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a b s t r a c t

To estimate geometrically regular images in the white noise model and obtain an

adaptive near asymptotic minimaxity result, we consider a model selection based

bandlet estimator. This bandlet estimator combines the best basis selection behavior of

the model selection and the approximation properties of the bandlet dictionary. We

derive its near asymptotic minimaxity for geometrically regular images as an example

of model selection with general dictionary of orthogonal bases. This paper is thus also a

self-contained tutorial on model selection with orthogonal bases dictionary.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

A model selection based bandlet estimator has been
introduced by Peyré et al. [23] to reduce white noise
added to images having a geometrical regularity. This
estimator projects the observations on orthogonal bandlet
vectors selected in a dictionary of orthonormal bases. This
paper shows that the risk of this estimator is nearly
asymptotically minimax for geometrically regular images.
It is also a tutorial on estimation with general dictionary
of orthogonal bases by model selection. It explains with
details how to build a thresholding estimator in an
adaptively chosen ‘‘best’’ basis and analyzes its perfor-
mance with the model selection approach of Barron
et al. [3].

Section 2 describes the statistical setting of the white
noise model, and introduces the model of Ca geometri-
cally regular images. Images in this class, originally
ll rights reserved.

x1.fr (Ch. Dossal),
proposed by Korostelev and Tsybakov [15], are, roughly,
Ca (Hölder regularity a) outside a set of Ca curves in [0,1]2.
Korostelev and Tsybakov [15] prove that the minimax
quadratic risk over this class, for a Gaussian white noise of
variance s2, has an asymptotic decay of the order of
s2a=ðaþ1Þ. They show that the risk of any possible estima-
tor cannot decay faster than this rate uniformly for all
functions of this class and exhibit an estimator that
achieves this rate. Their estimator relies on the knowledge
of the regularity exponent a and on an explicit detection
of the contours, and is not stable relatively to any image
blurring. Later, Donoho [11] overcomes the detection
issue by replacing it with a well-posed optimization
problem. Nevertheless, both use a model of images with
sharp edges which limits their applications since most
image edges are not strict discontinuities. They are
blurred because of various diffraction effects which reg-
ularize discontinuities by unknown factors.

The model selection based bandlet estimator, which can
also be described as a thresholding estimator in a best
bandlet basis, does not have this restriction. It does not rely
on the detection of the precise localization of an edge but
only of a looser local direction of regularity. Furthermore,
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these directions of regularity are not estimated directly but
indirectly through a best orthogonal basis search algorithm
which does not require to know the regularity parameter
a. Section 3 gives a tutorial introduction of this type of
estimators for arbitrary dictionary. This generic class of
thresholding estimators in a best basis selected in a
dictionary of orthonormal bases has been already studied
by Donoho and Johnstone [12] and fits into the framework
of Barron et al. [3], [4,20]. This (self-contained) section
recalls the framework of these estimators and their theo-
retical performance. For the sake of completeness, a proof
of the main model selection result is given in Appendix.

Section 4 returns to the specific setting of image
processing and applies the results of the previous section
to geometric image estimation. The choice of the repre-
sentation (the choice of the dictionary of orthogonal
bases) becomes crucial and, after a brief description of
their construction, the use of bandlet bases is justified.
The paper is concluded with Theorem 3 which states the
adaptive near asymptotic minimaxity of the selection
model based bandlet estimator for geometrically regular
images.

2. Image estimation

2.1. White noise model and acquisition

During the digital acquisition process, a camera mea-
sures an analog image f with a filtering and sampling
process corrupted by some noise. More precisely, we will
denote the ‘‘noisy’’ measurement of a camera with N

pixels by Yfn
, where fn belongs to a family of N impulse

responses of the photo-sensors. Those ‘‘noisy’’ measure-
ments are often modeled as sums of ideal noiseless
measurements and Gaussian noises:

Yfn
¼/f ,fnSþsWfn

for 0rnoN

where ðWfn
Þ0rnoN is a centered Gaussian vector and s

is a known noise level parameter. When the family
ðfnÞ0rnoN is an orthonormal family, the Gaussian vector
ðWfn

Þ0rnoN is often assumed to be white; its components
are assumed independent. For a general family of impulse
responses ðfnÞ0rnoN , this assumption is relaxed and the
correlation between two measures is linked to the corre-
lation between the two corresponding impulse responses:
more precisely, the covariance matrix of the Gaussian
vector ðWfn

Þ0rnoN is assumed to be the following Gram
matrix ð/fn,fnuSÞ0rn,nurN .

This situation corresponds to the (classical) white
noise statistical model which is formally described as
the observation of a process Y that satisfies

dYx ¼ f ðxÞ dxþs dWx,

where Wx is now the Wiener process. This equation
means that one is able to observe a Gaussian field Yg

indexed by functions g 2 L2ð½0,1�2Þ of mean EðYgÞ ¼/f ,gS
and covariance E½YgYgu� ¼/g,guS. It generalizes the model
of the previous paragraph in which the Gaussian field Yg

can only be observed for functions g in the space VN

generated by the family of impulse responses ðfnÞ0rnoN .
Using a more abstract model that allows to state the
statistical problem in the continuous framework will be
important to consider asymptotics over the noise level s:
smaller noise level will require a better resolution for the
camera measurement process than larger one.

Indeed, this white noise model allows us to define for
any space VN spanned by some functions ffng0rnoN a
‘‘projection’’ PVN

Y of the same observation dY on VN .
When the family ffng0rnoN is orthonormal, PVN

can be
written as

PVN
Y ¼

XN�1

i ¼ 0

Yfn
fn

whereas the decomposition coefficients are slightly more
involved in the general case. Nevertheless, this projection
depends only on the space VN spanned by the functions
ffng0rnoN and not on the functions themselves. In the
following, we will work mainly in terms of spaces and
thus may assume, with no loss of generality, that
ffng0rnoN is an orthogonal family so that the decom-
position PVN

Y ¼
PN�1

i ¼ 0 Yfn
fn applies.

