
IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
82

81
--

FR
+E

N
G

RESEARCH
REPORT
N° 8281
August 2014

Project-Team Select

Gaussian Mixture
Regression model with
logistic weights, a
penalized maximum
likelihood approach
Lucie Montuelle , Erwan Le Pennec





RESEARCH CENTRE
SACLAY – ÎLE-DE-FRANCE

1 rue Honoré d’Estienne d’Orves
Bâtiment Alan Turing
Campus de l’École Polytechnique
91120 Palaiseau

Gaussian Mixture Regression model with
logistic weights, a penalized maximum

likelihood approach

Lucie Montuelle ∗, Erwan Le Pennec †

Project-Team Select

Research Report n° 8281 — August 2014 — 42 pages

Abstract: In the framework of conditional density estimation, we use candidates taking the form
of mixtures of Gaussian regressions with logistic weights and means depending on the covariate. We
aim at estimating the number of components of this mixture, as well as the other parameters, by
a penalized maximum likelihood approach. We provide a lower bound on the penalty that ensures
an oracle inequality for our estimator. We perform some numerical experiments that support our
theoretical analysis.
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Gaussian Mixture Regression model with logistic weights, a
penalized maximum likelihood approach

Résumé : Dans le cadre de l’estimation de densité conditionelle, nous utilisons des candi-
dats prenant la forme de mélanges de régressions gaussiennes avec des poids logistiques et des
moyennes dépendant de la covariable. Nous souhaitons estimer le nombre de composantes dans
le mélange ainsi que les autres paramètres par une approche de type maximum de vraisemblance
pénaliser. Nous proposons une borne inférieur sur la pénalité garantissant une inégalité ora-
cle pour notre estimateur. Nous effectuons quelques expériences numériques qui confirme notre
analyse théorique.

Mots-clés : Estimation de densité conditionnelle, Mélange de régression gaussienne, Sélection
de modèles
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Mixture of Gaussian regressions model with logistic
weights, a penalized maximum likelihood approach

L. Montuelle and E. Le Pennec

August 28, 2014

1 Framework
In classical Gaussian mixture models, the density is modeled by

sK,υ,Σ,w(y) =

K∑
k=1

πw,kΦυk,Σk(y),

where K ∈ N \ {0} is the number of mixture components, Φυ,Σ is the Gaussian density with
mean υ and covariance matrix Σ,

Φυ,Σ(y) =
1√

(2π)p|Σ|
e
−1
2 (y−υ)′Σ−1(y−υ)

and πw,k are the mixture weights, that can always be defined from a K-tuple w = (w1, . . . , wK)
with a logistic scheme:

πw,k =
ewk∑K

k′=1 e
wk′

.

In this article, we consider such a model in which the mixture weights as well as the means can
depend on a, possibly multivariate, covariate.

More precisely, we observe n pairs of random variables ((Xi, Yi))1≤i≤n where the covariates
Xis are independent while the Yis are conditionally independent given the Xis. We assume that
the covariates are in some subset X of Rd and the Yis are in Rp. We want to estimate the
conditional density s0(·|x) with respect to the Lebesgue measure of Y given X. We model this
conditional density by a mixture of Gaussian regressions with varying logistic weights

sK,υ,Σ,w(y|x) =

K∑
k=1

πw(x),kΦυk(x),Σk(y),

where υ = (υ1, . . . , υK) and w = (w1, . . . , wK) are nowK-tuples of functions chosen, respectively,
in a set ΥK and WK . Our aim is then to estimate those functions υk and wk, the covariance
matrices Σk as well as the number of classesK so that the error between the estimated conditional
density and the true conditional density is as small as possible.
∗Select - Inria Saclay Idf / LM Orsay - Université Paris Sud
†CMAP / École Polytechnique
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Gaussian Mixture Regression model with logistic weights, a penalized maximum likelihood approach4

The classical Gaussian mixture case has been extensively studied [26]. Nevertheless, theoret-
ical properties of such model have been less considered. In a Bayesian framework, asymptotic
properties of the posterior distribution are obtained by Choi [10], Genovese and Wasserman [16],
Van der Vaart and Wellner [28] when the true density is assumed to be a Gaussian mixture.
AIC/BIC penalization scheme are often used to select a number of clusters (see Burnham and
Anderson [7] for instance). Non asymptotic bounds are obtained by Maugis and Michel [24] even
when the true density is not a Gaussian mixture. All these works rely heavily on a bracketing
entropy analysis of the models, that will also be central in our analysis.

When there is a covariate, the most classical extension of this model is a mixture of Gaussian
regressions, in which the means υk are now functions. It is well studied as described in McLachlan
and Peel [26]. In particular, in a Bayesian framework, Viele and Tong [29] have used bracketing
entropy bounds to prove the consistency of the posterior distribution. Models in which the
proportions vary have been considered by Antoniadis et al. [1]. Using an idea of Kolaczyk et al.
[21], they have considered a model in which only proportions depend in a piecewise constant
manner from the covariate. Their theoretical results are nevertheless obtained under the strong
assumption they exactly know the Gaussian components. This assumption can be removed as
shown by Cohen and Le Pennec [12]. Models in which both mixture weights and means depend
on the covariate are considered by Ge and Jiang [15], but in a mixture of logistic regressions
framework. They give conditions on the number of components (experts) to obtain consistency
of the posterior with logistic weights. Note that similar properties are studied by Lee [22] for
neural networks.

Although natural, mixture of Gaussian regressions with varying logistic weights seems to be
mentioned first by Jordan and Jacobs [20]. They provide an algorithm similar to ours, based
on EM and Iteratively Reweighted Least Squares, for hierarchical mixtures of experts but no
theoretical analysis. Young and Hunter [31] choose a non-parametric approach to estimate the
weights, which are not supposed logistic anymore, using kernels and cross-validation. They also
provide an EM-like algorithm and some convincing simulations. This work has an extension
in a series of papers [19], [17]. Young [30] considers mixture of regressions with changepoints
but constant proportions. More recently, Huang et al. [18] have considered a non-parametric
modeling for the means, the proportions as well as the variance for which they give asymptotic
properties as well as a numerical algorithm. Closer to our work, Chamroukhi et al. [9] consider
the case of piecewise polynomial regression model with affine logistic weights. In our setting, this
corresponds to a specific choice for ΥK and WK : a collection of piecewise polynomials and a set
of affine functions. They use a variation of the EM algorithm and a BIC criterion and provide
numerical experiments to support the efficiency of their scheme.

Young [30] provides a relevant example for our analysis. The ethanol data set of Brinkman
[6] (Figure 1a) shows the relationship between the equivalence ratio, a measure of the air-ethanol
mix used as a spark-ignition engine fuel in a single-cylinder automobile test, and the engine’s
concentration of nitrogen oxide (NO) emissions for 88 tests. Using the methodology described in
this paper, we obtain a conditional density modeled by a mixture of four Gaussian regressions.
Using a classical maximum likelihood approach, each point of the data set can be assigned to
one the four class yielding the clustering of Figure 1b. The use of logistic weight allows a soft
partitioning along the NO axis while still allowing more than one regression for the same NO
value. The two topmost classes seem to correspond to a single population whose behavior changes
around 1.7 while the two bottom-most classes appear to correspond to two different populations
with a gap around 2.6 − 2.9. Such a result could not have been obtained with non varying
weights.

The main contribution of our paper is a theoretical result: an oracle inequality, a non asymp-
totic bound on the risk, that holds for penalty slightly different from the one used by Chamroukhi
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(a) Raw Ethanol data set
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(b) Clustering deduced from the estimated con-
ditional density by a MAP principle.

(c) 3D view of the resulting conditional density
showing the 4 regression components.

(d) 2D view of the same conditional density.
The different variances are visible as well as the
connectedness of the two topmost clusters.

Figure 1: Estimated density with 4 components based upon the NO data set

et al. [9].
In Section 2, we recall the penalized maximum likelihood framework, introduce the losses

considered and explain the meaning of such an oracle inequality. In Section 3, we specify the
models considered and their collections, state our theorem under mild assumptions on the sets
ΥK and WK and apply this result to polynomial sets. Those results are then illustrated by some
numerical experiments in Section 4. Our analysis is based on an abstract theoretical analysis
of penalized maximum likelihood approach for conditional densities conducted in Cohen and
Le Pennec [11] that relies on bracketing entropy bounds. Appendix A summarizes those results
while Appendix B contains the proofs specific to this paper, the ones concerning bracketing
entropies.

2 A model selection approach

2.1 Penalized maximum likelihood estimator
We will use a model selection approach and define some conditional density models Sm by
specifying sets of conditional densities, taking the shape of mixtures of Gaussian regressions,
through their number of classes K, a structure on the covariance matrices Σk and two function
sets ΥK andWK to which belong respectively theK-tuple of means (υ1, . . . , υK) and theK-tuple
of logistic weights (w1, . . . , wK). Typically those sets are compact subsets of polynomials of low

RR n° 8281
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degree. Within such a conditional density set Sm, we estimate s0 by the maximizer ŝm of the
likelihood

ŝm = argmax
sK,υ,Σ,w∈Sm

n∑
i=1

ln sK,υ,Σ,w(Yi|Xi),

or more precisely, to avoid any existence issue since the infimum may not be unique or even not
be reached, by any η-minimizer of the negative log-likelihood:

n∑
i=1

− ln ŝm(Yi|Xi) ≤ inf
sK,υ,Σ,w∈Sm

n∑
i=1

− ln sK,υ,Σ,w(Yi|Xi) + η.

Assume now we have a collection {Sm}m∈M of models, for instance with different number of
classes K or different maximum degree for the polynomials defining ΥK and WK , we should
choose the best model within this collection. Using only the log-likelihood is not sufficient since
this favors models with large complexity. To balance this issue, we will define a penalty pen(m)
and select the model m̂ that minimizes (or rather η′-almost minimizes) the sum of the negative
log-likelihood and this penalty:

K∑
k=1

− ln ŝm̂(Yi|Xi) + pen(m̂) ≤ inf
m∈M

K∑
k=1

− ln ŝm(Yi|Xi) + pen(m) + η′.

2.2 Losses
Classically in maximum likelihood context, the estimator loss is measured with the Kullback-
Leibler divergence KL. Since we work in a conditional density framework, we use a tensorized
version of it. We define the tensorized Kullback-Leibler divergence KL⊗n by

KL⊗n(s, t) = E

[
1

n

n∑
i=1

KL(s(.|Xi), t(.|Xi))

]

which appears naturally in this setting. Replacing t by a convex combination between s and
t and dividing by ρ yields the so-called tensorized Jensen-Kullback-Leibler divergence, denoted
JKL⊗nρ ,

JKL⊗nρ (s, t) = E

[
1

n

n∑
i=1

1

ρ
KL(s(.|Xi), (1− ρ)s(.|Xi) + ρt(.|Xi))

]
with ρ ∈ (0, 1). This loss is always bounded by 1

ρ ln 1
1−ρ but behaves as KL when t is close to s.

This boundedness turns out to be crucial to control the loss of the penalized maximum likelihood
estimate under mild assumptions on the complexity of the model and their collection.

Furthermore JKL⊗nρ (s, t) ≤ KL⊗nρ (s, t). If we let d2⊗n be the tensorized extension of the
squared Hellinger distance d2, Cohen and Le Pennec [11] prove that there is a constant Cρ such
that Cρd2⊗n(s, t) ≤ JKL⊗nρ (s, t). Moreover, if we assume that for any m ∈M and any sm ∈ Sm,
s0dλ� smdλ , then

Cρ
2 + ln ‖s0/sm‖∞

KL⊗n(s0, sm) ≤ JKL⊗nρ (s0, sm)

with Cρ = 1
ρ min

(
1−ρ
ρ , 1

)(
ln
(

1 + ρ
1−ρ

)
− ρ
)
(see Cohen and Le Pennec [11]).

RR n° 8281
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2.3 Oracle inequality
Our goal is now to define a penalty pen(m) which ensures that the maximum likelihood estimate
in the selected model performs almost as well as the maximum likelihood estimate in the best
model. More precisely, we will prove an oracle type inequality

E
[
JKL⊗nρ (s0, ŝm̂)

]
≤ C1 inf

m∈M

(
inf

sm∈Sm
KL⊗n(s0, sm) +

pen(m)

n
+
η + η′

n

)
+
C2

n

with a pen(m) chosen of the same order as the variance of the corresponding single model
maximum likelihood estimate.

