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Abstract Aggregating estimators using exponential weights depending on their
risk appears optimal in expectation but not in probability. We use here a slight
overpenalization to obtain oracle inequality in probability for such an explicit
aggregation procedure. We focus on the fixed design regression framework and
the aggregation of linear estimators and obtain results for a large family of linear
estimators under a non-necessarily independent sub-Gaussian noise assumptions.

1 Introduction

We consider here a classical fixed design regression model

∀i ∈ {1, . . . , n}, Yi = f0(xi) + Wi

with f0 an unknown function, xi the fixed design points, and W = (Wi)i≤n a
centered sub-Gaussian noise. We assume that we have at hand a family of linear
estimate {f̂t (Y ) = AtY |At ∈ S +

n (R), bt ∈ Rn, t ∈ T }, for instance a family
of projection estimator, of linear ordered smoother in a basis or in a family of
basis. The most classical way to use such a family is to select one of the estimates
according to the observations, for instance using a penalized empirical risk principle.
A better way is to combine linearly those estimates with weights depending on the
observation. A simple strategy is the Exponential Weighting Average in which all

those estimates are averaged with a weight proportional to exp


−�rt

β

�
π(t) where

�rt is a (penalized) estimate of the risk of f̂t . This strategy is not new nor optimal
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as explained below but is widely used in practice. In this chapter, we analyze
the performance of this simple EWA estimator by providing oracle inequalities in
probability under mild sub-Gaussian assumption on the noise.

Our aim is to obtain the best possible estimate of the function f0 at the grid points.
This setting is probably one of the most common in statistics and many regression
estimators are available in the literature. For non-parametric estimation, Nadaraya-
Watson estimator [39, 52] and its fixed design counterpart [26] are widely used,
just like projection estimators using trigonometric, wavelet [24] or spline [51] basis,
for example. In the parametric framework, least squares or maximum likelihood
estimators are commonly employed, sometimes with minimization constraints,
leading to LASSO [47], ridge [34], elastic net [60], AIC [1], or BIC [45] estimates.

Facing this variety, the statistician may wonder which procedure provides the
best estimation. Unfortunately, the answer depends on the data. For instance, a
rectangular function is well approximated by wavelets but not by trigonometric
functions. Since the best estimator is not known in advance, our aim is to mimic
its performances in terms of risk. This is theoretically guaranteed by an oracle
inequality:

R(f0, f̃ ) ≤ Cn inf
t∈T

R(f0, f̂t ) + �n

comparing the risk of the constructed estimator f̃ to the risk of the best available
procedure in the collection {f̂t , t ∈ T }. Our strategy is based on convex combi-
nation of these preliminary estimators and relies on PAC-Bayesian aggregation to
obtain a single adaptive estimator. We focus on a wide family, commonly used in
practice : affine estimators {f̂t (Y ) = At(Y −b)+b+bt|At ∈ S +

n (R), bt ∈ Rn, t ∈
T } with b ∈ Rn a common recentering.

Aggregation procedures have been introduced by Vovk [50], Littlestone and
Warmuth [37], Cesa-Bianchi et al. [13], Cesa-Bianchi and Lugosi [14]. They are
a central ingredient of bagging [9], boosting [25, 44], or random forest ([3] or [10];
or more recently [6–8, 27]).

The general aggregation framework is detailed in [40] and studied in [11, 12]
through a PAC-Bayesian framework as well as in [53–59]. See, for instance, [49]
for a survey. Optimal rates of aggregation in regression and density estimation are
studied by Tsybakov [48], Lounici [38], Rigollet and Tsybakov [42], Rigollet [41]
and Lecué [35].

A way to translate the confidence of each preliminary estimate is to aggregate
according to a measure exponentially decreasing when the estimate’s risk rises. This
widely used strategy is called exponentially weighted aggregation. More precisely,
as explained before, the weight of each element f̂t in the collection is proportional

to exp


−�rt

β

�
π(t) where �rt is a (penalized) estimate of the risk of f̂t , β is a positive

parameter, called the temperature, that has to be calibrated and π is a prior measure
over T . The key property of exponential weights is that they explicitly minimize the
aggregated risk penalized by the Kullback-Leibler divergence to the prior measure
π[12]. Our aim is to give sufficient conditions on the risk estimate �rt and the
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temperature β to obtain an oracle inequality for the risk of the aggregate. Note that
when the family T is countable, the exponentially weighted aggregate is a weighted
sum of the preliminary estimates.