2.2. Minimax risk and geometrically regular images

We study the maximum risk of estimators for images f

in a given class with respect to s. Model classes are often
derived from classical regularity spaces (Ca spaces, Besov
spaces, etc.). This does not take into account the existence
of geometrically regular structures such as edges. This
paper uses a geometric image model appropriate for
edges, but not for textures, where images are considered
as piecewise regular functions with discontinuities along
regular curves in [0,1]2. This geometrical image model has
been proposed by Korostelev and Tsybakov [15] in their
seminal work on image estimation. It is used as a bench-
mark to estimate or approximate images having some
kind of geometric regularity [11,24]. An extension of this
model that incorporates a blurring kernel h has been
proposed by Le Pennec and Mallat [18] to model the
various diffraction effects. The resulting class of images,
the one studied in this paper, is the set of Ca geometrically
regular images specified by the following definition.

Definition 1. A function f 2 L2ð½0,1�2Þ is Ca geometrically
regular over [0,1]2 if
�
 f ¼ ef or f ¼ ef %h with ef 2 Ca
ðLÞ for L¼ ½0,1�2�

fCgg1rgrG,

�
 the blurring kernel h is Ca, compactly supported in
½�s,s�2 and JhJCa rs�ð2þaÞ,

�
 the edge curves Cg are Ca and do not intersect tangen-

tially if a41.

2.3. Edge based estimation

Korostelev and Tsybakov [15] have built an estimator
that is asymptotically minimax for geometrically regular
functions f, as long as there is no blurring and hence that
f ¼ ef . With a detection procedure, they partition the
image in regions where the image is either regular or
contains a ‘‘boundary fragment’’, a subpart of a single
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discontinuity curve. In each region, they use either an
estimator tailored to this ‘‘boundary fragments’’ or a
classical kernel estimator adapted to regular regions. This
yields a global estimate F of the image f . If the f is Ca

outside the boundaries and if the parametrization of the
curve is also Ca then there exists a constant C such that

8s,E ½Jf�FJ2
�rCs2a=ðaþ1Þ:

This rate of convergence achieves the asymptotic mini-
max rate for uniformly Ca functions and thus the one for
Ca geometrically regular functions that includes this class.
This means that sharp edges do not alter the rate of
asymptotic minimax risk. However, this estimator is not
adaptive relatively to the Hölder exponent a that must be
known in advance. Furthermore, it uses an edge detection
procedure that fails when the image is blurred or when
the discontinuity jumps are not sufficiently large.

Donoho [11] and Shukla et al. [24] reuse the ideas of
‘‘boundary fragment’’ under the name ‘‘horizon model’’ to
construct a piecewise polynomial approximation of images.
They derive efficient estimators optimized for a 2 ½1,2�. These
estimators use a recursive partition of the image domain in
dyadic squares, each square being split into two parts by an
edge curve that is a straight segment. Both optimize the
recursive partition and the choice of the straight edge
segment in each dyadic square by minimizing a global
function. This process leads to an asymptotically minimax
estimator up to a logarithmic factor which is adaptive
relatively to the Hölder exponent as long as a 2 ½1,2�.

Korostelev and Tsybakov [15] as well as Donoho [11]
and Shukla et al. [24] rely on the sharpness of image edges
in their estimators. In both cases, the estimator is chosen
amongst a family of images that are discontinuous across
parametrized edges, and these estimators are therefore
not appropriate when the image edges are blurred. We
will consider estimators that do not have this restriction:
they project the observation on adaptive subspaces in
which blurred as well as sharp edges are well represented.
They rely on two ingredients: the existence of bases in
which geometrical images can be efficiently approxi-
mated and the existence of a mechanism to select, from
the observation, a good basis and a good subset of
coefficients onto which it suffices to project the observa-
tion to obtain a good estimator. We focus first on the
second issue.

3. Projection estimator and model selection

The projection estimators we study are decomposed
into two steps. First, a linear projection reduces the
dimensionality of the problem by projecting the signal
in a finite dimensional space. This first projection is
typically performed by the digital acquisition device.
Then, a non-linear projection estimator refines this pro-
jector by reprojecting the resulting finite dimensional
observation in a space that is chosen depending upon
this observation. This non-linear projection is obtained
with a thresholding in a best basis selected from a
dictionary of orthonormal bases. Best basis algorithms
for noise removal have been introduced by Coifman and
Wickerhauser [9]. As recalled by Cand�es [5], their risks
have already been studied by Donoho and Johnstone [12]
and are a special case of the general framework of model
selection proposed by Birgé and Massart [4]. Note that
Kolaczyk and Nowak [14] have studied a similar problem
in a slightly different setting. We recall in this section the
framework of model selection and state a selection model
theorem (Theorem 1) that is the main statistical tool to
prove the performance on the model selection based
bandlet estimator. This section is intended as a self-
contained tutorial presentation of these best basis esti-
mators and their resulting risk upper bounds and contains
no new results. Nevertheless, a simple (novel) proof of the
main result with non-optimal constants is given in the
Appendix.

3.1. Approximation space VN and further projection

The first step of our estimators is a projection in a
finite dimension space VN spanned by an orthonormal
family ffng0rnoN . The choice of the dimension N and of
the space VN depends on the noise level s but does not
depend on the function f to be estimated. Assume for now
that VN is fixed and thus that we observe PVN

X. This
observation can be decomposed into PVN

f þsWVN
where

WVN
is a finite dimensional white noise on VN .

Our final estimator is a reprojection of this observation
PVN

Y onto a subspace M � VN which may (and will)
depend on the observation: the projection based estima-
tor PMPVN

Y ¼ PMX. The overall quadratic error can be
decomposed into three terms:

Jf�PMYJ2
¼ Jf�PVN

f J2
þJPVN

f�PMf J2
þs2JPMWJ2:

The first term is a bias term corresponding to the first
linear approximation error due to the projection on VN,
the second term is also a bias term which corresponds to
the non-linear approximation of PVN

f on M while the
third term is a ‘‘variance’’ term corresponding to the
contribution of the noise on M.