The name oracle type inequality means that the right-hand side is a proxy for the estimation
risk of the best model within the collection. The Kullback-Leibler term infsm∈Sm KL⊗nλ (s0, sm)

is a typical bias term while pen(m)
n plays the role of the variance term. We have three sources of

loss here: the constant C1 can not be taken equal to 1, we use a different divergence on the left
and on the right and pen(m)

n is not directly related to the variance. Under a strong assumption,
namely a finite upper bound on supm∈M supsm∈Sm ‖s0/sm‖∞ , the two divergences are equivalent
for the conditional densities considered and thus the second issue disappears.

The first issue has a consequence as soon as s0 does not belong to the best model, i.e. when the
model is misspecified. Indeed, in that case, the corresponding modeling bias infsm∈Sm KL⊗n(s0, sm)
may be large and the error bound does not converge to this bias when n goes to infinity but to C1

times this bias. Proving such an oracle inequality with C1 = 1 would thus be a real improvement.
To our knowledge, those two first issues have not been solved in penalized density estimation

with Kullback-Leibler loss but only with L2 norm or aggregation of a finite number of densities
as in Rigollet [27].

Concerning the third issue, if Sm is parametric, whenever pen(m) can be chosen approx-
imately proportional to the dimension dim(Sm) of the model, which will be the case in our
setting, pen(m)

n is approximately proportional to dim(Sm)
n , which is the asymptotic variance in the

parametric case. The right-hand side matches nevertheless the best known bound obtained for
a single model within such a general framework.

3 Mixtures of Gaussian regressions and penalized condi-
tional density estimation

3.1 Models of mixtures of Gaussian regressions
As explained in introduction, we are using candidate conditional densities of type

sK,υ,Σ,w(y|x) =

K∑
k=1

πw,k(x)Φυk(x),Σk(y),

to estimate s0, where K ∈ N \ {0} is the number of mixture components, Φυ,Σ is the density of
a Gaussian of mean υ and covariance matrix Σ, υk is a function specifying the mean given x of
the k-th component while Σk is its covariance matrix and the mixture weights πw,k are defined
from a collection of K functions w1, . . . , wK by a logistic scheme:

πw,k(x) =
ewk(x)∑K

k′=1 e
wk′ (x)

.

RR n° 8281
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We will estimate s0 by conditional densities belonging to some model Sm defined by

Sm =

{
(x, y) 7→

K∑
k=1

πw,k(x)Φυk(x),Σk(y)
∣∣(w1, . . . , wK) ∈WK ,

(υ1, . . . , υK) ∈ ΥK , (Σ1, . . . ,ΣK) ∈ VK
}

where WK is a compact set of K-tuples of functions from X to R, ΥK a compact set of K-tuples
of functions from X to Rp and VK a compact set of K-tuples of covariance matrices of size p×p.
From now on, we will assume that those sets are parametric subsets of dimensions respectively
dim(WK), dim(ΥK) and dim(VK). The dimension dim(Sm) of the now parametric model Sm is
thus nothing but dim(Sm) = dim(WK) + dim(ΥK) + dim(VK).

Before describing more precisely those sets, we recall that Sm will be taken in a model
collection S = (Sm)m∈M, where m ∈M specifies a choice for each of those parameters. Within
this collection, the number of components K will be chosen smaller than an arbitrary Kmax,
which may depend on the sample size n. The sets WK and ΥK will be typically chosen as a
tensor product of a same compact set of moderate dimension, for instance a set of polynomial
of degree smaller than respectively d′W and d′Υ whose coefficients are smaller in absolute values
than respectively TW and TΥ.

The structure of the set VK depends on the noise model chosen: we can assume, for instance,
it is common to all regressions, that they share a similar volume or diagonalization matrix or
they are all different. More precisely, we decompose any covariance matrix Σ into LPAP ′, where
L = |Σ|1/p is a positive scalar corresponding to the volume, P is the matrix of eigenvectors of
Σ and A the diagonal matrix of normalized eigenvalues of Σ. Let L−, L+ be positive values and
λ−, λ+ real values. We define the set A(λ−, λ+) of diagonal matrices A such that |A| = 1 and
∀i ∈ {1, . . . , p}, λ− ≤ Ai,i ≤ λ+. A set VK is defined by

VK = {(L1P1A1P
′
1, . . . , LKPKAKP

′
K)|∀k, L− ≤ Lk ≤ L+, Pk ∈ SO(p),

Ak ∈ A(λ−, λ+)} ,

where SO(p) is the special orthogonal group. Those sets VK correspond to the classical covariance
matrix sets described by Celeux and Govaert [8].

3.2 A conditional density model selection theorem
The penalty should be chosen of the same order as the estimator’s complexity, which depends
on an intrinsic model complexity and, also, a collection complexity.

We will bound the model complexity term using the dimension of Sm: we prove that those
two terms are roughly proportional under some structural assumptions on the sets WK and ΥK .
To obtain this result, we rely on an entropy measure of the complexity of those sets. More
precisely, for any K-tuples of functions (s1, . . . , sK) and (t1, . . . , tK), we let

d‖ sup ‖∞ ((s1, . . . , sK), (t1, . . . , tK)) = sup
x∈X

sup
1≤k≤K

‖sk(x)− tk(x)‖2,

and define the metric entropy of a set FK , Hd‖ sup ‖∞
(σ, FK), as the logarithm of the minimal

number of balls of radius at most σ, in the sense of d‖ sup ‖∞ , needed to cover FK . We will
assume that the parametric dimension D of the set considered coincides with an entropy based
definition, namely there exists a constant C such that for σ ∈ (0,

√
2]

Hd‖ sup ‖∞
(σ, FK) ≤ D

(
C + ln

1

σ

)
.

RR n° 8281
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Assumption (DIM) There exist two constants CW and CΥ such that, for every sets WK and
ΥK of the models Sm in the collection S, ∀σ ∈ (0,

√
2],

Hd‖ sup ‖∞
(σ,WK) ≤ dim(WK)

(
CW + ln

1

σ

)
and

Hd‖ sup ‖∞
(σ,ΥK) ≤ dim(ΥK)

(
CΥ + ln

1

σ

)
Note that one can extend our result to any compact sets for which those assumptions hold for
dimensions that could be different from the usual ones.

The complexity of the estimator depends also on the complexity of the collection. That is
why one needs further to control the complexity of the collection as a whole through a coding
type (Kraft) assumption [2].

Assumption (K) There is a family (xm)m∈M of non-negative numbers and a real number Ξ
such that∑
m∈M e−xm ≤ Ξ < +∞.

We can now state our main result, a weak oracle inequality:

Theorem 1. For any collection of mixtures of Gaussian regressions model S = (Sm)m∈M sat-
isfying (K) and (DIM), there is a constant C such that for any ρ ∈ (0, 1) and any C1 > 1, there
is a constant κ0 depending only on ρ and C1 such that, as soon as for every index m ∈ M,
pen(m) = κ((C + lnn) dim(Sm) + xm) with κ > κ0, the penalized likelihood estimate ŝm̂ with m̂
such that

n∑
i=1

− ln(ŝm̂(Yi|Xi)) + pen(m̂) ≤ inf
m∈M

(
n∑
i=1

− ln(ŝm(Yi|Xi)) + pen(m)

)
+ η′

satisfies

E
[
JKL⊗nρ (s0, ŝm̂)

]
≤ C1 inf

m∈M

(
inf

sm∈Sm
KL⊗n(s0, sm) +

pen(m)

n
+
κ0Ξ + η + η′

n

)
.

Remind that under the assumption that supm∈M supsm∈Sm ‖s0/sm‖∞ is finite, JKL⊗nρ can
be replaced by KL⊗n up to a multiplication by a constant depending on ρ and the upper bound.
Note that this strong assumption is nevertheless satisfied if we assume that X is compact, s0

is compactly supported, the regression functions are uniformly bounded and there is a uniform
lower bound on the eigenvalues of the covariance matrices.

As shown in the proof, in the previous theorem, the assumption on pen(m) could be replaced
by the milder one

pen(m) ≥ κ

(
2 dim(Sm)C2 + dim(Sm)

(
ln

n

C2 dim(Sm)

)
+

+ xm

)
.

It may be noticed that if (xm)m satisfies Assumption (K), then for any permutation τ
(xτ(m))m satisfies this assumption too. In practice, xm should be chosen such that 2κxm

pen(m) is

RR n° 8281
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as small as possible so that the penalty can be seen as proportional to the two first terms. No-
tice that the constant C only depends on the model collection parameters, in particular on the
maximal number of components Kmax. As often in model selection, the collection may depends
on the sample size n. If the constant C grows no faster than ln(n), the penalty shape can be
kept intact and a similar result holds uniformly in n up to a slightly larger κ0. In particular, the
apparent dependency in Kmax is not an issue: Kmax only appears in C through a logarithmic
term and Kmax should be taken smaller than n for identifiability issues. Finally, it should be
noted that the lnn term in the penalty of Theorem 1 may not be necessary as hinted by a result
of Gassiat and van Handel [14] for one dimensional mixtures of Gaussian distribution with the
same variance.

3.3 Linear combination of bounded functions for the means and the
weights

We postpone the proof of this theorem to the Appendix and focus on Assumption (DIM). This
assumption is easily verified when the function sets WK and ΥK are defined as the linear com-
bination of a finite set of bounded functions whose coefficients belong to a compact set. This
quite general setting includes the polynomial basis when the covariable are bounded, the Fourier
basis on an interval as well as suitably renormalized wavelet dictionaries. Let dW and dΥ be
two positive integers, let (ψW,i)1≤i≤dW and (ψΥ,i)1≤i≤dΥ two collections of functions bounded
functions from X → [−1, 1] and define

W =

{
w : [0, 1]d → R|w(x) =

dW∑
i=0

αiψW,i(x) and ‖α‖∞ ≤ TW

}

Υ =

{
υ : [0, 1]d → Rp

∣∣∣∀j ∈ {1, . . . , p},∀x, υj(x) =

dΥ∑
i=0

α
(j)
i ψΥ,i(x) and ‖α‖∞ ≤ TΥ

}

where the (j) in α(j)
r is a notation to indicate the link with υj . We will be interested in tensorial

construction from those sets, namely WK = {0} ×WK−1 and ΥK = ΥK , for which we prove in
Appendix that

Lemma 1. WK and ΥK satisfy Assumption (DIM), with CW = ln
(√

2 + TW dW
)
and CΥ =

ln
(√

2 +
√
pdΥTΥ

)
, not depending on K.

Note that in this general case, only the functions ψW,i and ψΥ,i need to be bounded and not
the covariate X itself.

For sake of simplicity, we focus on the bounded case and assume X = [0, 1]d. In that case, we
can use a polynomial modeling: ψW,i and ψΥ,i can be chosen as monomials xr = xr11 . . . xrdd . If
we let d′W and d′Υ be two maximum (non negative) degrees for those monomials and define the
sets of WK and ΥK accordingly, the previous Lemma becomes

Lemma 2. WK and ΥK satisfy Assumption (DIM), with CW = ln
(√

2 + TW
(
d′W+d
d

))
and

CΥ = ln
(√

2 +
√
p
(
d′Υ+d
d

)
TΥ

)
, not depending on K.

To apply Theorem 1, it remains to describe a collection S = (Sm)m∈M and a suitable
choice for (xm)m∈M. Assume, for instance, that the models in our collection are defined by
an arbitrary maximal number of components Kmax, a common free structure for the covariance
matrix K-tuple and a common maximal degree for the sets WK and ΥK . Then one can verify

RR n° 8281
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that dim(Sm) = (K − 1 + Kp)
(
d′W+d
d

)
+ Kpp+1

2 and that the weight family (xm = K)m∈M
satisfy Assumption (K) with Ξ ≤ 1/(e − 1). Theorem 1 yields then an oracle inequality with
pen(m) = κ ((C + ln(n)) dim(Sm) + xm). Note that as xm � (C + ln(n)) dim(Sm), one can
obtain a similar oracle inequality with pen(m) = κ(C + ln(n)) dim(Sm) for a slightly larger κ.
Finally, as explained in the proof, choosing a covariance structure from the finite collection of
Celeux and Govaert [8] or choosing the maximal degree for the sets WK and ΥK among a finite
family can be obtained with the same penalty but with a larger constant Ξ in Assumption (K).

