2s+d .

Using Definition 1 of the strong Besov bodies, we deduce that c belongs to B
ds
2s+d
2∞ . Let us now study the sum of squares of

the small detail coefficients∑
j≥0

∑
k,ε

(cεj,k)
21
{
|cεj,k| ≤

λn

2

}
=

[∑
j<jn

+

Jn∑
j=jn

+

∑
j>Jn

][∑
k,ε

(cεj,k)
21{|cεj,k| ≤ λn/2}

]
≤ H1 + H2 + H3. (19)

We have already proved that c ∈ B
ds
2s+d
2∞ . Setting λn as indicated in Theorem 2, we deduce

H3 ≤
∑
j>Jn

∑
k,ε

(cεj,k)
2
≤ K2−2Jn

ds
2s+d ≤ K

(
λn

2

) 4s
2s+d

. (20)

Taking jn as in Theorem 2, we get

H1 ≤ K
∑
j<jn

2dj
(
λn

2

)2
≤ K log(n)

(
λn

2

)2
≤ K

(
λn

2

) 4s
2s+d

. (21)

Observe that

H2 = E

[
Jn∑
jn

∑
k,ε

(cεj,k)
21
{
|cεj,k| ≤

λn

2

} (
1{|c̃εj,k| ≤ λn} + 1{|c̃εj,k| > λn}

)]
.

Remembering that

E

[
Jn∑
jn

∑
k,ε

(cεj,k)
21{|c̃εj,k| ≤ λn}

]
≤ E‖c̃HL − c‖22

and using Proposition 2 and (15), we get

H2 ≤ E‖c̃HL − c‖
2
2 +

Jn∑
jn

∑
k,ε

(cεj,k)
2P
(
|c̃εj,k − ĉ

ε
j,k| >

λn

4

)
+

Jn∑
jn

∑
k,ε

(cεj,k)
2P
(
|ĉεj,k − c

ε
j,k| >

λn

4

)

≤ M
(
log(n)
n

) 2s
2s+d

+ K‖c‖22n
−δ
≤ K

(
λn

2

) 4s
2s+d

(22)

for δ larger than 1. Combining (20)–(22), we conclude that c ∈ WL(r)with r such that 2− r = 4s/(2s+ d). Hence, we end
the proof of the indirect direction of (7).

7.3. Proofs of Proposition 1 and Corollary 5.1

The proof of the inclusion given in Proposition 1 follows immediately from the definitions of the functional spaces. Let
cεj,k denote the sequence of wavelet coefficients of a function c. We have

sup
0<λ≤1

λr−2
∑
j≥0

∑
k,ε

(cεj,k)
21{|cεj,k| ≤ λ}

= sup
0<λ≤1

λr−2
∑
j≥0

∑
k,ε

(cεj,k)
21{|cεj,k| ≤ λ}

[
1

{∑
k

(cεj,k)
2
≤ 2djλ2

}
+ 1

{∑
k

(cεj,k)
2 > 2djλ2

}]

≤ sup
0<λ≤1

λr−2
∑
j≥0

∑
k,ε

(cεj,k)
21

{∑
k

(cεj,k)
2
≤ 2djλ2

}
+ K sup

0<λ≤1
λr
∑
j≥0

2dj
∑
ε

1

{∑
k

(cεj,k)
2 > 2djλ2

}
.

It follows from Definition 3 that

c ∈ WG(r)⇒ c ∈ WL(r).
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To establish the strict inclusions, we build a sparse function belonging toB
ds
2s+d
2∞ ∩WL(

2d
2s+d ) but not belonging toWG(

2d
2s+d ).

Let us choose a real number α such that d/2 ≤ α < s+d/2. Let us consider the sparse sequence cεj,k in which all coefficients
cεj,k are set to 0 except for the b2

j(2dα)/(2s+d)
c first ones at each scale that are set to (2d− 1)−12−αj. Let c be the corresponding

function. For all 0 < λ ≤ 1, let jλ be such that 2jλ =
(
(2d − 1)λ

)−1/α . We get∑
j≥0

∑
k,ε

1{|cεj,k| > λ} =
∑
j<jλ

∑
k,ε

1{|cεj,k| > λ}

≤ K2
2dα
2s+d jλ ≤ Kλ−

2d
2s+d

implying

sup
0<λ≤1

λ
2d
2s+d

∑
j≥0

∑
k,ε

1{|cεj,k| > λ} <∞.