This procedure has shown its efficiency, offering lower risk than model selection
because we bet on several estimators. Aggregation of projections has already been
addressed by Leung and Barron [36]. They have proved, by the mean of an oracle
inequality, that the aggregate performs almost as well, in expectation, as the best
projection in the collection. Those results have been extended to several settings
and noise conditions [5, 18, 19, 21–23, 29, 30, 43, 46] under a frozen estimator
assumption: they should not depend on the observed sample. This restriction, not
present in the work by Leung and Barron [36], has been removed by Dalalyan
and Salmon [20] within the context of affine estimator and exponentially weighted
aggregation. Nevertheless, they make additional assumptions on the matrices At and
the Gaussian noise to obtain an optimal oracle inequality in expectation for affine
estimates. Very sharp results have been obtained in [15, 31] and [32]. Those papers,
except the last one, study a risk in expectation.

Indeed, the Exponential Weighting Aggregation is not optimal anymore in
probability. Dai et al. [17] have indeed proved the sub-optimality in deviation
of exponential weighting, not allowing to obtain a sharp oracle inequality in
probability. Under strong assumptions and independent noise, [4] provides a sharp
oracle inequality with optimal rate for another aggregation procedure called Q-
aggregation. It is similar to exponential weights but the criterion to minimize is
modified and the weights no longer are explicit. Results for the original EWA
scheme exist nevertheless but with a constant strictly larger than 1 in the oracle
inequality. Dai [16] obtain, for instance, a result under a Gaussian white noise
assumption by penalizing the risk in the weights and taking a temperature at
least 20 times greater than the noise variance. Golubev and Ostobski [32] does
not use an overpenalization but assumes some ordered structure on the estimate
to obtain a result valid even for low temperature. An unpublished work, by
Gerchinovitz [28], provides also weak oracle inequality with high probability for
projection estimates on non-linear models. Alquier and Lounici [2] consider frozen

and bounded preliminary estimators and obtain a sharp oracle inequality in deviation
for the excess risk under a sparsity assumption, if the regression function is bounded,
with again a modified version of exponential weights.

In this work, we will play on both the temperature and the penalization. We
will be able to obtain oracle inequalities for the Exponential Weighting Aggregation
under a general sub-Gaussian noise assumption that does not require a coordinate
independent setting. We conduct an analysis of the relationship between the choice
of the penalty and the minimal temperature. In particular, we show that there is a
continuum between the usual noise based penalty and a sup norm type one allowing
a sharp oracle inequality.
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2 Framework and Estimate

Recall that we observe

∀i ∈ {1, . . . , n}, Yi = f0(xi) + Wi

with f0 an unknown function and xi the fixed grid points. Our only assumption
will be on the noise. We do not assume any independence between the coordinates
Wi but only that W = (Wi)i≤n ∈ Rn is a centered sub-Gaussian variable. More
precisely, we assume that E(W) = 0 and there exists σ 2 ∈ R+ such that

∀α ∈ Rn, E
�
exp



α�W

��
≤ exp

�
σ 2

2
�α�2

2

	
,

where �.�2 is the usual euclidean norm in Rn. If W is a centered Gaussian vector
with covariance matrix Σ , then σ 2 is nothing but the largest eigenvalue of Σ .

The quality of our estimate will be measured through its error at the design points.
More precisely, we will consider the classical euclidean loss, related to the squared
norm

�g�2
2 =

n�

i=1

g(xi)
2.

Thus, our unknown is the vector (f0(xi))
n
i=1 rather than the function f0.

As announced, we will consider affine estimators f̂t (Y ) = At(Y − b) + b + bt

corresponding to affine smoothed projection.
We will assume that

f̂t (Y ) = At(Y − b) + b + bt =
n�

i=1

ρt,i Y − b, gt,i!gt,i + b + bt

where (gt,i)
n
i=1 is an orthonormal basis, (ρt,i )

n
i=1 a sequence of non-negative real

numbers, and bt ∈ Rn. By construction, At is thus a symmetric positive semi-
definite real matrix. We assume furthermore that the matrix collection {At }t∈T is
such that supt∈T �At�2 ≤ 1. For the sake of simplicity, we only use the notation
f̂t (Y ) = At(Y − b) + b + bt in the following.