4 Numerical scheme and numerical experiment
We illustrate our theoretical result in a setting similar to the one considered by Chamroukhi
et al. [9] and on two real data sets. We observe n pairs (Xi, Yi) with Xi in a compact interval,
namely [0, 1] for simulated data and respectively [0, 5] and [0, 17] for the first and second real
data set, and Yi ∈ R and look for the best estimate of the conditional density s0(y|x) that can
be written

sK,υ,Σ,w(y|x) =

K∑
k=1

πw,k(x)Φυk(x),Σk(y),

with w ∈ WK and υ ∈ ΥK . We consider the simple case where WK and ΥK contain linear
functions. We do not impose any structure on the covariance matrices. Our aim is to estimate
the best number of components K as well as the model parameters. As described with more
details later, we use an EM type algorithm to estimate the model parameters for each K and
select one using the penalized approach described previously.

4.1 The procedure
As often in model selection approach, the first step is to compute the maximum likelihood es-
timate for each number of components K. To this purpose, we use a numerical scheme based
on the EM algorithm [13] similar to the one used by Chamroukhi et al. [9]. The only difference
with a classical EM is in the Maximization step since there is no closed formula for the weights
optimization. We use instead a Newton type algorithm. Note that we only perform a few New-
ton steps (5 at most were enough in our experiments) and ensure that the likelihood does not
decrease. We have noticed that there is no need to fully optimize at each step: we did not observe
a better convergence and the algorithmic cost is high. We denote from now on this algorithm
Newton-EM. Figure 2 illustrates the fast convergence of this algorithm towards a local maximum
of the likelihood. Notice that the lower bound on the variance required in our theorem appears
to be necessary in practice. It avoids the spurious local maximizer issue of EM algorithm, in
which a class degenerates to a minimal number of points allowing a perfect Gaussian regression
fit. We use a lower bound shape of Cn . Biernacki and Castellan [4] provide a precise data-driven

bound for mixture of Gaussian regressions: min1≤i<j≤n(Yi−Yj)2

2χ2
n−2K+1((1−α)1/K)

, with χ2
n−2K+1 the chi-squared

quantile function, which is of the same order as 1
n in our case. In practice, the constant 10 gave

good results for the simulated data.

An even more important issue with EM algorithms is initialization, since the local minimizer
obtained depends heavily on it. We observe that, while the weights w do not require a special
care and can be simply initialized uniformly equal to 0, the means require much more attention
in order to obtain a good minimizer. We propose an initialization strategy based on short runs
of Newton-EM with random initialization.
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Figure 2: Increase of the Log-likelihood of the estimated density at each step of our iterative
Newton-EM algorithm in the example NP with 3 components and 2 000 data points.

We draw randomly K lines, each defined as the line going through two points (Xi, Yi) drawn
at random among the observations. We perform then a K-means clustering using the distance
along the Y axis. Our Newton-EM algorithm is initialized by the regression parameters as well
as the empirical variance on each of the K clusters. We perform then 3 steps of our minimization
algorithm and keep among 50 trials the one with the largest likelihood. This winner is used as
the initialization of a final Newton-EM algorithm using 10 steps.

We consider two other strategies: a naive one in which the initial lines chosen at random
and a common variance are used directly to initialize the Newton-EM algorithm and a clever
one in which observations are first normalized in order to have a similar variance along both
the X and the Y axis, a K-means on both X and Y with 5 times the number of components is
then performed and the initial lines are drawn among the regression lines of the resulting cluster
containing more than 2 points.

The complexity of those procedures differs and as stressed by Celeux and Govaert [8] the
fairest comparison is to perform them for the same amount of time (5 seconds, 30 seconds, 1
minute...) and compare the obtained likelihoods. The difference between the 3 strategies is not
dramatic: they yield very similar likelihoods. We nevertheless observe that the naive strategy has
an important dispersion and fails sometime to give a satisfactory answer. Comparison between
the clever strategy and the regular one is more complex since the difference is much smaller.
Following Celeux and Govaert [8], we have chosen the regular one which corresponds to more
random initializations and thus may explore more local maxima.

Once the parameters’ estimates have been computed for each K, we select the model that
minimizes

n∑
i=1

− ln(ŝm(Yi|Xi)) + pen(m)

with pen(m) = κdim(Sm). Note that our theorem ensures that there exists a κ large enough for
which the estimate has good properties, but does not give an explicit value for κ. In practice,
κ has to be chosen. The two most classical choices are κ = 1 and κ = lnn

2 which correspond to
the AIC and BIC approach, motivated by asymptotic arguments. We have used here the slope
heuristic proposed by Birgé and Massart [5] and described for instance in Baudry et al. [3]. This
heuristic comes with two possible criterions: the jump criterion and the slope criterion. The
first one consists in representing the dimension of the selected model according to κ (Fig 4),
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and finding κ̂ such that if κ < κ̂, the dimension of the selected model is large, and reasonable
otherwise. The slope heuristic prescribes then the use of κ = 2κ̂. In the second one, one computes
the asymptotic slope of the log-likelihood drawn according to the model dimension, and penalizes
the log-likelihood by twice the slope times the model dimension. With our simulated data sets,
we are in the not so common situation in which the jump is strong enough so that the first
heuristic can be used.

4.2 Simulated data sets
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(a) 2 000 data points of example WS

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

6

8

10

X

Y

(b) 2 000 data points of example MS

Figure 3: Typical realizations

The previous procedure has been applied to two simulated data sets: one in which true
conditional density belongs to one of our models, a well-specified case, and one in which this
is not true, a misspecified case. In the first situation, we expect to perform almost as well as
the maximum likelihood estimation in the true model. In the second situation, we expect our
algorithm to automatically balance the model bias and its variance. More precisely, we let

s0(y|x) =
1

1 + exp(15x− 7)
Φ−15x+8,0.3(y) +

exp(15x− 7)

1 + exp(15x− 7)
Φ0.4x+0.6,0.4(y)

in the first example, denoted example WS, and

s0(y|x) =
1

1 + exp(15x− 7)
Φ15x2−22x+7.4,0.3(y) +

exp(15x− 7)

1 + exp(15x− 7)
Φ−0.4x2,0.4(y)

in the second example, denoted example MS. For both experiments, we let X be uniformly
distributed over [0, 1]. Figure 3 shows a typical realization.

In both examples, we have noticed that the sample’s size had no significant influence on the
choice of κ, and that very often 1 was in the range of possible values indicated by the jump
criterion of the slope heuristic. According to this observation, we have chosen in both examples
κ = 1.

We measure performances in term of tensorized Kullback-Leibler divergence. Since there is
no known formula for tensorized Kullback-Leibler divergence in the case of Gaussian mixtures,
and since we know the true density, we evaluate the divergence using Monte Carlo method. The
variability of this randomized approximation has been verified to be negligible in practice.

For several numbers of mixture components and for the selected K, we draw in Figure 5
the box plots and the mean of tensorized Kullback-Leibler divergence over 55 trials. The first
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(a) Example WS with 2 000 points
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(b) Example MS with 2 000 points

Figure 4: Slope heuristic: plot of the selected model dimension with respect to the penalty
coefficient κ. In both examples, κ̂ is of order 1/2.

observation is that the mean of tensorized Kullback-Leibler divergence between the penalized
estimator ŝK̂ and s0 is smaller than the mean of tensorized Kullback-Leibler divergence between
ŝK and s0 over K ∈ {1, . . . , 20}. This is in line with the oracle type inequality of Theorem 1.
Our numerical results hint that our theoretical analysis may be pessimistic. A close inspection
shows that the bias-variance trade-off differs between the two examples. Indeed, since in the
first one the true density belongs to the model, the best choice is K = 2 even for large n. As
shown on the histogram of Figure 6, this is almost always the model chosen by our algorithm.
Observe also that the mean of Kullback-Leibler divergence seems to behave like dim(Sm)

2n (shown
by a dotted line). This is indeed the expected behavior when the true model belongs to a nested
collection and corresponds to the classical AIC heuristic. In the second example, the misspecified
one, the true model does not belong to the collection. The best choice for K should thus balance
a model approximation error term and a variance one. We observe in Figure 6 such a behavior:
the larger n the more complex the model and thus K. Note that the slope of the mean error
seems also to grow like dim(Sm)

2n even though there is no theoretical guarantee of such a behavior.
Figure 7 shows the error decay when the sample size n grows. As expected in the well-specified

case, example W, we observe the decay in t/n predicted in the theory, with t some constant. The
rate in the second case appears to be slower. Indeed, as the true conditional density does not
belong to any model, the selected models are more and more complex when n grows which slows
the error decay. In our theoretical analysis, this can already be seen in the decay of the variance
term of the oracle inequality. Indeed, if we let m0(n) be the optimal oracle model, the one
minimizing the right-hand side of the oracle inequality, the variance term is of order dim(Sm0(n))

n
which is larger than 1

n as soon as dim(Sm0(n))→ +∞. It is well known that the decay depends
on the regularity of the true conditional density. Providing a minimax analysis of the proposed
estimator, as have done Maugis and Michel [25], would be interesting but is beyond the scope of
this paper.

4.3 Ethanol data set
We explain now with more details the result of Figure 1 for the 88 data point Ethanol data set
of Brinkman [6]. [30] proposes to estimate the density of the equivalence ratio R conditioned to
the concentration in NO and to use this conditional density to do a clustering of the data set.
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(b) Example WS with 10 000 data points

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Selected K

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

 

 

asymptotic E[KL]

empirical E[KL]

E[KL] of the selected K

(c) Example MS with 2 000 data points
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Figure 5: Box-plot of the Kullback-Leibler divergence according to the number of mixture com-
ponents. On each graph, the right-most box-plot shows this Kullback-Leibler divergence for the
penalized estimator ŝK̂

In our framework, this amounts to estimate the conditional density by

K̂∑
k=1

πŵk(NO)Φυ̂k(NO),Σ̂k
(R)

with our proposed penalized estimator and to use the classical maximum likelihood approach
that associates (NO,R) to the class

arg max
1≤k≤K̂

πŵk(NO)Φυ̂k(NO),Σ̂k
(R)

to perform the clustering.
An important parameter of the method is the lower bound of the variance used in the estima-

tion for a given number of class. This is required to avoid spurious maximizers of the likelihood.
Here, the value 10−4 chosen by hand yields satisfactory results.

Since we only have 88 points and roughly 5 parameters per class, the random initialization
may yield classes with too few points to have a good estimation. We have slightly modified our
K-means procedure in order to ensure than at least 10 points are assigned to each class. In that
case, we have verified that the estimated parameters of the conditional density were very stable.

Note that with this strategy, no more than 8 classes can be considered. This prevents the
use of the jump criterion to calibrate the penalty because the big jump is hard to define. We
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(a) Example WS with 2 000 data points
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(b) Example WS with 10 000 data points
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(c) Example MS with 2 000 data points
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(d) Example MS with 10 000 data points

Figure 6: Histograms of the selected K

use instead the slope heuristic. Figure 8 shows that this slope is of order 1 and thus the slope
heuristic prescribes a penalty of 2 dim(SK), providing an estimate with 4 components.

It is worth pointing out that the maximum of the penalized likelihood is not sharp, just like
in the example MS of simulated data (see figure 6). Indeed, it is quite unlikely that the true
density belongs to our model collection. So, there may be an uncertainty on the selected number
of components between 4, 3 and 5. Note that AIC penalization would have lead to 7 classes
while BIC would also have lead to 4 classes. Our estimated penalty is nevertheless in the middle
of the zone corresponding to 4 while BIC is nearby the boundary with 3 and thus we expect this
choice to be more stable. In Figure 1b of the introduction we have shown only this clustering
with 4 classes. Figure 9 shows that the choices of 3 or 5 may make sense, even though the choice
5 may seem slightly too complex. A common feature among all those clusterings is the change
of slope in the topmost part around 1.7. This phenomena is also visible in Young [30] in which
an explicit change point model is used, ours is only implicit and thus more versatile

To complete our study, in Figure 10, we have considered the more natural regression of NO
with respect to the equivalence ratio that has not been studied by [30]. Using the same method-
ology, we have recovered also 4 clusters corresponding to a soft partitioning of the equivalence
ratio value. Note that this clustering, which is easily interpretable, is very similar to the one
obtained with the previous parameterization.
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Figure 7: Kullback-Leibler divergence between the true density and the computed density using
(Xi, Yi)i≤N with respect to the sample size, represented in a log-log scale. For each graph, we
added a free linear least-square regression and one with slope −1 to stress the two different
behavior.
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(a) Jump criterion
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Figure 8: Slope heuristic for the ethanol data set

4.4 ChIP-chip data set
We considere here a second real data set: a Chromatin immunoprecipitation (ChIP) on chip
genomic data set. Chromatin immunoprecipitation (ChIP) is a procedure used to investigate
proteins associated with DNA. The data set considered is the one used by [23]. In this experiment,
two variables are studied: DNA fragments crosslinked to a protein of interest (IP) and genomic
DNA (Input). [23] model the density of log-IP conditioned to log-Input by a mixture of two
Gaussian regressions with the same variance. One component corresponds to an enriched one, in
which there is more proteins than expected, and the other to a normal one. They use classical
proportions that do not depends on the Input. The parameters are estimated using the EM
algorithm initialized by values derived from a Principal Component Analysis of the whole data
set. The best model between one and two components is selected according to the BIC criterion.
For the histone modification in Arabidopsis thaliana data set, they select a two components
model similar to the one obtained with logistic weights (Figure 11).