The dimension N of VN has to be chosen large enough
so that with high probability, for reasonable M,
Jf�PVN

f J2rJPVN
f�PMf J2

þJPMWJ2. From the practical
point of view, this means that the acquisition device
resolution is set so that the first linear approximation
error due to discretization is smaller than the second non-
linear noise related error. Engineers often set N so that
both terms are of the same order of magnitude, to limit
the cost in terms of storage and computations. In our
white noise setting, we will explain how to chose N

depending on s.
For a fixed VN , in order to obtain a small error, we need

to balance between the two remaining terms. A space M
of large dimension may reduce the second bias term but
will increase the variance term, a space M of small
dimension does the opposite. It is thus necessary to find
a trade-off between these two trends, and select a space
M to minimize the sum of those two terms.

3.2. Model selection in a dictionary of orthonormal bases

We consider a (not that) specific situation in which the
spaceM is spanned by some vectors from some orthonormal
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bases of VN . More precisely, let B¼ fgng0rnoN be an
orthonormal basis of VN , that may be different from ffng,
we consider spacesM spanned by a sub-family fgnk

g1rkrM

of M¼ dimðMÞ vectors and the projections of our observa-
tion on those spaces

PMY ¼
XM
k ¼ 1

Ygnk
gnk
:

Note that this projection, or more precisely its decomposition
in the basis ffng, can be computed easily from the decom-
position of PMY in the same basis.

Instead of choosing a specific single orthonormal basis
B, we define a dictionary DN which is a collection of
orthonormal bases in which we choose adaptively the
basis used. Note that some bases of DN may have vectors
in common. This dictionary can thus also be viewed as set
fgng of KN ZN different vectors, that are regrouped to form
many different orthonormal bases. Any collection of M

vectors from the same orthogonal basis B 2 DN generates
a space M of dimension M that defines a possible
estimator PMY of f . Let CN ¼ fMggGN

be the family of all
such projection spaces. Ideally we would like to find the
space M 2 CN which minimizes Jf�PMYJ. We want thus
to choose a ‘‘best’’ modelM amongst a collection; that is
we want to perform a model selection task.

3.3. Oracle model

As a projection estimator yields an estimation error

Jf�PMYJ2
¼ Jf�PVN

J2
þJPVN

�PMf J2
þJPMWJ2

¼ Jf�PMf J2
þJPMWJ2,

the expected error of such an estimator is given by

E½Jf�PMYJ2
� ¼ Jf�PMf J2

þs2dimðMÞ:

The best subspace for this criterion is the one that realizes
the best trade-off between the approximation error
Jf�PMf J2 and the complexity of the models measured
by s2dimðMÞ.

This expected error cannot be computed in practice

since we have a single realization of dY (or of PVN
Y). To

(re)derive the classical model selection procedure of Birgé
and Massart [4], we first slightly modify our problem by
searching for a subspaceM such that the estimation error
obtained by projecting PVN

Y on this subspace is small with

an overwhelming probability. As in all model selection
papers, we use an upper bound of the estimation error
obtained from an upper bound of the energy of the noise
projected onM. Each of the KN projections of the noise on
the KN different vectors in the bases of the dictionary DN

is thus Wgk
gk. Its law is a Gaussian random variable of

variance s2 along the vector gk. A standard large deviation
result proves that the norms of KN such Gaussian random

variables are bounded simultaneously by T ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logKN

p
with a probability that tends to 1 when N increases. Since

the noise energy projected in M is the sum of dimðMÞ
squared dictionary noise coefficients, we get

JPMWJ2rdimðMÞT2. It results that

Jf�PMYJ2rJf�PMf J2
þdimðMÞT2 ð1Þ
over all subspacesM with a probability that tends to 1 as
N increases. The estimation error is small if M is a space

of small dimension dimðMÞ which yields a small approx-

imation error Jf�PMf J. We denote by MO 2 CN the space
that minimizes the estimation error upper bound (1)

MO ¼ argmin
M2CN

ðJf�PMf J2
þdimðMÞT2Þ:

Note that this optimal space cannot be determined from

the observation Y since f is unknown. It is called the
oracle space, hence the O in the notation, to remind
this fact.

3.4. Penalized empirical error

To obtain an estimator, it is thus necessary to replace
this oracle space by a ‘‘best’’ space obtained only from the
observation PVN

Y that yields (hopefully) a small estima-
tion error. A first step toward this goal is to notice that
since all the spaces M are included into VN , minimizing

Jf�PMf J2
þdimðMÞT2

is equivalent to minimizing

JPVN
f�PMf J2

þdimðMÞT2:

A second step is to consider the crude estimation of
JPVN

f�PMf J2 given by the empirical norm

JPVN
Y�PMYJ2

¼ JPVN
YJ2
�JPMYJ2:

This may seem naive because estimating JPVN
f�PMf J2

with JPVN
Y�PMYJ2 yields a large error

JPVN
Y�PMYJ2

�JPVN
f�PMf J2

¼ ðJPVN
YJ2
�JPVN

f J2
ÞþðJPMf J2

�JPMYJ2
Þ,

whose expected value is ðN�dimðMÞÞs2, with typically
dimðMÞ5N. However, most of this error is in the first
term on the right-hand side, which has no effect on the
choice of space M. This choice depends only upon the
second term and is thus only influenced by noise pro-
jected in the space M of lower dimension dimðMÞ. The
bias and the fluctuation of this term, and thus the choice
of the basis, are controlled by increasing the parameter T.

We define the best empirical projection estimator P bM
as the estimator that minimizes the resulting empirical
penalized risk:cM ¼ arg min

M2CN

JPVN
Y�PMYJ2

þdimðMÞT2: ð2Þ

3.5. Thresholding in a best basis

Finding the best estimator which minimizes (2) may
seem computationally untractable because the number of
possible spaces M 2 CN is typically an exponential func-
tion of the number KN of vectors in DN . We show that this
best estimator may however be found with a thresholding
in a best basis.