Thus the function c belongs to the local weak Besov spaceWL(
2d
2s+d ). Next, let us put α

′
= (4αs+ 2sd+ d2)/(2(2s+ d)). We

observe that α′ < s+ d/2 since α < s+ d/2. For all 0 < λ ≤ 1 let j∗λ be such that 2
j∗λ =

(
(2d − 1)λ

)−1/α′ . We get
∑
j≥0

2dj
∑
ε

1

{∑
k

(cεj,k)
2 > 2djλ2

}
≥ (2d − 1)

∑
j<j∗λ

2dj

≥ 2dj
∗
λ−1 ≥ Kλ−

d
α′

and thus

sup
0<λ≤1

λ
2d
2s+d

∑
j≥0

2dj
∑
ε

1

{∑
k

(cεj,k)
2 > 2djλ2

}
= ∞.

It follows that the function c does not belong to the global weak Besov spaceWG(
2d
2s+d ). This ends the proof of Proposition 1.

Notice that the function c belongs to the strong Besov bodyB
ds
2s+d
2∞ because for any (j, ε)∑

k,ε

(cεj,k)
2
≤ 2

2dα
2s+d j2−2αj ≤ 2−

2ds
2s+d j

so

sup
J≥0
2
2ds
2s+d J

∑
j≥J

∑
k,ε

(cεj,k)
2 <∞,

which proves Corollary 5.1.

Appendix

In this section we prove (10) of Proposition 2. In the sequel, we fix the indices j and k = (k1, . . . , kd) andwe take without
loss of generality ε = 2d − 1. For any i = 1, . . . , n (the observation index) and anym = 1, . . . d (the coordinate index), let
us introduce

∆(Xmi ) = F̂m(X
m
i )− Fm(X

m
i ),

ξj(Xmi ) = ψj,km(F̂m(X
m
i ))− ψj,km(Fm(X

m
i )),

Nj(m) = #
{
i ∈ {1, . . . , n}; ξj(Xmi ) 6= 0

}
,

and

ξj(X1i , . . . , X
m
i ) = ψ

ε
j,k(F̂1(X

1
i ), . . . , F̂d(X

d
i ))− ψ

ε
j,k(F1(X

1
i ), . . . , Fd(X

d
i ))

Nj = #
{
i ∈ {1, . . . , n}; ξj(X1i , . . . , X

d
i ) 6= 0

}
.

As previously remarked in Genest et al. [6] in the case d = 2, we have

ξj(X1i , . . . , X
d
i ) =

d∏
m=1

ξj(Xmi )+
d∑

m1=1

ψε
j,km1

(Fm1(X
m1
i ))

d∏
m=1
m6=m1

ξj(Xmi )
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a b

c d

Fig. A.1. Estimation of the normal copula density of parameter 0.5 with n = 2000 (local thresholding): (a) true copula, (b) estimated copula with sym-
metrization, (c) estimated copula with periodization, (d) estimated copula with zero padding.

+

d∑
m1,m2=1
m1 6=m2

ψε
j,km1

(Fm1(X
m1
i ))ψ

ε
j,km2

(Fm2(X
m2
i ))

d∏
m=1

m6=m1,m2

ξj(Xmi )



+ · · · +

d∑
m1=1

ξj(Xm1i ) d∏
m=1
m6=m1

ψε
j,km(Fm(X

m
i ))

 (A.1)

In the sequel, form = 1, . . . , d, Tm,j(Xi) denotes any term of the type[
ψε
j,k1(F1(X

1
i ))× · · · × ψ

ε
j,kd−m(Fd−m(X

d−m
i ))

] [
ξj(Xd−m+1i )× · · · × ξj(Xdi )

]
i.e. such that there are exactly m factors ξj(X ·i ) appearing in the product. The cardinality of such terms Tm,j(Xi) is equal to
Cmd =

d!
m!(d−m)! . Observe that the number of terms in (A.1) is 2

d
− 1. It is fundamental to notice that there is no term T0,j(Xi)

=
∏
m=1,...,d ψ

ε
j,km(Fm(X

m
i )).

A.1. Technical lemmas

We begin by technical lemmas.

Lemma 1. There exists a universal constant K0 such that for any m ∈ {1, . . . , d}

∀t > 0, P(max
1≤i≤n
|∆(Xmi )| > t) ≤ K0 exp(−2nt

2).
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Table A.1
Relative L2 estimation error for n = 500.