We have first compare the constant proportions model with K = 2 to the one proposed in
their conclusion in which the proportions depend on the Input. We have used our affine logistic
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(b) K=3
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(c) K=4
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(d) K=5

Figure 9: Clustering of NO data set into K classes. The strength of the color of the regression
lines corresponds to the mixture proportion.

weight model and observed that this model greatly improves the log-likelihood. The dimension
of this new model is 8 while the dimension of the original model is 7 so that the log-likelihood
increase does not seem to be due to overfitting. We have also compare our solution to the one
obtained with a constant weight with K = 3 model of dimension 11. The BIC criterion selects
the K = 2 with affine weight solution.

We have then tested more complex models with K up to 20 with a penalty obtained with the
slope heuristic. The models chosen are quite complex (K = 10 for constant proportions models
and K = 7 for affine logistic weight models, the later being the overall winner). Although they
better explain the data from the statistical point of view, those models become hard to interpret
from the biological point of view. We think this is due to the too simple affine models used.
Although no conceptual difficulties occur by using more complex function familie (or going to
the multivariate setting), the curse of dimensionality makes everything more complicated in
practice. In particular, initialization becomes harder and harder as the dimension grows and
requires probably a more clever treatment than the one proposed here. In the spirit of [12], we
are currently working on a first extension: a numerical algorithm for a bivariate piecewise linear
logistic weights model applied to hyperspectral image segmentation.
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Figure 10: Clustering of NO data set into 4 classes, considering the regression of NO with respect
to the equivalence ratio

5 Discussion
We have studied a penalized maximum likelihood estimate for mixtures of Gaussian regressions
with logistic weights. Our main contribution is the proof that a penalty proportional, up to
a logarithmic factor of the sample size, to the dimension of the model is sufficient to obtain
a non asymptotic theoretical control on the estimator loss. This result is illustrated in the
simple univariate case in which both the means and the logistic weights are linear. We study a
toy model which exhibits the behavior predicted by our theoretical analysis and proposes two
simple applications of our methodology. We hope that our contribution helps to popularize those
mixtures of Gaussian regressions by giving a theoretical foundation for model selection technique
in this area and showing some possible interesting uses even for simple models.

Besides some important theoretical issues on the loss used and the tightness of the bounds,
the major future challenge is the extension of the numerical scheme to more complex cases than
univariate linear models.

A A general conditional density model selection theorem
We summarize in this section the main result of Cohen and Le Pennec [11] that will be our main
tool to obtain the previous oracle inequality.

To any model Sm, a set of conditional densities, we associate a complexity defined in term
of a specific entropy, the bracketing entropy with respect to the square root of the tensorized
square of the Hellinger distance d2⊗n. Recall that a bracket [t−, t+] is a pair of real functions
such that ∀(x, y) ∈ X × Y, t−(x, y) ≤ t+(x, y) and a function s is said to belong to the bracket
[t−, t+] if ∀(x, y) ∈ X × Y, t−(x, y) ≤ s(x, y) ≤ t+(x, y). The bracketing entropy H[],d(δ, S) of a
set S is defined as the logarithm of the minimal number N[],d(δ, S) of brackets [t−, t+] covering
S, such that d(t−, t+) ≤ δ. The main assumption on models is a property that should satisfies
the bracketing entropy:

Assumption (H) For every model Sm in the collection S, there is a non-decreasing function
φm such that δ 7→ 1

δφm(δ) is non-increasing on (0,+∞) and for every σ ∈ R+,∫ σ

0

√
H[.],d⊗n(δ, Sm)dδ ≤ φm(σ).
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(a) K=2, constant proportions,
dimension= 7

(b) K=2, affine logistic weights,
dimension= 8

(c) K=3, constant proportions,
dimension= 9

(d) K=7, affine logistic weights,
dimension= 33

(e) K=10, constant proportions,
dimension= 39

Figure 11: Clustering of ChIP-chip data set into K classes.

Such an integral is ofter called a Dudley type integral of these bracketing entropies and is com-
monly used in empirical process theory [28]. The complexity of Sm is then defined as nσ2

m where
σm is the unique square root of 1

σφm(σ) =
√
nσ.

For technical reason, a separability assumption, always satisfied in the setting of this paper,
is also required. It is a mild condition, classical in empirical process theory (see for instance
Van der Vaart and Wellner [28]).

Assumption (Sep) For every model Sm in the collection S, there exists some countable sub-
set S′m of Sm and a set Y ′m with λ(Y\Y ′m) = 0 such that for every t in Sm, there
exists some sequence (tk)k≥1 of elements of S′m such that for every x ∈ X and every
y ∈ Y ′m, ln(tk(y|x)) −−−−−→

k→+∞
ln(t(y|x)).

The main result of Cohen and Le Pennec [11] is a condition on the penalty pen(m) which
ensures an oracle type inequality:

Theorem 2. Assume we observe (Xi, Yi) with unknown conditional density s0. Let S = (Sm)m∈M
an at most countable conditional density model collection. Assume Assumptions (H), (Sep) and
(K) hold. Let ŝm be a η minimizer of the negative log-likelihood in Sm

n∑
i=1

− ln(ŝm(Yi|Xi)) ≤ inf
sm∈Sm

(
n∑
i=1

− ln(sm(Yi|Xi))

)
+ η

Then for any ρ ∈ (0, 1) and any C1 > 1, there is a constant κ0 depending only on ρ and C1

such that, as soon as for every index m ∈M,

pen(m) ≥ κ(nσ2
m + xm)
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with κ > κ0 and σm the unique square root of 1
σφm(σ) =

√
nσ, the penalized likelihood estimate

ŝm̂ with m̂ such that
n∑
i=1

− ln(ŝm̂(Yi|Xi)) + pen(m̂) ≤ inf
m∈M

(
n∑
i=1

− ln(ŝm(Yi|Xi)) + pen(m)

)
+ η′

satisfies

E
[
JKL⊗nρ (s0, ŝm̂)

]
≤ C1 inf

m∈M

(
inf

sm∈Sm
KL⊗n(s0, sm) +

pen(m)

n

)
+ C1

κ0Ξ + η + η′

n
.

In the next section, we show how to apply this result in our mixture of Gaussian regressions
setting and prove that the penalty can be chosen roughly proportional to the intrinsic dimension
of the model, and thus of the order of the variance.

B Proofs
In Appendix B.1, we give a proof of Theorem 1 relying on several bracketing entropy controls
proved in Appendix B.2.

B.1 Proof of Theorem 1
We will show that Assumption (DIM) ensures that for all δ ∈ (0,

√
2], H[.],d⊗n(δ, Sm) ≤ dim(Sm)(C+

ln( 1
δ )) with a common C.
We show in Appendix that if

Assumption (DIM) There exist two constants CW and CΥ such that, for every model Sm in
the collection S,

Hd‖ sup ‖∞
(σ,WK) ≤ dim(WK)

(
CW + ln

1

σ

)
and

Hd‖ sup ‖∞
(σ,ΥK) ≤ dim(ΥK)

(
CΥ + ln

1

σ

)
then, if n ≥ 1, the complexity of the corresponding model Sm satisfies for any δ ∈ (0,

√
2],

H[.],d⊗n(δ, Sm) ≤ dim(Sm)(C + ln(
1

δ
))

with dim(Sm) = dim(WK) + dim(ΥK) + dim(VK) and C that depends only on the constants
defining VK and the constants CW and CΥ.

If this happens, Proposition 1 yields the results.

Proposition 1. If for any δ ∈ (0,
√

2], H[.],d⊗n(δ, Sm) ≤ dim(Sm)(Cm+ln( 1
δ )), then the function

φm(σ) = σ
√

dim(Sm)

(√
Cm +

√
π +

√
ln
(

1
min(σ,1)

))
satisfies Assumption (H). Furthermore,

the unique square root σm of 1
σφm(σ) =

√
nσ satisfies

nσ2
m ≤ dim(Sm)

(
2(
√
Cm +

√
π)2 +

(
ln

n

(
√
Cm +

√
π)2 dim(Sm)

)
+

)
.
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In other words, if we can control models’ bracketing entropy with a uniform constant C, we
get a suitable bound on the complexity. This result will be obtain by first decomposing the
entropy term between the weights and the Gaussian components. Therefore we use the following
distance over conditional densities:

sup
x
dy(s, t) = sup

x∈X

(∫
y

(√
s(y|x)−

√
t(y|x)

)2

dy

) 1
2

.

Notice that d2⊗n(s, t) ≤ supx d
2
y(s, t).

For all weights π and π′, we define

sup
x
dk(π, π′) = sup

x∈X

(
K∑
k=1

(√
πk(x)−

√
π′k(x)

)2
) 1

2

.

Finally, for all densities s and t over Y, depending on x, we set

sup
x

max
k

dy(s, t) = sup
x∈X

max
1≤k≤K

dy(sk(x, .), tk(x, .))

= sup
x∈X

max
1≤k≤K

(∫
y

(√
sk(x, y)−

√
tk(x, y)

)2

dy

) 1
2

.

Lemma 3. Let P =
{

(πw,k)1≤k≤K
∣∣w ∈WK , and ∀(k, x), πw,k(x) = ewk(x)∑K

l=1 e
wl(x)

}
and

G =
{

(Φυk,Σk)1≤k≤K |υ ∈ ΥK ,Σ ∈ VK
}
. Then for all δ in (0,

√
2], for all m inM,

H[.],sup
x
dy (δ, Sm) ≤ H[.],sup

x
dk

(
δ

5
,P
)

+H[.],sup
x

max
k

dy

(
δ

5
,G
)
.

One can then relate the bracketing entropy of P to the entropy of WK

Lemma 4. For all δ ∈ (0,
√

2],

H[.],sup
x
dk

(
δ

5
,P
)
≤ Hd‖ sup ‖∞

(
3
√

3δ

20
√
K
,WK

)

Since P is a set of weights, 3
√

3δ
20
√
K

could be replaced by 3
√

3δ
20
√
K−1

with an identifiability con-
dition. For example, W ′K = {(0, w2 − w1, . . . , wK − w1)|w ∈WK} can be covered using brackets
of null size on the first coordinate, lowering squared Hellinger distance between the brackets’
bounds to a sum of K − 1 terms. Therefore, H[.],sup

x
dk

(
δ
5 ,P

)
≤ Hd‖ sup ‖∞

(
3
√

3δ
20
√
K−1

,W ′K

)
.

Since we have assumed that ∃CW s.t ∀δ ∈ (0,
√

2],

Hd‖ sup ‖∞
(δ,WK) ≤ dim(WK)

(
CW + ln

(
1

δ

))
Then

H[.],sup
x
dk

(
δ

5
,P
)
≤ dim(WK)

(
CW + ln

(
20
√
K

3
√

3δ

))
To tackle the Gaussian regression part, we rely heavily on the following proposition,
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Proposition 2. Let κ ≥ 17
29 , γκ =

25(κ− 1
2 )

49(1 + 2κ
5 )

. For any 0 < δ ≤
√

2 and any δΣ ≤ 1

5
√
κ2 cosh( 2κ

5 )+ 1
2

δ
p ,

(υ, L,A, P ) ∈ Υ× [L−, L+]×A(λ−, λ+)×SO(p) and (υ̃, L̃, Ã, P̃ ) ∈ Υ× [L−, L+]×A(λ−,+∞)×
SO(p),Σ = LPAP ′ and Σ̃ = L̃P̃ ÃP̃ ′, assume that t−(x, y) = (1 +κδΣ)−pΦυ̃(x),(1+δΣ)−1Σ̃(y) and
t+(x, y) = (1 + κδΣ)pΦυ̃(x),(1+δΣ)Σ̃(y).