Suppose that we impose that M are generated by a
subset of vectors from a basis B 2 DN . The following
(classical) lemma proves that among all such spaces, the
best projection estimator is obtained with a thresholding
at T.
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Lemma 1. Among all spaces M that are generated by a

subset of vectors of an orthonormal basis B¼ fgng0rnoN of

VN , the estimator which minimizes JPVN
Y�PMYJ2

þ

dimðMÞT2 is the thresholding estimator

PMB,Y ,T
Y ¼

X
n,j/Y ,gnSj4T

/Y ,gnSgn: ð3Þ

Proof. Let M¼ Spanfgngn2I with I � ½0,NÞ, as B is an
orthonormal basis,

JY�PMYJ2
þdimðMÞT2 ¼

X
n=2I

j/Y ,gmSj2þ
X
n2I

T2

which is minimal if I¼ fn,j/Y ,gnSj24T2g. &

The thresholding estimator (3) projects Y in the space
MB,Y ,T generated by the vectors fgmgj/Y ,gmSj4T , the vectors
of B which produce coefficients above threshold. This
lemma implies that best projection estimators are neces-
sarily thresholding estimators in some basis. Minimizing
JPVN

Y�PMYJ2
þdimðMÞT2 over M 2 C is thus equivalent

to finding the basis bB of VN which minimizes the thresh-
olding penalized empirical risk:bB ¼ argmin

B2DN

JPVN
Y�PMB,Y ,T

YJ2
þdimðMÞT2:

The best space which minimizes the empirical penalized
risk in (2) is derived from a thresholding in the best basiscM ¼MbB ,T

.
The following theorem, similar to the one obtained

first by Barron et al. [3], proves that the thresholding
estimation error in the best basis is bounded by the
estimation error by projecting in the oracle space MO,
up to a multiplicative factor.

Theorem 1. There exists an absolute function l0ðKÞZ
ffiffiffi
2
p

and some absolute constants e40 and k40 such that if we

denote CN ¼ fMggG the family of projection spaces generated

by some vectors in an orthogonal basis of a dictionary DN

and denote KN be the number of different vectors in DN . Then

for any s40, if we let T ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðKNÞ

p
s with lZl0ðKNÞ, then

for any f 2 L2, the thresholding estimator F ¼ PMbB ,X,T

Y in the

best basisbB ¼ argmin
B2DN

JPVN
Y�PMB,Y ,T

YJ2
þdimðMB,Y ,T ÞT

2

satisfies

E½Jf�FJ2
�r ð1þeÞ min

M2CN

Jf�PMf J2
þdimðMÞT2

� �
þ

k
KN

s2:

For the sake of completion, we propose in Appendix
a simple proof of Theorem 1, inspired by Birgé and
Massart [4], which requires only a concentration lemma
for the norm of the noise in all the subspaces spanned by
the KN generators of DN but with worse constants:

l0ðKÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32þ8=logðKÞ

p
, e¼ 3 and k¼ 64. Note that this

theorem can be deduced from Massart [20] with different

(better) constant (and for roughly l0ðKÞ4
ffiffiffi
2
p

) using a
more complex proof based on subtle Talagrand’s inequal-

ities. It results that any bound on minM2CN
Jf�PMf J2

þ

dimðMÞT2 gives a bound on the risk of the best basis
estimator F.
To obtain a computational estimator, the minimizationbB ¼ argmin
B2DN

JPVN
Y�PMB,Y ,T

YJ2
þdimðMB,Y ,T ÞT

2

should be performed with a number of operations typi-
cally proportional to the number KN of vectors in the
dictionary. This requires to construct appropriate diction-
aries of orthogonal bases. Examples of such dictionaries
have been proposed by Coifman and Wickerhauser [9]
with wavelet packets or by Coifman and Meyer [8] with
local cosine bases for signals having localized time–
frequency structures. Next section reviews some possible
dictionaries for images and recalls the construction of the
dictionary of bandlet orthogonal bases that is adapted to
the estimation of geometrically regular images.

4. Best basis image estimation and bandlets

4.1. Estimation in a single basis

When the dictionary DN is reduced to a single basis B,
and there is thus no basis choice, Theorem 1 clearly
applies and reduces to the classical thresholding theorem
of Donoho and Johnstone [13]. The corresponding esti-
mator is thus the classical thresholding estimator whose
quadratic risk satisfies

E½Jf�PMB,Y ,T
YJ2
�rð1þeÞ min

M2CN

Jf�PMf J2
þdimðMÞT2

� �
þ
k
N
s2:

It remains ‘‘only’’ to choose which basis to use and how to
define the space VN with respect to s.

Wavelet bases provide a first family of estimators used
commonly in image processing. Such a two dimensional
wavelet basis is constructed from two real functions, a one
dimensional wavelet c and a corresponding one dimensional
scaling function f, which are both dilated and translated:

cj,kðxÞ ¼
1

2j=2
c

x�2jk

2j

 !
and fj,kðxÞ ¼

1

2j=2
f

x�2jk

2j

 !
:

Note that the index j goes to �1 when the wavelet scale 2j

decreases. For a suitable choice of c and f, the family
fcj,kðxÞgj,k is an orthogonal basis of L2([0,1]) and the following
family constructed by tensorization

cV
j,kðxÞ ¼cV

j,kðx1,x2Þ ¼fj,k1
ðx1Þcj,k2

ðx2Þ,

cH
j,kðxÞ ¼cH

j,kðx1,x2Þ ¼cj,k1
ðx1Þfj,k2

ðx2Þ,

cD
j,kðxÞ ¼cD

j,kðx1,x2Þ ¼cj,k1
ðx1Þcj,k2

ðx2Þ

8>>><>>>:
9>>>=>>>;
ðj,k1 ,k2Þ

is an orthonormal basis of L2([0,1]2). Furthermore, each space

Vj ¼ Spanffj,k1
ðx1Þfj,k2

ðx2Þgk1 ,k2
,

called approximation space of scale 2j, admits fco
l,kgo,lZ j,k1 ,k2

as an orthogonal basis. The approximation space VN of the
previous section coincides with the classical wavelet approx-

imation space Vj when N¼ 2�j=2.
A classical approximation result ensures that for any

function f 2 Ca, as soon as the wavelet has more than
bacþ1 vanishing moments, there is a constant C such
that, for any T, minM2CN

JPVN
f�PMf J2

þdimðMÞ T2r
CðT2Þ

a=ðaþ1Þ, and, for any N, JPVN
f�f J2rCN�a. For
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N¼ 2�j=2 with s2 ¼ ½2j,2jþ1
�, Theorem 1 thus implies

E½Jf�FJ2
�rCðjlogðsÞjs2Þ

a=ðaþ1Þ:

This is up to the logarithmic term the best possible rate
for Ca functions. Unfortunately, wavelets bases do not
provide such an optimal representation for the Ca geome-
trically regular functions specified by Definition 1. Wave-
lets fail to capture the geometrical regularity of edges:
near them, many wavelet coefficients remain large. As
explained in Mallat [19], by noticing that those edges
contribute at scale 2j to O(2� j) coefficients of order O(2j/2),
one verifies that the rate of convergence in a wavelet basis
decays like ðjlogðsÞjs2Þ

1=2, which is far from the asympto-
tically minimax rate.