Copula Method Boundary handling
c(·) par. sym per ZeroPad Boundary

FGM 1.0 Local 0.007 (0.003) 0.079 (0.005) 0.129 (0.010) 0.096 (0.013)
Block 0.006 (0.002) 0.077 (0.008) 0.141 (0.006) 0.074 (0.004)

Normal 0.0 Local 0.002 (0.002) 0.0004 (0.0004) 0.122 (0.005) 0.042 (0.009)
Block 0.002 (0.002) 0.0004 (0.0006) 0.105 (0.001) 0.013 (0.002)

Normal 0.5 Local 0.031 (0.007) 0.161 (0.011) 0.179 (0.010) 0.158 (.0008)
Block 0.032 (0.008) 0.154 (0.011) 0.202 (0.005) 0.189 (0.007)

Normal 0.9 Local 0.156 (0.011) 0.391 (0.008) 0.418 (0.006) 0.406 (0.007)
Block 0.140 (0.009) 0.381 (0.005) 0.491 (0.022) 0.406 (0.007)

Student (0.5, 1) Local 0.326 (0.018) 0.460 (0.008) 0.544 (0.009) 0.488 (0.010)
Block 0.324 (0.026) 0.458 (0.010) 0.585 (0.004) 0.475 (0.015)

Clayton 0.8 Local 0.075 (0.013) 0.225 (0.010) 0.252 (0.011) 0.213 (0.011)
Block 0.095 (0.012) 0.216 (0.011) 0.279 (0.005) 0.216 (0.007)

Frank 4 Local 0.021 (0.006) 0.149 (0.015) 0.212 (0.015) 0.140 (0.009)
Block 0.013 (0.006) 0.134 (0.009) 0.193 (0.006) 0.140 (0.007)

Gumbel 8.3 Local 0.701 (0.002) 0.849 (0.001) 0.866 (0.001) 0.854 (0.001)
Block 0.698 (0.002) 0.852 (0.001) 0.878 (0.001) 0.858 (0.001)

Gumbel 1.25 Local 0.038 (0.010) 0.104 (0.005) 0.172 (0.009) 0.125 (0.013)
Block 0.052 (0.007) 0.109 (0.004) 0.173 (0.004) 0.104 (0.003)

Table A.2
Relative L2 estimation error for n = 2000.

Copula Method Boundary handling
c(·) par. sym per ZeroPad Boundary

FGM 1.0 Local 0.004 (0.001) 0.066 (0.004) 0.090 (0.004) 0.064 (.003)
Block 0.004 (0.002) 0.060 (0.003) 0.107 (0.004) 0.065 (.002)

Normal 0.0 Local 0.0006 (0.0005) 0.0001 (0.0001) 0.082 (0.001) 0.011 (0.002)
Block 0.0006 (0.0007) 0.0001 (0.0001) 0.091 (0.002) 0.010 (0.001)

Normal 0.5 Local 0.017 (0.003) 0.145 (0.004) 0.142 (0.005) 0.141 (.002)
Block 0.017 (0.003) 0.133 (0.004) 0.152 (0.005) 0.146 (.003)

Normal 0.9 Local 0.138 (0.005) 0.389 (0.003) 0.402 (0.003) 0.395 (0.003)
Block 0.133 (0.004) 0.381 (0.003) 0.426 (0.005) 0.391 (.002)

Student (0.5, 1) Local 0.296 (0.006) 0.452 (0.004) 0.516 (0.004) 0.459 (0.003)
Block 0.288 (0.006) 0.447 (0.003) 0.523 (0.003) 0.450 (0.004)

Clayton 0.8 Local 0.060 (0.005) 0.207 (0.005) 0.213 (0.004) 0.206 (.003)
Block 0.060 (0.005) 0.197 (0.003) 0.225 (0.007) 0.212 (0.005)

Frank 4 Local 0.0121 (0.003) 0.124 (0.005) 0.119 (0.004) 0.132 (0.003)
Block 0.007 (0.002) 0.114 (0.003) 0.122 (0.005) 0.137 (0.004)

Gumbel 8.3 Local 0.697 (0.002) 0.851 (0.001) 0.866 (0.001) 0.855 (0.001)
Block 0.697 (0.001) 0.852 (0.001) 0.864 (0.001) 0.853 (0.001)

Gumbel 1.25 Local 0.024 (0.004) 0.102 (0.003) 0.139 (0.003) 0.103 (0.002)
Block 0.033 (0.004) 0.099 (0.003) 0.150 (0.004) 0.101 (0.001)

Lemma 1 is a consequence of Dvoreski–Kiefer–Wolfowitz Inequality.