To define our estimate from the collection {f̂t (Y ) = AtY +bt |At ∈ S +
n (R), bt ∈

Rn, t ∈ T }, we specify the estimate �rt of the (penalized) risk of the estimator f̂t (Y ),
choose a prior probability measure π over T and a temperature β > 0. We define
the exponentially weighted measure ρEWA, a probability measure over T , by

dρEWA(t) =
exp



− 1

β
�rt

�

�
exp



− 1

β
�rt �

�
dπ(t �)

dπ(t)
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and the exponentially weighted aggregate fEWA by fEWA = �
f̂t dρEWA(t). If T

is countable, then

fEWA =
�

t∈T

e−�rt/βπt�
t �∈T e−�rt �/βπt �

f̂t .

This construction naturally favors low risk estimates. When the temperature goes
to zero, this estimator becomes very similar to the one minimizing the risk estimate
while it becomes an indiscriminate average when β grows to infinity. The choice
of the temperature appears thus to be crucial and a low temperature seems to be
desirable.

Our choice for the risk estimate �rt is to use the classical Stein unbiased estimate,
which is sufficient to obtain optimal oracle inequalities in expectation,

rt = �Y − f̂t (Y )�2
2 + 2σ 2Tr(At ) − nσ 2

and add a penalty pen(t). We will consider simultaneously the case of a penalty
independent of f0 and the one where the penalty may depend on an upper bound of
(kind of) sup norm.

More precisely, we allow the use, at least in the analysis, of an upper bound
��f0 − b�∞ which can be thought as the supremum of the sup norm of the

coefficients of f0 in any basis appearing in T . Indeed, we define ��f0 − b�∞ as
the smallest non-negative real number C such that for any t ∈ T ,

�At(f0 − b)�2
2 ≤ C2Tr(A2

t ).

By construction, ��f0 − b�∞ is smaller than the sup norm of any coefficients of

f0 − b in any basis appearing in the collection of estimators. Note that ��f0 − b�∞
can also be upper bounded by �f0 − b�1, �f0 − b�2 or

√
n�f0 − b�∞ where the �1

and sup norm can be taken in any basis.
Our aim is to obtain sufficient conditions on the penalty pen(t) and the

temperature β so that an oracle inequality of type

�f0 − fEWA�2
2 ≤ inf

μ∈M 1+(T )

(1 + �)

�
�f0 − f̂t�2

2dμ(t)

+ (1 + ��)
��

price(t)dμ(t) + 2βKL(μ, π) + β ln
1

η

	

holds either in probability or in expectation. Here, � and �� are some small non-
negative numbers possibly equal to 0 and price(t) a loss depending on the choice
of pen(t) and β. When T is countable, such an oracle proves that the risk of
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our aggregate estimate is of the same order as the one of the best estimate in the
collection as it implies

�f0 − fEWA�2
2 ≤ inf

t∈T

�
(1 + �)�f0 − f̂t�2

2 + (1 + ��)
�

price(t) + β ln
1

π(t)2η

	6
.

Before stating our more general result, which is in Sect. 4, we provide a
comparison with some similar results in the literature on the countable T setting.

3 Penalization Strategies and Preliminary Results

The most similar result in the literature is the one from [16] which holds under
a Gaussian white noise assumption and uses a penalty proportional to the known
variance σ 2:

Proposition 3.1 ([16]) If pen(t) = 2σ 2Tr(At ), and β ≥ 4σ 216, then for all η > 0,

with probability at least 1 − η,

�f0 − fEWA�2 ≤ min
t

��
1 + 128σ 2

3β

	
�f0 − f̂t�2 + 8σ 2Tr(At )

+3β ln
1

πt

+ 3β ln
1

η

6
.

Our result generalizes this result to the non-necessarily independent sub-
Gaussian noise. We obtain

Proposition 3.2 If β ≥ 20σ 2, there exists γ ∈ [0, 1/2), such that if pen(t) ≥
4σ 2

β−4σ 2 Tr(A2
t )σ

2, for any η > 0, with probability at least 1 − η,

�f0 − fEWA�2 ≤ inf
t

��
1 + 4γ

1 − 2γ

	
�f0 − f̂t�2

+
�

1 + 2γ

1 − 2γ

	 �
pen(t) + 2σ 2Tr(At ) + 2β ln

1

πt

+ β ln
1

η

	6
.