4.2. Estimation in a fixed frame

No known basis seems able to capture the geometric
regularity; however, a remarkably efficient representation
was introduced by Cand�es and Donoho [6]. Their curvelets
are not isotropic like wavelets but are more elongated
along a preferential direction and have two vanishing
moments along this direction. They are dilated and
translated like wavelets but they are also rotated. The
resulting family of curvelets C¼ fcngn is not a basis of
L2([0,1]2) but a tight normalized frame of L2ðR2

Þ. This
means that for any f 2 L2ð½0,1�2ÞX
cn2C
j/f ,cnSj2 ¼ Jf J2

which implies

f ¼
X
cn2C

/f ,cnScn:

Although this is not an orthonormal basis, the results
of Section 3 can be extended to this setting by replacing
the thresholding operator by the search of the space M
spanned by a subset of ðcnÞ0rnoN , which spans VN, that
minimizes

JPVN
Y�PMYJ2

þT2dimðMÞ

with N¼ s�1=2. The error rate for a Ca geometrically
regular function with a 2 ½1,2� is

E
X

n

Jf�FJ2

" #
rCðjlogsjs2Þ

a=ðaþ1Þ

which is up to the logarithmic factor of the minimax rate.
Unfortunately, computing this estimator is complex as it
requires to compute all the projections PMY which is not
an easy task. This difficulty may be overcome by working
in the coefficient domain. Projecting the data on the first
N¼ s�1=2 curvelets with significant intersection with the
unit square and thresholding the remaining coefficients
with a threshold l¼

ffiffiffiffiffiffiffiffiffiffiffi
logN

p
s yields an estimator g/F,cnS

of the coefficients /f ,cnS that satisfies

E
X

n

ð/f ,cnS�/F,cnSÞ
2

" #
rCðjlogsjs2Þ

a=ðaþ1Þ

with a constant C that depends only on f. Using the
inverse frame operator [7], one obtains an estimator F

not necessarily equal to
P

n
g/F,cnScn that nevertheless
satisfies

E
X

n

Jf�FJ2

" #
rCðjlogsjs2Þ

a=ðaþ1Þ

for Ca geometrically regular functions with a 2 ½1,2�.
While the two error bounds of those two estimators

are similar, they are deduced from two different kinds of
control. The first one is obtained by a synthesis control: a
control on the error of the best approximation with a
given number of coefficients. The second one is obtained
by an analysis control: a control on the number of
coefficients above a threshold. Although the first (synth-
esis) approach and the second (analysis) approach are
equivalent for orthonormal basis, they are very different
for frames.

Other fixed representations, such as the shearlets [16],
achieve this optimal rate for a¼ 2 by being able to
approximate C2 curve with anisotropic elements approxi-
mately aligned with their tangent and having two vanish-
ing moments. Unfortunately, no fixed representation is
known to achieve a similar result for a larger than 2; more
adaptivity seems required.
4.3. Dictionary of orthogonal bandlet bases

To cope with higher regularity, Le Pennec and Mal-
lat [17,18] and Peyré and Mallat [22], inspired by the
curvelets and the shearlets that are optimal for C2

geometrically regular functions, have searched basis ele-
ments with a more ‘‘curvy’’ geometry and more aniso-
tropy to follow Ca edges efficiently, and with more
vanishing moments. Arandiga et al. [2] have proposed a
very different approach: a ENO-EA wavelet type lifting
scheme in which the ‘‘wavelets’’ are defined only through
the computation of the corresponding coefficients.
Although well understood in the noiseless case [21], the
mathematical analysis of those schemes in the presence
of noise remains a challenge.

We will thus use the bandlet bases of Peyré and
Mallat [22] that are orthogonal bases whose elements
have the required anisotropy, directionality and vanishing
moments. Their construction is based on the observation
that even if the wavelet coefficients are large in the
neighborhood of an edge, these wavelets coefficients are
regular along the direction of the edge as illustrated
by Fig. 1.

To capture this geometric regularity, the key tool is a
local orthogonal transform, inspired by the work of
Alpert [1], that combines locally the wavelets along the
direction of regularity, represented by arrows in the
rightmost image of Fig. 1, to produce a new orthogonal
basis, a bandlet basis. By construction, the bandlets are
elongated along the direction of regularity and have
vanishing moments along this direction. The (possibly
large) wavelet coefficients are thus locally recombined
along this direction, yielding more coefficients of small
amplitude than before.

More precisely, the construction of a bandlet basis of a
wavelet multiresolution space Vj ¼ Spanffj,k1 ,k2

gk1 ,k2
starts



Fig. 1. (a) A geometrically regular image, (b) the associated wavelet coefficients, (c) a close-up of wavelet coefficients in a detail space Wo
j that shows their

remaining regularity, (d) the geometrical flow adapted to this square of coefficients, here it is vertically constant and parametrized by a polynomial curve g.

Fig. 2. (a) A geometrically regular image, (b) the corresponding wavelet coefficients, (c) the quadtree associated to the segmentation of a detail space Wo
j .

In each square where the image is not uniformly regular, the flow is shown.