If 
∀x ∈ Rd, ‖υ(x)− υ̃(x)‖2 ≤ pγκL−λ− λ−λ+

δΣ
2

(1 + 2
25δΣ)−1L̃ ≤ L ≤ L̃

∀1 ≤ i ≤ p, |A−1
i,i − Ã

−1
i,i | ≤ 1

10
δΣ
λ+

∀y ∈ Rp, ‖Py − P̃ y‖ ≤ 1
10
λ−
λ+
δΣ‖y‖

then [t−, t+] is a δ
5 Hellinger bracket such that t−(x, y) ≤ Φυ(x),Σ(y) ≤ t+(x, y).

We consider three cases: the parameter (mean, volume, matrix) is known (? = 0), unknown
but common to all classes (? = c), unknown and possibly different for every class (? = K). For
example, [νK , L0, Pc, A0] denotes a model in which only means are free and eigenvector matrices
are assumed to be equal and unknown. Under our assumption that ∃CΥ s.t ∀δ ∈ (0,

√
2],

Hd‖ sup ‖∞
(δ,ΥK) ≤ dim(ΥK)

(
CΥ + ln

(
1

δ

))
we deduce:

H[.],maxk supx dy

(
δ

5
,G
)
≤ D

(
C + ln

(
1

δ

))
(1)

where D = Zυ,? + ZL,? +
p(p− 1)

2
ZP,? + (p− 1)ZA,? and

C = ln

(
5p

√
κ2 cosh

(
2κ

5

)
+

1

2

)
+
Zυ,?CΥ

D
+
Zυ,?
2D

ln

(
λ+

pγκL−λ2
−

)

+
ZL,?
D

ln

4 + 129 ln
(
L+

L−

)
10

+
ZP,?
D

(
ln(cU ) +

p(p− 1)

2
ln

(
10λ+

λ−

))

+
ZA,?(p− 1)

D
ln

(
4

5
+

52λ+

5λ−
ln

(
λ+

λ−

))
Zυ,K = dim(ΥK), Zυ,c = dim(Υ1), Zυ,0 = 0 ZL,0 = ZP,0 = ZA,0 = 0,

ZL,c = ZP,c = ZA,c = 1, ZL,K = ZP,K = ZA,K = K.

We notice that the following upper-bound of C is independent from the model of the collection,
because we have made this hypothesis on CΥ.

C ≤ ln

(
5p

√
κ2 cosh

(
2κ

5

)
+

1

2

)
+ CΥ +

1

2
ln

(
λ+

pγκL−λ2
−

)

+ ln

4 + 129 ln
(
L+

L−

)
10

+
2

p(p− 1)
ln(cU ) + ln

(
10λ+

λ−

)

+ ln

(
4

5
+

52λ+

5λ−
ln

(
λ+

λ−

))
:= C1.
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We conclude that H[.],supx dy
(δ, Sm) ≤ dim(Sm)

(
Cm + ln

(
1
δ

))
, with

dim(Sm) = dim(WK) +D

Cm =
dim(WK)

dim(Sm)

(
CW + ln

(
20
√
K

3
√

3

))
+

DC1
dim(Sm)

≤ CW + ln

(
20
√
Kmax

3
√

3

)
+ C1 := C

Note that the constant C does not depend on the dimension dim(Sm) of the model, thanks to
the hypothesis that CW is common for every model Sm in the collection. Using Proposition 1,
we deduce thus that

nσ2
m ≤ dim(Sm)

2
(√

C +
√
π
)2

+

ln
n(√

C +
√
π
)2

dim(Sm)


+

 .

Theorem 2 yields then, for a collection S = (Sm)m∈M, with M = {(K,WK ,ΥK , VK)|K ∈ N \
{0},WK ,ΥK , VK as previously defined } for which Assumption (K) holds, the oracle inequality
of Theorem 1 as soon as

pen(m) ≥ κ

dim(Sm)

2
(√

C +
√
π
)2

+

ln
n(√

C +
√
π
)2

dim(Sm)


+

+ xm

 .

B.2 Lemma Proofs
B.2.1 Bracketing entropy’s decomposition

We prove here a slightly more general Lemma than Lemma 3

Lemma 5. Let

P =

{
π = (πk)1≤k≤K

∣∣∀k, πk : X → R+ and ∀x ∈ X ,
K∑
k=1

πk(x) = 1

}
,

Ψ =

{
(ψ1, . . . , ψK)

∣∣∀k, ψk : X × Y → R+, and ∀x, ∀k,
∫
ψk(x, y)dy = 1

}
,

C =

{
(x, y) 7→

K∑
k=1

πk(x)ψk(x, y)
∣∣π ∈ P, ψ ∈ Ψ

}
.

Then for all δ in (0,
√

2],

H[.],sup
x
dy (δ, C) ≤ H[.],sup

x
dk

(
δ

5
,P
)

+H[.],sup
x

max
k

dy

(
δ

5
,Ψ

)
.

The proof mimics the one of Lemma 7 from [11]. It is possible to obtain such an inequality if
the covariate X is not bounded, using the smaller distance d⊗n for the entropy with bracketing
of C. More precisely,

Lemma 6. For all δ in (0,
√

2], H[.],d⊗n (δ, C) ≤ H[.],dP

(
δ
2 ,P

)
+H[.],dΨ

(
δ
2 ,Ψ

)
,
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with d2
P(π+, π−) = E

[
1

n

n∑
i=1

d2
k(π+(Xi), π

−(Xi))

]
and

d2
Ψ(ψ+, ψ−) = E

[
1

n

n∑
i=1

K∑
k=1

d2
y(ψ+

k (Xi), ψ
−
k (Xi))

]
. But bounding such bracketing entropies for

P and Ψ becomes much more challenging.

Proof. First we will exhibit a covering of bracket of C.
Let ([πi,−, πi,+])1≤i≤NP be a minimal covering of δ bracket for supx dk of P:

∀i ∈ {1, . . . , NP},∀x ∈ X , dk(πi,−(x), πi,+(x)) ≤ δ.

Let ([ψi,−, ψi,+])1≤i≤NΨ
be a minimal covering of δ bracket for sup

x
max
k

dy of Ψ:

∀i ∈ {1, . . . , NΨ},∀x ∈ X ,∀k ∈ {1, . . . ,K}, dy(ψi,−k (x, .), ψi,+k (x, .)) ≤ δ.

Let s be a density in C. By definition, there is π in P and ψ in Ψ such that for all (x, y) in
X × Y, s(y|x) =

∑K
k=1 πk(x)ψk(x, y).

Due to the covering, there is i in {1, . . . , NP} such that

∀x ∈ X ,∀k ∈ {1, . . . ,K}, πi,−k (x) ≤ πk(x) ≤ πi,+k (x).

There is also j in {1, . . . , NΨ} such that

∀x ∈ X ,∀k ∈ {1, . . . ,K},∀y ∈ Y, ψj,−k (x, y) ≤ ψk(x, y) ≤ ψj,+k (x, y).

Since for all x, for all k and for all y, πk(x) and ψk(x, y) are non-negatives, we may multiply
term-by-term and sum these inequalities over k to obtain:

∀x ∈ X ,∀y ∈ Y,
K∑
k=1

(
πi,−k (x)

)
+

(
ψj,−k (x, y)

)
+
≤ s(y|x) ≤

K∑
k=1

πi,+k (x)ψj,+k (x, y).

([
K∑
k=1

(
πi,−k

)
+

(
ψj,−k

)
+
,

K∑
k=1

πi,+k ψj,+k

])
1≤i≤NP
1≤j≤NΨ

is thus a bracket covering of C.

Now, we focus on brackets’ size using lemmas from [11] (namely Lemma 11, 12, 13), To
lighten the notations, π−k and ψ−k are supposed non-negatives for all k. Following their Lemma
12, only using Cauchy-Schwarz inequality, we prove that

sup
x
d2
y

(
K∑
k=1

π−k (x)ψ−k (x, .),

K∑
k=1

π+
k (x)ψ+

k (x, .)

)
≤ sup

x
d2
y,k(π−(x)ψ−(x, .), π+(x)ψ+(x, .))

Then, using Cauchy-Schwarz inequality again, we get by their Lemma 11:

sup
x
d2
y,k(π−(x)ψ−(x, .), π+(x)ψ+(x, .))

≤ sup
x

max
k

dy(ψ+
k (x, .), ψ−k (x, .))

√√√√ K∑
k=1

π+
k (x)

+dk(π+(x), π−(x)) max
k

√∫
ψ−k (x, y)dy

)2
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According to their Lemma 13, ∀x,
∑K
k=1 π

+
k (x) ≤ 1 + 2(

√
2 +
√

3)δ.

sup
x

max
k

dy(ψ+
k (x, .), ψ−k (x, .))

√√√√ K∑
k=1

π+
k (x)

+dk(π+(x), π−(x)) max
k

√∫
ψ−k (x, y)dy

)2

≤
(√

1 + 2(
√

2 +
√

3)δ + 1

)2

δ2 ≤ (5δ)2

The result follows from the fact we exhibited a 5δ covering of brackets of C, with cardinality
NPNΨ.

B.2.2 Bracketing entropy of weight’s families

General case We prove

Lemma 4. For any δ ∈ (0,
√

2],

H[.],supx dk

(
δ

5
,P
)
≤ Hd‖ sup ‖∞

(
3
√

3δ

20
√
K
,WK

)
.

Proof. We show that ∀(w, z) ∈ (WK)2,∀k ∈ {1, . . . ,K},∀x ∈ X , |
√
πw,k(x) −

√
πz,k(x)| ≤

F (k, x)d(w, z), with F a function and d some distance. We define ∀k,∀u ∈ RK , Ak(u) =
exp(uk)∑K
k=1 exp(uk)

, so πw,k(x) = Ak(w(x)).

∀(u, v) ∈ (RK)2,∣∣∣√Ak(v)−
√
Ak(u)

∣∣∣ =

∣∣∣∣∫ 1

0

∇
(√

Ak

)
(u+ t(v − u)).(v − u)dt

∣∣∣∣
Besides,

∇
(√

Ak

)
(u) =

(
1

2

√
Ak(u)

∂

∂ul
(ln(Ak(u)))

)
1≤l≤K

=

(
1

2

√
Ak(u) (δk,l −Al(u))

)
1≤l≤K

∣∣∣√Ak(v)−
√
Ak(u)

∣∣∣
=

1

2

∣∣∣∣∣
∫ 1

0

√
Ak(u+ t(v − u))

K∑
l=1

(δk,l −Al(u+ t(v − u))) (vl − ul)dt

∣∣∣∣∣
≤ ‖v − u‖∞

2

∫ 1

0

√
Ak(u+ t(v − u))

K∑
l=1

|δk,l −Al(u+ t(v − u))| dt
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Since ∀u ∈ RK ,
∑K
k=1Ak(u) = 1,

∑K
l=1 |δk,l −Al(u)| = 2(1−Ak(u))∣∣∣√Ak(v)−

√
Ak(u)

∣∣∣ ≤ ‖v − u‖∞ ∫ 1

0

√
Ak(u+ t(v − u)) (1−Ak(u+ t(v − u))) dt

≤ 2

3
√

3
‖v − u‖∞

since x 7→
√
x(1− x) is maximal over [0,1] for x = 1

3 . We deduce that for any (w, z) in (WK)2,
for all k in {1, . . . ,K}, for any x in X , |

√
πw,k(x)−

√
πz,k(x)| ≤ 2

3
√

3
maxl ‖wl − zl‖∞.

By hypothesis, for any positive ε, an ε-net N of WK may be exhibited. Let w be an element
of WK . There is a z belonging to the ε-net N such that maxl ‖zl − wl‖∞ ≤ ε. Since for all k in
{1, . . . ,K}, for any x in X ,

|
√
πw,k(x)−

√
πz,k(x)| ≤ 2

3
√

3
max
l
‖wl − zl‖∞ ≤

2

3
√

3
ε,

and
K∑
k=1

(√
πz,k(x) +

2

3
√

3
ε−

√
πz,k(x) +

2

3
√

3
ε

)2

= K

(
4ε

3
√

3

)2

,

([(√
πz − 2

3
√

3
ε
)2

,
(√

πz + 2
3
√

3
ε
)2
])

z∈N
is a 4ε

√
K

3
√

3
-bracketing cover of P. As a result,H[],supx dk

(
δ
5 ,P

)
≤

Hd‖ sup ‖∞

(
3
√

3
20
√
K
δ,WK

)
.