The parameter γ is explicit and satisfies � = O(σ 2

β
). We recover thus a similar weak

oracle inequality under a weaker assumption on the noise. It should be noted that
[4] obtains a sharp oracle inequality for a slightly different aggregation procedure
but only under the very strong assumption that Tr(At ) ≤ ln 1

π(t)
.

Following [33], a lower bound on the penalty that involves the sup norm of f0,
can be given. In that case, the oracle inequality is sharp as � = �� = 0. Furthermore,
the parameter γ is not necessary and the minimum temperature is lower.
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Proposition 3.3 If β > 4σ 2, and

pen(t) ≥ 4σ 2

β − 4σ 2

�
σ 2Tr(A2

t ) + 2

3
��f0 − b�2

∞Tr(A2
t ) + �bt�2

2

4	
,

then for any η > 0, with probability at least 1 − η,

�f0 − fEWA�2 ≤ inf
t

+
�f0 − f̂t�2 + 2σ 2Tr(At )

+ 8σ 2

β − 4σ 2

3
��f0 − b�2

∞Tr(A2
t ) + �bt�2

2

4

+ pen(t) + 2β ln
1

πt

+ β ln
1

η

6
.

We are now ready to state the central result of this contribution, which gives
an explicit expression for γ and introduce an optimization parameter ν > 0, from
which this theorem can be deduced.

4 A General Oracle Inequality

We consider now the general case for which T is not necessarily countable. Recall
that we have defined the exponentially weighted measure ρEWA, a probability
measure over T , by

dρEWA(t) =
exp



− 1

β
�rt

�

�
exp



− 1

β
�rt �

�
dπ(t �)

dπ(t)

and the exponentially weighted aggregate fEWA by fEWA = �
f̂t dρEWA(t).

Propositions 3.2 and 3.3 will be obtained as straightforward corollaries.
Our main contribution is the following two similar theorems:

Theorem 4.1 For any β ≥ 20σ 2, let

γ = β − 12σ 2 −
*

β − 4σ 2
*

β − 20σ 2

16σ 2
.

If for any t ∈ T ,

pen(t) ≥ 4σ 2

β − 4σ 2
σ 2Tr(A2

t ),
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then

• for any η ∈ (0, 1], with probability at least 1 − η,

�f0 − fEWA�2
2 ≤ inf

μ∈M 1+(T )

�
1 + 4γ

1 − 2γ

	 �
�f0 − f̂t�2

2dμ(t)

+
�

1 + 2γ

1 − 2γ

	 �
pen(t) + 2σ 2Tr(At )dμ(t)

+ β

�
1 + 2γ

1 − 2γ

	�
2KL(μ,π) + ln

1

η

	
.

• Furthermore

E�f0 − fEWA�2
2 ≤ inf

μ∈M 1+(T )

�
1 + 4γ

1 − 2γ

	 �
E�f0 − f̂t�2

2dμ(t)

+
�

1 + 2γ

1 − 2γ

	 �
pen(t)+2σ 2Tr(At )dμ(t)+2β

�
1 + 2γ

1 − 2γ

	
KL(μ,π).

and

Theorem 4.2 For any δ ∈ [0, 1], if β > 4σ 2, If for any t ∈ T ,

pen(t) ≥ 4σ 2

β − 4σ 2

�
σ 2Tr(A2

t ) + 2

3
��f0 − b�2

∞Tr(A2
t ) + �bt�2

2

4	
,

then

• for any η ∈ (0, 1], with probability at least 1 − η,

�f0 − fEWA�2
2 ≤ inf

μ∈M 1+(T )

�
�f0 − f̂t�2

2dμ(t)

+
�

pen(t) + 2σ 2Tr(At ) + 8σ 2

β − 4σ 2

3
��f0 − b�2

∞Tr(A2
t ) + �bt�2

2

4
dμ(t)

+ β

�
2KL(μ,π) + ln

1

η

	
.