Lemma 2. Let δ > 0 and let n be an integer such that n log(n) ≥ 2(δ−1 ∨ 1). Then, there exists K1 > 0 such that for any level j
satisfying

2j ≤
1
3

(
2n

δ log(n)

)1/2
,

and for any m ∈ {1, . . . , d},

P(Nj(m) > (L+ 3)n2−j) ∨ P(Nj > d(L+ 3)n2−j) ≤ K1n−δ. (A.2)

For the interested reader, the detailed proofs of these lemmas are given in Autin et al. [16].
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Table A.3
Relative L1 , L2 and L∞ estimation errors for n = 500.

Copula Method Empirical loss function
c(·) par. L1 L2 L∞

FGM 1.0 Local 0.062 (0.014) 0.007 (0.003) 0.189 (0.051)
Block 0.061 (0.011) 0.006 (0.002) 0.175 (0.047)

Normal 0.0 Local 0.038 (0.017) 0.002 (0.002) 0.145 (0.062)
Block 0.038 (0.018) 0.002 (0.002) 0.129 (0.058)

Normal 0.5 Local 0.118 (0.012) 0.031 (0.007) 0.539 (0.066)
Block 0.112 (0.016) 0.032 (0.008) 0.555 (0.051)

Normal 0.9 Local 0.287 (0.026) 0.156 (0.011) 0.648 (0.020)
Block 0.205 (0.021) 0.140 (0.009) 0.644 (0.018)

Student (0.5, 1) Local 0.290 (0.022) 0.326 (0.018) 0.791 (0.026)
Block 0.259 (0.018) 0.324 (0.026) 0.797 (0.035)

Clayton 0.8 Local 0.119 (0.014) 0.075 (0.013) 0.658 (0.051)
Block 0.125 (0.018) 0.095 (0.012) 0.740 (0.040)

Frank 4 Local 0.129 (0.017) 0.021 (0.006) 0.329 (0.075)
Block 0.092 (0.020) 0.013 (0.006) 0.321 (0.069)

Gumbel 8.3 Local 0.682 (0.015) 0.701 (0.002) 0.914 (0.001)
Block 0.629 (0.012) 0.698 (0.002) 0.915 (0.001)

Gumbel 1.25 Local 0.099 (0.011) 0.038 (0.010) 0.625 (0.104)
Block 0.105 (0.012) 0.052 (0.007) 0.749 (0.044)

Table A.4
Relative L1 , L2 and L∞ estimation errors for n = 2000.

Copula Method Empirical loss function
c(·) par. L1 L2 L∞

FGM 1.0 Local 0.0448 (0.00821) 0.0036 (0.0012) 0.1414 (0.0382)
Block 0.04887 (0.0096) 0.0037 (0.0015) 0.1463 (0.0527)

Normal 0.0 Local 0.0181 (0.0087) 0.00063 (0.0005) 0.0673 (0.0332)
Block 0.0190 (0.0092) 0.0006 (0.0007) 0.0669 (0.0284)

Normal 0.5 Local 0.0830 (0.0078) 0.0176 (0.0032) 0.4374 (0.0465)
Block 0.0923 (0.0104) 0.0177 (0.0029) 0.4089 (0.0673)

Normal 0.9 Local 0.2048 (0.0160) 0.1376 (0.00522) 0.6400 (0.0114)
Block 0.1622 (0.0113) 0.1330 (0.0045) 0.6389 (0.0106)

Student (0.5, 1) Local 0.2159 (0.0107) 0.2966 (0.0056) 0.7712 (0.0110)
Block 0.1955 (0.0095) 0.2881 (0.0058) 0.7669 (0.0133)

Clayton 0.8 Local 0.0862 (0.0068) 0.0603 (0.0053) 0.625 (0.0239)
Block 0.1096 (0.0096) 0.0596 (0.0054) 0.6091 (0.0308)

Frank 4 Local 0.0983 (0.0131) 0.01208 (0.0032) 0.2635 (0.0569)
Block 0.0702 (0.0096) 0.0075 (0.0017) 0.2508 (0.0608)