Case: WK = {0}⊗WK−1 with W constructed from bounded functions We remind that

W =

{
w : X → R/w(x) =

dW∑
i=0

αiψW,i and ‖α‖∞ ≤ TW

}
with ‖ψW,i‖∞ ≤ 1.

Proof of Part 1 of Lemma 1. WK is a finite dimensional compact set. Thanks to the result in
the general case, we get

H[.],sup
x
dk

(
δ

5
,P
)
≤ Hd‖ sup ‖∞

(
3
√

3δ

20
√
K − 1

,WK

)

now as for all w, v in WK , maxk ‖wk − vk‖∞ ≤ maxk
∑dW
i=0 |αwk,i − αvk,i| ≤ dW maxk,i |αwk,i − αvk,i|

≤ H‖.‖∞

(
3
√

3δ

20
√
K − 1dW

,
{
α ∈ R(K−1)dW /‖α‖∞ ≤ TW

})

≤ (K − 1)dW ln

(
1 +

20
√
K − 1TW dW

3
√

3δ

)
≤ (K − 1)dW

[
ln

(√
2 +

20

3
√

3
TW
√
K − 1dW

)
+ ln

(
1

δ

)]

The second Lemma is just a consequence of dW =
(
d′W+d
d

)
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B.2.3 Bracketing entropy of Gaussian families

General case We rely on a general construction of Gaussian brackets:

Proposition. 2. Let κ ≥ 17
29 , γκ =

25(κ− 1
2 )

49(1 + 2κ
5 )

. For any 0 < δ ≤
√

2, any p ≥ 1 and any

δΣ ≤ 1

5
√
κ2 cosh( 2κ

5 )+ 1
2

δ
p , let (υ, L,A, P ) ∈ Υ× [L−, L+]×A(λ−, λ+)× SO(p) and (υ̃, L̃, Ã, P̃ ) ∈

Υ× [L−, L+]×A(λ−,+∞)× SO(p), define Σ = LPAP ′ and Σ̃ = L̃P̃ ÃP̃ ′,

t−(x, y) = (1 + κδΣ)−pΦυ̃(x),(1+δΣ)−1Σ̃(y) and t+(x, y) = (1 + κδΣ)pΦυ̃(x),(1+δΣ)Σ̃(y).

If 
∀x ∈ X , ‖υ(x)− υ̃(x)‖2 ≤ pγκL−λ− λ−λ+

δ2
Σ(

1 + 2
25δΣ

)−1
L̃ ≤ L ≤ L̃

∀1 ≤ i ≤ p, |A−1
i,i − Ã

−1
i,i | ≤ 1

10
δΣ
λ+

∀y ∈ Rp, ‖Py − P̃ y‖ ≤ 1
10
λ−
λ+
δΣ‖y‖

then [t−, t+] is a δ/5 Hellinger bracket such that t−(x, y) ≤ Φυ(x),Σ(y) ≤ t+(x, y).

This statement is similar to Lemma 10 in Cohen and Le Pennec [11]. Admitting this proposi-
tion, we are brought to construct nets over the spaces of the means, the volumes, the eigenvector
matrices and the normalized eigenvalue matrices. We consider three cases: the parameter (mean,
volume, matrix) is known (? = 0), unknown but common to all classes (? = c), unknown and
possibly different for every class (? = K). For example, [νK , L0, Pc, A0] denotes a model in which
only means are free and eigenvector matrices are assumed to be equal and unknown.

If the means are free (? = K), we construct a grid GΥK over ΥK , which is compact. Since

Hd‖ sup ‖∞

(√
pγκL−λ−

λ−
λ+

δΣ,ΥK

)
≤ dim(ΥK)

CΥ + ln

 1√
pγκL−λ−

λ−
λ+
δΣ

 ,

∣∣∣∣∣GΥK

(√
pγκL−λ−

λ−
λ+

δΣ

)∣∣∣∣∣ ≤
CΥ + ln

 1√
pγκL−λ−

λ−
λ+
δΣ

dim(ΥK)

.

If the means are common and unknown (? = c), belonging to Υ1 , we construct a gridGΥc

(√
pγκL−λ−

λ−
λ+
δΣ

)
over Υ1 with cardinality at mostCΥ + ln

 1√
pγκL−λ−

λ−
λ+
δΣ

DΥ1

.

Finally, if the means are known (? = 0), we do not need to construct a grid. In the end,∣∣∣GΥ?

(√
pγκL−λ−

λ−
λ+
δΣ

)∣∣∣ ≤
CΥ + ln

 1√
pγκL−λ−

λ−
λ+

δΣ

Zυ,?

, with Zυ,K = dim(ΥK), Zυ,c =

DΥ1 and Zυ,0 = 0.
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Then, we consider the grid GL over [L−, L+]:

GL

(
2

25
δΣ

)
=

{
L−

(
1 +

2

25
δΣ

)g
/g ∈ N, L−

(
1 +

2

25
δΣ

)g
≤ L+

}
∣∣∣∣GL( 2

25
δΣ

)∣∣∣∣ ≤ 1 +
ln
(
L+

L−

)
ln
(
1 + 2

25δΣ
)

Since δΣ ≤ 2
5 , ln

(
1 + 2

25δΣ
)
≥ 10

129δΣ.∣∣∣∣GL( 2

25
δΣ

)∣∣∣∣ ≤ 1 +
129 ln

(
L+

L−

)
10δΣ

≤
4 + 129 ln

(
L+

L−

)
10δΣ

By definition of a net, for any P ∈ SO(p) there is a P̃ ∈ GP

(
1
10
λ−
λ+
δΣ

)
such that ∀y ∈

Rp, ‖Py− P̃ y‖ ≤ 1
10
λ−
λ+
δΣ‖y‖. There exists a universal constant cU such that

∣∣∣GP ( 1
10
λ−
λ+
δΣ

)∣∣∣ ≤
cU

(
10λ+

λ−δΣ

) p(p−1)
2

.
For the grid GA, we look at the condition on the p− 1 first diagonal values and obtain:

∣∣∣∣GA( 1

10

λ−
λ+

δΣ

)∣∣∣∣ ≤
2 +

ln
(
λ+

λ−

)
ln
(

1 + 1
10
λ−
λ+
δΣ

)
p−1

Since δΣ ≤ 2
5 , ln

(
1 + 1

10
λ−
λ+
δΣ

)
≥ 5

52
λ−
λ+
δΣ, then∣∣∣∣GA( 1

10

λ−
λ+

δΣ

)∣∣∣∣ ≤ (2 +
52

5δΣ

λ+

λ−
ln

(
λ+

λ−

))p−1

≤
(

4 + 52
λ+

λ−
ln

(
λ+

λ−

))p−1(
1

5δΣ

)p−1

Let ZL,0 = ZP,0 = ZA,0 = 0, ZL,c = ZP,c = ZA,c = 1, ZL,K = ZP,K = ZA,K = K. We

define fυ,? from Υ? to ΥK by


0 7→ (υ0,1, . . . , υ0,1) if ? = 0

υ 7→ (υ, . . . , υ) if ? = c

(υ1, . . . , υK) 7→ (υ1, . . . , υK) if ? = K

and similarly fL,?, fP,?

and fA,?, respectively from (R+)
ZL,? into (R+)

K , from (SO(p))
ZP,? into (SO(p))

K and from
A(λ−, λ+)ZA,? into A(λ−, λ+)K .

We define

Γ : (υ1, . . . , υK , L1, . . . , LK , P1, . . . , PK , A1, . . . , AK) 7→ (υk, LkPkAkP
′
k)1≤k≤K

and Ψ : (υk,Σk)1≤k≤K 7→ (Φυk,Σk)1≤k≤K . The image of Υ? × [L−, L+]ZL,? × SO(p)ZP,? ×
A(λ−, λ+)ZA,? by Ψ ◦ Γ ◦ (fυ,? ⊗ fL,? ⊗ fP,? ⊗ fA,?) is the set G of all K-tuples of Gaussian
densities of type [υ?, L?, P?, A?].

Now, we define B:

(υk,Σk)1≤k≤K 7→
(
(1 + κδΣ)−pΦυk,(1+δΣ)−1Σk , (1 + κδΣ)pΦυk,(1+δΣ)Σk

)
1≤k≤K .

The image of GΥ? ×G
ZL,?
L ×GZP,?P ×GZA,?A by B ◦Γ ◦ (fυ,?⊗ fL,?⊗ fP,?⊗ fA,?) is a δ/5-bracket
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covering of G, with cardinality bounded by√λ+ exp (CΥ)√
pγκL−λ2

−δΣ

ZΥ,?

×

4 + 129 ln
(
L+

L−

)
10δΣ

ZL,?

× cZP,?U

(
10λ+

λ−δΣ

) p(p−1)
2 ZP,?

×
(

4 + 52
λ+

λ−
ln

(
λ+

λ−

))(p−1)ZA,? ( 1

5δΣ

)(p−1)ZA,?

.

Taking δΣ = 1

5
√
κ2 cosh( 2κ

5 )+ 1
2

δ
p , we obtain

H[.],supx maxk dy

(
δ

5
,G
)
≤ D

(
C + ln

(
1

δ

))

with D = Zυ,? + ZL,? +
p(p− 1)

2
ZP,? + (p− 1)ZA,? and

C = ln

(
5p

√
κ2 cosh

(
2κ

5

)
+

1

2

)
+
Zυ,?CΥ

D
+
Zυ,?
2D

ln

(
λ+

pγκL−λ2
−

)

+
ZL,?
D

ln

4 + 129 ln
(
L+

L−

)
10

+
ZP,?
D

(
ln(cU ) +

p(p− 1)

2
ln

(
10λ+

λ−

))

+
ZA,?(p− 1)

D
ln

(
4

5
+

52λ+

5λ−
ln

(
λ+

λ−

))
Case: ΥK generated from bounded functions Using previous work, we only have to
handle ΥK ’s bracketing entropy. Just like for WK , we aim at bounding the bracketing entropy
by the entropy of the parameters’ space

We focus on the case of Lemma 1 where ΥK = ΥK and

Υ =

{
υ : X → Rp

∣∣∣∀j ∈ {1, . . . , p},∀x, υj(x) =

dΥ∑
i=0

α
(j)
i ψΥ,i, and ‖α‖∞ ≤ TΥ

}

We consider for any υ, ν in Υ and any x in [0, 1]d,

‖υ(x)− ν(x)‖22 =

p∑
j=1

(
dΥ∑
i=0

(
α
υ,(j)
i − αν,(j)i

)
ψΥ,j(x)

)2

≤
p∑
j=1

(
dΥ∑
i=0

(
α
υ,(j)
i − αν,(j)i

)2
)(

dΥ∑
i=0

|ψΥ,j(x)|2
)

≤ dΥ

p∑
j=1

dΥ∑
i=0

(
αυ,(j)r − αν,(j)r

)2

≤ pd2
Υ max

j,i

(
α
υ,(j)
i − αν,(j)r

)2
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So,

Hmaxk supx ‖‖2 (δ,ΥK) ≤ Hmaxk,j,r |.|

 δ
√
pdΥ

,


(
α(j,k)
r

)
1≤j≤p
|r|≤d′Υ
1≤k≤K

∣∣∣‖α‖∞ ≤ TΥ




≤ pKdΥ ln

(
1 +

√
pdΥTΥ

δ

)
≤ pKdΥ

[
ln
(√

2 +
√
pdΥTΥ

)
+ ln

(
1

δ

)]
≤ dim(ΥK)

(
CΥ + ln

(
1

δ

))
with dim(ΥK) = pK

(
d′Υ+d
d

)
and CΥ = ln

(√
2 +
√
p
(
d′Υ+d
d

)
TΥ

)
.

The second part of Lemma 2 is deduced from the fact that if X = [0, 1]d and Υ is the set of
linear combination of monomials of degree less that d′Υ then dΥ =

(
d′Υ+d
d

)
.

B.3 Proof of the key proposition to handle bracketing entropy of Gaus-
sian families

B.3.1 Proof of Proposition 2

Proof. [t−, t+] is a δ/5 bracket.
Since (1 + δΣ)Σ̃−1 − (1 + δΣ)−1Σ̃−1 = ((1 + δΣ)− (1 + δΣ)−1)Σ̃−1 is a positive-definite matrix,
Maugis and Michel’s lemma can be applied.