• Furthermore

E�f0−fEWA�2
2 ≤ inf

μ∈M 1+(T )

�
1 + 4γ

1 − 2γ

	 �
E�f0−f̂t�2

2dμ(t)+
�

pen(t)

+2σ 2Tr(At )+ 8σ 2

β − 4σ 2

3
��f0 − b�2

∞Tr(A2
t ) + �bt�2

2

4
dμ(t)+2βKL(μ,π).
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When T is discrete, one can replace the minimization over all the probability
measures in M 1+(T ) by the minimization overall all Dirac measures δft with
t ∈ T . Propositions 3.2 and 3.3 are then straightforward corollaries. Note that
the result in expectation is obtained with the same penalty, which is known not to
be necessary, at least in the Gaussian case, as shown by Dalalyan and Salmon [20].

If we assume the penalty is given

pen(t) = κTr(A2
t )σ

2,

one can rewrite the assumption in terms of κ . The weak oracle inequality holds for

any temperature greater than 20σ 2 as soon as κ ≥ 4σ 2

β−4σ 2 . While an exact oracle

inequality holds for any vector f0 and any temperature β greater than 4σ 2 as soon
as

β − 4σ 2

4σ 2
κ − 1 ≥

��f0 − b�2

∞ + �bt�2/Tr(A2
t )

σ 2
.

For fixed κ and β, this corresponds to a low peak signal to noise ratio
��f0−b�2

∞
σ 2 up

to the �bt�2 term which vanishes when bt = 0. Note that similar results hold for
a penalization scheme but with much larger constants and some logarithmic factor
in n.

Finally, the minimal temperature of 20σ 2 can be replaced by some smaller value
if one further restricts the smoothed projections used. As it appears in the proof, the
temperature can be replaced by 8σ 2 or even 6σ 2 when the smoothed projections are,
respectively, classical projections and projections on the same basis. The question
of the minimality of such temperature is still open. Note that in this proof, there is
no loss due to the sub-Gaussianity assumption, since the same upper bound on the
exponential moment of the deviation as in the Gaussian case is found, providing the
same penalty and bound on temperature.

The two results can be combined in a single one producing weak oracle
inequalities for a wider range of temperatures than Theorem 4.1. Our proof is
available in an extended version of this contribution in which, we prove that a
continuum between those two cases exists: a weak oracle inequality, with smaller
leading constant than the one of Theorem 4.1, holds as soon as there exists δ ∈ [0, 1)

such that β ≥ 4σ 2(1 + 4δ) and

β − 4σ 2

4σ 2
κ − 1 ≥ (1 − δ)(1 + 2γ )2

��f0 − b�2

∞ + �bt�2/Tr(A2
t )

σ 2
,

where the signal to noise ratio guides the transition. The temperature required
remains nevertheless always above 4σ 2. The convex combination parameter δ

measures the account for signal to noise ratio in the penalty.
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Note that in practice, the temperature can often be chosen smaller. It is an open
question whether the 4σ 2 limit is an artifact of the proof or a real lower bound. In the
Gaussian case, [32] have been able to show that this is mainly technical. Extending
this result to our setting is still an open challenge.
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Light- and Heavy-Tailed Density
Estimation by Gamma-Weibull Kernel

L. Markovich

Abstract In our previous papers we focus on the gamma kernel estimators of
density and its derivatives on positive semi-axis by dependent data by univariate
and multivariate samples. We introduce the gamma product kernel estimators for
the multivariate joint probability density function (pdf) with the nonnegative support
and its partial derivatives by the multivariate dependent data with a strong mixing.
The asymptotic behavior of the estimates and the optimal bandwidths in the sense
of minimal mean integrated squared error (MISE) are obtained. However, it is
impossible to fit accurately the tail of the heavy-tailed density by pure gamma
kernel. Therefore, we construct the new kernel estimator as a combination of the
asymmetric gamma and Weibull kernels, i.e. Gamma-Weibull kernel. The gamma
kernel is nonnegative and it changes the shape depending on the position on the
semi-axis and possesses good boundary properties for a wide class of densities.
Thus, we use it to estimate the pdf near the zero boundary. The Weibull kernel is
based on the Weibull distribution which can be heavy-tailed and hence, we use it
to estimate the tail of the unknown pdf. The theoretical asymptotic properties of
the proposed density estimator like the bias and the variance are derived. We obtain
the optimal bandwidth selection for the estimate as a minimum of the MISE. The
optimal rate of convergence of the MISE for the density is found.
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