Gumbel 8.3 Local 0.6283 (0.0086) 0.6975 (0.0015) 0.9145 (0.0009)
Block 0.6223 (0.0058) 0.6971 (0.0012) 0.9143 (0.0007)

Gumbel 1.25 Local 0.0720 (0.0075) 0.0240 (0.0041) 0.5377 (0.0568)
Block 0.0721 (0.0085) 0.0336 (0.0042) 0.6688 (0.0421)

Lemma 3. Let us assume that c belongs to L∞([0, 1]d) and let (j,N) ∈ N2. For any 1 ≤ p ≤ q ≤ d, for any subsets Sp and Sq−p
of {1, . . . , d} with cardinality equal to p and q− p having no common component, let us put for i = 1 . . . , n,

Zi(Sp, Sq−p) =
∏
m∈Sp

ψj,km(Fm(X
m
i ))

∏
m′∈Sq−p

(ψ (1))j,km′ (Fm′(X
m′
i )), (A.3)

with the following notation ψ (1)
j,k (.) = 2

j/2ψ ′(2j.− k). For any µ ≥ 2K32−jq/2, we have

P

(∣∣∣∣∣ 1N
N∑
i=1

Zi(Sp, Sq−p)

∣∣∣∣∣ > µ

)
≤ 2 exp

(
−K2N

(
µ2 ∧ µ21−jq/2

))
where K2, K3 are constants such that

K3 ≥ (L+ 1)q‖c‖∞‖ψ‖p∞‖ψ
′
‖
q−p
∞
, K2 ≤

1
8
‖ψ‖−p

∞
‖ψ ′‖p−q

∞

(
K−13 ∨ 6

)
.
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Fig. A.2. Brent/Cac: Block Thresholding Method (left) and Local Thresholding Method (right).

Table A.5
Brent/Cac: distances between the benchmarks and the parametric families.

θ̂1 E1 θ̂2 E2 θ̂∞ E∞

Gaussian Block −0.01 0.0068 −0.01 0.0001 −0.01 0.0449
Gaussian Local −0.01 0.0080 −0.01 0.0002 0.01 0.0847

Student Block (−0.11, 91) 0.0640 (−0.11, 91) 0.0103 (−0.11, 91) 0.6639
Student Local (0.07, 40) 0.0226 (0.07, 40) 0.0010 (0.02, 100) 0.1279

Clayton Block 0.01 0.0125 0.01 0.0002 0.01 0.0395
Clayton Local 0.01 0.0135 0.01 0.0004 0.01 0.0942

Frank Block 0.01 0.0103 0.01 0.0002 0.01 0.0467
Frank Local 0.01 0.0115 0.01 0.0003 0.07 0.0825

Gumbel Block 1.00 0.0093 1.00 0.0002 1.00 0.0462
Gumbel Local 1.00 0.0106 1.00 0.0003 1.00 0.0963

All Block −0.01 Gaussian −0.01 Gaussian 0.01 Clayton
0.68% 0.01% 4.28%

All Local −0.01 Gaussian −0.01 Gaussian 0.07 Frank
0.79% 0.02% 7.98%

Lemma 3 is a direct application of the Bernstein Inequality with∣∣EZi(Sp, Sq−p)∣∣ =
∣∣∣∣∣∣
∫
[0,1]d

∏
m∈Sp

ψj,km(um)
∏

m′∈Sq−p

ψ
(1)
j,km′

(um′)c(u1, . . . , ud)du1 × · · · × dud

∣∣∣∣∣∣
≤ K32−jq/2

and in the same way,
Var(Zi(Sp, Sq−p)) ≤ (L+ 1)q‖c‖∞‖ψ‖2p∞‖ψ

′
‖
2(q−p)
∞

and ∣∣Zi(Sp, Sq−p)∣∣ ≤ ‖ψ‖p∞‖ψ ′‖q−p∞ 2jq/2.
A.2. Proof of Proposition 2

By Equality (A.1), we have for any λ > 0

P
(
|ĉεj,k − c̃

ε
j,k| > λ

)
≤

d∑
m=1

Cmd Lm
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Fig. A.3. Brent/ExonMobil: Block Thresholding Method (left) and Local Thresholding Method (right).

Table A.6
Brent/ExonMobil: distances between the benchmarks and the parametric families.