Lemma 7. ([24]) Let Φυ1,Σ1
and Φυ2,Σ2

be two Gaussian densities with full rank covariance
matrix in dimension p such that Σ−1

1 − Σ−1
2 is a positive definite matrix. For any y ∈ Rp,

Φυ1,Σ1
(y)

Φυ2,Σ2(y)
≤

√
|Σ2|
|Σ1|

exp

(
1

2
(υ1 − υ2)′(Σ2 − Σ1)−1(υ1 − υ2)

)
.

Thus, ∀x ∈ X ,∀y ∈ Rp,

t−(x, y)

t+(x, y)
=

(1 + κδΣ)−p

(1 + κδΣ)p

Φυ(x),(1+δΣ)−1Σ̃(y)

Φυ(x),(1+δΣ)Σ̃(y)
≤ 1

(1 + κδΣ)2p

√
(1 + δΣ)p

(1 + δΣ)−p
(2)

=

(
1 + δΣ

(1 + κδΣ)2

)p
=

(
1 + δΣ

1 + 2κδΣ + κ2δ2
Σ

)p
≤ 1 (3)

For all x in X ,

d2
y(t−, t+) =

∫
t−(x, y)dy +

∫
t+(x, y) dy − 2

∫ √
t−(x, y)

√
t+(x, y)dy (4)

= (1 + κδΣ)−p + (1 + κδΣ)p − 2(1 + κδΣ)−p/2(1 + κδΣ)p/2 (5)

×
∫ √

Φυ(x),(1+δΣ)−1Σ̃(y)
√

Φυ(x),(1+δΣ)Σ̃(y) dy (6)

= (1 + κδΣ)−p + (1 + κδΣ)p − (2 (7)

−d2
y

(
Φυ(x),(1+δΣ)−1Σ̃(y),Φυ(x),(1+δΣ)Σ̃(y)

))
. (8)

Using the following lemma,
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Lemma 8. Let Φυ1,Σ1 and Φυ2,Σ2 be two Gaussian densities with full rank covariance matrix in
dimension p, then

d2 (Φυ1,Σ1 ,Φυ2,Σ2) = 2
(

1− 2p/2|Σ1Σ2|−1/4|Σ−1
1 + Σ−1

2 |−1/2 (9)

× exp

(
−1

4
(υ1 − υ2)′(Σ1 + Σ2)−1(υ1 − υ2)

))
. (10)

we obtain

d2
y(t−, t+) = (1 + κδΣ)−p + (1 + κδΣ)p − 2 2p/2

(
(1 + δΣ) + (1 + δΣ)−1

)−p/2 (11)

= 2− 2 2p/2
(
(1 + δΣ) + (1 + δΣ)−1

)−p/2
+ (1 + κδΣ)−p − 2 (12)

+ (1 + κδΣ)p (13)

Applying Lemma 9

Lemma 9. For any 0 < δ ≤
√

2 and any p ≥ 1, let κ ≥ 1
2 and

δΣ ≤ 1

5
√
κ2 cosh( 2κ

5 )+ 1
2

δ
p , then

δΣ ≤
2

5p
≤ 2

5
.

and

Lemma 10. For any p ∈ N \ {0}, for any δΣ > 0,

2− 2p/2+1
(
(1 + δΣ) + (1 + δΣ)−1

)−p/2 ≤ pδΣ
2

2
≤ p2δΣ

2

2

Furthermore, if pδΣ ≤ c, then

(1 + κδΣ)p + (1 + κδΣ)−p − 2 ≤ κ2 cosh(κc)p2δΣ
2.

with c = 2
5 , it comes out that:

sup
x
d2
y(t−(x, y), t+(x, y)) ≤

(
δ

5

)2

.

Now, we show that for all x in X , for all y in Rp, t−(x, y) ≤ Φυ(x),Σ(y) ≤ t+(x, y). We use
therefore Lemma 11, thanks to the hypothesis made on covariance matrices.

Lemma 11. Let (L,A, P ) ∈ [L−, L+]×A(λ−, λ+)×SO(p) and (L̃, Ã, P̃ ) ∈ [L−, L+]×A(λ−,∞)×
SO(p), define Σ = LPAP ′ and Σ̃ = L̃P̃ ÃP̃ ′. If

(1 + δL)−1L̃ ≤ L ≤ L̃
∀1 ≤ i ≤ p, |A−1

i,i − Ã
−1
i,i | ≤ δAλ

−1
−

∀y ∈ Rp, ‖Py − P̃ y‖ ≤ δP ‖y‖
then (1 + δΣ)Σ̃−1 − Σ−1 and Σ−1 − (1 + δΣ)−1Σ̃−1 satisfy

∀y ∈ Rp,y′
(

(1 + δΣ)Σ̃−1 − Σ−1
)
y ≥ L̃−1

(
(δΣ − δL)λ−1

+ − (1 + δΣ)λ−1
− (2δP + δA)

)
‖y‖2 (14)

∀y ∈ Rp,y′
(

Σ−1 − (1 + δΣ)−1Σ̃−1
)
y ≥ L̃−1

1 + δΣ

(
δΣλ

−1
+ − λ−1

− (2δP + δA)
)
‖y‖2 (15)
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Using

{
δL = 2

25δΣ

δP = δA = 1
10
λ−
λ+
δΣ

we get lower bounds of the same order:

∀y ∈ Rp,y′
(

(1 + δΣ)Σ̃−1 − Σ−1
)
y ≥ L̃−1

2λ+
δΣ‖y‖2 (16)

∀y ∈ Rp,y′
(

Σ−1 − (1 + δΣ)−1Σ̃−1
)
y ≥ L̃−1

1 + δΣ

7

10λ+
δΣ‖y‖2 (17)

Let’s compare Φυ,Σ and t+.

Φυ(x),Σ(y)

(1 + κδΣ)pΦυ̃(x),(1+δΣ)Σ̃(y)
(18)

≤ (1 + κδΣ)−p

√ |(1 + δΣ)Σ̃|
|Σ|

exp

(
1

2
(υ(x)− υ̃(x))′

(
(1 + δΣ)Σ̃− Σ

)−1

(υ(x)− υ̃(x))

)
(19)

≤ (1 + δΣ)p/2

(1 + κδΣ)p

√ |Σ̃|
|Σ|

exp

(
1

2
(υ(x)− υ̃(x))′

(
(1 + δΣ)Σ̃− Σ

)−1

(υ(x)− υ̃(x))

) . (20)

But, (
(1 + δΣ)Σ̃− Σ

)−1

=
(

(1 + δΣ)Σ̃(Σ−1 − (1 + δΣ)−1Σ̃−1)Σ
)−1

(21)

= (1 + δΣ)−1Σ−1(Σ−1 − (1 + δΣ)−1Σ̃−1)−1Σ̃−1 (22)

Thus by Lemma 11,

(υ(x)− υ̃(x))′
(

(1 + δΣ)Σ̃− Σ
)−1

(υ(x)− υ̃(x)) (23)

≤ (1 + δΣ)−1L−1
− λ−1

− (1 + δΣ)L̃
10

7
λ+δ

−1
Σ L̃−1λ−1

− ‖υ(x)− υ̃(x)‖2 (24)

≤ 10

7
L−1
− λ−2

− λ+δ
−1
Σ ‖υ(x)− υ̃(x)‖2 (25)

≤ 10

7
L−1
− λ−2

− λ+δ
−1
Σ pγκL−λ

2
−λ
−1
+ δ2

Σ (26)

≤ 10

7
pγκδΣ (27)

Since

√
|Σ̃|
|Σ|

=

(
L̃

L

) p
2

≤
(

1 +
2

25
δΣ

)p/2
,

Φυ(x),Σ(y)

(1 + κδΣ)pΦυ̃(x),(1+δΣ)Σ̃(y)
≤

(1 + δΣ)p/2(1 + 2
25δΣ)p/2

(1 + κδΣ)p
exp

(
5γκ
7
pδΣ

)
. (28)

It suffices that
5γκ
7
δΣ ≤ ln

 1 + κδΣ
√

1 + δΣ

√
1 + 2

25δΣ


RR n° 8281



Gaussian Mixture Regression model with logistic weights, a penalized maximum likelihood approach34

Now let

f(δΣ) = ln(1 + κδΣ)− 1

2
ln(1 + δΣ)− 1

2
ln

(
1 +

2

25
δΣ

)
(29)

f ′(δΣ) =
κ

1 + κδΣ
− 1

2(1 + δΣ)
− 1

25
(
1 + 2

25δΣ
) =

(27k − 4)δΣ + 50k − 27

2(1 + κδΣ)(1 + δΣ)(25 + 2δΣ)
(30)

Since κ > 17
29 ,

f ′(δΣ) >
k − 27

50

(1 + κδΣ)(1 + δΣ)
(
1 + 2

25δΣ
) (31)

Finally, since f(0) = 0 and δΣ ≤ 2
5 , one deduces

f(δΣ) >
k − 27

50

(1 + κδΣ)(1 + δΣ)
(
1 + 2

25δΣ
)δΣ (32)

≥
k − 27

50(
1 + 2

5κ
) (

1 + 2
5

) (
1 + 2

25
2
5

)δΣ =
5

7

125(k − 27
50 )

129
(
1 + 2

5κ
)δΣ (33)

≥ 5

7
γκδΣ (34)

So Φυ,Σ ≤ t+. t−

Φυ,Σ
is handled the same way.

(1 + κδΣ)−pΦυ̃(x),(1+δΣ)−1Σ̃(y)

Φυ(x),Σ(y)
(35)

≤ (1 + κδΣ)−p

(√
|Σ|

|(1 + δΣ)−1Σ̃|
exp

(
1

2
(υ(x)− υ̃(x))′

(
Σ− (1 + δΣ)−1Σ̃

)−1

(υ(x)− υ̃(x))

))
(36)

≤ (1 + δΣ)p/2

(1 + κδΣ)p
exp

(
1

2
(υ(x)− υ̃(x))′

(
Σ− (1 + δΣ)−1Σ̃

)−1

(υ(x)− υ̃(x))

)
(37)

(38)

Now (
Σ− (1 + δΣ)−1Σ̃

)−1

=
(

Σ
(

(1 + δΣ)Σ̃−1 − Σ−1
)

(1 + δΣ)−1Σ̃
)−1

(39)

= (1 + δΣ)Σ̃−1
(

(1 + δΣ)Σ̃−1 − Σ−1
)−1

Σ−1 (40)

and

(υ(x)− υ̃(x))′
(

Σ− (1 + δΣ)−1Σ̃
)−1

(υ(x)− υ̃(x)) ≤ (1 + δΣ)L̃−1λ−1
− 2L̃λ+δ

−1
Σ L−1

− λ−1
− pγκL−λ

2
−λ
−1
+ δ2

Σ

(41)

≤ 2pγκ(1 + δΣ)δΣ (42)

We only need to prove that

γκ(1 + δΣ)δΣ ≤ ln

(
1 + κδΣ√

1 + δΣ

)
(43)
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Let

g(δΣ) = ln

(
1 + κδΣ√

1 + δΣ

)
(44)

g′(δΣ) =
κ

1 + κδΣ
− 1

2(1 + δΣ)
=

κδΣ + 2κ− 1

2(1 + δΣ)(1 + κδΣ)
(45)

Provided that κ ≥ 1
2 and δΣ ≤ 2

5 ,

g′(δΣ) >
2κ− 1

2(1 + 2
5 )(1 + 2

5κ)
.

Finally, since g(0) = 0,

g(δΣ) >
2κ− 1

2(1 + 2
5 )(1 + 2

5κ)
δΣ =

5(2κ− 1)

14(1 + 2κ
5 )
δΣ ≥

7

5
γκδΣ ≥ (1 + δΣ) γκδΣ.

One deduces (1 + κδΣ)−pΦυ̃(x),(1+δΣ)−1Σ̃(y) ≤ Φυ(x),Σ(y).

B.4 Proofs of inequalities used for bracketing entropy’s decomposition
For sake of completness, we repeat here the proof of the inequalities of Lemmas 11, 12 and 13 of
[11].