Ch. Dossal et al. / Signal Processing 91 (2011) 2743–2753 2749
by decomposing this space into detail wavelet spaces

Vj ¼ "
o,l4 j

Wo
l with Wo

l ¼ Spanfco
l,k1 ,k2
gk1 ,k2

:

For any level l and orientation o, the detail space Wo
l is a

space of dimension ð2�l
Þ
2. Its coefficients are recombined

using the Alpert transform induced by some directions of
regularity. This geometry is specified by a local geometric
flow, a vector field meant to follow the geometric direction of
regularity. This geometric flow is further constrained to have
a specific structure as illustrated in Fig. 2. It is structured by a
partition into dyadic squares in which the flow, if it exists, is
vertically or horizontally constant. In each square of the
partition, the flow being thus easily parametrized by its
tangent.

For each choice of geometric flow, a specific orthogona-
lization process [22] yields an orthogonal basis of bandlets
that have vanishing moments along the direction of the
geometric flow. This geometry should obviously be adapted
to each image: the partition and the flow direction should
match the image structures. This choice of geometry can be
seen as an ill-posed problem of estimation of the edges or of
the direction of regularity. To avoid this issue, the problem
is recasted as a best basis search in a dictionary. The
geometry chosen is the one of the best basis.

The first step is to define a dictionaryD
ð2�j
Þ
2 of orthogonal

bandlet bases of Vj or equivalently a dictionary of possible
geometric flows. Obviously this dictionary should be finite
and this requires a discretization of the geometry. As proved
by Peyré and Mallat [22], this is not an issue: the flow does
not have to follow exactly the direction of regularity but only
up to a sufficient known precision. It is indeed sufficient to
parametrize the flow in any dyadic square by the tangent of
a polynomial of degree p (the number of vanishing moments
of the wavelets). The coefficients of this polynomial can be
further quantized. The resulting family of geometric flow in a
square is of size O(2� jp).

A basis of the dictionary D
ð2�j
Þ
2 is thus specified by a set

of dyadic squares partitions for each detail spaces Wo
l , l4 j,

and, for each square of the partition, a flow parametrized
by a direction and one of these O(2� jp) polynomials. The
number of bases in the dictionary D

ð2�j
Þ
2 grows exponen-

tially with 2� j, but the total number of different bandlets
K
ð2�j
Þ
2 grows only polynomially like O(2� j(p+4)). Indeed the

bandlets in a given dyadic square with a given geometry
are reused in numerous bases. The total number of
bandlets in the dictionary is thus bounded by the sum
over all O(2�2j) dyadic squares and all O(2� jp)) choices for
the flow of the number of bandlets in the square. Noticing
that ð2�j

Þ
2 is a rough bound of the number of bandlets in

any subspaces of Vj, we obtain the existence of a constant
CK such that 2�jðpþ4ÞrK

ð2�j
Þ
2 r CK 2�jðpþ4Þ.

4.4. Approximation in bandlet dictionaries

The key property of the bandlet basis dictionary is that it
provides an asymptotically optimal representation of Ca

geometrically regular functions. Indeed Peyré and Mallat [22]
prove:

Theorem 2. Let aop where p in the number of wavelet

vanishing moments, for any f Ca geometrically regular

function, there exists a real number C such that for any

T40 and 2jrT

min
B2D

ð2�j Þ2

Jf�PMB,f ,T
f J2
þdimðMB,f ,T ÞT

2rCT2a=ðaþ1Þ, ð4Þ
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where the subspace MB,f ,T is the space spanned by the

vectors of B whose inner product with f is larger than T.

This theorem gives the kind of control we require
in Theorem 1.

For practical applications the possibility to compute
efficiently the above minimization is as important as the

bound CT2a=ðaþ1Þ itself. It turns out that a fast algorithm can

be used to find the best basis that minimizes Jf�PMB,f ,T
f J2
þ

dimðMB,f ,T ÞT
2 or equivalently JPVj

f�PMB,f ,T
f J2
þdim

ðMB,f ,T ÞT
2. We use first the additive structure with respect

to the subband Wo
l of this ‘‘cost’’ JPVj

f�PMB,f ,T
f J2
þ

dimðMB,f ,T ÞT
2 to split the minimization into several inde-

pendent minimizations on each subband. A bottom-top fast
optimization of the geometry (partition and flow) similar to
the one proposed by Coifman and Wickerhauser [9], and
Donoho [10] can be performed on each subband thanks to
two observations. Firstly, for a given dyadic square, the
limited number of possible flows is such that the best flow
can be obtained with a simple brute force exploration.
Secondly, the hierarchical tree structure of the partition and
the additivity of the cost function with respect to the
partition implies that the best partition of a given dyadic
square is either itself or the union of the best partitions of its
four dyadic subsquares. This leads to a bottom up optimiza-
tion algorithm once the best flow has been found for every
dyadic squares. Note that this algorithm is adaptive with
respect to a: it does not require the knowledge of the
regularity parameter to be performed.

More precisely, the optimization algorithm goes as
follows. The brute force search of the best flow is conducted
independently over all dyadic squares and all detail spaces
with a total complexity of order O(2� j(p+4)). This yields a
value of the penalized criterion for each dyadic squares. It
remains now to find the best partition. We proceed in a
bottom up fashion. The best partition with squares of width
smaller than 2j+1 is obtained from the best partition with
squares of width smaller than 2j: inside each dyadic square
of width 2j+1 the best partition is either the partition
obtained so far or the considered square. This choice is
made according to the cost computed so far. Remark that
the initialization is straightforward as the best partition
with square of size 1 is obviously the full partition. The
complexity of this best partition search is of order O(2�2j)
and thus the complexity of the best basis is driven by the
best flow search whose complexity is of order O(2� j(p+4)),
which nevertheless remains polynomial in 2� j.

4.5. Bandlet estimators

Estimating the edges is a complex task on blurred
function and becomes even much harder in the presence
of noise. Fortunately, the bandlet estimator proposed by
Peyré et al. [23] do not rely on such a detection process.
The chosen geometry is obtained with the best basis
selection of the previous section. This allows one to select
an efficient basis even in the noisy setting.

Indeed, combining the bandlet approximation result
of Theorem 2 with the model selection results of Theorem
1 proves that the selection model based bandlet estimator is
near asymptotically minimax for Ca geometrically regular
images.