θ̂1 E1 θ̂2 E2 θ̂∞ E∞

Gaussian Block 0.15 0.0396 0.14 0.0030 0.10 0.1337
Gaussian Local 0.14 0.0492 0.13 0.0041 0.10 0.1437

Student Block (0.14, 37) 0.0376 (0.13, 81) 0.0030 (0.08, 61) 0.1329
Student Local (0.14, 95) 0.0491 (0.13, 95) 0.0041 (0.09, 80) 0.1411

Clayton Block 0.15 0.0706 0.12 0.0099 0.05 0.1879
Clayton Local 0.14 0.0799 0.11 0.0109 0.05 0.1967

Frank Block 0.76 0.0301 0.83 0.0017 0.85 0.0957
Frank Local 0.75 0.0393 0.80 0.0027 0.54 0.1355

Gumbel Block 1.10 0.0436 1.07 0.0069 1.02 0.2309
Gumbel Local 1.10 0.0529 1.06 0.0076 1.02 0.2298

All Block 0.76 Frank 0.83 Frank 0.85 Frank
3.01% 0.17% 6.61%

All Local 0.75 Frank 0.80 Frank 0.54 Frank
3.93% 0.27% 10.64%

where

Lm = P

(∣∣∣∣∣1n
n∑
i=1

Tm,j(Xi)

∣∣∣∣∣ > λ

2d − 1

)
.

Using a Taylor expansion, the following inequality holds for any i ∈ {1, . . . , n} and anym′ ∈ {1, . . . , d}

|ξj(Xm
′

i )| ≤ 2
j
|∆(Xm

′

i )|(ψ
(1))j,km′ (Fm′(X

m′
i ))+ 2

3j
2 −1|∆(Xm

′

i )|
2
‖ψ ′‖∞. (A.4)

This implies that, for an associated Sd−m,

|Tm,j(Xi)| ≤ ‖ψ ′‖m∞
m∑
m′=0

Sm−m′ ∩Sd−m′ =∅

2j(m+m
′/2)
(
max

m′=1,...,m
|∆(Xm′i )|

)m+m′
|Zi(Sd−m, Sm−m′)| .

Form = 1, . . . d, let us introduce the events

D0,m =

{
max
1≤i≤n
|∆(Xmi )| ≤

√
δ log(n)
2n

}
, D1,m =

{
Nj(m) ≤ nj = (L+ 3)n2−j

}
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Fig. A.4. DowJones/Oncedor: Block Thresholding Method (left) and Local Thresholding Method (right).

Table A.7
DowJones/Oncedor: distances between the benchmarks and the parametric families.

θ̂1 E1 θ̂2 E2 θ̂∞ E∞

Gaussian Block −0.11 0.0233 −0.10 0.0010 −0.07 0.0765
Gaussian Local −0.11 0.0243 −0.10 0.0011 −0.07 0.0765

Student Block (−0.11, 61) 0.0233 (−0.10, 61) 0.0011 (−0.06, 61) 0.0859
Student Local (−0.11, 80) 0.0239 (−0.10, 80) 0.0011 (−0.06, 63) 0.0859

Clayton Block 0.01 0.0801 0.01 0.0104 0.01 0.2924
Clayton Local 0.01 0.0805 0.01 0.0105 0.01 0.2924

Frank Block −0.57 0.0148 −0.56 0.0003 −0.50 0.0456
Frank Local −0.58 0.0155 −0.57 0.0004 −0.48 0.0433

Gumbel Block 1.00 0.0755 1.00 0.0090 1.00 0.2316
Gumbel Local 1.00 0.0760 1.00 0.0092 1.00 0.2316

All Block −0.57 Frank −0.56 Frank −0.50 Frank
1.48% 0.03% 3.69%

All Local −0.58 Frank −0.57 Frank −0.48 Frank
1.54% 0.03% 3.53%

and,

D0 =
d⋂
m=1

D0,m, D1 =
d⋂
m=1

D1,m.

It follows that for any Sp and any Sq−p

Lm ≤ P

((∣∣∣∣∣1n
n∑
i=1

Tm,j(Xi)

∣∣∣∣∣ > λ

2d − 1

)
∩D0 ∩D1

)
+ P

(
Dc
0

)
+ P

(
Dc
1

)
≤

m∑
m′=0

P

(∣∣∣∣∣ 1nj
nj∑
i=1

Zi(Sd−m, Sm−m′)

∣∣∣∣∣ > µ

)
+ P

(
Dc
0

)
+ P

(
Dc
1

)
where

µ = 2−j(m+m
′/2)
(

2n
δ log(n)

)m+m′
2 2j‖ψ ′‖−m

∞
(L+ 3)−1λ

(2d − 1)(m+ 1)Cbm/2cm
.
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Fig. A.5. DowJones/Ftse100uk: Block Thresholding Method (left) and Local Thresholding Method (right).