Proof. of inequality of Lemma 11 of [11]
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For all x in X ,

d2
y,k(π−(x)ψ−(x, .), π+(x)ψ+(x, .)) (46)

=

∫ K∑
k=1

(√
π+
k (x)

(√
ψ+
k (x, y)−

√
ψ−k (x, y)

)
(47)

+
√
ψ−k (x, y)

(√
π+
k (x)−

√
π−k (x)

))2

dy (48)

=

∫ K∑
k=1

π+
k (x)

(√
ψ+
k (x, y)−

√
ψ−k (x, y)

)2

dy (49)

+

∫ K∑
k=1

ψ−k (x, y)

(√
π+
k (x)−

√
π−k (x)

)2

dy (50)

+2

K∑
k=1

√
π+
k (x)

(√
π+
k (x)−

√
π−k (x)

)∫ √
ψ−k (x, y)

(√
ψ+
k (x, y)−

√
ψ−k (x, y)

)
dy (51)

≤

(
K∑
k=1

π+
k (x)

)
max
k

d2
y(ψ+

k (x, .), ψ−k (x, .)) + d2
k(π+(x), π−(x)) max

k

∫
ψ−k (x, y)dy (52)

+2

K∑
k=1

√
π+
k (x)

(√
π+
k (x)−

√
π−k (x)

)
dy(ψ+

k (x, .), ψ−k (x, .))

√∫
ψ−k (x, y)dy (53)

≤

(
K∑
k=1

π+
k (x)

)
max
k

d2
y(ψ+

k (x, .), ψ−k (x, .)) + d2
k(π+(x), π−(x)) max

k

∫
ψ−k (x, y)dy (54)

+2 max
k

√∫
ψ−k (x, y)dymax

k
dy(ψ+

k (x, .), ψ−k (x, .))

(
K∑
k=1

π+
k (x)

)1/2

dk(π+(x), π−(x)) (55)

≤

max
k

dy(ψ+
k (x, .), ψ−k (x, .))

√√√√ K∑
k=1

π+
k (x) (56)

+dk(π+(x), π−(x)) max
k

√∫
ψ−k (x, y)dy

)2

(57)

Proof. of inequality of Lemma 12 of [11].
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For all x in X ,

d2
y

(
K∑
k=1

π−k (x)ψ−k (x, .),

K∑
k=1

π+
k (x)ψ+

k (x, .)

)
=

∫ K∑
k=1

π+
k (x)ψ+

k (x, y)dy (58)

+

∫ K∑
k=1

π−k (x)ψ−k (x, y)dy − 2

∫ √√√√ K∑
k=1

π+
k (x)ψ+

k (x, y)

√√√√ K∑
k=1

π−k (x)ψ−k (x, y)dy (59)

≤
∫ K∑

k=1

π+
k (x)ψ+

k (x, y)dy +

∫ K∑
k=1

π−k (x)ψ−k (x, y)dy (60)

− 2

∫ K∑
k=1

√
π+
k (x)ψ+

k (x, y)
√
π−k (x)ψ−k (x, y)dy (61)

≤ d2
y,k(π−(x)ψ−(x, .), π+(x)ψ+(x, .)) (62)

Proof. of inequality of Lemma 13 of [11] We need to prove that for any x and any δ-Hellinger
bracket [t−(x, y), t+(x, y)],

∫
t−(x, y)dy ≤ 1 and

∫
t+(x, y)dy ≤

(
δ +
√

1 + δ2
)2
.

The first point is straightforward as t− is upper-bounded by a density.
For the second point,∫
t+ dy =

∫ (
t+ − t−

)
dy +

∫
t− dy ≤

∫ (√
t+ −

√
t−
)(√

t+ +
√
t−
)
dy + 1

≤ 2

∫ (√
t+ −

√
t−
)√

t+ dy + 1 ≤ 2

(∫ (√
t+ −

√
t−
)2

dy

)1/2(∫
t+dy

)1/2

+ 1∫
t+ dy ≤ 2δ

(∫
t+ dy

)1/2

+ 1

Solving the corresponding inequality yields∫
t+dy ≤

(
δ +

√
1 + δ2

)2

.

B.5 Proofs of lemmas used for Gaussian’s bracketing entropy
B.5.1 Proof of Lemma 9

Proof.

δΣ ≤
1

5
√
κ2 cosh( 2κ

5 ) + 1
2

δ

p
≤ 1

5
√
κ2 + 1

2

δ

p
≤ 1

5

√(
1
2

)2
+ 1

2

δ

p
≤ 2
√

2

5
√

3p
≤ 2

5p
(63)
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B.5.2 Proof of Lemma 10

Proof.

2− 2 2d/2
(
(1 + δΣ) + (1 + δΣ)−1

)−d/2
= 2

(
1−

(
eln(1+δΣ) + e− ln(1+δΣ)

2

)−d/2)
(64)

= 2
(

1− (cosh (ln(1 + δΣ)))
−d/2

)
(65)

= 2f (ln(1 + δΣ)) (66)
(67)

where f(x) = 1− cosh(x)−d/2. Studying this function yields

f ′(x) =
d

2
sinh(x) cosh(x)−d/2−1 (68)

f ′′(x) =
d

2
cosh(x)−d/2 − d

2

(
d

2
+ 1

)
sinh(x)2 cosh(x)−d/2−2 (69)

=
d

2

(
1−

(
d

2
+ 1

)(
sinh(x)

cosh(x)

)2
)

cosh(x)−d/2 (70)

as cosh(x) ≥ 1, we have thus

f ′′(x) ≤ d

2
. (71)

Now since f(0) = 0 and f ′(0) = 0, this implies for any x ≥ 0

f(x) ≤ d

2

x2

2
≤ d2

2

x2

2
. (72)

We deduce thus that

2− 2 2d/2
(
(1 + δΣ) + (1 + δΣ)−1

)−d/2 ≤ 1

2
d2 (ln(1 + δΣ))

2 (73)

and using ln(1 + δΣ) ≤ δΣ

2− 2 2d/2
(
(1 + δΣ) + (1 + δΣ)−1

)−d/2 ≤ 1

2
d2δ2

Σ. (74)

Now,

(1 + κδΣ)
d

+ (1 + κδΣ)
−d − 2 = 2 (cosh (d ln(1 + κδΣ))− 1) = 2g (d ln(1 + κδΣ)) (75)

with g(x) = cosh(x)− 1. Studying this function yields

g′(x) = sinh(x) and g′′(x) = cosh(x) (76)

and thus, since g(0) = 0 and g′(0) = 0, for any 0 ≤ x ≤ c

g(x) ≤ cosh(c)
x2

2
. (77)

Since ln(1 + κδΣ) ≤ κδΣ, dδΣ ≤ c implies d ln(1 + κδΣ) ≤ κc, we obtain thus

(1 + κδΣ)
d

+ (1 + κδΣ)
−d − 2 ≤ cosh(κc)d2 (ln(1 + κδΣ))

2 ≤ κ2 cosh(κc)d2δ2
Σ. (78)
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B.5.3 Proof of Lemma11

Proof. By definition,

x′
(

(1 + δΣ)Σ̃−1 − Σ−1
)
x = (1 + δΣ)L̃−1

p∑
i=1

Ã−1
i,i |D̃

′
ix|2 − L−1

p∑
i=1

A−1
i,i |D

′
ix|2 (79)

= (1 + δΣ)L̃−1

p∑
i=1

Ã−1
i,i |D̃

′
ix|2 − (1 + δΣ)L̃−1

p∑
i=1

Ã−1
i,i |D

′
ix|2 (80)

+ (1 + δΣ)L̃−1

p∑
i=1

Ã−1
i,i |D

′
ix|2 − (1 + δΣ)L̃−1

p∑
i=1

A−1
i,i |D

′
ix|2 (81)

+ (1 + δΣ)L̃−1

p∑
i=1

A−1
i,i |D

′
ix|2 − L−1

p∑
i=1

A−1
i,i |D

′
ix|2 (82)

Along the same lines,

x′
(

Σ−1 − (1 + δΣ)−1Σ̃−1
)
x = L−1

p∑
i=1

A−1
i,i |D

′
ix|2 − (1 + δΣ)−1L̃−1

p∑
i=1

Ã−1
i,i |D̃

′
ix|2 (83)

= L−1

p∑
i=1

A−1
i,i |D

′
ix|2 − (1 + δΣ)−1L̃−1

p∑
i=1

A−1
i,i |D

′
ix|2 (84)

+ (1 + δΣ)−1L̃−1

p∑
i=1

A−1
i,i |D

′
ix|2 − (1 + δΣ)−1L̃−1

p∑
i=1

Ã−1
i,i |D

′
ix|2

(85)

+ (1 + δΣ)−1L̃−1

p∑
i=1

Ã−1
i,i |D

′
ix|2 − (1 + δΣ)−1L̃−1

p∑
i=1

Ã−1
i,i |D

′
ix|2

(86)

Now∣∣∣∣∣
p∑
i=1

Ã−1
i,i |D̃

′
ix|2 −

p∑
i=1

Ã−1
i,i |D

′
ix|2

∣∣∣∣∣ ≤
p∑
i=1

Ã−1
i,i

∣∣∣|D̃′ix|2 − |D′ix|2∣∣∣ (87)

≤ λ−1
−

p∑
i=1

∣∣∣|D̃′ix|2 − |D′ix|2∣∣∣ (88)

≤ λ−1
−

p∑
i=1

∣∣∣|D̃′ix| − |D′ix|∣∣∣ ∣∣∣|D̃′ix|+ |D′ix|∣∣∣ (89)

≤ λ−1
−

(
p∑
i=1

∣∣∣(D̃i −Di)
′x
∣∣∣2)1/2( p∑

i=1

∣∣∣(D̃i +Di)
′x
∣∣∣2)1/2

(90)

≤ λ−1
− δD‖x‖2‖x‖ = λ−1

− 2δD‖x‖2. (91)
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Furthermore, ∣∣∣∣∣
p∑
i=1

Ã−1
i,i |D

′
ix|2 −

p∑
i=1

A−1
i,i |D

′
ix|2

∣∣∣∣∣ ≤
p∑
i=1

∣∣∣Ã−1
i,i −A

−1
i,i

∣∣∣ |D′ix|2 (92)

≤ δAλ−1
−

p∑
i=1

|D′ix|2 = δAλ
−1
− ‖x‖2. (93)

We notice then that

(1 + δΣ)L̃−1

p∑
i=1

A−1
i,i |D

′
ix|2 − L−1

p∑
i=1

A−1
i,i |D

′
ix|2 =

(
(1 + δΣ)L̃−1 − L−1

) p∑
i=1

A−1
i,i |D

′
ix|2 (94)

≥ (δΣ − δL)L̃−1λ−1
+ ‖x‖2 (95)

while

L−1

p∑
i=1

A−1
i,i |D

′
ix|2 − (1 + δΣ)−1L̃−1

p∑
i=1

A−1
i,i |D

′
ix|2 =

(
L−1 − (1 + δΣ)−1L̃−1

) p∑
i=1

A−1
i,i |D

′
ix|2

(96)

≥
(
1− (1 + δΣ)−1

)
L̃−1λ−1

+ ‖x‖2 (97)

≥ δΣ
1 + δΣ

λ−1
+ L̃−1‖x‖2 (98)

We deduce thus that

x′
(

(1 + δΣ)Σ̃−1 − Σ−1
)
x ≥ (δΣ − δL)L̃−1λ−1

+ ‖x‖2 − (1 + δΣ)L̃−1λ−1
− (2δD + 2δA) ‖x‖2

(99)

≥ L̃−1
(
(δΣ − δL)λ−1

+ − (1 + δΣ)λ−1
− (2δD + δA)

)
‖x‖2 (100)

and

x′
(

Σ−1 − (1 + δΣ)−1Σ̃−1
)
x ≥ δΣ

1 + δΣ
L̃−1λ−1

+ ‖x‖2 − (1 + δΣ)−1L̃−1λ−1
− (2δD + δA) ‖x‖2

(101)

≥ L̃−1

1 + δΣ

(
δΣλ

−1
+ − λ−1

− (2δD + δA)
)
‖x‖2 (102)

C Description of Newton-EM algorithm
In this section, Newton-EM algorithm is detailed. It consists in the classical EM algorithm in
which the update of the weights has been replaced by some Newton steps. For further details on
EM algorithm, refer to the technical report related to Young and Hunter [31].

Newton-EM

Initialization Parameters for w, υ and Σ are given.

Newton steps for w Perform at most 5 steps Newton steps for w only while the like likelihood
increases.

Maximization Update of υ and Σ with usual formulas in EM algorithm.
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Initialization of Newton-EM

1. Draw K couples of points (Xi, Yi) among data, defining K lines υl.

2. Classify the data: k = arg minl |Yi − υl(Xi)|.

3. Proceed 3 steps of Newton-EM initialized with w = 0 and empirical covariance matrices
and means.

4. Repeat 50 times the previous steps and choose the set of parameters with the greatest
likelihood among the 50.
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