For a given noise level s, one has to select a dimension
N¼ ð2�j

Þ
2 and a threshold T. The best basis algorithm selects

then the bandlet basis bB amongst DN ¼Dð2�j
Þ
2 that mini-

mizes

JPVN
Y�PMB,Y ,T

YJ2
þT2dimðMB,Y ,T Þ

and the model selection based estimate is F ¼ PMB,Y ,T
Y . We

should now specify the choice of N¼ ð2�j
Þ
2 and T in order to

be able to use Theorems 1 and 2 to obtain the near
asymptotic minimaxity of the estimator. On the one hand,
the dimension N should be chosen large enough so that the

unknown linear approximation error Jf�PVN
J2 is small. On

the other hand, the dimension N should not be too large so
that the total number of bandlets KN, which satisfiesffiffiffiffi

N
p ðpþ4Þ

rKN rCK

ffiffiffiffi
N
p ðpþ4Þ

, imposing a lower bound on the
value of the threshold remains small. For the sake of
simplicity, as we consider an asymptotic behavior, we
assume that s is smaller than 1/4. This implies that it exists

jo0 such that s 2 ð2j�1,2j
� The following theorem proves

that choosing N=2�2j and T ¼ el ffiffiffiffiffiffiffiffiffiffiffiffiffi
jlogsj

p
s with el large

enough yields a nearly asymptotically minimax estimator.

Theorem 3. Let aop where p is the number of wavelet

vanishing moments and let K0 2 N
� andelZ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðpþ4Þ
p

supK ZK0
l0ðKÞ.For any Ca geometrically regu-

lar function f, there exists C40 such that for any

srminð14,maxðCK ,K0=2Þ�1=ðpþ4Þ
Þ,

if we let N=2�2j with j such that s 2 ð2j�1,2j
� and T ¼ elffiffiffiffiffiffiffiffiffiffiffiffiffi

jlogsj
p

s, the estimator F ¼ PMbB ,Y ,T

Y obtained by threshold-

ing PVN
Y with a threshold T in the basis bB of DN that

minimizes

JPVN
Y�PMB,Y ,T

YJ2
þT2dimðMB,Y ,T Þ

satisfies

E½Jf�FJ2
�rCðjlogsjs2Þ

a=ðaþ1Þ:

Theorem 3 is a direct consequence of Theorems 1 and 2.

Proof. For any s 2 ð2j�1,2j
�, observe that 2�jðpþ4ÞrKN ¼

K
ð2�j
Þ
2 rCK 2�jðpþ4Þ and thus ð2sÞ�ðpþ4ÞrKN rCKs�ðpþ4Þ:

The restriction on s further implies then that KN ZK0

and KN rs�2ðpþ4Þ. As elZ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðpþ4Þ

p
supK ZK0

l0ðKÞ, T ¼ elffiffiffiffiffiffiffiffiffiffiffiffiffi
jlogsj

p
sZl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðKNÞ

p
s with lZl0ðKNÞ so that Theorem

1 applies. This yields

E½Jf�FJ2
�r ð1þeÞmin

M2CN

ðJf�PMf J2
þT2dimðMÞÞþ k

KN
s2: ð5Þ

Now as TZ2j, Theorem 2 applies and there is a constant C

independent of T such that

min
M2CN

ðJf�PMf J2
þT2dimðMÞÞrCðT2Þ

a=ðaþ1Þ:

Plugging this bound into (5) gives the result. &

The estimate F ¼ PMbB ,T

Y is computed efficiently by the
same fast algorithm used in the approximation setting
without requiring the knowledge of the regularity
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parameter a. The model selection based bandlet estimator
is thus a tractable adaptive estimator that attains, up to
the logarithmic term, the best possible asymptotic mini-
max risk decay for Ca geometrically regular functions.
Table 1
PSNR for the wavelet, curvelet and bandlet estimators for a geometrical

image (Polygons given in Fig. 3) and three classical images (Lena,

Barbara and Peppers) with a noise level of 22 dB.

Image Noise Wavelet Curvelet Bandlet

Polygons 22 32.73 32.36 34.56

Lena 22 28.15 28.29 28.7

Barbara 22 26.57 27.49 28.14

Peppers 22 27.85 27.74 28.49

lanigirO

Wavelets Curvele

lanigirO

Wavelets Curvele

Fig. 3. Visual comparison of t
Although Theorem 3 applies only to Ca geometrically
regular functions, one can use the bandlet estimator with
many kinds of images. Indeed for any function for which a
theorem similar to Theorem 2 exists, the proof of Theorem
3 yields a control on the estimation risk. An important
case is the Besov bodies. As amongst the bandlet bases
there is the classical wavelet basis, any Besov function can
be approximated optimally in this specific ‘‘bandlet’’ basis.
The bandlet estimate will thus provide, up to a logarithmic
term, an optimal asymptotic minimax rate.

To illustrate the good numerical behavior of the bandlet
estimator, we conclude this article by some experiments
extracted from [23] and completed by a comparison with a
(translation invariant) curvelet estimator. Table 1 shows the
improvement due to the bandlet representation by
ysioN

ts Bandlets

ysioN

ts Bandlets

he different estimators.
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comparing the PSNR for an optimized thresholding method
in a wavelet representation, a curvelet representation and a
bandlet representation. As expected, the bandlet estimator
yields the best results. This quantitative improvement trans-
lates into a better visual quality as illustrated in Fig. 3. Both
curvelets and bandlets preserve much more geometric struc-
tures than wavelets. Curvelets are even better than bandlets
to preserve the geometry of true edges but at the price of
introducing some geometric artifacts mostly parallel to true
edges, as visible in the Polygons example, but also in random
direction due to noise shaping, as visible in the top part of
Lena’s hat. This effect is nevertheless less visible in natural
images than in artificial ones because of texture masking
effect.
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Appendix A. Proof of Theorem 1

Concentration inequalities are at the core of all selection
model estimators. Essentially, the penalty should dominate
the random fluctuation of the minimized quantity. The key
lemma, Lemma 2, uses a concentration inequality for Gaus-
sian variable to ensure that, with high probability, the noise
energy is small simultaneously in all the subspaces MI

spanned by a subset I of the KN different vectors, denoted
by gk, of DN .