Table A.8
DowJones/Ftse100uk: distances between the benchmarks and the parametric families.

θ̂1 E1 θ̂2 E2 θ̂∞ E∞

Gaussian Block 0.30 0.0976 0.33 0.0202 0.20 0.4191
Gaussian Local 0.26 0.0699 0.32 0.0234 0.11 0.2785

Student Block (0.28, 8) 0.0755 (0.29, 8) 0.0127 (0.18, 11) 0.3027
Student Local (0.17, 12) 0.0846 (0.17, 6) 0.0265 (0.12,20) 0.3748

Clayton Block 0.40 0.1064 0.36 0.0318 0.26 0.4565
Clayton Local 0.31 0.0978 0.33 0.0401 0.11 0.3465

Frank Block 1.58 0.1094 1.88 0.0333 0.57 0.4366
Frank Local 1.38 0.0687 1.73 0.0401 0.79 0.2762

Gumbel Block 1.19 0.1081 1.17 0.0414 1.09 0.4427
Gumbel Local 1.18 0.0782 1.18 0.0282 1.06 0.3866

All Block (0.28, 8) Student (0.29, 8) Student (0.18, 11) Student
7.55% 1.15% 10.62%

All Local 1.38 Frank 0.32 Gaussian 0.79 Frank
6.86% 2.12% 19.56%

Table A.9
Estimation of the parameter θ in a parametric family. For each line, we have generated a sample of size n = 2000 of copula specified in the first column
and the parameter specified in the second one.This parameter is estimated by minimizing the empirical L1, L2, L∞ errors between the parametric copulas
and the non-parametric estimate. Each column specifies the estimated parameter and its standard error.

Copula Parameter θ̂1 θ̂2 θ̂∞

FGM 1 0.9240 (0.0609) 0.9029 (0.0604) 0.8690 (0.0794)

Normal 0 −0.0008 (0.0249) −0.0011 (0.0224) −0.0005 (0.0207)
Normal 0.5 0.4764 (0.0191) 0.4864 (0.0179) 0.4680 (0.0299)
Normal 0.9 0.8645 (0.0055) 0.8607 (0.0059) 0.8552 (0.0296)

Student 0.5 0.4988 (0.0438) 0.5066 (0.0292) 0.3612 (0.1011)
1 1.9100 (0.2862) 1.9900 (0.0995) 2.0200 (0.1400)

Clayton 0.8 0.7038 (0.0467) 0.7352 (0.0503) 0.5597 (0.1150)
Clayton 6 3.8244 (0.1641) 2.1972 (0.0345) 2.0040 (0.0000)

Frank 4 4.0000 (0.0000) 4.0000 (0.0000) 4.0000 (0.0000)

Gumbel 8.3 5.0648 (0.1161) 5.0040 (0.0000) 5.0040 (0.0000)
Gumbel 1.25 1.2257 (0.0271) 1.2262 (0.0307) 0.1237 (0.0010)
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Fix κ > 0 and take λ =
√
κ log(n)
n . Using Lemmas 1 and 2, we get

P(Dc
0) ∨ P(Dc

1) ≤ d(K0 ∨ K1)n
−δ (A.5)

for 2j ≤ (1/3) (2n/(δ log(n)))1/2. Since µ ≥ 2K3 2−j(d−m
′)/2, we apply Lemma 3 and we obtain

Lm ≤ 2
m∑
m′=0

exp
[
−K22−jn

(
µ2 ∧ µ21−j(d−m

′)/2
)]
+ d(K0 ∨ K1)n−δ ≤ Kn−δ

for

µ ≥

(
δ

K2

2j log(n)
n

)1/2
∨

(
δ

K2

2j(2+d−m
′)/2 log(n)
2n

)
. (A.6)

Let us restrict ourselves to the case:

2j ≤
(
n
log n

)1/d
.

Assuming that n and κ are large enough, the inequality (A.6) for µ is satisfied if, for anym′ = 0, . . .m

d ≥
2m+m′ − 1
m+m′

∨
2m+ d
m+m′ + 1

.

Since this condition is always satisfied by d ≥ 2, we obtain the announced result.
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