Lemma 2. For all uZ0, with a probability greater than or

equal to 1�2=KNe�u,

8I � f1, . . . ,KNg and MI ¼ Spanfgkgk2I ,

JPMI
WJr

ffiffiffiffiffiffi
MI

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4logðKNÞdimðMIÞþ2u

p
where dimðMIÞ is the dimension of MI .

Proof. The key ingredient of this proof is a concentration
inequality. Tsirelson’s Lemma [25] implies that for any 1-
Lipschitz function f : Cn-C (jfðxÞ�fðyÞjrJx�yJ) if W is
a Gaussian standard white noise in Cn then

PffðWÞZE½fðWÞ�þtgre�t2=2:

For any space M, f/JPMf J is 1-Lipschitz. Note that one
can first project f into the finite dimensional space VN

without modifying the norm. We can thus apply Tsirel-

son’s Lemma with t¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4logðKNÞdimðMÞþ2u

p
and obtain

PfJPMWJZE½JPMWJ�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4logðKNÞdimðMÞþ2u

p
grK�2dimðMÞ

N e�u:

Now as E½JPMWJ�rðE½JPMWJ2
�Þ

1=2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðMÞ

p
, one

derives

PfJPMWJZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðMÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4logðKNÞdimðMÞþ2u

p
g

rK�2dimðMÞ
N e�u:
Now

Pf(I � f1, . . . ,KNg,JPMI
WJZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðMIÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4logðKNÞdimðMIÞþ2u

p
g

r
X

I�f1,...,KNg

PfJPMI
WJZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðMIÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4logðKNÞdimðMIÞþ2u

p
g

r
X

I�f1,...,KNg

K�2dimðMIÞ

N e�u

r
XKN

d ¼ 1

KN

d

� �
K�2d

N e�ur
XKN

d ¼ 1

K�d
N e�u

r
K�1

N

1�K�1
N

e�u

and thus

Pf(I � f1, . . . ,KNg,JPMI
WJZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðMIÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4logðKNÞdimðMIÞþ2u

p
gr

2

KN
e�u: &

The proof of Theorem 1 follows from the definition of the
best basis, the oracle subspace and the previous lemma.

Proof of Theorem 1. Recall that PVN
Y ¼ PVN

f þsPVN
W 2

VN with PVN
W a Gaussian white noise. By construction, the

thresholding estimate is PMcB,Y ,T

Y where

bB ¼ argmin
B2DN

JPVN
Y�PMB,Y ,T

YJ2
þdimðMB,Y ,T ÞT

2:

To simplify the notation, we denote by cM and dimðcMÞ
the corresponding space and its dimension.

Denote now dimðM0Þ the dimension of the oracle sub-

space MO that has been defined as the minimizer of

JPVN
f�PMf J2

þdimðMÞ T2:

By construction,

JPVN
Y�P bMYJ2

þl2logðKNÞs2dimðcMÞ
rJPVN

Y�PMO
f J2
þl2logðKNÞs2dimðM0Þ:

Using

JPVN
Y�P bMYJ2

¼ JPVN
Y�PVN

f J2
þJPVN

f�P bMYJ2

þ2/PVN
Y�PVN

f ,PVN
f�P bMYS

and a similar equality for JPVN
Y�PMO

f J2, one obtains

JPVN
f�P bMYJ2

þl2logðKNÞs2dimðcMÞ
rJPVN

f�PMO
f J2
þl2logðKNÞs2dimðM0Þ

þ2/PVN
Y�PVN

f ,P bMY�PMO
fS

One should now focus on the bound on the scalar

product:

j2/PVN
Y�PVN

f ,P bMY�PMO
fSj

¼ j2/sP bMþMO

W ,P bMY�PMO
fSj

r2sJP bMþMO

WJðJP bMY�PVN
f JþJPVN

f�PMO
f JÞ
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and, using Lemma 2, with a probability greater than or

equal to 1�ð2=KNÞe
�u

r2sð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðcMÞþdimðM0Þ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4logðKNÞðdimðcMÞþdimðM0ÞÞþ2u

q
Þ

�ðJP bMY�PVN
f JþJPVN

f�PMO
f JÞ

applying 2xyrb�2x2þb2y2 successively with b¼ 1
2 and 1

leads to

j2/PVN
Y�PVN

f ,P bMY�PMO
fSj

r ð12Þ
�22s2ðdimðcMÞþdimðM0Þ

þ4logðKNÞðdimðcMÞþdimðM0ÞÞþ2uÞ

þð12Þ
22ðJP bMY�PVN

f J2
þJPVN

f�PMO
f J2
Þ:

Inserting this bound into

JPVN
f�P bMYJ2

þl2logðKNÞs2dimðcMÞ
rJPVN

f�PMO
f J2
þl2logðKNÞs2dimðM0Þ

þj2/PVN
Y�PVN

f ,P bMY�PMO
fSj

yields

1
2 JPVN

f�P bMYJ2r3
2JPVN

f�PMO
f J2
þs2ðl2logðKNÞ

þ8ð1þ4logðKNÞÞÞdimðM0Þþs2ð8ð1þ4logðKNÞÞ

�l2logðKNÞÞdimðcMÞþ16s2u

So that if l2
Z32þ8=logðKNÞ

JPVN
f�P bMYJ2r3JPVN

f�PMO
f J2

þ4s2l2logðKNÞdimðM0Þþ32s2u

which implies

JPVN
f�P bMYJ2r4ðJPVN

f�PMO
f J2

þs2l2logðKNÞdimðM0ÞÞþ32s2u,

where this result holds with probability greater than or

equal to 1�ð2=KNÞe
�u.

Recalling that this is valid for all uZ0, one has

PfJPVN
f�P bMYJ2

�4ðJPVN
f�PMO

f J2
þs2l2logðKNÞdimðM0ÞÞ

Z32s2ugr
2

KN
e�u

which implies by integration over u

E½JPVN
f�P bMYJ2

�4ðJPVN
f�PMO
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that is the bound of Theorem 1
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f J2 which can be added on both sides of the

inequality. &
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